1 /* 2 * This file is part of the Chelsio T4 Ethernet driver for Linux. 3 * 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. 5 * 6 * This software is available to you under a choice of one of two 7 * licenses. You may choose to be licensed under the terms of the GNU 8 * General Public License (GPL) Version 2, available from the file 9 * COPYING in the main directory of this source tree, or the 10 * OpenIB.org BSD license below: 11 * 12 * Redistribution and use in source and binary forms, with or 13 * without modification, are permitted provided that the following 14 * conditions are met: 15 * 16 * - Redistributions of source code must retain the above 17 * copyright notice, this list of conditions and the following 18 * disclaimer. 19 * 20 * - Redistributions in binary form must reproduce the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer in the documentation and/or other materials 23 * provided with the distribution. 24 * 25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 32 * SOFTWARE. 33 */ 34 35 #include <linux/skbuff.h> 36 #include <linux/netdevice.h> 37 #include <linux/etherdevice.h> 38 #include <linux/if_vlan.h> 39 #include <linux/ip.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/jiffies.h> 42 #include <linux/prefetch.h> 43 #include <linux/export.h> 44 #include <net/xfrm.h> 45 #include <net/ipv6.h> 46 #include <net/tcp.h> 47 #include <net/busy_poll.h> 48 #ifdef CONFIG_CHELSIO_T4_FCOE 49 #include <scsi/fc/fc_fcoe.h> 50 #endif /* CONFIG_CHELSIO_T4_FCOE */ 51 #include "cxgb4.h" 52 #include "t4_regs.h" 53 #include "t4_values.h" 54 #include "t4_msg.h" 55 #include "t4fw_api.h" 56 #include "cxgb4_ptp.h" 57 #include "cxgb4_uld.h" 58 #include "cxgb4_tc_mqprio.h" 59 #include "sched.h" 60 61 /* 62 * Rx buffer size. We use largish buffers if possible but settle for single 63 * pages under memory shortage. 64 */ 65 #if PAGE_SHIFT >= 16 66 # define FL_PG_ORDER 0 67 #else 68 # define FL_PG_ORDER (16 - PAGE_SHIFT) 69 #endif 70 71 /* RX_PULL_LEN should be <= RX_COPY_THRES */ 72 #define RX_COPY_THRES 256 73 #define RX_PULL_LEN 128 74 75 /* 76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments. 77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. 78 */ 79 #define RX_PKT_SKB_LEN 512 80 81 /* 82 * Max number of Tx descriptors we clean up at a time. Should be modest as 83 * freeing skbs isn't cheap and it happens while holding locks. We just need 84 * to free packets faster than they arrive, we eventually catch up and keep 85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should 86 * also match the CIDX Flush Threshold. 87 */ 88 #define MAX_TX_RECLAIM 32 89 90 /* 91 * Max number of Rx buffers we replenish at a time. Again keep this modest, 92 * allocating buffers isn't cheap either. 93 */ 94 #define MAX_RX_REFILL 16U 95 96 /* 97 * Period of the Rx queue check timer. This timer is infrequent as it has 98 * something to do only when the system experiences severe memory shortage. 99 */ 100 #define RX_QCHECK_PERIOD (HZ / 2) 101 102 /* 103 * Period of the Tx queue check timer. 104 */ 105 #define TX_QCHECK_PERIOD (HZ / 2) 106 107 /* 108 * Max number of Tx descriptors to be reclaimed by the Tx timer. 109 */ 110 #define MAX_TIMER_TX_RECLAIM 100 111 112 /* 113 * Timer index used when backing off due to memory shortage. 114 */ 115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) 116 117 /* 118 * Suspension threshold for non-Ethernet Tx queues. We require enough room 119 * for a full sized WR. 120 */ 121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) 122 123 /* 124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined 125 * into a WR. 126 */ 127 #define MAX_IMM_TX_PKT_LEN 256 128 129 /* 130 * Max size of a WR sent through a control Tx queue. 131 */ 132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN 133 134 struct rx_sw_desc { /* SW state per Rx descriptor */ 135 struct page *page; 136 dma_addr_t dma_addr; 137 }; 138 139 /* 140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb 141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs. 142 * We could easily support more but there doesn't seem to be much need for 143 * that ... 144 */ 145 #define FL_MTU_SMALL 1500 146 #define FL_MTU_LARGE 9000 147 148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, 149 unsigned int mtu) 150 { 151 struct sge *s = &adapter->sge; 152 153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align); 154 } 155 156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) 157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) 158 159 /* 160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses 161 * these to specify the buffer size as an index into the SGE Free List Buffer 162 * Size register array. We also use bit 4, when the buffer has been unmapped 163 * for DMA, but this is of course never sent to the hardware and is only used 164 * to prevent double unmappings. All of the above requires that the Free List 165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are 166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal 167 * Free List Buffer alignment is 32 bytes, this works out for us ... 168 */ 169 enum { 170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ 171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ 172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ 173 174 /* 175 * XXX We shouldn't depend on being able to use these indices. 176 * XXX Especially when some other Master PF has initialized the 177 * XXX adapter or we use the Firmware Configuration File. We 178 * XXX should really search through the Host Buffer Size register 179 * XXX array for the appropriately sized buffer indices. 180 */ 181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ 182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */ 183 184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ 185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ 186 }; 187 188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5}; 189 #define MIN_NAPI_WORK 1 190 191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) 192 { 193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS; 194 } 195 196 static inline bool is_buf_mapped(const struct rx_sw_desc *d) 197 { 198 return !(d->dma_addr & RX_UNMAPPED_BUF); 199 } 200 201 /** 202 * txq_avail - return the number of available slots in a Tx queue 203 * @q: the Tx queue 204 * 205 * Returns the number of descriptors in a Tx queue available to write new 206 * packets. 207 */ 208 static inline unsigned int txq_avail(const struct sge_txq *q) 209 { 210 return q->size - 1 - q->in_use; 211 } 212 213 /** 214 * fl_cap - return the capacity of a free-buffer list 215 * @fl: the FL 216 * 217 * Returns the capacity of a free-buffer list. The capacity is less than 218 * the size because one descriptor needs to be left unpopulated, otherwise 219 * HW will think the FL is empty. 220 */ 221 static inline unsigned int fl_cap(const struct sge_fl *fl) 222 { 223 return fl->size - 8; /* 1 descriptor = 8 buffers */ 224 } 225 226 /** 227 * fl_starving - return whether a Free List is starving. 228 * @adapter: pointer to the adapter 229 * @fl: the Free List 230 * 231 * Tests specified Free List to see whether the number of buffers 232 * available to the hardware has falled below our "starvation" 233 * threshold. 234 */ 235 static inline bool fl_starving(const struct adapter *adapter, 236 const struct sge_fl *fl) 237 { 238 const struct sge *s = &adapter->sge; 239 240 return fl->avail - fl->pend_cred <= s->fl_starve_thres; 241 } 242 243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb, 244 dma_addr_t *addr) 245 { 246 const skb_frag_t *fp, *end; 247 const struct skb_shared_info *si; 248 249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 250 if (dma_mapping_error(dev, *addr)) 251 goto out_err; 252 253 si = skb_shinfo(skb); 254 end = &si->frags[si->nr_frags]; 255 256 for (fp = si->frags; fp < end; fp++) { 257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp), 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(dev, *addr)) 260 goto unwind; 261 } 262 return 0; 263 264 unwind: 265 while (fp-- > si->frags) 266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE); 267 268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); 269 out_err: 270 return -ENOMEM; 271 } 272 EXPORT_SYMBOL(cxgb4_map_skb); 273 274 static void unmap_skb(struct device *dev, const struct sk_buff *skb, 275 const dma_addr_t *addr) 276 { 277 const skb_frag_t *fp, *end; 278 const struct skb_shared_info *si; 279 280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); 281 282 si = skb_shinfo(skb); 283 end = &si->frags[si->nr_frags]; 284 for (fp = si->frags; fp < end; fp++) 285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE); 286 } 287 288 #ifdef CONFIG_NEED_DMA_MAP_STATE 289 /** 290 * deferred_unmap_destructor - unmap a packet when it is freed 291 * @skb: the packet 292 * 293 * This is the packet destructor used for Tx packets that need to remain 294 * mapped until they are freed rather than until their Tx descriptors are 295 * freed. 296 */ 297 static void deferred_unmap_destructor(struct sk_buff *skb) 298 { 299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); 300 } 301 #endif 302 303 /** 304 * free_tx_desc - reclaims Tx descriptors and their buffers 305 * @adap: the adapter 306 * @q: the Tx queue to reclaim descriptors from 307 * @n: the number of descriptors to reclaim 308 * @unmap: whether the buffers should be unmapped for DMA 309 * 310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 311 * Tx buffers. Called with the Tx queue lock held. 312 */ 313 void free_tx_desc(struct adapter *adap, struct sge_txq *q, 314 unsigned int n, bool unmap) 315 { 316 unsigned int cidx = q->cidx; 317 struct tx_sw_desc *d; 318 319 d = &q->sdesc[cidx]; 320 while (n--) { 321 if (d->skb) { /* an SGL is present */ 322 if (unmap && d->addr[0]) { 323 unmap_skb(adap->pdev_dev, d->skb, d->addr); 324 memset(d->addr, 0, sizeof(d->addr)); 325 } 326 dev_consume_skb_any(d->skb); 327 d->skb = NULL; 328 } 329 ++d; 330 if (++cidx == q->size) { 331 cidx = 0; 332 d = q->sdesc; 333 } 334 } 335 q->cidx = cidx; 336 } 337 338 /* 339 * Return the number of reclaimable descriptors in a Tx queue. 340 */ 341 static inline int reclaimable(const struct sge_txq *q) 342 { 343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 344 hw_cidx -= q->cidx; 345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; 346 } 347 348 /** 349 * reclaim_completed_tx - reclaims completed TX Descriptors 350 * @adap: the adapter 351 * @q: the Tx queue to reclaim completed descriptors from 352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 353 * @unmap: whether the buffers should be unmapped for DMA 354 * 355 * Reclaims Tx Descriptors that the SGE has indicated it has processed, 356 * and frees the associated buffers if possible. If @max == -1, then 357 * we'll use a defaiult maximum. Called with the TX Queue locked. 358 */ 359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 360 int maxreclaim, bool unmap) 361 { 362 int reclaim = reclaimable(q); 363 364 if (reclaim) { 365 /* 366 * Limit the amount of clean up work we do at a time to keep 367 * the Tx lock hold time O(1). 368 */ 369 if (maxreclaim < 0) 370 maxreclaim = MAX_TX_RECLAIM; 371 if (reclaim > maxreclaim) 372 reclaim = maxreclaim; 373 374 free_tx_desc(adap, q, reclaim, unmap); 375 q->in_use -= reclaim; 376 } 377 378 return reclaim; 379 } 380 381 /** 382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors 383 * @adap: the adapter 384 * @q: the Tx queue to reclaim completed descriptors from 385 * @unmap: whether the buffers should be unmapped for DMA 386 * 387 * Reclaims Tx descriptors that the SGE has indicated it has processed, 388 * and frees the associated buffers if possible. Called with the Tx 389 * queue locked. 390 */ 391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, 392 bool unmap) 393 { 394 (void)reclaim_completed_tx(adap, q, -1, unmap); 395 } 396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx); 397 398 static inline int get_buf_size(struct adapter *adapter, 399 const struct rx_sw_desc *d) 400 { 401 struct sge *s = &adapter->sge; 402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; 403 int buf_size; 404 405 switch (rx_buf_size_idx) { 406 case RX_SMALL_PG_BUF: 407 buf_size = PAGE_SIZE; 408 break; 409 410 case RX_LARGE_PG_BUF: 411 buf_size = PAGE_SIZE << s->fl_pg_order; 412 break; 413 414 case RX_SMALL_MTU_BUF: 415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter); 416 break; 417 418 case RX_LARGE_MTU_BUF: 419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter); 420 break; 421 422 default: 423 BUG(); 424 } 425 426 return buf_size; 427 } 428 429 /** 430 * free_rx_bufs - free the Rx buffers on an SGE free list 431 * @adap: the adapter 432 * @q: the SGE free list to free buffers from 433 * @n: how many buffers to free 434 * 435 * Release the next @n buffers on an SGE free-buffer Rx queue. The 436 * buffers must be made inaccessible to HW before calling this function. 437 */ 438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) 439 { 440 while (n--) { 441 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 442 443 if (is_buf_mapped(d)) 444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 445 get_buf_size(adap, d), 446 DMA_FROM_DEVICE); 447 put_page(d->page); 448 d->page = NULL; 449 if (++q->cidx == q->size) 450 q->cidx = 0; 451 q->avail--; 452 } 453 } 454 455 /** 456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list 457 * @adap: the adapter 458 * @q: the SGE free list 459 * 460 * Unmap the current buffer on an SGE free-buffer Rx queue. The 461 * buffer must be made inaccessible to HW before calling this function. 462 * 463 * This is similar to @free_rx_bufs above but does not free the buffer. 464 * Do note that the FL still loses any further access to the buffer. 465 */ 466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) 467 { 468 struct rx_sw_desc *d = &q->sdesc[q->cidx]; 469 470 if (is_buf_mapped(d)) 471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d), 472 get_buf_size(adap, d), DMA_FROM_DEVICE); 473 d->page = NULL; 474 if (++q->cidx == q->size) 475 q->cidx = 0; 476 q->avail--; 477 } 478 479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 480 { 481 if (q->pend_cred >= 8) { 482 u32 val = adap->params.arch.sge_fl_db; 483 484 if (is_t4(adap->params.chip)) 485 val |= PIDX_V(q->pend_cred / 8); 486 else 487 val |= PIDX_T5_V(q->pend_cred / 8); 488 489 /* Make sure all memory writes to the Free List queue are 490 * committed before we tell the hardware about them. 491 */ 492 wmb(); 493 494 /* If we don't have access to the new User Doorbell (T5+), use 495 * the old doorbell mechanism; otherwise use the new BAR2 496 * mechanism. 497 */ 498 if (unlikely(q->bar2_addr == NULL)) { 499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 500 val | QID_V(q->cntxt_id)); 501 } else { 502 writel(val | QID_V(q->bar2_qid), 503 q->bar2_addr + SGE_UDB_KDOORBELL); 504 505 /* This Write memory Barrier will force the write to 506 * the User Doorbell area to be flushed. 507 */ 508 wmb(); 509 } 510 q->pend_cred &= 7; 511 } 512 } 513 514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, 515 dma_addr_t mapping) 516 { 517 sd->page = pg; 518 sd->dma_addr = mapping; /* includes size low bits */ 519 } 520 521 /** 522 * refill_fl - refill an SGE Rx buffer ring 523 * @adap: the adapter 524 * @q: the ring to refill 525 * @n: the number of new buffers to allocate 526 * @gfp: the gfp flags for the allocations 527 * 528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, 529 * allocated with the supplied gfp flags. The caller must assure that 530 * @n does not exceed the queue's capacity. If afterwards the queue is 531 * found critically low mark it as starving in the bitmap of starving FLs. 532 * 533 * Returns the number of buffers allocated. 534 */ 535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, 536 gfp_t gfp) 537 { 538 struct sge *s = &adap->sge; 539 struct page *pg; 540 dma_addr_t mapping; 541 unsigned int cred = q->avail; 542 __be64 *d = &q->desc[q->pidx]; 543 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 544 int node; 545 546 #ifdef CONFIG_DEBUG_FS 547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl)) 548 goto out; 549 #endif 550 551 gfp |= __GFP_NOWARN; 552 node = dev_to_node(adap->pdev_dev); 553 554 if (s->fl_pg_order == 0) 555 goto alloc_small_pages; 556 557 /* 558 * Prefer large buffers 559 */ 560 while (n) { 561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order); 562 if (unlikely(!pg)) { 563 q->large_alloc_failed++; 564 break; /* fall back to single pages */ 565 } 566 567 mapping = dma_map_page(adap->pdev_dev, pg, 0, 568 PAGE_SIZE << s->fl_pg_order, 569 DMA_FROM_DEVICE); 570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 571 __free_pages(pg, s->fl_pg_order); 572 q->mapping_err++; 573 goto out; /* do not try small pages for this error */ 574 } 575 mapping |= RX_LARGE_PG_BUF; 576 *d++ = cpu_to_be64(mapping); 577 578 set_rx_sw_desc(sd, pg, mapping); 579 sd++; 580 581 q->avail++; 582 if (++q->pidx == q->size) { 583 q->pidx = 0; 584 sd = q->sdesc; 585 d = q->desc; 586 } 587 n--; 588 } 589 590 alloc_small_pages: 591 while (n--) { 592 pg = alloc_pages_node(node, gfp, 0); 593 if (unlikely(!pg)) { 594 q->alloc_failed++; 595 break; 596 } 597 598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, 599 DMA_FROM_DEVICE); 600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { 601 put_page(pg); 602 q->mapping_err++; 603 goto out; 604 } 605 *d++ = cpu_to_be64(mapping); 606 607 set_rx_sw_desc(sd, pg, mapping); 608 sd++; 609 610 q->avail++; 611 if (++q->pidx == q->size) { 612 q->pidx = 0; 613 sd = q->sdesc; 614 d = q->desc; 615 } 616 } 617 618 out: cred = q->avail - cred; 619 q->pend_cred += cred; 620 ring_fl_db(adap, q); 621 622 if (unlikely(fl_starving(adap, q))) { 623 smp_wmb(); 624 q->low++; 625 set_bit(q->cntxt_id - adap->sge.egr_start, 626 adap->sge.starving_fl); 627 } 628 629 return cred; 630 } 631 632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 633 { 634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), 635 GFP_ATOMIC); 636 } 637 638 /** 639 * alloc_ring - allocate resources for an SGE descriptor ring 640 * @dev: the PCI device's core device 641 * @nelem: the number of descriptors 642 * @elem_size: the size of each descriptor 643 * @sw_size: the size of the SW state associated with each ring element 644 * @phys: the physical address of the allocated ring 645 * @metadata: address of the array holding the SW state for the ring 646 * @stat_size: extra space in HW ring for status information 647 * @node: preferred node for memory allocations 648 * 649 * Allocates resources for an SGE descriptor ring, such as Tx queues, 650 * free buffer lists, or response queues. Each SGE ring requires 651 * space for its HW descriptors plus, optionally, space for the SW state 652 * associated with each HW entry (the metadata). The function returns 653 * three values: the virtual address for the HW ring (the return value 654 * of the function), the bus address of the HW ring, and the address 655 * of the SW ring. 656 */ 657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, 658 size_t sw_size, dma_addr_t *phys, void *metadata, 659 size_t stat_size, int node) 660 { 661 size_t len = nelem * elem_size + stat_size; 662 void *s = NULL; 663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); 664 665 if (!p) 666 return NULL; 667 if (sw_size) { 668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node); 669 670 if (!s) { 671 dma_free_coherent(dev, len, p, *phys); 672 return NULL; 673 } 674 } 675 if (metadata) 676 *(void **)metadata = s; 677 return p; 678 } 679 680 /** 681 * sgl_len - calculates the size of an SGL of the given capacity 682 * @n: the number of SGL entries 683 * 684 * Calculates the number of flits needed for a scatter/gather list that 685 * can hold the given number of entries. 686 */ 687 static inline unsigned int sgl_len(unsigned int n) 688 { 689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA 690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL 691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, 692 * repeated sequences of { Length[i], Length[i+1], Address[i], 693 * Address[i+1] } (this ensures that all addresses are on 64-bit 694 * boundaries). If N is even, then Length[N+1] should be set to 0 and 695 * Address[N+1] is omitted. 696 * 697 * The following calculation incorporates all of the above. It's 698 * somewhat hard to follow but, briefly: the "+2" accounts for the 699 * first two flits which include the DSGL header, Length0 and 700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and 702 * finally the "+((n-1)&1)" adds the one remaining flit needed if 703 * (n-1) is odd ... 704 */ 705 n--; 706 return (3 * n) / 2 + (n & 1) + 2; 707 } 708 709 /** 710 * flits_to_desc - returns the num of Tx descriptors for the given flits 711 * @n: the number of flits 712 * 713 * Returns the number of Tx descriptors needed for the supplied number 714 * of flits. 715 */ 716 static inline unsigned int flits_to_desc(unsigned int n) 717 { 718 BUG_ON(n > SGE_MAX_WR_LEN / 8); 719 return DIV_ROUND_UP(n, 8); 720 } 721 722 /** 723 * is_eth_imm - can an Ethernet packet be sent as immediate data? 724 * @skb: the packet 725 * @chip_ver: chip version 726 * 727 * Returns whether an Ethernet packet is small enough to fit as 728 * immediate data. Return value corresponds to headroom required. 729 */ 730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver) 731 { 732 int hdrlen = 0; 733 734 if (skb->encapsulation && skb_shinfo(skb)->gso_size && 735 chip_ver > CHELSIO_T5) { 736 hdrlen = sizeof(struct cpl_tx_tnl_lso); 737 hdrlen += sizeof(struct cpl_tx_pkt_core); 738 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 739 return 0; 740 } else { 741 hdrlen = skb_shinfo(skb)->gso_size ? 742 sizeof(struct cpl_tx_pkt_lso_core) : 0; 743 hdrlen += sizeof(struct cpl_tx_pkt); 744 } 745 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen) 746 return hdrlen; 747 return 0; 748 } 749 750 /** 751 * calc_tx_flits - calculate the number of flits for a packet Tx WR 752 * @skb: the packet 753 * @chip_ver: chip version 754 * 755 * Returns the number of flits needed for a Tx WR for the given Ethernet 756 * packet, including the needed WR and CPL headers. 757 */ 758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb, 759 unsigned int chip_ver) 760 { 761 unsigned int flits; 762 int hdrlen = is_eth_imm(skb, chip_ver); 763 764 /* If the skb is small enough, we can pump it out as a work request 765 * with only immediate data. In that case we just have to have the 766 * TX Packet header plus the skb data in the Work Request. 767 */ 768 769 if (hdrlen) 770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64)); 771 772 /* Otherwise, we're going to have to construct a Scatter gather list 773 * of the skb body and fragments. We also include the flits necessary 774 * for the TX Packet Work Request and CPL. We always have a firmware 775 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 776 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 777 * message or, if we're doing a Large Send Offload, an LSO CPL message 778 * with an embedded TX Packet Write CPL message. 779 */ 780 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 781 if (skb_shinfo(skb)->gso_size) { 782 if (skb->encapsulation && chip_ver > CHELSIO_T5) { 783 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 784 sizeof(struct cpl_tx_tnl_lso); 785 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 786 u32 pkt_hdrlen; 787 788 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data, 789 skb_headlen(skb)); 790 hdrlen = sizeof(struct fw_eth_tx_eo_wr) + 791 round_up(pkt_hdrlen, 16); 792 } else { 793 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) + 794 sizeof(struct cpl_tx_pkt_lso_core); 795 } 796 797 hdrlen += sizeof(struct cpl_tx_pkt_core); 798 flits += (hdrlen / sizeof(__be64)); 799 } else { 800 flits += (sizeof(struct fw_eth_tx_pkt_wr) + 801 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 802 } 803 return flits; 804 } 805 806 /** 807 * cxgb4_write_sgl - populate a scatter/gather list for a packet 808 * @skb: the packet 809 * @q: the Tx queue we are writing into 810 * @sgl: starting location for writing the SGL 811 * @end: points right after the end of the SGL 812 * @start: start offset into skb main-body data to include in the SGL 813 * @addr: the list of bus addresses for the SGL elements 814 * 815 * Generates a gather list for the buffers that make up a packet. 816 * The caller must provide adequate space for the SGL that will be written. 817 * The SGL includes all of the packet's page fragments and the data in its 818 * main body except for the first @start bytes. @sgl must be 16-byte 819 * aligned and within a Tx descriptor with available space. @end points 820 * right after the end of the SGL but does not account for any potential 821 * wrap around, i.e., @end > @sgl. 822 */ 823 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q, 824 struct ulptx_sgl *sgl, u64 *end, unsigned int start, 825 const dma_addr_t *addr) 826 { 827 unsigned int i, len; 828 struct ulptx_sge_pair *to; 829 const struct skb_shared_info *si = skb_shinfo(skb); 830 unsigned int nfrags = si->nr_frags; 831 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; 832 833 len = skb_headlen(skb) - start; 834 if (likely(len)) { 835 sgl->len0 = htonl(len); 836 sgl->addr0 = cpu_to_be64(addr[0] + start); 837 nfrags++; 838 } else { 839 sgl->len0 = htonl(skb_frag_size(&si->frags[0])); 840 sgl->addr0 = cpu_to_be64(addr[1]); 841 } 842 843 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 844 ULPTX_NSGE_V(nfrags)); 845 if (likely(--nfrags == 0)) 846 return; 847 /* 848 * Most of the complexity below deals with the possibility we hit the 849 * end of the queue in the middle of writing the SGL. For this case 850 * only we create the SGL in a temporary buffer and then copy it. 851 */ 852 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 853 854 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { 855 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 856 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i])); 857 to->addr[0] = cpu_to_be64(addr[i]); 858 to->addr[1] = cpu_to_be64(addr[++i]); 859 } 860 if (nfrags) { 861 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i])); 862 to->len[1] = cpu_to_be32(0); 863 to->addr[0] = cpu_to_be64(addr[i + 1]); 864 } 865 if (unlikely((u8 *)end > (u8 *)q->stat)) { 866 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 867 868 if (likely(part0)) 869 memcpy(sgl->sge, buf, part0); 870 part1 = (u8 *)end - (u8 *)q->stat; 871 memcpy(q->desc, (u8 *)buf + part0, part1); 872 end = (void *)q->desc + part1; 873 } 874 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ 875 *end = 0; 876 } 877 EXPORT_SYMBOL(cxgb4_write_sgl); 878 879 /* cxgb4_write_partial_sgl - populate SGL for partial packet 880 * @skb: the packet 881 * @q: the Tx queue we are writing into 882 * @sgl: starting location for writing the SGL 883 * @end: points right after the end of the SGL 884 * @addr: the list of bus addresses for the SGL elements 885 * @start: start offset in the SKB where partial data starts 886 * @len: length of data from @start to send out 887 * 888 * This API will handle sending out partial data of a skb if required. 889 * Unlike cxgb4_write_sgl, @start can be any offset into the skb data, 890 * and @len will decide how much data after @start offset to send out. 891 */ 892 void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q, 893 struct ulptx_sgl *sgl, u64 *end, 894 const dma_addr_t *addr, u32 start, u32 len) 895 { 896 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to; 897 u32 frag_size, skb_linear_data_len = skb_headlen(skb); 898 struct skb_shared_info *si = skb_shinfo(skb); 899 u8 i = 0, frag_idx = 0, nfrags = 0; 900 skb_frag_t *frag; 901 902 /* Fill the first SGL either from linear data or from partial 903 * frag based on @start. 904 */ 905 if (unlikely(start < skb_linear_data_len)) { 906 frag_size = min(len, skb_linear_data_len - start); 907 sgl->len0 = htonl(frag_size); 908 sgl->addr0 = cpu_to_be64(addr[0] + start); 909 len -= frag_size; 910 nfrags++; 911 } else { 912 start -= skb_linear_data_len; 913 frag = &si->frags[frag_idx]; 914 frag_size = skb_frag_size(frag); 915 /* find the first frag */ 916 while (start >= frag_size) { 917 start -= frag_size; 918 frag_idx++; 919 frag = &si->frags[frag_idx]; 920 frag_size = skb_frag_size(frag); 921 } 922 923 frag_size = min(len, skb_frag_size(frag) - start); 924 sgl->len0 = cpu_to_be32(frag_size); 925 sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start); 926 len -= frag_size; 927 nfrags++; 928 frag_idx++; 929 } 930 931 /* If the entire partial data fit in one SGL, then send it out 932 * now. 933 */ 934 if (!len) 935 goto done; 936 937 /* Most of the complexity below deals with the possibility we hit the 938 * end of the queue in the middle of writing the SGL. For this case 939 * only we create the SGL in a temporary buffer and then copy it. 940 */ 941 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; 942 943 /* If the skb couldn't fit in first SGL completely, fill the 944 * rest of the frags in subsequent SGLs. Note that each SGL 945 * pair can store 2 frags. 946 */ 947 while (len) { 948 frag_size = min(len, skb_frag_size(&si->frags[frag_idx])); 949 to->len[i & 1] = cpu_to_be32(frag_size); 950 to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]); 951 if (i && (i & 1)) 952 to++; 953 nfrags++; 954 frag_idx++; 955 i++; 956 len -= frag_size; 957 } 958 959 /* If we ended in an odd boundary, then set the second SGL's 960 * length in the pair to 0. 961 */ 962 if (i & 1) 963 to->len[1] = cpu_to_be32(0); 964 965 /* Copy from temporary buffer to Tx ring, in case we hit the 966 * end of the queue in the middle of writing the SGL. 967 */ 968 if (unlikely((u8 *)end > (u8 *)q->stat)) { 969 u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; 970 971 if (likely(part0)) 972 memcpy(sgl->sge, buf, part0); 973 part1 = (u8 *)end - (u8 *)q->stat; 974 memcpy(q->desc, (u8 *)buf + part0, part1); 975 end = (void *)q->desc + part1; 976 } 977 978 /* 0-pad to multiple of 16 */ 979 if ((uintptr_t)end & 8) 980 *end = 0; 981 done: 982 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | 983 ULPTX_NSGE_V(nfrags)); 984 } 985 EXPORT_SYMBOL(cxgb4_write_partial_sgl); 986 987 /* This function copies 64 byte coalesced work request to 988 * memory mapped BAR2 space. For coalesced WR SGE fetches 989 * data from the FIFO instead of from Host. 990 */ 991 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src) 992 { 993 int count = 8; 994 995 while (count) { 996 writeq(*src, dst); 997 src++; 998 dst++; 999 count--; 1000 } 1001 } 1002 1003 /** 1004 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell 1005 * @adap: the adapter 1006 * @q: the Tx queue 1007 * @n: number of new descriptors to give to HW 1008 * 1009 * Ring the doorbel for a Tx queue. 1010 */ 1011 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) 1012 { 1013 /* Make sure that all writes to the TX Descriptors are committed 1014 * before we tell the hardware about them. 1015 */ 1016 wmb(); 1017 1018 /* If we don't have access to the new User Doorbell (T5+), use the old 1019 * doorbell mechanism; otherwise use the new BAR2 mechanism. 1020 */ 1021 if (unlikely(q->bar2_addr == NULL)) { 1022 u32 val = PIDX_V(n); 1023 unsigned long flags; 1024 1025 /* For T4 we need to participate in the Doorbell Recovery 1026 * mechanism. 1027 */ 1028 spin_lock_irqsave(&q->db_lock, flags); 1029 if (!q->db_disabled) 1030 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A), 1031 QID_V(q->cntxt_id) | val); 1032 else 1033 q->db_pidx_inc += n; 1034 q->db_pidx = q->pidx; 1035 spin_unlock_irqrestore(&q->db_lock, flags); 1036 } else { 1037 u32 val = PIDX_T5_V(n); 1038 1039 /* T4 and later chips share the same PIDX field offset within 1040 * the doorbell, but T5 and later shrank the field in order to 1041 * gain a bit for Doorbell Priority. The field was absurdly 1042 * large in the first place (14 bits) so we just use the T5 1043 * and later limits and warn if a Queue ID is too large. 1044 */ 1045 WARN_ON(val & DBPRIO_F); 1046 1047 /* If we're only writing a single TX Descriptor and we can use 1048 * Inferred QID registers, we can use the Write Combining 1049 * Gather Buffer; otherwise we use the simple doorbell. 1050 */ 1051 if (n == 1 && q->bar2_qid == 0) { 1052 int index = (q->pidx 1053 ? (q->pidx - 1) 1054 : (q->size - 1)); 1055 u64 *wr = (u64 *)&q->desc[index]; 1056 1057 cxgb_pio_copy((u64 __iomem *) 1058 (q->bar2_addr + SGE_UDB_WCDOORBELL), 1059 wr); 1060 } else { 1061 writel(val | QID_V(q->bar2_qid), 1062 q->bar2_addr + SGE_UDB_KDOORBELL); 1063 } 1064 1065 /* This Write Memory Barrier will force the write to the User 1066 * Doorbell area to be flushed. This is needed to prevent 1067 * writes on different CPUs for the same queue from hitting 1068 * the adapter out of order. This is required when some Work 1069 * Requests take the Write Combine Gather Buffer path (user 1070 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some 1071 * take the traditional path where we simply increment the 1072 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the 1073 * hardware DMA read the actual Work Request. 1074 */ 1075 wmb(); 1076 } 1077 } 1078 EXPORT_SYMBOL(cxgb4_ring_tx_db); 1079 1080 /** 1081 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors 1082 * @skb: the packet 1083 * @q: the Tx queue where the packet will be inlined 1084 * @pos: starting position in the Tx queue where to inline the packet 1085 * 1086 * Inline a packet's contents directly into Tx descriptors, starting at 1087 * the given position within the Tx DMA ring. 1088 * Most of the complexity of this operation is dealing with wrap arounds 1089 * in the middle of the packet we want to inline. 1090 */ 1091 void cxgb4_inline_tx_skb(const struct sk_buff *skb, 1092 const struct sge_txq *q, void *pos) 1093 { 1094 int left = (void *)q->stat - pos; 1095 u64 *p; 1096 1097 if (likely(skb->len <= left)) { 1098 if (likely(!skb->data_len)) 1099 skb_copy_from_linear_data(skb, pos, skb->len); 1100 else 1101 skb_copy_bits(skb, 0, pos, skb->len); 1102 pos += skb->len; 1103 } else { 1104 skb_copy_bits(skb, 0, pos, left); 1105 skb_copy_bits(skb, left, q->desc, skb->len - left); 1106 pos = (void *)q->desc + (skb->len - left); 1107 } 1108 1109 /* 0-pad to multiple of 16 */ 1110 p = PTR_ALIGN(pos, 8); 1111 if ((uintptr_t)p & 8) 1112 *p = 0; 1113 } 1114 EXPORT_SYMBOL(cxgb4_inline_tx_skb); 1115 1116 static void *inline_tx_skb_header(const struct sk_buff *skb, 1117 const struct sge_txq *q, void *pos, 1118 int length) 1119 { 1120 u64 *p; 1121 int left = (void *)q->stat - pos; 1122 1123 if (likely(length <= left)) { 1124 memcpy(pos, skb->data, length); 1125 pos += length; 1126 } else { 1127 memcpy(pos, skb->data, left); 1128 memcpy(q->desc, skb->data + left, length - left); 1129 pos = (void *)q->desc + (length - left); 1130 } 1131 /* 0-pad to multiple of 16 */ 1132 p = PTR_ALIGN(pos, 8); 1133 if ((uintptr_t)p & 8) { 1134 *p = 0; 1135 return p + 1; 1136 } 1137 return p; 1138 } 1139 1140 /* 1141 * Figure out what HW csum a packet wants and return the appropriate control 1142 * bits. 1143 */ 1144 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb) 1145 { 1146 int csum_type; 1147 bool inner_hdr_csum = false; 1148 u16 proto, ver; 1149 1150 if (skb->encapsulation && 1151 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5)) 1152 inner_hdr_csum = true; 1153 1154 if (inner_hdr_csum) { 1155 ver = inner_ip_hdr(skb)->version; 1156 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol : 1157 inner_ipv6_hdr(skb)->nexthdr; 1158 } else { 1159 ver = ip_hdr(skb)->version; 1160 proto = (ver == 4) ? ip_hdr(skb)->protocol : 1161 ipv6_hdr(skb)->nexthdr; 1162 } 1163 1164 if (ver == 4) { 1165 if (proto == IPPROTO_TCP) 1166 csum_type = TX_CSUM_TCPIP; 1167 else if (proto == IPPROTO_UDP) 1168 csum_type = TX_CSUM_UDPIP; 1169 else { 1170 nocsum: /* 1171 * unknown protocol, disable HW csum 1172 * and hope a bad packet is detected 1173 */ 1174 return TXPKT_L4CSUM_DIS_F; 1175 } 1176 } else { 1177 /* 1178 * this doesn't work with extension headers 1179 */ 1180 if (proto == IPPROTO_TCP) 1181 csum_type = TX_CSUM_TCPIP6; 1182 else if (proto == IPPROTO_UDP) 1183 csum_type = TX_CSUM_UDPIP6; 1184 else 1185 goto nocsum; 1186 } 1187 1188 if (likely(csum_type >= TX_CSUM_TCPIP)) { 1189 int eth_hdr_len, l4_len; 1190 u64 hdr_len; 1191 1192 if (inner_hdr_csum) { 1193 /* This allows checksum offload for all encapsulated 1194 * packets like GRE etc.. 1195 */ 1196 l4_len = skb_inner_network_header_len(skb); 1197 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN; 1198 } else { 1199 l4_len = skb_network_header_len(skb); 1200 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN; 1201 } 1202 hdr_len = TXPKT_IPHDR_LEN_V(l4_len); 1203 1204 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) 1205 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1206 else 1207 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len); 1208 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len; 1209 } else { 1210 int start = skb_transport_offset(skb); 1211 1212 return TXPKT_CSUM_TYPE_V(csum_type) | 1213 TXPKT_CSUM_START_V(start) | 1214 TXPKT_CSUM_LOC_V(start + skb->csum_offset); 1215 } 1216 } 1217 1218 static void eth_txq_stop(struct sge_eth_txq *q) 1219 { 1220 netif_tx_stop_queue(q->txq); 1221 q->q.stops++; 1222 } 1223 1224 static inline void txq_advance(struct sge_txq *q, unsigned int n) 1225 { 1226 q->in_use += n; 1227 q->pidx += n; 1228 if (q->pidx >= q->size) 1229 q->pidx -= q->size; 1230 } 1231 1232 #ifdef CONFIG_CHELSIO_T4_FCOE 1233 static inline int 1234 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap, 1235 const struct port_info *pi, u64 *cntrl) 1236 { 1237 const struct cxgb_fcoe *fcoe = &pi->fcoe; 1238 1239 if (!(fcoe->flags & CXGB_FCOE_ENABLED)) 1240 return 0; 1241 1242 if (skb->protocol != htons(ETH_P_FCOE)) 1243 return 0; 1244 1245 skb_reset_mac_header(skb); 1246 skb->mac_len = sizeof(struct ethhdr); 1247 1248 skb_set_network_header(skb, skb->mac_len); 1249 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr)); 1250 1251 if (!cxgb_fcoe_sof_eof_supported(adap, skb)) 1252 return -ENOTSUPP; 1253 1254 /* FC CRC offload */ 1255 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) | 1256 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F | 1257 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) | 1258 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) | 1259 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END); 1260 return 0; 1261 } 1262 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1263 1264 /* Returns tunnel type if hardware supports offloading of the same. 1265 * It is called only for T5 and onwards. 1266 */ 1267 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb) 1268 { 1269 u8 l4_hdr = 0; 1270 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1271 struct port_info *pi = netdev_priv(skb->dev); 1272 struct adapter *adapter = pi->adapter; 1273 1274 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || 1275 skb->inner_protocol != htons(ETH_P_TEB)) 1276 return tnl_type; 1277 1278 switch (vlan_get_protocol(skb)) { 1279 case htons(ETH_P_IP): 1280 l4_hdr = ip_hdr(skb)->protocol; 1281 break; 1282 case htons(ETH_P_IPV6): 1283 l4_hdr = ipv6_hdr(skb)->nexthdr; 1284 break; 1285 default: 1286 return tnl_type; 1287 } 1288 1289 switch (l4_hdr) { 1290 case IPPROTO_UDP: 1291 if (adapter->vxlan_port == udp_hdr(skb)->dest) 1292 tnl_type = TX_TNL_TYPE_VXLAN; 1293 else if (adapter->geneve_port == udp_hdr(skb)->dest) 1294 tnl_type = TX_TNL_TYPE_GENEVE; 1295 break; 1296 default: 1297 return tnl_type; 1298 } 1299 1300 return tnl_type; 1301 } 1302 1303 static inline void t6_fill_tnl_lso(struct sk_buff *skb, 1304 struct cpl_tx_tnl_lso *tnl_lso, 1305 enum cpl_tx_tnl_lso_type tnl_type) 1306 { 1307 u32 val; 1308 int in_eth_xtra_len; 1309 int l3hdr_len = skb_network_header_len(skb); 1310 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1311 const struct skb_shared_info *ssi = skb_shinfo(skb); 1312 bool v6 = (ip_hdr(skb)->version == 6); 1313 1314 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) | 1315 CPL_TX_TNL_LSO_FIRST_F | 1316 CPL_TX_TNL_LSO_LAST_F | 1317 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) | 1318 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) | 1319 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) | 1320 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) | 1321 CPL_TX_TNL_LSO_IPLENSETOUT_F | 1322 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F); 1323 tnl_lso->op_to_IpIdSplitOut = htonl(val); 1324 1325 tnl_lso->IpIdOffsetOut = 0; 1326 1327 /* Get the tunnel header length */ 1328 val = skb_inner_mac_header(skb) - skb_mac_header(skb); 1329 in_eth_xtra_len = skb_inner_network_header(skb) - 1330 skb_inner_mac_header(skb) - ETH_HLEN; 1331 1332 switch (tnl_type) { 1333 case TX_TNL_TYPE_VXLAN: 1334 case TX_TNL_TYPE_GENEVE: 1335 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 1336 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F | 1337 CPL_TX_TNL_LSO_UDPLENSETOUT_F); 1338 break; 1339 default: 1340 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0; 1341 break; 1342 } 1343 1344 tnl_lso->UdpLenSetOut_to_TnlHdrLen |= 1345 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) | 1346 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type)); 1347 1348 tnl_lso->r1 = 0; 1349 1350 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) | 1351 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) | 1352 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) | 1353 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4); 1354 tnl_lso->Flow_to_TcpHdrLen = htonl(val); 1355 1356 tnl_lso->IpIdOffset = htons(0); 1357 1358 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size)); 1359 tnl_lso->TCPSeqOffset = htonl(0); 1360 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len)); 1361 } 1362 1363 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb, 1364 struct cpl_tx_pkt_lso_core *lso) 1365 { 1366 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1367 int l3hdr_len = skb_network_header_len(skb); 1368 const struct skb_shared_info *ssi; 1369 bool ipv6 = false; 1370 1371 ssi = skb_shinfo(skb); 1372 if (ssi->gso_type & SKB_GSO_TCPV6) 1373 ipv6 = true; 1374 1375 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1376 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F | 1377 LSO_IPV6_V(ipv6) | 1378 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1379 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1380 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1381 lso->ipid_ofst = htons(0); 1382 lso->mss = htons(ssi->gso_size); 1383 lso->seqno_offset = htonl(0); 1384 if (is_t4(adap->params.chip)) 1385 lso->len = htonl(skb->len); 1386 else 1387 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len)); 1388 1389 return (void *)(lso + 1); 1390 } 1391 1392 /** 1393 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update 1394 * @adap: the adapter 1395 * @eq: the Ethernet TX Queue 1396 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1 1397 * 1398 * We're typically called here to update the state of an Ethernet TX 1399 * Queue with respect to the hardware's progress in consuming the TX 1400 * Work Requests that we've put on that Egress Queue. This happens 1401 * when we get Egress Queue Update messages and also prophylactically 1402 * in regular timer-based Ethernet TX Queue maintenance. 1403 */ 1404 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq, 1405 int maxreclaim) 1406 { 1407 unsigned int reclaimed, hw_cidx; 1408 struct sge_txq *q = &eq->q; 1409 int hw_in_use; 1410 1411 if (!q->in_use || !__netif_tx_trylock(eq->txq)) 1412 return 0; 1413 1414 /* Reclaim pending completed TX Descriptors. */ 1415 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true); 1416 1417 hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 1418 hw_in_use = q->pidx - hw_cidx; 1419 if (hw_in_use < 0) 1420 hw_in_use += q->size; 1421 1422 /* If the TX Queue is currently stopped and there's now more than half 1423 * the queue available, restart it. Otherwise bail out since the rest 1424 * of what we want do here is with the possibility of shipping any 1425 * currently buffered Coalesced TX Work Request. 1426 */ 1427 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) { 1428 netif_tx_wake_queue(eq->txq); 1429 eq->q.restarts++; 1430 } 1431 1432 __netif_tx_unlock(eq->txq); 1433 return reclaimed; 1434 } 1435 1436 static inline int cxgb4_validate_skb(struct sk_buff *skb, 1437 struct net_device *dev, 1438 u32 min_pkt_len) 1439 { 1440 u32 max_pkt_len; 1441 1442 /* The chip min packet length is 10 octets but some firmware 1443 * commands have a minimum packet length requirement. So, play 1444 * safe and reject anything shorter than @min_pkt_len. 1445 */ 1446 if (unlikely(skb->len < min_pkt_len)) 1447 return -EINVAL; 1448 1449 /* Discard the packet if the length is greater than mtu */ 1450 max_pkt_len = ETH_HLEN + dev->mtu; 1451 1452 if (skb_vlan_tagged(skb)) 1453 max_pkt_len += VLAN_HLEN; 1454 1455 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len))) 1456 return -EINVAL; 1457 1458 return 0; 1459 } 1460 1461 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 1462 u32 hdr_len) 1463 { 1464 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG; 1465 wr->u.udpseg.ethlen = skb_network_offset(skb); 1466 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 1467 wr->u.udpseg.udplen = sizeof(struct udphdr); 1468 wr->u.udpseg.rtplen = 0; 1469 wr->u.udpseg.r4 = 0; 1470 if (skb_shinfo(skb)->gso_size) 1471 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); 1472 else 1473 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len); 1474 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss; 1475 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len); 1476 1477 return (void *)(wr + 1); 1478 } 1479 1480 /** 1481 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue 1482 * @skb: the packet 1483 * @dev: the egress net device 1484 * 1485 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. 1486 */ 1487 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1488 { 1489 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE; 1490 bool ptp_enabled = is_ptp_enabled(skb, dev); 1491 unsigned int last_desc, flits, ndesc; 1492 u32 wr_mid, ctrl0, op, sgl_off = 0; 1493 const struct skb_shared_info *ssi; 1494 int len, qidx, credits, ret, left; 1495 struct tx_sw_desc *sgl_sdesc; 1496 struct fw_eth_tx_eo_wr *eowr; 1497 struct fw_eth_tx_pkt_wr *wr; 1498 struct cpl_tx_pkt_core *cpl; 1499 const struct port_info *pi; 1500 bool immediate = false; 1501 u64 cntrl, *end, *sgl; 1502 struct sge_eth_txq *q; 1503 unsigned int chip_ver; 1504 struct adapter *adap; 1505 1506 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 1507 if (ret) 1508 goto out_free; 1509 1510 pi = netdev_priv(dev); 1511 adap = pi->adapter; 1512 ssi = skb_shinfo(skb); 1513 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE) 1514 if (xfrm_offload(skb) && !ssi->gso_size) 1515 return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev); 1516 #endif /* CHELSIO_IPSEC_INLINE */ 1517 1518 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE) 1519 if (tls_is_skb_tx_device_offloaded(skb) && 1520 (skb->len - skb_tcp_all_headers(skb))) 1521 return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev); 1522 #endif /* CHELSIO_TLS_DEVICE */ 1523 1524 qidx = skb_get_queue_mapping(skb); 1525 if (ptp_enabled) { 1526 if (!(adap->ptp_tx_skb)) { 1527 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1528 adap->ptp_tx_skb = skb_get(skb); 1529 } else { 1530 goto out_free; 1531 } 1532 q = &adap->sge.ptptxq; 1533 } else { 1534 q = &adap->sge.ethtxq[qidx + pi->first_qset]; 1535 } 1536 1537 reclaim_completed_tx(adap, &q->q, -1, true); 1538 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1539 1540 #ifdef CONFIG_CHELSIO_T4_FCOE 1541 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl); 1542 if (unlikely(ret == -EOPNOTSUPP)) 1543 goto out_free; 1544 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1545 1546 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 1547 flits = calc_tx_flits(skb, chip_ver); 1548 ndesc = flits_to_desc(flits); 1549 credits = txq_avail(&q->q) - ndesc; 1550 1551 if (unlikely(credits < 0)) { 1552 eth_txq_stop(q); 1553 dev_err(adap->pdev_dev, 1554 "%s: Tx ring %u full while queue awake!\n", 1555 dev->name, qidx); 1556 return NETDEV_TX_BUSY; 1557 } 1558 1559 if (is_eth_imm(skb, chip_ver)) 1560 immediate = true; 1561 1562 if (skb->encapsulation && chip_ver > CHELSIO_T5) 1563 tnl_type = cxgb_encap_offload_supported(skb); 1564 1565 last_desc = q->q.pidx + ndesc - 1; 1566 if (last_desc >= q->q.size) 1567 last_desc -= q->q.size; 1568 sgl_sdesc = &q->q.sdesc[last_desc]; 1569 1570 if (!immediate && 1571 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) { 1572 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1573 q->mapping_err++; 1574 goto out_free; 1575 } 1576 1577 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1578 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1579 /* After we're done injecting the Work Request for this 1580 * packet, we'll be below our "stop threshold" so stop the TX 1581 * Queue now and schedule a request for an SGE Egress Queue 1582 * Update message. The queue will get started later on when 1583 * the firmware processes this Work Request and sends us an 1584 * Egress Queue Status Update message indicating that space 1585 * has opened up. 1586 */ 1587 eth_txq_stop(q); 1588 if (chip_ver > CHELSIO_T5) 1589 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1590 } 1591 1592 wr = (void *)&q->q.desc[q->q.pidx]; 1593 eowr = (void *)&q->q.desc[q->q.pidx]; 1594 wr->equiq_to_len16 = htonl(wr_mid); 1595 wr->r3 = cpu_to_be64(0); 1596 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 1597 end = (u64 *)eowr + flits; 1598 else 1599 end = (u64 *)wr + flits; 1600 1601 len = immediate ? skb->len : 0; 1602 len += sizeof(*cpl); 1603 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) { 1604 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1605 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1); 1606 1607 if (tnl_type) 1608 len += sizeof(*tnl_lso); 1609 else 1610 len += sizeof(*lso); 1611 1612 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 1613 FW_WR_IMMDLEN_V(len)); 1614 if (tnl_type) { 1615 struct iphdr *iph = ip_hdr(skb); 1616 1617 t6_fill_tnl_lso(skb, tnl_lso, tnl_type); 1618 cpl = (void *)(tnl_lso + 1); 1619 /* Driver is expected to compute partial checksum that 1620 * does not include the IP Total Length. 1621 */ 1622 if (iph->version == 4) { 1623 iph->check = 0; 1624 iph->tot_len = 0; 1625 iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl); 1626 } 1627 if (skb->ip_summed == CHECKSUM_PARTIAL) 1628 cntrl = hwcsum(adap->params.chip, skb); 1629 } else { 1630 cpl = write_tso_wr(adap, skb, lso); 1631 cntrl = hwcsum(adap->params.chip, skb); 1632 } 1633 sgl = (u64 *)(cpl + 1); /* sgl start here */ 1634 q->tso++; 1635 q->tx_cso += ssi->gso_segs; 1636 } else if (ssi->gso_size) { 1637 u64 *start; 1638 u32 hdrlen; 1639 1640 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 1641 len += hdrlen; 1642 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 1643 FW_ETH_TX_EO_WR_IMMDLEN_V(len)); 1644 cpl = write_eo_udp_wr(skb, eowr, hdrlen); 1645 cntrl = hwcsum(adap->params.chip, skb); 1646 1647 start = (u64 *)(cpl + 1); 1648 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start, 1649 hdrlen); 1650 if (unlikely(start > sgl)) { 1651 left = (u8 *)end - (u8 *)q->q.stat; 1652 end = (void *)q->q.desc + left; 1653 } 1654 sgl_off = hdrlen; 1655 q->uso++; 1656 q->tx_cso += ssi->gso_segs; 1657 } else { 1658 if (ptp_enabled) 1659 op = FW_PTP_TX_PKT_WR; 1660 else 1661 op = FW_ETH_TX_PKT_WR; 1662 wr->op_immdlen = htonl(FW_WR_OP_V(op) | 1663 FW_WR_IMMDLEN_V(len)); 1664 cpl = (void *)(wr + 1); 1665 sgl = (u64 *)(cpl + 1); 1666 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1667 cntrl = hwcsum(adap->params.chip, skb) | 1668 TXPKT_IPCSUM_DIS_F; 1669 q->tx_cso++; 1670 } 1671 } 1672 1673 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) { 1674 /* If current position is already at the end of the 1675 * txq, reset the current to point to start of the queue 1676 * and update the end ptr as well. 1677 */ 1678 left = (u8 *)end - (u8 *)q->q.stat; 1679 end = (void *)q->q.desc + left; 1680 sgl = (void *)q->q.desc; 1681 } 1682 1683 if (skb_vlan_tag_present(skb)) { 1684 q->vlan_ins++; 1685 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1686 #ifdef CONFIG_CHELSIO_T4_FCOE 1687 if (skb->protocol == htons(ETH_P_FCOE)) 1688 cntrl |= TXPKT_VLAN_V( 1689 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT)); 1690 #endif /* CONFIG_CHELSIO_T4_FCOE */ 1691 } 1692 1693 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) | 1694 TXPKT_PF_V(adap->pf); 1695 if (ptp_enabled) 1696 ctrl0 |= TXPKT_TSTAMP_F; 1697 #ifdef CONFIG_CHELSIO_T4_DCB 1698 if (is_t4(adap->params.chip)) 1699 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio); 1700 else 1701 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio); 1702 #endif 1703 cpl->ctrl0 = htonl(ctrl0); 1704 cpl->pack = htons(0); 1705 cpl->len = htons(skb->len); 1706 cpl->ctrl1 = cpu_to_be64(cntrl); 1707 1708 skb_tx_timestamp(skb); 1709 1710 if (immediate) { 1711 cxgb4_inline_tx_skb(skb, &q->q, sgl); 1712 dev_consume_skb_any(skb); 1713 } else { 1714 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off, 1715 sgl_sdesc->addr); 1716 skb_orphan(skb); 1717 sgl_sdesc->skb = skb; 1718 } 1719 1720 txq_advance(&q->q, ndesc); 1721 1722 cxgb4_ring_tx_db(adap, &q->q, ndesc); 1723 return NETDEV_TX_OK; 1724 1725 out_free: 1726 dev_kfree_skb_any(skb); 1727 return NETDEV_TX_OK; 1728 } 1729 1730 /* Constants ... */ 1731 enum { 1732 /* Egress Queue sizes, producer and consumer indices are all in units 1733 * of Egress Context Units bytes. Note that as far as the hardware is 1734 * concerned, the free list is an Egress Queue (the host produces free 1735 * buffers which the hardware consumes) and free list entries are 1736 * 64-bit PCI DMA addresses. 1737 */ 1738 EQ_UNIT = SGE_EQ_IDXSIZE, 1739 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1740 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64), 1741 1742 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1743 sizeof(struct cpl_tx_pkt_lso_core) + 1744 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64), 1745 }; 1746 1747 /** 1748 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data? 1749 * @skb: the packet 1750 * 1751 * Returns whether an Ethernet packet is small enough to fit completely as 1752 * immediate data. 1753 */ 1754 static inline int t4vf_is_eth_imm(const struct sk_buff *skb) 1755 { 1756 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request 1757 * which does not accommodate immediate data. We could dike out all 1758 * of the support code for immediate data but that would tie our hands 1759 * too much if we ever want to enhace the firmware. It would also 1760 * create more differences between the PF and VF Drivers. 1761 */ 1762 return false; 1763 } 1764 1765 /** 1766 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR 1767 * @skb: the packet 1768 * 1769 * Returns the number of flits needed for a TX Work Request for the 1770 * given Ethernet packet, including the needed WR and CPL headers. 1771 */ 1772 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb) 1773 { 1774 unsigned int flits; 1775 1776 /* If the skb is small enough, we can pump it out as a work request 1777 * with only immediate data. In that case we just have to have the 1778 * TX Packet header plus the skb data in the Work Request. 1779 */ 1780 if (t4vf_is_eth_imm(skb)) 1781 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 1782 sizeof(__be64)); 1783 1784 /* Otherwise, we're going to have to construct a Scatter gather list 1785 * of the skb body and fragments. We also include the flits necessary 1786 * for the TX Packet Work Request and CPL. We always have a firmware 1787 * Write Header (incorporated as part of the cpl_tx_pkt_lso and 1788 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL 1789 * message or, if we're doing a Large Send Offload, an LSO CPL message 1790 * with an embedded TX Packet Write CPL message. 1791 */ 1792 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1); 1793 if (skb_shinfo(skb)->gso_size) 1794 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1795 sizeof(struct cpl_tx_pkt_lso_core) + 1796 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1797 else 1798 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) + 1799 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); 1800 return flits; 1801 } 1802 1803 /** 1804 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue 1805 * @skb: the packet 1806 * @dev: the egress net device 1807 * 1808 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled. 1809 */ 1810 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb, 1811 struct net_device *dev) 1812 { 1813 unsigned int last_desc, flits, ndesc; 1814 const struct skb_shared_info *ssi; 1815 struct fw_eth_tx_pkt_vm_wr *wr; 1816 struct tx_sw_desc *sgl_sdesc; 1817 struct cpl_tx_pkt_core *cpl; 1818 const struct port_info *pi; 1819 struct sge_eth_txq *txq; 1820 struct adapter *adapter; 1821 int qidx, credits, ret; 1822 size_t fw_hdr_copy_len; 1823 unsigned int chip_ver; 1824 u64 cntrl, *end; 1825 u32 wr_mid; 1826 1827 /* The chip minimum packet length is 10 octets but the firmware 1828 * command that we are using requires that we copy the Ethernet header 1829 * (including the VLAN tag) into the header so we reject anything 1830 * smaller than that ... 1831 */ 1832 BUILD_BUG_ON(sizeof(wr->firmware) != 1833 (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) + 1834 sizeof(wr->ethtype) + sizeof(wr->vlantci))); 1835 fw_hdr_copy_len = sizeof(wr->firmware); 1836 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len); 1837 if (ret) 1838 goto out_free; 1839 1840 /* Figure out which TX Queue we're going to use. */ 1841 pi = netdev_priv(dev); 1842 adapter = pi->adapter; 1843 qidx = skb_get_queue_mapping(skb); 1844 WARN_ON(qidx >= pi->nqsets); 1845 txq = &adapter->sge.ethtxq[pi->first_qset + qidx]; 1846 1847 /* Take this opportunity to reclaim any TX Descriptors whose DMA 1848 * transfers have completed. 1849 */ 1850 reclaim_completed_tx(adapter, &txq->q, -1, true); 1851 1852 /* Calculate the number of flits and TX Descriptors we're going to 1853 * need along with how many TX Descriptors will be left over after 1854 * we inject our Work Request. 1855 */ 1856 flits = t4vf_calc_tx_flits(skb); 1857 ndesc = flits_to_desc(flits); 1858 credits = txq_avail(&txq->q) - ndesc; 1859 1860 if (unlikely(credits < 0)) { 1861 /* Not enough room for this packet's Work Request. Stop the 1862 * TX Queue and return a "busy" condition. The queue will get 1863 * started later on when the firmware informs us that space 1864 * has opened up. 1865 */ 1866 eth_txq_stop(txq); 1867 dev_err(adapter->pdev_dev, 1868 "%s: TX ring %u full while queue awake!\n", 1869 dev->name, qidx); 1870 return NETDEV_TX_BUSY; 1871 } 1872 1873 last_desc = txq->q.pidx + ndesc - 1; 1874 if (last_desc >= txq->q.size) 1875 last_desc -= txq->q.size; 1876 sgl_sdesc = &txq->q.sdesc[last_desc]; 1877 1878 if (!t4vf_is_eth_imm(skb) && 1879 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb, 1880 sgl_sdesc->addr) < 0)) { 1881 /* We need to map the skb into PCI DMA space (because it can't 1882 * be in-lined directly into the Work Request) and the mapping 1883 * operation failed. Record the error and drop the packet. 1884 */ 1885 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr)); 1886 txq->mapping_err++; 1887 goto out_free; 1888 } 1889 1890 chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip); 1891 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)); 1892 if (unlikely(credits < ETHTXQ_STOP_THRES)) { 1893 /* After we're done injecting the Work Request for this 1894 * packet, we'll be below our "stop threshold" so stop the TX 1895 * Queue now and schedule a request for an SGE Egress Queue 1896 * Update message. The queue will get started later on when 1897 * the firmware processes this Work Request and sends us an 1898 * Egress Queue Status Update message indicating that space 1899 * has opened up. 1900 */ 1901 eth_txq_stop(txq); 1902 if (chip_ver > CHELSIO_T5) 1903 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F; 1904 } 1905 1906 /* Start filling in our Work Request. Note that we do _not_ handle 1907 * the WR Header wrapping around the TX Descriptor Ring. If our 1908 * maximum header size ever exceeds one TX Descriptor, we'll need to 1909 * do something else here. 1910 */ 1911 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1); 1912 wr = (void *)&txq->q.desc[txq->q.pidx]; 1913 wr->equiq_to_len16 = cpu_to_be32(wr_mid); 1914 wr->r3[0] = cpu_to_be32(0); 1915 wr->r3[1] = cpu_to_be32(0); 1916 skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len); 1917 end = (u64 *)wr + flits; 1918 1919 /* If this is a Large Send Offload packet we'll put in an LSO CPL 1920 * message with an encapsulated TX Packet CPL message. Otherwise we 1921 * just use a TX Packet CPL message. 1922 */ 1923 ssi = skb_shinfo(skb); 1924 if (ssi->gso_size) { 1925 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 1926 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; 1927 int l3hdr_len = skb_network_header_len(skb); 1928 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; 1929 1930 wr->op_immdlen = 1931 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1932 FW_WR_IMMDLEN_V(sizeof(*lso) + 1933 sizeof(*cpl))); 1934 /* Fill in the LSO CPL message. */ 1935 lso->lso_ctrl = 1936 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) | 1937 LSO_FIRST_SLICE_F | 1938 LSO_LAST_SLICE_F | 1939 LSO_IPV6_V(v6) | 1940 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) | 1941 LSO_IPHDR_LEN_V(l3hdr_len / 4) | 1942 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff)); 1943 lso->ipid_ofst = cpu_to_be16(0); 1944 lso->mss = cpu_to_be16(ssi->gso_size); 1945 lso->seqno_offset = cpu_to_be32(0); 1946 if (is_t4(adapter->params.chip)) 1947 lso->len = cpu_to_be32(skb->len); 1948 else 1949 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len)); 1950 1951 /* Set up TX Packet CPL pointer, control word and perform 1952 * accounting. 1953 */ 1954 cpl = (void *)(lso + 1); 1955 1956 if (chip_ver <= CHELSIO_T5) 1957 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1958 else 1959 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len); 1960 1961 cntrl |= TXPKT_CSUM_TYPE_V(v6 ? 1962 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | 1963 TXPKT_IPHDR_LEN_V(l3hdr_len); 1964 txq->tso++; 1965 txq->tx_cso += ssi->gso_segs; 1966 } else { 1967 int len; 1968 1969 len = (t4vf_is_eth_imm(skb) 1970 ? skb->len + sizeof(*cpl) 1971 : sizeof(*cpl)); 1972 wr->op_immdlen = 1973 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) | 1974 FW_WR_IMMDLEN_V(len)); 1975 1976 /* Set up TX Packet CPL pointer, control word and perform 1977 * accounting. 1978 */ 1979 cpl = (void *)(wr + 1); 1980 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1981 cntrl = hwcsum(adapter->params.chip, skb) | 1982 TXPKT_IPCSUM_DIS_F; 1983 txq->tx_cso++; 1984 } else { 1985 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F; 1986 } 1987 } 1988 1989 /* If there's a VLAN tag present, add that to the list of things to 1990 * do in this Work Request. 1991 */ 1992 if (skb_vlan_tag_present(skb)) { 1993 txq->vlan_ins++; 1994 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 1995 } 1996 1997 /* Fill in the TX Packet CPL message header. */ 1998 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 1999 TXPKT_INTF_V(pi->port_id) | 2000 TXPKT_PF_V(0)); 2001 cpl->pack = cpu_to_be16(0); 2002 cpl->len = cpu_to_be16(skb->len); 2003 cpl->ctrl1 = cpu_to_be64(cntrl); 2004 2005 /* Fill in the body of the TX Packet CPL message with either in-lined 2006 * data or a Scatter/Gather List. 2007 */ 2008 if (t4vf_is_eth_imm(skb)) { 2009 /* In-line the packet's data and free the skb since we don't 2010 * need it any longer. 2011 */ 2012 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1); 2013 dev_consume_skb_any(skb); 2014 } else { 2015 /* Write the skb's Scatter/Gather list into the TX Packet CPL 2016 * message and retain a pointer to the skb so we can free it 2017 * later when its DMA completes. (We store the skb pointer 2018 * in the Software Descriptor corresponding to the last TX 2019 * Descriptor used by the Work Request.) 2020 * 2021 * The retained skb will be freed when the corresponding TX 2022 * Descriptors are reclaimed after their DMAs complete. 2023 * However, this could take quite a while since, in general, 2024 * the hardware is set up to be lazy about sending DMA 2025 * completion notifications to us and we mostly perform TX 2026 * reclaims in the transmit routine. 2027 * 2028 * This is good for performamce but means that we rely on new 2029 * TX packets arriving to run the destructors of completed 2030 * packets, which open up space in their sockets' send queues. 2031 * Sometimes we do not get such new packets causing TX to 2032 * stall. A single UDP transmitter is a good example of this 2033 * situation. We have a clean up timer that periodically 2034 * reclaims completed packets but it doesn't run often enough 2035 * (nor do we want it to) to prevent lengthy stalls. A 2036 * solution to this problem is to run the destructor early, 2037 * after the packet is queued but before it's DMAd. A con is 2038 * that we lie to socket memory accounting, but the amount of 2039 * extra memory is reasonable (limited by the number of TX 2040 * descriptors), the packets do actually get freed quickly by 2041 * new packets almost always, and for protocols like TCP that 2042 * wait for acks to really free up the data the extra memory 2043 * is even less. On the positive side we run the destructors 2044 * on the sending CPU rather than on a potentially different 2045 * completing CPU, usually a good thing. 2046 * 2047 * Run the destructor before telling the DMA engine about the 2048 * packet to make sure it doesn't complete and get freed 2049 * prematurely. 2050 */ 2051 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1); 2052 struct sge_txq *tq = &txq->q; 2053 2054 /* If the Work Request header was an exact multiple of our TX 2055 * Descriptor length, then it's possible that the starting SGL 2056 * pointer lines up exactly with the end of our TX Descriptor 2057 * ring. If that's the case, wrap around to the beginning 2058 * here ... 2059 */ 2060 if (unlikely((void *)sgl == (void *)tq->stat)) { 2061 sgl = (void *)tq->desc; 2062 end = (void *)((void *)tq->desc + 2063 ((void *)end - (void *)tq->stat)); 2064 } 2065 2066 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr); 2067 skb_orphan(skb); 2068 sgl_sdesc->skb = skb; 2069 } 2070 2071 /* Advance our internal TX Queue state, tell the hardware about 2072 * the new TX descriptors and return success. 2073 */ 2074 txq_advance(&txq->q, ndesc); 2075 2076 cxgb4_ring_tx_db(adapter, &txq->q, ndesc); 2077 return NETDEV_TX_OK; 2078 2079 out_free: 2080 /* An error of some sort happened. Free the TX skb and tell the 2081 * OS that we've "dealt" with the packet ... 2082 */ 2083 dev_kfree_skb_any(skb); 2084 return NETDEV_TX_OK; 2085 } 2086 2087 /** 2088 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 2089 * @q: the SGE control Tx queue 2090 * 2091 * This is a variant of cxgb4_reclaim_completed_tx() that is used 2092 * for Tx queues that send only immediate data (presently just 2093 * the control queues) and thus do not have any sk_buffs to release. 2094 */ 2095 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 2096 { 2097 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx)); 2098 int reclaim = hw_cidx - q->cidx; 2099 2100 if (reclaim < 0) 2101 reclaim += q->size; 2102 2103 q->in_use -= reclaim; 2104 q->cidx = hw_cidx; 2105 } 2106 2107 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max) 2108 { 2109 u32 val = *idx + n; 2110 2111 if (val >= max) 2112 val -= max; 2113 2114 *idx = val; 2115 } 2116 2117 void cxgb4_eosw_txq_free_desc(struct adapter *adap, 2118 struct sge_eosw_txq *eosw_txq, u32 ndesc) 2119 { 2120 struct tx_sw_desc *d; 2121 2122 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2123 while (ndesc--) { 2124 if (d->skb) { 2125 if (d->addr[0]) { 2126 unmap_skb(adap->pdev_dev, d->skb, d->addr); 2127 memset(d->addr, 0, sizeof(d->addr)); 2128 } 2129 dev_consume_skb_any(d->skb); 2130 d->skb = NULL; 2131 } 2132 eosw_txq_advance_index(&eosw_txq->last_cidx, 1, 2133 eosw_txq->ndesc); 2134 d = &eosw_txq->desc[eosw_txq->last_cidx]; 2135 } 2136 } 2137 2138 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n) 2139 { 2140 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc); 2141 eosw_txq->inuse += n; 2142 } 2143 2144 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq, 2145 struct sk_buff *skb) 2146 { 2147 if (eosw_txq->inuse == eosw_txq->ndesc) 2148 return -ENOMEM; 2149 2150 eosw_txq->desc[eosw_txq->pidx].skb = skb; 2151 return 0; 2152 } 2153 2154 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq) 2155 { 2156 return eosw_txq->desc[eosw_txq->last_pidx].skb; 2157 } 2158 2159 static inline u8 ethofld_calc_tx_flits(struct adapter *adap, 2160 struct sk_buff *skb, u32 hdr_len) 2161 { 2162 u8 flits, nsgl = 0; 2163 u32 wrlen; 2164 2165 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core); 2166 if (skb_shinfo(skb)->gso_size && 2167 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2168 wrlen += sizeof(struct cpl_tx_pkt_lso_core); 2169 2170 wrlen += roundup(hdr_len, 16); 2171 2172 /* Packet headers + WR + CPLs */ 2173 flits = DIV_ROUND_UP(wrlen, 8); 2174 2175 if (skb_shinfo(skb)->nr_frags > 0) { 2176 if (skb_headlen(skb) - hdr_len) 2177 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1); 2178 else 2179 nsgl = sgl_len(skb_shinfo(skb)->nr_frags); 2180 } else if (skb->len - hdr_len) { 2181 nsgl = sgl_len(1); 2182 } 2183 2184 return flits + nsgl; 2185 } 2186 2187 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq, 2188 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr, 2189 u32 hdr_len, u32 wrlen) 2190 { 2191 const struct skb_shared_info *ssi = skb_shinfo(skb); 2192 struct cpl_tx_pkt_core *cpl; 2193 u32 immd_len, wrlen16; 2194 bool compl = false; 2195 u8 ver, proto; 2196 2197 ver = ip_hdr(skb)->version; 2198 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol; 2199 2200 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2201 immd_len = sizeof(struct cpl_tx_pkt_core); 2202 if (skb_shinfo(skb)->gso_size && 2203 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)) 2204 immd_len += sizeof(struct cpl_tx_pkt_lso_core); 2205 immd_len += hdr_len; 2206 2207 if (!eosw_txq->ncompl || 2208 (eosw_txq->last_compl + wrlen16) >= 2209 (adap->params.ofldq_wr_cred / 2)) { 2210 compl = true; 2211 eosw_txq->ncompl++; 2212 eosw_txq->last_compl = 0; 2213 } 2214 2215 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) | 2216 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) | 2217 FW_WR_COMPL_V(compl)); 2218 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) | 2219 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2220 wr->r3 = 0; 2221 if (proto == IPPROTO_UDP) { 2222 cpl = write_eo_udp_wr(skb, wr, hdr_len); 2223 } else { 2224 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG; 2225 wr->u.tcpseg.ethlen = skb_network_offset(skb); 2226 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb)); 2227 wr->u.tcpseg.tcplen = tcp_hdrlen(skb); 2228 wr->u.tcpseg.tsclk_tsoff = 0; 2229 wr->u.tcpseg.r4 = 0; 2230 wr->u.tcpseg.r5 = 0; 2231 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len); 2232 2233 if (ssi->gso_size) { 2234 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1); 2235 2236 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size); 2237 cpl = write_tso_wr(adap, skb, lso); 2238 } else { 2239 wr->u.tcpseg.mss = cpu_to_be16(0xffff); 2240 cpl = (void *)(wr + 1); 2241 } 2242 } 2243 2244 eosw_txq->cred -= wrlen16; 2245 eosw_txq->last_compl += wrlen16; 2246 return cpl; 2247 } 2248 2249 static int ethofld_hard_xmit(struct net_device *dev, 2250 struct sge_eosw_txq *eosw_txq) 2251 { 2252 struct port_info *pi = netdev2pinfo(dev); 2253 struct adapter *adap = netdev2adap(dev); 2254 u32 wrlen, wrlen16, hdr_len, data_len; 2255 enum sge_eosw_state next_state; 2256 u64 cntrl, *start, *end, *sgl; 2257 struct sge_eohw_txq *eohw_txq; 2258 struct cpl_tx_pkt_core *cpl; 2259 struct fw_eth_tx_eo_wr *wr; 2260 bool skip_eotx_wr = false; 2261 struct tx_sw_desc *d; 2262 struct sk_buff *skb; 2263 int left, ret = 0; 2264 u8 flits, ndesc; 2265 2266 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid]; 2267 spin_lock(&eohw_txq->lock); 2268 reclaim_completed_tx_imm(&eohw_txq->q); 2269 2270 d = &eosw_txq->desc[eosw_txq->last_pidx]; 2271 skb = d->skb; 2272 2273 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx]; 2274 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE && 2275 eosw_txq->last_pidx == eosw_txq->flowc_idx)) { 2276 hdr_len = skb->len; 2277 data_len = 0; 2278 flits = DIV_ROUND_UP(hdr_len, 8); 2279 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND) 2280 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY; 2281 else 2282 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY; 2283 skip_eotx_wr = true; 2284 } else { 2285 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb)); 2286 data_len = skb->len - hdr_len; 2287 flits = ethofld_calc_tx_flits(adap, skb, hdr_len); 2288 } 2289 ndesc = flits_to_desc(flits); 2290 wrlen = flits * 8; 2291 wrlen16 = DIV_ROUND_UP(wrlen, 16); 2292 2293 left = txq_avail(&eohw_txq->q) - ndesc; 2294 2295 /* If there are no descriptors left in hardware queues or no 2296 * CPL credits left in software queues, then wait for them 2297 * to come back and retry again. Note that we always request 2298 * for credits update via interrupt for every half credits 2299 * consumed. So, the interrupt will eventually restore the 2300 * credits and invoke the Tx path again. 2301 */ 2302 if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) { 2303 ret = -ENOMEM; 2304 goto out_unlock; 2305 } 2306 2307 if (unlikely(skip_eotx_wr)) { 2308 start = (u64 *)wr; 2309 eosw_txq->state = next_state; 2310 eosw_txq->cred -= wrlen16; 2311 eosw_txq->ncompl++; 2312 eosw_txq->last_compl = 0; 2313 goto write_wr_headers; 2314 } 2315 2316 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen); 2317 cntrl = hwcsum(adap->params.chip, skb); 2318 if (skb_vlan_tag_present(skb)) 2319 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb)); 2320 2321 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) | 2322 TXPKT_INTF_V(pi->tx_chan) | 2323 TXPKT_PF_V(adap->pf)); 2324 cpl->pack = 0; 2325 cpl->len = cpu_to_be16(skb->len); 2326 cpl->ctrl1 = cpu_to_be64(cntrl); 2327 2328 start = (u64 *)(cpl + 1); 2329 2330 write_wr_headers: 2331 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start, 2332 hdr_len); 2333 if (data_len) { 2334 ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr); 2335 if (unlikely(ret)) { 2336 memset(d->addr, 0, sizeof(d->addr)); 2337 eohw_txq->mapping_err++; 2338 goto out_unlock; 2339 } 2340 2341 end = (u64 *)wr + flits; 2342 if (unlikely(start > sgl)) { 2343 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2344 end = (void *)eohw_txq->q.desc + left; 2345 } 2346 2347 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) { 2348 /* If current position is already at the end of the 2349 * txq, reset the current to point to start of the queue 2350 * and update the end ptr as well. 2351 */ 2352 left = (u8 *)end - (u8 *)eohw_txq->q.stat; 2353 2354 end = (void *)eohw_txq->q.desc + left; 2355 sgl = (void *)eohw_txq->q.desc; 2356 } 2357 2358 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len, 2359 d->addr); 2360 } 2361 2362 if (skb_shinfo(skb)->gso_size) { 2363 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) 2364 eohw_txq->uso++; 2365 else 2366 eohw_txq->tso++; 2367 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs; 2368 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2369 eohw_txq->tx_cso++; 2370 } 2371 2372 if (skb_vlan_tag_present(skb)) 2373 eohw_txq->vlan_ins++; 2374 2375 txq_advance(&eohw_txq->q, ndesc); 2376 skb_tx_timestamp(skb); 2377 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc); 2378 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc); 2379 2380 out_unlock: 2381 spin_unlock(&eohw_txq->lock); 2382 return ret; 2383 } 2384 2385 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq) 2386 { 2387 struct sk_buff *skb; 2388 int pktcount, ret; 2389 2390 switch (eosw_txq->state) { 2391 case CXGB4_EO_STATE_ACTIVE: 2392 case CXGB4_EO_STATE_FLOWC_OPEN_SEND: 2393 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND: 2394 pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2395 if (pktcount < 0) 2396 pktcount += eosw_txq->ndesc; 2397 break; 2398 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY: 2399 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY: 2400 case CXGB4_EO_STATE_CLOSED: 2401 default: 2402 return; 2403 } 2404 2405 while (pktcount--) { 2406 skb = eosw_txq_peek(eosw_txq); 2407 if (!skb) { 2408 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, 2409 eosw_txq->ndesc); 2410 continue; 2411 } 2412 2413 ret = ethofld_hard_xmit(dev, eosw_txq); 2414 if (ret) 2415 break; 2416 } 2417 } 2418 2419 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb, 2420 struct net_device *dev) 2421 { 2422 struct cxgb4_tc_port_mqprio *tc_port_mqprio; 2423 struct port_info *pi = netdev2pinfo(dev); 2424 struct adapter *adap = netdev2adap(dev); 2425 struct sge_eosw_txq *eosw_txq; 2426 u32 qid; 2427 int ret; 2428 2429 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN); 2430 if (ret) 2431 goto out_free; 2432 2433 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id]; 2434 qid = skb_get_queue_mapping(skb) - pi->nqsets; 2435 eosw_txq = &tc_port_mqprio->eosw_txq[qid]; 2436 spin_lock_bh(&eosw_txq->lock); 2437 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2438 goto out_unlock; 2439 2440 ret = eosw_txq_enqueue(eosw_txq, skb); 2441 if (ret) 2442 goto out_unlock; 2443 2444 /* SKB is queued for processing until credits are available. 2445 * So, call the destructor now and we'll free the skb later 2446 * after it has been successfully transmitted. 2447 */ 2448 skb_orphan(skb); 2449 2450 eosw_txq_advance(eosw_txq, 1); 2451 ethofld_xmit(dev, eosw_txq); 2452 spin_unlock_bh(&eosw_txq->lock); 2453 return NETDEV_TX_OK; 2454 2455 out_unlock: 2456 spin_unlock_bh(&eosw_txq->lock); 2457 out_free: 2458 dev_kfree_skb_any(skb); 2459 return NETDEV_TX_OK; 2460 } 2461 2462 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev) 2463 { 2464 struct port_info *pi = netdev_priv(dev); 2465 u16 qid = skb_get_queue_mapping(skb); 2466 2467 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM)) 2468 return cxgb4_vf_eth_xmit(skb, dev); 2469 2470 if (unlikely(qid >= pi->nqsets)) 2471 return cxgb4_ethofld_xmit(skb, dev); 2472 2473 if (is_ptp_enabled(skb, dev)) { 2474 struct adapter *adap = netdev2adap(dev); 2475 netdev_tx_t ret; 2476 2477 spin_lock(&adap->ptp_lock); 2478 ret = cxgb4_eth_xmit(skb, dev); 2479 spin_unlock(&adap->ptp_lock); 2480 return ret; 2481 } 2482 2483 return cxgb4_eth_xmit(skb, dev); 2484 } 2485 2486 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq) 2487 { 2488 int pktcount = eosw_txq->pidx - eosw_txq->last_pidx; 2489 int pidx = eosw_txq->pidx; 2490 struct sk_buff *skb; 2491 2492 if (!pktcount) 2493 return; 2494 2495 if (pktcount < 0) 2496 pktcount += eosw_txq->ndesc; 2497 2498 while (pktcount--) { 2499 pidx--; 2500 if (pidx < 0) 2501 pidx += eosw_txq->ndesc; 2502 2503 skb = eosw_txq->desc[pidx].skb; 2504 if (skb) { 2505 dev_consume_skb_any(skb); 2506 eosw_txq->desc[pidx].skb = NULL; 2507 eosw_txq->inuse--; 2508 } 2509 } 2510 2511 eosw_txq->pidx = eosw_txq->last_pidx + 1; 2512 } 2513 2514 /** 2515 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc. 2516 * @dev: netdevice 2517 * @eotid: ETHOFLD tid to bind/unbind 2518 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid 2519 * 2520 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class. 2521 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from 2522 * a traffic class. 2523 */ 2524 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc) 2525 { 2526 struct port_info *pi = netdev2pinfo(dev); 2527 struct adapter *adap = netdev2adap(dev); 2528 enum sge_eosw_state next_state; 2529 struct sge_eosw_txq *eosw_txq; 2530 u32 len, len16, nparams = 6; 2531 struct fw_flowc_wr *flowc; 2532 struct eotid_entry *entry; 2533 struct sge_ofld_rxq *rxq; 2534 struct sk_buff *skb; 2535 int ret = 0; 2536 2537 len = struct_size(flowc, mnemval, nparams); 2538 len16 = DIV_ROUND_UP(len, 16); 2539 2540 entry = cxgb4_lookup_eotid(&adap->tids, eotid); 2541 if (!entry) 2542 return -ENOMEM; 2543 2544 eosw_txq = (struct sge_eosw_txq *)entry->data; 2545 if (!eosw_txq) 2546 return -ENOMEM; 2547 2548 if (!(adap->flags & CXGB4_FW_OK)) { 2549 /* Don't stall caller when access to FW is lost */ 2550 complete(&eosw_txq->completion); 2551 return -EIO; 2552 } 2553 2554 skb = alloc_skb(len, GFP_KERNEL); 2555 if (!skb) 2556 return -ENOMEM; 2557 2558 spin_lock_bh(&eosw_txq->lock); 2559 if (tc != FW_SCHED_CLS_NONE) { 2560 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED) 2561 goto out_free_skb; 2562 2563 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND; 2564 } else { 2565 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE) 2566 goto out_free_skb; 2567 2568 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND; 2569 } 2570 2571 flowc = __skb_put(skb, len); 2572 memset(flowc, 0, len); 2573 2574 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid]; 2575 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) | 2576 FW_WR_FLOWID_V(eosw_txq->hwtid)); 2577 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 2578 FW_FLOWC_WR_NPARAMS_V(nparams) | 2579 FW_WR_COMPL_V(1)); 2580 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 2581 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf)); 2582 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 2583 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan); 2584 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 2585 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan); 2586 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 2587 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id); 2588 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 2589 flowc->mnemval[4].val = cpu_to_be32(tc); 2590 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE; 2591 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ? 2592 FW_FLOWC_MNEM_EOSTATE_CLOSING : 2593 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED); 2594 2595 /* Free up any pending skbs to ensure there's room for 2596 * termination FLOWC. 2597 */ 2598 if (tc == FW_SCHED_CLS_NONE) 2599 eosw_txq_flush_pending_skbs(eosw_txq); 2600 2601 ret = eosw_txq_enqueue(eosw_txq, skb); 2602 if (ret) 2603 goto out_free_skb; 2604 2605 eosw_txq->state = next_state; 2606 eosw_txq->flowc_idx = eosw_txq->pidx; 2607 eosw_txq_advance(eosw_txq, 1); 2608 ethofld_xmit(dev, eosw_txq); 2609 2610 spin_unlock_bh(&eosw_txq->lock); 2611 return 0; 2612 2613 out_free_skb: 2614 dev_consume_skb_any(skb); 2615 spin_unlock_bh(&eosw_txq->lock); 2616 return ret; 2617 } 2618 2619 /** 2620 * is_imm - check whether a packet can be sent as immediate data 2621 * @skb: the packet 2622 * 2623 * Returns true if a packet can be sent as a WR with immediate data. 2624 */ 2625 static inline int is_imm(const struct sk_buff *skb) 2626 { 2627 return skb->len <= MAX_CTRL_WR_LEN; 2628 } 2629 2630 /** 2631 * ctrlq_check_stop - check if a control queue is full and should stop 2632 * @q: the queue 2633 * @wr: most recent WR written to the queue 2634 * 2635 * Check if a control queue has become full and should be stopped. 2636 * We clean up control queue descriptors very lazily, only when we are out. 2637 * If the queue is still full after reclaiming any completed descriptors 2638 * we suspend it and have the last WR wake it up. 2639 */ 2640 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) 2641 { 2642 reclaim_completed_tx_imm(&q->q); 2643 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2644 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2645 q->q.stops++; 2646 q->full = 1; 2647 } 2648 } 2649 2650 #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST" 2651 2652 int cxgb4_selftest_lb_pkt(struct net_device *netdev) 2653 { 2654 struct port_info *pi = netdev_priv(netdev); 2655 struct adapter *adap = pi->adapter; 2656 struct cxgb4_ethtool_lb_test *lb; 2657 int ret, i = 0, pkt_len, credits; 2658 struct fw_eth_tx_pkt_wr *wr; 2659 struct cpl_tx_pkt_core *cpl; 2660 u32 ctrl0, ndesc, flits; 2661 struct sge_eth_txq *q; 2662 u8 *sgl; 2663 2664 pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR); 2665 2666 flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr), 2667 sizeof(__be64)); 2668 ndesc = flits_to_desc(flits); 2669 2670 lb = &pi->ethtool_lb; 2671 lb->loopback = 1; 2672 2673 q = &adap->sge.ethtxq[pi->first_qset]; 2674 __netif_tx_lock_bh(q->txq); 2675 2676 reclaim_completed_tx(adap, &q->q, -1, true); 2677 credits = txq_avail(&q->q) - ndesc; 2678 if (unlikely(credits < 0)) { 2679 __netif_tx_unlock_bh(q->txq); 2680 return -ENOMEM; 2681 } 2682 2683 wr = (void *)&q->q.desc[q->q.pidx]; 2684 memset(wr, 0, sizeof(struct tx_desc)); 2685 2686 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) | 2687 FW_WR_IMMDLEN_V(pkt_len + 2688 sizeof(*cpl))); 2689 wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2))); 2690 wr->r3 = cpu_to_be64(0); 2691 2692 cpl = (void *)(wr + 1); 2693 sgl = (u8 *)(cpl + 1); 2694 2695 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) | 2696 TXPKT_INTF_V(pi->tx_chan + 4); 2697 2698 cpl->ctrl0 = htonl(ctrl0); 2699 cpl->pack = htons(0); 2700 cpl->len = htons(pkt_len); 2701 cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F); 2702 2703 eth_broadcast_addr(sgl); 2704 i += ETH_ALEN; 2705 ether_addr_copy(&sgl[i], netdev->dev_addr); 2706 i += ETH_ALEN; 2707 2708 snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s", 2709 CXGB4_SELFTEST_LB_STR); 2710 2711 init_completion(&lb->completion); 2712 txq_advance(&q->q, ndesc); 2713 cxgb4_ring_tx_db(adap, &q->q, ndesc); 2714 __netif_tx_unlock_bh(q->txq); 2715 2716 /* wait for the pkt to return */ 2717 ret = wait_for_completion_timeout(&lb->completion, 10 * HZ); 2718 if (!ret) 2719 ret = -ETIMEDOUT; 2720 else 2721 ret = lb->result; 2722 2723 lb->loopback = 0; 2724 2725 return ret; 2726 } 2727 2728 /** 2729 * ctrl_xmit - send a packet through an SGE control Tx queue 2730 * @q: the control queue 2731 * @skb: the packet 2732 * 2733 * Send a packet through an SGE control Tx queue. Packets sent through 2734 * a control queue must fit entirely as immediate data. 2735 */ 2736 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) 2737 { 2738 unsigned int ndesc; 2739 struct fw_wr_hdr *wr; 2740 2741 if (unlikely(!is_imm(skb))) { 2742 WARN_ON(1); 2743 dev_kfree_skb(skb); 2744 return NET_XMIT_DROP; 2745 } 2746 2747 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); 2748 spin_lock(&q->sendq.lock); 2749 2750 if (unlikely(q->full)) { 2751 skb->priority = ndesc; /* save for restart */ 2752 __skb_queue_tail(&q->sendq, skb); 2753 spin_unlock(&q->sendq.lock); 2754 return NET_XMIT_CN; 2755 } 2756 2757 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2758 cxgb4_inline_tx_skb(skb, &q->q, wr); 2759 2760 txq_advance(&q->q, ndesc); 2761 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) 2762 ctrlq_check_stop(q, wr); 2763 2764 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 2765 spin_unlock(&q->sendq.lock); 2766 2767 kfree_skb(skb); 2768 return NET_XMIT_SUCCESS; 2769 } 2770 2771 /** 2772 * restart_ctrlq - restart a suspended control queue 2773 * @t: pointer to the tasklet associated with this handler 2774 * 2775 * Resumes transmission on a suspended Tx control queue. 2776 */ 2777 static void restart_ctrlq(struct tasklet_struct *t) 2778 { 2779 struct sk_buff *skb; 2780 unsigned int written = 0; 2781 struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk); 2782 2783 spin_lock(&q->sendq.lock); 2784 reclaim_completed_tx_imm(&q->q); 2785 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */ 2786 2787 while ((skb = __skb_dequeue(&q->sendq)) != NULL) { 2788 struct fw_wr_hdr *wr; 2789 unsigned int ndesc = skb->priority; /* previously saved */ 2790 2791 written += ndesc; 2792 /* Write descriptors and free skbs outside the lock to limit 2793 * wait times. q->full is still set so new skbs will be queued. 2794 */ 2795 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; 2796 txq_advance(&q->q, ndesc); 2797 spin_unlock(&q->sendq.lock); 2798 2799 cxgb4_inline_tx_skb(skb, &q->q, wr); 2800 kfree_skb(skb); 2801 2802 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { 2803 unsigned long old = q->q.stops; 2804 2805 ctrlq_check_stop(q, wr); 2806 if (q->q.stops != old) { /* suspended anew */ 2807 spin_lock(&q->sendq.lock); 2808 goto ringdb; 2809 } 2810 } 2811 if (written > 16) { 2812 cxgb4_ring_tx_db(q->adap, &q->q, written); 2813 written = 0; 2814 } 2815 spin_lock(&q->sendq.lock); 2816 } 2817 q->full = 0; 2818 ringdb: 2819 if (written) 2820 cxgb4_ring_tx_db(q->adap, &q->q, written); 2821 spin_unlock(&q->sendq.lock); 2822 } 2823 2824 /** 2825 * t4_mgmt_tx - send a management message 2826 * @adap: the adapter 2827 * @skb: the packet containing the management message 2828 * 2829 * Send a management message through control queue 0. 2830 */ 2831 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 2832 { 2833 int ret; 2834 2835 local_bh_disable(); 2836 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); 2837 local_bh_enable(); 2838 return ret; 2839 } 2840 2841 /** 2842 * is_ofld_imm - check whether a packet can be sent as immediate data 2843 * @skb: the packet 2844 * 2845 * Returns true if a packet can be sent as an offload WR with immediate 2846 * data. 2847 * FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field. 2848 * However, FW_ULPTX_WR commands have a 256 byte immediate only 2849 * payload limit. 2850 */ 2851 static inline int is_ofld_imm(const struct sk_buff *skb) 2852 { 2853 struct work_request_hdr *req = (struct work_request_hdr *)skb->data; 2854 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi)); 2855 2856 if (unlikely(opcode == FW_ULPTX_WR)) 2857 return skb->len <= MAX_IMM_ULPTX_WR_LEN; 2858 else if (opcode == FW_CRYPTO_LOOKASIDE_WR) 2859 return skb->len <= SGE_MAX_WR_LEN; 2860 else 2861 return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN; 2862 } 2863 2864 /** 2865 * calc_tx_flits_ofld - calculate # of flits for an offload packet 2866 * @skb: the packet 2867 * 2868 * Returns the number of flits needed for the given offload packet. 2869 * These packets are already fully constructed and no additional headers 2870 * will be added. 2871 */ 2872 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) 2873 { 2874 unsigned int flits, cnt; 2875 2876 if (is_ofld_imm(skb)) 2877 return DIV_ROUND_UP(skb->len, 8); 2878 2879 flits = skb_transport_offset(skb) / 8U; /* headers */ 2880 cnt = skb_shinfo(skb)->nr_frags; 2881 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 2882 cnt++; 2883 return flits + sgl_len(cnt); 2884 } 2885 2886 /** 2887 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion 2888 * @q: the queue to stop 2889 * 2890 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting 2891 * inability to map packets. A periodic timer attempts to restart 2892 * queues so marked. 2893 */ 2894 static void txq_stop_maperr(struct sge_uld_txq *q) 2895 { 2896 q->mapping_err++; 2897 q->q.stops++; 2898 set_bit(q->q.cntxt_id - q->adap->sge.egr_start, 2899 q->adap->sge.txq_maperr); 2900 } 2901 2902 /** 2903 * ofldtxq_stop - stop an offload Tx queue that has become full 2904 * @q: the queue to stop 2905 * @wr: the Work Request causing the queue to become full 2906 * 2907 * Stops an offload Tx queue that has become full and modifies the packet 2908 * being written to request a wakeup. 2909 */ 2910 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr) 2911 { 2912 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F); 2913 q->q.stops++; 2914 q->full = 1; 2915 } 2916 2917 /** 2918 * service_ofldq - service/restart a suspended offload queue 2919 * @q: the offload queue 2920 * 2921 * Services an offload Tx queue by moving packets from its Pending Send 2922 * Queue to the Hardware TX ring. The function starts and ends with the 2923 * Send Queue locked, but drops the lock while putting the skb at the 2924 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock 2925 * allows more skbs to be added to the Send Queue by other threads. 2926 * The packet being processed at the head of the Pending Send Queue is 2927 * left on the queue in case we experience DMA Mapping errors, etc. 2928 * and need to give up and restart later. 2929 * 2930 * service_ofldq() can be thought of as a task which opportunistically 2931 * uses other threads execution contexts. We use the Offload Queue 2932 * boolean "service_ofldq_running" to make sure that only one instance 2933 * is ever running at a time ... 2934 */ 2935 static void service_ofldq(struct sge_uld_txq *q) 2936 __must_hold(&q->sendq.lock) 2937 { 2938 u64 *pos, *before, *end; 2939 int credits; 2940 struct sk_buff *skb; 2941 struct sge_txq *txq; 2942 unsigned int left; 2943 unsigned int written = 0; 2944 unsigned int flits, ndesc; 2945 2946 /* If another thread is currently in service_ofldq() processing the 2947 * Pending Send Queue then there's nothing to do. Otherwise, flag 2948 * that we're doing the work and continue. Examining/modifying 2949 * the Offload Queue boolean "service_ofldq_running" must be done 2950 * while holding the Pending Send Queue Lock. 2951 */ 2952 if (q->service_ofldq_running) 2953 return; 2954 q->service_ofldq_running = true; 2955 2956 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { 2957 /* We drop the lock while we're working with the skb at the 2958 * head of the Pending Send Queue. This allows more skbs to 2959 * be added to the Pending Send Queue while we're working on 2960 * this one. We don't need to lock to guard the TX Ring 2961 * updates because only one thread of execution is ever 2962 * allowed into service_ofldq() at a time. 2963 */ 2964 spin_unlock(&q->sendq.lock); 2965 2966 cxgb4_reclaim_completed_tx(q->adap, &q->q, false); 2967 2968 flits = skb->priority; /* previously saved */ 2969 ndesc = flits_to_desc(flits); 2970 credits = txq_avail(&q->q) - ndesc; 2971 BUG_ON(credits < 0); 2972 if (unlikely(credits < TXQ_STOP_THRES)) 2973 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data); 2974 2975 pos = (u64 *)&q->q.desc[q->q.pidx]; 2976 if (is_ofld_imm(skb)) 2977 cxgb4_inline_tx_skb(skb, &q->q, pos); 2978 else if (cxgb4_map_skb(q->adap->pdev_dev, skb, 2979 (dma_addr_t *)skb->head)) { 2980 txq_stop_maperr(q); 2981 spin_lock(&q->sendq.lock); 2982 break; 2983 } else { 2984 int last_desc, hdr_len = skb_transport_offset(skb); 2985 2986 /* The WR headers may not fit within one descriptor. 2987 * So we need to deal with wrap-around here. 2988 */ 2989 before = (u64 *)pos; 2990 end = (u64 *)pos + flits; 2991 txq = &q->q; 2992 pos = (void *)inline_tx_skb_header(skb, &q->q, 2993 (void *)pos, 2994 hdr_len); 2995 if (before > (u64 *)pos) { 2996 left = (u8 *)end - (u8 *)txq->stat; 2997 end = (void *)txq->desc + left; 2998 } 2999 3000 /* If current position is already at the end of the 3001 * ofld queue, reset the current to point to 3002 * start of the queue and update the end ptr as well. 3003 */ 3004 if (pos == (u64 *)txq->stat) { 3005 left = (u8 *)end - (u8 *)txq->stat; 3006 end = (void *)txq->desc + left; 3007 pos = (void *)txq->desc; 3008 } 3009 3010 cxgb4_write_sgl(skb, &q->q, (void *)pos, 3011 end, hdr_len, 3012 (dma_addr_t *)skb->head); 3013 #ifdef CONFIG_NEED_DMA_MAP_STATE 3014 skb->dev = q->adap->port[0]; 3015 skb->destructor = deferred_unmap_destructor; 3016 #endif 3017 last_desc = q->q.pidx + ndesc - 1; 3018 if (last_desc >= q->q.size) 3019 last_desc -= q->q.size; 3020 q->q.sdesc[last_desc].skb = skb; 3021 } 3022 3023 txq_advance(&q->q, ndesc); 3024 written += ndesc; 3025 if (unlikely(written > 32)) { 3026 cxgb4_ring_tx_db(q->adap, &q->q, written); 3027 written = 0; 3028 } 3029 3030 /* Reacquire the Pending Send Queue Lock so we can unlink the 3031 * skb we've just successfully transferred to the TX Ring and 3032 * loop for the next skb which may be at the head of the 3033 * Pending Send Queue. 3034 */ 3035 spin_lock(&q->sendq.lock); 3036 __skb_unlink(skb, &q->sendq); 3037 if (is_ofld_imm(skb)) 3038 kfree_skb(skb); 3039 } 3040 if (likely(written)) 3041 cxgb4_ring_tx_db(q->adap, &q->q, written); 3042 3043 /*Indicate that no thread is processing the Pending Send Queue 3044 * currently. 3045 */ 3046 q->service_ofldq_running = false; 3047 } 3048 3049 /** 3050 * ofld_xmit - send a packet through an offload queue 3051 * @q: the Tx offload queue 3052 * @skb: the packet 3053 * 3054 * Send an offload packet through an SGE offload queue. 3055 */ 3056 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb) 3057 { 3058 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */ 3059 spin_lock(&q->sendq.lock); 3060 3061 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If 3062 * that results in this new skb being the only one on the queue, start 3063 * servicing it. If there are other skbs already on the list, then 3064 * either the queue is currently being processed or it's been stopped 3065 * for some reason and it'll be restarted at a later time. Restart 3066 * paths are triggered by events like experiencing a DMA Mapping Error 3067 * or filling the Hardware TX Ring. 3068 */ 3069 __skb_queue_tail(&q->sendq, skb); 3070 if (q->sendq.qlen == 1) 3071 service_ofldq(q); 3072 3073 spin_unlock(&q->sendq.lock); 3074 return NET_XMIT_SUCCESS; 3075 } 3076 3077 /** 3078 * restart_ofldq - restart a suspended offload queue 3079 * @t: pointer to the tasklet associated with this handler 3080 * 3081 * Resumes transmission on a suspended Tx offload queue. 3082 */ 3083 static void restart_ofldq(struct tasklet_struct *t) 3084 { 3085 struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk); 3086 3087 spin_lock(&q->sendq.lock); 3088 q->full = 0; /* the queue actually is completely empty now */ 3089 service_ofldq(q); 3090 spin_unlock(&q->sendq.lock); 3091 } 3092 3093 /** 3094 * skb_txq - return the Tx queue an offload packet should use 3095 * @skb: the packet 3096 * 3097 * Returns the Tx queue an offload packet should use as indicated by bits 3098 * 1-15 in the packet's queue_mapping. 3099 */ 3100 static inline unsigned int skb_txq(const struct sk_buff *skb) 3101 { 3102 return skb->queue_mapping >> 1; 3103 } 3104 3105 /** 3106 * is_ctrl_pkt - return whether an offload packet is a control packet 3107 * @skb: the packet 3108 * 3109 * Returns whether an offload packet should use an OFLD or a CTRL 3110 * Tx queue as indicated by bit 0 in the packet's queue_mapping. 3111 */ 3112 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) 3113 { 3114 return skb->queue_mapping & 1; 3115 } 3116 3117 static inline int uld_send(struct adapter *adap, struct sk_buff *skb, 3118 unsigned int tx_uld_type) 3119 { 3120 struct sge_uld_txq_info *txq_info; 3121 struct sge_uld_txq *txq; 3122 unsigned int idx = skb_txq(skb); 3123 3124 if (unlikely(is_ctrl_pkt(skb))) { 3125 /* Single ctrl queue is a requirement for LE workaround path */ 3126 if (adap->tids.nsftids) 3127 idx = 0; 3128 return ctrl_xmit(&adap->sge.ctrlq[idx], skb); 3129 } 3130 3131 txq_info = adap->sge.uld_txq_info[tx_uld_type]; 3132 if (unlikely(!txq_info)) { 3133 WARN_ON(true); 3134 kfree_skb(skb); 3135 return NET_XMIT_DROP; 3136 } 3137 3138 txq = &txq_info->uldtxq[idx]; 3139 return ofld_xmit(txq, skb); 3140 } 3141 3142 /** 3143 * t4_ofld_send - send an offload packet 3144 * @adap: the adapter 3145 * @skb: the packet 3146 * 3147 * Sends an offload packet. We use the packet queue_mapping to select the 3148 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3149 * should be sent as regular or control, bits 1-15 select the queue. 3150 */ 3151 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) 3152 { 3153 int ret; 3154 3155 local_bh_disable(); 3156 ret = uld_send(adap, skb, CXGB4_TX_OFLD); 3157 local_bh_enable(); 3158 return ret; 3159 } 3160 3161 /** 3162 * cxgb4_ofld_send - send an offload packet 3163 * @dev: the net device 3164 * @skb: the packet 3165 * 3166 * Sends an offload packet. This is an exported version of @t4_ofld_send, 3167 * intended for ULDs. 3168 */ 3169 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) 3170 { 3171 return t4_ofld_send(netdev2adap(dev), skb); 3172 } 3173 EXPORT_SYMBOL(cxgb4_ofld_send); 3174 3175 static void *inline_tx_header(const void *src, 3176 const struct sge_txq *q, 3177 void *pos, int length) 3178 { 3179 int left = (void *)q->stat - pos; 3180 u64 *p; 3181 3182 if (likely(length <= left)) { 3183 memcpy(pos, src, length); 3184 pos += length; 3185 } else { 3186 memcpy(pos, src, left); 3187 memcpy(q->desc, src + left, length - left); 3188 pos = (void *)q->desc + (length - left); 3189 } 3190 /* 0-pad to multiple of 16 */ 3191 p = PTR_ALIGN(pos, 8); 3192 if ((uintptr_t)p & 8) { 3193 *p = 0; 3194 return p + 1; 3195 } 3196 return p; 3197 } 3198 3199 /** 3200 * ofld_xmit_direct - copy a WR into offload queue 3201 * @q: the Tx offload queue 3202 * @src: location of WR 3203 * @len: WR length 3204 * 3205 * Copy an immediate WR into an uncontended SGE offload queue. 3206 */ 3207 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src, 3208 unsigned int len) 3209 { 3210 unsigned int ndesc; 3211 int credits; 3212 u64 *pos; 3213 3214 /* Use the lower limit as the cut-off */ 3215 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) { 3216 WARN_ON(1); 3217 return NET_XMIT_DROP; 3218 } 3219 3220 /* Don't return NET_XMIT_CN here as the current 3221 * implementation doesn't queue the request 3222 * using an skb when the following conditions not met 3223 */ 3224 if (!spin_trylock(&q->sendq.lock)) 3225 return NET_XMIT_DROP; 3226 3227 if (q->full || !skb_queue_empty(&q->sendq) || 3228 q->service_ofldq_running) { 3229 spin_unlock(&q->sendq.lock); 3230 return NET_XMIT_DROP; 3231 } 3232 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8)); 3233 credits = txq_avail(&q->q) - ndesc; 3234 pos = (u64 *)&q->q.desc[q->q.pidx]; 3235 3236 /* ofldtxq_stop modifies WR header in-situ */ 3237 inline_tx_header(src, &q->q, pos, len); 3238 if (unlikely(credits < TXQ_STOP_THRES)) 3239 ofldtxq_stop(q, (struct fw_wr_hdr *)pos); 3240 txq_advance(&q->q, ndesc); 3241 cxgb4_ring_tx_db(q->adap, &q->q, ndesc); 3242 3243 spin_unlock(&q->sendq.lock); 3244 return NET_XMIT_SUCCESS; 3245 } 3246 3247 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx, 3248 const void *src, unsigned int len) 3249 { 3250 struct sge_uld_txq_info *txq_info; 3251 struct sge_uld_txq *txq; 3252 struct adapter *adap; 3253 int ret; 3254 3255 adap = netdev2adap(dev); 3256 3257 local_bh_disable(); 3258 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 3259 if (unlikely(!txq_info)) { 3260 WARN_ON(true); 3261 local_bh_enable(); 3262 return NET_XMIT_DROP; 3263 } 3264 txq = &txq_info->uldtxq[idx]; 3265 3266 ret = ofld_xmit_direct(txq, src, len); 3267 local_bh_enable(); 3268 return net_xmit_eval(ret); 3269 } 3270 EXPORT_SYMBOL(cxgb4_immdata_send); 3271 3272 /** 3273 * t4_crypto_send - send crypto packet 3274 * @adap: the adapter 3275 * @skb: the packet 3276 * 3277 * Sends crypto packet. We use the packet queue_mapping to select the 3278 * appropriate Tx queue as follows: bit 0 indicates whether the packet 3279 * should be sent as regular or control, bits 1-15 select the queue. 3280 */ 3281 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb) 3282 { 3283 int ret; 3284 3285 local_bh_disable(); 3286 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO); 3287 local_bh_enable(); 3288 return ret; 3289 } 3290 3291 /** 3292 * cxgb4_crypto_send - send crypto packet 3293 * @dev: the net device 3294 * @skb: the packet 3295 * 3296 * Sends crypto packet. This is an exported version of @t4_crypto_send, 3297 * intended for ULDs. 3298 */ 3299 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb) 3300 { 3301 return t4_crypto_send(netdev2adap(dev), skb); 3302 } 3303 EXPORT_SYMBOL(cxgb4_crypto_send); 3304 3305 static inline void copy_frags(struct sk_buff *skb, 3306 const struct pkt_gl *gl, unsigned int offset) 3307 { 3308 int i; 3309 3310 /* usually there's just one frag */ 3311 __skb_fill_page_desc(skb, 0, gl->frags[0].page, 3312 gl->frags[0].offset + offset, 3313 gl->frags[0].size - offset); 3314 skb_shinfo(skb)->nr_frags = gl->nfrags; 3315 for (i = 1; i < gl->nfrags; i++) 3316 __skb_fill_page_desc(skb, i, gl->frags[i].page, 3317 gl->frags[i].offset, 3318 gl->frags[i].size); 3319 3320 /* get a reference to the last page, we don't own it */ 3321 get_page(gl->frags[gl->nfrags - 1].page); 3322 } 3323 3324 /** 3325 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list 3326 * @gl: the gather list 3327 * @skb_len: size of sk_buff main body if it carries fragments 3328 * @pull_len: amount of data to move to the sk_buff's main body 3329 * 3330 * Builds an sk_buff from the given packet gather list. Returns the 3331 * sk_buff or %NULL if sk_buff allocation failed. 3332 */ 3333 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, 3334 unsigned int skb_len, unsigned int pull_len) 3335 { 3336 struct sk_buff *skb; 3337 3338 /* 3339 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer 3340 * size, which is expected since buffers are at least PAGE_SIZEd. 3341 * In this case packets up to RX_COPY_THRES have only one fragment. 3342 */ 3343 if (gl->tot_len <= RX_COPY_THRES) { 3344 skb = dev_alloc_skb(gl->tot_len); 3345 if (unlikely(!skb)) 3346 goto out; 3347 __skb_put(skb, gl->tot_len); 3348 skb_copy_to_linear_data(skb, gl->va, gl->tot_len); 3349 } else { 3350 skb = dev_alloc_skb(skb_len); 3351 if (unlikely(!skb)) 3352 goto out; 3353 __skb_put(skb, pull_len); 3354 skb_copy_to_linear_data(skb, gl->va, pull_len); 3355 3356 copy_frags(skb, gl, pull_len); 3357 skb->len = gl->tot_len; 3358 skb->data_len = skb->len - pull_len; 3359 skb->truesize += skb->data_len; 3360 } 3361 out: return skb; 3362 } 3363 EXPORT_SYMBOL(cxgb4_pktgl_to_skb); 3364 3365 /** 3366 * t4_pktgl_free - free a packet gather list 3367 * @gl: the gather list 3368 * 3369 * Releases the pages of a packet gather list. We do not own the last 3370 * page on the list and do not free it. 3371 */ 3372 static void t4_pktgl_free(const struct pkt_gl *gl) 3373 { 3374 int n; 3375 const struct page_frag *p; 3376 3377 for (p = gl->frags, n = gl->nfrags - 1; n--; p++) 3378 put_page(p->page); 3379 } 3380 3381 /* 3382 * Process an MPS trace packet. Give it an unused protocol number so it won't 3383 * be delivered to anyone and send it to the stack for capture. 3384 */ 3385 static noinline int handle_trace_pkt(struct adapter *adap, 3386 const struct pkt_gl *gl) 3387 { 3388 struct sk_buff *skb; 3389 3390 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); 3391 if (unlikely(!skb)) { 3392 t4_pktgl_free(gl); 3393 return 0; 3394 } 3395 3396 if (is_t4(adap->params.chip)) 3397 __skb_pull(skb, sizeof(struct cpl_trace_pkt)); 3398 else 3399 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt)); 3400 3401 skb_reset_mac_header(skb); 3402 skb->protocol = htons(0xffff); 3403 skb->dev = adap->port[0]; 3404 netif_receive_skb(skb); 3405 return 0; 3406 } 3407 3408 /** 3409 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp 3410 * @adap: the adapter 3411 * @hwtstamps: time stamp structure to update 3412 * @sgetstamp: 60bit iqe timestamp 3413 * 3414 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp 3415 * which is in Core Clock ticks into ktime_t and assign it 3416 **/ 3417 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap, 3418 struct skb_shared_hwtstamps *hwtstamps, 3419 u64 sgetstamp) 3420 { 3421 u64 ns; 3422 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2); 3423 3424 ns = div_u64(tmp, adap->params.vpd.cclk); 3425 3426 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3427 hwtstamps->hwtstamp = ns_to_ktime(ns); 3428 } 3429 3430 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, 3431 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len) 3432 { 3433 struct adapter *adapter = rxq->rspq.adap; 3434 struct sge *s = &adapter->sge; 3435 struct port_info *pi; 3436 int ret; 3437 struct sk_buff *skb; 3438 3439 skb = napi_get_frags(&rxq->rspq.napi); 3440 if (unlikely(!skb)) { 3441 t4_pktgl_free(gl); 3442 rxq->stats.rx_drops++; 3443 return; 3444 } 3445 3446 copy_frags(skb, gl, s->pktshift); 3447 if (tnl_hdr_len) 3448 skb->csum_level = 1; 3449 skb->len = gl->tot_len - s->pktshift; 3450 skb->data_len = skb->len; 3451 skb->truesize += skb->data_len; 3452 skb->ip_summed = CHECKSUM_UNNECESSARY; 3453 skb_record_rx_queue(skb, rxq->rspq.idx); 3454 pi = netdev_priv(skb->dev); 3455 if (pi->rxtstamp) 3456 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb), 3457 gl->sgetstamp); 3458 if (rxq->rspq.netdev->features & NETIF_F_RXHASH) 3459 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3460 PKT_HASH_TYPE_L3); 3461 3462 if (unlikely(pkt->vlan_ex)) { 3463 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3464 rxq->stats.vlan_ex++; 3465 } 3466 ret = napi_gro_frags(&rxq->rspq.napi); 3467 if (ret == GRO_HELD) 3468 rxq->stats.lro_pkts++; 3469 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) 3470 rxq->stats.lro_merged++; 3471 rxq->stats.pkts++; 3472 rxq->stats.rx_cso++; 3473 } 3474 3475 enum { 3476 RX_NON_PTP_PKT = 0, 3477 RX_PTP_PKT_SUC = 1, 3478 RX_PTP_PKT_ERR = 2 3479 }; 3480 3481 /** 3482 * t4_systim_to_hwstamp - read hardware time stamp 3483 * @adapter: the adapter 3484 * @skb: the packet 3485 * 3486 * Read Time Stamp from MPS packet and insert in skb which 3487 * is forwarded to PTP application 3488 */ 3489 static noinline int t4_systim_to_hwstamp(struct adapter *adapter, 3490 struct sk_buff *skb) 3491 { 3492 struct skb_shared_hwtstamps *hwtstamps; 3493 struct cpl_rx_mps_pkt *cpl = NULL; 3494 unsigned char *data; 3495 int offset; 3496 3497 cpl = (struct cpl_rx_mps_pkt *)skb->data; 3498 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) & 3499 X_CPL_RX_MPS_PKT_TYPE_PTP)) 3500 return RX_PTP_PKT_ERR; 3501 3502 data = skb->data + sizeof(*cpl); 3503 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt)); 3504 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN; 3505 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short)) 3506 return RX_PTP_PKT_ERR; 3507 3508 hwtstamps = skb_hwtstamps(skb); 3509 memset(hwtstamps, 0, sizeof(*hwtstamps)); 3510 hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data)); 3511 3512 return RX_PTP_PKT_SUC; 3513 } 3514 3515 /** 3516 * t4_rx_hststamp - Recv PTP Event Message 3517 * @adapter: the adapter 3518 * @rsp: the response queue descriptor holding the RX_PKT message 3519 * @rxq: the response queue holding the RX_PKT message 3520 * @skb: the packet 3521 * 3522 * PTP enabled and MPS packet, read HW timestamp 3523 */ 3524 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp, 3525 struct sge_eth_rxq *rxq, struct sk_buff *skb) 3526 { 3527 int ret; 3528 3529 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) && 3530 !is_t4(adapter->params.chip))) { 3531 ret = t4_systim_to_hwstamp(adapter, skb); 3532 if (ret == RX_PTP_PKT_ERR) { 3533 kfree_skb(skb); 3534 rxq->stats.rx_drops++; 3535 } 3536 return ret; 3537 } 3538 return RX_NON_PTP_PKT; 3539 } 3540 3541 /** 3542 * t4_tx_hststamp - Loopback PTP Transmit Event Message 3543 * @adapter: the adapter 3544 * @skb: the packet 3545 * @dev: the ingress net device 3546 * 3547 * Read hardware timestamp for the loopback PTP Tx event message 3548 */ 3549 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb, 3550 struct net_device *dev) 3551 { 3552 struct port_info *pi = netdev_priv(dev); 3553 3554 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) { 3555 cxgb4_ptp_read_hwstamp(adapter, pi); 3556 kfree_skb(skb); 3557 return 0; 3558 } 3559 return 1; 3560 } 3561 3562 /** 3563 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages 3564 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue 3565 * @rsp: Response Entry pointer into Response Queue 3566 * @gl: Gather List pointer 3567 * 3568 * For adapters which support the SGE Doorbell Queue Timer facility, 3569 * we configure the Ethernet TX Queues to send CIDX Updates to the 3570 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE 3571 * messages. This adds a small load to PCIe Link RX bandwidth and, 3572 * potentially, higher CPU Interrupt load, but allows us to respond 3573 * much more quickly to the CIDX Updates. This is important for 3574 * Upper Layer Software which isn't willing to have a large amount 3575 * of TX Data outstanding before receiving DMA Completions. 3576 */ 3577 static void t4_tx_completion_handler(struct sge_rspq *rspq, 3578 const __be64 *rsp, 3579 const struct pkt_gl *gl) 3580 { 3581 u8 opcode = ((const struct rss_header *)rsp)->opcode; 3582 struct port_info *pi = netdev_priv(rspq->netdev); 3583 struct adapter *adapter = rspq->adap; 3584 struct sge *s = &adapter->sge; 3585 struct sge_eth_txq *txq; 3586 3587 /* skip RSS header */ 3588 rsp++; 3589 3590 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG. 3591 */ 3592 if (unlikely(opcode == CPL_FW4_MSG && 3593 ((const struct cpl_fw4_msg *)rsp)->type == 3594 FW_TYPE_RSSCPL)) { 3595 rsp++; 3596 opcode = ((const struct rss_header *)rsp)->opcode; 3597 rsp++; 3598 } 3599 3600 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) { 3601 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n", 3602 __func__, opcode); 3603 return; 3604 } 3605 3606 txq = &s->ethtxq[pi->first_qset + rspq->idx]; 3607 3608 /* We've got the Hardware Consumer Index Update in the Egress Update 3609 * message. These Egress Update messages will be our sole CIDX Updates 3610 * we get since we don't want to chew up PCIe bandwidth for both Ingress 3611 * Messages and Status Page writes. However, The code which manages 3612 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value 3613 * stored in the Status Page at the end of the TX Queue. It's easiest 3614 * to simply copy the CIDX Update value from the Egress Update message 3615 * to the Status Page. Also note that no Endian issues need to be 3616 * considered here since both are Big Endian and we're just copying 3617 * bytes consistently ... 3618 */ 3619 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) { 3620 struct cpl_sge_egr_update *egr; 3621 3622 egr = (struct cpl_sge_egr_update *)rsp; 3623 WRITE_ONCE(txq->q.stat->cidx, egr->cidx); 3624 } 3625 3626 t4_sge_eth_txq_egress_update(adapter, txq, -1); 3627 } 3628 3629 static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si) 3630 { 3631 struct adapter *adap = pi->adapter; 3632 struct cxgb4_ethtool_lb_test *lb; 3633 struct sge *s = &adap->sge; 3634 struct net_device *netdev; 3635 u8 *data; 3636 int i; 3637 3638 netdev = adap->port[pi->port_id]; 3639 lb = &pi->ethtool_lb; 3640 data = si->va + s->pktshift; 3641 3642 i = ETH_ALEN; 3643 if (!ether_addr_equal(data + i, netdev->dev_addr)) 3644 return -1; 3645 3646 i += ETH_ALEN; 3647 if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR)) 3648 lb->result = -EIO; 3649 3650 complete(&lb->completion); 3651 return 0; 3652 } 3653 3654 /** 3655 * t4_ethrx_handler - process an ingress ethernet packet 3656 * @q: the response queue that received the packet 3657 * @rsp: the response queue descriptor holding the RX_PKT message 3658 * @si: the gather list of packet fragments 3659 * 3660 * Process an ingress ethernet packet and deliver it to the stack. 3661 */ 3662 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, 3663 const struct pkt_gl *si) 3664 { 3665 bool csum_ok; 3666 struct sk_buff *skb; 3667 const struct cpl_rx_pkt *pkt; 3668 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3669 struct adapter *adapter = q->adap; 3670 struct sge *s = &q->adap->sge; 3671 int cpl_trace_pkt = is_t4(q->adap->params.chip) ? 3672 CPL_TRACE_PKT : CPL_TRACE_PKT_T5; 3673 u16 err_vec, tnl_hdr_len = 0; 3674 struct port_info *pi; 3675 int ret = 0; 3676 3677 pi = netdev_priv(q->netdev); 3678 /* If we're looking at TX Queue CIDX Update, handle that separately 3679 * and return. 3680 */ 3681 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) || 3682 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) { 3683 t4_tx_completion_handler(q, rsp, si); 3684 return 0; 3685 } 3686 3687 if (unlikely(*(u8 *)rsp == cpl_trace_pkt)) 3688 return handle_trace_pkt(q->adap, si); 3689 3690 pkt = (const struct cpl_rx_pkt *)rsp; 3691 /* Compressed error vector is enabled for T6 only */ 3692 if (q->adap->params.tp.rx_pkt_encap) { 3693 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec)); 3694 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec)); 3695 } else { 3696 err_vec = be16_to_cpu(pkt->err_vec); 3697 } 3698 3699 csum_ok = pkt->csum_calc && !err_vec && 3700 (q->netdev->features & NETIF_F_RXCSUM); 3701 3702 if (err_vec) 3703 rxq->stats.bad_rx_pkts++; 3704 3705 if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) { 3706 ret = cxgb4_validate_lb_pkt(pi, si); 3707 if (!ret) 3708 return 0; 3709 } 3710 3711 if (((pkt->l2info & htonl(RXF_TCP_F)) || 3712 tnl_hdr_len) && 3713 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { 3714 do_gro(rxq, si, pkt, tnl_hdr_len); 3715 return 0; 3716 } 3717 3718 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); 3719 if (unlikely(!skb)) { 3720 t4_pktgl_free(si); 3721 rxq->stats.rx_drops++; 3722 return 0; 3723 } 3724 3725 /* Handle PTP Event Rx packet */ 3726 if (unlikely(pi->ptp_enable)) { 3727 ret = t4_rx_hststamp(adapter, rsp, rxq, skb); 3728 if (ret == RX_PTP_PKT_ERR) 3729 return 0; 3730 } 3731 if (likely(!ret)) 3732 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */ 3733 3734 /* Handle the PTP Event Tx Loopback packet */ 3735 if (unlikely(pi->ptp_enable && !ret && 3736 (pkt->l2info & htonl(RXF_UDP_F)) && 3737 cxgb4_ptp_is_ptp_rx(skb))) { 3738 if (!t4_tx_hststamp(adapter, skb, q->netdev)) 3739 return 0; 3740 } 3741 3742 skb->protocol = eth_type_trans(skb, q->netdev); 3743 skb_record_rx_queue(skb, q->idx); 3744 if (skb->dev->features & NETIF_F_RXHASH) 3745 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val, 3746 PKT_HASH_TYPE_L3); 3747 3748 rxq->stats.pkts++; 3749 3750 if (pi->rxtstamp) 3751 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb), 3752 si->sgetstamp); 3753 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) { 3754 if (!pkt->ip_frag) { 3755 skb->ip_summed = CHECKSUM_UNNECESSARY; 3756 rxq->stats.rx_cso++; 3757 } else if (pkt->l2info & htonl(RXF_IP_F)) { 3758 __sum16 c = (__force __sum16)pkt->csum; 3759 skb->csum = csum_unfold(c); 3760 3761 if (tnl_hdr_len) { 3762 skb->ip_summed = CHECKSUM_UNNECESSARY; 3763 skb->csum_level = 1; 3764 } else { 3765 skb->ip_summed = CHECKSUM_COMPLETE; 3766 } 3767 rxq->stats.rx_cso++; 3768 } 3769 } else { 3770 skb_checksum_none_assert(skb); 3771 #ifdef CONFIG_CHELSIO_T4_FCOE 3772 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \ 3773 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F) 3774 3775 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) { 3776 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) && 3777 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) { 3778 if (q->adap->params.tp.rx_pkt_encap) 3779 csum_ok = err_vec & 3780 T6_COMPR_RXERR_SUM_F; 3781 else 3782 csum_ok = err_vec & RXERR_CSUM_F; 3783 if (!csum_ok) 3784 skb->ip_summed = CHECKSUM_UNNECESSARY; 3785 } 3786 } 3787 3788 #undef CPL_RX_PKT_FLAGS 3789 #endif /* CONFIG_CHELSIO_T4_FCOE */ 3790 } 3791 3792 if (unlikely(pkt->vlan_ex)) { 3793 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan)); 3794 rxq->stats.vlan_ex++; 3795 } 3796 skb_mark_napi_id(skb, &q->napi); 3797 netif_receive_skb(skb); 3798 return 0; 3799 } 3800 3801 /** 3802 * restore_rx_bufs - put back a packet's Rx buffers 3803 * @si: the packet gather list 3804 * @q: the SGE free list 3805 * @frags: number of FL buffers to restore 3806 * 3807 * Puts back on an FL the Rx buffers associated with @si. The buffers 3808 * have already been unmapped and are left unmapped, we mark them so to 3809 * prevent further unmapping attempts. 3810 * 3811 * This function undoes a series of @unmap_rx_buf calls when we find out 3812 * that the current packet can't be processed right away afterall and we 3813 * need to come back to it later. This is a very rare event and there's 3814 * no effort to make this particularly efficient. 3815 */ 3816 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, 3817 int frags) 3818 { 3819 struct rx_sw_desc *d; 3820 3821 while (frags--) { 3822 if (q->cidx == 0) 3823 q->cidx = q->size - 1; 3824 else 3825 q->cidx--; 3826 d = &q->sdesc[q->cidx]; 3827 d->page = si->frags[frags].page; 3828 d->dma_addr |= RX_UNMAPPED_BUF; 3829 q->avail++; 3830 } 3831 } 3832 3833 /** 3834 * is_new_response - check if a response is newly written 3835 * @r: the response descriptor 3836 * @q: the response queue 3837 * 3838 * Returns true if a response descriptor contains a yet unprocessed 3839 * response. 3840 */ 3841 static inline bool is_new_response(const struct rsp_ctrl *r, 3842 const struct sge_rspq *q) 3843 { 3844 return (r->type_gen >> RSPD_GEN_S) == q->gen; 3845 } 3846 3847 /** 3848 * rspq_next - advance to the next entry in a response queue 3849 * @q: the queue 3850 * 3851 * Updates the state of a response queue to advance it to the next entry. 3852 */ 3853 static inline void rspq_next(struct sge_rspq *q) 3854 { 3855 q->cur_desc = (void *)q->cur_desc + q->iqe_len; 3856 if (unlikely(++q->cidx == q->size)) { 3857 q->cidx = 0; 3858 q->gen ^= 1; 3859 q->cur_desc = q->desc; 3860 } 3861 } 3862 3863 /** 3864 * process_responses - process responses from an SGE response queue 3865 * @q: the ingress queue to process 3866 * @budget: how many responses can be processed in this round 3867 * 3868 * Process responses from an SGE response queue up to the supplied budget. 3869 * Responses include received packets as well as control messages from FW 3870 * or HW. 3871 * 3872 * Additionally choose the interrupt holdoff time for the next interrupt 3873 * on this queue. If the system is under memory shortage use a fairly 3874 * long delay to help recovery. 3875 */ 3876 static int process_responses(struct sge_rspq *q, int budget) 3877 { 3878 int ret, rsp_type; 3879 int budget_left = budget; 3880 const struct rsp_ctrl *rc; 3881 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); 3882 struct adapter *adapter = q->adap; 3883 struct sge *s = &adapter->sge; 3884 3885 while (likely(budget_left)) { 3886 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 3887 if (!is_new_response(rc, q)) { 3888 if (q->flush_handler) 3889 q->flush_handler(q); 3890 break; 3891 } 3892 3893 dma_rmb(); 3894 rsp_type = RSPD_TYPE_G(rc->type_gen); 3895 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) { 3896 struct page_frag *fp; 3897 struct pkt_gl si; 3898 const struct rx_sw_desc *rsd; 3899 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; 3900 3901 if (len & RSPD_NEWBUF_F) { 3902 if (likely(q->offset > 0)) { 3903 free_rx_bufs(q->adap, &rxq->fl, 1); 3904 q->offset = 0; 3905 } 3906 len = RSPD_LEN_G(len); 3907 } 3908 si.tot_len = len; 3909 3910 /* gather packet fragments */ 3911 for (frags = 0, fp = si.frags; ; frags++, fp++) { 3912 rsd = &rxq->fl.sdesc[rxq->fl.cidx]; 3913 bufsz = get_buf_size(adapter, rsd); 3914 fp->page = rsd->page; 3915 fp->offset = q->offset; 3916 fp->size = min(bufsz, len); 3917 len -= fp->size; 3918 if (!len) 3919 break; 3920 unmap_rx_buf(q->adap, &rxq->fl); 3921 } 3922 3923 si.sgetstamp = SGE_TIMESTAMP_G( 3924 be64_to_cpu(rc->last_flit)); 3925 /* 3926 * Last buffer remains mapped so explicitly make it 3927 * coherent for CPU access. 3928 */ 3929 dma_sync_single_for_cpu(q->adap->pdev_dev, 3930 get_buf_addr(rsd), 3931 fp->size, DMA_FROM_DEVICE); 3932 3933 si.va = page_address(si.frags[0].page) + 3934 si.frags[0].offset; 3935 prefetch(si.va); 3936 3937 si.nfrags = frags + 1; 3938 ret = q->handler(q, q->cur_desc, &si); 3939 if (likely(ret == 0)) 3940 q->offset += ALIGN(fp->size, s->fl_align); 3941 else 3942 restore_rx_bufs(&si, &rxq->fl, frags); 3943 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) { 3944 ret = q->handler(q, q->cur_desc, NULL); 3945 } else { 3946 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); 3947 } 3948 3949 if (unlikely(ret)) { 3950 /* couldn't process descriptor, back off for recovery */ 3951 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX); 3952 break; 3953 } 3954 3955 rspq_next(q); 3956 budget_left--; 3957 } 3958 3959 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16) 3960 __refill_fl(q->adap, &rxq->fl); 3961 return budget - budget_left; 3962 } 3963 3964 /** 3965 * napi_rx_handler - the NAPI handler for Rx processing 3966 * @napi: the napi instance 3967 * @budget: how many packets we can process in this round 3968 * 3969 * Handler for new data events when using NAPI. This does not need any 3970 * locking or protection from interrupts as data interrupts are off at 3971 * this point and other adapter interrupts do not interfere (the latter 3972 * in not a concern at all with MSI-X as non-data interrupts then have 3973 * a separate handler). 3974 */ 3975 static int napi_rx_handler(struct napi_struct *napi, int budget) 3976 { 3977 unsigned int params; 3978 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); 3979 int work_done; 3980 u32 val; 3981 3982 work_done = process_responses(q, budget); 3983 if (likely(work_done < budget)) { 3984 int timer_index; 3985 3986 napi_complete_done(napi, work_done); 3987 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params); 3988 3989 if (q->adaptive_rx) { 3990 if (work_done > max(timer_pkt_quota[timer_index], 3991 MIN_NAPI_WORK)) 3992 timer_index = (timer_index + 1); 3993 else 3994 timer_index = timer_index - 1; 3995 3996 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1); 3997 q->next_intr_params = 3998 QINTR_TIMER_IDX_V(timer_index) | 3999 QINTR_CNT_EN_V(0); 4000 params = q->next_intr_params; 4001 } else { 4002 params = q->next_intr_params; 4003 q->next_intr_params = q->intr_params; 4004 } 4005 } else 4006 params = QINTR_TIMER_IDX_V(7); 4007 4008 val = CIDXINC_V(work_done) | SEINTARM_V(params); 4009 4010 /* If we don't have access to the new User GTS (T5+), use the old 4011 * doorbell mechanism; otherwise use the new BAR2 mechanism. 4012 */ 4013 if (unlikely(q->bar2_addr == NULL)) { 4014 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A), 4015 val | INGRESSQID_V((u32)q->cntxt_id)); 4016 } else { 4017 writel(val | INGRESSQID_V(q->bar2_qid), 4018 q->bar2_addr + SGE_UDB_GTS); 4019 wmb(); 4020 } 4021 return work_done; 4022 } 4023 4024 void cxgb4_ethofld_restart(struct tasklet_struct *t) 4025 { 4026 struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t, 4027 qresume_tsk); 4028 int pktcount; 4029 4030 spin_lock(&eosw_txq->lock); 4031 pktcount = eosw_txq->cidx - eosw_txq->last_cidx; 4032 if (pktcount < 0) 4033 pktcount += eosw_txq->ndesc; 4034 4035 if (pktcount) { 4036 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev), 4037 eosw_txq, pktcount); 4038 eosw_txq->inuse -= pktcount; 4039 } 4040 4041 /* There may be some packets waiting for completions. So, 4042 * attempt to send these packets now. 4043 */ 4044 ethofld_xmit(eosw_txq->netdev, eosw_txq); 4045 spin_unlock(&eosw_txq->lock); 4046 } 4047 4048 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions 4049 * @q: the response queue that received the packet 4050 * @rsp: the response queue descriptor holding the CPL message 4051 * @si: the gather list of packet fragments 4052 * 4053 * Process a ETHOFLD Tx completion. Increment the cidx here, but 4054 * free up the descriptors in a tasklet later. 4055 */ 4056 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp, 4057 const struct pkt_gl *si) 4058 { 4059 u8 opcode = ((const struct rss_header *)rsp)->opcode; 4060 4061 /* skip RSS header */ 4062 rsp++; 4063 4064 if (opcode == CPL_FW4_ACK) { 4065 const struct cpl_fw4_ack *cpl; 4066 struct sge_eosw_txq *eosw_txq; 4067 struct eotid_entry *entry; 4068 struct sk_buff *skb; 4069 u32 hdr_len, eotid; 4070 u8 flits, wrlen16; 4071 int credits; 4072 4073 cpl = (const struct cpl_fw4_ack *)rsp; 4074 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) - 4075 q->adap->tids.eotid_base; 4076 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid); 4077 if (!entry) 4078 goto out_done; 4079 4080 eosw_txq = (struct sge_eosw_txq *)entry->data; 4081 if (!eosw_txq) 4082 goto out_done; 4083 4084 spin_lock(&eosw_txq->lock); 4085 credits = cpl->credits; 4086 while (credits > 0) { 4087 skb = eosw_txq->desc[eosw_txq->cidx].skb; 4088 if (!skb) 4089 break; 4090 4091 if (unlikely((eosw_txq->state == 4092 CXGB4_EO_STATE_FLOWC_OPEN_REPLY || 4093 eosw_txq->state == 4094 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) && 4095 eosw_txq->cidx == eosw_txq->flowc_idx)) { 4096 flits = DIV_ROUND_UP(skb->len, 8); 4097 if (eosw_txq->state == 4098 CXGB4_EO_STATE_FLOWC_OPEN_REPLY) 4099 eosw_txq->state = CXGB4_EO_STATE_ACTIVE; 4100 else 4101 eosw_txq->state = CXGB4_EO_STATE_CLOSED; 4102 complete(&eosw_txq->completion); 4103 } else { 4104 hdr_len = eth_get_headlen(eosw_txq->netdev, 4105 skb->data, 4106 skb_headlen(skb)); 4107 flits = ethofld_calc_tx_flits(q->adap, skb, 4108 hdr_len); 4109 } 4110 eosw_txq_advance_index(&eosw_txq->cidx, 1, 4111 eosw_txq->ndesc); 4112 wrlen16 = DIV_ROUND_UP(flits * 8, 16); 4113 credits -= wrlen16; 4114 } 4115 4116 eosw_txq->cred += cpl->credits; 4117 eosw_txq->ncompl--; 4118 4119 spin_unlock(&eosw_txq->lock); 4120 4121 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx, 4122 * if there were packets waiting for completion. 4123 */ 4124 tasklet_schedule(&eosw_txq->qresume_tsk); 4125 } 4126 4127 out_done: 4128 return 0; 4129 } 4130 4131 /* 4132 * The MSI-X interrupt handler for an SGE response queue. 4133 */ 4134 irqreturn_t t4_sge_intr_msix(int irq, void *cookie) 4135 { 4136 struct sge_rspq *q = cookie; 4137 4138 napi_schedule(&q->napi); 4139 return IRQ_HANDLED; 4140 } 4141 4142 /* 4143 * Process the indirect interrupt entries in the interrupt queue and kick off 4144 * NAPI for each queue that has generated an entry. 4145 */ 4146 static unsigned int process_intrq(struct adapter *adap) 4147 { 4148 unsigned int credits; 4149 const struct rsp_ctrl *rc; 4150 struct sge_rspq *q = &adap->sge.intrq; 4151 u32 val; 4152 4153 spin_lock(&adap->sge.intrq_lock); 4154 for (credits = 0; ; credits++) { 4155 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); 4156 if (!is_new_response(rc, q)) 4157 break; 4158 4159 dma_rmb(); 4160 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) { 4161 unsigned int qid = ntohl(rc->pldbuflen_qid); 4162 4163 qid -= adap->sge.ingr_start; 4164 napi_schedule(&adap->sge.ingr_map[qid]->napi); 4165 } 4166 4167 rspq_next(q); 4168 } 4169 4170 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params); 4171 4172 /* If we don't have access to the new User GTS (T5+), use the old 4173 * doorbell mechanism; otherwise use the new BAR2 mechanism. 4174 */ 4175 if (unlikely(q->bar2_addr == NULL)) { 4176 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A), 4177 val | INGRESSQID_V(q->cntxt_id)); 4178 } else { 4179 writel(val | INGRESSQID_V(q->bar2_qid), 4180 q->bar2_addr + SGE_UDB_GTS); 4181 wmb(); 4182 } 4183 spin_unlock(&adap->sge.intrq_lock); 4184 return credits; 4185 } 4186 4187 /* 4188 * The MSI interrupt handler, which handles data events from SGE response queues 4189 * as well as error and other async events as they all use the same MSI vector. 4190 */ 4191 static irqreturn_t t4_intr_msi(int irq, void *cookie) 4192 { 4193 struct adapter *adap = cookie; 4194 4195 if (adap->flags & CXGB4_MASTER_PF) 4196 t4_slow_intr_handler(adap); 4197 process_intrq(adap); 4198 return IRQ_HANDLED; 4199 } 4200 4201 /* 4202 * Interrupt handler for legacy INTx interrupts. 4203 * Handles data events from SGE response queues as well as error and other 4204 * async events as they all use the same interrupt line. 4205 */ 4206 static irqreturn_t t4_intr_intx(int irq, void *cookie) 4207 { 4208 struct adapter *adap = cookie; 4209 4210 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0); 4211 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) | 4212 process_intrq(adap)) 4213 return IRQ_HANDLED; 4214 return IRQ_NONE; /* probably shared interrupt */ 4215 } 4216 4217 /** 4218 * t4_intr_handler - select the top-level interrupt handler 4219 * @adap: the adapter 4220 * 4221 * Selects the top-level interrupt handler based on the type of interrupts 4222 * (MSI-X, MSI, or INTx). 4223 */ 4224 irq_handler_t t4_intr_handler(struct adapter *adap) 4225 { 4226 if (adap->flags & CXGB4_USING_MSIX) 4227 return t4_sge_intr_msix; 4228 if (adap->flags & CXGB4_USING_MSI) 4229 return t4_intr_msi; 4230 return t4_intr_intx; 4231 } 4232 4233 static void sge_rx_timer_cb(struct timer_list *t) 4234 { 4235 unsigned long m; 4236 unsigned int i; 4237 struct adapter *adap = timer_container_of(adap, t, sge.rx_timer); 4238 struct sge *s = &adap->sge; 4239 4240 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4241 for (m = s->starving_fl[i]; m; m &= m - 1) { 4242 struct sge_eth_rxq *rxq; 4243 unsigned int id = __ffs(m) + i * BITS_PER_LONG; 4244 struct sge_fl *fl = s->egr_map[id]; 4245 4246 clear_bit(id, s->starving_fl); 4247 smp_mb__after_atomic(); 4248 4249 if (fl_starving(adap, fl)) { 4250 rxq = container_of(fl, struct sge_eth_rxq, fl); 4251 if (napi_schedule(&rxq->rspq.napi)) 4252 fl->starving++; 4253 else 4254 set_bit(id, s->starving_fl); 4255 } 4256 } 4257 /* The remainder of the SGE RX Timer Callback routine is dedicated to 4258 * global Master PF activities like checking for chip ingress stalls, 4259 * etc. 4260 */ 4261 if (!(adap->flags & CXGB4_MASTER_PF)) 4262 goto done; 4263 4264 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD); 4265 4266 done: 4267 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); 4268 } 4269 4270 static void sge_tx_timer_cb(struct timer_list *t) 4271 { 4272 struct adapter *adap = timer_container_of(adap, t, sge.tx_timer); 4273 struct sge *s = &adap->sge; 4274 unsigned long m, period; 4275 unsigned int i, budget; 4276 4277 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++) 4278 for (m = s->txq_maperr[i]; m; m &= m - 1) { 4279 unsigned long id = __ffs(m) + i * BITS_PER_LONG; 4280 struct sge_uld_txq *txq = s->egr_map[id]; 4281 4282 clear_bit(id, s->txq_maperr); 4283 tasklet_schedule(&txq->qresume_tsk); 4284 } 4285 4286 if (!is_t4(adap->params.chip)) { 4287 struct sge_eth_txq *q = &s->ptptxq; 4288 int avail; 4289 4290 spin_lock(&adap->ptp_lock); 4291 avail = reclaimable(&q->q); 4292 4293 if (avail) { 4294 free_tx_desc(adap, &q->q, avail, false); 4295 q->q.in_use -= avail; 4296 } 4297 spin_unlock(&adap->ptp_lock); 4298 } 4299 4300 budget = MAX_TIMER_TX_RECLAIM; 4301 i = s->ethtxq_rover; 4302 do { 4303 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i], 4304 budget); 4305 if (!budget) 4306 break; 4307 4308 if (++i >= s->ethqsets) 4309 i = 0; 4310 } while (i != s->ethtxq_rover); 4311 s->ethtxq_rover = i; 4312 4313 if (budget == 0) { 4314 /* If we found too many reclaimable packets schedule a timer 4315 * in the near future to continue where we left off. 4316 */ 4317 period = 2; 4318 } else { 4319 /* We reclaimed all reclaimable TX Descriptors, so reschedule 4320 * at the normal period. 4321 */ 4322 period = TX_QCHECK_PERIOD; 4323 } 4324 4325 mod_timer(&s->tx_timer, jiffies + period); 4326 } 4327 4328 /** 4329 * bar2_address - return the BAR2 address for an SGE Queue's Registers 4330 * @adapter: the adapter 4331 * @qid: the SGE Queue ID 4332 * @qtype: the SGE Queue Type (Egress or Ingress) 4333 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 4334 * 4335 * Returns the BAR2 address for the SGE Queue Registers associated with 4336 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also 4337 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE 4338 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" 4339 * Registers are supported (e.g. the Write Combining Doorbell Buffer). 4340 */ 4341 static void __iomem *bar2_address(struct adapter *adapter, 4342 unsigned int qid, 4343 enum t4_bar2_qtype qtype, 4344 unsigned int *pbar2_qid) 4345 { 4346 u64 bar2_qoffset; 4347 int ret; 4348 4349 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0, 4350 &bar2_qoffset, pbar2_qid); 4351 if (ret) 4352 return NULL; 4353 4354 return adapter->bar2 + bar2_qoffset; 4355 } 4356 4357 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 4358 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map 4359 */ 4360 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, 4361 struct net_device *dev, int intr_idx, 4362 struct sge_fl *fl, rspq_handler_t hnd, 4363 rspq_flush_handler_t flush_hnd, int cong) 4364 { 4365 int ret, flsz = 0; 4366 struct fw_iq_cmd c; 4367 struct sge *s = &adap->sge; 4368 struct port_info *pi = netdev_priv(dev); 4369 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING); 4370 4371 /* Size needs to be multiple of 16, including status entry. */ 4372 iq->size = roundup(iq->size, 16); 4373 4374 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, 4375 &iq->phys_addr, NULL, 0, 4376 dev_to_node(adap->pdev_dev)); 4377 if (!iq->desc) 4378 return -ENOMEM; 4379 4380 memset(&c, 0, sizeof(c)); 4381 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | 4382 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4383 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0)); 4384 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F | 4385 FW_LEN16(c)); 4386 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) | 4387 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) | 4388 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | 4389 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) | 4390 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx : 4391 -intr_idx - 1)); 4392 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) | 4393 FW_IQ_CMD_IQGTSMODE_F | 4394 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) | 4395 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4)); 4396 c.iqsize = htons(iq->size); 4397 c.iqaddr = cpu_to_be64(iq->phys_addr); 4398 if (cong >= 0) 4399 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F | 4400 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC 4401 : FW_IQ_IQTYPE_OFLD)); 4402 4403 if (fl) { 4404 unsigned int chip_ver = 4405 CHELSIO_CHIP_VERSION(adap->params.chip); 4406 4407 /* Allocate the ring for the hardware free list (with space 4408 * for its status page) along with the associated software 4409 * descriptor ring. The free list size needs to be a multiple 4410 * of the Egress Queue Unit and at least 2 Egress Units larger 4411 * than the SGE's Egress Congrestion Threshold 4412 * (fl_starve_thres - 1). 4413 */ 4414 if (fl->size < s->fl_starve_thres - 1 + 2 * 8) 4415 fl->size = s->fl_starve_thres - 1 + 2 * 8; 4416 fl->size = roundup(fl->size, 8); 4417 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), 4418 sizeof(struct rx_sw_desc), &fl->addr, 4419 &fl->sdesc, s->stat_len, 4420 dev_to_node(adap->pdev_dev)); 4421 if (!fl->desc) 4422 goto fl_nomem; 4423 4424 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); 4425 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F | 4426 FW_IQ_CMD_FL0FETCHRO_V(relaxed) | 4427 FW_IQ_CMD_FL0DATARO_V(relaxed) | 4428 FW_IQ_CMD_FL0PADEN_F); 4429 if (cong >= 0) 4430 c.iqns_to_fl0congen |= 4431 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) | 4432 FW_IQ_CMD_FL0CONGCIF_F | 4433 FW_IQ_CMD_FL0CONGEN_F); 4434 /* In T6, for egress queue type FL there is internal overhead 4435 * of 16B for header going into FLM module. Hence the maximum 4436 * allowed burst size is 448 bytes. For T4/T5, the hardware 4437 * doesn't coalesce fetch requests if more than 64 bytes of 4438 * Free List pointers are provided, so we use a 128-byte Fetch 4439 * Burst Minimum there (T6 implements coalescing so we can use 4440 * the smaller 64-byte value there). 4441 */ 4442 c.fl0dcaen_to_fl0cidxfthresh = 4443 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ? 4444 FETCHBURSTMIN_128B_X : 4445 FETCHBURSTMIN_64B_T6_X) | 4446 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ? 4447 FETCHBURSTMAX_512B_X : 4448 FETCHBURSTMAX_256B_X)); 4449 c.fl0size = htons(flsz); 4450 c.fl0addr = cpu_to_be64(fl->addr); 4451 } 4452 4453 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4454 if (ret) 4455 goto err; 4456 4457 netif_napi_add(dev, &iq->napi, napi_rx_handler); 4458 iq->cur_desc = iq->desc; 4459 iq->cidx = 0; 4460 iq->gen = 1; 4461 iq->next_intr_params = iq->intr_params; 4462 iq->cntxt_id = ntohs(c.iqid); 4463 iq->abs_id = ntohs(c.physiqid); 4464 iq->bar2_addr = bar2_address(adap, 4465 iq->cntxt_id, 4466 T4_BAR2_QTYPE_INGRESS, 4467 &iq->bar2_qid); 4468 iq->size--; /* subtract status entry */ 4469 iq->netdev = dev; 4470 iq->handler = hnd; 4471 iq->flush_handler = flush_hnd; 4472 4473 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr)); 4474 skb_queue_head_init(&iq->lro_mgr.lroq); 4475 4476 /* set offset to -1 to distinguish ingress queues without FL */ 4477 iq->offset = fl ? 0 : -1; 4478 4479 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; 4480 4481 if (fl) { 4482 fl->cntxt_id = ntohs(c.fl0id); 4483 fl->avail = fl->pend_cred = 0; 4484 fl->pidx = fl->cidx = 0; 4485 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; 4486 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; 4487 4488 /* Note, we must initialize the BAR2 Free List User Doorbell 4489 * information before refilling the Free List! 4490 */ 4491 fl->bar2_addr = bar2_address(adap, 4492 fl->cntxt_id, 4493 T4_BAR2_QTYPE_EGRESS, 4494 &fl->bar2_qid); 4495 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); 4496 } 4497 4498 /* For T5 and later we attempt to set up the Congestion Manager values 4499 * of the new RX Ethernet Queue. This should really be handled by 4500 * firmware because it's more complex than any host driver wants to 4501 * get involved with and it's different per chip and this is almost 4502 * certainly wrong. Firmware would be wrong as well, but it would be 4503 * a lot easier to fix in one place ... For now we do something very 4504 * simple (and hopefully less wrong). 4505 */ 4506 if (!is_t4(adap->params.chip) && cong >= 0) { 4507 u32 param, val, ch_map = 0; 4508 int i; 4509 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log; 4510 4511 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4512 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | 4513 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id)); 4514 if (cong == 0) { 4515 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X); 4516 } else { 4517 val = 4518 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X); 4519 for (i = 0; i < 4; i++) { 4520 if (cong & (1 << i)) 4521 ch_map |= 1 << (i << cng_ch_bits_log); 4522 } 4523 val |= CONMCTXT_CNGCHMAP_V(ch_map); 4524 } 4525 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 4526 ¶m, &val); 4527 if (ret) 4528 dev_warn(adap->pdev_dev, "Failed to set Congestion" 4529 " Manager Context for Ingress Queue %d: %d\n", 4530 iq->cntxt_id, -ret); 4531 } 4532 4533 return 0; 4534 4535 fl_nomem: 4536 ret = -ENOMEM; 4537 err: 4538 if (iq->desc) { 4539 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, 4540 iq->desc, iq->phys_addr); 4541 iq->desc = NULL; 4542 } 4543 if (fl && fl->desc) { 4544 kfree(fl->sdesc); 4545 fl->sdesc = NULL; 4546 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), 4547 fl->desc, fl->addr); 4548 fl->desc = NULL; 4549 } 4550 return ret; 4551 } 4552 4553 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) 4554 { 4555 q->cntxt_id = id; 4556 q->bar2_addr = bar2_address(adap, 4557 q->cntxt_id, 4558 T4_BAR2_QTYPE_EGRESS, 4559 &q->bar2_qid); 4560 q->in_use = 0; 4561 q->cidx = q->pidx = 0; 4562 q->stops = q->restarts = 0; 4563 q->stat = (void *)&q->desc[q->size]; 4564 spin_lock_init(&q->db_lock); 4565 adap->sge.egr_map[id - adap->sge.egr_start] = q; 4566 } 4567 4568 /** 4569 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue 4570 * @adap: the adapter 4571 * @txq: the SGE Ethernet TX Queue to initialize 4572 * @dev: the Linux Network Device 4573 * @netdevq: the corresponding Linux TX Queue 4574 * @iqid: the Ingress Queue to which to deliver CIDX Update messages 4575 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers 4576 */ 4577 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, 4578 struct net_device *dev, struct netdev_queue *netdevq, 4579 unsigned int iqid, u8 dbqt) 4580 { 4581 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4582 struct port_info *pi = netdev_priv(dev); 4583 struct sge *s = &adap->sge; 4584 struct fw_eq_eth_cmd c; 4585 int ret, nentries; 4586 4587 /* Add status entries */ 4588 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4589 4590 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, 4591 sizeof(struct tx_desc), sizeof(struct tx_sw_desc), 4592 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len, 4593 netdev_queue_numa_node_read(netdevq)); 4594 if (!txq->q.desc) 4595 return -ENOMEM; 4596 4597 memset(&c, 0, sizeof(c)); 4598 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | 4599 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4600 FW_EQ_ETH_CMD_PFN_V(adap->pf) | 4601 FW_EQ_ETH_CMD_VFN_V(0)); 4602 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F | 4603 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c)); 4604 4605 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer 4606 * mechanism, we use Ingress Queue messages for Hardware Consumer 4607 * Index Updates on the TX Queue. Otherwise we have the Hardware 4608 * write the CIDX Updates into the Status Page at the end of the 4609 * TX Queue. 4610 */ 4611 c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ? 4612 FW_EQ_ETH_CMD_AUTOEQUIQE_F : 4613 FW_EQ_ETH_CMD_AUTOEQUEQE_F) | 4614 FW_EQ_ETH_CMD_VIID_V(pi->viid)); 4615 4616 c.fetchszm_to_iqid = 4617 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ? 4618 HOSTFCMODE_INGRESS_QUEUE_X : 4619 HOSTFCMODE_STATUS_PAGE_X) | 4620 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) | 4621 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid)); 4622 4623 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */ 4624 c.dcaen_to_eqsize = 4625 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4626 ? FETCHBURSTMIN_64B_X 4627 : FETCHBURSTMIN_64B_T6_X) | 4628 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4629 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4630 FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) | 4631 FW_EQ_ETH_CMD_EQSIZE_V(nentries)); 4632 4633 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4634 4635 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the 4636 * currently configured Timer Index. THis can be changed later via an 4637 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE 4638 * Doorbell Queue mode is currently automatically enabled in the 4639 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ... 4640 */ 4641 if (dbqt) 4642 c.timeren_timerix = 4643 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F | 4644 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix)); 4645 4646 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4647 if (ret) { 4648 kfree(txq->q.sdesc); 4649 txq->q.sdesc = NULL; 4650 dma_free_coherent(adap->pdev_dev, 4651 nentries * sizeof(struct tx_desc), 4652 txq->q.desc, txq->q.phys_addr); 4653 txq->q.desc = NULL; 4654 return ret; 4655 } 4656 4657 txq->q.q_type = CXGB4_TXQ_ETH; 4658 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd))); 4659 txq->txq = netdevq; 4660 txq->tso = 0; 4661 txq->uso = 0; 4662 txq->tx_cso = 0; 4663 txq->vlan_ins = 0; 4664 txq->mapping_err = 0; 4665 txq->dbqt = dbqt; 4666 4667 return 0; 4668 } 4669 4670 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, 4671 struct net_device *dev, unsigned int iqid, 4672 unsigned int cmplqid) 4673 { 4674 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4675 struct port_info *pi = netdev_priv(dev); 4676 struct sge *s = &adap->sge; 4677 struct fw_eq_ctrl_cmd c; 4678 int ret, nentries; 4679 4680 /* Add status entries */ 4681 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); 4682 4683 txq->q.desc = alloc_ring(adap->pdev_dev, nentries, 4684 sizeof(struct tx_desc), 0, &txq->q.phys_addr, 4685 NULL, 0, dev_to_node(adap->pdev_dev)); 4686 if (!txq->q.desc) 4687 return -ENOMEM; 4688 4689 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | 4690 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4691 FW_EQ_CTRL_CMD_PFN_V(adap->pf) | 4692 FW_EQ_CTRL_CMD_VFN_V(0)); 4693 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F | 4694 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c)); 4695 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid)); 4696 c.physeqid_pkd = htonl(0); 4697 c.fetchszm_to_iqid = 4698 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4699 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) | 4700 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid)); 4701 c.dcaen_to_eqsize = 4702 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5 4703 ? FETCHBURSTMIN_64B_X 4704 : FETCHBURSTMIN_64B_T6_X) | 4705 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4706 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4707 FW_EQ_CTRL_CMD_EQSIZE_V(nentries)); 4708 c.eqaddr = cpu_to_be64(txq->q.phys_addr); 4709 4710 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4711 if (ret) { 4712 dma_free_coherent(adap->pdev_dev, 4713 nentries * sizeof(struct tx_desc), 4714 txq->q.desc, txq->q.phys_addr); 4715 txq->q.desc = NULL; 4716 return ret; 4717 } 4718 4719 txq->q.q_type = CXGB4_TXQ_CTRL; 4720 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid))); 4721 txq->adap = adap; 4722 skb_queue_head_init(&txq->sendq); 4723 tasklet_setup(&txq->qresume_tsk, restart_ctrlq); 4724 txq->full = 0; 4725 return 0; 4726 } 4727 4728 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid, 4729 unsigned int cmplqid) 4730 { 4731 u32 param, val; 4732 4733 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) | 4734 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) | 4735 FW_PARAMS_PARAM_YZ_V(eqid)); 4736 val = cmplqid; 4737 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 4738 } 4739 4740 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q, 4741 struct net_device *dev, u32 cmd, u32 iqid) 4742 { 4743 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); 4744 struct port_info *pi = netdev_priv(dev); 4745 struct sge *s = &adap->sge; 4746 struct fw_eq_ofld_cmd c; 4747 u32 fb_min, nentries; 4748 int ret; 4749 4750 /* Add status entries */ 4751 nentries = q->size + s->stat_len / sizeof(struct tx_desc); 4752 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc), 4753 sizeof(struct tx_sw_desc), &q->phys_addr, 4754 &q->sdesc, s->stat_len, NUMA_NO_NODE); 4755 if (!q->desc) 4756 return -ENOMEM; 4757 4758 if (chip_ver <= CHELSIO_T5) 4759 fb_min = FETCHBURSTMIN_64B_X; 4760 else 4761 fb_min = FETCHBURSTMIN_64B_T6_X; 4762 4763 memset(&c, 0, sizeof(c)); 4764 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F | 4765 FW_CMD_WRITE_F | FW_CMD_EXEC_F | 4766 FW_EQ_OFLD_CMD_PFN_V(adap->pf) | 4767 FW_EQ_OFLD_CMD_VFN_V(0)); 4768 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F | 4769 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c)); 4770 c.fetchszm_to_iqid = 4771 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) | 4772 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) | 4773 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid)); 4774 c.dcaen_to_eqsize = 4775 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) | 4776 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) | 4777 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) | 4778 FW_EQ_OFLD_CMD_EQSIZE_V(nentries)); 4779 c.eqaddr = cpu_to_be64(q->phys_addr); 4780 4781 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); 4782 if (ret) { 4783 kfree(q->sdesc); 4784 q->sdesc = NULL; 4785 dma_free_coherent(adap->pdev_dev, 4786 nentries * sizeof(struct tx_desc), 4787 q->desc, q->phys_addr); 4788 q->desc = NULL; 4789 return ret; 4790 } 4791 4792 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd))); 4793 return 0; 4794 } 4795 4796 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq, 4797 struct net_device *dev, unsigned int iqid, 4798 unsigned int uld_type) 4799 { 4800 u32 cmd = FW_EQ_OFLD_CMD; 4801 int ret; 4802 4803 if (unlikely(uld_type == CXGB4_TX_CRYPTO)) 4804 cmd = FW_EQ_CTRL_CMD; 4805 4806 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid); 4807 if (ret) 4808 return ret; 4809 4810 txq->q.q_type = CXGB4_TXQ_ULD; 4811 txq->adap = adap; 4812 skb_queue_head_init(&txq->sendq); 4813 tasklet_setup(&txq->qresume_tsk, restart_ofldq); 4814 txq->full = 0; 4815 txq->mapping_err = 0; 4816 return 0; 4817 } 4818 4819 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq, 4820 struct net_device *dev, u32 iqid) 4821 { 4822 int ret; 4823 4824 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid); 4825 if (ret) 4826 return ret; 4827 4828 txq->q.q_type = CXGB4_TXQ_ULD; 4829 spin_lock_init(&txq->lock); 4830 txq->adap = adap; 4831 txq->tso = 0; 4832 txq->uso = 0; 4833 txq->tx_cso = 0; 4834 txq->vlan_ins = 0; 4835 txq->mapping_err = 0; 4836 return 0; 4837 } 4838 4839 void free_txq(struct adapter *adap, struct sge_txq *q) 4840 { 4841 struct sge *s = &adap->sge; 4842 4843 dma_free_coherent(adap->pdev_dev, 4844 q->size * sizeof(struct tx_desc) + s->stat_len, 4845 q->desc, q->phys_addr); 4846 q->cntxt_id = 0; 4847 q->sdesc = NULL; 4848 q->desc = NULL; 4849 } 4850 4851 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, 4852 struct sge_fl *fl) 4853 { 4854 struct sge *s = &adap->sge; 4855 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; 4856 4857 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; 4858 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, 4859 rq->cntxt_id, fl_id, 0xffff); 4860 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, 4861 rq->desc, rq->phys_addr); 4862 netif_napi_del(&rq->napi); 4863 rq->netdev = NULL; 4864 rq->cntxt_id = rq->abs_id = 0; 4865 rq->desc = NULL; 4866 4867 if (fl) { 4868 free_rx_bufs(adap, fl, fl->avail); 4869 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len, 4870 fl->desc, fl->addr); 4871 kfree(fl->sdesc); 4872 fl->sdesc = NULL; 4873 fl->cntxt_id = 0; 4874 fl->desc = NULL; 4875 } 4876 } 4877 4878 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq) 4879 { 4880 if (txq->q.desc) { 4881 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0, 4882 txq->q.cntxt_id); 4883 free_tx_desc(adap, &txq->q, txq->q.in_use, false); 4884 kfree(txq->q.sdesc); 4885 free_txq(adap, &txq->q); 4886 } 4887 } 4888 4889 /** 4890 * t4_free_sge_resources - free SGE resources 4891 * @adap: the adapter 4892 * 4893 * Frees resources used by the SGE queue sets. 4894 */ 4895 void t4_free_sge_resources(struct adapter *adap) 4896 { 4897 int i; 4898 struct sge_eth_rxq *eq; 4899 struct sge_eth_txq *etq; 4900 4901 /* stop all Rx queues in order to start them draining */ 4902 for (i = 0; i < adap->sge.ethqsets; i++) { 4903 eq = &adap->sge.ethrxq[i]; 4904 if (eq->rspq.desc) 4905 t4_iq_stop(adap, adap->mbox, adap->pf, 0, 4906 FW_IQ_TYPE_FL_INT_CAP, 4907 eq->rspq.cntxt_id, 4908 eq->fl.size ? eq->fl.cntxt_id : 0xffff, 4909 0xffff); 4910 } 4911 4912 /* clean up Ethernet Tx/Rx queues */ 4913 for (i = 0; i < adap->sge.ethqsets; i++) { 4914 eq = &adap->sge.ethrxq[i]; 4915 if (eq->rspq.desc) 4916 free_rspq_fl(adap, &eq->rspq, 4917 eq->fl.size ? &eq->fl : NULL); 4918 if (eq->msix) { 4919 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx); 4920 eq->msix = NULL; 4921 } 4922 4923 etq = &adap->sge.ethtxq[i]; 4924 if (etq->q.desc) { 4925 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4926 etq->q.cntxt_id); 4927 __netif_tx_lock_bh(etq->txq); 4928 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4929 __netif_tx_unlock_bh(etq->txq); 4930 kfree(etq->q.sdesc); 4931 free_txq(adap, &etq->q); 4932 } 4933 } 4934 4935 /* clean up control Tx queues */ 4936 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { 4937 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; 4938 4939 if (cq->q.desc) { 4940 tasklet_kill(&cq->qresume_tsk); 4941 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, 4942 cq->q.cntxt_id); 4943 __skb_queue_purge(&cq->sendq); 4944 free_txq(adap, &cq->q); 4945 } 4946 } 4947 4948 if (adap->sge.fw_evtq.desc) { 4949 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); 4950 if (adap->sge.fwevtq_msix_idx >= 0) 4951 cxgb4_free_msix_idx_in_bmap(adap, 4952 adap->sge.fwevtq_msix_idx); 4953 } 4954 4955 if (adap->sge.nd_msix_idx >= 0) 4956 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx); 4957 4958 if (adap->sge.intrq.desc) 4959 free_rspq_fl(adap, &adap->sge.intrq, NULL); 4960 4961 if (!is_t4(adap->params.chip)) { 4962 etq = &adap->sge.ptptxq; 4963 if (etq->q.desc) { 4964 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, 4965 etq->q.cntxt_id); 4966 spin_lock_bh(&adap->ptp_lock); 4967 free_tx_desc(adap, &etq->q, etq->q.in_use, true); 4968 spin_unlock_bh(&adap->ptp_lock); 4969 kfree(etq->q.sdesc); 4970 free_txq(adap, &etq->q); 4971 } 4972 } 4973 4974 /* clear the reverse egress queue map */ 4975 memset(adap->sge.egr_map, 0, 4976 adap->sge.egr_sz * sizeof(*adap->sge.egr_map)); 4977 } 4978 4979 void t4_sge_start(struct adapter *adap) 4980 { 4981 adap->sge.ethtxq_rover = 0; 4982 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); 4983 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); 4984 } 4985 4986 /** 4987 * t4_sge_stop - disable SGE operation 4988 * @adap: the adapter 4989 * 4990 * Stop tasklets and timers associated with the DMA engine. Note that 4991 * this is effective only if measures have been taken to disable any HW 4992 * events that may restart them. 4993 */ 4994 void t4_sge_stop(struct adapter *adap) 4995 { 4996 int i; 4997 struct sge *s = &adap->sge; 4998 4999 if (s->rx_timer.function) 5000 timer_delete_sync(&s->rx_timer); 5001 if (s->tx_timer.function) 5002 timer_delete_sync(&s->tx_timer); 5003 5004 if (is_offload(adap)) { 5005 struct sge_uld_txq_info *txq_info; 5006 5007 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD]; 5008 if (txq_info) { 5009 struct sge_uld_txq *txq = txq_info->uldtxq; 5010 5011 for_each_ofldtxq(&adap->sge, i) { 5012 if (txq->q.desc) 5013 tasklet_kill(&txq->qresume_tsk); 5014 } 5015 } 5016 } 5017 5018 if (is_pci_uld(adap)) { 5019 struct sge_uld_txq_info *txq_info; 5020 5021 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO]; 5022 if (txq_info) { 5023 struct sge_uld_txq *txq = txq_info->uldtxq; 5024 5025 for_each_ofldtxq(&adap->sge, i) { 5026 if (txq->q.desc) 5027 tasklet_kill(&txq->qresume_tsk); 5028 } 5029 } 5030 } 5031 5032 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { 5033 struct sge_ctrl_txq *cq = &s->ctrlq[i]; 5034 5035 if (cq->q.desc) 5036 tasklet_kill(&cq->qresume_tsk); 5037 } 5038 } 5039 5040 /** 5041 * t4_sge_init_soft - grab core SGE values needed by SGE code 5042 * @adap: the adapter 5043 * 5044 * We need to grab the SGE operating parameters that we need to have 5045 * in order to do our job and make sure we can live with them. 5046 */ 5047 5048 static int t4_sge_init_soft(struct adapter *adap) 5049 { 5050 struct sge *s = &adap->sge; 5051 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; 5052 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; 5053 u32 ingress_rx_threshold; 5054 5055 /* 5056 * Verify that CPL messages are going to the Ingress Queue for 5057 * process_responses() and that only packet data is going to the 5058 * Free Lists. 5059 */ 5060 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) != 5061 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) { 5062 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n"); 5063 return -EINVAL; 5064 } 5065 5066 /* 5067 * Validate the Host Buffer Register Array indices that we want to 5068 * use ... 5069 * 5070 * XXX Note that we should really read through the Host Buffer Size 5071 * XXX register array and find the indices of the Buffer Sizes which 5072 * XXX meet our needs! 5073 */ 5074 #define READ_FL_BUF(x) \ 5075 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32)) 5076 5077 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); 5078 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); 5079 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); 5080 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); 5081 5082 /* We only bother using the Large Page logic if the Large Page Buffer 5083 * is larger than our Page Size Buffer. 5084 */ 5085 if (fl_large_pg <= fl_small_pg) 5086 fl_large_pg = 0; 5087 5088 #undef READ_FL_BUF 5089 5090 /* The Page Size Buffer must be exactly equal to our Page Size and the 5091 * Large Page Size Buffer should be 0 (per above) or a power of 2. 5092 */ 5093 if (fl_small_pg != PAGE_SIZE || 5094 (fl_large_pg & (fl_large_pg-1)) != 0) { 5095 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n", 5096 fl_small_pg, fl_large_pg); 5097 return -EINVAL; 5098 } 5099 if (fl_large_pg) 5100 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; 5101 5102 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) || 5103 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { 5104 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n", 5105 fl_small_mtu, fl_large_mtu); 5106 return -EINVAL; 5107 } 5108 5109 /* 5110 * Retrieve our RX interrupt holdoff timer values and counter 5111 * threshold values from the SGE parameters. 5112 */ 5113 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A); 5114 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A); 5115 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A); 5116 s->timer_val[0] = core_ticks_to_us(adap, 5117 TIMERVALUE0_G(timer_value_0_and_1)); 5118 s->timer_val[1] = core_ticks_to_us(adap, 5119 TIMERVALUE1_G(timer_value_0_and_1)); 5120 s->timer_val[2] = core_ticks_to_us(adap, 5121 TIMERVALUE2_G(timer_value_2_and_3)); 5122 s->timer_val[3] = core_ticks_to_us(adap, 5123 TIMERVALUE3_G(timer_value_2_and_3)); 5124 s->timer_val[4] = core_ticks_to_us(adap, 5125 TIMERVALUE4_G(timer_value_4_and_5)); 5126 s->timer_val[5] = core_ticks_to_us(adap, 5127 TIMERVALUE5_G(timer_value_4_and_5)); 5128 5129 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A); 5130 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold); 5131 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold); 5132 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold); 5133 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold); 5134 5135 return 0; 5136 } 5137 5138 /** 5139 * t4_sge_init - initialize SGE 5140 * @adap: the adapter 5141 * 5142 * Perform low-level SGE code initialization needed every time after a 5143 * chip reset. 5144 */ 5145 int t4_sge_init(struct adapter *adap) 5146 { 5147 struct sge *s = &adap->sge; 5148 u32 sge_control, sge_conm_ctrl; 5149 int ret, egress_threshold; 5150 5151 /* 5152 * Ingress Padding Boundary and Egress Status Page Size are set up by 5153 * t4_fixup_host_params(). 5154 */ 5155 sge_control = t4_read_reg(adap, SGE_CONTROL_A); 5156 s->pktshift = PKTSHIFT_G(sge_control); 5157 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64; 5158 5159 s->fl_align = t4_fl_pkt_align(adap); 5160 ret = t4_sge_init_soft(adap); 5161 if (ret < 0) 5162 return ret; 5163 5164 /* 5165 * A FL with <= fl_starve_thres buffers is starving and a periodic 5166 * timer will attempt to refill it. This needs to be larger than the 5167 * SGE's Egress Congestion Threshold. If it isn't, then we can get 5168 * stuck waiting for new packets while the SGE is waiting for us to 5169 * give it more Free List entries. (Note that the SGE's Egress 5170 * Congestion Threshold is in units of 2 Free List pointers.) For T4, 5171 * there was only a single field to control this. For T5 there's the 5172 * original field which now only applies to Unpacked Mode Free List 5173 * buffers and a new field which only applies to Packed Mode Free List 5174 * buffers. 5175 */ 5176 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A); 5177 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { 5178 case CHELSIO_T4: 5179 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl); 5180 break; 5181 case CHELSIO_T5: 5182 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5183 break; 5184 case CHELSIO_T6: 5185 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl); 5186 break; 5187 default: 5188 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n", 5189 CHELSIO_CHIP_VERSION(adap->params.chip)); 5190 return -EINVAL; 5191 } 5192 s->fl_starve_thres = 2*egress_threshold + 1; 5193 5194 t4_idma_monitor_init(adap, &s->idma_monitor); 5195 5196 /* Set up timers used for recuring callbacks to process RX and TX 5197 * administrative tasks. 5198 */ 5199 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0); 5200 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0); 5201 5202 spin_lock_init(&s->intrq_lock); 5203 5204 return 0; 5205 } 5206