xref: /linux/drivers/net/ethernet/chelsio/cxgb4/l2t.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/jhash.h>
40 #include <linux/module.h>
41 #include <linux/debugfs.h>
42 #include <linux/seq_file.h>
43 #include <net/neighbour.h>
44 #include "cxgb4.h"
45 #include "l2t.h"
46 #include "t4_msg.h"
47 #include "t4fw_api.h"
48 #include "t4_regs.h"
49 #include "t4_values.h"
50 
51 #define VLAN_NONE 0xfff
52 
53 /* identifies sync vs async L2T_WRITE_REQs */
54 #define SYNC_WR_S    12
55 #define SYNC_WR_V(x) ((x) << SYNC_WR_S)
56 #define SYNC_WR_F    SYNC_WR_V(1)
57 
58 struct l2t_data {
59 	unsigned int l2t_start;     /* start index of our piece of the L2T */
60 	unsigned int l2t_size;      /* number of entries in l2tab */
61 	rwlock_t lock;
62 	atomic_t nfree;             /* number of free entries */
63 	struct l2t_entry *rover;    /* starting point for next allocation */
64 	struct l2t_entry l2tab[0];  /* MUST BE LAST */
65 };
66 
67 static inline unsigned int vlan_prio(const struct l2t_entry *e)
68 {
69 	return e->vlan >> 13;
70 }
71 
72 static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e)
73 {
74 	if (atomic_add_return(1, &e->refcnt) == 1)  /* 0 -> 1 transition */
75 		atomic_dec(&d->nfree);
76 }
77 
78 /*
79  * To avoid having to check address families we do not allow v4 and v6
80  * neighbors to be on the same hash chain.  We keep v4 entries in the first
81  * half of available hash buckets and v6 in the second.  We need at least two
82  * entries in our L2T for this scheme to work.
83  */
84 enum {
85 	L2T_MIN_HASH_BUCKETS = 2,
86 };
87 
88 static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key,
89 				    int ifindex)
90 {
91 	unsigned int l2t_size_half = d->l2t_size / 2;
92 
93 	return jhash_2words(*key, ifindex, 0) % l2t_size_half;
94 }
95 
96 static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key,
97 				     int ifindex)
98 {
99 	unsigned int l2t_size_half = d->l2t_size / 2;
100 	u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3];
101 
102 	return (l2t_size_half +
103 		(jhash_2words(xor, ifindex, 0) % l2t_size_half));
104 }
105 
106 static unsigned int addr_hash(struct l2t_data *d, const u32 *addr,
107 			      int addr_len, int ifindex)
108 {
109 	return addr_len == 4 ? arp_hash(d, addr, ifindex) :
110 			       ipv6_hash(d, addr, ifindex);
111 }
112 
113 /*
114  * Checks if an L2T entry is for the given IP/IPv6 address.  It does not check
115  * whether the L2T entry and the address are of the same address family.
116  * Callers ensure an address is only checked against L2T entries of the same
117  * family, something made trivial by the separation of IP and IPv6 hash chains
118  * mentioned above.  Returns 0 if there's a match,
119  */
120 static int addreq(const struct l2t_entry *e, const u32 *addr)
121 {
122 	if (e->v6)
123 		return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
124 		       (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
125 	return e->addr[0] ^ addr[0];
126 }
127 
128 static void neigh_replace(struct l2t_entry *e, struct neighbour *n)
129 {
130 	neigh_hold(n);
131 	if (e->neigh)
132 		neigh_release(e->neigh);
133 	e->neigh = n;
134 }
135 
136 /*
137  * Write an L2T entry.  Must be called with the entry locked.
138  * The write may be synchronous or asynchronous.
139  */
140 static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync)
141 {
142 	struct l2t_data *d = adap->l2t;
143 	unsigned int l2t_idx = e->idx + d->l2t_start;
144 	struct sk_buff *skb;
145 	struct cpl_l2t_write_req *req;
146 
147 	skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
148 	if (!skb)
149 		return -ENOMEM;
150 
151 	req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
152 	INIT_TP_WR(req, 0);
153 
154 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ,
155 					l2t_idx | (sync ? SYNC_WR_F : 0) |
156 					TID_QID_V(adap->sge.fw_evtq.abs_id)));
157 	req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync));
158 	req->l2t_idx = htons(l2t_idx);
159 	req->vlan = htons(e->vlan);
160 	if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK))
161 		memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
162 	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
163 
164 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
165 	t4_ofld_send(adap, skb);
166 
167 	if (sync && e->state != L2T_STATE_SWITCHING)
168 		e->state = L2T_STATE_SYNC_WRITE;
169 	return 0;
170 }
171 
172 /*
173  * Send packets waiting in an L2T entry's ARP queue.  Must be called with the
174  * entry locked.
175  */
176 static void send_pending(struct adapter *adap, struct l2t_entry *e)
177 {
178 	while (e->arpq_head) {
179 		struct sk_buff *skb = e->arpq_head;
180 
181 		e->arpq_head = skb->next;
182 		skb->next = NULL;
183 		t4_ofld_send(adap, skb);
184 	}
185 	e->arpq_tail = NULL;
186 }
187 
188 /*
189  * Process a CPL_L2T_WRITE_RPL.  Wake up the ARP queue if it completes a
190  * synchronous L2T_WRITE.  Note that the TID in the reply is really the L2T
191  * index it refers to.
192  */
193 void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl)
194 {
195 	struct l2t_data *d = adap->l2t;
196 	unsigned int tid = GET_TID(rpl);
197 	unsigned int l2t_idx = tid % L2T_SIZE;
198 
199 	if (unlikely(rpl->status != CPL_ERR_NONE)) {
200 		dev_err(adap->pdev_dev,
201 			"Unexpected L2T_WRITE_RPL status %u for entry %u\n",
202 			rpl->status, l2t_idx);
203 		return;
204 	}
205 
206 	if (tid & SYNC_WR_F) {
207 		struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start];
208 
209 		spin_lock(&e->lock);
210 		if (e->state != L2T_STATE_SWITCHING) {
211 			send_pending(adap, e);
212 			e->state = (e->neigh->nud_state & NUD_STALE) ?
213 					L2T_STATE_STALE : L2T_STATE_VALID;
214 		}
215 		spin_unlock(&e->lock);
216 	}
217 }
218 
219 /*
220  * Add a packet to an L2T entry's queue of packets awaiting resolution.
221  * Must be called with the entry's lock held.
222  */
223 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
224 {
225 	skb->next = NULL;
226 	if (e->arpq_head)
227 		e->arpq_tail->next = skb;
228 	else
229 		e->arpq_head = skb;
230 	e->arpq_tail = skb;
231 }
232 
233 int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb,
234 		   struct l2t_entry *e)
235 {
236 	struct adapter *adap = netdev2adap(dev);
237 
238 again:
239 	switch (e->state) {
240 	case L2T_STATE_STALE:     /* entry is stale, kick off revalidation */
241 		neigh_event_send(e->neigh, NULL);
242 		spin_lock_bh(&e->lock);
243 		if (e->state == L2T_STATE_STALE)
244 			e->state = L2T_STATE_VALID;
245 		spin_unlock_bh(&e->lock);
246 	case L2T_STATE_VALID:     /* fast-path, send the packet on */
247 		return t4_ofld_send(adap, skb);
248 	case L2T_STATE_RESOLVING:
249 	case L2T_STATE_SYNC_WRITE:
250 		spin_lock_bh(&e->lock);
251 		if (e->state != L2T_STATE_SYNC_WRITE &&
252 		    e->state != L2T_STATE_RESOLVING) {
253 			spin_unlock_bh(&e->lock);
254 			goto again;
255 		}
256 		arpq_enqueue(e, skb);
257 		spin_unlock_bh(&e->lock);
258 
259 		if (e->state == L2T_STATE_RESOLVING &&
260 		    !neigh_event_send(e->neigh, NULL)) {
261 			spin_lock_bh(&e->lock);
262 			if (e->state == L2T_STATE_RESOLVING && e->arpq_head)
263 				write_l2e(adap, e, 1);
264 			spin_unlock_bh(&e->lock);
265 		}
266 	}
267 	return 0;
268 }
269 EXPORT_SYMBOL(cxgb4_l2t_send);
270 
271 /*
272  * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
273  */
274 static struct l2t_entry *alloc_l2e(struct l2t_data *d)
275 {
276 	struct l2t_entry *end, *e, **p;
277 
278 	if (!atomic_read(&d->nfree))
279 		return NULL;
280 
281 	/* there's definitely a free entry */
282 	for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e)
283 		if (atomic_read(&e->refcnt) == 0)
284 			goto found;
285 
286 	for (e = d->l2tab; atomic_read(&e->refcnt); ++e)
287 		;
288 found:
289 	d->rover = e + 1;
290 	atomic_dec(&d->nfree);
291 
292 	/*
293 	 * The entry we found may be an inactive entry that is
294 	 * presently in the hash table.  We need to remove it.
295 	 */
296 	if (e->state < L2T_STATE_SWITCHING)
297 		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next)
298 			if (*p == e) {
299 				*p = e->next;
300 				e->next = NULL;
301 				break;
302 			}
303 
304 	e->state = L2T_STATE_UNUSED;
305 	return e;
306 }
307 
308 /*
309  * Called when an L2T entry has no more users.
310  */
311 static void t4_l2e_free(struct l2t_entry *e)
312 {
313 	struct l2t_data *d;
314 
315 	spin_lock_bh(&e->lock);
316 	if (atomic_read(&e->refcnt) == 0) {  /* hasn't been recycled */
317 		if (e->neigh) {
318 			neigh_release(e->neigh);
319 			e->neigh = NULL;
320 		}
321 		while (e->arpq_head) {
322 			struct sk_buff *skb = e->arpq_head;
323 
324 			e->arpq_head = skb->next;
325 			kfree_skb(skb);
326 		}
327 		e->arpq_tail = NULL;
328 	}
329 	spin_unlock_bh(&e->lock);
330 
331 	d = container_of(e, struct l2t_data, l2tab[e->idx]);
332 	atomic_inc(&d->nfree);
333 }
334 
335 void cxgb4_l2t_release(struct l2t_entry *e)
336 {
337 	if (atomic_dec_and_test(&e->refcnt))
338 		t4_l2e_free(e);
339 }
340 EXPORT_SYMBOL(cxgb4_l2t_release);
341 
342 /*
343  * Update an L2T entry that was previously used for the same next hop as neigh.
344  * Must be called with softirqs disabled.
345  */
346 static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
347 {
348 	unsigned int nud_state;
349 
350 	spin_lock(&e->lock);                /* avoid race with t4_l2t_free */
351 	if (neigh != e->neigh)
352 		neigh_replace(e, neigh);
353 	nud_state = neigh->nud_state;
354 	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
355 	    !(nud_state & NUD_VALID))
356 		e->state = L2T_STATE_RESOLVING;
357 	else if (nud_state & NUD_CONNECTED)
358 		e->state = L2T_STATE_VALID;
359 	else
360 		e->state = L2T_STATE_STALE;
361 	spin_unlock(&e->lock);
362 }
363 
364 struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh,
365 				const struct net_device *physdev,
366 				unsigned int priority)
367 {
368 	u8 lport;
369 	u16 vlan;
370 	struct l2t_entry *e;
371 	int addr_len = neigh->tbl->key_len;
372 	u32 *addr = (u32 *)neigh->primary_key;
373 	int ifidx = neigh->dev->ifindex;
374 	int hash = addr_hash(d, addr, addr_len, ifidx);
375 
376 	if (neigh->dev->flags & IFF_LOOPBACK)
377 		lport = netdev2pinfo(physdev)->tx_chan + 4;
378 	else
379 		lport = netdev2pinfo(physdev)->lport;
380 
381 	if (neigh->dev->priv_flags & IFF_802_1Q_VLAN)
382 		vlan = vlan_dev_vlan_id(neigh->dev);
383 	else
384 		vlan = VLAN_NONE;
385 
386 	write_lock_bh(&d->lock);
387 	for (e = d->l2tab[hash].first; e; e = e->next)
388 		if (!addreq(e, addr) && e->ifindex == ifidx &&
389 		    e->vlan == vlan && e->lport == lport) {
390 			l2t_hold(d, e);
391 			if (atomic_read(&e->refcnt) == 1)
392 				reuse_entry(e, neigh);
393 			goto done;
394 		}
395 
396 	/* Need to allocate a new entry */
397 	e = alloc_l2e(d);
398 	if (e) {
399 		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
400 		e->state = L2T_STATE_RESOLVING;
401 		if (neigh->dev->flags & IFF_LOOPBACK)
402 			memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac));
403 		memcpy(e->addr, addr, addr_len);
404 		e->ifindex = ifidx;
405 		e->hash = hash;
406 		e->lport = lport;
407 		e->v6 = addr_len == 16;
408 		atomic_set(&e->refcnt, 1);
409 		neigh_replace(e, neigh);
410 		e->vlan = vlan;
411 		e->next = d->l2tab[hash].first;
412 		d->l2tab[hash].first = e;
413 		spin_unlock(&e->lock);
414 	}
415 done:
416 	write_unlock_bh(&d->lock);
417 	return e;
418 }
419 EXPORT_SYMBOL(cxgb4_l2t_get);
420 
421 u64 cxgb4_select_ntuple(struct net_device *dev,
422 			const struct l2t_entry *l2t)
423 {
424 	struct adapter *adap = netdev2adap(dev);
425 	struct tp_params *tp = &adap->params.tp;
426 	u64 ntuple = 0;
427 
428 	/* Initialize each of the fields which we care about which are present
429 	 * in the Compressed Filter Tuple.
430 	 */
431 	if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE)
432 		ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift;
433 
434 	if (tp->port_shift >= 0)
435 		ntuple |= (u64)l2t->lport << tp->port_shift;
436 
437 	if (tp->protocol_shift >= 0)
438 		ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
439 
440 	if (tp->vnic_shift >= 0) {
441 		u32 viid = cxgb4_port_viid(dev);
442 		u32 vf = FW_VIID_VIN_G(viid);
443 		u32 pf = FW_VIID_PFN_G(viid);
444 		u32 vld = FW_VIID_VIVLD_G(viid);
445 
446 		ntuple |= (u64)(FT_VNID_ID_VF_V(vf) |
447 				FT_VNID_ID_PF_V(pf) |
448 				FT_VNID_ID_VLD_V(vld)) << tp->vnic_shift;
449 	}
450 
451 	return ntuple;
452 }
453 EXPORT_SYMBOL(cxgb4_select_ntuple);
454 
455 /*
456  * Called when address resolution fails for an L2T entry to handle packets
457  * on the arpq head.  If a packet specifies a failure handler it is invoked,
458  * otherwise the packet is sent to the device.
459  */
460 static void handle_failed_resolution(struct adapter *adap, struct sk_buff *arpq)
461 {
462 	while (arpq) {
463 		struct sk_buff *skb = arpq;
464 		const struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
465 
466 		arpq = skb->next;
467 		skb->next = NULL;
468 		if (cb->arp_err_handler)
469 			cb->arp_err_handler(cb->handle, skb);
470 		else
471 			t4_ofld_send(adap, skb);
472 	}
473 }
474 
475 /*
476  * Called when the host's neighbor layer makes a change to some entry that is
477  * loaded into the HW L2 table.
478  */
479 void t4_l2t_update(struct adapter *adap, struct neighbour *neigh)
480 {
481 	struct l2t_entry *e;
482 	struct sk_buff *arpq = NULL;
483 	struct l2t_data *d = adap->l2t;
484 	int addr_len = neigh->tbl->key_len;
485 	u32 *addr = (u32 *) neigh->primary_key;
486 	int ifidx = neigh->dev->ifindex;
487 	int hash = addr_hash(d, addr, addr_len, ifidx);
488 
489 	read_lock_bh(&d->lock);
490 	for (e = d->l2tab[hash].first; e; e = e->next)
491 		if (!addreq(e, addr) && e->ifindex == ifidx) {
492 			spin_lock(&e->lock);
493 			if (atomic_read(&e->refcnt))
494 				goto found;
495 			spin_unlock(&e->lock);
496 			break;
497 		}
498 	read_unlock_bh(&d->lock);
499 	return;
500 
501  found:
502 	read_unlock(&d->lock);
503 
504 	if (neigh != e->neigh)
505 		neigh_replace(e, neigh);
506 
507 	if (e->state == L2T_STATE_RESOLVING) {
508 		if (neigh->nud_state & NUD_FAILED) {
509 			arpq = e->arpq_head;
510 			e->arpq_head = e->arpq_tail = NULL;
511 		} else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) &&
512 			   e->arpq_head) {
513 			write_l2e(adap, e, 1);
514 		}
515 	} else {
516 		e->state = neigh->nud_state & NUD_CONNECTED ?
517 			L2T_STATE_VALID : L2T_STATE_STALE;
518 		if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)))
519 			write_l2e(adap, e, 0);
520 	}
521 
522 	spin_unlock_bh(&e->lock);
523 
524 	if (arpq)
525 		handle_failed_resolution(adap, arpq);
526 }
527 
528 /* Allocate an L2T entry for use by a switching rule.  Such need to be
529  * explicitly freed and while busy they are not on any hash chain, so normal
530  * address resolution updates do not see them.
531  */
532 struct l2t_entry *t4_l2t_alloc_switching(struct l2t_data *d)
533 {
534 	struct l2t_entry *e;
535 
536 	write_lock_bh(&d->lock);
537 	e = alloc_l2e(d);
538 	if (e) {
539 		spin_lock(&e->lock);          /* avoid race with t4_l2t_free */
540 		e->state = L2T_STATE_SWITCHING;
541 		atomic_set(&e->refcnt, 1);
542 		spin_unlock(&e->lock);
543 	}
544 	write_unlock_bh(&d->lock);
545 	return e;
546 }
547 
548 /* Sets/updates the contents of a switching L2T entry that has been allocated
549  * with an earlier call to @t4_l2t_alloc_switching.
550  */
551 int t4_l2t_set_switching(struct adapter *adap, struct l2t_entry *e, u16 vlan,
552 		u8 port, u8 *eth_addr)
553 {
554 	e->vlan = vlan;
555 	e->lport = port;
556 	memcpy(e->dmac, eth_addr, ETH_ALEN);
557 	return write_l2e(adap, e, 0);
558 }
559 
560 struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end)
561 {
562 	unsigned int l2t_size;
563 	int i;
564 	struct l2t_data *d;
565 
566 	if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE)
567 		return NULL;
568 	l2t_size = l2t_end - l2t_start + 1;
569 	if (l2t_size < L2T_MIN_HASH_BUCKETS)
570 		return NULL;
571 
572 	d = t4_alloc_mem(sizeof(*d) + l2t_size * sizeof(struct l2t_entry));
573 	if (!d)
574 		return NULL;
575 
576 	d->l2t_start = l2t_start;
577 	d->l2t_size = l2t_size;
578 
579 	d->rover = d->l2tab;
580 	atomic_set(&d->nfree, l2t_size);
581 	rwlock_init(&d->lock);
582 
583 	for (i = 0; i < d->l2t_size; ++i) {
584 		d->l2tab[i].idx = i;
585 		d->l2tab[i].state = L2T_STATE_UNUSED;
586 		spin_lock_init(&d->l2tab[i].lock);
587 		atomic_set(&d->l2tab[i].refcnt, 0);
588 	}
589 	return d;
590 }
591 
592 static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos)
593 {
594 	struct l2t_data *d = seq->private;
595 
596 	return pos >= d->l2t_size ? NULL : &d->l2tab[pos];
597 }
598 
599 static void *l2t_seq_start(struct seq_file *seq, loff_t *pos)
600 {
601 	return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
602 }
603 
604 static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos)
605 {
606 	v = l2t_get_idx(seq, *pos);
607 	if (v)
608 		++*pos;
609 	return v;
610 }
611 
612 static void l2t_seq_stop(struct seq_file *seq, void *v)
613 {
614 }
615 
616 static char l2e_state(const struct l2t_entry *e)
617 {
618 	switch (e->state) {
619 	case L2T_STATE_VALID: return 'V';
620 	case L2T_STATE_STALE: return 'S';
621 	case L2T_STATE_SYNC_WRITE: return 'W';
622 	case L2T_STATE_RESOLVING: return e->arpq_head ? 'A' : 'R';
623 	case L2T_STATE_SWITCHING: return 'X';
624 	default:
625 		return 'U';
626 	}
627 }
628 
629 static int l2t_seq_show(struct seq_file *seq, void *v)
630 {
631 	if (v == SEQ_START_TOKEN)
632 		seq_puts(seq, " Idx IP address                "
633 			 "Ethernet address  VLAN/P LP State Users Port\n");
634 	else {
635 		char ip[60];
636 		struct l2t_data *d = seq->private;
637 		struct l2t_entry *e = v;
638 
639 		spin_lock_bh(&e->lock);
640 		if (e->state == L2T_STATE_SWITCHING)
641 			ip[0] = '\0';
642 		else
643 			sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr);
644 		seq_printf(seq, "%4u %-25s %17pM %4d %u %2u   %c   %5u %s\n",
645 			   e->idx + d->l2t_start, ip, e->dmac,
646 			   e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport,
647 			   l2e_state(e), atomic_read(&e->refcnt),
648 			   e->neigh ? e->neigh->dev->name : "");
649 		spin_unlock_bh(&e->lock);
650 	}
651 	return 0;
652 }
653 
654 static const struct seq_operations l2t_seq_ops = {
655 	.start = l2t_seq_start,
656 	.next = l2t_seq_next,
657 	.stop = l2t_seq_stop,
658 	.show = l2t_seq_show
659 };
660 
661 static int l2t_seq_open(struct inode *inode, struct file *file)
662 {
663 	int rc = seq_open(file, &l2t_seq_ops);
664 
665 	if (!rc) {
666 		struct adapter *adap = inode->i_private;
667 		struct seq_file *seq = file->private_data;
668 
669 		seq->private = adap->l2t;
670 	}
671 	return rc;
672 }
673 
674 const struct file_operations t4_l2t_fops = {
675 	.owner = THIS_MODULE,
676 	.open = l2t_seq_open,
677 	.read = seq_read,
678 	.llseek = seq_lseek,
679 	.release = seq_release,
680 };
681