1 /* 2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/skbuff.h> 33 #include <linux/netdevice.h> 34 #include <linux/etherdevice.h> 35 #include <linux/if_vlan.h> 36 #include <linux/ip.h> 37 #include <linux/tcp.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/slab.h> 40 #include <linux/prefetch.h> 41 #include <net/arp.h> 42 #include "common.h" 43 #include "regs.h" 44 #include "sge_defs.h" 45 #include "t3_cpl.h" 46 #include "firmware_exports.h" 47 #include "cxgb3_offload.h" 48 49 #define USE_GTS 0 50 51 #define SGE_RX_SM_BUF_SIZE 1536 52 53 #define SGE_RX_COPY_THRES 256 54 #define SGE_RX_PULL_LEN 128 55 56 #define SGE_PG_RSVD SMP_CACHE_BYTES 57 /* 58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks. 59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs 60 * directly. 61 */ 62 #define FL0_PG_CHUNK_SIZE 2048 63 #define FL0_PG_ORDER 0 64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER) 65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192) 66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1) 67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER) 68 69 #define SGE_RX_DROP_THRES 16 70 #define RX_RECLAIM_PERIOD (HZ/4) 71 72 /* 73 * Max number of Rx buffers we replenish at a time. 74 */ 75 #define MAX_RX_REFILL 16U 76 /* 77 * Period of the Tx buffer reclaim timer. This timer does not need to run 78 * frequently as Tx buffers are usually reclaimed by new Tx packets. 79 */ 80 #define TX_RECLAIM_PERIOD (HZ / 4) 81 #define TX_RECLAIM_TIMER_CHUNK 64U 82 #define TX_RECLAIM_CHUNK 16U 83 84 /* WR size in bytes */ 85 #define WR_LEN (WR_FLITS * 8) 86 87 /* 88 * Types of Tx queues in each queue set. Order here matters, do not change. 89 */ 90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; 91 92 /* Values for sge_txq.flags */ 93 enum { 94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */ 95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ 96 }; 97 98 struct tx_desc { 99 __be64 flit[TX_DESC_FLITS]; 100 }; 101 102 struct rx_desc { 103 __be32 addr_lo; 104 __be32 len_gen; 105 __be32 gen2; 106 __be32 addr_hi; 107 }; 108 109 struct tx_sw_desc { /* SW state per Tx descriptor */ 110 struct sk_buff *skb; 111 u8 eop; /* set if last descriptor for packet */ 112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */ 113 u8 fragidx; /* first page fragment associated with descriptor */ 114 s8 sflit; /* start flit of first SGL entry in descriptor */ 115 }; 116 117 struct rx_sw_desc { /* SW state per Rx descriptor */ 118 union { 119 struct sk_buff *skb; 120 struct fl_pg_chunk pg_chunk; 121 }; 122 DEFINE_DMA_UNMAP_ADDR(dma_addr); 123 }; 124 125 struct rsp_desc { /* response queue descriptor */ 126 struct rss_header rss_hdr; 127 __be32 flags; 128 __be32 len_cq; 129 u8 imm_data[47]; 130 u8 intr_gen; 131 }; 132 133 /* 134 * Holds unmapping information for Tx packets that need deferred unmapping. 135 * This structure lives at skb->head and must be allocated by callers. 136 */ 137 struct deferred_unmap_info { 138 struct pci_dev *pdev; 139 dma_addr_t addr[MAX_SKB_FRAGS + 1]; 140 }; 141 142 /* 143 * Maps a number of flits to the number of Tx descriptors that can hold them. 144 * The formula is 145 * 146 * desc = 1 + (flits - 2) / (WR_FLITS - 1). 147 * 148 * HW allows up to 4 descriptors to be combined into a WR. 149 */ 150 static u8 flit_desc_map[] = { 151 0, 152 #if SGE_NUM_GENBITS == 1 153 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 154 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 155 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 156 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 157 #elif SGE_NUM_GENBITS == 2 158 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 159 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 160 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 161 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 162 #else 163 # error "SGE_NUM_GENBITS must be 1 or 2" 164 #endif 165 }; 166 167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx) 168 { 169 return container_of(q, struct sge_qset, fl[qidx]); 170 } 171 172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) 173 { 174 return container_of(q, struct sge_qset, rspq); 175 } 176 177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) 178 { 179 return container_of(q, struct sge_qset, txq[qidx]); 180 } 181 182 /** 183 * refill_rspq - replenish an SGE response queue 184 * @adapter: the adapter 185 * @q: the response queue to replenish 186 * @credits: how many new responses to make available 187 * 188 * Replenishes a response queue by making the supplied number of responses 189 * available to HW. 190 */ 191 static inline void refill_rspq(struct adapter *adapter, 192 const struct sge_rspq *q, unsigned int credits) 193 { 194 rmb(); 195 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, 196 V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); 197 } 198 199 /** 200 * need_skb_unmap - does the platform need unmapping of sk_buffs? 201 * 202 * Returns true if the platform needs sk_buff unmapping. The compiler 203 * optimizes away unnecessary code if this returns true. 204 */ 205 static inline int need_skb_unmap(void) 206 { 207 #ifdef CONFIG_NEED_DMA_MAP_STATE 208 return 1; 209 #else 210 return 0; 211 #endif 212 } 213 214 /** 215 * unmap_skb - unmap a packet main body and its page fragments 216 * @skb: the packet 217 * @q: the Tx queue containing Tx descriptors for the packet 218 * @cidx: index of Tx descriptor 219 * @pdev: the PCI device 220 * 221 * Unmap the main body of an sk_buff and its page fragments, if any. 222 * Because of the fairly complicated structure of our SGLs and the desire 223 * to conserve space for metadata, the information necessary to unmap an 224 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx 225 * descriptors (the physical addresses of the various data buffers), and 226 * the SW descriptor state (assorted indices). The send functions 227 * initialize the indices for the first packet descriptor so we can unmap 228 * the buffers held in the first Tx descriptor here, and we have enough 229 * information at this point to set the state for the next Tx descriptor. 230 * 231 * Note that it is possible to clean up the first descriptor of a packet 232 * before the send routines have written the next descriptors, but this 233 * race does not cause any problem. We just end up writing the unmapping 234 * info for the descriptor first. 235 */ 236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, 237 unsigned int cidx, struct pci_dev *pdev) 238 { 239 const struct sg_ent *sgp; 240 struct tx_sw_desc *d = &q->sdesc[cidx]; 241 int nfrags, frag_idx, curflit, j = d->addr_idx; 242 243 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit]; 244 frag_idx = d->fragidx; 245 246 if (frag_idx == 0 && skb_headlen(skb)) { 247 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), 248 skb_headlen(skb), PCI_DMA_TODEVICE); 249 j = 1; 250 } 251 252 curflit = d->sflit + 1 + j; 253 nfrags = skb_shinfo(skb)->nr_frags; 254 255 while (frag_idx < nfrags && curflit < WR_FLITS) { 256 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]), 257 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]), 258 PCI_DMA_TODEVICE); 259 j ^= 1; 260 if (j == 0) { 261 sgp++; 262 curflit++; 263 } 264 curflit++; 265 frag_idx++; 266 } 267 268 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ 269 d = cidx + 1 == q->size ? q->sdesc : d + 1; 270 d->fragidx = frag_idx; 271 d->addr_idx = j; 272 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ 273 } 274 } 275 276 /** 277 * free_tx_desc - reclaims Tx descriptors and their buffers 278 * @adapter: the adapter 279 * @q: the Tx queue to reclaim descriptors from 280 * @n: the number of descriptors to reclaim 281 * 282 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated 283 * Tx buffers. Called with the Tx queue lock held. 284 */ 285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, 286 unsigned int n) 287 { 288 struct tx_sw_desc *d; 289 struct pci_dev *pdev = adapter->pdev; 290 unsigned int cidx = q->cidx; 291 292 const int need_unmap = need_skb_unmap() && 293 q->cntxt_id >= FW_TUNNEL_SGEEC_START; 294 295 d = &q->sdesc[cidx]; 296 while (n--) { 297 if (d->skb) { /* an SGL is present */ 298 if (need_unmap) 299 unmap_skb(d->skb, q, cidx, pdev); 300 if (d->eop) { 301 dev_consume_skb_any(d->skb); 302 d->skb = NULL; 303 } 304 } 305 ++d; 306 if (++cidx == q->size) { 307 cidx = 0; 308 d = q->sdesc; 309 } 310 } 311 q->cidx = cidx; 312 } 313 314 /** 315 * reclaim_completed_tx - reclaims completed Tx descriptors 316 * @adapter: the adapter 317 * @q: the Tx queue to reclaim completed descriptors from 318 * @chunk: maximum number of descriptors to reclaim 319 * 320 * Reclaims Tx descriptors that the SGE has indicated it has processed, 321 * and frees the associated buffers if possible. Called with the Tx 322 * queue's lock held. 323 */ 324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter, 325 struct sge_txq *q, 326 unsigned int chunk) 327 { 328 unsigned int reclaim = q->processed - q->cleaned; 329 330 reclaim = min(chunk, reclaim); 331 if (reclaim) { 332 free_tx_desc(adapter, q, reclaim); 333 q->cleaned += reclaim; 334 q->in_use -= reclaim; 335 } 336 return q->processed - q->cleaned; 337 } 338 339 /** 340 * should_restart_tx - are there enough resources to restart a Tx queue? 341 * @q: the Tx queue 342 * 343 * Checks if there are enough descriptors to restart a suspended Tx queue. 344 */ 345 static inline int should_restart_tx(const struct sge_txq *q) 346 { 347 unsigned int r = q->processed - q->cleaned; 348 349 return q->in_use - r < (q->size >> 1); 350 } 351 352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q, 353 struct rx_sw_desc *d) 354 { 355 if (q->use_pages && d->pg_chunk.page) { 356 (*d->pg_chunk.p_cnt)--; 357 if (!*d->pg_chunk.p_cnt) 358 pci_unmap_page(pdev, 359 d->pg_chunk.mapping, 360 q->alloc_size, PCI_DMA_FROMDEVICE); 361 362 put_page(d->pg_chunk.page); 363 d->pg_chunk.page = NULL; 364 } else { 365 pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr), 366 q->buf_size, PCI_DMA_FROMDEVICE); 367 kfree_skb(d->skb); 368 d->skb = NULL; 369 } 370 } 371 372 /** 373 * free_rx_bufs - free the Rx buffers on an SGE free list 374 * @pdev: the PCI device associated with the adapter 375 * @rxq: the SGE free list to clean up 376 * 377 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from 378 * this queue should be stopped before calling this function. 379 */ 380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) 381 { 382 unsigned int cidx = q->cidx; 383 384 while (q->credits--) { 385 struct rx_sw_desc *d = &q->sdesc[cidx]; 386 387 388 clear_rx_desc(pdev, q, d); 389 if (++cidx == q->size) 390 cidx = 0; 391 } 392 393 if (q->pg_chunk.page) { 394 __free_pages(q->pg_chunk.page, q->order); 395 q->pg_chunk.page = NULL; 396 } 397 } 398 399 /** 400 * add_one_rx_buf - add a packet buffer to a free-buffer list 401 * @va: buffer start VA 402 * @len: the buffer length 403 * @d: the HW Rx descriptor to write 404 * @sd: the SW Rx descriptor to write 405 * @gen: the generation bit value 406 * @pdev: the PCI device associated with the adapter 407 * 408 * Add a buffer of the given length to the supplied HW and SW Rx 409 * descriptors. 410 */ 411 static inline int add_one_rx_buf(void *va, unsigned int len, 412 struct rx_desc *d, struct rx_sw_desc *sd, 413 unsigned int gen, struct pci_dev *pdev) 414 { 415 dma_addr_t mapping; 416 417 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE); 418 if (unlikely(pci_dma_mapping_error(pdev, mapping))) 419 return -ENOMEM; 420 421 dma_unmap_addr_set(sd, dma_addr, mapping); 422 423 d->addr_lo = cpu_to_be32(mapping); 424 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 425 dma_wmb(); 426 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 427 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 428 return 0; 429 } 430 431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d, 432 unsigned int gen) 433 { 434 d->addr_lo = cpu_to_be32(mapping); 435 d->addr_hi = cpu_to_be32((u64) mapping >> 32); 436 dma_wmb(); 437 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); 438 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); 439 return 0; 440 } 441 442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q, 443 struct rx_sw_desc *sd, gfp_t gfp, 444 unsigned int order) 445 { 446 if (!q->pg_chunk.page) { 447 dma_addr_t mapping; 448 449 q->pg_chunk.page = alloc_pages(gfp, order); 450 if (unlikely(!q->pg_chunk.page)) 451 return -ENOMEM; 452 q->pg_chunk.va = page_address(q->pg_chunk.page); 453 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) - 454 SGE_PG_RSVD; 455 q->pg_chunk.offset = 0; 456 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page, 457 0, q->alloc_size, PCI_DMA_FROMDEVICE); 458 q->pg_chunk.mapping = mapping; 459 } 460 sd->pg_chunk = q->pg_chunk; 461 462 prefetch(sd->pg_chunk.p_cnt); 463 464 q->pg_chunk.offset += q->buf_size; 465 if (q->pg_chunk.offset == (PAGE_SIZE << order)) 466 q->pg_chunk.page = NULL; 467 else { 468 q->pg_chunk.va += q->buf_size; 469 get_page(q->pg_chunk.page); 470 } 471 472 if (sd->pg_chunk.offset == 0) 473 *sd->pg_chunk.p_cnt = 1; 474 else 475 *sd->pg_chunk.p_cnt += 1; 476 477 return 0; 478 } 479 480 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) 481 { 482 if (q->pend_cred >= q->credits / 4) { 483 q->pend_cred = 0; 484 wmb(); 485 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); 486 } 487 } 488 489 /** 490 * refill_fl - refill an SGE free-buffer list 491 * @adapter: the adapter 492 * @q: the free-list to refill 493 * @n: the number of new buffers to allocate 494 * @gfp: the gfp flags for allocating new buffers 495 * 496 * (Re)populate an SGE free-buffer list with up to @n new packet buffers, 497 * allocated with the supplied gfp flags. The caller must assure that 498 * @n does not exceed the queue's capacity. 499 */ 500 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) 501 { 502 struct rx_sw_desc *sd = &q->sdesc[q->pidx]; 503 struct rx_desc *d = &q->desc[q->pidx]; 504 unsigned int count = 0; 505 506 while (n--) { 507 dma_addr_t mapping; 508 int err; 509 510 if (q->use_pages) { 511 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp, 512 q->order))) { 513 nomem: q->alloc_failed++; 514 break; 515 } 516 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset; 517 dma_unmap_addr_set(sd, dma_addr, mapping); 518 519 add_one_rx_chunk(mapping, d, q->gen); 520 pci_dma_sync_single_for_device(adap->pdev, mapping, 521 q->buf_size - SGE_PG_RSVD, 522 PCI_DMA_FROMDEVICE); 523 } else { 524 void *buf_start; 525 526 struct sk_buff *skb = alloc_skb(q->buf_size, gfp); 527 if (!skb) 528 goto nomem; 529 530 sd->skb = skb; 531 buf_start = skb->data; 532 err = add_one_rx_buf(buf_start, q->buf_size, d, sd, 533 q->gen, adap->pdev); 534 if (unlikely(err)) { 535 clear_rx_desc(adap->pdev, q, sd); 536 break; 537 } 538 } 539 540 d++; 541 sd++; 542 if (++q->pidx == q->size) { 543 q->pidx = 0; 544 q->gen ^= 1; 545 sd = q->sdesc; 546 d = q->desc; 547 } 548 count++; 549 } 550 551 q->credits += count; 552 q->pend_cred += count; 553 ring_fl_db(adap, q); 554 555 return count; 556 } 557 558 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) 559 { 560 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits), 561 GFP_ATOMIC | __GFP_COMP); 562 } 563 564 /** 565 * recycle_rx_buf - recycle a receive buffer 566 * @adapter: the adapter 567 * @q: the SGE free list 568 * @idx: index of buffer to recycle 569 * 570 * Recycles the specified buffer on the given free list by adding it at 571 * the next available slot on the list. 572 */ 573 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, 574 unsigned int idx) 575 { 576 struct rx_desc *from = &q->desc[idx]; 577 struct rx_desc *to = &q->desc[q->pidx]; 578 579 q->sdesc[q->pidx] = q->sdesc[idx]; 580 to->addr_lo = from->addr_lo; /* already big endian */ 581 to->addr_hi = from->addr_hi; /* likewise */ 582 dma_wmb(); 583 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); 584 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); 585 586 if (++q->pidx == q->size) { 587 q->pidx = 0; 588 q->gen ^= 1; 589 } 590 591 q->credits++; 592 q->pend_cred++; 593 ring_fl_db(adap, q); 594 } 595 596 /** 597 * alloc_ring - allocate resources for an SGE descriptor ring 598 * @pdev: the PCI device 599 * @nelem: the number of descriptors 600 * @elem_size: the size of each descriptor 601 * @sw_size: the size of the SW state associated with each ring element 602 * @phys: the physical address of the allocated ring 603 * @metadata: address of the array holding the SW state for the ring 604 * 605 * Allocates resources for an SGE descriptor ring, such as Tx queues, 606 * free buffer lists, or response queues. Each SGE ring requires 607 * space for its HW descriptors plus, optionally, space for the SW state 608 * associated with each HW entry (the metadata). The function returns 609 * three values: the virtual address for the HW ring (the return value 610 * of the function), the physical address of the HW ring, and the address 611 * of the SW ring. 612 */ 613 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, 614 size_t sw_size, dma_addr_t * phys, void *metadata) 615 { 616 size_t len = nelem * elem_size; 617 void *s = NULL; 618 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); 619 620 if (!p) 621 return NULL; 622 if (sw_size && metadata) { 623 s = kcalloc(nelem, sw_size, GFP_KERNEL); 624 625 if (!s) { 626 dma_free_coherent(&pdev->dev, len, p, *phys); 627 return NULL; 628 } 629 *(void **)metadata = s; 630 } 631 memset(p, 0, len); 632 return p; 633 } 634 635 /** 636 * t3_reset_qset - reset a sge qset 637 * @q: the queue set 638 * 639 * Reset the qset structure. 640 * the NAPI structure is preserved in the event of 641 * the qset's reincarnation, for example during EEH recovery. 642 */ 643 static void t3_reset_qset(struct sge_qset *q) 644 { 645 if (q->adap && 646 !(q->adap->flags & NAPI_INIT)) { 647 memset(q, 0, sizeof(*q)); 648 return; 649 } 650 651 q->adap = NULL; 652 memset(&q->rspq, 0, sizeof(q->rspq)); 653 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET); 654 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET); 655 q->txq_stopped = 0; 656 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */ 657 q->rx_reclaim_timer.function = NULL; 658 q->nomem = 0; 659 napi_free_frags(&q->napi); 660 } 661 662 663 /** 664 * free_qset - free the resources of an SGE queue set 665 * @adapter: the adapter owning the queue set 666 * @q: the queue set 667 * 668 * Release the HW and SW resources associated with an SGE queue set, such 669 * as HW contexts, packet buffers, and descriptor rings. Traffic to the 670 * queue set must be quiesced prior to calling this. 671 */ 672 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q) 673 { 674 int i; 675 struct pci_dev *pdev = adapter->pdev; 676 677 for (i = 0; i < SGE_RXQ_PER_SET; ++i) 678 if (q->fl[i].desc) { 679 spin_lock_irq(&adapter->sge.reg_lock); 680 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); 681 spin_unlock_irq(&adapter->sge.reg_lock); 682 free_rx_bufs(pdev, &q->fl[i]); 683 kfree(q->fl[i].sdesc); 684 dma_free_coherent(&pdev->dev, 685 q->fl[i].size * 686 sizeof(struct rx_desc), q->fl[i].desc, 687 q->fl[i].phys_addr); 688 } 689 690 for (i = 0; i < SGE_TXQ_PER_SET; ++i) 691 if (q->txq[i].desc) { 692 spin_lock_irq(&adapter->sge.reg_lock); 693 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); 694 spin_unlock_irq(&adapter->sge.reg_lock); 695 if (q->txq[i].sdesc) { 696 free_tx_desc(adapter, &q->txq[i], 697 q->txq[i].in_use); 698 kfree(q->txq[i].sdesc); 699 } 700 dma_free_coherent(&pdev->dev, 701 q->txq[i].size * 702 sizeof(struct tx_desc), 703 q->txq[i].desc, q->txq[i].phys_addr); 704 __skb_queue_purge(&q->txq[i].sendq); 705 } 706 707 if (q->rspq.desc) { 708 spin_lock_irq(&adapter->sge.reg_lock); 709 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); 710 spin_unlock_irq(&adapter->sge.reg_lock); 711 dma_free_coherent(&pdev->dev, 712 q->rspq.size * sizeof(struct rsp_desc), 713 q->rspq.desc, q->rspq.phys_addr); 714 } 715 716 t3_reset_qset(q); 717 } 718 719 /** 720 * init_qset_cntxt - initialize an SGE queue set context info 721 * @qs: the queue set 722 * @id: the queue set id 723 * 724 * Initializes the TIDs and context ids for the queues of a queue set. 725 */ 726 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) 727 { 728 qs->rspq.cntxt_id = id; 729 qs->fl[0].cntxt_id = 2 * id; 730 qs->fl[1].cntxt_id = 2 * id + 1; 731 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; 732 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; 733 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; 734 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; 735 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; 736 } 737 738 /** 739 * sgl_len - calculates the size of an SGL of the given capacity 740 * @n: the number of SGL entries 741 * 742 * Calculates the number of flits needed for a scatter/gather list that 743 * can hold the given number of entries. 744 */ 745 static inline unsigned int sgl_len(unsigned int n) 746 { 747 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ 748 return (3 * n) / 2 + (n & 1); 749 } 750 751 /** 752 * flits_to_desc - returns the num of Tx descriptors for the given flits 753 * @n: the number of flits 754 * 755 * Calculates the number of Tx descriptors needed for the supplied number 756 * of flits. 757 */ 758 static inline unsigned int flits_to_desc(unsigned int n) 759 { 760 BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); 761 return flit_desc_map[n]; 762 } 763 764 /** 765 * get_packet - return the next ingress packet buffer from a free list 766 * @adap: the adapter that received the packet 767 * @fl: the SGE free list holding the packet 768 * @len: the packet length including any SGE padding 769 * @drop_thres: # of remaining buffers before we start dropping packets 770 * 771 * Get the next packet from a free list and complete setup of the 772 * sk_buff. If the packet is small we make a copy and recycle the 773 * original buffer, otherwise we use the original buffer itself. If a 774 * positive drop threshold is supplied packets are dropped and their 775 * buffers recycled if (a) the number of remaining buffers is under the 776 * threshold and the packet is too big to copy, or (b) the packet should 777 * be copied but there is no memory for the copy. 778 */ 779 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, 780 unsigned int len, unsigned int drop_thres) 781 { 782 struct sk_buff *skb = NULL; 783 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 784 785 prefetch(sd->skb->data); 786 fl->credits--; 787 788 if (len <= SGE_RX_COPY_THRES) { 789 skb = alloc_skb(len, GFP_ATOMIC); 790 if (likely(skb != NULL)) { 791 __skb_put(skb, len); 792 pci_dma_sync_single_for_cpu(adap->pdev, 793 dma_unmap_addr(sd, dma_addr), len, 794 PCI_DMA_FROMDEVICE); 795 memcpy(skb->data, sd->skb->data, len); 796 pci_dma_sync_single_for_device(adap->pdev, 797 dma_unmap_addr(sd, dma_addr), len, 798 PCI_DMA_FROMDEVICE); 799 } else if (!drop_thres) 800 goto use_orig_buf; 801 recycle: 802 recycle_rx_buf(adap, fl, fl->cidx); 803 return skb; 804 } 805 806 if (unlikely(fl->credits < drop_thres) && 807 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1), 808 GFP_ATOMIC | __GFP_COMP) == 0) 809 goto recycle; 810 811 use_orig_buf: 812 pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr), 813 fl->buf_size, PCI_DMA_FROMDEVICE); 814 skb = sd->skb; 815 skb_put(skb, len); 816 __refill_fl(adap, fl); 817 return skb; 818 } 819 820 /** 821 * get_packet_pg - return the next ingress packet buffer from a free list 822 * @adap: the adapter that received the packet 823 * @fl: the SGE free list holding the packet 824 * @len: the packet length including any SGE padding 825 * @drop_thres: # of remaining buffers before we start dropping packets 826 * 827 * Get the next packet from a free list populated with page chunks. 828 * If the packet is small we make a copy and recycle the original buffer, 829 * otherwise we attach the original buffer as a page fragment to a fresh 830 * sk_buff. If a positive drop threshold is supplied packets are dropped 831 * and their buffers recycled if (a) the number of remaining buffers is 832 * under the threshold and the packet is too big to copy, or (b) there's 833 * no system memory. 834 * 835 * Note: this function is similar to @get_packet but deals with Rx buffers 836 * that are page chunks rather than sk_buffs. 837 */ 838 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl, 839 struct sge_rspq *q, unsigned int len, 840 unsigned int drop_thres) 841 { 842 struct sk_buff *newskb, *skb; 843 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 844 845 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr); 846 847 newskb = skb = q->pg_skb; 848 if (!skb && (len <= SGE_RX_COPY_THRES)) { 849 newskb = alloc_skb(len, GFP_ATOMIC); 850 if (likely(newskb != NULL)) { 851 __skb_put(newskb, len); 852 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len, 853 PCI_DMA_FROMDEVICE); 854 memcpy(newskb->data, sd->pg_chunk.va, len); 855 pci_dma_sync_single_for_device(adap->pdev, dma_addr, 856 len, 857 PCI_DMA_FROMDEVICE); 858 } else if (!drop_thres) 859 return NULL; 860 recycle: 861 fl->credits--; 862 recycle_rx_buf(adap, fl, fl->cidx); 863 q->rx_recycle_buf++; 864 return newskb; 865 } 866 867 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres))) 868 goto recycle; 869 870 prefetch(sd->pg_chunk.p_cnt); 871 872 if (!skb) 873 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC); 874 875 if (unlikely(!newskb)) { 876 if (!drop_thres) 877 return NULL; 878 goto recycle; 879 } 880 881 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len, 882 PCI_DMA_FROMDEVICE); 883 (*sd->pg_chunk.p_cnt)--; 884 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 885 pci_unmap_page(adap->pdev, 886 sd->pg_chunk.mapping, 887 fl->alloc_size, 888 PCI_DMA_FROMDEVICE); 889 if (!skb) { 890 __skb_put(newskb, SGE_RX_PULL_LEN); 891 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN); 892 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page, 893 sd->pg_chunk.offset + SGE_RX_PULL_LEN, 894 len - SGE_RX_PULL_LEN); 895 newskb->len = len; 896 newskb->data_len = len - SGE_RX_PULL_LEN; 897 newskb->truesize += newskb->data_len; 898 } else { 899 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags, 900 sd->pg_chunk.page, 901 sd->pg_chunk.offset, len); 902 newskb->len += len; 903 newskb->data_len += len; 904 newskb->truesize += len; 905 } 906 907 fl->credits--; 908 /* 909 * We do not refill FLs here, we let the caller do it to overlap a 910 * prefetch. 911 */ 912 return newskb; 913 } 914 915 /** 916 * get_imm_packet - return the next ingress packet buffer from a response 917 * @resp: the response descriptor containing the packet data 918 * 919 * Return a packet containing the immediate data of the given response. 920 */ 921 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) 922 { 923 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); 924 925 if (skb) { 926 __skb_put(skb, IMMED_PKT_SIZE); 927 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE); 928 } 929 return skb; 930 } 931 932 /** 933 * calc_tx_descs - calculate the number of Tx descriptors for a packet 934 * @skb: the packet 935 * 936 * Returns the number of Tx descriptors needed for the given Ethernet 937 * packet. Ethernet packets require addition of WR and CPL headers. 938 */ 939 static inline unsigned int calc_tx_descs(const struct sk_buff *skb) 940 { 941 unsigned int flits; 942 943 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) 944 return 1; 945 946 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; 947 if (skb_shinfo(skb)->gso_size) 948 flits++; 949 return flits_to_desc(flits); 950 } 951 952 /** 953 * make_sgl - populate a scatter/gather list for a packet 954 * @skb: the packet 955 * @sgp: the SGL to populate 956 * @start: start address of skb main body data to include in the SGL 957 * @len: length of skb main body data to include in the SGL 958 * @pdev: the PCI device 959 * 960 * Generates a scatter/gather list for the buffers that make up a packet 961 * and returns the SGL size in 8-byte words. The caller must size the SGL 962 * appropriately. 963 */ 964 static inline unsigned int make_sgl(const struct sk_buff *skb, 965 struct sg_ent *sgp, unsigned char *start, 966 unsigned int len, struct pci_dev *pdev) 967 { 968 dma_addr_t mapping; 969 unsigned int i, j = 0, nfrags; 970 971 if (len) { 972 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE); 973 sgp->len[0] = cpu_to_be32(len); 974 sgp->addr[0] = cpu_to_be64(mapping); 975 j = 1; 976 } 977 978 nfrags = skb_shinfo(skb)->nr_frags; 979 for (i = 0; i < nfrags; i++) { 980 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 981 982 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, skb_frag_size(frag), 983 DMA_TO_DEVICE); 984 sgp->len[j] = cpu_to_be32(skb_frag_size(frag)); 985 sgp->addr[j] = cpu_to_be64(mapping); 986 j ^= 1; 987 if (j == 0) 988 ++sgp; 989 } 990 if (j) 991 sgp->len[j] = 0; 992 return ((nfrags + (len != 0)) * 3) / 2 + j; 993 } 994 995 /** 996 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell 997 * @adap: the adapter 998 * @q: the Tx queue 999 * 1000 * Ring the doorbel if a Tx queue is asleep. There is a natural race, 1001 * where the HW is going to sleep just after we checked, however, 1002 * then the interrupt handler will detect the outstanding TX packet 1003 * and ring the doorbell for us. 1004 * 1005 * When GTS is disabled we unconditionally ring the doorbell. 1006 */ 1007 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) 1008 { 1009 #if USE_GTS 1010 clear_bit(TXQ_LAST_PKT_DB, &q->flags); 1011 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { 1012 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1013 t3_write_reg(adap, A_SG_KDOORBELL, 1014 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1015 } 1016 #else 1017 wmb(); /* write descriptors before telling HW */ 1018 t3_write_reg(adap, A_SG_KDOORBELL, 1019 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1020 #endif 1021 } 1022 1023 static inline void wr_gen2(struct tx_desc *d, unsigned int gen) 1024 { 1025 #if SGE_NUM_GENBITS == 2 1026 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); 1027 #endif 1028 } 1029 1030 /** 1031 * write_wr_hdr_sgl - write a WR header and, optionally, SGL 1032 * @ndesc: number of Tx descriptors spanned by the SGL 1033 * @skb: the packet corresponding to the WR 1034 * @d: first Tx descriptor to be written 1035 * @pidx: index of above descriptors 1036 * @q: the SGE Tx queue 1037 * @sgl: the SGL 1038 * @flits: number of flits to the start of the SGL in the first descriptor 1039 * @sgl_flits: the SGL size in flits 1040 * @gen: the Tx descriptor generation 1041 * @wr_hi: top 32 bits of WR header based on WR type (big endian) 1042 * @wr_lo: low 32 bits of WR header based on WR type (big endian) 1043 * 1044 * Write a work request header and an associated SGL. If the SGL is 1045 * small enough to fit into one Tx descriptor it has already been written 1046 * and we just need to write the WR header. Otherwise we distribute the 1047 * SGL across the number of descriptors it spans. 1048 */ 1049 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, 1050 struct tx_desc *d, unsigned int pidx, 1051 const struct sge_txq *q, 1052 const struct sg_ent *sgl, 1053 unsigned int flits, unsigned int sgl_flits, 1054 unsigned int gen, __be32 wr_hi, 1055 __be32 wr_lo) 1056 { 1057 struct work_request_hdr *wrp = (struct work_request_hdr *)d; 1058 struct tx_sw_desc *sd = &q->sdesc[pidx]; 1059 1060 sd->skb = skb; 1061 if (need_skb_unmap()) { 1062 sd->fragidx = 0; 1063 sd->addr_idx = 0; 1064 sd->sflit = flits; 1065 } 1066 1067 if (likely(ndesc == 1)) { 1068 sd->eop = 1; 1069 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | 1070 V_WR_SGLSFLT(flits)) | wr_hi; 1071 dma_wmb(); 1072 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | 1073 V_WR_GEN(gen)) | wr_lo; 1074 wr_gen2(d, gen); 1075 } else { 1076 unsigned int ogen = gen; 1077 const u64 *fp = (const u64 *)sgl; 1078 struct work_request_hdr *wp = wrp; 1079 1080 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | 1081 V_WR_SGLSFLT(flits)) | wr_hi; 1082 1083 while (sgl_flits) { 1084 unsigned int avail = WR_FLITS - flits; 1085 1086 if (avail > sgl_flits) 1087 avail = sgl_flits; 1088 memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); 1089 sgl_flits -= avail; 1090 ndesc--; 1091 if (!sgl_flits) 1092 break; 1093 1094 fp += avail; 1095 d++; 1096 sd->eop = 0; 1097 sd++; 1098 if (++pidx == q->size) { 1099 pidx = 0; 1100 gen ^= 1; 1101 d = q->desc; 1102 sd = q->sdesc; 1103 } 1104 1105 sd->skb = skb; 1106 wrp = (struct work_request_hdr *)d; 1107 wrp->wr_hi = htonl(V_WR_DATATYPE(1) | 1108 V_WR_SGLSFLT(1)) | wr_hi; 1109 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, 1110 sgl_flits + 1)) | 1111 V_WR_GEN(gen)) | wr_lo; 1112 wr_gen2(d, gen); 1113 flits = 1; 1114 } 1115 sd->eop = 1; 1116 wrp->wr_hi |= htonl(F_WR_EOP); 1117 dma_wmb(); 1118 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; 1119 wr_gen2((struct tx_desc *)wp, ogen); 1120 WARN_ON(ndesc != 0); 1121 } 1122 } 1123 1124 /** 1125 * write_tx_pkt_wr - write a TX_PKT work request 1126 * @adap: the adapter 1127 * @skb: the packet to send 1128 * @pi: the egress interface 1129 * @pidx: index of the first Tx descriptor to write 1130 * @gen: the generation value to use 1131 * @q: the Tx queue 1132 * @ndesc: number of descriptors the packet will occupy 1133 * @compl: the value of the COMPL bit to use 1134 * 1135 * Generate a TX_PKT work request to send the supplied packet. 1136 */ 1137 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, 1138 const struct port_info *pi, 1139 unsigned int pidx, unsigned int gen, 1140 struct sge_txq *q, unsigned int ndesc, 1141 unsigned int compl) 1142 { 1143 unsigned int flits, sgl_flits, cntrl, tso_info; 1144 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1145 struct tx_desc *d = &q->desc[pidx]; 1146 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; 1147 1148 cpl->len = htonl(skb->len); 1149 cntrl = V_TXPKT_INTF(pi->port_id); 1150 1151 if (skb_vlan_tag_present(skb)) 1152 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(skb_vlan_tag_get(skb)); 1153 1154 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); 1155 if (tso_info) { 1156 int eth_type; 1157 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; 1158 1159 d->flit[2] = 0; 1160 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); 1161 hdr->cntrl = htonl(cntrl); 1162 eth_type = skb_network_offset(skb) == ETH_HLEN ? 1163 CPL_ETH_II : CPL_ETH_II_VLAN; 1164 tso_info |= V_LSO_ETH_TYPE(eth_type) | 1165 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) | 1166 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff); 1167 hdr->lso_info = htonl(tso_info); 1168 flits = 3; 1169 } else { 1170 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); 1171 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ 1172 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); 1173 cpl->cntrl = htonl(cntrl); 1174 1175 if (skb->len <= WR_LEN - sizeof(*cpl)) { 1176 q->sdesc[pidx].skb = NULL; 1177 if (!skb->data_len) 1178 skb_copy_from_linear_data(skb, &d->flit[2], 1179 skb->len); 1180 else 1181 skb_copy_bits(skb, 0, &d->flit[2], skb->len); 1182 1183 flits = (skb->len + 7) / 8 + 2; 1184 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | 1185 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) 1186 | F_WR_SOP | F_WR_EOP | compl); 1187 dma_wmb(); 1188 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | 1189 V_WR_TID(q->token)); 1190 wr_gen2(d, gen); 1191 dev_consume_skb_any(skb); 1192 return; 1193 } 1194 1195 flits = 2; 1196 } 1197 1198 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1199 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev); 1200 1201 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, 1202 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), 1203 htonl(V_WR_TID(q->token))); 1204 } 1205 1206 static inline void t3_stop_tx_queue(struct netdev_queue *txq, 1207 struct sge_qset *qs, struct sge_txq *q) 1208 { 1209 netif_tx_stop_queue(txq); 1210 set_bit(TXQ_ETH, &qs->txq_stopped); 1211 q->stops++; 1212 } 1213 1214 /** 1215 * eth_xmit - add a packet to the Ethernet Tx queue 1216 * @skb: the packet 1217 * @dev: the egress net device 1218 * 1219 * Add a packet to an SGE Tx queue. Runs with softirqs disabled. 1220 */ 1221 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) 1222 { 1223 int qidx; 1224 unsigned int ndesc, pidx, credits, gen, compl; 1225 const struct port_info *pi = netdev_priv(dev); 1226 struct adapter *adap = pi->adapter; 1227 struct netdev_queue *txq; 1228 struct sge_qset *qs; 1229 struct sge_txq *q; 1230 1231 /* 1232 * The chip min packet length is 9 octets but play safe and reject 1233 * anything shorter than an Ethernet header. 1234 */ 1235 if (unlikely(skb->len < ETH_HLEN)) { 1236 dev_kfree_skb_any(skb); 1237 return NETDEV_TX_OK; 1238 } 1239 1240 qidx = skb_get_queue_mapping(skb); 1241 qs = &pi->qs[qidx]; 1242 q = &qs->txq[TXQ_ETH]; 1243 txq = netdev_get_tx_queue(dev, qidx); 1244 1245 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1246 1247 credits = q->size - q->in_use; 1248 ndesc = calc_tx_descs(skb); 1249 1250 if (unlikely(credits < ndesc)) { 1251 t3_stop_tx_queue(txq, qs, q); 1252 dev_err(&adap->pdev->dev, 1253 "%s: Tx ring %u full while queue awake!\n", 1254 dev->name, q->cntxt_id & 7); 1255 return NETDEV_TX_BUSY; 1256 } 1257 1258 q->in_use += ndesc; 1259 if (unlikely(credits - ndesc < q->stop_thres)) { 1260 t3_stop_tx_queue(txq, qs, q); 1261 1262 if (should_restart_tx(q) && 1263 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1264 q->restarts++; 1265 netif_tx_start_queue(txq); 1266 } 1267 } 1268 1269 gen = q->gen; 1270 q->unacked += ndesc; 1271 compl = (q->unacked & 8) << (S_WR_COMPL - 3); 1272 q->unacked &= 7; 1273 pidx = q->pidx; 1274 q->pidx += ndesc; 1275 if (q->pidx >= q->size) { 1276 q->pidx -= q->size; 1277 q->gen ^= 1; 1278 } 1279 1280 /* update port statistics */ 1281 if (skb->ip_summed == CHECKSUM_PARTIAL) 1282 qs->port_stats[SGE_PSTAT_TX_CSUM]++; 1283 if (skb_shinfo(skb)->gso_size) 1284 qs->port_stats[SGE_PSTAT_TSO]++; 1285 if (skb_vlan_tag_present(skb)) 1286 qs->port_stats[SGE_PSTAT_VLANINS]++; 1287 1288 /* 1289 * We do not use Tx completion interrupts to free DMAd Tx packets. 1290 * This is good for performance but means that we rely on new Tx 1291 * packets arriving to run the destructors of completed packets, 1292 * which open up space in their sockets' send queues. Sometimes 1293 * we do not get such new packets causing Tx to stall. A single 1294 * UDP transmitter is a good example of this situation. We have 1295 * a clean up timer that periodically reclaims completed packets 1296 * but it doesn't run often enough (nor do we want it to) to prevent 1297 * lengthy stalls. A solution to this problem is to run the 1298 * destructor early, after the packet is queued but before it's DMAd. 1299 * A cons is that we lie to socket memory accounting, but the amount 1300 * of extra memory is reasonable (limited by the number of Tx 1301 * descriptors), the packets do actually get freed quickly by new 1302 * packets almost always, and for protocols like TCP that wait for 1303 * acks to really free up the data the extra memory is even less. 1304 * On the positive side we run the destructors on the sending CPU 1305 * rather than on a potentially different completing CPU, usually a 1306 * good thing. We also run them without holding our Tx queue lock, 1307 * unlike what reclaim_completed_tx() would otherwise do. 1308 * 1309 * Run the destructor before telling the DMA engine about the packet 1310 * to make sure it doesn't complete and get freed prematurely. 1311 */ 1312 if (likely(!skb_shared(skb))) 1313 skb_orphan(skb); 1314 1315 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl); 1316 check_ring_tx_db(adap, q); 1317 return NETDEV_TX_OK; 1318 } 1319 1320 /** 1321 * write_imm - write a packet into a Tx descriptor as immediate data 1322 * @d: the Tx descriptor to write 1323 * @skb: the packet 1324 * @len: the length of packet data to write as immediate data 1325 * @gen: the generation bit value to write 1326 * 1327 * Writes a packet as immediate data into a Tx descriptor. The packet 1328 * contains a work request at its beginning. We must write the packet 1329 * carefully so the SGE doesn't read it accidentally before it's written 1330 * in its entirety. 1331 */ 1332 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, 1333 unsigned int len, unsigned int gen) 1334 { 1335 struct work_request_hdr *from = (struct work_request_hdr *)skb->data; 1336 struct work_request_hdr *to = (struct work_request_hdr *)d; 1337 1338 if (likely(!skb->data_len)) 1339 memcpy(&to[1], &from[1], len - sizeof(*from)); 1340 else 1341 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from)); 1342 1343 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | 1344 V_WR_BCNTLFLT(len & 7)); 1345 dma_wmb(); 1346 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | 1347 V_WR_LEN((len + 7) / 8)); 1348 wr_gen2(d, gen); 1349 kfree_skb(skb); 1350 } 1351 1352 /** 1353 * check_desc_avail - check descriptor availability on a send queue 1354 * @adap: the adapter 1355 * @q: the send queue 1356 * @skb: the packet needing the descriptors 1357 * @ndesc: the number of Tx descriptors needed 1358 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) 1359 * 1360 * Checks if the requested number of Tx descriptors is available on an 1361 * SGE send queue. If the queue is already suspended or not enough 1362 * descriptors are available the packet is queued for later transmission. 1363 * Must be called with the Tx queue locked. 1364 * 1365 * Returns 0 if enough descriptors are available, 1 if there aren't 1366 * enough descriptors and the packet has been queued, and 2 if the caller 1367 * needs to retry because there weren't enough descriptors at the 1368 * beginning of the call but some freed up in the mean time. 1369 */ 1370 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, 1371 struct sk_buff *skb, unsigned int ndesc, 1372 unsigned int qid) 1373 { 1374 if (unlikely(!skb_queue_empty(&q->sendq))) { 1375 addq_exit:__skb_queue_tail(&q->sendq, skb); 1376 return 1; 1377 } 1378 if (unlikely(q->size - q->in_use < ndesc)) { 1379 struct sge_qset *qs = txq_to_qset(q, qid); 1380 1381 set_bit(qid, &qs->txq_stopped); 1382 smp_mb__after_atomic(); 1383 1384 if (should_restart_tx(q) && 1385 test_and_clear_bit(qid, &qs->txq_stopped)) 1386 return 2; 1387 1388 q->stops++; 1389 goto addq_exit; 1390 } 1391 return 0; 1392 } 1393 1394 /** 1395 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs 1396 * @q: the SGE control Tx queue 1397 * 1398 * This is a variant of reclaim_completed_tx() that is used for Tx queues 1399 * that send only immediate data (presently just the control queues) and 1400 * thus do not have any sk_buffs to release. 1401 */ 1402 static inline void reclaim_completed_tx_imm(struct sge_txq *q) 1403 { 1404 unsigned int reclaim = q->processed - q->cleaned; 1405 1406 q->in_use -= reclaim; 1407 q->cleaned += reclaim; 1408 } 1409 1410 static inline int immediate(const struct sk_buff *skb) 1411 { 1412 return skb->len <= WR_LEN; 1413 } 1414 1415 /** 1416 * ctrl_xmit - send a packet through an SGE control Tx queue 1417 * @adap: the adapter 1418 * @q: the control queue 1419 * @skb: the packet 1420 * 1421 * Send a packet through an SGE control Tx queue. Packets sent through 1422 * a control queue must fit entirely as immediate data in a single Tx 1423 * descriptor and have no page fragments. 1424 */ 1425 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, 1426 struct sk_buff *skb) 1427 { 1428 int ret; 1429 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; 1430 1431 if (unlikely(!immediate(skb))) { 1432 WARN_ON(1); 1433 dev_kfree_skb(skb); 1434 return NET_XMIT_SUCCESS; 1435 } 1436 1437 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); 1438 wrp->wr_lo = htonl(V_WR_TID(q->token)); 1439 1440 spin_lock(&q->lock); 1441 again:reclaim_completed_tx_imm(q); 1442 1443 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); 1444 if (unlikely(ret)) { 1445 if (ret == 1) { 1446 spin_unlock(&q->lock); 1447 return NET_XMIT_CN; 1448 } 1449 goto again; 1450 } 1451 1452 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1453 1454 q->in_use++; 1455 if (++q->pidx >= q->size) { 1456 q->pidx = 0; 1457 q->gen ^= 1; 1458 } 1459 spin_unlock(&q->lock); 1460 wmb(); 1461 t3_write_reg(adap, A_SG_KDOORBELL, 1462 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1463 return NET_XMIT_SUCCESS; 1464 } 1465 1466 /** 1467 * restart_ctrlq - restart a suspended control queue 1468 * @qs: the queue set cotaining the control queue 1469 * 1470 * Resumes transmission on a suspended Tx control queue. 1471 */ 1472 static void restart_ctrlq(unsigned long data) 1473 { 1474 struct sk_buff *skb; 1475 struct sge_qset *qs = (struct sge_qset *)data; 1476 struct sge_txq *q = &qs->txq[TXQ_CTRL]; 1477 1478 spin_lock(&q->lock); 1479 again:reclaim_completed_tx_imm(q); 1480 1481 while (q->in_use < q->size && 1482 (skb = __skb_dequeue(&q->sendq)) != NULL) { 1483 1484 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); 1485 1486 if (++q->pidx >= q->size) { 1487 q->pidx = 0; 1488 q->gen ^= 1; 1489 } 1490 q->in_use++; 1491 } 1492 1493 if (!skb_queue_empty(&q->sendq)) { 1494 set_bit(TXQ_CTRL, &qs->txq_stopped); 1495 smp_mb__after_atomic(); 1496 1497 if (should_restart_tx(q) && 1498 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) 1499 goto again; 1500 q->stops++; 1501 } 1502 1503 spin_unlock(&q->lock); 1504 wmb(); 1505 t3_write_reg(qs->adap, A_SG_KDOORBELL, 1506 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1507 } 1508 1509 /* 1510 * Send a management message through control queue 0 1511 */ 1512 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb) 1513 { 1514 int ret; 1515 local_bh_disable(); 1516 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb); 1517 local_bh_enable(); 1518 1519 return ret; 1520 } 1521 1522 /** 1523 * deferred_unmap_destructor - unmap a packet when it is freed 1524 * @skb: the packet 1525 * 1526 * This is the packet destructor used for Tx packets that need to remain 1527 * mapped until they are freed rather than until their Tx descriptors are 1528 * freed. 1529 */ 1530 static void deferred_unmap_destructor(struct sk_buff *skb) 1531 { 1532 int i; 1533 const dma_addr_t *p; 1534 const struct skb_shared_info *si; 1535 const struct deferred_unmap_info *dui; 1536 1537 dui = (struct deferred_unmap_info *)skb->head; 1538 p = dui->addr; 1539 1540 if (skb_tail_pointer(skb) - skb_transport_header(skb)) 1541 pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) - 1542 skb_transport_header(skb), PCI_DMA_TODEVICE); 1543 1544 si = skb_shinfo(skb); 1545 for (i = 0; i < si->nr_frags; i++) 1546 pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]), 1547 PCI_DMA_TODEVICE); 1548 } 1549 1550 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev, 1551 const struct sg_ent *sgl, int sgl_flits) 1552 { 1553 dma_addr_t *p; 1554 struct deferred_unmap_info *dui; 1555 1556 dui = (struct deferred_unmap_info *)skb->head; 1557 dui->pdev = pdev; 1558 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) { 1559 *p++ = be64_to_cpu(sgl->addr[0]); 1560 *p++ = be64_to_cpu(sgl->addr[1]); 1561 } 1562 if (sgl_flits) 1563 *p = be64_to_cpu(sgl->addr[0]); 1564 } 1565 1566 /** 1567 * write_ofld_wr - write an offload work request 1568 * @adap: the adapter 1569 * @skb: the packet to send 1570 * @q: the Tx queue 1571 * @pidx: index of the first Tx descriptor to write 1572 * @gen: the generation value to use 1573 * @ndesc: number of descriptors the packet will occupy 1574 * 1575 * Write an offload work request to send the supplied packet. The packet 1576 * data already carry the work request with most fields populated. 1577 */ 1578 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, 1579 struct sge_txq *q, unsigned int pidx, 1580 unsigned int gen, unsigned int ndesc) 1581 { 1582 unsigned int sgl_flits, flits; 1583 struct work_request_hdr *from; 1584 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; 1585 struct tx_desc *d = &q->desc[pidx]; 1586 1587 if (immediate(skb)) { 1588 q->sdesc[pidx].skb = NULL; 1589 write_imm(d, skb, skb->len, gen); 1590 return; 1591 } 1592 1593 /* Only TX_DATA builds SGLs */ 1594 1595 from = (struct work_request_hdr *)skb->data; 1596 memcpy(&d->flit[1], &from[1], 1597 skb_transport_offset(skb) - sizeof(*from)); 1598 1599 flits = skb_transport_offset(skb) / 8; 1600 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; 1601 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb), 1602 skb_tail_pointer(skb) - 1603 skb_transport_header(skb), 1604 adap->pdev); 1605 if (need_skb_unmap()) { 1606 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits); 1607 skb->destructor = deferred_unmap_destructor; 1608 } 1609 1610 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, 1611 gen, from->wr_hi, from->wr_lo); 1612 } 1613 1614 /** 1615 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet 1616 * @skb: the packet 1617 * 1618 * Returns the number of Tx descriptors needed for the given offload 1619 * packet. These packets are already fully constructed. 1620 */ 1621 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) 1622 { 1623 unsigned int flits, cnt; 1624 1625 if (skb->len <= WR_LEN) 1626 return 1; /* packet fits as immediate data */ 1627 1628 flits = skb_transport_offset(skb) / 8; /* headers */ 1629 cnt = skb_shinfo(skb)->nr_frags; 1630 if (skb_tail_pointer(skb) != skb_transport_header(skb)) 1631 cnt++; 1632 return flits_to_desc(flits + sgl_len(cnt)); 1633 } 1634 1635 /** 1636 * ofld_xmit - send a packet through an offload queue 1637 * @adap: the adapter 1638 * @q: the Tx offload queue 1639 * @skb: the packet 1640 * 1641 * Send an offload packet through an SGE offload queue. 1642 */ 1643 static int ofld_xmit(struct adapter *adap, struct sge_txq *q, 1644 struct sk_buff *skb) 1645 { 1646 int ret; 1647 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; 1648 1649 spin_lock(&q->lock); 1650 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1651 1652 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); 1653 if (unlikely(ret)) { 1654 if (ret == 1) { 1655 skb->priority = ndesc; /* save for restart */ 1656 spin_unlock(&q->lock); 1657 return NET_XMIT_CN; 1658 } 1659 goto again; 1660 } 1661 1662 gen = q->gen; 1663 q->in_use += ndesc; 1664 pidx = q->pidx; 1665 q->pidx += ndesc; 1666 if (q->pidx >= q->size) { 1667 q->pidx -= q->size; 1668 q->gen ^= 1; 1669 } 1670 spin_unlock(&q->lock); 1671 1672 write_ofld_wr(adap, skb, q, pidx, gen, ndesc); 1673 check_ring_tx_db(adap, q); 1674 return NET_XMIT_SUCCESS; 1675 } 1676 1677 /** 1678 * restart_offloadq - restart a suspended offload queue 1679 * @qs: the queue set cotaining the offload queue 1680 * 1681 * Resumes transmission on a suspended Tx offload queue. 1682 */ 1683 static void restart_offloadq(unsigned long data) 1684 { 1685 struct sk_buff *skb; 1686 struct sge_qset *qs = (struct sge_qset *)data; 1687 struct sge_txq *q = &qs->txq[TXQ_OFLD]; 1688 const struct port_info *pi = netdev_priv(qs->netdev); 1689 struct adapter *adap = pi->adapter; 1690 1691 spin_lock(&q->lock); 1692 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK); 1693 1694 while ((skb = skb_peek(&q->sendq)) != NULL) { 1695 unsigned int gen, pidx; 1696 unsigned int ndesc = skb->priority; 1697 1698 if (unlikely(q->size - q->in_use < ndesc)) { 1699 set_bit(TXQ_OFLD, &qs->txq_stopped); 1700 smp_mb__after_atomic(); 1701 1702 if (should_restart_tx(q) && 1703 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) 1704 goto again; 1705 q->stops++; 1706 break; 1707 } 1708 1709 gen = q->gen; 1710 q->in_use += ndesc; 1711 pidx = q->pidx; 1712 q->pidx += ndesc; 1713 if (q->pidx >= q->size) { 1714 q->pidx -= q->size; 1715 q->gen ^= 1; 1716 } 1717 __skb_unlink(skb, &q->sendq); 1718 spin_unlock(&q->lock); 1719 1720 write_ofld_wr(adap, skb, q, pidx, gen, ndesc); 1721 spin_lock(&q->lock); 1722 } 1723 spin_unlock(&q->lock); 1724 1725 #if USE_GTS 1726 set_bit(TXQ_RUNNING, &q->flags); 1727 set_bit(TXQ_LAST_PKT_DB, &q->flags); 1728 #endif 1729 wmb(); 1730 t3_write_reg(adap, A_SG_KDOORBELL, 1731 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); 1732 } 1733 1734 /** 1735 * queue_set - return the queue set a packet should use 1736 * @skb: the packet 1737 * 1738 * Maps a packet to the SGE queue set it should use. The desired queue 1739 * set is carried in bits 1-3 in the packet's priority. 1740 */ 1741 static inline int queue_set(const struct sk_buff *skb) 1742 { 1743 return skb->priority >> 1; 1744 } 1745 1746 /** 1747 * is_ctrl_pkt - return whether an offload packet is a control packet 1748 * @skb: the packet 1749 * 1750 * Determines whether an offload packet should use an OFLD or a CTRL 1751 * Tx queue. This is indicated by bit 0 in the packet's priority. 1752 */ 1753 static inline int is_ctrl_pkt(const struct sk_buff *skb) 1754 { 1755 return skb->priority & 1; 1756 } 1757 1758 /** 1759 * t3_offload_tx - send an offload packet 1760 * @tdev: the offload device to send to 1761 * @skb: the packet 1762 * 1763 * Sends an offload packet. We use the packet priority to select the 1764 * appropriate Tx queue as follows: bit 0 indicates whether the packet 1765 * should be sent as regular or control, bits 1-3 select the queue set. 1766 */ 1767 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 1768 { 1769 struct adapter *adap = tdev2adap(tdev); 1770 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; 1771 1772 if (unlikely(is_ctrl_pkt(skb))) 1773 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); 1774 1775 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); 1776 } 1777 1778 /** 1779 * offload_enqueue - add an offload packet to an SGE offload receive queue 1780 * @q: the SGE response queue 1781 * @skb: the packet 1782 * 1783 * Add a new offload packet to an SGE response queue's offload packet 1784 * queue. If the packet is the first on the queue it schedules the RX 1785 * softirq to process the queue. 1786 */ 1787 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) 1788 { 1789 int was_empty = skb_queue_empty(&q->rx_queue); 1790 1791 __skb_queue_tail(&q->rx_queue, skb); 1792 1793 if (was_empty) { 1794 struct sge_qset *qs = rspq_to_qset(q); 1795 1796 napi_schedule(&qs->napi); 1797 } 1798 } 1799 1800 /** 1801 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts 1802 * @tdev: the offload device that will be receiving the packets 1803 * @q: the SGE response queue that assembled the bundle 1804 * @skbs: the partial bundle 1805 * @n: the number of packets in the bundle 1806 * 1807 * Delivers a (partial) bundle of Rx offload packets to an offload device. 1808 */ 1809 static inline void deliver_partial_bundle(struct t3cdev *tdev, 1810 struct sge_rspq *q, 1811 struct sk_buff *skbs[], int n) 1812 { 1813 if (n) { 1814 q->offload_bundles++; 1815 tdev->recv(tdev, skbs, n); 1816 } 1817 } 1818 1819 /** 1820 * ofld_poll - NAPI handler for offload packets in interrupt mode 1821 * @dev: the network device doing the polling 1822 * @budget: polling budget 1823 * 1824 * The NAPI handler for offload packets when a response queue is serviced 1825 * by the hard interrupt handler, i.e., when it's operating in non-polling 1826 * mode. Creates small packet batches and sends them through the offload 1827 * receive handler. Batches need to be of modest size as we do prefetches 1828 * on the packets in each. 1829 */ 1830 static int ofld_poll(struct napi_struct *napi, int budget) 1831 { 1832 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 1833 struct sge_rspq *q = &qs->rspq; 1834 struct adapter *adapter = qs->adap; 1835 int work_done = 0; 1836 1837 while (work_done < budget) { 1838 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE]; 1839 struct sk_buff_head queue; 1840 int ngathered; 1841 1842 spin_lock_irq(&q->lock); 1843 __skb_queue_head_init(&queue); 1844 skb_queue_splice_init(&q->rx_queue, &queue); 1845 if (skb_queue_empty(&queue)) { 1846 napi_complete_done(napi, work_done); 1847 spin_unlock_irq(&q->lock); 1848 return work_done; 1849 } 1850 spin_unlock_irq(&q->lock); 1851 1852 ngathered = 0; 1853 skb_queue_walk_safe(&queue, skb, tmp) { 1854 if (work_done >= budget) 1855 break; 1856 work_done++; 1857 1858 __skb_unlink(skb, &queue); 1859 prefetch(skb->data); 1860 skbs[ngathered] = skb; 1861 if (++ngathered == RX_BUNDLE_SIZE) { 1862 q->offload_bundles++; 1863 adapter->tdev.recv(&adapter->tdev, skbs, 1864 ngathered); 1865 ngathered = 0; 1866 } 1867 } 1868 if (!skb_queue_empty(&queue)) { 1869 /* splice remaining packets back onto Rx queue */ 1870 spin_lock_irq(&q->lock); 1871 skb_queue_splice(&queue, &q->rx_queue); 1872 spin_unlock_irq(&q->lock); 1873 } 1874 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); 1875 } 1876 1877 return work_done; 1878 } 1879 1880 /** 1881 * rx_offload - process a received offload packet 1882 * @tdev: the offload device receiving the packet 1883 * @rq: the response queue that received the packet 1884 * @skb: the packet 1885 * @rx_gather: a gather list of packets if we are building a bundle 1886 * @gather_idx: index of the next available slot in the bundle 1887 * 1888 * Process an ingress offload pakcet and add it to the offload ingress 1889 * queue. Returns the index of the next available slot in the bundle. 1890 */ 1891 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, 1892 struct sk_buff *skb, struct sk_buff *rx_gather[], 1893 unsigned int gather_idx) 1894 { 1895 skb_reset_mac_header(skb); 1896 skb_reset_network_header(skb); 1897 skb_reset_transport_header(skb); 1898 1899 if (rq->polling) { 1900 rx_gather[gather_idx++] = skb; 1901 if (gather_idx == RX_BUNDLE_SIZE) { 1902 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); 1903 gather_idx = 0; 1904 rq->offload_bundles++; 1905 } 1906 } else 1907 offload_enqueue(rq, skb); 1908 1909 return gather_idx; 1910 } 1911 1912 /** 1913 * restart_tx - check whether to restart suspended Tx queues 1914 * @qs: the queue set to resume 1915 * 1916 * Restarts suspended Tx queues of an SGE queue set if they have enough 1917 * free resources to resume operation. 1918 */ 1919 static void restart_tx(struct sge_qset *qs) 1920 { 1921 if (test_bit(TXQ_ETH, &qs->txq_stopped) && 1922 should_restart_tx(&qs->txq[TXQ_ETH]) && 1923 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { 1924 qs->txq[TXQ_ETH].restarts++; 1925 if (netif_running(qs->netdev)) 1926 netif_tx_wake_queue(qs->tx_q); 1927 } 1928 1929 if (test_bit(TXQ_OFLD, &qs->txq_stopped) && 1930 should_restart_tx(&qs->txq[TXQ_OFLD]) && 1931 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { 1932 qs->txq[TXQ_OFLD].restarts++; 1933 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk); 1934 } 1935 if (test_bit(TXQ_CTRL, &qs->txq_stopped) && 1936 should_restart_tx(&qs->txq[TXQ_CTRL]) && 1937 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { 1938 qs->txq[TXQ_CTRL].restarts++; 1939 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk); 1940 } 1941 } 1942 1943 /** 1944 * cxgb3_arp_process - process an ARP request probing a private IP address 1945 * @adapter: the adapter 1946 * @skb: the skbuff containing the ARP request 1947 * 1948 * Check if the ARP request is probing the private IP address 1949 * dedicated to iSCSI, generate an ARP reply if so. 1950 */ 1951 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb) 1952 { 1953 struct net_device *dev = skb->dev; 1954 struct arphdr *arp; 1955 unsigned char *arp_ptr; 1956 unsigned char *sha; 1957 __be32 sip, tip; 1958 1959 if (!dev) 1960 return; 1961 1962 skb_reset_network_header(skb); 1963 arp = arp_hdr(skb); 1964 1965 if (arp->ar_op != htons(ARPOP_REQUEST)) 1966 return; 1967 1968 arp_ptr = (unsigned char *)(arp + 1); 1969 sha = arp_ptr; 1970 arp_ptr += dev->addr_len; 1971 memcpy(&sip, arp_ptr, sizeof(sip)); 1972 arp_ptr += sizeof(sip); 1973 arp_ptr += dev->addr_len; 1974 memcpy(&tip, arp_ptr, sizeof(tip)); 1975 1976 if (tip != pi->iscsi_ipv4addr) 1977 return; 1978 1979 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha, 1980 pi->iscsic.mac_addr, sha); 1981 1982 } 1983 1984 static inline int is_arp(struct sk_buff *skb) 1985 { 1986 return skb->protocol == htons(ETH_P_ARP); 1987 } 1988 1989 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi, 1990 struct sk_buff *skb) 1991 { 1992 if (is_arp(skb)) { 1993 cxgb3_arp_process(pi, skb); 1994 return; 1995 } 1996 1997 if (pi->iscsic.recv) 1998 pi->iscsic.recv(pi, skb); 1999 2000 } 2001 2002 /** 2003 * rx_eth - process an ingress ethernet packet 2004 * @adap: the adapter 2005 * @rq: the response queue that received the packet 2006 * @skb: the packet 2007 * @pad: amount of padding at the start of the buffer 2008 * 2009 * Process an ingress ethernet pakcet and deliver it to the stack. 2010 * The padding is 2 if the packet was delivered in an Rx buffer and 0 2011 * if it was immediate data in a response. 2012 */ 2013 static void rx_eth(struct adapter *adap, struct sge_rspq *rq, 2014 struct sk_buff *skb, int pad, int lro) 2015 { 2016 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); 2017 struct sge_qset *qs = rspq_to_qset(rq); 2018 struct port_info *pi; 2019 2020 skb_pull(skb, sizeof(*p) + pad); 2021 skb->protocol = eth_type_trans(skb, adap->port[p->iff]); 2022 pi = netdev_priv(skb->dev); 2023 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid && 2024 p->csum == htons(0xffff) && !p->fragment) { 2025 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2026 skb->ip_summed = CHECKSUM_UNNECESSARY; 2027 } else 2028 skb_checksum_none_assert(skb); 2029 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2030 2031 if (p->vlan_valid) { 2032 qs->port_stats[SGE_PSTAT_VLANEX]++; 2033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan)); 2034 } 2035 if (rq->polling) { 2036 if (lro) 2037 napi_gro_receive(&qs->napi, skb); 2038 else { 2039 if (unlikely(pi->iscsic.flags)) 2040 cxgb3_process_iscsi_prov_pack(pi, skb); 2041 netif_receive_skb(skb); 2042 } 2043 } else 2044 netif_rx(skb); 2045 } 2046 2047 static inline int is_eth_tcp(u32 rss) 2048 { 2049 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE; 2050 } 2051 2052 /** 2053 * lro_add_page - add a page chunk to an LRO session 2054 * @adap: the adapter 2055 * @qs: the associated queue set 2056 * @fl: the free list containing the page chunk to add 2057 * @len: packet length 2058 * @complete: Indicates the last fragment of a frame 2059 * 2060 * Add a received packet contained in a page chunk to an existing LRO 2061 * session. 2062 */ 2063 static void lro_add_page(struct adapter *adap, struct sge_qset *qs, 2064 struct sge_fl *fl, int len, int complete) 2065 { 2066 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; 2067 struct port_info *pi = netdev_priv(qs->netdev); 2068 struct sk_buff *skb = NULL; 2069 struct cpl_rx_pkt *cpl; 2070 struct skb_frag_struct *rx_frag; 2071 int nr_frags; 2072 int offset = 0; 2073 2074 if (!qs->nomem) { 2075 skb = napi_get_frags(&qs->napi); 2076 qs->nomem = !skb; 2077 } 2078 2079 fl->credits--; 2080 2081 pci_dma_sync_single_for_cpu(adap->pdev, 2082 dma_unmap_addr(sd, dma_addr), 2083 fl->buf_size - SGE_PG_RSVD, 2084 PCI_DMA_FROMDEVICE); 2085 2086 (*sd->pg_chunk.p_cnt)--; 2087 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page) 2088 pci_unmap_page(adap->pdev, 2089 sd->pg_chunk.mapping, 2090 fl->alloc_size, 2091 PCI_DMA_FROMDEVICE); 2092 2093 if (!skb) { 2094 put_page(sd->pg_chunk.page); 2095 if (complete) 2096 qs->nomem = 0; 2097 return; 2098 } 2099 2100 rx_frag = skb_shinfo(skb)->frags; 2101 nr_frags = skb_shinfo(skb)->nr_frags; 2102 2103 if (!nr_frags) { 2104 offset = 2 + sizeof(struct cpl_rx_pkt); 2105 cpl = qs->lro_va = sd->pg_chunk.va + 2; 2106 2107 if ((qs->netdev->features & NETIF_F_RXCSUM) && 2108 cpl->csum_valid && cpl->csum == htons(0xffff)) { 2109 skb->ip_summed = CHECKSUM_UNNECESSARY; 2110 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; 2111 } else 2112 skb->ip_summed = CHECKSUM_NONE; 2113 } else 2114 cpl = qs->lro_va; 2115 2116 len -= offset; 2117 2118 rx_frag += nr_frags; 2119 __skb_frag_set_page(rx_frag, sd->pg_chunk.page); 2120 rx_frag->page_offset = sd->pg_chunk.offset + offset; 2121 skb_frag_size_set(rx_frag, len); 2122 2123 skb->len += len; 2124 skb->data_len += len; 2125 skb->truesize += len; 2126 skb_shinfo(skb)->nr_frags++; 2127 2128 if (!complete) 2129 return; 2130 2131 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]); 2132 2133 if (cpl->vlan_valid) { 2134 qs->port_stats[SGE_PSTAT_VLANEX]++; 2135 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); 2136 } 2137 napi_gro_frags(&qs->napi); 2138 } 2139 2140 /** 2141 * handle_rsp_cntrl_info - handles control information in a response 2142 * @qs: the queue set corresponding to the response 2143 * @flags: the response control flags 2144 * 2145 * Handles the control information of an SGE response, such as GTS 2146 * indications and completion credits for the queue set's Tx queues. 2147 * HW coalesces credits, we don't do any extra SW coalescing. 2148 */ 2149 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags) 2150 { 2151 unsigned int credits; 2152 2153 #if USE_GTS 2154 if (flags & F_RSPD_TXQ0_GTS) 2155 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); 2156 #endif 2157 2158 credits = G_RSPD_TXQ0_CR(flags); 2159 if (credits) 2160 qs->txq[TXQ_ETH].processed += credits; 2161 2162 credits = G_RSPD_TXQ2_CR(flags); 2163 if (credits) 2164 qs->txq[TXQ_CTRL].processed += credits; 2165 2166 # if USE_GTS 2167 if (flags & F_RSPD_TXQ1_GTS) 2168 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); 2169 # endif 2170 credits = G_RSPD_TXQ1_CR(flags); 2171 if (credits) 2172 qs->txq[TXQ_OFLD].processed += credits; 2173 } 2174 2175 /** 2176 * check_ring_db - check if we need to ring any doorbells 2177 * @adapter: the adapter 2178 * @qs: the queue set whose Tx queues are to be examined 2179 * @sleeping: indicates which Tx queue sent GTS 2180 * 2181 * Checks if some of a queue set's Tx queues need to ring their doorbells 2182 * to resume transmission after idling while they still have unprocessed 2183 * descriptors. 2184 */ 2185 static void check_ring_db(struct adapter *adap, struct sge_qset *qs, 2186 unsigned int sleeping) 2187 { 2188 if (sleeping & F_RSPD_TXQ0_GTS) { 2189 struct sge_txq *txq = &qs->txq[TXQ_ETH]; 2190 2191 if (txq->cleaned + txq->in_use != txq->processed && 2192 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2193 set_bit(TXQ_RUNNING, &txq->flags); 2194 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2195 V_EGRCNTX(txq->cntxt_id)); 2196 } 2197 } 2198 2199 if (sleeping & F_RSPD_TXQ1_GTS) { 2200 struct sge_txq *txq = &qs->txq[TXQ_OFLD]; 2201 2202 if (txq->cleaned + txq->in_use != txq->processed && 2203 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { 2204 set_bit(TXQ_RUNNING, &txq->flags); 2205 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | 2206 V_EGRCNTX(txq->cntxt_id)); 2207 } 2208 } 2209 } 2210 2211 /** 2212 * is_new_response - check if a response is newly written 2213 * @r: the response descriptor 2214 * @q: the response queue 2215 * 2216 * Returns true if a response descriptor contains a yet unprocessed 2217 * response. 2218 */ 2219 static inline int is_new_response(const struct rsp_desc *r, 2220 const struct sge_rspq *q) 2221 { 2222 return (r->intr_gen & F_RSPD_GEN2) == q->gen; 2223 } 2224 2225 static inline void clear_rspq_bufstate(struct sge_rspq * const q) 2226 { 2227 q->pg_skb = NULL; 2228 q->rx_recycle_buf = 0; 2229 } 2230 2231 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) 2232 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ 2233 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ 2234 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ 2235 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) 2236 2237 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ 2238 #define NOMEM_INTR_DELAY 2500 2239 2240 /** 2241 * process_responses - process responses from an SGE response queue 2242 * @adap: the adapter 2243 * @qs: the queue set to which the response queue belongs 2244 * @budget: how many responses can be processed in this round 2245 * 2246 * Process responses from an SGE response queue up to the supplied budget. 2247 * Responses include received packets as well as credits and other events 2248 * for the queues that belong to the response queue's queue set. 2249 * A negative budget is effectively unlimited. 2250 * 2251 * Additionally choose the interrupt holdoff time for the next interrupt 2252 * on this queue. If the system is under memory shortage use a fairly 2253 * long delay to help recovery. 2254 */ 2255 static int process_responses(struct adapter *adap, struct sge_qset *qs, 2256 int budget) 2257 { 2258 struct sge_rspq *q = &qs->rspq; 2259 struct rsp_desc *r = &q->desc[q->cidx]; 2260 int budget_left = budget; 2261 unsigned int sleeping = 0; 2262 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; 2263 int ngathered = 0; 2264 2265 q->next_holdoff = q->holdoff_tmr; 2266 2267 while (likely(budget_left && is_new_response(r, q))) { 2268 int packet_complete, eth, ethpad = 2; 2269 int lro = !!(qs->netdev->features & NETIF_F_GRO); 2270 struct sk_buff *skb = NULL; 2271 u32 len, flags; 2272 __be32 rss_hi, rss_lo; 2273 2274 dma_rmb(); 2275 eth = r->rss_hdr.opcode == CPL_RX_PKT; 2276 rss_hi = *(const __be32 *)r; 2277 rss_lo = r->rss_hdr.rss_hash_val; 2278 flags = ntohl(r->flags); 2279 2280 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { 2281 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); 2282 if (!skb) 2283 goto no_mem; 2284 2285 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE); 2286 skb->data[0] = CPL_ASYNC_NOTIF; 2287 rss_hi = htonl(CPL_ASYNC_NOTIF << 24); 2288 q->async_notif++; 2289 } else if (flags & F_RSPD_IMM_DATA_VALID) { 2290 skb = get_imm_packet(r); 2291 if (unlikely(!skb)) { 2292 no_mem: 2293 q->next_holdoff = NOMEM_INTR_DELAY; 2294 q->nomem++; 2295 /* consume one credit since we tried */ 2296 budget_left--; 2297 break; 2298 } 2299 q->imm_data++; 2300 ethpad = 0; 2301 } else if ((len = ntohl(r->len_cq)) != 0) { 2302 struct sge_fl *fl; 2303 2304 lro &= eth && is_eth_tcp(rss_hi); 2305 2306 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; 2307 if (fl->use_pages) { 2308 void *addr = fl->sdesc[fl->cidx].pg_chunk.va; 2309 2310 prefetch(addr); 2311 #if L1_CACHE_BYTES < 128 2312 prefetch(addr + L1_CACHE_BYTES); 2313 #endif 2314 __refill_fl(adap, fl); 2315 if (lro > 0) { 2316 lro_add_page(adap, qs, fl, 2317 G_RSPD_LEN(len), 2318 flags & F_RSPD_EOP); 2319 goto next_fl; 2320 } 2321 2322 skb = get_packet_pg(adap, fl, q, 2323 G_RSPD_LEN(len), 2324 eth ? 2325 SGE_RX_DROP_THRES : 0); 2326 q->pg_skb = skb; 2327 } else 2328 skb = get_packet(adap, fl, G_RSPD_LEN(len), 2329 eth ? SGE_RX_DROP_THRES : 0); 2330 if (unlikely(!skb)) { 2331 if (!eth) 2332 goto no_mem; 2333 q->rx_drops++; 2334 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT)) 2335 __skb_pull(skb, 2); 2336 next_fl: 2337 if (++fl->cidx == fl->size) 2338 fl->cidx = 0; 2339 } else 2340 q->pure_rsps++; 2341 2342 if (flags & RSPD_CTRL_MASK) { 2343 sleeping |= flags & RSPD_GTS_MASK; 2344 handle_rsp_cntrl_info(qs, flags); 2345 } 2346 2347 r++; 2348 if (unlikely(++q->cidx == q->size)) { 2349 q->cidx = 0; 2350 q->gen ^= 1; 2351 r = q->desc; 2352 } 2353 prefetch(r); 2354 2355 if (++q->credits >= (q->size / 4)) { 2356 refill_rspq(adap, q, q->credits); 2357 q->credits = 0; 2358 } 2359 2360 packet_complete = flags & 2361 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID | 2362 F_RSPD_ASYNC_NOTIF); 2363 2364 if (skb != NULL && packet_complete) { 2365 if (eth) 2366 rx_eth(adap, q, skb, ethpad, lro); 2367 else { 2368 q->offload_pkts++; 2369 /* Preserve the RSS info in csum & priority */ 2370 skb->csum = rss_hi; 2371 skb->priority = rss_lo; 2372 ngathered = rx_offload(&adap->tdev, q, skb, 2373 offload_skbs, 2374 ngathered); 2375 } 2376 2377 if (flags & F_RSPD_EOP) 2378 clear_rspq_bufstate(q); 2379 } 2380 --budget_left; 2381 } 2382 2383 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); 2384 2385 if (sleeping) 2386 check_ring_db(adap, qs, sleeping); 2387 2388 smp_mb(); /* commit Tx queue .processed updates */ 2389 if (unlikely(qs->txq_stopped != 0)) 2390 restart_tx(qs); 2391 2392 budget -= budget_left; 2393 return budget; 2394 } 2395 2396 static inline int is_pure_response(const struct rsp_desc *r) 2397 { 2398 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); 2399 2400 return (n | r->len_cq) == 0; 2401 } 2402 2403 /** 2404 * napi_rx_handler - the NAPI handler for Rx processing 2405 * @napi: the napi instance 2406 * @budget: how many packets we can process in this round 2407 * 2408 * Handler for new data events when using NAPI. 2409 */ 2410 static int napi_rx_handler(struct napi_struct *napi, int budget) 2411 { 2412 struct sge_qset *qs = container_of(napi, struct sge_qset, napi); 2413 struct adapter *adap = qs->adap; 2414 int work_done = process_responses(adap, qs, budget); 2415 2416 if (likely(work_done < budget)) { 2417 napi_complete_done(napi, work_done); 2418 2419 /* 2420 * Because we don't atomically flush the following 2421 * write it is possible that in very rare cases it can 2422 * reach the device in a way that races with a new 2423 * response being written plus an error interrupt 2424 * causing the NAPI interrupt handler below to return 2425 * unhandled status to the OS. To protect against 2426 * this would require flushing the write and doing 2427 * both the write and the flush with interrupts off. 2428 * Way too expensive and unjustifiable given the 2429 * rarity of the race. 2430 * 2431 * The race cannot happen at all with MSI-X. 2432 */ 2433 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | 2434 V_NEWTIMER(qs->rspq.next_holdoff) | 2435 V_NEWINDEX(qs->rspq.cidx)); 2436 } 2437 return work_done; 2438 } 2439 2440 /* 2441 * Returns true if the device is already scheduled for polling. 2442 */ 2443 static inline int napi_is_scheduled(struct napi_struct *napi) 2444 { 2445 return test_bit(NAPI_STATE_SCHED, &napi->state); 2446 } 2447 2448 /** 2449 * process_pure_responses - process pure responses from a response queue 2450 * @adap: the adapter 2451 * @qs: the queue set owning the response queue 2452 * @r: the first pure response to process 2453 * 2454 * A simpler version of process_responses() that handles only pure (i.e., 2455 * non data-carrying) responses. Such respones are too light-weight to 2456 * justify calling a softirq under NAPI, so we handle them specially in 2457 * the interrupt handler. The function is called with a pointer to a 2458 * response, which the caller must ensure is a valid pure response. 2459 * 2460 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. 2461 */ 2462 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, 2463 struct rsp_desc *r) 2464 { 2465 struct sge_rspq *q = &qs->rspq; 2466 unsigned int sleeping = 0; 2467 2468 do { 2469 u32 flags = ntohl(r->flags); 2470 2471 r++; 2472 if (unlikely(++q->cidx == q->size)) { 2473 q->cidx = 0; 2474 q->gen ^= 1; 2475 r = q->desc; 2476 } 2477 prefetch(r); 2478 2479 if (flags & RSPD_CTRL_MASK) { 2480 sleeping |= flags & RSPD_GTS_MASK; 2481 handle_rsp_cntrl_info(qs, flags); 2482 } 2483 2484 q->pure_rsps++; 2485 if (++q->credits >= (q->size / 4)) { 2486 refill_rspq(adap, q, q->credits); 2487 q->credits = 0; 2488 } 2489 if (!is_new_response(r, q)) 2490 break; 2491 dma_rmb(); 2492 } while (is_pure_response(r)); 2493 2494 if (sleeping) 2495 check_ring_db(adap, qs, sleeping); 2496 2497 smp_mb(); /* commit Tx queue .processed updates */ 2498 if (unlikely(qs->txq_stopped != 0)) 2499 restart_tx(qs); 2500 2501 return is_new_response(r, q); 2502 } 2503 2504 /** 2505 * handle_responses - decide what to do with new responses in NAPI mode 2506 * @adap: the adapter 2507 * @q: the response queue 2508 * 2509 * This is used by the NAPI interrupt handlers to decide what to do with 2510 * new SGE responses. If there are no new responses it returns -1. If 2511 * there are new responses and they are pure (i.e., non-data carrying) 2512 * it handles them straight in hard interrupt context as they are very 2513 * cheap and don't deliver any packets. Finally, if there are any data 2514 * signaling responses it schedules the NAPI handler. Returns 1 if it 2515 * schedules NAPI, 0 if all new responses were pure. 2516 * 2517 * The caller must ascertain NAPI is not already running. 2518 */ 2519 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) 2520 { 2521 struct sge_qset *qs = rspq_to_qset(q); 2522 struct rsp_desc *r = &q->desc[q->cidx]; 2523 2524 if (!is_new_response(r, q)) 2525 return -1; 2526 dma_rmb(); 2527 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { 2528 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2529 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); 2530 return 0; 2531 } 2532 napi_schedule(&qs->napi); 2533 return 1; 2534 } 2535 2536 /* 2537 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case 2538 * (i.e., response queue serviced in hard interrupt). 2539 */ 2540 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie) 2541 { 2542 struct sge_qset *qs = cookie; 2543 struct adapter *adap = qs->adap; 2544 struct sge_rspq *q = &qs->rspq; 2545 2546 spin_lock(&q->lock); 2547 if (process_responses(adap, qs, -1) == 0) 2548 q->unhandled_irqs++; 2549 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2550 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2551 spin_unlock(&q->lock); 2552 return IRQ_HANDLED; 2553 } 2554 2555 /* 2556 * The MSI-X interrupt handler for an SGE response queue for the NAPI case 2557 * (i.e., response queue serviced by NAPI polling). 2558 */ 2559 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) 2560 { 2561 struct sge_qset *qs = cookie; 2562 struct sge_rspq *q = &qs->rspq; 2563 2564 spin_lock(&q->lock); 2565 2566 if (handle_responses(qs->adap, q) < 0) 2567 q->unhandled_irqs++; 2568 spin_unlock(&q->lock); 2569 return IRQ_HANDLED; 2570 } 2571 2572 /* 2573 * The non-NAPI MSI interrupt handler. This needs to handle data events from 2574 * SGE response queues as well as error and other async events as they all use 2575 * the same MSI vector. We use one SGE response queue per port in this mode 2576 * and protect all response queues with queue 0's lock. 2577 */ 2578 static irqreturn_t t3_intr_msi(int irq, void *cookie) 2579 { 2580 int new_packets = 0; 2581 struct adapter *adap = cookie; 2582 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2583 2584 spin_lock(&q->lock); 2585 2586 if (process_responses(adap, &adap->sge.qs[0], -1)) { 2587 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | 2588 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); 2589 new_packets = 1; 2590 } 2591 2592 if (adap->params.nports == 2 && 2593 process_responses(adap, &adap->sge.qs[1], -1)) { 2594 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2595 2596 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | 2597 V_NEWTIMER(q1->next_holdoff) | 2598 V_NEWINDEX(q1->cidx)); 2599 new_packets = 1; 2600 } 2601 2602 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2603 q->unhandled_irqs++; 2604 2605 spin_unlock(&q->lock); 2606 return IRQ_HANDLED; 2607 } 2608 2609 static int rspq_check_napi(struct sge_qset *qs) 2610 { 2611 struct sge_rspq *q = &qs->rspq; 2612 2613 if (!napi_is_scheduled(&qs->napi) && 2614 is_new_response(&q->desc[q->cidx], q)) { 2615 napi_schedule(&qs->napi); 2616 return 1; 2617 } 2618 return 0; 2619 } 2620 2621 /* 2622 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced 2623 * by NAPI polling). Handles data events from SGE response queues as well as 2624 * error and other async events as they all use the same MSI vector. We use 2625 * one SGE response queue per port in this mode and protect all response 2626 * queues with queue 0's lock. 2627 */ 2628 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie) 2629 { 2630 int new_packets; 2631 struct adapter *adap = cookie; 2632 struct sge_rspq *q = &adap->sge.qs[0].rspq; 2633 2634 spin_lock(&q->lock); 2635 2636 new_packets = rspq_check_napi(&adap->sge.qs[0]); 2637 if (adap->params.nports == 2) 2638 new_packets += rspq_check_napi(&adap->sge.qs[1]); 2639 if (!new_packets && t3_slow_intr_handler(adap) == 0) 2640 q->unhandled_irqs++; 2641 2642 spin_unlock(&q->lock); 2643 return IRQ_HANDLED; 2644 } 2645 2646 /* 2647 * A helper function that processes responses and issues GTS. 2648 */ 2649 static inline int process_responses_gts(struct adapter *adap, 2650 struct sge_rspq *rq) 2651 { 2652 int work; 2653 2654 work = process_responses(adap, rspq_to_qset(rq), -1); 2655 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | 2656 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); 2657 return work; 2658 } 2659 2660 /* 2661 * The legacy INTx interrupt handler. This needs to handle data events from 2662 * SGE response queues as well as error and other async events as they all use 2663 * the same interrupt pin. We use one SGE response queue per port in this mode 2664 * and protect all response queues with queue 0's lock. 2665 */ 2666 static irqreturn_t t3_intr(int irq, void *cookie) 2667 { 2668 int work_done, w0, w1; 2669 struct adapter *adap = cookie; 2670 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2671 struct sge_rspq *q1 = &adap->sge.qs[1].rspq; 2672 2673 spin_lock(&q0->lock); 2674 2675 w0 = is_new_response(&q0->desc[q0->cidx], q0); 2676 w1 = adap->params.nports == 2 && 2677 is_new_response(&q1->desc[q1->cidx], q1); 2678 2679 if (likely(w0 | w1)) { 2680 t3_write_reg(adap, A_PL_CLI, 0); 2681 t3_read_reg(adap, A_PL_CLI); /* flush */ 2682 2683 if (likely(w0)) 2684 process_responses_gts(adap, q0); 2685 2686 if (w1) 2687 process_responses_gts(adap, q1); 2688 2689 work_done = w0 | w1; 2690 } else 2691 work_done = t3_slow_intr_handler(adap); 2692 2693 spin_unlock(&q0->lock); 2694 return IRQ_RETVAL(work_done != 0); 2695 } 2696 2697 /* 2698 * Interrupt handler for legacy INTx interrupts for T3B-based cards. 2699 * Handles data events from SGE response queues as well as error and other 2700 * async events as they all use the same interrupt pin. We use one SGE 2701 * response queue per port in this mode and protect all response queues with 2702 * queue 0's lock. 2703 */ 2704 static irqreturn_t t3b_intr(int irq, void *cookie) 2705 { 2706 u32 map; 2707 struct adapter *adap = cookie; 2708 struct sge_rspq *q0 = &adap->sge.qs[0].rspq; 2709 2710 t3_write_reg(adap, A_PL_CLI, 0); 2711 map = t3_read_reg(adap, A_SG_DATA_INTR); 2712 2713 if (unlikely(!map)) /* shared interrupt, most likely */ 2714 return IRQ_NONE; 2715 2716 spin_lock(&q0->lock); 2717 2718 if (unlikely(map & F_ERRINTR)) 2719 t3_slow_intr_handler(adap); 2720 2721 if (likely(map & 1)) 2722 process_responses_gts(adap, q0); 2723 2724 if (map & 2) 2725 process_responses_gts(adap, &adap->sge.qs[1].rspq); 2726 2727 spin_unlock(&q0->lock); 2728 return IRQ_HANDLED; 2729 } 2730 2731 /* 2732 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. 2733 * Handles data events from SGE response queues as well as error and other 2734 * async events as they all use the same interrupt pin. We use one SGE 2735 * response queue per port in this mode and protect all response queues with 2736 * queue 0's lock. 2737 */ 2738 static irqreturn_t t3b_intr_napi(int irq, void *cookie) 2739 { 2740 u32 map; 2741 struct adapter *adap = cookie; 2742 struct sge_qset *qs0 = &adap->sge.qs[0]; 2743 struct sge_rspq *q0 = &qs0->rspq; 2744 2745 t3_write_reg(adap, A_PL_CLI, 0); 2746 map = t3_read_reg(adap, A_SG_DATA_INTR); 2747 2748 if (unlikely(!map)) /* shared interrupt, most likely */ 2749 return IRQ_NONE; 2750 2751 spin_lock(&q0->lock); 2752 2753 if (unlikely(map & F_ERRINTR)) 2754 t3_slow_intr_handler(adap); 2755 2756 if (likely(map & 1)) 2757 napi_schedule(&qs0->napi); 2758 2759 if (map & 2) 2760 napi_schedule(&adap->sge.qs[1].napi); 2761 2762 spin_unlock(&q0->lock); 2763 return IRQ_HANDLED; 2764 } 2765 2766 /** 2767 * t3_intr_handler - select the top-level interrupt handler 2768 * @adap: the adapter 2769 * @polling: whether using NAPI to service response queues 2770 * 2771 * Selects the top-level interrupt handler based on the type of interrupts 2772 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the 2773 * response queues. 2774 */ 2775 irq_handler_t t3_intr_handler(struct adapter *adap, int polling) 2776 { 2777 if (adap->flags & USING_MSIX) 2778 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; 2779 if (adap->flags & USING_MSI) 2780 return polling ? t3_intr_msi_napi : t3_intr_msi; 2781 if (adap->params.rev > 0) 2782 return polling ? t3b_intr_napi : t3b_intr; 2783 return t3_intr; 2784 } 2785 2786 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \ 2787 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \ 2788 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \ 2789 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \ 2790 F_HIRCQPARITYERROR) 2791 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR) 2792 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \ 2793 F_RSPQDISABLED) 2794 2795 /** 2796 * t3_sge_err_intr_handler - SGE async event interrupt handler 2797 * @adapter: the adapter 2798 * 2799 * Interrupt handler for SGE asynchronous (non-data) events. 2800 */ 2801 void t3_sge_err_intr_handler(struct adapter *adapter) 2802 { 2803 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) & 2804 ~F_FLEMPTY; 2805 2806 if (status & SGE_PARERR) 2807 CH_ALERT(adapter, "SGE parity error (0x%x)\n", 2808 status & SGE_PARERR); 2809 if (status & SGE_FRAMINGERR) 2810 CH_ALERT(adapter, "SGE framing error (0x%x)\n", 2811 status & SGE_FRAMINGERR); 2812 2813 if (status & F_RSPQCREDITOVERFOW) 2814 CH_ALERT(adapter, "SGE response queue credit overflow\n"); 2815 2816 if (status & F_RSPQDISABLED) { 2817 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); 2818 2819 CH_ALERT(adapter, 2820 "packet delivered to disabled response queue " 2821 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); 2822 } 2823 2824 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR)) 2825 queue_work(cxgb3_wq, &adapter->db_drop_task); 2826 2827 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL)) 2828 queue_work(cxgb3_wq, &adapter->db_full_task); 2829 2830 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY)) 2831 queue_work(cxgb3_wq, &adapter->db_empty_task); 2832 2833 t3_write_reg(adapter, A_SG_INT_CAUSE, status); 2834 if (status & SGE_FATALERR) 2835 t3_fatal_err(adapter); 2836 } 2837 2838 /** 2839 * sge_timer_tx - perform periodic maintenance of an SGE qset 2840 * @data: the SGE queue set to maintain 2841 * 2842 * Runs periodically from a timer to perform maintenance of an SGE queue 2843 * set. It performs two tasks: 2844 * 2845 * Cleans up any completed Tx descriptors that may still be pending. 2846 * Normal descriptor cleanup happens when new packets are added to a Tx 2847 * queue so this timer is relatively infrequent and does any cleanup only 2848 * if the Tx queue has not seen any new packets in a while. We make a 2849 * best effort attempt to reclaim descriptors, in that we don't wait 2850 * around if we cannot get a queue's lock (which most likely is because 2851 * someone else is queueing new packets and so will also handle the clean 2852 * up). Since control queues use immediate data exclusively we don't 2853 * bother cleaning them up here. 2854 * 2855 */ 2856 static void sge_timer_tx(unsigned long data) 2857 { 2858 struct sge_qset *qs = (struct sge_qset *)data; 2859 struct port_info *pi = netdev_priv(qs->netdev); 2860 struct adapter *adap = pi->adapter; 2861 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0}; 2862 unsigned long next_period; 2863 2864 if (__netif_tx_trylock(qs->tx_q)) { 2865 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH], 2866 TX_RECLAIM_TIMER_CHUNK); 2867 __netif_tx_unlock(qs->tx_q); 2868 } 2869 2870 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { 2871 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD], 2872 TX_RECLAIM_TIMER_CHUNK); 2873 spin_unlock(&qs->txq[TXQ_OFLD].lock); 2874 } 2875 2876 next_period = TX_RECLAIM_PERIOD >> 2877 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) / 2878 TX_RECLAIM_TIMER_CHUNK); 2879 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period); 2880 } 2881 2882 /** 2883 * sge_timer_rx - perform periodic maintenance of an SGE qset 2884 * @data: the SGE queue set to maintain 2885 * 2886 * a) Replenishes Rx queues that have run out due to memory shortage. 2887 * Normally new Rx buffers are added when existing ones are consumed but 2888 * when out of memory a queue can become empty. We try to add only a few 2889 * buffers here, the queue will be replenished fully as these new buffers 2890 * are used up if memory shortage has subsided. 2891 * 2892 * b) Return coalesced response queue credits in case a response queue is 2893 * starved. 2894 * 2895 */ 2896 static void sge_timer_rx(unsigned long data) 2897 { 2898 spinlock_t *lock; 2899 struct sge_qset *qs = (struct sge_qset *)data; 2900 struct port_info *pi = netdev_priv(qs->netdev); 2901 struct adapter *adap = pi->adapter; 2902 u32 status; 2903 2904 lock = adap->params.rev > 0 ? 2905 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock; 2906 2907 if (!spin_trylock_irq(lock)) 2908 goto out; 2909 2910 if (napi_is_scheduled(&qs->napi)) 2911 goto unlock; 2912 2913 if (adap->params.rev < 4) { 2914 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS); 2915 2916 if (status & (1 << qs->rspq.cntxt_id)) { 2917 qs->rspq.starved++; 2918 if (qs->rspq.credits) { 2919 qs->rspq.credits--; 2920 refill_rspq(adap, &qs->rspq, 1); 2921 qs->rspq.restarted++; 2922 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS, 2923 1 << qs->rspq.cntxt_id); 2924 } 2925 } 2926 } 2927 2928 if (qs->fl[0].credits < qs->fl[0].size) 2929 __refill_fl(adap, &qs->fl[0]); 2930 if (qs->fl[1].credits < qs->fl[1].size) 2931 __refill_fl(adap, &qs->fl[1]); 2932 2933 unlock: 2934 spin_unlock_irq(lock); 2935 out: 2936 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); 2937 } 2938 2939 /** 2940 * t3_update_qset_coalesce - update coalescing settings for a queue set 2941 * @qs: the SGE queue set 2942 * @p: new queue set parameters 2943 * 2944 * Update the coalescing settings for an SGE queue set. Nothing is done 2945 * if the queue set is not initialized yet. 2946 */ 2947 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) 2948 { 2949 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ 2950 qs->rspq.polling = p->polling; 2951 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll; 2952 } 2953 2954 /** 2955 * t3_sge_alloc_qset - initialize an SGE queue set 2956 * @adapter: the adapter 2957 * @id: the queue set id 2958 * @nports: how many Ethernet ports will be using this queue set 2959 * @irq_vec_idx: the IRQ vector index for response queue interrupts 2960 * @p: configuration parameters for this queue set 2961 * @ntxq: number of Tx queues for the queue set 2962 * @netdev: net device associated with this queue set 2963 * @netdevq: net device TX queue associated with this queue set 2964 * 2965 * Allocate resources and initialize an SGE queue set. A queue set 2966 * comprises a response queue, two Rx free-buffer queues, and up to 3 2967 * Tx queues. The Tx queues are assigned roles in the order Ethernet 2968 * queue, offload queue, and control queue. 2969 */ 2970 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, 2971 int irq_vec_idx, const struct qset_params *p, 2972 int ntxq, struct net_device *dev, 2973 struct netdev_queue *netdevq) 2974 { 2975 int i, avail, ret = -ENOMEM; 2976 struct sge_qset *q = &adapter->sge.qs[id]; 2977 2978 init_qset_cntxt(q, id); 2979 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q); 2980 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q); 2981 2982 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, 2983 sizeof(struct rx_desc), 2984 sizeof(struct rx_sw_desc), 2985 &q->fl[0].phys_addr, &q->fl[0].sdesc); 2986 if (!q->fl[0].desc) 2987 goto err; 2988 2989 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, 2990 sizeof(struct rx_desc), 2991 sizeof(struct rx_sw_desc), 2992 &q->fl[1].phys_addr, &q->fl[1].sdesc); 2993 if (!q->fl[1].desc) 2994 goto err; 2995 2996 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, 2997 sizeof(struct rsp_desc), 0, 2998 &q->rspq.phys_addr, NULL); 2999 if (!q->rspq.desc) 3000 goto err; 3001 3002 for (i = 0; i < ntxq; ++i) { 3003 /* 3004 * The control queue always uses immediate data so does not 3005 * need to keep track of any sk_buffs. 3006 */ 3007 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); 3008 3009 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], 3010 sizeof(struct tx_desc), sz, 3011 &q->txq[i].phys_addr, 3012 &q->txq[i].sdesc); 3013 if (!q->txq[i].desc) 3014 goto err; 3015 3016 q->txq[i].gen = 1; 3017 q->txq[i].size = p->txq_size[i]; 3018 spin_lock_init(&q->txq[i].lock); 3019 skb_queue_head_init(&q->txq[i].sendq); 3020 } 3021 3022 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq, 3023 (unsigned long)q); 3024 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq, 3025 (unsigned long)q); 3026 3027 q->fl[0].gen = q->fl[1].gen = 1; 3028 q->fl[0].size = p->fl_size; 3029 q->fl[1].size = p->jumbo_size; 3030 3031 q->rspq.gen = 1; 3032 q->rspq.size = p->rspq_size; 3033 spin_lock_init(&q->rspq.lock); 3034 skb_queue_head_init(&q->rspq.rx_queue); 3035 3036 q->txq[TXQ_ETH].stop_thres = nports * 3037 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); 3038 3039 #if FL0_PG_CHUNK_SIZE > 0 3040 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE; 3041 #else 3042 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data); 3043 #endif 3044 #if FL1_PG_CHUNK_SIZE > 0 3045 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE; 3046 #else 3047 q->fl[1].buf_size = is_offload(adapter) ? 3048 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 3049 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt); 3050 #endif 3051 3052 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0; 3053 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0; 3054 q->fl[0].order = FL0_PG_ORDER; 3055 q->fl[1].order = FL1_PG_ORDER; 3056 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE; 3057 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE; 3058 3059 spin_lock_irq(&adapter->sge.reg_lock); 3060 3061 /* FL threshold comparison uses < */ 3062 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, 3063 q->rspq.phys_addr, q->rspq.size, 3064 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0); 3065 if (ret) 3066 goto err_unlock; 3067 3068 for (i = 0; i < SGE_RXQ_PER_SET; ++i) { 3069 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, 3070 q->fl[i].phys_addr, q->fl[i].size, 3071 q->fl[i].buf_size - SGE_PG_RSVD, 3072 p->cong_thres, 1, 0); 3073 if (ret) 3074 goto err_unlock; 3075 } 3076 3077 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, 3078 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, 3079 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, 3080 1, 0); 3081 if (ret) 3082 goto err_unlock; 3083 3084 if (ntxq > 1) { 3085 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, 3086 USE_GTS, SGE_CNTXT_OFLD, id, 3087 q->txq[TXQ_OFLD].phys_addr, 3088 q->txq[TXQ_OFLD].size, 0, 1, 0); 3089 if (ret) 3090 goto err_unlock; 3091 } 3092 3093 if (ntxq > 2) { 3094 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, 3095 SGE_CNTXT_CTRL, id, 3096 q->txq[TXQ_CTRL].phys_addr, 3097 q->txq[TXQ_CTRL].size, 3098 q->txq[TXQ_CTRL].token, 1, 0); 3099 if (ret) 3100 goto err_unlock; 3101 } 3102 3103 spin_unlock_irq(&adapter->sge.reg_lock); 3104 3105 q->adap = adapter; 3106 q->netdev = dev; 3107 q->tx_q = netdevq; 3108 t3_update_qset_coalesce(q, p); 3109 3110 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size, 3111 GFP_KERNEL | __GFP_COMP); 3112 if (!avail) { 3113 CH_ALERT(adapter, "free list queue 0 initialization failed\n"); 3114 goto err; 3115 } 3116 if (avail < q->fl[0].size) 3117 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n", 3118 avail); 3119 3120 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size, 3121 GFP_KERNEL | __GFP_COMP); 3122 if (avail < q->fl[1].size) 3123 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n", 3124 avail); 3125 refill_rspq(adapter, &q->rspq, q->rspq.size - 1); 3126 3127 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | 3128 V_NEWTIMER(q->rspq.holdoff_tmr)); 3129 3130 return 0; 3131 3132 err_unlock: 3133 spin_unlock_irq(&adapter->sge.reg_lock); 3134 err: 3135 t3_free_qset(adapter, q); 3136 return ret; 3137 } 3138 3139 /** 3140 * t3_start_sge_timers - start SGE timer call backs 3141 * @adap: the adapter 3142 * 3143 * Starts each SGE queue set's timer call back 3144 */ 3145 void t3_start_sge_timers(struct adapter *adap) 3146 { 3147 int i; 3148 3149 for (i = 0; i < SGE_QSETS; ++i) { 3150 struct sge_qset *q = &adap->sge.qs[i]; 3151 3152 if (q->tx_reclaim_timer.function) 3153 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); 3154 3155 if (q->rx_reclaim_timer.function) 3156 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD); 3157 } 3158 } 3159 3160 /** 3161 * t3_stop_sge_timers - stop SGE timer call backs 3162 * @adap: the adapter 3163 * 3164 * Stops each SGE queue set's timer call back 3165 */ 3166 void t3_stop_sge_timers(struct adapter *adap) 3167 { 3168 int i; 3169 3170 for (i = 0; i < SGE_QSETS; ++i) { 3171 struct sge_qset *q = &adap->sge.qs[i]; 3172 3173 if (q->tx_reclaim_timer.function) 3174 del_timer_sync(&q->tx_reclaim_timer); 3175 if (q->rx_reclaim_timer.function) 3176 del_timer_sync(&q->rx_reclaim_timer); 3177 } 3178 } 3179 3180 /** 3181 * t3_free_sge_resources - free SGE resources 3182 * @adap: the adapter 3183 * 3184 * Frees resources used by the SGE queue sets. 3185 */ 3186 void t3_free_sge_resources(struct adapter *adap) 3187 { 3188 int i; 3189 3190 for (i = 0; i < SGE_QSETS; ++i) 3191 t3_free_qset(adap, &adap->sge.qs[i]); 3192 } 3193 3194 /** 3195 * t3_sge_start - enable SGE 3196 * @adap: the adapter 3197 * 3198 * Enables the SGE for DMAs. This is the last step in starting packet 3199 * transfers. 3200 */ 3201 void t3_sge_start(struct adapter *adap) 3202 { 3203 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); 3204 } 3205 3206 /** 3207 * t3_sge_stop - disable SGE operation 3208 * @adap: the adapter 3209 * 3210 * Disables the DMA engine. This can be called in emeregencies (e.g., 3211 * from error interrupts) or from normal process context. In the latter 3212 * case it also disables any pending queue restart tasklets. Note that 3213 * if it is called in interrupt context it cannot disable the restart 3214 * tasklets as it cannot wait, however the tasklets will have no effect 3215 * since the doorbells are disabled and the driver will call this again 3216 * later from process context, at which time the tasklets will be stopped 3217 * if they are still running. 3218 */ 3219 void t3_sge_stop(struct adapter *adap) 3220 { 3221 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); 3222 if (!in_interrupt()) { 3223 int i; 3224 3225 for (i = 0; i < SGE_QSETS; ++i) { 3226 struct sge_qset *qs = &adap->sge.qs[i]; 3227 3228 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk); 3229 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk); 3230 } 3231 } 3232 } 3233 3234 /** 3235 * t3_sge_init - initialize SGE 3236 * @adap: the adapter 3237 * @p: the SGE parameters 3238 * 3239 * Performs SGE initialization needed every time after a chip reset. 3240 * We do not initialize any of the queue sets here, instead the driver 3241 * top-level must request those individually. We also do not enable DMA 3242 * here, that should be done after the queues have been set up. 3243 */ 3244 void t3_sge_init(struct adapter *adap, struct sge_params *p) 3245 { 3246 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); 3247 3248 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | 3249 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN | 3250 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | 3251 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; 3252 #if SGE_NUM_GENBITS == 1 3253 ctrl |= F_EGRGENCTRL; 3254 #endif 3255 if (adap->params.rev > 0) { 3256 if (!(adap->flags & (USING_MSIX | USING_MSI))) 3257 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; 3258 } 3259 t3_write_reg(adap, A_SG_CONTROL, ctrl); 3260 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | 3261 V_LORCQDRBTHRSH(512)); 3262 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); 3263 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | 3264 V_TIMEOUT(200 * core_ticks_per_usec(adap))); 3265 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 3266 adap->params.rev < T3_REV_C ? 1000 : 500); 3267 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); 3268 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); 3269 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); 3270 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); 3271 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); 3272 } 3273 3274 /** 3275 * t3_sge_prep - one-time SGE initialization 3276 * @adap: the associated adapter 3277 * @p: SGE parameters 3278 * 3279 * Performs one-time initialization of SGE SW state. Includes determining 3280 * defaults for the assorted SGE parameters, which admins can change until 3281 * they are used to initialize the SGE. 3282 */ 3283 void t3_sge_prep(struct adapter *adap, struct sge_params *p) 3284 { 3285 int i; 3286 3287 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - 3288 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3289 3290 for (i = 0; i < SGE_QSETS; ++i) { 3291 struct qset_params *q = p->qset + i; 3292 3293 q->polling = adap->params.rev > 0; 3294 q->coalesce_usecs = 5; 3295 q->rspq_size = 1024; 3296 q->fl_size = 1024; 3297 q->jumbo_size = 512; 3298 q->txq_size[TXQ_ETH] = 1024; 3299 q->txq_size[TXQ_OFLD] = 1024; 3300 q->txq_size[TXQ_CTRL] = 256; 3301 q->cong_thres = 0; 3302 } 3303 3304 spin_lock_init(&adap->sge.reg_lock); 3305 } 3306