1 /* 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/init.h> 35 #include <linux/pci.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/netdevice.h> 38 #include <linux/etherdevice.h> 39 #include <linux/if_vlan.h> 40 #include <linux/mdio.h> 41 #include <linux/sockios.h> 42 #include <linux/workqueue.h> 43 #include <linux/proc_fs.h> 44 #include <linux/rtnetlink.h> 45 #include <linux/firmware.h> 46 #include <linux/log2.h> 47 #include <linux/stringify.h> 48 #include <linux/sched.h> 49 #include <linux/slab.h> 50 #include <asm/uaccess.h> 51 52 #include "common.h" 53 #include "cxgb3_ioctl.h" 54 #include "regs.h" 55 #include "cxgb3_offload.h" 56 #include "version.h" 57 58 #include "cxgb3_ctl_defs.h" 59 #include "t3_cpl.h" 60 #include "firmware_exports.h" 61 62 enum { 63 MAX_TXQ_ENTRIES = 16384, 64 MAX_CTRL_TXQ_ENTRIES = 1024, 65 MAX_RSPQ_ENTRIES = 16384, 66 MAX_RX_BUFFERS = 16384, 67 MAX_RX_JUMBO_BUFFERS = 16384, 68 MIN_TXQ_ENTRIES = 4, 69 MIN_CTRL_TXQ_ENTRIES = 4, 70 MIN_RSPQ_ENTRIES = 32, 71 MIN_FL_ENTRIES = 32 72 }; 73 74 #define PORT_MASK ((1 << MAX_NPORTS) - 1) 75 76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 77 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 78 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 79 80 #define EEPROM_MAGIC 0x38E2F10C 81 82 #define CH_DEVICE(devid, idx) \ 83 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx } 84 85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = { 86 CH_DEVICE(0x20, 0), /* PE9000 */ 87 CH_DEVICE(0x21, 1), /* T302E */ 88 CH_DEVICE(0x22, 2), /* T310E */ 89 CH_DEVICE(0x23, 3), /* T320X */ 90 CH_DEVICE(0x24, 1), /* T302X */ 91 CH_DEVICE(0x25, 3), /* T320E */ 92 CH_DEVICE(0x26, 2), /* T310X */ 93 CH_DEVICE(0x30, 2), /* T3B10 */ 94 CH_DEVICE(0x31, 3), /* T3B20 */ 95 CH_DEVICE(0x32, 1), /* T3B02 */ 96 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */ 97 CH_DEVICE(0x36, 3), /* S320E-CR */ 98 CH_DEVICE(0x37, 7), /* N320E-G2 */ 99 {0,} 100 }; 101 102 MODULE_DESCRIPTION(DRV_DESC); 103 MODULE_AUTHOR("Chelsio Communications"); 104 MODULE_LICENSE("Dual BSD/GPL"); 105 MODULE_VERSION(DRV_VERSION); 106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl); 107 108 static int dflt_msg_enable = DFLT_MSG_ENABLE; 109 110 module_param(dflt_msg_enable, int, 0644); 111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap"); 112 113 /* 114 * The driver uses the best interrupt scheme available on a platform in the 115 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which 116 * of these schemes the driver may consider as follows: 117 * 118 * msi = 2: choose from among all three options 119 * msi = 1: only consider MSI and pin interrupts 120 * msi = 0: force pin interrupts 121 */ 122 static int msi = 2; 123 124 module_param(msi, int, 0644); 125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X"); 126 127 /* 128 * The driver enables offload as a default. 129 * To disable it, use ofld_disable = 1. 130 */ 131 132 static int ofld_disable = 0; 133 134 module_param(ofld_disable, int, 0644); 135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not"); 136 137 /* 138 * We have work elements that we need to cancel when an interface is taken 139 * down. Normally the work elements would be executed by keventd but that 140 * can deadlock because of linkwatch. If our close method takes the rtnl 141 * lock and linkwatch is ahead of our work elements in keventd, linkwatch 142 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting 143 * for our work to complete. Get our own work queue to solve this. 144 */ 145 struct workqueue_struct *cxgb3_wq; 146 147 /** 148 * link_report - show link status and link speed/duplex 149 * @p: the port whose settings are to be reported 150 * 151 * Shows the link status, speed, and duplex of a port. 152 */ 153 static void link_report(struct net_device *dev) 154 { 155 if (!netif_carrier_ok(dev)) 156 printk(KERN_INFO "%s: link down\n", dev->name); 157 else { 158 const char *s = "10Mbps"; 159 const struct port_info *p = netdev_priv(dev); 160 161 switch (p->link_config.speed) { 162 case SPEED_10000: 163 s = "10Gbps"; 164 break; 165 case SPEED_1000: 166 s = "1000Mbps"; 167 break; 168 case SPEED_100: 169 s = "100Mbps"; 170 break; 171 } 172 173 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s, 174 p->link_config.duplex == DUPLEX_FULL ? "full" : "half"); 175 } 176 } 177 178 static void enable_tx_fifo_drain(struct adapter *adapter, 179 struct port_info *pi) 180 { 181 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0, 182 F_ENDROPPKT); 183 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0); 184 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN); 185 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN); 186 } 187 188 static void disable_tx_fifo_drain(struct adapter *adapter, 189 struct port_info *pi) 190 { 191 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 192 F_ENDROPPKT, 0); 193 } 194 195 void t3_os_link_fault(struct adapter *adap, int port_id, int state) 196 { 197 struct net_device *dev = adap->port[port_id]; 198 struct port_info *pi = netdev_priv(dev); 199 200 if (state == netif_carrier_ok(dev)) 201 return; 202 203 if (state) { 204 struct cmac *mac = &pi->mac; 205 206 netif_carrier_on(dev); 207 208 disable_tx_fifo_drain(adap, pi); 209 210 /* Clear local faults */ 211 t3_xgm_intr_disable(adap, pi->port_id); 212 t3_read_reg(adap, A_XGM_INT_STATUS + 213 pi->mac.offset); 214 t3_write_reg(adap, 215 A_XGM_INT_CAUSE + pi->mac.offset, 216 F_XGM_INT); 217 218 t3_set_reg_field(adap, 219 A_XGM_INT_ENABLE + 220 pi->mac.offset, 221 F_XGM_INT, F_XGM_INT); 222 t3_xgm_intr_enable(adap, pi->port_id); 223 224 t3_mac_enable(mac, MAC_DIRECTION_TX); 225 } else { 226 netif_carrier_off(dev); 227 228 /* Flush TX FIFO */ 229 enable_tx_fifo_drain(adap, pi); 230 } 231 link_report(dev); 232 } 233 234 /** 235 * t3_os_link_changed - handle link status changes 236 * @adapter: the adapter associated with the link change 237 * @port_id: the port index whose limk status has changed 238 * @link_stat: the new status of the link 239 * @speed: the new speed setting 240 * @duplex: the new duplex setting 241 * @pause: the new flow-control setting 242 * 243 * This is the OS-dependent handler for link status changes. The OS 244 * neutral handler takes care of most of the processing for these events, 245 * then calls this handler for any OS-specific processing. 246 */ 247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat, 248 int speed, int duplex, int pause) 249 { 250 struct net_device *dev = adapter->port[port_id]; 251 struct port_info *pi = netdev_priv(dev); 252 struct cmac *mac = &pi->mac; 253 254 /* Skip changes from disabled ports. */ 255 if (!netif_running(dev)) 256 return; 257 258 if (link_stat != netif_carrier_ok(dev)) { 259 if (link_stat) { 260 disable_tx_fifo_drain(adapter, pi); 261 262 t3_mac_enable(mac, MAC_DIRECTION_RX); 263 264 /* Clear local faults */ 265 t3_xgm_intr_disable(adapter, pi->port_id); 266 t3_read_reg(adapter, A_XGM_INT_STATUS + 267 pi->mac.offset); 268 t3_write_reg(adapter, 269 A_XGM_INT_CAUSE + pi->mac.offset, 270 F_XGM_INT); 271 272 t3_set_reg_field(adapter, 273 A_XGM_INT_ENABLE + pi->mac.offset, 274 F_XGM_INT, F_XGM_INT); 275 t3_xgm_intr_enable(adapter, pi->port_id); 276 277 netif_carrier_on(dev); 278 } else { 279 netif_carrier_off(dev); 280 281 t3_xgm_intr_disable(adapter, pi->port_id); 282 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 283 t3_set_reg_field(adapter, 284 A_XGM_INT_ENABLE + pi->mac.offset, 285 F_XGM_INT, 0); 286 287 if (is_10G(adapter)) 288 pi->phy.ops->power_down(&pi->phy, 1); 289 290 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 291 t3_mac_disable(mac, MAC_DIRECTION_RX); 292 t3_link_start(&pi->phy, mac, &pi->link_config); 293 294 /* Flush TX FIFO */ 295 enable_tx_fifo_drain(adapter, pi); 296 } 297 298 link_report(dev); 299 } 300 } 301 302 /** 303 * t3_os_phymod_changed - handle PHY module changes 304 * @phy: the PHY reporting the module change 305 * @mod_type: new module type 306 * 307 * This is the OS-dependent handler for PHY module changes. It is 308 * invoked when a PHY module is removed or inserted for any OS-specific 309 * processing. 310 */ 311 void t3_os_phymod_changed(struct adapter *adap, int port_id) 312 { 313 static const char *mod_str[] = { 314 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown" 315 }; 316 317 const struct net_device *dev = adap->port[port_id]; 318 const struct port_info *pi = netdev_priv(dev); 319 320 if (pi->phy.modtype == phy_modtype_none) 321 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name); 322 else 323 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name, 324 mod_str[pi->phy.modtype]); 325 } 326 327 static void cxgb_set_rxmode(struct net_device *dev) 328 { 329 struct port_info *pi = netdev_priv(dev); 330 331 t3_mac_set_rx_mode(&pi->mac, dev); 332 } 333 334 /** 335 * link_start - enable a port 336 * @dev: the device to enable 337 * 338 * Performs the MAC and PHY actions needed to enable a port. 339 */ 340 static void link_start(struct net_device *dev) 341 { 342 struct port_info *pi = netdev_priv(dev); 343 struct cmac *mac = &pi->mac; 344 345 t3_mac_reset(mac); 346 t3_mac_set_num_ucast(mac, MAX_MAC_IDX); 347 t3_mac_set_mtu(mac, dev->mtu); 348 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 349 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr); 350 t3_mac_set_rx_mode(mac, dev); 351 t3_link_start(&pi->phy, mac, &pi->link_config); 352 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 353 } 354 355 static inline void cxgb_disable_msi(struct adapter *adapter) 356 { 357 if (adapter->flags & USING_MSIX) { 358 pci_disable_msix(adapter->pdev); 359 adapter->flags &= ~USING_MSIX; 360 } else if (adapter->flags & USING_MSI) { 361 pci_disable_msi(adapter->pdev); 362 adapter->flags &= ~USING_MSI; 363 } 364 } 365 366 /* 367 * Interrupt handler for asynchronous events used with MSI-X. 368 */ 369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie) 370 { 371 t3_slow_intr_handler(cookie); 372 return IRQ_HANDLED; 373 } 374 375 /* 376 * Name the MSI-X interrupts. 377 */ 378 static void name_msix_vecs(struct adapter *adap) 379 { 380 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1; 381 382 snprintf(adap->msix_info[0].desc, n, "%s", adap->name); 383 adap->msix_info[0].desc[n] = 0; 384 385 for_each_port(adap, j) { 386 struct net_device *d = adap->port[j]; 387 const struct port_info *pi = netdev_priv(d); 388 389 for (i = 0; i < pi->nqsets; i++, msi_idx++) { 390 snprintf(adap->msix_info[msi_idx].desc, n, 391 "%s-%d", d->name, pi->first_qset + i); 392 adap->msix_info[msi_idx].desc[n] = 0; 393 } 394 } 395 } 396 397 static int request_msix_data_irqs(struct adapter *adap) 398 { 399 int i, j, err, qidx = 0; 400 401 for_each_port(adap, i) { 402 int nqsets = adap2pinfo(adap, i)->nqsets; 403 404 for (j = 0; j < nqsets; ++j) { 405 err = request_irq(adap->msix_info[qidx + 1].vec, 406 t3_intr_handler(adap, 407 adap->sge.qs[qidx]. 408 rspq.polling), 0, 409 adap->msix_info[qidx + 1].desc, 410 &adap->sge.qs[qidx]); 411 if (err) { 412 while (--qidx >= 0) 413 free_irq(adap->msix_info[qidx + 1].vec, 414 &adap->sge.qs[qidx]); 415 return err; 416 } 417 qidx++; 418 } 419 } 420 return 0; 421 } 422 423 static void free_irq_resources(struct adapter *adapter) 424 { 425 if (adapter->flags & USING_MSIX) { 426 int i, n = 0; 427 428 free_irq(adapter->msix_info[0].vec, adapter); 429 for_each_port(adapter, i) 430 n += adap2pinfo(adapter, i)->nqsets; 431 432 for (i = 0; i < n; ++i) 433 free_irq(adapter->msix_info[i + 1].vec, 434 &adapter->sge.qs[i]); 435 } else 436 free_irq(adapter->pdev->irq, adapter); 437 } 438 439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt, 440 unsigned long n) 441 { 442 int attempts = 10; 443 444 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) { 445 if (!--attempts) 446 return -ETIMEDOUT; 447 msleep(10); 448 } 449 return 0; 450 } 451 452 static int init_tp_parity(struct adapter *adap) 453 { 454 int i; 455 struct sk_buff *skb; 456 struct cpl_set_tcb_field *greq; 457 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts; 458 459 t3_tp_set_offload_mode(adap, 1); 460 461 for (i = 0; i < 16; i++) { 462 struct cpl_smt_write_req *req; 463 464 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 465 if (!skb) 466 skb = adap->nofail_skb; 467 if (!skb) 468 goto alloc_skb_fail; 469 470 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req)); 471 memset(req, 0, sizeof(*req)); 472 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 473 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i)); 474 req->mtu_idx = NMTUS - 1; 475 req->iff = i; 476 t3_mgmt_tx(adap, skb); 477 if (skb == adap->nofail_skb) { 478 await_mgmt_replies(adap, cnt, i + 1); 479 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 480 if (!adap->nofail_skb) 481 goto alloc_skb_fail; 482 } 483 } 484 485 for (i = 0; i < 2048; i++) { 486 struct cpl_l2t_write_req *req; 487 488 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 489 if (!skb) 490 skb = adap->nofail_skb; 491 if (!skb) 492 goto alloc_skb_fail; 493 494 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req)); 495 memset(req, 0, sizeof(*req)); 496 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 497 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i)); 498 req->params = htonl(V_L2T_W_IDX(i)); 499 t3_mgmt_tx(adap, skb); 500 if (skb == adap->nofail_skb) { 501 await_mgmt_replies(adap, cnt, 16 + i + 1); 502 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 503 if (!adap->nofail_skb) 504 goto alloc_skb_fail; 505 } 506 } 507 508 for (i = 0; i < 2048; i++) { 509 struct cpl_rte_write_req *req; 510 511 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 512 if (!skb) 513 skb = adap->nofail_skb; 514 if (!skb) 515 goto alloc_skb_fail; 516 517 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req)); 518 memset(req, 0, sizeof(*req)); 519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i)); 521 req->l2t_idx = htonl(V_L2T_W_IDX(i)); 522 t3_mgmt_tx(adap, skb); 523 if (skb == adap->nofail_skb) { 524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1); 525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 526 if (!adap->nofail_skb) 527 goto alloc_skb_fail; 528 } 529 } 530 531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 532 if (!skb) 533 skb = adap->nofail_skb; 534 if (!skb) 535 goto alloc_skb_fail; 536 537 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq)); 538 memset(greq, 0, sizeof(*greq)); 539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0)); 541 greq->mask = cpu_to_be64(1); 542 t3_mgmt_tx(adap, skb); 543 544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 545 if (skb == adap->nofail_skb) { 546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 548 } 549 550 t3_tp_set_offload_mode(adap, 0); 551 return i; 552 553 alloc_skb_fail: 554 t3_tp_set_offload_mode(adap, 0); 555 return -ENOMEM; 556 } 557 558 /** 559 * setup_rss - configure RSS 560 * @adap: the adapter 561 * 562 * Sets up RSS to distribute packets to multiple receive queues. We 563 * configure the RSS CPU lookup table to distribute to the number of HW 564 * receive queues, and the response queue lookup table to narrow that 565 * down to the response queues actually configured for each port. 566 * We always configure the RSS mapping for two ports since the mapping 567 * table has plenty of entries. 568 */ 569 static void setup_rss(struct adapter *adap) 570 { 571 int i; 572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets; 573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1; 574 u8 cpus[SGE_QSETS + 1]; 575 u16 rspq_map[RSS_TABLE_SIZE]; 576 577 for (i = 0; i < SGE_QSETS; ++i) 578 cpus[i] = i; 579 cpus[SGE_QSETS] = 0xff; /* terminator */ 580 581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) { 582 rspq_map[i] = i % nq0; 583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0; 584 } 585 586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN | 587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN | 588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map); 589 } 590 591 static void ring_dbs(struct adapter *adap) 592 { 593 int i, j; 594 595 for (i = 0; i < SGE_QSETS; i++) { 596 struct sge_qset *qs = &adap->sge.qs[i]; 597 598 if (qs->adap) 599 for (j = 0; j < SGE_TXQ_PER_SET; j++) 600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id)); 601 } 602 } 603 604 static void init_napi(struct adapter *adap) 605 { 606 int i; 607 608 for (i = 0; i < SGE_QSETS; i++) { 609 struct sge_qset *qs = &adap->sge.qs[i]; 610 611 if (qs->adap) 612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll, 613 64); 614 } 615 616 /* 617 * netif_napi_add() can be called only once per napi_struct because it 618 * adds each new napi_struct to a list. Be careful not to call it a 619 * second time, e.g., during EEH recovery, by making a note of it. 620 */ 621 adap->flags |= NAPI_INIT; 622 } 623 624 /* 625 * Wait until all NAPI handlers are descheduled. This includes the handlers of 626 * both netdevices representing interfaces and the dummy ones for the extra 627 * queues. 628 */ 629 static void quiesce_rx(struct adapter *adap) 630 { 631 int i; 632 633 for (i = 0; i < SGE_QSETS; i++) 634 if (adap->sge.qs[i].adap) 635 napi_disable(&adap->sge.qs[i].napi); 636 } 637 638 static void enable_all_napi(struct adapter *adap) 639 { 640 int i; 641 for (i = 0; i < SGE_QSETS; i++) 642 if (adap->sge.qs[i].adap) 643 napi_enable(&adap->sge.qs[i].napi); 644 } 645 646 /** 647 * setup_sge_qsets - configure SGE Tx/Rx/response queues 648 * @adap: the adapter 649 * 650 * Determines how many sets of SGE queues to use and initializes them. 651 * We support multiple queue sets per port if we have MSI-X, otherwise 652 * just one queue set per port. 653 */ 654 static int setup_sge_qsets(struct adapter *adap) 655 { 656 int i, j, err, irq_idx = 0, qset_idx = 0; 657 unsigned int ntxq = SGE_TXQ_PER_SET; 658 659 if (adap->params.rev > 0 && !(adap->flags & USING_MSI)) 660 irq_idx = -1; 661 662 for_each_port(adap, i) { 663 struct net_device *dev = adap->port[i]; 664 struct port_info *pi = netdev_priv(dev); 665 666 pi->qs = &adap->sge.qs[pi->first_qset]; 667 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) { 668 err = t3_sge_alloc_qset(adap, qset_idx, 1, 669 (adap->flags & USING_MSIX) ? qset_idx + 1 : 670 irq_idx, 671 &adap->params.sge.qset[qset_idx], ntxq, dev, 672 netdev_get_tx_queue(dev, j)); 673 if (err) { 674 t3_free_sge_resources(adap); 675 return err; 676 } 677 } 678 } 679 680 return 0; 681 } 682 683 static ssize_t attr_show(struct device *d, char *buf, 684 ssize_t(*format) (struct net_device *, char *)) 685 { 686 ssize_t len; 687 688 /* Synchronize with ioctls that may shut down the device */ 689 rtnl_lock(); 690 len = (*format) (to_net_dev(d), buf); 691 rtnl_unlock(); 692 return len; 693 } 694 695 static ssize_t attr_store(struct device *d, 696 const char *buf, size_t len, 697 ssize_t(*set) (struct net_device *, unsigned int), 698 unsigned int min_val, unsigned int max_val) 699 { 700 char *endp; 701 ssize_t ret; 702 unsigned int val; 703 704 if (!capable(CAP_NET_ADMIN)) 705 return -EPERM; 706 707 val = simple_strtoul(buf, &endp, 0); 708 if (endp == buf || val < min_val || val > max_val) 709 return -EINVAL; 710 711 rtnl_lock(); 712 ret = (*set) (to_net_dev(d), val); 713 if (!ret) 714 ret = len; 715 rtnl_unlock(); 716 return ret; 717 } 718 719 #define CXGB3_SHOW(name, val_expr) \ 720 static ssize_t format_##name(struct net_device *dev, char *buf) \ 721 { \ 722 struct port_info *pi = netdev_priv(dev); \ 723 struct adapter *adap = pi->adapter; \ 724 return sprintf(buf, "%u\n", val_expr); \ 725 } \ 726 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 727 char *buf) \ 728 { \ 729 return attr_show(d, buf, format_##name); \ 730 } 731 732 static ssize_t set_nfilters(struct net_device *dev, unsigned int val) 733 { 734 struct port_info *pi = netdev_priv(dev); 735 struct adapter *adap = pi->adapter; 736 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0; 737 738 if (adap->flags & FULL_INIT_DONE) 739 return -EBUSY; 740 if (val && adap->params.rev == 0) 741 return -EINVAL; 742 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - 743 min_tids) 744 return -EINVAL; 745 adap->params.mc5.nfilters = val; 746 return 0; 747 } 748 749 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr, 750 const char *buf, size_t len) 751 { 752 return attr_store(d, buf, len, set_nfilters, 0, ~0); 753 } 754 755 static ssize_t set_nservers(struct net_device *dev, unsigned int val) 756 { 757 struct port_info *pi = netdev_priv(dev); 758 struct adapter *adap = pi->adapter; 759 760 if (adap->flags & FULL_INIT_DONE) 761 return -EBUSY; 762 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters - 763 MC5_MIN_TIDS) 764 return -EINVAL; 765 adap->params.mc5.nservers = val; 766 return 0; 767 } 768 769 static ssize_t store_nservers(struct device *d, struct device_attribute *attr, 770 const char *buf, size_t len) 771 { 772 return attr_store(d, buf, len, set_nservers, 0, ~0); 773 } 774 775 #define CXGB3_ATTR_R(name, val_expr) \ 776 CXGB3_SHOW(name, val_expr) \ 777 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL) 778 779 #define CXGB3_ATTR_RW(name, val_expr, store_method) \ 780 CXGB3_SHOW(name, val_expr) \ 781 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method) 782 783 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5)); 784 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters); 785 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers); 786 787 static struct attribute *cxgb3_attrs[] = { 788 &dev_attr_cam_size.attr, 789 &dev_attr_nfilters.attr, 790 &dev_attr_nservers.attr, 791 NULL 792 }; 793 794 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs }; 795 796 static ssize_t tm_attr_show(struct device *d, 797 char *buf, int sched) 798 { 799 struct port_info *pi = netdev_priv(to_net_dev(d)); 800 struct adapter *adap = pi->adapter; 801 unsigned int v, addr, bpt, cpt; 802 ssize_t len; 803 804 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 805 rtnl_lock(); 806 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 807 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 808 if (sched & 1) 809 v >>= 16; 810 bpt = (v >> 8) & 0xff; 811 cpt = v & 0xff; 812 if (!cpt) 813 len = sprintf(buf, "disabled\n"); 814 else { 815 v = (adap->params.vpd.cclk * 1000) / cpt; 816 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125); 817 } 818 rtnl_unlock(); 819 return len; 820 } 821 822 static ssize_t tm_attr_store(struct device *d, 823 const char *buf, size_t len, int sched) 824 { 825 struct port_info *pi = netdev_priv(to_net_dev(d)); 826 struct adapter *adap = pi->adapter; 827 unsigned int val; 828 char *endp; 829 ssize_t ret; 830 831 if (!capable(CAP_NET_ADMIN)) 832 return -EPERM; 833 834 val = simple_strtoul(buf, &endp, 0); 835 if (endp == buf || val > 10000000) 836 return -EINVAL; 837 838 rtnl_lock(); 839 ret = t3_config_sched(adap, val, sched); 840 if (!ret) 841 ret = len; 842 rtnl_unlock(); 843 return ret; 844 } 845 846 #define TM_ATTR(name, sched) \ 847 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 848 char *buf) \ 849 { \ 850 return tm_attr_show(d, buf, sched); \ 851 } \ 852 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \ 853 const char *buf, size_t len) \ 854 { \ 855 return tm_attr_store(d, buf, len, sched); \ 856 } \ 857 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name) 858 859 TM_ATTR(sched0, 0); 860 TM_ATTR(sched1, 1); 861 TM_ATTR(sched2, 2); 862 TM_ATTR(sched3, 3); 863 TM_ATTR(sched4, 4); 864 TM_ATTR(sched5, 5); 865 TM_ATTR(sched6, 6); 866 TM_ATTR(sched7, 7); 867 868 static struct attribute *offload_attrs[] = { 869 &dev_attr_sched0.attr, 870 &dev_attr_sched1.attr, 871 &dev_attr_sched2.attr, 872 &dev_attr_sched3.attr, 873 &dev_attr_sched4.attr, 874 &dev_attr_sched5.attr, 875 &dev_attr_sched6.attr, 876 &dev_attr_sched7.attr, 877 NULL 878 }; 879 880 static struct attribute_group offload_attr_group = {.attrs = offload_attrs }; 881 882 /* 883 * Sends an sk_buff to an offload queue driver 884 * after dealing with any active network taps. 885 */ 886 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 887 { 888 int ret; 889 890 local_bh_disable(); 891 ret = t3_offload_tx(tdev, skb); 892 local_bh_enable(); 893 return ret; 894 } 895 896 static int write_smt_entry(struct adapter *adapter, int idx) 897 { 898 struct cpl_smt_write_req *req; 899 struct port_info *pi = netdev_priv(adapter->port[idx]); 900 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL); 901 902 if (!skb) 903 return -ENOMEM; 904 905 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req)); 906 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 907 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx)); 908 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */ 909 req->iff = idx; 910 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN); 911 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN); 912 skb->priority = 1; 913 offload_tx(&adapter->tdev, skb); 914 return 0; 915 } 916 917 static int init_smt(struct adapter *adapter) 918 { 919 int i; 920 921 for_each_port(adapter, i) 922 write_smt_entry(adapter, i); 923 return 0; 924 } 925 926 static void init_port_mtus(struct adapter *adapter) 927 { 928 unsigned int mtus = adapter->port[0]->mtu; 929 930 if (adapter->port[1]) 931 mtus |= adapter->port[1]->mtu << 16; 932 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus); 933 } 934 935 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo, 936 int hi, int port) 937 { 938 struct sk_buff *skb; 939 struct mngt_pktsched_wr *req; 940 int ret; 941 942 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 943 if (!skb) 944 skb = adap->nofail_skb; 945 if (!skb) 946 return -ENOMEM; 947 948 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req)); 949 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT)); 950 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET; 951 req->sched = sched; 952 req->idx = qidx; 953 req->min = lo; 954 req->max = hi; 955 req->binding = port; 956 ret = t3_mgmt_tx(adap, skb); 957 if (skb == adap->nofail_skb) { 958 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field), 959 GFP_KERNEL); 960 if (!adap->nofail_skb) 961 ret = -ENOMEM; 962 } 963 964 return ret; 965 } 966 967 static int bind_qsets(struct adapter *adap) 968 { 969 int i, j, err = 0; 970 971 for_each_port(adap, i) { 972 const struct port_info *pi = adap2pinfo(adap, i); 973 974 for (j = 0; j < pi->nqsets; ++j) { 975 int ret = send_pktsched_cmd(adap, 1, 976 pi->first_qset + j, -1, 977 -1, i); 978 if (ret) 979 err = ret; 980 } 981 } 982 983 return err; 984 } 985 986 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \ 987 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO) 988 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin" 989 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \ 990 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO) 991 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin" 992 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin" 993 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin" 994 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin" 995 MODULE_FIRMWARE(FW_FNAME); 996 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin"); 997 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin"); 998 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME); 999 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME); 1000 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME); 1001 1002 static inline const char *get_edc_fw_name(int edc_idx) 1003 { 1004 const char *fw_name = NULL; 1005 1006 switch (edc_idx) { 1007 case EDC_OPT_AEL2005: 1008 fw_name = AEL2005_OPT_EDC_NAME; 1009 break; 1010 case EDC_TWX_AEL2005: 1011 fw_name = AEL2005_TWX_EDC_NAME; 1012 break; 1013 case EDC_TWX_AEL2020: 1014 fw_name = AEL2020_TWX_EDC_NAME; 1015 break; 1016 } 1017 return fw_name; 1018 } 1019 1020 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size) 1021 { 1022 struct adapter *adapter = phy->adapter; 1023 const struct firmware *fw; 1024 char buf[64]; 1025 u32 csum; 1026 const __be32 *p; 1027 u16 *cache = phy->phy_cache; 1028 int i, ret; 1029 1030 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx)); 1031 1032 ret = request_firmware(&fw, buf, &adapter->pdev->dev); 1033 if (ret < 0) { 1034 dev_err(&adapter->pdev->dev, 1035 "could not upgrade firmware: unable to load %s\n", 1036 buf); 1037 return ret; 1038 } 1039 1040 /* check size, take checksum in account */ 1041 if (fw->size > size + 4) { 1042 CH_ERR(adapter, "firmware image too large %u, expected %d\n", 1043 (unsigned int)fw->size, size + 4); 1044 ret = -EINVAL; 1045 } 1046 1047 /* compute checksum */ 1048 p = (const __be32 *)fw->data; 1049 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++) 1050 csum += ntohl(p[i]); 1051 1052 if (csum != 0xffffffff) { 1053 CH_ERR(adapter, "corrupted firmware image, checksum %u\n", 1054 csum); 1055 ret = -EINVAL; 1056 } 1057 1058 for (i = 0; i < size / 4 ; i++) { 1059 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16; 1060 *cache++ = be32_to_cpu(p[i]) & 0xffff; 1061 } 1062 1063 release_firmware(fw); 1064 1065 return ret; 1066 } 1067 1068 static int upgrade_fw(struct adapter *adap) 1069 { 1070 int ret; 1071 const struct firmware *fw; 1072 struct device *dev = &adap->pdev->dev; 1073 1074 ret = request_firmware(&fw, FW_FNAME, dev); 1075 if (ret < 0) { 1076 dev_err(dev, "could not upgrade firmware: unable to load %s\n", 1077 FW_FNAME); 1078 return ret; 1079 } 1080 ret = t3_load_fw(adap, fw->data, fw->size); 1081 release_firmware(fw); 1082 1083 if (ret == 0) 1084 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n", 1085 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1086 else 1087 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n", 1088 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1089 1090 return ret; 1091 } 1092 1093 static inline char t3rev2char(struct adapter *adapter) 1094 { 1095 char rev = 0; 1096 1097 switch(adapter->params.rev) { 1098 case T3_REV_B: 1099 case T3_REV_B2: 1100 rev = 'b'; 1101 break; 1102 case T3_REV_C: 1103 rev = 'c'; 1104 break; 1105 } 1106 return rev; 1107 } 1108 1109 static int update_tpsram(struct adapter *adap) 1110 { 1111 const struct firmware *tpsram; 1112 char buf[64]; 1113 struct device *dev = &adap->pdev->dev; 1114 int ret; 1115 char rev; 1116 1117 rev = t3rev2char(adap); 1118 if (!rev) 1119 return 0; 1120 1121 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev); 1122 1123 ret = request_firmware(&tpsram, buf, dev); 1124 if (ret < 0) { 1125 dev_err(dev, "could not load TP SRAM: unable to load %s\n", 1126 buf); 1127 return ret; 1128 } 1129 1130 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size); 1131 if (ret) 1132 goto release_tpsram; 1133 1134 ret = t3_set_proto_sram(adap, tpsram->data); 1135 if (ret == 0) 1136 dev_info(dev, 1137 "successful update of protocol engine " 1138 "to %d.%d.%d\n", 1139 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1140 else 1141 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n", 1142 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1143 if (ret) 1144 dev_err(dev, "loading protocol SRAM failed\n"); 1145 1146 release_tpsram: 1147 release_firmware(tpsram); 1148 1149 return ret; 1150 } 1151 1152 /** 1153 * cxgb_up - enable the adapter 1154 * @adapter: adapter being enabled 1155 * 1156 * Called when the first port is enabled, this function performs the 1157 * actions necessary to make an adapter operational, such as completing 1158 * the initialization of HW modules, and enabling interrupts. 1159 * 1160 * Must be called with the rtnl lock held. 1161 */ 1162 static int cxgb_up(struct adapter *adap) 1163 { 1164 int err; 1165 1166 if (!(adap->flags & FULL_INIT_DONE)) { 1167 err = t3_check_fw_version(adap); 1168 if (err == -EINVAL) { 1169 err = upgrade_fw(adap); 1170 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n", 1171 FW_VERSION_MAJOR, FW_VERSION_MINOR, 1172 FW_VERSION_MICRO, err ? "failed" : "succeeded"); 1173 } 1174 1175 err = t3_check_tpsram_version(adap); 1176 if (err == -EINVAL) { 1177 err = update_tpsram(adap); 1178 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n", 1179 TP_VERSION_MAJOR, TP_VERSION_MINOR, 1180 TP_VERSION_MICRO, err ? "failed" : "succeeded"); 1181 } 1182 1183 /* 1184 * Clear interrupts now to catch errors if t3_init_hw fails. 1185 * We clear them again later as initialization may trigger 1186 * conditions that can interrupt. 1187 */ 1188 t3_intr_clear(adap); 1189 1190 err = t3_init_hw(adap, 0); 1191 if (err) 1192 goto out; 1193 1194 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT); 1195 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12)); 1196 1197 err = setup_sge_qsets(adap); 1198 if (err) 1199 goto out; 1200 1201 setup_rss(adap); 1202 if (!(adap->flags & NAPI_INIT)) 1203 init_napi(adap); 1204 1205 t3_start_sge_timers(adap); 1206 adap->flags |= FULL_INIT_DONE; 1207 } 1208 1209 t3_intr_clear(adap); 1210 1211 if (adap->flags & USING_MSIX) { 1212 name_msix_vecs(adap); 1213 err = request_irq(adap->msix_info[0].vec, 1214 t3_async_intr_handler, 0, 1215 adap->msix_info[0].desc, adap); 1216 if (err) 1217 goto irq_err; 1218 1219 err = request_msix_data_irqs(adap); 1220 if (err) { 1221 free_irq(adap->msix_info[0].vec, adap); 1222 goto irq_err; 1223 } 1224 } else if ((err = request_irq(adap->pdev->irq, 1225 t3_intr_handler(adap, 1226 adap->sge.qs[0].rspq. 1227 polling), 1228 (adap->flags & USING_MSI) ? 1229 0 : IRQF_SHARED, 1230 adap->name, adap))) 1231 goto irq_err; 1232 1233 enable_all_napi(adap); 1234 t3_sge_start(adap); 1235 t3_intr_enable(adap); 1236 1237 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) && 1238 is_offload(adap) && init_tp_parity(adap) == 0) 1239 adap->flags |= TP_PARITY_INIT; 1240 1241 if (adap->flags & TP_PARITY_INIT) { 1242 t3_write_reg(adap, A_TP_INT_CAUSE, 1243 F_CMCACHEPERR | F_ARPLUTPERR); 1244 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff); 1245 } 1246 1247 if (!(adap->flags & QUEUES_BOUND)) { 1248 int ret = bind_qsets(adap); 1249 1250 if (ret < 0) { 1251 CH_ERR(adap, "failed to bind qsets, err %d\n", ret); 1252 t3_intr_disable(adap); 1253 free_irq_resources(adap); 1254 err = ret; 1255 goto out; 1256 } 1257 adap->flags |= QUEUES_BOUND; 1258 } 1259 1260 out: 1261 return err; 1262 irq_err: 1263 CH_ERR(adap, "request_irq failed, err %d\n", err); 1264 goto out; 1265 } 1266 1267 /* 1268 * Release resources when all the ports and offloading have been stopped. 1269 */ 1270 static void cxgb_down(struct adapter *adapter, int on_wq) 1271 { 1272 t3_sge_stop(adapter); 1273 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */ 1274 t3_intr_disable(adapter); 1275 spin_unlock_irq(&adapter->work_lock); 1276 1277 free_irq_resources(adapter); 1278 quiesce_rx(adapter); 1279 t3_sge_stop(adapter); 1280 if (!on_wq) 1281 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */ 1282 } 1283 1284 static void schedule_chk_task(struct adapter *adap) 1285 { 1286 unsigned int timeo; 1287 1288 timeo = adap->params.linkpoll_period ? 1289 (HZ * adap->params.linkpoll_period) / 10 : 1290 adap->params.stats_update_period * HZ; 1291 if (timeo) 1292 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo); 1293 } 1294 1295 static int offload_open(struct net_device *dev) 1296 { 1297 struct port_info *pi = netdev_priv(dev); 1298 struct adapter *adapter = pi->adapter; 1299 struct t3cdev *tdev = dev2t3cdev(dev); 1300 int adap_up = adapter->open_device_map & PORT_MASK; 1301 int err; 1302 1303 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1304 return 0; 1305 1306 if (!adap_up && (err = cxgb_up(adapter)) < 0) 1307 goto out; 1308 1309 t3_tp_set_offload_mode(adapter, 1); 1310 tdev->lldev = adapter->port[0]; 1311 err = cxgb3_offload_activate(adapter); 1312 if (err) 1313 goto out; 1314 1315 init_port_mtus(adapter); 1316 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd, 1317 adapter->params.b_wnd, 1318 adapter->params.rev == 0 ? 1319 adapter->port[0]->mtu : 0xffff); 1320 init_smt(adapter); 1321 1322 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group)) 1323 dev_dbg(&dev->dev, "cannot create sysfs group\n"); 1324 1325 /* Call back all registered clients */ 1326 cxgb3_add_clients(tdev); 1327 1328 out: 1329 /* restore them in case the offload module has changed them */ 1330 if (err) { 1331 t3_tp_set_offload_mode(adapter, 0); 1332 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1333 cxgb3_set_dummy_ops(tdev); 1334 } 1335 return err; 1336 } 1337 1338 static int offload_close(struct t3cdev *tdev) 1339 { 1340 struct adapter *adapter = tdev2adap(tdev); 1341 struct t3c_data *td = T3C_DATA(tdev); 1342 1343 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1344 return 0; 1345 1346 /* Call back all registered clients */ 1347 cxgb3_remove_clients(tdev); 1348 1349 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group); 1350 1351 /* Flush work scheduled while releasing TIDs */ 1352 flush_work_sync(&td->tid_release_task); 1353 1354 tdev->lldev = NULL; 1355 cxgb3_set_dummy_ops(tdev); 1356 t3_tp_set_offload_mode(adapter, 0); 1357 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1358 1359 if (!adapter->open_device_map) 1360 cxgb_down(adapter, 0); 1361 1362 cxgb3_offload_deactivate(adapter); 1363 return 0; 1364 } 1365 1366 static int cxgb_open(struct net_device *dev) 1367 { 1368 struct port_info *pi = netdev_priv(dev); 1369 struct adapter *adapter = pi->adapter; 1370 int other_ports = adapter->open_device_map & PORT_MASK; 1371 int err; 1372 1373 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) 1374 return err; 1375 1376 set_bit(pi->port_id, &adapter->open_device_map); 1377 if (is_offload(adapter) && !ofld_disable) { 1378 err = offload_open(dev); 1379 if (err) 1380 printk(KERN_WARNING 1381 "Could not initialize offload capabilities\n"); 1382 } 1383 1384 netif_set_real_num_tx_queues(dev, pi->nqsets); 1385 err = netif_set_real_num_rx_queues(dev, pi->nqsets); 1386 if (err) 1387 return err; 1388 link_start(dev); 1389 t3_port_intr_enable(adapter, pi->port_id); 1390 netif_tx_start_all_queues(dev); 1391 if (!other_ports) 1392 schedule_chk_task(adapter); 1393 1394 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id); 1395 return 0; 1396 } 1397 1398 static int __cxgb_close(struct net_device *dev, int on_wq) 1399 { 1400 struct port_info *pi = netdev_priv(dev); 1401 struct adapter *adapter = pi->adapter; 1402 1403 1404 if (!adapter->open_device_map) 1405 return 0; 1406 1407 /* Stop link fault interrupts */ 1408 t3_xgm_intr_disable(adapter, pi->port_id); 1409 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 1410 1411 t3_port_intr_disable(adapter, pi->port_id); 1412 netif_tx_stop_all_queues(dev); 1413 pi->phy.ops->power_down(&pi->phy, 1); 1414 netif_carrier_off(dev); 1415 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX); 1416 1417 spin_lock_irq(&adapter->work_lock); /* sync with update task */ 1418 clear_bit(pi->port_id, &adapter->open_device_map); 1419 spin_unlock_irq(&adapter->work_lock); 1420 1421 if (!(adapter->open_device_map & PORT_MASK)) 1422 cancel_delayed_work_sync(&adapter->adap_check_task); 1423 1424 if (!adapter->open_device_map) 1425 cxgb_down(adapter, on_wq); 1426 1427 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id); 1428 return 0; 1429 } 1430 1431 static int cxgb_close(struct net_device *dev) 1432 { 1433 return __cxgb_close(dev, 0); 1434 } 1435 1436 static struct net_device_stats *cxgb_get_stats(struct net_device *dev) 1437 { 1438 struct port_info *pi = netdev_priv(dev); 1439 struct adapter *adapter = pi->adapter; 1440 struct net_device_stats *ns = &pi->netstats; 1441 const struct mac_stats *pstats; 1442 1443 spin_lock(&adapter->stats_lock); 1444 pstats = t3_mac_update_stats(&pi->mac); 1445 spin_unlock(&adapter->stats_lock); 1446 1447 ns->tx_bytes = pstats->tx_octets; 1448 ns->tx_packets = pstats->tx_frames; 1449 ns->rx_bytes = pstats->rx_octets; 1450 ns->rx_packets = pstats->rx_frames; 1451 ns->multicast = pstats->rx_mcast_frames; 1452 1453 ns->tx_errors = pstats->tx_underrun; 1454 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs + 1455 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short + 1456 pstats->rx_fifo_ovfl; 1457 1458 /* detailed rx_errors */ 1459 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long; 1460 ns->rx_over_errors = 0; 1461 ns->rx_crc_errors = pstats->rx_fcs_errs; 1462 ns->rx_frame_errors = pstats->rx_symbol_errs; 1463 ns->rx_fifo_errors = pstats->rx_fifo_ovfl; 1464 ns->rx_missed_errors = pstats->rx_cong_drops; 1465 1466 /* detailed tx_errors */ 1467 ns->tx_aborted_errors = 0; 1468 ns->tx_carrier_errors = 0; 1469 ns->tx_fifo_errors = pstats->tx_underrun; 1470 ns->tx_heartbeat_errors = 0; 1471 ns->tx_window_errors = 0; 1472 return ns; 1473 } 1474 1475 static u32 get_msglevel(struct net_device *dev) 1476 { 1477 struct port_info *pi = netdev_priv(dev); 1478 struct adapter *adapter = pi->adapter; 1479 1480 return adapter->msg_enable; 1481 } 1482 1483 static void set_msglevel(struct net_device *dev, u32 val) 1484 { 1485 struct port_info *pi = netdev_priv(dev); 1486 struct adapter *adapter = pi->adapter; 1487 1488 adapter->msg_enable = val; 1489 } 1490 1491 static char stats_strings[][ETH_GSTRING_LEN] = { 1492 "TxOctetsOK ", 1493 "TxFramesOK ", 1494 "TxMulticastFramesOK", 1495 "TxBroadcastFramesOK", 1496 "TxPauseFrames ", 1497 "TxUnderrun ", 1498 "TxExtUnderrun ", 1499 1500 "TxFrames64 ", 1501 "TxFrames65To127 ", 1502 "TxFrames128To255 ", 1503 "TxFrames256To511 ", 1504 "TxFrames512To1023 ", 1505 "TxFrames1024To1518 ", 1506 "TxFrames1519ToMax ", 1507 1508 "RxOctetsOK ", 1509 "RxFramesOK ", 1510 "RxMulticastFramesOK", 1511 "RxBroadcastFramesOK", 1512 "RxPauseFrames ", 1513 "RxFCSErrors ", 1514 "RxSymbolErrors ", 1515 "RxShortErrors ", 1516 "RxJabberErrors ", 1517 "RxLengthErrors ", 1518 "RxFIFOoverflow ", 1519 1520 "RxFrames64 ", 1521 "RxFrames65To127 ", 1522 "RxFrames128To255 ", 1523 "RxFrames256To511 ", 1524 "RxFrames512To1023 ", 1525 "RxFrames1024To1518 ", 1526 "RxFrames1519ToMax ", 1527 1528 "PhyFIFOErrors ", 1529 "TSO ", 1530 "VLANextractions ", 1531 "VLANinsertions ", 1532 "TxCsumOffload ", 1533 "RxCsumGood ", 1534 "LroAggregated ", 1535 "LroFlushed ", 1536 "LroNoDesc ", 1537 "RxDrops ", 1538 1539 "CheckTXEnToggled ", 1540 "CheckResets ", 1541 1542 "LinkFaults ", 1543 }; 1544 1545 static int get_sset_count(struct net_device *dev, int sset) 1546 { 1547 switch (sset) { 1548 case ETH_SS_STATS: 1549 return ARRAY_SIZE(stats_strings); 1550 default: 1551 return -EOPNOTSUPP; 1552 } 1553 } 1554 1555 #define T3_REGMAP_SIZE (3 * 1024) 1556 1557 static int get_regs_len(struct net_device *dev) 1558 { 1559 return T3_REGMAP_SIZE; 1560 } 1561 1562 static int get_eeprom_len(struct net_device *dev) 1563 { 1564 return EEPROMSIZE; 1565 } 1566 1567 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1568 { 1569 struct port_info *pi = netdev_priv(dev); 1570 struct adapter *adapter = pi->adapter; 1571 u32 fw_vers = 0; 1572 u32 tp_vers = 0; 1573 1574 spin_lock(&adapter->stats_lock); 1575 t3_get_fw_version(adapter, &fw_vers); 1576 t3_get_tp_version(adapter, &tp_vers); 1577 spin_unlock(&adapter->stats_lock); 1578 1579 strcpy(info->driver, DRV_NAME); 1580 strcpy(info->version, DRV_VERSION); 1581 strcpy(info->bus_info, pci_name(adapter->pdev)); 1582 if (!fw_vers) 1583 strcpy(info->fw_version, "N/A"); 1584 else { 1585 snprintf(info->fw_version, sizeof(info->fw_version), 1586 "%s %u.%u.%u TP %u.%u.%u", 1587 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N", 1588 G_FW_VERSION_MAJOR(fw_vers), 1589 G_FW_VERSION_MINOR(fw_vers), 1590 G_FW_VERSION_MICRO(fw_vers), 1591 G_TP_VERSION_MAJOR(tp_vers), 1592 G_TP_VERSION_MINOR(tp_vers), 1593 G_TP_VERSION_MICRO(tp_vers)); 1594 } 1595 } 1596 1597 static void get_strings(struct net_device *dev, u32 stringset, u8 * data) 1598 { 1599 if (stringset == ETH_SS_STATS) 1600 memcpy(data, stats_strings, sizeof(stats_strings)); 1601 } 1602 1603 static unsigned long collect_sge_port_stats(struct adapter *adapter, 1604 struct port_info *p, int idx) 1605 { 1606 int i; 1607 unsigned long tot = 0; 1608 1609 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i) 1610 tot += adapter->sge.qs[i].port_stats[idx]; 1611 return tot; 1612 } 1613 1614 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1615 u64 *data) 1616 { 1617 struct port_info *pi = netdev_priv(dev); 1618 struct adapter *adapter = pi->adapter; 1619 const struct mac_stats *s; 1620 1621 spin_lock(&adapter->stats_lock); 1622 s = t3_mac_update_stats(&pi->mac); 1623 spin_unlock(&adapter->stats_lock); 1624 1625 *data++ = s->tx_octets; 1626 *data++ = s->tx_frames; 1627 *data++ = s->tx_mcast_frames; 1628 *data++ = s->tx_bcast_frames; 1629 *data++ = s->tx_pause; 1630 *data++ = s->tx_underrun; 1631 *data++ = s->tx_fifo_urun; 1632 1633 *data++ = s->tx_frames_64; 1634 *data++ = s->tx_frames_65_127; 1635 *data++ = s->tx_frames_128_255; 1636 *data++ = s->tx_frames_256_511; 1637 *data++ = s->tx_frames_512_1023; 1638 *data++ = s->tx_frames_1024_1518; 1639 *data++ = s->tx_frames_1519_max; 1640 1641 *data++ = s->rx_octets; 1642 *data++ = s->rx_frames; 1643 *data++ = s->rx_mcast_frames; 1644 *data++ = s->rx_bcast_frames; 1645 *data++ = s->rx_pause; 1646 *data++ = s->rx_fcs_errs; 1647 *data++ = s->rx_symbol_errs; 1648 *data++ = s->rx_short; 1649 *data++ = s->rx_jabber; 1650 *data++ = s->rx_too_long; 1651 *data++ = s->rx_fifo_ovfl; 1652 1653 *data++ = s->rx_frames_64; 1654 *data++ = s->rx_frames_65_127; 1655 *data++ = s->rx_frames_128_255; 1656 *data++ = s->rx_frames_256_511; 1657 *data++ = s->rx_frames_512_1023; 1658 *data++ = s->rx_frames_1024_1518; 1659 *data++ = s->rx_frames_1519_max; 1660 1661 *data++ = pi->phy.fifo_errors; 1662 1663 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO); 1664 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX); 1665 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS); 1666 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM); 1667 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD); 1668 *data++ = 0; 1669 *data++ = 0; 1670 *data++ = 0; 1671 *data++ = s->rx_cong_drops; 1672 1673 *data++ = s->num_toggled; 1674 *data++ = s->num_resets; 1675 1676 *data++ = s->link_faults; 1677 } 1678 1679 static inline void reg_block_dump(struct adapter *ap, void *buf, 1680 unsigned int start, unsigned int end) 1681 { 1682 u32 *p = buf + start; 1683 1684 for (; start <= end; start += sizeof(u32)) 1685 *p++ = t3_read_reg(ap, start); 1686 } 1687 1688 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1689 void *buf) 1690 { 1691 struct port_info *pi = netdev_priv(dev); 1692 struct adapter *ap = pi->adapter; 1693 1694 /* 1695 * Version scheme: 1696 * bits 0..9: chip version 1697 * bits 10..15: chip revision 1698 * bit 31: set for PCIe cards 1699 */ 1700 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31); 1701 1702 /* 1703 * We skip the MAC statistics registers because they are clear-on-read. 1704 * Also reading multi-register stats would need to synchronize with the 1705 * periodic mac stats accumulation. Hard to justify the complexity. 1706 */ 1707 memset(buf, 0, T3_REGMAP_SIZE); 1708 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN); 1709 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT); 1710 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE); 1711 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA); 1712 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3); 1713 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0, 1714 XGM_REG(A_XGM_SERDES_STAT3, 1)); 1715 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1), 1716 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1)); 1717 } 1718 1719 static int restart_autoneg(struct net_device *dev) 1720 { 1721 struct port_info *p = netdev_priv(dev); 1722 1723 if (!netif_running(dev)) 1724 return -EAGAIN; 1725 if (p->link_config.autoneg != AUTONEG_ENABLE) 1726 return -EINVAL; 1727 p->phy.ops->autoneg_restart(&p->phy); 1728 return 0; 1729 } 1730 1731 static int set_phys_id(struct net_device *dev, 1732 enum ethtool_phys_id_state state) 1733 { 1734 struct port_info *pi = netdev_priv(dev); 1735 struct adapter *adapter = pi->adapter; 1736 1737 switch (state) { 1738 case ETHTOOL_ID_ACTIVE: 1739 return 1; /* cycle on/off once per second */ 1740 1741 case ETHTOOL_ID_OFF: 1742 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0); 1743 break; 1744 1745 case ETHTOOL_ID_ON: 1746 case ETHTOOL_ID_INACTIVE: 1747 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 1748 F_GPIO0_OUT_VAL); 1749 } 1750 1751 return 0; 1752 } 1753 1754 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1755 { 1756 struct port_info *p = netdev_priv(dev); 1757 1758 cmd->supported = p->link_config.supported; 1759 cmd->advertising = p->link_config.advertising; 1760 1761 if (netif_carrier_ok(dev)) { 1762 ethtool_cmd_speed_set(cmd, p->link_config.speed); 1763 cmd->duplex = p->link_config.duplex; 1764 } else { 1765 ethtool_cmd_speed_set(cmd, -1); 1766 cmd->duplex = -1; 1767 } 1768 1769 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; 1770 cmd->phy_address = p->phy.mdio.prtad; 1771 cmd->transceiver = XCVR_EXTERNAL; 1772 cmd->autoneg = p->link_config.autoneg; 1773 cmd->maxtxpkt = 0; 1774 cmd->maxrxpkt = 0; 1775 return 0; 1776 } 1777 1778 static int speed_duplex_to_caps(int speed, int duplex) 1779 { 1780 int cap = 0; 1781 1782 switch (speed) { 1783 case SPEED_10: 1784 if (duplex == DUPLEX_FULL) 1785 cap = SUPPORTED_10baseT_Full; 1786 else 1787 cap = SUPPORTED_10baseT_Half; 1788 break; 1789 case SPEED_100: 1790 if (duplex == DUPLEX_FULL) 1791 cap = SUPPORTED_100baseT_Full; 1792 else 1793 cap = SUPPORTED_100baseT_Half; 1794 break; 1795 case SPEED_1000: 1796 if (duplex == DUPLEX_FULL) 1797 cap = SUPPORTED_1000baseT_Full; 1798 else 1799 cap = SUPPORTED_1000baseT_Half; 1800 break; 1801 case SPEED_10000: 1802 if (duplex == DUPLEX_FULL) 1803 cap = SUPPORTED_10000baseT_Full; 1804 } 1805 return cap; 1806 } 1807 1808 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ 1809 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ 1810 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \ 1811 ADVERTISED_10000baseT_Full) 1812 1813 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1814 { 1815 struct port_info *p = netdev_priv(dev); 1816 struct link_config *lc = &p->link_config; 1817 1818 if (!(lc->supported & SUPPORTED_Autoneg)) { 1819 /* 1820 * PHY offers a single speed/duplex. See if that's what's 1821 * being requested. 1822 */ 1823 if (cmd->autoneg == AUTONEG_DISABLE) { 1824 u32 speed = ethtool_cmd_speed(cmd); 1825 int cap = speed_duplex_to_caps(speed, cmd->duplex); 1826 if (lc->supported & cap) 1827 return 0; 1828 } 1829 return -EINVAL; 1830 } 1831 1832 if (cmd->autoneg == AUTONEG_DISABLE) { 1833 u32 speed = ethtool_cmd_speed(cmd); 1834 int cap = speed_duplex_to_caps(speed, cmd->duplex); 1835 1836 if (!(lc->supported & cap) || (speed == SPEED_1000)) 1837 return -EINVAL; 1838 lc->requested_speed = speed; 1839 lc->requested_duplex = cmd->duplex; 1840 lc->advertising = 0; 1841 } else { 1842 cmd->advertising &= ADVERTISED_MASK; 1843 cmd->advertising &= lc->supported; 1844 if (!cmd->advertising) 1845 return -EINVAL; 1846 lc->requested_speed = SPEED_INVALID; 1847 lc->requested_duplex = DUPLEX_INVALID; 1848 lc->advertising = cmd->advertising | ADVERTISED_Autoneg; 1849 } 1850 lc->autoneg = cmd->autoneg; 1851 if (netif_running(dev)) 1852 t3_link_start(&p->phy, &p->mac, lc); 1853 return 0; 1854 } 1855 1856 static void get_pauseparam(struct net_device *dev, 1857 struct ethtool_pauseparam *epause) 1858 { 1859 struct port_info *p = netdev_priv(dev); 1860 1861 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0; 1862 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0; 1863 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0; 1864 } 1865 1866 static int set_pauseparam(struct net_device *dev, 1867 struct ethtool_pauseparam *epause) 1868 { 1869 struct port_info *p = netdev_priv(dev); 1870 struct link_config *lc = &p->link_config; 1871 1872 if (epause->autoneg == AUTONEG_DISABLE) 1873 lc->requested_fc = 0; 1874 else if (lc->supported & SUPPORTED_Autoneg) 1875 lc->requested_fc = PAUSE_AUTONEG; 1876 else 1877 return -EINVAL; 1878 1879 if (epause->rx_pause) 1880 lc->requested_fc |= PAUSE_RX; 1881 if (epause->tx_pause) 1882 lc->requested_fc |= PAUSE_TX; 1883 if (lc->autoneg == AUTONEG_ENABLE) { 1884 if (netif_running(dev)) 1885 t3_link_start(&p->phy, &p->mac, lc); 1886 } else { 1887 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1888 if (netif_running(dev)) 1889 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc); 1890 } 1891 return 0; 1892 } 1893 1894 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1895 { 1896 struct port_info *pi = netdev_priv(dev); 1897 struct adapter *adapter = pi->adapter; 1898 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset]; 1899 1900 e->rx_max_pending = MAX_RX_BUFFERS; 1901 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS; 1902 e->tx_max_pending = MAX_TXQ_ENTRIES; 1903 1904 e->rx_pending = q->fl_size; 1905 e->rx_mini_pending = q->rspq_size; 1906 e->rx_jumbo_pending = q->jumbo_size; 1907 e->tx_pending = q->txq_size[0]; 1908 } 1909 1910 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e) 1911 { 1912 struct port_info *pi = netdev_priv(dev); 1913 struct adapter *adapter = pi->adapter; 1914 struct qset_params *q; 1915 int i; 1916 1917 if (e->rx_pending > MAX_RX_BUFFERS || 1918 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS || 1919 e->tx_pending > MAX_TXQ_ENTRIES || 1920 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 1921 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 1922 e->rx_pending < MIN_FL_ENTRIES || 1923 e->rx_jumbo_pending < MIN_FL_ENTRIES || 1924 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES) 1925 return -EINVAL; 1926 1927 if (adapter->flags & FULL_INIT_DONE) 1928 return -EBUSY; 1929 1930 q = &adapter->params.sge.qset[pi->first_qset]; 1931 for (i = 0; i < pi->nqsets; ++i, ++q) { 1932 q->rspq_size = e->rx_mini_pending; 1933 q->fl_size = e->rx_pending; 1934 q->jumbo_size = e->rx_jumbo_pending; 1935 q->txq_size[0] = e->tx_pending; 1936 q->txq_size[1] = e->tx_pending; 1937 q->txq_size[2] = e->tx_pending; 1938 } 1939 return 0; 1940 } 1941 1942 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 1943 { 1944 struct port_info *pi = netdev_priv(dev); 1945 struct adapter *adapter = pi->adapter; 1946 struct qset_params *qsp; 1947 struct sge_qset *qs; 1948 int i; 1949 1950 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER) 1951 return -EINVAL; 1952 1953 for (i = 0; i < pi->nqsets; i++) { 1954 qsp = &adapter->params.sge.qset[i]; 1955 qs = &adapter->sge.qs[i]; 1956 qsp->coalesce_usecs = c->rx_coalesce_usecs; 1957 t3_update_qset_coalesce(qs, qsp); 1958 } 1959 1960 return 0; 1961 } 1962 1963 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) 1964 { 1965 struct port_info *pi = netdev_priv(dev); 1966 struct adapter *adapter = pi->adapter; 1967 struct qset_params *q = adapter->params.sge.qset; 1968 1969 c->rx_coalesce_usecs = q->coalesce_usecs; 1970 return 0; 1971 } 1972 1973 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 1974 u8 * data) 1975 { 1976 struct port_info *pi = netdev_priv(dev); 1977 struct adapter *adapter = pi->adapter; 1978 int i, err = 0; 1979 1980 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL); 1981 if (!buf) 1982 return -ENOMEM; 1983 1984 e->magic = EEPROM_MAGIC; 1985 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4) 1986 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]); 1987 1988 if (!err) 1989 memcpy(data, buf + e->offset, e->len); 1990 kfree(buf); 1991 return err; 1992 } 1993 1994 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 1995 u8 * data) 1996 { 1997 struct port_info *pi = netdev_priv(dev); 1998 struct adapter *adapter = pi->adapter; 1999 u32 aligned_offset, aligned_len; 2000 __le32 *p; 2001 u8 *buf; 2002 int err; 2003 2004 if (eeprom->magic != EEPROM_MAGIC) 2005 return -EINVAL; 2006 2007 aligned_offset = eeprom->offset & ~3; 2008 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2009 2010 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2011 buf = kmalloc(aligned_len, GFP_KERNEL); 2012 if (!buf) 2013 return -ENOMEM; 2014 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf); 2015 if (!err && aligned_len > 4) 2016 err = t3_seeprom_read(adapter, 2017 aligned_offset + aligned_len - 4, 2018 (__le32 *) & buf[aligned_len - 4]); 2019 if (err) 2020 goto out; 2021 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2022 } else 2023 buf = data; 2024 2025 err = t3_seeprom_wp(adapter, 0); 2026 if (err) 2027 goto out; 2028 2029 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) { 2030 err = t3_seeprom_write(adapter, aligned_offset, *p); 2031 aligned_offset += 4; 2032 } 2033 2034 if (!err) 2035 err = t3_seeprom_wp(adapter, 1); 2036 out: 2037 if (buf != data) 2038 kfree(buf); 2039 return err; 2040 } 2041 2042 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2043 { 2044 wol->supported = 0; 2045 wol->wolopts = 0; 2046 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2047 } 2048 2049 static const struct ethtool_ops cxgb_ethtool_ops = { 2050 .get_settings = get_settings, 2051 .set_settings = set_settings, 2052 .get_drvinfo = get_drvinfo, 2053 .get_msglevel = get_msglevel, 2054 .set_msglevel = set_msglevel, 2055 .get_ringparam = get_sge_param, 2056 .set_ringparam = set_sge_param, 2057 .get_coalesce = get_coalesce, 2058 .set_coalesce = set_coalesce, 2059 .get_eeprom_len = get_eeprom_len, 2060 .get_eeprom = get_eeprom, 2061 .set_eeprom = set_eeprom, 2062 .get_pauseparam = get_pauseparam, 2063 .set_pauseparam = set_pauseparam, 2064 .get_link = ethtool_op_get_link, 2065 .get_strings = get_strings, 2066 .set_phys_id = set_phys_id, 2067 .nway_reset = restart_autoneg, 2068 .get_sset_count = get_sset_count, 2069 .get_ethtool_stats = get_stats, 2070 .get_regs_len = get_regs_len, 2071 .get_regs = get_regs, 2072 .get_wol = get_wol, 2073 }; 2074 2075 static int in_range(int val, int lo, int hi) 2076 { 2077 return val < 0 || (val <= hi && val >= lo); 2078 } 2079 2080 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr) 2081 { 2082 struct port_info *pi = netdev_priv(dev); 2083 struct adapter *adapter = pi->adapter; 2084 u32 cmd; 2085 int ret; 2086 2087 if (copy_from_user(&cmd, useraddr, sizeof(cmd))) 2088 return -EFAULT; 2089 2090 switch (cmd) { 2091 case CHELSIO_SET_QSET_PARAMS:{ 2092 int i; 2093 struct qset_params *q; 2094 struct ch_qset_params t; 2095 int q1 = pi->first_qset; 2096 int nqsets = pi->nqsets; 2097 2098 if (!capable(CAP_NET_ADMIN)) 2099 return -EPERM; 2100 if (copy_from_user(&t, useraddr, sizeof(t))) 2101 return -EFAULT; 2102 if (t.qset_idx >= SGE_QSETS) 2103 return -EINVAL; 2104 if (!in_range(t.intr_lat, 0, M_NEWTIMER) || 2105 !in_range(t.cong_thres, 0, 255) || 2106 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES, 2107 MAX_TXQ_ENTRIES) || 2108 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES, 2109 MAX_TXQ_ENTRIES) || 2110 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES, 2111 MAX_CTRL_TXQ_ENTRIES) || 2112 !in_range(t.fl_size[0], MIN_FL_ENTRIES, 2113 MAX_RX_BUFFERS) || 2114 !in_range(t.fl_size[1], MIN_FL_ENTRIES, 2115 MAX_RX_JUMBO_BUFFERS) || 2116 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES, 2117 MAX_RSPQ_ENTRIES)) 2118 return -EINVAL; 2119 2120 if ((adapter->flags & FULL_INIT_DONE) && 2121 (t.rspq_size >= 0 || t.fl_size[0] >= 0 || 2122 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 || 2123 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 || 2124 t.polling >= 0 || t.cong_thres >= 0)) 2125 return -EBUSY; 2126 2127 /* Allow setting of any available qset when offload enabled */ 2128 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2129 q1 = 0; 2130 for_each_port(adapter, i) { 2131 pi = adap2pinfo(adapter, i); 2132 nqsets += pi->first_qset + pi->nqsets; 2133 } 2134 } 2135 2136 if (t.qset_idx < q1) 2137 return -EINVAL; 2138 if (t.qset_idx > q1 + nqsets - 1) 2139 return -EINVAL; 2140 2141 q = &adapter->params.sge.qset[t.qset_idx]; 2142 2143 if (t.rspq_size >= 0) 2144 q->rspq_size = t.rspq_size; 2145 if (t.fl_size[0] >= 0) 2146 q->fl_size = t.fl_size[0]; 2147 if (t.fl_size[1] >= 0) 2148 q->jumbo_size = t.fl_size[1]; 2149 if (t.txq_size[0] >= 0) 2150 q->txq_size[0] = t.txq_size[0]; 2151 if (t.txq_size[1] >= 0) 2152 q->txq_size[1] = t.txq_size[1]; 2153 if (t.txq_size[2] >= 0) 2154 q->txq_size[2] = t.txq_size[2]; 2155 if (t.cong_thres >= 0) 2156 q->cong_thres = t.cong_thres; 2157 if (t.intr_lat >= 0) { 2158 struct sge_qset *qs = 2159 &adapter->sge.qs[t.qset_idx]; 2160 2161 q->coalesce_usecs = t.intr_lat; 2162 t3_update_qset_coalesce(qs, q); 2163 } 2164 if (t.polling >= 0) { 2165 if (adapter->flags & USING_MSIX) 2166 q->polling = t.polling; 2167 else { 2168 /* No polling with INTx for T3A */ 2169 if (adapter->params.rev == 0 && 2170 !(adapter->flags & USING_MSI)) 2171 t.polling = 0; 2172 2173 for (i = 0; i < SGE_QSETS; i++) { 2174 q = &adapter->params.sge. 2175 qset[i]; 2176 q->polling = t.polling; 2177 } 2178 } 2179 } 2180 2181 if (t.lro >= 0) { 2182 if (t.lro) 2183 dev->wanted_features |= NETIF_F_GRO; 2184 else 2185 dev->wanted_features &= ~NETIF_F_GRO; 2186 netdev_update_features(dev); 2187 } 2188 2189 break; 2190 } 2191 case CHELSIO_GET_QSET_PARAMS:{ 2192 struct qset_params *q; 2193 struct ch_qset_params t; 2194 int q1 = pi->first_qset; 2195 int nqsets = pi->nqsets; 2196 int i; 2197 2198 if (copy_from_user(&t, useraddr, sizeof(t))) 2199 return -EFAULT; 2200 2201 /* Display qsets for all ports when offload enabled */ 2202 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2203 q1 = 0; 2204 for_each_port(adapter, i) { 2205 pi = adap2pinfo(adapter, i); 2206 nqsets = pi->first_qset + pi->nqsets; 2207 } 2208 } 2209 2210 if (t.qset_idx >= nqsets) 2211 return -EINVAL; 2212 2213 q = &adapter->params.sge.qset[q1 + t.qset_idx]; 2214 t.rspq_size = q->rspq_size; 2215 t.txq_size[0] = q->txq_size[0]; 2216 t.txq_size[1] = q->txq_size[1]; 2217 t.txq_size[2] = q->txq_size[2]; 2218 t.fl_size[0] = q->fl_size; 2219 t.fl_size[1] = q->jumbo_size; 2220 t.polling = q->polling; 2221 t.lro = !!(dev->features & NETIF_F_GRO); 2222 t.intr_lat = q->coalesce_usecs; 2223 t.cong_thres = q->cong_thres; 2224 t.qnum = q1; 2225 2226 if (adapter->flags & USING_MSIX) 2227 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec; 2228 else 2229 t.vector = adapter->pdev->irq; 2230 2231 if (copy_to_user(useraddr, &t, sizeof(t))) 2232 return -EFAULT; 2233 break; 2234 } 2235 case CHELSIO_SET_QSET_NUM:{ 2236 struct ch_reg edata; 2237 unsigned int i, first_qset = 0, other_qsets = 0; 2238 2239 if (!capable(CAP_NET_ADMIN)) 2240 return -EPERM; 2241 if (adapter->flags & FULL_INIT_DONE) 2242 return -EBUSY; 2243 if (copy_from_user(&edata, useraddr, sizeof(edata))) 2244 return -EFAULT; 2245 if (edata.val < 1 || 2246 (edata.val > 1 && !(adapter->flags & USING_MSIX))) 2247 return -EINVAL; 2248 2249 for_each_port(adapter, i) 2250 if (adapter->port[i] && adapter->port[i] != dev) 2251 other_qsets += adap2pinfo(adapter, i)->nqsets; 2252 2253 if (edata.val + other_qsets > SGE_QSETS) 2254 return -EINVAL; 2255 2256 pi->nqsets = edata.val; 2257 2258 for_each_port(adapter, i) 2259 if (adapter->port[i]) { 2260 pi = adap2pinfo(adapter, i); 2261 pi->first_qset = first_qset; 2262 first_qset += pi->nqsets; 2263 } 2264 break; 2265 } 2266 case CHELSIO_GET_QSET_NUM:{ 2267 struct ch_reg edata; 2268 2269 memset(&edata, 0, sizeof(struct ch_reg)); 2270 2271 edata.cmd = CHELSIO_GET_QSET_NUM; 2272 edata.val = pi->nqsets; 2273 if (copy_to_user(useraddr, &edata, sizeof(edata))) 2274 return -EFAULT; 2275 break; 2276 } 2277 case CHELSIO_LOAD_FW:{ 2278 u8 *fw_data; 2279 struct ch_mem_range t; 2280 2281 if (!capable(CAP_SYS_RAWIO)) 2282 return -EPERM; 2283 if (copy_from_user(&t, useraddr, sizeof(t))) 2284 return -EFAULT; 2285 /* Check t.len sanity ? */ 2286 fw_data = memdup_user(useraddr + sizeof(t), t.len); 2287 if (IS_ERR(fw_data)) 2288 return PTR_ERR(fw_data); 2289 2290 ret = t3_load_fw(adapter, fw_data, t.len); 2291 kfree(fw_data); 2292 if (ret) 2293 return ret; 2294 break; 2295 } 2296 case CHELSIO_SETMTUTAB:{ 2297 struct ch_mtus m; 2298 int i; 2299 2300 if (!is_offload(adapter)) 2301 return -EOPNOTSUPP; 2302 if (!capable(CAP_NET_ADMIN)) 2303 return -EPERM; 2304 if (offload_running(adapter)) 2305 return -EBUSY; 2306 if (copy_from_user(&m, useraddr, sizeof(m))) 2307 return -EFAULT; 2308 if (m.nmtus != NMTUS) 2309 return -EINVAL; 2310 if (m.mtus[0] < 81) /* accommodate SACK */ 2311 return -EINVAL; 2312 2313 /* MTUs must be in ascending order */ 2314 for (i = 1; i < NMTUS; ++i) 2315 if (m.mtus[i] < m.mtus[i - 1]) 2316 return -EINVAL; 2317 2318 memcpy(adapter->params.mtus, m.mtus, 2319 sizeof(adapter->params.mtus)); 2320 break; 2321 } 2322 case CHELSIO_GET_PM:{ 2323 struct tp_params *p = &adapter->params.tp; 2324 struct ch_pm m = {.cmd = CHELSIO_GET_PM }; 2325 2326 if (!is_offload(adapter)) 2327 return -EOPNOTSUPP; 2328 m.tx_pg_sz = p->tx_pg_size; 2329 m.tx_num_pg = p->tx_num_pgs; 2330 m.rx_pg_sz = p->rx_pg_size; 2331 m.rx_num_pg = p->rx_num_pgs; 2332 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan; 2333 if (copy_to_user(useraddr, &m, sizeof(m))) 2334 return -EFAULT; 2335 break; 2336 } 2337 case CHELSIO_SET_PM:{ 2338 struct ch_pm m; 2339 struct tp_params *p = &adapter->params.tp; 2340 2341 if (!is_offload(adapter)) 2342 return -EOPNOTSUPP; 2343 if (!capable(CAP_NET_ADMIN)) 2344 return -EPERM; 2345 if (adapter->flags & FULL_INIT_DONE) 2346 return -EBUSY; 2347 if (copy_from_user(&m, useraddr, sizeof(m))) 2348 return -EFAULT; 2349 if (!is_power_of_2(m.rx_pg_sz) || 2350 !is_power_of_2(m.tx_pg_sz)) 2351 return -EINVAL; /* not power of 2 */ 2352 if (!(m.rx_pg_sz & 0x14000)) 2353 return -EINVAL; /* not 16KB or 64KB */ 2354 if (!(m.tx_pg_sz & 0x1554000)) 2355 return -EINVAL; 2356 if (m.tx_num_pg == -1) 2357 m.tx_num_pg = p->tx_num_pgs; 2358 if (m.rx_num_pg == -1) 2359 m.rx_num_pg = p->rx_num_pgs; 2360 if (m.tx_num_pg % 24 || m.rx_num_pg % 24) 2361 return -EINVAL; 2362 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size || 2363 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size) 2364 return -EINVAL; 2365 p->rx_pg_size = m.rx_pg_sz; 2366 p->tx_pg_size = m.tx_pg_sz; 2367 p->rx_num_pgs = m.rx_num_pg; 2368 p->tx_num_pgs = m.tx_num_pg; 2369 break; 2370 } 2371 case CHELSIO_GET_MEM:{ 2372 struct ch_mem_range t; 2373 struct mc7 *mem; 2374 u64 buf[32]; 2375 2376 if (!is_offload(adapter)) 2377 return -EOPNOTSUPP; 2378 if (!(adapter->flags & FULL_INIT_DONE)) 2379 return -EIO; /* need the memory controllers */ 2380 if (copy_from_user(&t, useraddr, sizeof(t))) 2381 return -EFAULT; 2382 if ((t.addr & 7) || (t.len & 7)) 2383 return -EINVAL; 2384 if (t.mem_id == MEM_CM) 2385 mem = &adapter->cm; 2386 else if (t.mem_id == MEM_PMRX) 2387 mem = &adapter->pmrx; 2388 else if (t.mem_id == MEM_PMTX) 2389 mem = &adapter->pmtx; 2390 else 2391 return -EINVAL; 2392 2393 /* 2394 * Version scheme: 2395 * bits 0..9: chip version 2396 * bits 10..15: chip revision 2397 */ 2398 t.version = 3 | (adapter->params.rev << 10); 2399 if (copy_to_user(useraddr, &t, sizeof(t))) 2400 return -EFAULT; 2401 2402 /* 2403 * Read 256 bytes at a time as len can be large and we don't 2404 * want to use huge intermediate buffers. 2405 */ 2406 useraddr += sizeof(t); /* advance to start of buffer */ 2407 while (t.len) { 2408 unsigned int chunk = 2409 min_t(unsigned int, t.len, sizeof(buf)); 2410 2411 ret = 2412 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8, 2413 buf); 2414 if (ret) 2415 return ret; 2416 if (copy_to_user(useraddr, buf, chunk)) 2417 return -EFAULT; 2418 useraddr += chunk; 2419 t.addr += chunk; 2420 t.len -= chunk; 2421 } 2422 break; 2423 } 2424 case CHELSIO_SET_TRACE_FILTER:{ 2425 struct ch_trace t; 2426 const struct trace_params *tp; 2427 2428 if (!capable(CAP_NET_ADMIN)) 2429 return -EPERM; 2430 if (!offload_running(adapter)) 2431 return -EAGAIN; 2432 if (copy_from_user(&t, useraddr, sizeof(t))) 2433 return -EFAULT; 2434 2435 tp = (const struct trace_params *)&t.sip; 2436 if (t.config_tx) 2437 t3_config_trace_filter(adapter, tp, 0, 2438 t.invert_match, 2439 t.trace_tx); 2440 if (t.config_rx) 2441 t3_config_trace_filter(adapter, tp, 1, 2442 t.invert_match, 2443 t.trace_rx); 2444 break; 2445 } 2446 default: 2447 return -EOPNOTSUPP; 2448 } 2449 return 0; 2450 } 2451 2452 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2453 { 2454 struct mii_ioctl_data *data = if_mii(req); 2455 struct port_info *pi = netdev_priv(dev); 2456 struct adapter *adapter = pi->adapter; 2457 2458 switch (cmd) { 2459 case SIOCGMIIREG: 2460 case SIOCSMIIREG: 2461 /* Convert phy_id from older PRTAD/DEVAD format */ 2462 if (is_10G(adapter) && 2463 !mdio_phy_id_is_c45(data->phy_id) && 2464 (data->phy_id & 0x1f00) && 2465 !(data->phy_id & 0xe0e0)) 2466 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8, 2467 data->phy_id & 0x1f); 2468 /* FALLTHRU */ 2469 case SIOCGMIIPHY: 2470 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd); 2471 case SIOCCHIOCTL: 2472 return cxgb_extension_ioctl(dev, req->ifr_data); 2473 default: 2474 return -EOPNOTSUPP; 2475 } 2476 } 2477 2478 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2479 { 2480 struct port_info *pi = netdev_priv(dev); 2481 struct adapter *adapter = pi->adapter; 2482 int ret; 2483 2484 if (new_mtu < 81) /* accommodate SACK */ 2485 return -EINVAL; 2486 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu))) 2487 return ret; 2488 dev->mtu = new_mtu; 2489 init_port_mtus(adapter); 2490 if (adapter->params.rev == 0 && offload_running(adapter)) 2491 t3_load_mtus(adapter, adapter->params.mtus, 2492 adapter->params.a_wnd, adapter->params.b_wnd, 2493 adapter->port[0]->mtu); 2494 return 0; 2495 } 2496 2497 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2498 { 2499 struct port_info *pi = netdev_priv(dev); 2500 struct adapter *adapter = pi->adapter; 2501 struct sockaddr *addr = p; 2502 2503 if (!is_valid_ether_addr(addr->sa_data)) 2504 return -EINVAL; 2505 2506 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 2507 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr); 2508 if (offload_running(adapter)) 2509 write_smt_entry(adapter, pi->port_id); 2510 return 0; 2511 } 2512 2513 /** 2514 * t3_synchronize_rx - wait for current Rx processing on a port to complete 2515 * @adap: the adapter 2516 * @p: the port 2517 * 2518 * Ensures that current Rx processing on any of the queues associated with 2519 * the given port completes before returning. We do this by acquiring and 2520 * releasing the locks of the response queues associated with the port. 2521 */ 2522 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p) 2523 { 2524 int i; 2525 2526 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) { 2527 struct sge_rspq *q = &adap->sge.qs[i].rspq; 2528 2529 spin_lock_irq(&q->lock); 2530 spin_unlock_irq(&q->lock); 2531 } 2532 } 2533 2534 static void cxgb_vlan_mode(struct net_device *dev, u32 features) 2535 { 2536 struct port_info *pi = netdev_priv(dev); 2537 struct adapter *adapter = pi->adapter; 2538 2539 if (adapter->params.rev > 0) { 2540 t3_set_vlan_accel(adapter, 1 << pi->port_id, 2541 features & NETIF_F_HW_VLAN_RX); 2542 } else { 2543 /* single control for all ports */ 2544 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_RX; 2545 2546 for_each_port(adapter, i) 2547 have_vlans |= 2548 adapter->port[i]->features & NETIF_F_HW_VLAN_RX; 2549 2550 t3_set_vlan_accel(adapter, 1, have_vlans); 2551 } 2552 t3_synchronize_rx(adapter, pi); 2553 } 2554 2555 static u32 cxgb_fix_features(struct net_device *dev, u32 features) 2556 { 2557 /* 2558 * Since there is no support for separate rx/tx vlan accel 2559 * enable/disable make sure tx flag is always in same state as rx. 2560 */ 2561 if (features & NETIF_F_HW_VLAN_RX) 2562 features |= NETIF_F_HW_VLAN_TX; 2563 else 2564 features &= ~NETIF_F_HW_VLAN_TX; 2565 2566 return features; 2567 } 2568 2569 static int cxgb_set_features(struct net_device *dev, u32 features) 2570 { 2571 u32 changed = dev->features ^ features; 2572 2573 if (changed & NETIF_F_HW_VLAN_RX) 2574 cxgb_vlan_mode(dev, features); 2575 2576 return 0; 2577 } 2578 2579 #ifdef CONFIG_NET_POLL_CONTROLLER 2580 static void cxgb_netpoll(struct net_device *dev) 2581 { 2582 struct port_info *pi = netdev_priv(dev); 2583 struct adapter *adapter = pi->adapter; 2584 int qidx; 2585 2586 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) { 2587 struct sge_qset *qs = &adapter->sge.qs[qidx]; 2588 void *source; 2589 2590 if (adapter->flags & USING_MSIX) 2591 source = qs; 2592 else 2593 source = adapter; 2594 2595 t3_intr_handler(adapter, qs->rspq.polling) (0, source); 2596 } 2597 } 2598 #endif 2599 2600 /* 2601 * Periodic accumulation of MAC statistics. 2602 */ 2603 static void mac_stats_update(struct adapter *adapter) 2604 { 2605 int i; 2606 2607 for_each_port(adapter, i) { 2608 struct net_device *dev = adapter->port[i]; 2609 struct port_info *p = netdev_priv(dev); 2610 2611 if (netif_running(dev)) { 2612 spin_lock(&adapter->stats_lock); 2613 t3_mac_update_stats(&p->mac); 2614 spin_unlock(&adapter->stats_lock); 2615 } 2616 } 2617 } 2618 2619 static void check_link_status(struct adapter *adapter) 2620 { 2621 int i; 2622 2623 for_each_port(adapter, i) { 2624 struct net_device *dev = adapter->port[i]; 2625 struct port_info *p = netdev_priv(dev); 2626 int link_fault; 2627 2628 spin_lock_irq(&adapter->work_lock); 2629 link_fault = p->link_fault; 2630 spin_unlock_irq(&adapter->work_lock); 2631 2632 if (link_fault) { 2633 t3_link_fault(adapter, i); 2634 continue; 2635 } 2636 2637 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) { 2638 t3_xgm_intr_disable(adapter, i); 2639 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2640 2641 t3_link_changed(adapter, i); 2642 t3_xgm_intr_enable(adapter, i); 2643 } 2644 } 2645 } 2646 2647 static void check_t3b2_mac(struct adapter *adapter) 2648 { 2649 int i; 2650 2651 if (!rtnl_trylock()) /* synchronize with ifdown */ 2652 return; 2653 2654 for_each_port(adapter, i) { 2655 struct net_device *dev = adapter->port[i]; 2656 struct port_info *p = netdev_priv(dev); 2657 int status; 2658 2659 if (!netif_running(dev)) 2660 continue; 2661 2662 status = 0; 2663 if (netif_running(dev) && netif_carrier_ok(dev)) 2664 status = t3b2_mac_watchdog_task(&p->mac); 2665 if (status == 1) 2666 p->mac.stats.num_toggled++; 2667 else if (status == 2) { 2668 struct cmac *mac = &p->mac; 2669 2670 t3_mac_set_mtu(mac, dev->mtu); 2671 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 2672 cxgb_set_rxmode(dev); 2673 t3_link_start(&p->phy, mac, &p->link_config); 2674 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 2675 t3_port_intr_enable(adapter, p->port_id); 2676 p->mac.stats.num_resets++; 2677 } 2678 } 2679 rtnl_unlock(); 2680 } 2681 2682 2683 static void t3_adap_check_task(struct work_struct *work) 2684 { 2685 struct adapter *adapter = container_of(work, struct adapter, 2686 adap_check_task.work); 2687 const struct adapter_params *p = &adapter->params; 2688 int port; 2689 unsigned int v, status, reset; 2690 2691 adapter->check_task_cnt++; 2692 2693 check_link_status(adapter); 2694 2695 /* Accumulate MAC stats if needed */ 2696 if (!p->linkpoll_period || 2697 (adapter->check_task_cnt * p->linkpoll_period) / 10 >= 2698 p->stats_update_period) { 2699 mac_stats_update(adapter); 2700 adapter->check_task_cnt = 0; 2701 } 2702 2703 if (p->rev == T3_REV_B2) 2704 check_t3b2_mac(adapter); 2705 2706 /* 2707 * Scan the XGMAC's to check for various conditions which we want to 2708 * monitor in a periodic polling manner rather than via an interrupt 2709 * condition. This is used for conditions which would otherwise flood 2710 * the system with interrupts and we only really need to know that the 2711 * conditions are "happening" ... For each condition we count the 2712 * detection of the condition and reset it for the next polling loop. 2713 */ 2714 for_each_port(adapter, port) { 2715 struct cmac *mac = &adap2pinfo(adapter, port)->mac; 2716 u32 cause; 2717 2718 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset); 2719 reset = 0; 2720 if (cause & F_RXFIFO_OVERFLOW) { 2721 mac->stats.rx_fifo_ovfl++; 2722 reset |= F_RXFIFO_OVERFLOW; 2723 } 2724 2725 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset); 2726 } 2727 2728 /* 2729 * We do the same as above for FL_EMPTY interrupts. 2730 */ 2731 status = t3_read_reg(adapter, A_SG_INT_CAUSE); 2732 reset = 0; 2733 2734 if (status & F_FLEMPTY) { 2735 struct sge_qset *qs = &adapter->sge.qs[0]; 2736 int i = 0; 2737 2738 reset |= F_FLEMPTY; 2739 2740 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) & 2741 0xffff; 2742 2743 while (v) { 2744 qs->fl[i].empty += (v & 1); 2745 if (i) 2746 qs++; 2747 i ^= 1; 2748 v >>= 1; 2749 } 2750 } 2751 2752 t3_write_reg(adapter, A_SG_INT_CAUSE, reset); 2753 2754 /* Schedule the next check update if any port is active. */ 2755 spin_lock_irq(&adapter->work_lock); 2756 if (adapter->open_device_map & PORT_MASK) 2757 schedule_chk_task(adapter); 2758 spin_unlock_irq(&adapter->work_lock); 2759 } 2760 2761 static void db_full_task(struct work_struct *work) 2762 { 2763 struct adapter *adapter = container_of(work, struct adapter, 2764 db_full_task); 2765 2766 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0); 2767 } 2768 2769 static void db_empty_task(struct work_struct *work) 2770 { 2771 struct adapter *adapter = container_of(work, struct adapter, 2772 db_empty_task); 2773 2774 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0); 2775 } 2776 2777 static void db_drop_task(struct work_struct *work) 2778 { 2779 struct adapter *adapter = container_of(work, struct adapter, 2780 db_drop_task); 2781 unsigned long delay = 1000; 2782 unsigned short r; 2783 2784 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0); 2785 2786 /* 2787 * Sleep a while before ringing the driver qset dbs. 2788 * The delay is between 1000-2023 usecs. 2789 */ 2790 get_random_bytes(&r, 2); 2791 delay += r & 1023; 2792 set_current_state(TASK_UNINTERRUPTIBLE); 2793 schedule_timeout(usecs_to_jiffies(delay)); 2794 ring_dbs(adapter); 2795 } 2796 2797 /* 2798 * Processes external (PHY) interrupts in process context. 2799 */ 2800 static void ext_intr_task(struct work_struct *work) 2801 { 2802 struct adapter *adapter = container_of(work, struct adapter, 2803 ext_intr_handler_task); 2804 int i; 2805 2806 /* Disable link fault interrupts */ 2807 for_each_port(adapter, i) { 2808 struct net_device *dev = adapter->port[i]; 2809 struct port_info *p = netdev_priv(dev); 2810 2811 t3_xgm_intr_disable(adapter, i); 2812 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2813 } 2814 2815 /* Re-enable link fault interrupts */ 2816 t3_phy_intr_handler(adapter); 2817 2818 for_each_port(adapter, i) 2819 t3_xgm_intr_enable(adapter, i); 2820 2821 /* Now reenable external interrupts */ 2822 spin_lock_irq(&adapter->work_lock); 2823 if (adapter->slow_intr_mask) { 2824 adapter->slow_intr_mask |= F_T3DBG; 2825 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG); 2826 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2827 adapter->slow_intr_mask); 2828 } 2829 spin_unlock_irq(&adapter->work_lock); 2830 } 2831 2832 /* 2833 * Interrupt-context handler for external (PHY) interrupts. 2834 */ 2835 void t3_os_ext_intr_handler(struct adapter *adapter) 2836 { 2837 /* 2838 * Schedule a task to handle external interrupts as they may be slow 2839 * and we use a mutex to protect MDIO registers. We disable PHY 2840 * interrupts in the meantime and let the task reenable them when 2841 * it's done. 2842 */ 2843 spin_lock(&adapter->work_lock); 2844 if (adapter->slow_intr_mask) { 2845 adapter->slow_intr_mask &= ~F_T3DBG; 2846 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2847 adapter->slow_intr_mask); 2848 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task); 2849 } 2850 spin_unlock(&adapter->work_lock); 2851 } 2852 2853 void t3_os_link_fault_handler(struct adapter *adapter, int port_id) 2854 { 2855 struct net_device *netdev = adapter->port[port_id]; 2856 struct port_info *pi = netdev_priv(netdev); 2857 2858 spin_lock(&adapter->work_lock); 2859 pi->link_fault = 1; 2860 spin_unlock(&adapter->work_lock); 2861 } 2862 2863 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq) 2864 { 2865 int i, ret = 0; 2866 2867 if (is_offload(adapter) && 2868 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2869 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0); 2870 offload_close(&adapter->tdev); 2871 } 2872 2873 /* Stop all ports */ 2874 for_each_port(adapter, i) { 2875 struct net_device *netdev = adapter->port[i]; 2876 2877 if (netif_running(netdev)) 2878 __cxgb_close(netdev, on_wq); 2879 } 2880 2881 /* Stop SGE timers */ 2882 t3_stop_sge_timers(adapter); 2883 2884 adapter->flags &= ~FULL_INIT_DONE; 2885 2886 if (reset) 2887 ret = t3_reset_adapter(adapter); 2888 2889 pci_disable_device(adapter->pdev); 2890 2891 return ret; 2892 } 2893 2894 static int t3_reenable_adapter(struct adapter *adapter) 2895 { 2896 if (pci_enable_device(adapter->pdev)) { 2897 dev_err(&adapter->pdev->dev, 2898 "Cannot re-enable PCI device after reset.\n"); 2899 goto err; 2900 } 2901 pci_set_master(adapter->pdev); 2902 pci_restore_state(adapter->pdev); 2903 pci_save_state(adapter->pdev); 2904 2905 /* Free sge resources */ 2906 t3_free_sge_resources(adapter); 2907 2908 if (t3_replay_prep_adapter(adapter)) 2909 goto err; 2910 2911 return 0; 2912 err: 2913 return -1; 2914 } 2915 2916 static void t3_resume_ports(struct adapter *adapter) 2917 { 2918 int i; 2919 2920 /* Restart the ports */ 2921 for_each_port(adapter, i) { 2922 struct net_device *netdev = adapter->port[i]; 2923 2924 if (netif_running(netdev)) { 2925 if (cxgb_open(netdev)) { 2926 dev_err(&adapter->pdev->dev, 2927 "can't bring device back up" 2928 " after reset\n"); 2929 continue; 2930 } 2931 } 2932 } 2933 2934 if (is_offload(adapter) && !ofld_disable) 2935 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0); 2936 } 2937 2938 /* 2939 * processes a fatal error. 2940 * Bring the ports down, reset the chip, bring the ports back up. 2941 */ 2942 static void fatal_error_task(struct work_struct *work) 2943 { 2944 struct adapter *adapter = container_of(work, struct adapter, 2945 fatal_error_handler_task); 2946 int err = 0; 2947 2948 rtnl_lock(); 2949 err = t3_adapter_error(adapter, 1, 1); 2950 if (!err) 2951 err = t3_reenable_adapter(adapter); 2952 if (!err) 2953 t3_resume_ports(adapter); 2954 2955 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded"); 2956 rtnl_unlock(); 2957 } 2958 2959 void t3_fatal_err(struct adapter *adapter) 2960 { 2961 unsigned int fw_status[4]; 2962 2963 if (adapter->flags & FULL_INIT_DONE) { 2964 t3_sge_stop(adapter); 2965 t3_write_reg(adapter, A_XGM_TX_CTRL, 0); 2966 t3_write_reg(adapter, A_XGM_RX_CTRL, 0); 2967 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0); 2968 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0); 2969 2970 spin_lock(&adapter->work_lock); 2971 t3_intr_disable(adapter); 2972 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task); 2973 spin_unlock(&adapter->work_lock); 2974 } 2975 CH_ALERT(adapter, "encountered fatal error, operation suspended\n"); 2976 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status)) 2977 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n", 2978 fw_status[0], fw_status[1], 2979 fw_status[2], fw_status[3]); 2980 } 2981 2982 /** 2983 * t3_io_error_detected - called when PCI error is detected 2984 * @pdev: Pointer to PCI device 2985 * @state: The current pci connection state 2986 * 2987 * This function is called after a PCI bus error affecting 2988 * this device has been detected. 2989 */ 2990 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev, 2991 pci_channel_state_t state) 2992 { 2993 struct adapter *adapter = pci_get_drvdata(pdev); 2994 2995 if (state == pci_channel_io_perm_failure) 2996 return PCI_ERS_RESULT_DISCONNECT; 2997 2998 t3_adapter_error(adapter, 0, 0); 2999 3000 /* Request a slot reset. */ 3001 return PCI_ERS_RESULT_NEED_RESET; 3002 } 3003 3004 /** 3005 * t3_io_slot_reset - called after the pci bus has been reset. 3006 * @pdev: Pointer to PCI device 3007 * 3008 * Restart the card from scratch, as if from a cold-boot. 3009 */ 3010 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev) 3011 { 3012 struct adapter *adapter = pci_get_drvdata(pdev); 3013 3014 if (!t3_reenable_adapter(adapter)) 3015 return PCI_ERS_RESULT_RECOVERED; 3016 3017 return PCI_ERS_RESULT_DISCONNECT; 3018 } 3019 3020 /** 3021 * t3_io_resume - called when traffic can start flowing again. 3022 * @pdev: Pointer to PCI device 3023 * 3024 * This callback is called when the error recovery driver tells us that 3025 * its OK to resume normal operation. 3026 */ 3027 static void t3_io_resume(struct pci_dev *pdev) 3028 { 3029 struct adapter *adapter = pci_get_drvdata(pdev); 3030 3031 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n", 3032 t3_read_reg(adapter, A_PCIE_PEX_ERR)); 3033 3034 t3_resume_ports(adapter); 3035 } 3036 3037 static struct pci_error_handlers t3_err_handler = { 3038 .error_detected = t3_io_error_detected, 3039 .slot_reset = t3_io_slot_reset, 3040 .resume = t3_io_resume, 3041 }; 3042 3043 /* 3044 * Set the number of qsets based on the number of CPUs and the number of ports, 3045 * not to exceed the number of available qsets, assuming there are enough qsets 3046 * per port in HW. 3047 */ 3048 static void set_nqsets(struct adapter *adap) 3049 { 3050 int i, j = 0; 3051 int num_cpus = num_online_cpus(); 3052 int hwports = adap->params.nports; 3053 int nqsets = adap->msix_nvectors - 1; 3054 3055 if (adap->params.rev > 0 && adap->flags & USING_MSIX) { 3056 if (hwports == 2 && 3057 (hwports * nqsets > SGE_QSETS || 3058 num_cpus >= nqsets / hwports)) 3059 nqsets /= hwports; 3060 if (nqsets > num_cpus) 3061 nqsets = num_cpus; 3062 if (nqsets < 1 || hwports == 4) 3063 nqsets = 1; 3064 } else 3065 nqsets = 1; 3066 3067 for_each_port(adap, i) { 3068 struct port_info *pi = adap2pinfo(adap, i); 3069 3070 pi->first_qset = j; 3071 pi->nqsets = nqsets; 3072 j = pi->first_qset + nqsets; 3073 3074 dev_info(&adap->pdev->dev, 3075 "Port %d using %d queue sets.\n", i, nqsets); 3076 } 3077 } 3078 3079 static int __devinit cxgb_enable_msix(struct adapter *adap) 3080 { 3081 struct msix_entry entries[SGE_QSETS + 1]; 3082 int vectors; 3083 int i, err; 3084 3085 vectors = ARRAY_SIZE(entries); 3086 for (i = 0; i < vectors; ++i) 3087 entries[i].entry = i; 3088 3089 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0) 3090 vectors = err; 3091 3092 if (err < 0) 3093 pci_disable_msix(adap->pdev); 3094 3095 if (!err && vectors < (adap->params.nports + 1)) { 3096 pci_disable_msix(adap->pdev); 3097 err = -1; 3098 } 3099 3100 if (!err) { 3101 for (i = 0; i < vectors; ++i) 3102 adap->msix_info[i].vec = entries[i].vector; 3103 adap->msix_nvectors = vectors; 3104 } 3105 3106 return err; 3107 } 3108 3109 static void __devinit print_port_info(struct adapter *adap, 3110 const struct adapter_info *ai) 3111 { 3112 static const char *pci_variant[] = { 3113 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express" 3114 }; 3115 3116 int i; 3117 char buf[80]; 3118 3119 if (is_pcie(adap)) 3120 snprintf(buf, sizeof(buf), "%s x%d", 3121 pci_variant[adap->params.pci.variant], 3122 adap->params.pci.width); 3123 else 3124 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit", 3125 pci_variant[adap->params.pci.variant], 3126 adap->params.pci.speed, adap->params.pci.width); 3127 3128 for_each_port(adap, i) { 3129 struct net_device *dev = adap->port[i]; 3130 const struct port_info *pi = netdev_priv(dev); 3131 3132 if (!test_bit(i, &adap->registered_device_map)) 3133 continue; 3134 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n", 3135 dev->name, ai->desc, pi->phy.desc, 3136 is_offload(adap) ? "R" : "", adap->params.rev, buf, 3137 (adap->flags & USING_MSIX) ? " MSI-X" : 3138 (adap->flags & USING_MSI) ? " MSI" : ""); 3139 if (adap->name == dev->name && adap->params.vpd.mclk) 3140 printk(KERN_INFO 3141 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n", 3142 adap->name, t3_mc7_size(&adap->cm) >> 20, 3143 t3_mc7_size(&adap->pmtx) >> 20, 3144 t3_mc7_size(&adap->pmrx) >> 20, 3145 adap->params.vpd.sn); 3146 } 3147 } 3148 3149 static const struct net_device_ops cxgb_netdev_ops = { 3150 .ndo_open = cxgb_open, 3151 .ndo_stop = cxgb_close, 3152 .ndo_start_xmit = t3_eth_xmit, 3153 .ndo_get_stats = cxgb_get_stats, 3154 .ndo_validate_addr = eth_validate_addr, 3155 .ndo_set_rx_mode = cxgb_set_rxmode, 3156 .ndo_do_ioctl = cxgb_ioctl, 3157 .ndo_change_mtu = cxgb_change_mtu, 3158 .ndo_set_mac_address = cxgb_set_mac_addr, 3159 .ndo_fix_features = cxgb_fix_features, 3160 .ndo_set_features = cxgb_set_features, 3161 #ifdef CONFIG_NET_POLL_CONTROLLER 3162 .ndo_poll_controller = cxgb_netpoll, 3163 #endif 3164 }; 3165 3166 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev) 3167 { 3168 struct port_info *pi = netdev_priv(dev); 3169 3170 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN); 3171 pi->iscsic.mac_addr[3] |= 0x80; 3172 } 3173 3174 static int __devinit init_one(struct pci_dev *pdev, 3175 const struct pci_device_id *ent) 3176 { 3177 static int version_printed; 3178 3179 int i, err, pci_using_dac = 0; 3180 resource_size_t mmio_start, mmio_len; 3181 const struct adapter_info *ai; 3182 struct adapter *adapter = NULL; 3183 struct port_info *pi; 3184 3185 if (!version_printed) { 3186 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION); 3187 ++version_printed; 3188 } 3189 3190 if (!cxgb3_wq) { 3191 cxgb3_wq = create_singlethread_workqueue(DRV_NAME); 3192 if (!cxgb3_wq) { 3193 printk(KERN_ERR DRV_NAME 3194 ": cannot initialize work queue\n"); 3195 return -ENOMEM; 3196 } 3197 } 3198 3199 err = pci_enable_device(pdev); 3200 if (err) { 3201 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3202 goto out; 3203 } 3204 3205 err = pci_request_regions(pdev, DRV_NAME); 3206 if (err) { 3207 /* Just info, some other driver may have claimed the device. */ 3208 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 3209 goto out_disable_device; 3210 } 3211 3212 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 3213 pci_using_dac = 1; 3214 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 3215 if (err) { 3216 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for " 3217 "coherent allocations\n"); 3218 goto out_release_regions; 3219 } 3220 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) { 3221 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3222 goto out_release_regions; 3223 } 3224 3225 pci_set_master(pdev); 3226 pci_save_state(pdev); 3227 3228 mmio_start = pci_resource_start(pdev, 0); 3229 mmio_len = pci_resource_len(pdev, 0); 3230 ai = t3_get_adapter_info(ent->driver_data); 3231 3232 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 3233 if (!adapter) { 3234 err = -ENOMEM; 3235 goto out_release_regions; 3236 } 3237 3238 adapter->nofail_skb = 3239 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL); 3240 if (!adapter->nofail_skb) { 3241 dev_err(&pdev->dev, "cannot allocate nofail buffer\n"); 3242 err = -ENOMEM; 3243 goto out_free_adapter; 3244 } 3245 3246 adapter->regs = ioremap_nocache(mmio_start, mmio_len); 3247 if (!adapter->regs) { 3248 dev_err(&pdev->dev, "cannot map device registers\n"); 3249 err = -ENOMEM; 3250 goto out_free_adapter; 3251 } 3252 3253 adapter->pdev = pdev; 3254 adapter->name = pci_name(pdev); 3255 adapter->msg_enable = dflt_msg_enable; 3256 adapter->mmio_len = mmio_len; 3257 3258 mutex_init(&adapter->mdio_lock); 3259 spin_lock_init(&adapter->work_lock); 3260 spin_lock_init(&adapter->stats_lock); 3261 3262 INIT_LIST_HEAD(&adapter->adapter_list); 3263 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task); 3264 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task); 3265 3266 INIT_WORK(&adapter->db_full_task, db_full_task); 3267 INIT_WORK(&adapter->db_empty_task, db_empty_task); 3268 INIT_WORK(&adapter->db_drop_task, db_drop_task); 3269 3270 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task); 3271 3272 for (i = 0; i < ai->nports0 + ai->nports1; ++i) { 3273 struct net_device *netdev; 3274 3275 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS); 3276 if (!netdev) { 3277 err = -ENOMEM; 3278 goto out_free_dev; 3279 } 3280 3281 SET_NETDEV_DEV(netdev, &pdev->dev); 3282 3283 adapter->port[i] = netdev; 3284 pi = netdev_priv(netdev); 3285 pi->adapter = adapter; 3286 pi->port_id = i; 3287 netif_carrier_off(netdev); 3288 netdev->irq = pdev->irq; 3289 netdev->mem_start = mmio_start; 3290 netdev->mem_end = mmio_start + mmio_len - 1; 3291 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 3292 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_RX; 3293 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_TX; 3294 if (pci_using_dac) 3295 netdev->features |= NETIF_F_HIGHDMA; 3296 3297 netdev->netdev_ops = &cxgb_netdev_ops; 3298 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops); 3299 } 3300 3301 pci_set_drvdata(pdev, adapter); 3302 if (t3_prep_adapter(adapter, ai, 1) < 0) { 3303 err = -ENODEV; 3304 goto out_free_dev; 3305 } 3306 3307 /* 3308 * The card is now ready to go. If any errors occur during device 3309 * registration we do not fail the whole card but rather proceed only 3310 * with the ports we manage to register successfully. However we must 3311 * register at least one net device. 3312 */ 3313 for_each_port(adapter, i) { 3314 err = register_netdev(adapter->port[i]); 3315 if (err) 3316 dev_warn(&pdev->dev, 3317 "cannot register net device %s, skipping\n", 3318 adapter->port[i]->name); 3319 else { 3320 /* 3321 * Change the name we use for messages to the name of 3322 * the first successfully registered interface. 3323 */ 3324 if (!adapter->registered_device_map) 3325 adapter->name = adapter->port[i]->name; 3326 3327 __set_bit(i, &adapter->registered_device_map); 3328 } 3329 } 3330 if (!adapter->registered_device_map) { 3331 dev_err(&pdev->dev, "could not register any net devices\n"); 3332 goto out_free_dev; 3333 } 3334 3335 for_each_port(adapter, i) 3336 cxgb3_init_iscsi_mac(adapter->port[i]); 3337 3338 /* Driver's ready. Reflect it on LEDs */ 3339 t3_led_ready(adapter); 3340 3341 if (is_offload(adapter)) { 3342 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map); 3343 cxgb3_adapter_ofld(adapter); 3344 } 3345 3346 /* See what interrupts we'll be using */ 3347 if (msi > 1 && cxgb_enable_msix(adapter) == 0) 3348 adapter->flags |= USING_MSIX; 3349 else if (msi > 0 && pci_enable_msi(pdev) == 0) 3350 adapter->flags |= USING_MSI; 3351 3352 set_nqsets(adapter); 3353 3354 err = sysfs_create_group(&adapter->port[0]->dev.kobj, 3355 &cxgb3_attr_group); 3356 3357 for_each_port(adapter, i) 3358 cxgb_vlan_mode(adapter->port[i], adapter->port[i]->features); 3359 3360 print_port_info(adapter, ai); 3361 return 0; 3362 3363 out_free_dev: 3364 iounmap(adapter->regs); 3365 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i) 3366 if (adapter->port[i]) 3367 free_netdev(adapter->port[i]); 3368 3369 out_free_adapter: 3370 kfree(adapter); 3371 3372 out_release_regions: 3373 pci_release_regions(pdev); 3374 out_disable_device: 3375 pci_disable_device(pdev); 3376 pci_set_drvdata(pdev, NULL); 3377 out: 3378 return err; 3379 } 3380 3381 static void __devexit remove_one(struct pci_dev *pdev) 3382 { 3383 struct adapter *adapter = pci_get_drvdata(pdev); 3384 3385 if (adapter) { 3386 int i; 3387 3388 t3_sge_stop(adapter); 3389 sysfs_remove_group(&adapter->port[0]->dev.kobj, 3390 &cxgb3_attr_group); 3391 3392 if (is_offload(adapter)) { 3393 cxgb3_adapter_unofld(adapter); 3394 if (test_bit(OFFLOAD_DEVMAP_BIT, 3395 &adapter->open_device_map)) 3396 offload_close(&adapter->tdev); 3397 } 3398 3399 for_each_port(adapter, i) 3400 if (test_bit(i, &adapter->registered_device_map)) 3401 unregister_netdev(adapter->port[i]); 3402 3403 t3_stop_sge_timers(adapter); 3404 t3_free_sge_resources(adapter); 3405 cxgb_disable_msi(adapter); 3406 3407 for_each_port(adapter, i) 3408 if (adapter->port[i]) 3409 free_netdev(adapter->port[i]); 3410 3411 iounmap(adapter->regs); 3412 if (adapter->nofail_skb) 3413 kfree_skb(adapter->nofail_skb); 3414 kfree(adapter); 3415 pci_release_regions(pdev); 3416 pci_disable_device(pdev); 3417 pci_set_drvdata(pdev, NULL); 3418 } 3419 } 3420 3421 static struct pci_driver driver = { 3422 .name = DRV_NAME, 3423 .id_table = cxgb3_pci_tbl, 3424 .probe = init_one, 3425 .remove = __devexit_p(remove_one), 3426 .err_handler = &t3_err_handler, 3427 }; 3428 3429 static int __init cxgb3_init_module(void) 3430 { 3431 int ret; 3432 3433 cxgb3_offload_init(); 3434 3435 ret = pci_register_driver(&driver); 3436 return ret; 3437 } 3438 3439 static void __exit cxgb3_cleanup_module(void) 3440 { 3441 pci_unregister_driver(&driver); 3442 if (cxgb3_wq) 3443 destroy_workqueue(cxgb3_wq); 3444 } 3445 3446 module_init(cxgb3_init_module); 3447 module_exit(cxgb3_cleanup_module); 3448