1 /* 2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 34 35 #include <linux/module.h> 36 #include <linux/init.h> 37 #include <linux/pci.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/netdevice.h> 40 #include <linux/etherdevice.h> 41 #include <linux/if_vlan.h> 42 #include <linux/mdio.h> 43 #include <linux/sockios.h> 44 #include <linux/workqueue.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/firmware.h> 48 #include <linux/log2.h> 49 #include <linux/stringify.h> 50 #include <linux/sched.h> 51 #include <linux/slab.h> 52 #include <linux/uaccess.h> 53 #include <linux/nospec.h> 54 55 #include "common.h" 56 #include "cxgb3_ioctl.h" 57 #include "regs.h" 58 #include "cxgb3_offload.h" 59 #include "version.h" 60 61 #include "cxgb3_ctl_defs.h" 62 #include "t3_cpl.h" 63 #include "firmware_exports.h" 64 65 enum { 66 MAX_TXQ_ENTRIES = 16384, 67 MAX_CTRL_TXQ_ENTRIES = 1024, 68 MAX_RSPQ_ENTRIES = 16384, 69 MAX_RX_BUFFERS = 16384, 70 MAX_RX_JUMBO_BUFFERS = 16384, 71 MIN_TXQ_ENTRIES = 4, 72 MIN_CTRL_TXQ_ENTRIES = 4, 73 MIN_RSPQ_ENTRIES = 32, 74 MIN_FL_ENTRIES = 32 75 }; 76 77 #define PORT_MASK ((1 << MAX_NPORTS) - 1) 78 79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 80 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\ 81 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR) 82 83 #define EEPROM_MAGIC 0x38E2F10C 84 85 #define CH_DEVICE(devid, idx) \ 86 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx } 87 88 static const struct pci_device_id cxgb3_pci_tbl[] = { 89 CH_DEVICE(0x20, 0), /* PE9000 */ 90 CH_DEVICE(0x21, 1), /* T302E */ 91 CH_DEVICE(0x22, 2), /* T310E */ 92 CH_DEVICE(0x23, 3), /* T320X */ 93 CH_DEVICE(0x24, 1), /* T302X */ 94 CH_DEVICE(0x25, 3), /* T320E */ 95 CH_DEVICE(0x26, 2), /* T310X */ 96 CH_DEVICE(0x30, 2), /* T3B10 */ 97 CH_DEVICE(0x31, 3), /* T3B20 */ 98 CH_DEVICE(0x32, 1), /* T3B02 */ 99 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */ 100 CH_DEVICE(0x36, 3), /* S320E-CR */ 101 CH_DEVICE(0x37, 7), /* N320E-G2 */ 102 {0,} 103 }; 104 105 MODULE_DESCRIPTION(DRV_DESC); 106 MODULE_AUTHOR("Chelsio Communications"); 107 MODULE_LICENSE("Dual BSD/GPL"); 108 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl); 109 110 static int dflt_msg_enable = DFLT_MSG_ENABLE; 111 112 module_param(dflt_msg_enable, int, 0644); 113 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap"); 114 115 /* 116 * The driver uses the best interrupt scheme available on a platform in the 117 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which 118 * of these schemes the driver may consider as follows: 119 * 120 * msi = 2: choose from among all three options 121 * msi = 1: only consider MSI and pin interrupts 122 * msi = 0: force pin interrupts 123 */ 124 static int msi = 2; 125 126 module_param(msi, int, 0644); 127 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X"); 128 129 /* 130 * The driver enables offload as a default. 131 * To disable it, use ofld_disable = 1. 132 */ 133 134 static int ofld_disable = 0; 135 136 module_param(ofld_disable, int, 0644); 137 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not"); 138 139 /* 140 * We have work elements that we need to cancel when an interface is taken 141 * down. Normally the work elements would be executed by keventd but that 142 * can deadlock because of linkwatch. If our close method takes the rtnl 143 * lock and linkwatch is ahead of our work elements in keventd, linkwatch 144 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting 145 * for our work to complete. Get our own work queue to solve this. 146 */ 147 struct workqueue_struct *cxgb3_wq; 148 149 /** 150 * link_report - show link status and link speed/duplex 151 * @dev: the port whose settings are to be reported 152 * 153 * Shows the link status, speed, and duplex of a port. 154 */ 155 static void link_report(struct net_device *dev) 156 { 157 if (!netif_carrier_ok(dev)) 158 netdev_info(dev, "link down\n"); 159 else { 160 const char *s = "10Mbps"; 161 const struct port_info *p = netdev_priv(dev); 162 163 switch (p->link_config.speed) { 164 case SPEED_10000: 165 s = "10Gbps"; 166 break; 167 case SPEED_1000: 168 s = "1000Mbps"; 169 break; 170 case SPEED_100: 171 s = "100Mbps"; 172 break; 173 } 174 175 netdev_info(dev, "link up, %s, %s-duplex\n", 176 s, p->link_config.duplex == DUPLEX_FULL 177 ? "full" : "half"); 178 } 179 } 180 181 static void enable_tx_fifo_drain(struct adapter *adapter, 182 struct port_info *pi) 183 { 184 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0, 185 F_ENDROPPKT); 186 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0); 187 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN); 188 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN); 189 } 190 191 static void disable_tx_fifo_drain(struct adapter *adapter, 192 struct port_info *pi) 193 { 194 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 195 F_ENDROPPKT, 0); 196 } 197 198 void t3_os_link_fault(struct adapter *adap, int port_id, int state) 199 { 200 struct net_device *dev = adap->port[port_id]; 201 struct port_info *pi = netdev_priv(dev); 202 203 if (state == netif_carrier_ok(dev)) 204 return; 205 206 if (state) { 207 struct cmac *mac = &pi->mac; 208 209 netif_carrier_on(dev); 210 211 disable_tx_fifo_drain(adap, pi); 212 213 /* Clear local faults */ 214 t3_xgm_intr_disable(adap, pi->port_id); 215 t3_read_reg(adap, A_XGM_INT_STATUS + 216 pi->mac.offset); 217 t3_write_reg(adap, 218 A_XGM_INT_CAUSE + pi->mac.offset, 219 F_XGM_INT); 220 221 t3_set_reg_field(adap, 222 A_XGM_INT_ENABLE + 223 pi->mac.offset, 224 F_XGM_INT, F_XGM_INT); 225 t3_xgm_intr_enable(adap, pi->port_id); 226 227 t3_mac_enable(mac, MAC_DIRECTION_TX); 228 } else { 229 netif_carrier_off(dev); 230 231 /* Flush TX FIFO */ 232 enable_tx_fifo_drain(adap, pi); 233 } 234 link_report(dev); 235 } 236 237 /** 238 * t3_os_link_changed - handle link status changes 239 * @adapter: the adapter associated with the link change 240 * @port_id: the port index whose limk status has changed 241 * @link_stat: the new status of the link 242 * @speed: the new speed setting 243 * @duplex: the new duplex setting 244 * @pause: the new flow-control setting 245 * 246 * This is the OS-dependent handler for link status changes. The OS 247 * neutral handler takes care of most of the processing for these events, 248 * then calls this handler for any OS-specific processing. 249 */ 250 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat, 251 int speed, int duplex, int pause) 252 { 253 struct net_device *dev = adapter->port[port_id]; 254 struct port_info *pi = netdev_priv(dev); 255 struct cmac *mac = &pi->mac; 256 257 /* Skip changes from disabled ports. */ 258 if (!netif_running(dev)) 259 return; 260 261 if (link_stat != netif_carrier_ok(dev)) { 262 if (link_stat) { 263 disable_tx_fifo_drain(adapter, pi); 264 265 t3_mac_enable(mac, MAC_DIRECTION_RX); 266 267 /* Clear local faults */ 268 t3_xgm_intr_disable(adapter, pi->port_id); 269 t3_read_reg(adapter, A_XGM_INT_STATUS + 270 pi->mac.offset); 271 t3_write_reg(adapter, 272 A_XGM_INT_CAUSE + pi->mac.offset, 273 F_XGM_INT); 274 275 t3_set_reg_field(adapter, 276 A_XGM_INT_ENABLE + pi->mac.offset, 277 F_XGM_INT, F_XGM_INT); 278 t3_xgm_intr_enable(adapter, pi->port_id); 279 280 netif_carrier_on(dev); 281 } else { 282 netif_carrier_off(dev); 283 284 t3_xgm_intr_disable(adapter, pi->port_id); 285 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 286 t3_set_reg_field(adapter, 287 A_XGM_INT_ENABLE + pi->mac.offset, 288 F_XGM_INT, 0); 289 290 if (is_10G(adapter)) 291 pi->phy.ops->power_down(&pi->phy, 1); 292 293 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 294 t3_mac_disable(mac, MAC_DIRECTION_RX); 295 t3_link_start(&pi->phy, mac, &pi->link_config); 296 297 /* Flush TX FIFO */ 298 enable_tx_fifo_drain(adapter, pi); 299 } 300 301 link_report(dev); 302 } 303 } 304 305 /** 306 * t3_os_phymod_changed - handle PHY module changes 307 * @adap: the adapter associated with the link change 308 * @port_id: the port index whose limk status has changed 309 * 310 * This is the OS-dependent handler for PHY module changes. It is 311 * invoked when a PHY module is removed or inserted for any OS-specific 312 * processing. 313 */ 314 void t3_os_phymod_changed(struct adapter *adap, int port_id) 315 { 316 static const char *mod_str[] = { 317 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown" 318 }; 319 320 const struct net_device *dev = adap->port[port_id]; 321 const struct port_info *pi = netdev_priv(dev); 322 323 if (pi->phy.modtype == phy_modtype_none) 324 netdev_info(dev, "PHY module unplugged\n"); 325 else 326 netdev_info(dev, "%s PHY module inserted\n", 327 mod_str[pi->phy.modtype]); 328 } 329 330 static void cxgb_set_rxmode(struct net_device *dev) 331 { 332 struct port_info *pi = netdev_priv(dev); 333 334 t3_mac_set_rx_mode(&pi->mac, dev); 335 } 336 337 /** 338 * link_start - enable a port 339 * @dev: the device to enable 340 * 341 * Performs the MAC and PHY actions needed to enable a port. 342 */ 343 static void link_start(struct net_device *dev) 344 { 345 struct port_info *pi = netdev_priv(dev); 346 struct cmac *mac = &pi->mac; 347 348 t3_mac_reset(mac); 349 t3_mac_set_num_ucast(mac, MAX_MAC_IDX); 350 t3_mac_set_mtu(mac, dev->mtu); 351 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 352 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr); 353 t3_mac_set_rx_mode(mac, dev); 354 t3_link_start(&pi->phy, mac, &pi->link_config); 355 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 356 } 357 358 static inline void cxgb_disable_msi(struct adapter *adapter) 359 { 360 if (adapter->flags & USING_MSIX) { 361 pci_disable_msix(adapter->pdev); 362 adapter->flags &= ~USING_MSIX; 363 } else if (adapter->flags & USING_MSI) { 364 pci_disable_msi(adapter->pdev); 365 adapter->flags &= ~USING_MSI; 366 } 367 } 368 369 /* 370 * Interrupt handler for asynchronous events used with MSI-X. 371 */ 372 static irqreturn_t t3_async_intr_handler(int irq, void *cookie) 373 { 374 t3_slow_intr_handler(cookie); 375 return IRQ_HANDLED; 376 } 377 378 /* 379 * Name the MSI-X interrupts. 380 */ 381 static void name_msix_vecs(struct adapter *adap) 382 { 383 int i, j, msi_idx = 1; 384 385 strscpy(adap->msix_info[0].desc, adap->name, sizeof(adap->msix_info[0].desc)); 386 387 for_each_port(adap, j) { 388 struct net_device *d = adap->port[j]; 389 const struct port_info *pi = netdev_priv(d); 390 391 for (i = 0; i < pi->nqsets; i++, msi_idx++) { 392 snprintf(adap->msix_info[msi_idx].desc, 393 sizeof(adap->msix_info[0].desc), 394 "%s-%d", d->name, pi->first_qset + i); 395 } 396 } 397 } 398 399 static int request_msix_data_irqs(struct adapter *adap) 400 { 401 int i, j, err, qidx = 0; 402 403 for_each_port(adap, i) { 404 int nqsets = adap2pinfo(adap, i)->nqsets; 405 406 for (j = 0; j < nqsets; ++j) { 407 err = request_irq(adap->msix_info[qidx + 1].vec, 408 t3_intr_handler(adap, 409 adap->sge.qs[qidx]. 410 rspq.polling), 0, 411 adap->msix_info[qidx + 1].desc, 412 &adap->sge.qs[qidx]); 413 if (err) { 414 while (--qidx >= 0) 415 free_irq(adap->msix_info[qidx + 1].vec, 416 &adap->sge.qs[qidx]); 417 return err; 418 } 419 qidx++; 420 } 421 } 422 return 0; 423 } 424 425 static void free_irq_resources(struct adapter *adapter) 426 { 427 if (adapter->flags & USING_MSIX) { 428 int i, n = 0; 429 430 free_irq(adapter->msix_info[0].vec, adapter); 431 for_each_port(adapter, i) 432 n += adap2pinfo(adapter, i)->nqsets; 433 434 for (i = 0; i < n; ++i) 435 free_irq(adapter->msix_info[i + 1].vec, 436 &adapter->sge.qs[i]); 437 } else 438 free_irq(adapter->pdev->irq, adapter); 439 } 440 441 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt, 442 unsigned long n) 443 { 444 int attempts = 10; 445 446 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) { 447 if (!--attempts) 448 return -ETIMEDOUT; 449 msleep(10); 450 } 451 return 0; 452 } 453 454 static int init_tp_parity(struct adapter *adap) 455 { 456 int i; 457 struct sk_buff *skb; 458 struct cpl_set_tcb_field *greq; 459 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts; 460 461 t3_tp_set_offload_mode(adap, 1); 462 463 for (i = 0; i < 16; i++) { 464 struct cpl_smt_write_req *req; 465 466 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 467 if (!skb) 468 skb = adap->nofail_skb; 469 if (!skb) 470 goto alloc_skb_fail; 471 472 req = __skb_put_zero(skb, sizeof(*req)); 473 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 474 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i)); 475 req->mtu_idx = NMTUS - 1; 476 req->iff = i; 477 t3_mgmt_tx(adap, skb); 478 if (skb == adap->nofail_skb) { 479 await_mgmt_replies(adap, cnt, i + 1); 480 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 481 if (!adap->nofail_skb) 482 goto alloc_skb_fail; 483 } 484 } 485 486 for (i = 0; i < 2048; i++) { 487 struct cpl_l2t_write_req *req; 488 489 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 490 if (!skb) 491 skb = adap->nofail_skb; 492 if (!skb) 493 goto alloc_skb_fail; 494 495 req = __skb_put_zero(skb, sizeof(*req)); 496 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 497 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i)); 498 req->params = htonl(V_L2T_W_IDX(i)); 499 t3_mgmt_tx(adap, skb); 500 if (skb == adap->nofail_skb) { 501 await_mgmt_replies(adap, cnt, 16 + i + 1); 502 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 503 if (!adap->nofail_skb) 504 goto alloc_skb_fail; 505 } 506 } 507 508 for (i = 0; i < 2048; i++) { 509 struct cpl_rte_write_req *req; 510 511 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 512 if (!skb) 513 skb = adap->nofail_skb; 514 if (!skb) 515 goto alloc_skb_fail; 516 517 req = __skb_put_zero(skb, sizeof(*req)); 518 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 519 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i)); 520 req->l2t_idx = htonl(V_L2T_W_IDX(i)); 521 t3_mgmt_tx(adap, skb); 522 if (skb == adap->nofail_skb) { 523 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1); 524 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 525 if (!adap->nofail_skb) 526 goto alloc_skb_fail; 527 } 528 } 529 530 skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 531 if (!skb) 532 skb = adap->nofail_skb; 533 if (!skb) 534 goto alloc_skb_fail; 535 536 greq = __skb_put_zero(skb, sizeof(*greq)); 537 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 538 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0)); 539 greq->mask = cpu_to_be64(1); 540 t3_mgmt_tx(adap, skb); 541 542 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 543 if (skb == adap->nofail_skb) { 544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1); 545 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL); 546 } 547 548 t3_tp_set_offload_mode(adap, 0); 549 return i; 550 551 alloc_skb_fail: 552 t3_tp_set_offload_mode(adap, 0); 553 return -ENOMEM; 554 } 555 556 /** 557 * setup_rss - configure RSS 558 * @adap: the adapter 559 * 560 * Sets up RSS to distribute packets to multiple receive queues. We 561 * configure the RSS CPU lookup table to distribute to the number of HW 562 * receive queues, and the response queue lookup table to narrow that 563 * down to the response queues actually configured for each port. 564 * We always configure the RSS mapping for two ports since the mapping 565 * table has plenty of entries. 566 */ 567 static void setup_rss(struct adapter *adap) 568 { 569 int i; 570 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets; 571 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1; 572 u8 cpus[SGE_QSETS + 1]; 573 u16 rspq_map[RSS_TABLE_SIZE + 1]; 574 575 for (i = 0; i < SGE_QSETS; ++i) 576 cpus[i] = i; 577 cpus[SGE_QSETS] = 0xff; /* terminator */ 578 579 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) { 580 rspq_map[i] = i % nq0; 581 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0; 582 } 583 rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */ 584 585 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN | 586 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN | 587 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map); 588 } 589 590 static void ring_dbs(struct adapter *adap) 591 { 592 int i, j; 593 594 for (i = 0; i < SGE_QSETS; i++) { 595 struct sge_qset *qs = &adap->sge.qs[i]; 596 597 if (qs->adap) 598 for (j = 0; j < SGE_TXQ_PER_SET; j++) 599 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id)); 600 } 601 } 602 603 static void init_napi(struct adapter *adap) 604 { 605 int i; 606 607 for (i = 0; i < SGE_QSETS; i++) { 608 struct sge_qset *qs = &adap->sge.qs[i]; 609 610 if (qs->adap) 611 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll); 612 } 613 614 /* 615 * netif_napi_add() can be called only once per napi_struct because it 616 * adds each new napi_struct to a list. Be careful not to call it a 617 * second time, e.g., during EEH recovery, by making a note of it. 618 */ 619 adap->flags |= NAPI_INIT; 620 } 621 622 /* 623 * Wait until all NAPI handlers are descheduled. This includes the handlers of 624 * both netdevices representing interfaces and the dummy ones for the extra 625 * queues. 626 */ 627 static void quiesce_rx(struct adapter *adap) 628 { 629 int i; 630 631 for (i = 0; i < SGE_QSETS; i++) 632 if (adap->sge.qs[i].adap) 633 napi_disable(&adap->sge.qs[i].napi); 634 } 635 636 static void enable_all_napi(struct adapter *adap) 637 { 638 int i; 639 for (i = 0; i < SGE_QSETS; i++) 640 if (adap->sge.qs[i].adap) 641 napi_enable(&adap->sge.qs[i].napi); 642 } 643 644 /** 645 * setup_sge_qsets - configure SGE Tx/Rx/response queues 646 * @adap: the adapter 647 * 648 * Determines how many sets of SGE queues to use and initializes them. 649 * We support multiple queue sets per port if we have MSI-X, otherwise 650 * just one queue set per port. 651 */ 652 static int setup_sge_qsets(struct adapter *adap) 653 { 654 int i, j, err, irq_idx = 0, qset_idx = 0; 655 unsigned int ntxq = SGE_TXQ_PER_SET; 656 657 if (adap->params.rev > 0 && !(adap->flags & USING_MSI)) 658 irq_idx = -1; 659 660 for_each_port(adap, i) { 661 struct net_device *dev = adap->port[i]; 662 struct port_info *pi = netdev_priv(dev); 663 664 pi->qs = &adap->sge.qs[pi->first_qset]; 665 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) { 666 err = t3_sge_alloc_qset(adap, qset_idx, 1, 667 (adap->flags & USING_MSIX) ? qset_idx + 1 : 668 irq_idx, 669 &adap->params.sge.qset[qset_idx], ntxq, dev, 670 netdev_get_tx_queue(dev, j)); 671 if (err) { 672 t3_free_sge_resources(adap); 673 return err; 674 } 675 } 676 } 677 678 return 0; 679 } 680 681 static ssize_t attr_show(struct device *d, char *buf, 682 ssize_t(*format) (struct net_device *, char *)) 683 { 684 ssize_t len; 685 686 /* Synchronize with ioctls that may shut down the device */ 687 rtnl_lock(); 688 len = (*format) (to_net_dev(d), buf); 689 rtnl_unlock(); 690 return len; 691 } 692 693 static ssize_t attr_store(struct device *d, 694 const char *buf, size_t len, 695 ssize_t(*set) (struct net_device *, unsigned int), 696 unsigned int min_val, unsigned int max_val) 697 { 698 ssize_t ret; 699 unsigned int val; 700 701 if (!capable(CAP_NET_ADMIN)) 702 return -EPERM; 703 704 ret = kstrtouint(buf, 0, &val); 705 if (ret) 706 return ret; 707 if (val < min_val || val > max_val) 708 return -EINVAL; 709 710 rtnl_lock(); 711 ret = (*set) (to_net_dev(d), val); 712 if (!ret) 713 ret = len; 714 rtnl_unlock(); 715 return ret; 716 } 717 718 #define CXGB3_SHOW(name, val_expr) \ 719 static ssize_t format_##name(struct net_device *dev, char *buf) \ 720 { \ 721 struct port_info *pi = netdev_priv(dev); \ 722 struct adapter *adap = pi->adapter; \ 723 return sprintf(buf, "%u\n", val_expr); \ 724 } \ 725 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 726 char *buf) \ 727 { \ 728 return attr_show(d, buf, format_##name); \ 729 } 730 731 static ssize_t set_nfilters(struct net_device *dev, unsigned int val) 732 { 733 struct port_info *pi = netdev_priv(dev); 734 struct adapter *adap = pi->adapter; 735 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0; 736 737 if (adap->flags & FULL_INIT_DONE) 738 return -EBUSY; 739 if (val && adap->params.rev == 0) 740 return -EINVAL; 741 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers - 742 min_tids) 743 return -EINVAL; 744 adap->params.mc5.nfilters = val; 745 return 0; 746 } 747 748 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr, 749 const char *buf, size_t len) 750 { 751 return attr_store(d, buf, len, set_nfilters, 0, ~0); 752 } 753 754 static ssize_t set_nservers(struct net_device *dev, unsigned int val) 755 { 756 struct port_info *pi = netdev_priv(dev); 757 struct adapter *adap = pi->adapter; 758 759 if (adap->flags & FULL_INIT_DONE) 760 return -EBUSY; 761 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters - 762 MC5_MIN_TIDS) 763 return -EINVAL; 764 adap->params.mc5.nservers = val; 765 return 0; 766 } 767 768 static ssize_t store_nservers(struct device *d, struct device_attribute *attr, 769 const char *buf, size_t len) 770 { 771 return attr_store(d, buf, len, set_nservers, 0, ~0); 772 } 773 774 #define CXGB3_ATTR_R(name, val_expr) \ 775 CXGB3_SHOW(name, val_expr) \ 776 static DEVICE_ATTR(name, 0444, show_##name, NULL) 777 778 #define CXGB3_ATTR_RW(name, val_expr, store_method) \ 779 CXGB3_SHOW(name, val_expr) \ 780 static DEVICE_ATTR(name, 0644, show_##name, store_method) 781 782 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5)); 783 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters); 784 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers); 785 786 static struct attribute *cxgb3_attrs[] = { 787 &dev_attr_cam_size.attr, 788 &dev_attr_nfilters.attr, 789 &dev_attr_nservers.attr, 790 NULL 791 }; 792 793 static const struct attribute_group cxgb3_attr_group = { 794 .attrs = cxgb3_attrs, 795 }; 796 797 static ssize_t tm_attr_show(struct device *d, 798 char *buf, int sched) 799 { 800 struct port_info *pi = netdev_priv(to_net_dev(d)); 801 struct adapter *adap = pi->adapter; 802 unsigned int v, addr, bpt, cpt; 803 ssize_t len; 804 805 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 806 rtnl_lock(); 807 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 808 v = t3_read_reg(adap, A_TP_TM_PIO_DATA); 809 if (sched & 1) 810 v >>= 16; 811 bpt = (v >> 8) & 0xff; 812 cpt = v & 0xff; 813 if (!cpt) 814 len = sprintf(buf, "disabled\n"); 815 else { 816 v = (adap->params.vpd.cclk * 1000) / cpt; 817 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125); 818 } 819 rtnl_unlock(); 820 return len; 821 } 822 823 static ssize_t tm_attr_store(struct device *d, 824 const char *buf, size_t len, int sched) 825 { 826 struct port_info *pi = netdev_priv(to_net_dev(d)); 827 struct adapter *adap = pi->adapter; 828 unsigned int val; 829 ssize_t ret; 830 831 if (!capable(CAP_NET_ADMIN)) 832 return -EPERM; 833 834 ret = kstrtouint(buf, 0, &val); 835 if (ret) 836 return ret; 837 if (val > 10000000) 838 return -EINVAL; 839 840 rtnl_lock(); 841 ret = t3_config_sched(adap, val, sched); 842 if (!ret) 843 ret = len; 844 rtnl_unlock(); 845 return ret; 846 } 847 848 #define TM_ATTR(name, sched) \ 849 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \ 850 char *buf) \ 851 { \ 852 return tm_attr_show(d, buf, sched); \ 853 } \ 854 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \ 855 const char *buf, size_t len) \ 856 { \ 857 return tm_attr_store(d, buf, len, sched); \ 858 } \ 859 static DEVICE_ATTR(name, 0644, show_##name, store_##name) 860 861 TM_ATTR(sched0, 0); 862 TM_ATTR(sched1, 1); 863 TM_ATTR(sched2, 2); 864 TM_ATTR(sched3, 3); 865 TM_ATTR(sched4, 4); 866 TM_ATTR(sched5, 5); 867 TM_ATTR(sched6, 6); 868 TM_ATTR(sched7, 7); 869 870 static struct attribute *offload_attrs[] = { 871 &dev_attr_sched0.attr, 872 &dev_attr_sched1.attr, 873 &dev_attr_sched2.attr, 874 &dev_attr_sched3.attr, 875 &dev_attr_sched4.attr, 876 &dev_attr_sched5.attr, 877 &dev_attr_sched6.attr, 878 &dev_attr_sched7.attr, 879 NULL 880 }; 881 882 static const struct attribute_group offload_attr_group = { 883 .attrs = offload_attrs, 884 }; 885 886 /* 887 * Sends an sk_buff to an offload queue driver 888 * after dealing with any active network taps. 889 */ 890 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb) 891 { 892 int ret; 893 894 local_bh_disable(); 895 ret = t3_offload_tx(tdev, skb); 896 local_bh_enable(); 897 return ret; 898 } 899 900 static int write_smt_entry(struct adapter *adapter, int idx) 901 { 902 struct cpl_smt_write_req *req; 903 struct port_info *pi = netdev_priv(adapter->port[idx]); 904 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL); 905 906 if (!skb) 907 return -ENOMEM; 908 909 req = __skb_put(skb, sizeof(*req)); 910 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD)); 911 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx)); 912 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */ 913 req->iff = idx; 914 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN); 915 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN); 916 skb->priority = 1; 917 offload_tx(&adapter->tdev, skb); 918 return 0; 919 } 920 921 static int init_smt(struct adapter *adapter) 922 { 923 int i; 924 925 for_each_port(adapter, i) 926 write_smt_entry(adapter, i); 927 return 0; 928 } 929 930 static void init_port_mtus(struct adapter *adapter) 931 { 932 unsigned int mtus = adapter->port[0]->mtu; 933 934 if (adapter->port[1]) 935 mtus |= adapter->port[1]->mtu << 16; 936 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus); 937 } 938 939 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo, 940 int hi, int port) 941 { 942 struct sk_buff *skb; 943 struct mngt_pktsched_wr *req; 944 int ret; 945 946 skb = alloc_skb(sizeof(*req), GFP_KERNEL); 947 if (!skb) 948 skb = adap->nofail_skb; 949 if (!skb) 950 return -ENOMEM; 951 952 req = skb_put(skb, sizeof(*req)); 953 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT)); 954 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET; 955 req->sched = sched; 956 req->idx = qidx; 957 req->min = lo; 958 req->max = hi; 959 req->binding = port; 960 ret = t3_mgmt_tx(adap, skb); 961 if (skb == adap->nofail_skb) { 962 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field), 963 GFP_KERNEL); 964 if (!adap->nofail_skb) 965 ret = -ENOMEM; 966 } 967 968 return ret; 969 } 970 971 static int bind_qsets(struct adapter *adap) 972 { 973 int i, j, err = 0; 974 975 for_each_port(adap, i) { 976 const struct port_info *pi = adap2pinfo(adap, i); 977 978 for (j = 0; j < pi->nqsets; ++j) { 979 int ret = send_pktsched_cmd(adap, 1, 980 pi->first_qset + j, -1, 981 -1, i); 982 if (ret) 983 err = ret; 984 } 985 } 986 987 return err; 988 } 989 990 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \ 991 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO) 992 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin" 993 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \ 994 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO) 995 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin" 996 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin" 997 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin" 998 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin" 999 MODULE_FIRMWARE(FW_FNAME); 1000 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin"); 1001 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin"); 1002 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME); 1003 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME); 1004 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME); 1005 1006 static inline const char *get_edc_fw_name(int edc_idx) 1007 { 1008 const char *fw_name = NULL; 1009 1010 switch (edc_idx) { 1011 case EDC_OPT_AEL2005: 1012 fw_name = AEL2005_OPT_EDC_NAME; 1013 break; 1014 case EDC_TWX_AEL2005: 1015 fw_name = AEL2005_TWX_EDC_NAME; 1016 break; 1017 case EDC_TWX_AEL2020: 1018 fw_name = AEL2020_TWX_EDC_NAME; 1019 break; 1020 } 1021 return fw_name; 1022 } 1023 1024 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size) 1025 { 1026 struct adapter *adapter = phy->adapter; 1027 const struct firmware *fw; 1028 const char *fw_name; 1029 u32 csum; 1030 const __be32 *p; 1031 u16 *cache = phy->phy_cache; 1032 int i, ret = -EINVAL; 1033 1034 fw_name = get_edc_fw_name(edc_idx); 1035 if (fw_name) 1036 ret = request_firmware(&fw, fw_name, &adapter->pdev->dev); 1037 if (ret < 0) { 1038 dev_err(&adapter->pdev->dev, 1039 "could not upgrade firmware: unable to load %s\n", 1040 fw_name); 1041 return ret; 1042 } 1043 1044 /* check size, take checksum in account */ 1045 if (fw->size > size + 4) { 1046 CH_ERR(adapter, "firmware image too large %u, expected %d\n", 1047 (unsigned int)fw->size, size + 4); 1048 ret = -EINVAL; 1049 } 1050 1051 /* compute checksum */ 1052 p = (const __be32 *)fw->data; 1053 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++) 1054 csum += ntohl(p[i]); 1055 1056 if (csum != 0xffffffff) { 1057 CH_ERR(adapter, "corrupted firmware image, checksum %u\n", 1058 csum); 1059 ret = -EINVAL; 1060 } 1061 1062 for (i = 0; i < size / 4 ; i++) { 1063 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16; 1064 *cache++ = be32_to_cpu(p[i]) & 0xffff; 1065 } 1066 1067 release_firmware(fw); 1068 1069 return ret; 1070 } 1071 1072 static int upgrade_fw(struct adapter *adap) 1073 { 1074 int ret; 1075 const struct firmware *fw; 1076 struct device *dev = &adap->pdev->dev; 1077 1078 ret = request_firmware(&fw, FW_FNAME, dev); 1079 if (ret < 0) { 1080 dev_err(dev, "could not upgrade firmware: unable to load %s\n", 1081 FW_FNAME); 1082 return ret; 1083 } 1084 ret = t3_load_fw(adap, fw->data, fw->size); 1085 release_firmware(fw); 1086 1087 if (ret == 0) 1088 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n", 1089 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1090 else 1091 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n", 1092 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO); 1093 1094 return ret; 1095 } 1096 1097 static inline char t3rev2char(struct adapter *adapter) 1098 { 1099 char rev = 0; 1100 1101 switch(adapter->params.rev) { 1102 case T3_REV_B: 1103 case T3_REV_B2: 1104 rev = 'b'; 1105 break; 1106 case T3_REV_C: 1107 rev = 'c'; 1108 break; 1109 } 1110 return rev; 1111 } 1112 1113 static int update_tpsram(struct adapter *adap) 1114 { 1115 const struct firmware *tpsram; 1116 char buf[64]; 1117 struct device *dev = &adap->pdev->dev; 1118 int ret; 1119 char rev; 1120 1121 rev = t3rev2char(adap); 1122 if (!rev) 1123 return 0; 1124 1125 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev); 1126 1127 ret = request_firmware(&tpsram, buf, dev); 1128 if (ret < 0) { 1129 dev_err(dev, "could not load TP SRAM: unable to load %s\n", 1130 buf); 1131 return ret; 1132 } 1133 1134 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size); 1135 if (ret) 1136 goto release_tpsram; 1137 1138 ret = t3_set_proto_sram(adap, tpsram->data); 1139 if (ret == 0) 1140 dev_info(dev, 1141 "successful update of protocol engine " 1142 "to %d.%d.%d\n", 1143 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1144 else 1145 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n", 1146 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO); 1147 if (ret) 1148 dev_err(dev, "loading protocol SRAM failed\n"); 1149 1150 release_tpsram: 1151 release_firmware(tpsram); 1152 1153 return ret; 1154 } 1155 1156 /** 1157 * t3_synchronize_rx - wait for current Rx processing on a port to complete 1158 * @adap: the adapter 1159 * @p: the port 1160 * 1161 * Ensures that current Rx processing on any of the queues associated with 1162 * the given port completes before returning. We do this by acquiring and 1163 * releasing the locks of the response queues associated with the port. 1164 */ 1165 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p) 1166 { 1167 int i; 1168 1169 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) { 1170 struct sge_rspq *q = &adap->sge.qs[i].rspq; 1171 1172 spin_lock_irq(&q->lock); 1173 spin_unlock_irq(&q->lock); 1174 } 1175 } 1176 1177 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features) 1178 { 1179 struct port_info *pi = netdev_priv(dev); 1180 struct adapter *adapter = pi->adapter; 1181 1182 if (adapter->params.rev > 0) { 1183 t3_set_vlan_accel(adapter, 1 << pi->port_id, 1184 features & NETIF_F_HW_VLAN_CTAG_RX); 1185 } else { 1186 /* single control for all ports */ 1187 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX; 1188 1189 for_each_port(adapter, i) 1190 have_vlans |= 1191 adapter->port[i]->features & 1192 NETIF_F_HW_VLAN_CTAG_RX; 1193 1194 t3_set_vlan_accel(adapter, 1, have_vlans); 1195 } 1196 t3_synchronize_rx(adapter, pi); 1197 } 1198 1199 /** 1200 * cxgb_up - enable the adapter 1201 * @adap: adapter being enabled 1202 * 1203 * Called when the first port is enabled, this function performs the 1204 * actions necessary to make an adapter operational, such as completing 1205 * the initialization of HW modules, and enabling interrupts. 1206 * 1207 * Must be called with the rtnl lock held. 1208 */ 1209 static int cxgb_up(struct adapter *adap) 1210 { 1211 int i, err; 1212 1213 if (!(adap->flags & FULL_INIT_DONE)) { 1214 err = t3_check_fw_version(adap); 1215 if (err == -EINVAL) { 1216 err = upgrade_fw(adap); 1217 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n", 1218 FW_VERSION_MAJOR, FW_VERSION_MINOR, 1219 FW_VERSION_MICRO, err ? "failed" : "succeeded"); 1220 } 1221 1222 err = t3_check_tpsram_version(adap); 1223 if (err == -EINVAL) { 1224 err = update_tpsram(adap); 1225 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n", 1226 TP_VERSION_MAJOR, TP_VERSION_MINOR, 1227 TP_VERSION_MICRO, err ? "failed" : "succeeded"); 1228 } 1229 1230 /* 1231 * Clear interrupts now to catch errors if t3_init_hw fails. 1232 * We clear them again later as initialization may trigger 1233 * conditions that can interrupt. 1234 */ 1235 t3_intr_clear(adap); 1236 1237 err = t3_init_hw(adap, 0); 1238 if (err) 1239 goto out; 1240 1241 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT); 1242 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12)); 1243 1244 err = setup_sge_qsets(adap); 1245 if (err) 1246 goto out; 1247 1248 for_each_port(adap, i) 1249 cxgb_vlan_mode(adap->port[i], adap->port[i]->features); 1250 1251 setup_rss(adap); 1252 if (!(adap->flags & NAPI_INIT)) 1253 init_napi(adap); 1254 1255 t3_start_sge_timers(adap); 1256 adap->flags |= FULL_INIT_DONE; 1257 } 1258 1259 t3_intr_clear(adap); 1260 1261 if (adap->flags & USING_MSIX) { 1262 name_msix_vecs(adap); 1263 err = request_irq(adap->msix_info[0].vec, 1264 t3_async_intr_handler, 0, 1265 adap->msix_info[0].desc, adap); 1266 if (err) 1267 goto irq_err; 1268 1269 err = request_msix_data_irqs(adap); 1270 if (err) { 1271 free_irq(adap->msix_info[0].vec, adap); 1272 goto irq_err; 1273 } 1274 } else { 1275 err = request_irq(adap->pdev->irq, 1276 t3_intr_handler(adap, adap->sge.qs[0].rspq.polling), 1277 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED, 1278 adap->name, adap); 1279 if (err) 1280 goto irq_err; 1281 } 1282 1283 enable_all_napi(adap); 1284 t3_sge_start(adap); 1285 t3_intr_enable(adap); 1286 1287 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) && 1288 is_offload(adap) && init_tp_parity(adap) == 0) 1289 adap->flags |= TP_PARITY_INIT; 1290 1291 if (adap->flags & TP_PARITY_INIT) { 1292 t3_write_reg(adap, A_TP_INT_CAUSE, 1293 F_CMCACHEPERR | F_ARPLUTPERR); 1294 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff); 1295 } 1296 1297 if (!(adap->flags & QUEUES_BOUND)) { 1298 int ret = bind_qsets(adap); 1299 1300 if (ret < 0) { 1301 CH_ERR(adap, "failed to bind qsets, err %d\n", ret); 1302 t3_intr_disable(adap); 1303 quiesce_rx(adap); 1304 free_irq_resources(adap); 1305 err = ret; 1306 goto out; 1307 } 1308 adap->flags |= QUEUES_BOUND; 1309 } 1310 1311 out: 1312 return err; 1313 irq_err: 1314 CH_ERR(adap, "request_irq failed, err %d\n", err); 1315 goto out; 1316 } 1317 1318 /* 1319 * Release resources when all the ports and offloading have been stopped. 1320 */ 1321 static void cxgb_down(struct adapter *adapter, int on_wq) 1322 { 1323 t3_sge_stop(adapter); 1324 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */ 1325 t3_intr_disable(adapter); 1326 spin_unlock_irq(&adapter->work_lock); 1327 1328 free_irq_resources(adapter); 1329 quiesce_rx(adapter); 1330 t3_sge_stop(adapter); 1331 if (!on_wq) 1332 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */ 1333 } 1334 1335 static void schedule_chk_task(struct adapter *adap) 1336 { 1337 unsigned int timeo; 1338 1339 timeo = adap->params.linkpoll_period ? 1340 (HZ * adap->params.linkpoll_period) / 10 : 1341 adap->params.stats_update_period * HZ; 1342 if (timeo) 1343 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo); 1344 } 1345 1346 static int offload_open(struct net_device *dev) 1347 { 1348 struct port_info *pi = netdev_priv(dev); 1349 struct adapter *adapter = pi->adapter; 1350 struct t3cdev *tdev = dev2t3cdev(dev); 1351 int adap_up = adapter->open_device_map & PORT_MASK; 1352 int err; 1353 1354 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1355 return 0; 1356 1357 if (!adap_up && (err = cxgb_up(adapter)) < 0) 1358 goto out; 1359 1360 t3_tp_set_offload_mode(adapter, 1); 1361 tdev->lldev = adapter->port[0]; 1362 err = cxgb3_offload_activate(adapter); 1363 if (err) 1364 goto out; 1365 1366 init_port_mtus(adapter); 1367 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd, 1368 adapter->params.b_wnd, 1369 adapter->params.rev == 0 ? 1370 adapter->port[0]->mtu : 0xffff); 1371 init_smt(adapter); 1372 1373 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group)) 1374 dev_dbg(&dev->dev, "cannot create sysfs group\n"); 1375 1376 /* Call back all registered clients */ 1377 cxgb3_add_clients(tdev); 1378 1379 out: 1380 /* restore them in case the offload module has changed them */ 1381 if (err) { 1382 t3_tp_set_offload_mode(adapter, 0); 1383 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1384 cxgb3_set_dummy_ops(tdev); 1385 } 1386 return err; 1387 } 1388 1389 static int offload_close(struct t3cdev *tdev) 1390 { 1391 struct adapter *adapter = tdev2adap(tdev); 1392 struct t3c_data *td = T3C_DATA(tdev); 1393 1394 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) 1395 return 0; 1396 1397 /* Call back all registered clients */ 1398 cxgb3_remove_clients(tdev); 1399 1400 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group); 1401 1402 /* Flush work scheduled while releasing TIDs */ 1403 flush_work(&td->tid_release_task); 1404 1405 tdev->lldev = NULL; 1406 cxgb3_set_dummy_ops(tdev); 1407 t3_tp_set_offload_mode(adapter, 0); 1408 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map); 1409 1410 if (!adapter->open_device_map) 1411 cxgb_down(adapter, 0); 1412 1413 cxgb3_offload_deactivate(adapter); 1414 return 0; 1415 } 1416 1417 static int cxgb_open(struct net_device *dev) 1418 { 1419 struct port_info *pi = netdev_priv(dev); 1420 struct adapter *adapter = pi->adapter; 1421 int other_ports = adapter->open_device_map & PORT_MASK; 1422 int err; 1423 1424 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0) 1425 return err; 1426 1427 set_bit(pi->port_id, &adapter->open_device_map); 1428 if (is_offload(adapter) && !ofld_disable) { 1429 err = offload_open(dev); 1430 if (err) 1431 pr_warn("Could not initialize offload capabilities\n"); 1432 } 1433 1434 netif_set_real_num_tx_queues(dev, pi->nqsets); 1435 err = netif_set_real_num_rx_queues(dev, pi->nqsets); 1436 if (err) 1437 return err; 1438 link_start(dev); 1439 t3_port_intr_enable(adapter, pi->port_id); 1440 netif_tx_start_all_queues(dev); 1441 if (!other_ports) 1442 schedule_chk_task(adapter); 1443 1444 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id); 1445 return 0; 1446 } 1447 1448 static int __cxgb_close(struct net_device *dev, int on_wq) 1449 { 1450 struct port_info *pi = netdev_priv(dev); 1451 struct adapter *adapter = pi->adapter; 1452 1453 1454 if (!adapter->open_device_map) 1455 return 0; 1456 1457 /* Stop link fault interrupts */ 1458 t3_xgm_intr_disable(adapter, pi->port_id); 1459 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset); 1460 1461 t3_port_intr_disable(adapter, pi->port_id); 1462 netif_tx_stop_all_queues(dev); 1463 pi->phy.ops->power_down(&pi->phy, 1); 1464 netif_carrier_off(dev); 1465 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX); 1466 1467 spin_lock_irq(&adapter->work_lock); /* sync with update task */ 1468 clear_bit(pi->port_id, &adapter->open_device_map); 1469 spin_unlock_irq(&adapter->work_lock); 1470 1471 if (!(adapter->open_device_map & PORT_MASK)) 1472 cancel_delayed_work_sync(&adapter->adap_check_task); 1473 1474 if (!adapter->open_device_map) 1475 cxgb_down(adapter, on_wq); 1476 1477 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id); 1478 return 0; 1479 } 1480 1481 static int cxgb_close(struct net_device *dev) 1482 { 1483 return __cxgb_close(dev, 0); 1484 } 1485 1486 static struct net_device_stats *cxgb_get_stats(struct net_device *dev) 1487 { 1488 struct port_info *pi = netdev_priv(dev); 1489 struct adapter *adapter = pi->adapter; 1490 struct net_device_stats *ns = &dev->stats; 1491 const struct mac_stats *pstats; 1492 1493 spin_lock(&adapter->stats_lock); 1494 pstats = t3_mac_update_stats(&pi->mac); 1495 spin_unlock(&adapter->stats_lock); 1496 1497 ns->tx_bytes = pstats->tx_octets; 1498 ns->tx_packets = pstats->tx_frames; 1499 ns->rx_bytes = pstats->rx_octets; 1500 ns->rx_packets = pstats->rx_frames; 1501 ns->multicast = pstats->rx_mcast_frames; 1502 1503 ns->tx_errors = pstats->tx_underrun; 1504 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs + 1505 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short + 1506 pstats->rx_fifo_ovfl; 1507 1508 /* detailed rx_errors */ 1509 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long; 1510 ns->rx_over_errors = 0; 1511 ns->rx_crc_errors = pstats->rx_fcs_errs; 1512 ns->rx_frame_errors = pstats->rx_symbol_errs; 1513 ns->rx_fifo_errors = pstats->rx_fifo_ovfl; 1514 ns->rx_missed_errors = pstats->rx_cong_drops; 1515 1516 /* detailed tx_errors */ 1517 ns->tx_aborted_errors = 0; 1518 ns->tx_carrier_errors = 0; 1519 ns->tx_fifo_errors = pstats->tx_underrun; 1520 ns->tx_heartbeat_errors = 0; 1521 ns->tx_window_errors = 0; 1522 return ns; 1523 } 1524 1525 static u32 get_msglevel(struct net_device *dev) 1526 { 1527 struct port_info *pi = netdev_priv(dev); 1528 struct adapter *adapter = pi->adapter; 1529 1530 return adapter->msg_enable; 1531 } 1532 1533 static void set_msglevel(struct net_device *dev, u32 val) 1534 { 1535 struct port_info *pi = netdev_priv(dev); 1536 struct adapter *adapter = pi->adapter; 1537 1538 adapter->msg_enable = val; 1539 } 1540 1541 static const char stats_strings[][ETH_GSTRING_LEN] = { 1542 "TxOctetsOK ", 1543 "TxFramesOK ", 1544 "TxMulticastFramesOK", 1545 "TxBroadcastFramesOK", 1546 "TxPauseFrames ", 1547 "TxUnderrun ", 1548 "TxExtUnderrun ", 1549 1550 "TxFrames64 ", 1551 "TxFrames65To127 ", 1552 "TxFrames128To255 ", 1553 "TxFrames256To511 ", 1554 "TxFrames512To1023 ", 1555 "TxFrames1024To1518 ", 1556 "TxFrames1519ToMax ", 1557 1558 "RxOctetsOK ", 1559 "RxFramesOK ", 1560 "RxMulticastFramesOK", 1561 "RxBroadcastFramesOK", 1562 "RxPauseFrames ", 1563 "RxFCSErrors ", 1564 "RxSymbolErrors ", 1565 "RxShortErrors ", 1566 "RxJabberErrors ", 1567 "RxLengthErrors ", 1568 "RxFIFOoverflow ", 1569 1570 "RxFrames64 ", 1571 "RxFrames65To127 ", 1572 "RxFrames128To255 ", 1573 "RxFrames256To511 ", 1574 "RxFrames512To1023 ", 1575 "RxFrames1024To1518 ", 1576 "RxFrames1519ToMax ", 1577 1578 "PhyFIFOErrors ", 1579 "TSO ", 1580 "VLANextractions ", 1581 "VLANinsertions ", 1582 "TxCsumOffload ", 1583 "RxCsumGood ", 1584 "LroAggregated ", 1585 "LroFlushed ", 1586 "LroNoDesc ", 1587 "RxDrops ", 1588 1589 "CheckTXEnToggled ", 1590 "CheckResets ", 1591 1592 "LinkFaults ", 1593 }; 1594 1595 static int get_sset_count(struct net_device *dev, int sset) 1596 { 1597 switch (sset) { 1598 case ETH_SS_STATS: 1599 return ARRAY_SIZE(stats_strings); 1600 default: 1601 return -EOPNOTSUPP; 1602 } 1603 } 1604 1605 #define T3_REGMAP_SIZE (3 * 1024) 1606 1607 static int get_regs_len(struct net_device *dev) 1608 { 1609 return T3_REGMAP_SIZE; 1610 } 1611 1612 static int get_eeprom_len(struct net_device *dev) 1613 { 1614 return EEPROMSIZE; 1615 } 1616 1617 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1618 { 1619 struct port_info *pi = netdev_priv(dev); 1620 struct adapter *adapter = pi->adapter; 1621 u32 fw_vers = 0; 1622 u32 tp_vers = 0; 1623 1624 spin_lock(&adapter->stats_lock); 1625 t3_get_fw_version(adapter, &fw_vers); 1626 t3_get_tp_version(adapter, &tp_vers); 1627 spin_unlock(&adapter->stats_lock); 1628 1629 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 1630 strscpy(info->bus_info, pci_name(adapter->pdev), 1631 sizeof(info->bus_info)); 1632 if (fw_vers) 1633 snprintf(info->fw_version, sizeof(info->fw_version), 1634 "%s %u.%u.%u TP %u.%u.%u", 1635 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N", 1636 G_FW_VERSION_MAJOR(fw_vers), 1637 G_FW_VERSION_MINOR(fw_vers), 1638 G_FW_VERSION_MICRO(fw_vers), 1639 G_TP_VERSION_MAJOR(tp_vers), 1640 G_TP_VERSION_MINOR(tp_vers), 1641 G_TP_VERSION_MICRO(tp_vers)); 1642 } 1643 1644 static void get_strings(struct net_device *dev, u32 stringset, u8 * data) 1645 { 1646 if (stringset == ETH_SS_STATS) 1647 memcpy(data, stats_strings, sizeof(stats_strings)); 1648 } 1649 1650 static unsigned long collect_sge_port_stats(struct adapter *adapter, 1651 struct port_info *p, int idx) 1652 { 1653 int i; 1654 unsigned long tot = 0; 1655 1656 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i) 1657 tot += adapter->sge.qs[i].port_stats[idx]; 1658 return tot; 1659 } 1660 1661 static void get_stats(struct net_device *dev, struct ethtool_stats *stats, 1662 u64 *data) 1663 { 1664 struct port_info *pi = netdev_priv(dev); 1665 struct adapter *adapter = pi->adapter; 1666 const struct mac_stats *s; 1667 1668 spin_lock(&adapter->stats_lock); 1669 s = t3_mac_update_stats(&pi->mac); 1670 spin_unlock(&adapter->stats_lock); 1671 1672 *data++ = s->tx_octets; 1673 *data++ = s->tx_frames; 1674 *data++ = s->tx_mcast_frames; 1675 *data++ = s->tx_bcast_frames; 1676 *data++ = s->tx_pause; 1677 *data++ = s->tx_underrun; 1678 *data++ = s->tx_fifo_urun; 1679 1680 *data++ = s->tx_frames_64; 1681 *data++ = s->tx_frames_65_127; 1682 *data++ = s->tx_frames_128_255; 1683 *data++ = s->tx_frames_256_511; 1684 *data++ = s->tx_frames_512_1023; 1685 *data++ = s->tx_frames_1024_1518; 1686 *data++ = s->tx_frames_1519_max; 1687 1688 *data++ = s->rx_octets; 1689 *data++ = s->rx_frames; 1690 *data++ = s->rx_mcast_frames; 1691 *data++ = s->rx_bcast_frames; 1692 *data++ = s->rx_pause; 1693 *data++ = s->rx_fcs_errs; 1694 *data++ = s->rx_symbol_errs; 1695 *data++ = s->rx_short; 1696 *data++ = s->rx_jabber; 1697 *data++ = s->rx_too_long; 1698 *data++ = s->rx_fifo_ovfl; 1699 1700 *data++ = s->rx_frames_64; 1701 *data++ = s->rx_frames_65_127; 1702 *data++ = s->rx_frames_128_255; 1703 *data++ = s->rx_frames_256_511; 1704 *data++ = s->rx_frames_512_1023; 1705 *data++ = s->rx_frames_1024_1518; 1706 *data++ = s->rx_frames_1519_max; 1707 1708 *data++ = pi->phy.fifo_errors; 1709 1710 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO); 1711 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX); 1712 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS); 1713 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM); 1714 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD); 1715 *data++ = 0; 1716 *data++ = 0; 1717 *data++ = 0; 1718 *data++ = s->rx_cong_drops; 1719 1720 *data++ = s->num_toggled; 1721 *data++ = s->num_resets; 1722 1723 *data++ = s->link_faults; 1724 } 1725 1726 static inline void reg_block_dump(struct adapter *ap, void *buf, 1727 unsigned int start, unsigned int end) 1728 { 1729 u32 *p = buf + start; 1730 1731 for (; start <= end; start += sizeof(u32)) 1732 *p++ = t3_read_reg(ap, start); 1733 } 1734 1735 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, 1736 void *buf) 1737 { 1738 struct port_info *pi = netdev_priv(dev); 1739 struct adapter *ap = pi->adapter; 1740 1741 /* 1742 * Version scheme: 1743 * bits 0..9: chip version 1744 * bits 10..15: chip revision 1745 * bit 31: set for PCIe cards 1746 */ 1747 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31); 1748 1749 /* 1750 * We skip the MAC statistics registers because they are clear-on-read. 1751 * Also reading multi-register stats would need to synchronize with the 1752 * periodic mac stats accumulation. Hard to justify the complexity. 1753 */ 1754 memset(buf, 0, T3_REGMAP_SIZE); 1755 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN); 1756 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT); 1757 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE); 1758 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA); 1759 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3); 1760 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0, 1761 XGM_REG(A_XGM_SERDES_STAT3, 1)); 1762 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1), 1763 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1)); 1764 } 1765 1766 static int restart_autoneg(struct net_device *dev) 1767 { 1768 struct port_info *p = netdev_priv(dev); 1769 1770 if (!netif_running(dev)) 1771 return -EAGAIN; 1772 if (p->link_config.autoneg != AUTONEG_ENABLE) 1773 return -EINVAL; 1774 p->phy.ops->autoneg_restart(&p->phy); 1775 return 0; 1776 } 1777 1778 static int set_phys_id(struct net_device *dev, 1779 enum ethtool_phys_id_state state) 1780 { 1781 struct port_info *pi = netdev_priv(dev); 1782 struct adapter *adapter = pi->adapter; 1783 1784 switch (state) { 1785 case ETHTOOL_ID_ACTIVE: 1786 return 1; /* cycle on/off once per second */ 1787 1788 case ETHTOOL_ID_OFF: 1789 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0); 1790 break; 1791 1792 case ETHTOOL_ID_ON: 1793 case ETHTOOL_ID_INACTIVE: 1794 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 1795 F_GPIO0_OUT_VAL); 1796 } 1797 1798 return 0; 1799 } 1800 1801 static int get_link_ksettings(struct net_device *dev, 1802 struct ethtool_link_ksettings *cmd) 1803 { 1804 struct port_info *p = netdev_priv(dev); 1805 u32 supported; 1806 1807 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 1808 p->link_config.supported); 1809 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 1810 p->link_config.advertising); 1811 1812 if (netif_carrier_ok(dev)) { 1813 cmd->base.speed = p->link_config.speed; 1814 cmd->base.duplex = p->link_config.duplex; 1815 } else { 1816 cmd->base.speed = SPEED_UNKNOWN; 1817 cmd->base.duplex = DUPLEX_UNKNOWN; 1818 } 1819 1820 ethtool_convert_link_mode_to_legacy_u32(&supported, 1821 cmd->link_modes.supported); 1822 1823 cmd->base.port = (supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE; 1824 cmd->base.phy_address = p->phy.mdio.prtad; 1825 cmd->base.autoneg = p->link_config.autoneg; 1826 return 0; 1827 } 1828 1829 static int speed_duplex_to_caps(int speed, int duplex) 1830 { 1831 int cap = 0; 1832 1833 switch (speed) { 1834 case SPEED_10: 1835 if (duplex == DUPLEX_FULL) 1836 cap = SUPPORTED_10baseT_Full; 1837 else 1838 cap = SUPPORTED_10baseT_Half; 1839 break; 1840 case SPEED_100: 1841 if (duplex == DUPLEX_FULL) 1842 cap = SUPPORTED_100baseT_Full; 1843 else 1844 cap = SUPPORTED_100baseT_Half; 1845 break; 1846 case SPEED_1000: 1847 if (duplex == DUPLEX_FULL) 1848 cap = SUPPORTED_1000baseT_Full; 1849 else 1850 cap = SUPPORTED_1000baseT_Half; 1851 break; 1852 case SPEED_10000: 1853 if (duplex == DUPLEX_FULL) 1854 cap = SUPPORTED_10000baseT_Full; 1855 } 1856 return cap; 1857 } 1858 1859 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ 1860 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ 1861 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \ 1862 ADVERTISED_10000baseT_Full) 1863 1864 static int set_link_ksettings(struct net_device *dev, 1865 const struct ethtool_link_ksettings *cmd) 1866 { 1867 struct port_info *p = netdev_priv(dev); 1868 struct link_config *lc = &p->link_config; 1869 u32 advertising; 1870 1871 ethtool_convert_link_mode_to_legacy_u32(&advertising, 1872 cmd->link_modes.advertising); 1873 1874 if (!(lc->supported & SUPPORTED_Autoneg)) { 1875 /* 1876 * PHY offers a single speed/duplex. See if that's what's 1877 * being requested. 1878 */ 1879 if (cmd->base.autoneg == AUTONEG_DISABLE) { 1880 u32 speed = cmd->base.speed; 1881 int cap = speed_duplex_to_caps(speed, cmd->base.duplex); 1882 if (lc->supported & cap) 1883 return 0; 1884 } 1885 return -EINVAL; 1886 } 1887 1888 if (cmd->base.autoneg == AUTONEG_DISABLE) { 1889 u32 speed = cmd->base.speed; 1890 int cap = speed_duplex_to_caps(speed, cmd->base.duplex); 1891 1892 if (!(lc->supported & cap) || (speed == SPEED_1000)) 1893 return -EINVAL; 1894 lc->requested_speed = speed; 1895 lc->requested_duplex = cmd->base.duplex; 1896 lc->advertising = 0; 1897 } else { 1898 advertising &= ADVERTISED_MASK; 1899 advertising &= lc->supported; 1900 if (!advertising) 1901 return -EINVAL; 1902 lc->requested_speed = SPEED_INVALID; 1903 lc->requested_duplex = DUPLEX_INVALID; 1904 lc->advertising = advertising | ADVERTISED_Autoneg; 1905 } 1906 lc->autoneg = cmd->base.autoneg; 1907 if (netif_running(dev)) 1908 t3_link_start(&p->phy, &p->mac, lc); 1909 return 0; 1910 } 1911 1912 static void get_pauseparam(struct net_device *dev, 1913 struct ethtool_pauseparam *epause) 1914 { 1915 struct port_info *p = netdev_priv(dev); 1916 1917 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0; 1918 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0; 1919 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0; 1920 } 1921 1922 static int set_pauseparam(struct net_device *dev, 1923 struct ethtool_pauseparam *epause) 1924 { 1925 struct port_info *p = netdev_priv(dev); 1926 struct link_config *lc = &p->link_config; 1927 1928 if (epause->autoneg == AUTONEG_DISABLE) 1929 lc->requested_fc = 0; 1930 else if (lc->supported & SUPPORTED_Autoneg) 1931 lc->requested_fc = PAUSE_AUTONEG; 1932 else 1933 return -EINVAL; 1934 1935 if (epause->rx_pause) 1936 lc->requested_fc |= PAUSE_RX; 1937 if (epause->tx_pause) 1938 lc->requested_fc |= PAUSE_TX; 1939 if (lc->autoneg == AUTONEG_ENABLE) { 1940 if (netif_running(dev)) 1941 t3_link_start(&p->phy, &p->mac, lc); 1942 } else { 1943 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 1944 if (netif_running(dev)) 1945 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc); 1946 } 1947 return 0; 1948 } 1949 1950 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e, 1951 struct kernel_ethtool_ringparam *kernel_e, 1952 struct netlink_ext_ack *extack) 1953 { 1954 struct port_info *pi = netdev_priv(dev); 1955 struct adapter *adapter = pi->adapter; 1956 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset]; 1957 1958 e->rx_max_pending = MAX_RX_BUFFERS; 1959 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS; 1960 e->tx_max_pending = MAX_TXQ_ENTRIES; 1961 1962 e->rx_pending = q->fl_size; 1963 e->rx_mini_pending = q->rspq_size; 1964 e->rx_jumbo_pending = q->jumbo_size; 1965 e->tx_pending = q->txq_size[0]; 1966 } 1967 1968 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e, 1969 struct kernel_ethtool_ringparam *kernel_e, 1970 struct netlink_ext_ack *extack) 1971 { 1972 struct port_info *pi = netdev_priv(dev); 1973 struct adapter *adapter = pi->adapter; 1974 struct qset_params *q; 1975 int i; 1976 1977 if (e->rx_pending > MAX_RX_BUFFERS || 1978 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS || 1979 e->tx_pending > MAX_TXQ_ENTRIES || 1980 e->rx_mini_pending > MAX_RSPQ_ENTRIES || 1981 e->rx_mini_pending < MIN_RSPQ_ENTRIES || 1982 e->rx_pending < MIN_FL_ENTRIES || 1983 e->rx_jumbo_pending < MIN_FL_ENTRIES || 1984 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES) 1985 return -EINVAL; 1986 1987 if (adapter->flags & FULL_INIT_DONE) 1988 return -EBUSY; 1989 1990 q = &adapter->params.sge.qset[pi->first_qset]; 1991 for (i = 0; i < pi->nqsets; ++i, ++q) { 1992 q->rspq_size = e->rx_mini_pending; 1993 q->fl_size = e->rx_pending; 1994 q->jumbo_size = e->rx_jumbo_pending; 1995 q->txq_size[0] = e->tx_pending; 1996 q->txq_size[1] = e->tx_pending; 1997 q->txq_size[2] = e->tx_pending; 1998 } 1999 return 0; 2000 } 2001 2002 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c, 2003 struct kernel_ethtool_coalesce *kernel_coal, 2004 struct netlink_ext_ack *extack) 2005 { 2006 struct port_info *pi = netdev_priv(dev); 2007 struct adapter *adapter = pi->adapter; 2008 struct qset_params *qsp; 2009 struct sge_qset *qs; 2010 int i; 2011 2012 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER) 2013 return -EINVAL; 2014 2015 for (i = 0; i < pi->nqsets; i++) { 2016 qsp = &adapter->params.sge.qset[i]; 2017 qs = &adapter->sge.qs[i]; 2018 qsp->coalesce_usecs = c->rx_coalesce_usecs; 2019 t3_update_qset_coalesce(qs, qsp); 2020 } 2021 2022 return 0; 2023 } 2024 2025 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c, 2026 struct kernel_ethtool_coalesce *kernel_coal, 2027 struct netlink_ext_ack *extack) 2028 { 2029 struct port_info *pi = netdev_priv(dev); 2030 struct adapter *adapter = pi->adapter; 2031 struct qset_params *q = adapter->params.sge.qset; 2032 2033 c->rx_coalesce_usecs = q->coalesce_usecs; 2034 return 0; 2035 } 2036 2037 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e, 2038 u8 * data) 2039 { 2040 struct port_info *pi = netdev_priv(dev); 2041 struct adapter *adapter = pi->adapter; 2042 int cnt; 2043 2044 e->magic = EEPROM_MAGIC; 2045 cnt = pci_read_vpd(adapter->pdev, e->offset, e->len, data); 2046 if (cnt < 0) 2047 return cnt; 2048 2049 e->len = cnt; 2050 2051 return 0; 2052 } 2053 2054 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 2055 u8 * data) 2056 { 2057 struct port_info *pi = netdev_priv(dev); 2058 struct adapter *adapter = pi->adapter; 2059 u32 aligned_offset, aligned_len; 2060 u8 *buf; 2061 int err; 2062 2063 if (eeprom->magic != EEPROM_MAGIC) 2064 return -EINVAL; 2065 2066 aligned_offset = eeprom->offset & ~3; 2067 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3; 2068 2069 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) { 2070 buf = kmalloc(aligned_len, GFP_KERNEL); 2071 if (!buf) 2072 return -ENOMEM; 2073 err = pci_read_vpd(adapter->pdev, aligned_offset, aligned_len, 2074 buf); 2075 if (err < 0) 2076 goto out; 2077 memcpy(buf + (eeprom->offset & 3), data, eeprom->len); 2078 } else 2079 buf = data; 2080 2081 err = t3_seeprom_wp(adapter, 0); 2082 if (err) 2083 goto out; 2084 2085 err = pci_write_vpd(adapter->pdev, aligned_offset, aligned_len, buf); 2086 if (err >= 0) 2087 err = t3_seeprom_wp(adapter, 1); 2088 out: 2089 if (buf != data) 2090 kfree(buf); 2091 return err < 0 ? err : 0; 2092 } 2093 2094 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2095 { 2096 wol->supported = 0; 2097 wol->wolopts = 0; 2098 memset(&wol->sopass, 0, sizeof(wol->sopass)); 2099 } 2100 2101 static const struct ethtool_ops cxgb_ethtool_ops = { 2102 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS, 2103 .get_drvinfo = get_drvinfo, 2104 .get_msglevel = get_msglevel, 2105 .set_msglevel = set_msglevel, 2106 .get_ringparam = get_sge_param, 2107 .set_ringparam = set_sge_param, 2108 .get_coalesce = get_coalesce, 2109 .set_coalesce = set_coalesce, 2110 .get_eeprom_len = get_eeprom_len, 2111 .get_eeprom = get_eeprom, 2112 .set_eeprom = set_eeprom, 2113 .get_pauseparam = get_pauseparam, 2114 .set_pauseparam = set_pauseparam, 2115 .get_link = ethtool_op_get_link, 2116 .get_strings = get_strings, 2117 .set_phys_id = set_phys_id, 2118 .nway_reset = restart_autoneg, 2119 .get_sset_count = get_sset_count, 2120 .get_ethtool_stats = get_stats, 2121 .get_regs_len = get_regs_len, 2122 .get_regs = get_regs, 2123 .get_wol = get_wol, 2124 .get_link_ksettings = get_link_ksettings, 2125 .set_link_ksettings = set_link_ksettings, 2126 }; 2127 2128 static int cxgb_in_range(int val, int lo, int hi) 2129 { 2130 return val < 0 || (val <= hi && val >= lo); 2131 } 2132 2133 static int cxgb_siocdevprivate(struct net_device *dev, 2134 struct ifreq *ifreq, 2135 void __user *useraddr, 2136 int cmd) 2137 { 2138 struct port_info *pi = netdev_priv(dev); 2139 struct adapter *adapter = pi->adapter; 2140 int ret; 2141 2142 if (cmd != SIOCCHIOCTL) 2143 return -EOPNOTSUPP; 2144 2145 if (copy_from_user(&cmd, useraddr, sizeof(cmd))) 2146 return -EFAULT; 2147 2148 switch (cmd) { 2149 case CHELSIO_SET_QSET_PARAMS:{ 2150 int i; 2151 struct qset_params *q; 2152 struct ch_qset_params t; 2153 int q1 = pi->first_qset; 2154 int nqsets = pi->nqsets; 2155 2156 if (!capable(CAP_NET_ADMIN)) 2157 return -EPERM; 2158 if (copy_from_user(&t, useraddr, sizeof(t))) 2159 return -EFAULT; 2160 if (t.cmd != CHELSIO_SET_QSET_PARAMS) 2161 return -EINVAL; 2162 if (t.qset_idx >= SGE_QSETS) 2163 return -EINVAL; 2164 if (!cxgb_in_range(t.intr_lat, 0, M_NEWTIMER) || 2165 !cxgb_in_range(t.cong_thres, 0, 255) || 2166 !cxgb_in_range(t.txq_size[0], MIN_TXQ_ENTRIES, 2167 MAX_TXQ_ENTRIES) || 2168 !cxgb_in_range(t.txq_size[1], MIN_TXQ_ENTRIES, 2169 MAX_TXQ_ENTRIES) || 2170 !cxgb_in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES, 2171 MAX_CTRL_TXQ_ENTRIES) || 2172 !cxgb_in_range(t.fl_size[0], MIN_FL_ENTRIES, 2173 MAX_RX_BUFFERS) || 2174 !cxgb_in_range(t.fl_size[1], MIN_FL_ENTRIES, 2175 MAX_RX_JUMBO_BUFFERS) || 2176 !cxgb_in_range(t.rspq_size, MIN_RSPQ_ENTRIES, 2177 MAX_RSPQ_ENTRIES)) 2178 return -EINVAL; 2179 2180 if ((adapter->flags & FULL_INIT_DONE) && 2181 (t.rspq_size >= 0 || t.fl_size[0] >= 0 || 2182 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 || 2183 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 || 2184 t.polling >= 0 || t.cong_thres >= 0)) 2185 return -EBUSY; 2186 2187 /* Allow setting of any available qset when offload enabled */ 2188 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2189 q1 = 0; 2190 for_each_port(adapter, i) { 2191 pi = adap2pinfo(adapter, i); 2192 nqsets += pi->first_qset + pi->nqsets; 2193 } 2194 } 2195 2196 if (t.qset_idx < q1) 2197 return -EINVAL; 2198 if (t.qset_idx > q1 + nqsets - 1) 2199 return -EINVAL; 2200 2201 q = &adapter->params.sge.qset[t.qset_idx]; 2202 2203 if (t.rspq_size >= 0) 2204 q->rspq_size = t.rspq_size; 2205 if (t.fl_size[0] >= 0) 2206 q->fl_size = t.fl_size[0]; 2207 if (t.fl_size[1] >= 0) 2208 q->jumbo_size = t.fl_size[1]; 2209 if (t.txq_size[0] >= 0) 2210 q->txq_size[0] = t.txq_size[0]; 2211 if (t.txq_size[1] >= 0) 2212 q->txq_size[1] = t.txq_size[1]; 2213 if (t.txq_size[2] >= 0) 2214 q->txq_size[2] = t.txq_size[2]; 2215 if (t.cong_thres >= 0) 2216 q->cong_thres = t.cong_thres; 2217 if (t.intr_lat >= 0) { 2218 struct sge_qset *qs = 2219 &adapter->sge.qs[t.qset_idx]; 2220 2221 q->coalesce_usecs = t.intr_lat; 2222 t3_update_qset_coalesce(qs, q); 2223 } 2224 if (t.polling >= 0) { 2225 if (adapter->flags & USING_MSIX) 2226 q->polling = t.polling; 2227 else { 2228 /* No polling with INTx for T3A */ 2229 if (adapter->params.rev == 0 && 2230 !(adapter->flags & USING_MSI)) 2231 t.polling = 0; 2232 2233 for (i = 0; i < SGE_QSETS; i++) { 2234 q = &adapter->params.sge. 2235 qset[i]; 2236 q->polling = t.polling; 2237 } 2238 } 2239 } 2240 2241 if (t.lro >= 0) { 2242 if (t.lro) 2243 dev->wanted_features |= NETIF_F_GRO; 2244 else 2245 dev->wanted_features &= ~NETIF_F_GRO; 2246 netdev_update_features(dev); 2247 } 2248 2249 break; 2250 } 2251 case CHELSIO_GET_QSET_PARAMS:{ 2252 struct qset_params *q; 2253 struct ch_qset_params t; 2254 int q1 = pi->first_qset; 2255 int nqsets = pi->nqsets; 2256 int i; 2257 2258 if (copy_from_user(&t, useraddr, sizeof(t))) 2259 return -EFAULT; 2260 2261 if (t.cmd != CHELSIO_GET_QSET_PARAMS) 2262 return -EINVAL; 2263 2264 /* Display qsets for all ports when offload enabled */ 2265 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2266 q1 = 0; 2267 for_each_port(adapter, i) { 2268 pi = adap2pinfo(adapter, i); 2269 nqsets = pi->first_qset + pi->nqsets; 2270 } 2271 } 2272 2273 if (t.qset_idx >= nqsets) 2274 return -EINVAL; 2275 t.qset_idx = array_index_nospec(t.qset_idx, nqsets); 2276 2277 q = &adapter->params.sge.qset[q1 + t.qset_idx]; 2278 t.rspq_size = q->rspq_size; 2279 t.txq_size[0] = q->txq_size[0]; 2280 t.txq_size[1] = q->txq_size[1]; 2281 t.txq_size[2] = q->txq_size[2]; 2282 t.fl_size[0] = q->fl_size; 2283 t.fl_size[1] = q->jumbo_size; 2284 t.polling = q->polling; 2285 t.lro = !!(dev->features & NETIF_F_GRO); 2286 t.intr_lat = q->coalesce_usecs; 2287 t.cong_thres = q->cong_thres; 2288 t.qnum = q1; 2289 2290 if (adapter->flags & USING_MSIX) 2291 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec; 2292 else 2293 t.vector = adapter->pdev->irq; 2294 2295 if (copy_to_user(useraddr, &t, sizeof(t))) 2296 return -EFAULT; 2297 break; 2298 } 2299 case CHELSIO_SET_QSET_NUM:{ 2300 struct ch_reg edata; 2301 unsigned int i, first_qset = 0, other_qsets = 0; 2302 2303 if (!capable(CAP_NET_ADMIN)) 2304 return -EPERM; 2305 if (adapter->flags & FULL_INIT_DONE) 2306 return -EBUSY; 2307 if (copy_from_user(&edata, useraddr, sizeof(edata))) 2308 return -EFAULT; 2309 if (edata.cmd != CHELSIO_SET_QSET_NUM) 2310 return -EINVAL; 2311 if (edata.val < 1 || 2312 (edata.val > 1 && !(adapter->flags & USING_MSIX))) 2313 return -EINVAL; 2314 2315 for_each_port(adapter, i) 2316 if (adapter->port[i] && adapter->port[i] != dev) 2317 other_qsets += adap2pinfo(adapter, i)->nqsets; 2318 2319 if (edata.val + other_qsets > SGE_QSETS) 2320 return -EINVAL; 2321 2322 pi->nqsets = edata.val; 2323 2324 for_each_port(adapter, i) 2325 if (adapter->port[i]) { 2326 pi = adap2pinfo(adapter, i); 2327 pi->first_qset = first_qset; 2328 first_qset += pi->nqsets; 2329 } 2330 break; 2331 } 2332 case CHELSIO_GET_QSET_NUM:{ 2333 struct ch_reg edata; 2334 2335 memset(&edata, 0, sizeof(struct ch_reg)); 2336 2337 edata.cmd = CHELSIO_GET_QSET_NUM; 2338 edata.val = pi->nqsets; 2339 if (copy_to_user(useraddr, &edata, sizeof(edata))) 2340 return -EFAULT; 2341 break; 2342 } 2343 case CHELSIO_LOAD_FW:{ 2344 u8 *fw_data; 2345 struct ch_mem_range t; 2346 2347 if (!capable(CAP_SYS_RAWIO)) 2348 return -EPERM; 2349 if (copy_from_user(&t, useraddr, sizeof(t))) 2350 return -EFAULT; 2351 if (t.cmd != CHELSIO_LOAD_FW) 2352 return -EINVAL; 2353 /* Check t.len sanity ? */ 2354 fw_data = memdup_user(useraddr + sizeof(t), t.len); 2355 if (IS_ERR(fw_data)) 2356 return PTR_ERR(fw_data); 2357 2358 ret = t3_load_fw(adapter, fw_data, t.len); 2359 kfree(fw_data); 2360 if (ret) 2361 return ret; 2362 break; 2363 } 2364 case CHELSIO_SETMTUTAB:{ 2365 struct ch_mtus m; 2366 int i; 2367 2368 if (!is_offload(adapter)) 2369 return -EOPNOTSUPP; 2370 if (!capable(CAP_NET_ADMIN)) 2371 return -EPERM; 2372 if (offload_running(adapter)) 2373 return -EBUSY; 2374 if (copy_from_user(&m, useraddr, sizeof(m))) 2375 return -EFAULT; 2376 if (m.cmd != CHELSIO_SETMTUTAB) 2377 return -EINVAL; 2378 if (m.nmtus != NMTUS) 2379 return -EINVAL; 2380 if (m.mtus[0] < 81) /* accommodate SACK */ 2381 return -EINVAL; 2382 2383 /* MTUs must be in ascending order */ 2384 for (i = 1; i < NMTUS; ++i) 2385 if (m.mtus[i] < m.mtus[i - 1]) 2386 return -EINVAL; 2387 2388 memcpy(adapter->params.mtus, m.mtus, 2389 sizeof(adapter->params.mtus)); 2390 break; 2391 } 2392 case CHELSIO_GET_PM:{ 2393 struct tp_params *p = &adapter->params.tp; 2394 struct ch_pm m = {.cmd = CHELSIO_GET_PM }; 2395 2396 if (!is_offload(adapter)) 2397 return -EOPNOTSUPP; 2398 m.tx_pg_sz = p->tx_pg_size; 2399 m.tx_num_pg = p->tx_num_pgs; 2400 m.rx_pg_sz = p->rx_pg_size; 2401 m.rx_num_pg = p->rx_num_pgs; 2402 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan; 2403 if (copy_to_user(useraddr, &m, sizeof(m))) 2404 return -EFAULT; 2405 break; 2406 } 2407 case CHELSIO_SET_PM:{ 2408 struct ch_pm m; 2409 struct tp_params *p = &adapter->params.tp; 2410 2411 if (!is_offload(adapter)) 2412 return -EOPNOTSUPP; 2413 if (!capable(CAP_NET_ADMIN)) 2414 return -EPERM; 2415 if (adapter->flags & FULL_INIT_DONE) 2416 return -EBUSY; 2417 if (copy_from_user(&m, useraddr, sizeof(m))) 2418 return -EFAULT; 2419 if (m.cmd != CHELSIO_SET_PM) 2420 return -EINVAL; 2421 if (!is_power_of_2(m.rx_pg_sz) || 2422 !is_power_of_2(m.tx_pg_sz)) 2423 return -EINVAL; /* not power of 2 */ 2424 if (!(m.rx_pg_sz & 0x14000)) 2425 return -EINVAL; /* not 16KB or 64KB */ 2426 if (!(m.tx_pg_sz & 0x1554000)) 2427 return -EINVAL; 2428 if (m.tx_num_pg == -1) 2429 m.tx_num_pg = p->tx_num_pgs; 2430 if (m.rx_num_pg == -1) 2431 m.rx_num_pg = p->rx_num_pgs; 2432 if (m.tx_num_pg % 24 || m.rx_num_pg % 24) 2433 return -EINVAL; 2434 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size || 2435 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size) 2436 return -EINVAL; 2437 p->rx_pg_size = m.rx_pg_sz; 2438 p->tx_pg_size = m.tx_pg_sz; 2439 p->rx_num_pgs = m.rx_num_pg; 2440 p->tx_num_pgs = m.tx_num_pg; 2441 break; 2442 } 2443 case CHELSIO_GET_MEM:{ 2444 struct ch_mem_range t; 2445 struct mc7 *mem; 2446 u64 buf[32]; 2447 2448 if (!is_offload(adapter)) 2449 return -EOPNOTSUPP; 2450 if (!capable(CAP_NET_ADMIN)) 2451 return -EPERM; 2452 if (!(adapter->flags & FULL_INIT_DONE)) 2453 return -EIO; /* need the memory controllers */ 2454 if (copy_from_user(&t, useraddr, sizeof(t))) 2455 return -EFAULT; 2456 if (t.cmd != CHELSIO_GET_MEM) 2457 return -EINVAL; 2458 if ((t.addr & 7) || (t.len & 7)) 2459 return -EINVAL; 2460 if (t.mem_id == MEM_CM) 2461 mem = &adapter->cm; 2462 else if (t.mem_id == MEM_PMRX) 2463 mem = &adapter->pmrx; 2464 else if (t.mem_id == MEM_PMTX) 2465 mem = &adapter->pmtx; 2466 else 2467 return -EINVAL; 2468 2469 /* 2470 * Version scheme: 2471 * bits 0..9: chip version 2472 * bits 10..15: chip revision 2473 */ 2474 t.version = 3 | (adapter->params.rev << 10); 2475 if (copy_to_user(useraddr, &t, sizeof(t))) 2476 return -EFAULT; 2477 2478 /* 2479 * Read 256 bytes at a time as len can be large and we don't 2480 * want to use huge intermediate buffers. 2481 */ 2482 useraddr += sizeof(t); /* advance to start of buffer */ 2483 while (t.len) { 2484 unsigned int chunk = 2485 min_t(unsigned int, t.len, sizeof(buf)); 2486 2487 ret = 2488 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8, 2489 buf); 2490 if (ret) 2491 return ret; 2492 if (copy_to_user(useraddr, buf, chunk)) 2493 return -EFAULT; 2494 useraddr += chunk; 2495 t.addr += chunk; 2496 t.len -= chunk; 2497 } 2498 break; 2499 } 2500 case CHELSIO_SET_TRACE_FILTER:{ 2501 struct ch_trace t; 2502 const struct trace_params *tp; 2503 2504 if (!capable(CAP_NET_ADMIN)) 2505 return -EPERM; 2506 if (!offload_running(adapter)) 2507 return -EAGAIN; 2508 if (copy_from_user(&t, useraddr, sizeof(t))) 2509 return -EFAULT; 2510 if (t.cmd != CHELSIO_SET_TRACE_FILTER) 2511 return -EINVAL; 2512 2513 tp = (const struct trace_params *)&t.sip; 2514 if (t.config_tx) 2515 t3_config_trace_filter(adapter, tp, 0, 2516 t.invert_match, 2517 t.trace_tx); 2518 if (t.config_rx) 2519 t3_config_trace_filter(adapter, tp, 1, 2520 t.invert_match, 2521 t.trace_rx); 2522 break; 2523 } 2524 default: 2525 return -EOPNOTSUPP; 2526 } 2527 return 0; 2528 } 2529 2530 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 2531 { 2532 struct mii_ioctl_data *data = if_mii(req); 2533 struct port_info *pi = netdev_priv(dev); 2534 struct adapter *adapter = pi->adapter; 2535 2536 switch (cmd) { 2537 case SIOCGMIIREG: 2538 case SIOCSMIIREG: 2539 /* Convert phy_id from older PRTAD/DEVAD format */ 2540 if (is_10G(adapter) && 2541 !mdio_phy_id_is_c45(data->phy_id) && 2542 (data->phy_id & 0x1f00) && 2543 !(data->phy_id & 0xe0e0)) 2544 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8, 2545 data->phy_id & 0x1f); 2546 fallthrough; 2547 case SIOCGMIIPHY: 2548 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd); 2549 default: 2550 return -EOPNOTSUPP; 2551 } 2552 } 2553 2554 static int cxgb_change_mtu(struct net_device *dev, int new_mtu) 2555 { 2556 struct port_info *pi = netdev_priv(dev); 2557 struct adapter *adapter = pi->adapter; 2558 int ret; 2559 2560 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu))) 2561 return ret; 2562 dev->mtu = new_mtu; 2563 init_port_mtus(adapter); 2564 if (adapter->params.rev == 0 && offload_running(adapter)) 2565 t3_load_mtus(adapter, adapter->params.mtus, 2566 adapter->params.a_wnd, adapter->params.b_wnd, 2567 adapter->port[0]->mtu); 2568 return 0; 2569 } 2570 2571 static int cxgb_set_mac_addr(struct net_device *dev, void *p) 2572 { 2573 struct port_info *pi = netdev_priv(dev); 2574 struct adapter *adapter = pi->adapter; 2575 struct sockaddr *addr = p; 2576 2577 if (!is_valid_ether_addr(addr->sa_data)) 2578 return -EADDRNOTAVAIL; 2579 2580 eth_hw_addr_set(dev, addr->sa_data); 2581 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr); 2582 if (offload_running(adapter)) 2583 write_smt_entry(adapter, pi->port_id); 2584 return 0; 2585 } 2586 2587 static netdev_features_t cxgb_fix_features(struct net_device *dev, 2588 netdev_features_t features) 2589 { 2590 /* 2591 * Since there is no support for separate rx/tx vlan accel 2592 * enable/disable make sure tx flag is always in same state as rx. 2593 */ 2594 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2595 features |= NETIF_F_HW_VLAN_CTAG_TX; 2596 else 2597 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2598 2599 return features; 2600 } 2601 2602 static int cxgb_set_features(struct net_device *dev, netdev_features_t features) 2603 { 2604 netdev_features_t changed = dev->features ^ features; 2605 2606 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2607 cxgb_vlan_mode(dev, features); 2608 2609 return 0; 2610 } 2611 2612 #ifdef CONFIG_NET_POLL_CONTROLLER 2613 static void cxgb_netpoll(struct net_device *dev) 2614 { 2615 struct port_info *pi = netdev_priv(dev); 2616 struct adapter *adapter = pi->adapter; 2617 int qidx; 2618 2619 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) { 2620 struct sge_qset *qs = &adapter->sge.qs[qidx]; 2621 void *source; 2622 2623 if (adapter->flags & USING_MSIX) 2624 source = qs; 2625 else 2626 source = adapter; 2627 2628 t3_intr_handler(adapter, qs->rspq.polling) (0, source); 2629 } 2630 } 2631 #endif 2632 2633 /* 2634 * Periodic accumulation of MAC statistics. 2635 */ 2636 static void mac_stats_update(struct adapter *adapter) 2637 { 2638 int i; 2639 2640 for_each_port(adapter, i) { 2641 struct net_device *dev = adapter->port[i]; 2642 struct port_info *p = netdev_priv(dev); 2643 2644 if (netif_running(dev)) { 2645 spin_lock(&adapter->stats_lock); 2646 t3_mac_update_stats(&p->mac); 2647 spin_unlock(&adapter->stats_lock); 2648 } 2649 } 2650 } 2651 2652 static void check_link_status(struct adapter *adapter) 2653 { 2654 int i; 2655 2656 for_each_port(adapter, i) { 2657 struct net_device *dev = adapter->port[i]; 2658 struct port_info *p = netdev_priv(dev); 2659 int link_fault; 2660 2661 spin_lock_irq(&adapter->work_lock); 2662 link_fault = p->link_fault; 2663 spin_unlock_irq(&adapter->work_lock); 2664 2665 if (link_fault) { 2666 t3_link_fault(adapter, i); 2667 continue; 2668 } 2669 2670 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) { 2671 t3_xgm_intr_disable(adapter, i); 2672 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2673 2674 t3_link_changed(adapter, i); 2675 t3_xgm_intr_enable(adapter, i); 2676 } 2677 } 2678 } 2679 2680 static void check_t3b2_mac(struct adapter *adapter) 2681 { 2682 int i; 2683 2684 if (!rtnl_trylock()) /* synchronize with ifdown */ 2685 return; 2686 2687 for_each_port(adapter, i) { 2688 struct net_device *dev = adapter->port[i]; 2689 struct port_info *p = netdev_priv(dev); 2690 int status; 2691 2692 if (!netif_running(dev)) 2693 continue; 2694 2695 status = 0; 2696 if (netif_running(dev) && netif_carrier_ok(dev)) 2697 status = t3b2_mac_watchdog_task(&p->mac); 2698 if (status == 1) 2699 p->mac.stats.num_toggled++; 2700 else if (status == 2) { 2701 struct cmac *mac = &p->mac; 2702 2703 t3_mac_set_mtu(mac, dev->mtu); 2704 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr); 2705 cxgb_set_rxmode(dev); 2706 t3_link_start(&p->phy, mac, &p->link_config); 2707 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 2708 t3_port_intr_enable(adapter, p->port_id); 2709 p->mac.stats.num_resets++; 2710 } 2711 } 2712 rtnl_unlock(); 2713 } 2714 2715 2716 static void t3_adap_check_task(struct work_struct *work) 2717 { 2718 struct adapter *adapter = container_of(work, struct adapter, 2719 adap_check_task.work); 2720 const struct adapter_params *p = &adapter->params; 2721 int port; 2722 unsigned int v, status, reset; 2723 2724 adapter->check_task_cnt++; 2725 2726 check_link_status(adapter); 2727 2728 /* Accumulate MAC stats if needed */ 2729 if (!p->linkpoll_period || 2730 (adapter->check_task_cnt * p->linkpoll_period) / 10 >= 2731 p->stats_update_period) { 2732 mac_stats_update(adapter); 2733 adapter->check_task_cnt = 0; 2734 } 2735 2736 if (p->rev == T3_REV_B2) 2737 check_t3b2_mac(adapter); 2738 2739 /* 2740 * Scan the XGMAC's to check for various conditions which we want to 2741 * monitor in a periodic polling manner rather than via an interrupt 2742 * condition. This is used for conditions which would otherwise flood 2743 * the system with interrupts and we only really need to know that the 2744 * conditions are "happening" ... For each condition we count the 2745 * detection of the condition and reset it for the next polling loop. 2746 */ 2747 for_each_port(adapter, port) { 2748 struct cmac *mac = &adap2pinfo(adapter, port)->mac; 2749 u32 cause; 2750 2751 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset); 2752 reset = 0; 2753 if (cause & F_RXFIFO_OVERFLOW) { 2754 mac->stats.rx_fifo_ovfl++; 2755 reset |= F_RXFIFO_OVERFLOW; 2756 } 2757 2758 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset); 2759 } 2760 2761 /* 2762 * We do the same as above for FL_EMPTY interrupts. 2763 */ 2764 status = t3_read_reg(adapter, A_SG_INT_CAUSE); 2765 reset = 0; 2766 2767 if (status & F_FLEMPTY) { 2768 struct sge_qset *qs = &adapter->sge.qs[0]; 2769 int i = 0; 2770 2771 reset |= F_FLEMPTY; 2772 2773 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) & 2774 0xffff; 2775 2776 while (v) { 2777 qs->fl[i].empty += (v & 1); 2778 if (i) 2779 qs++; 2780 i ^= 1; 2781 v >>= 1; 2782 } 2783 } 2784 2785 t3_write_reg(adapter, A_SG_INT_CAUSE, reset); 2786 2787 /* Schedule the next check update if any port is active. */ 2788 spin_lock_irq(&adapter->work_lock); 2789 if (adapter->open_device_map & PORT_MASK) 2790 schedule_chk_task(adapter); 2791 spin_unlock_irq(&adapter->work_lock); 2792 } 2793 2794 static void db_full_task(struct work_struct *work) 2795 { 2796 struct adapter *adapter = container_of(work, struct adapter, 2797 db_full_task); 2798 2799 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0); 2800 } 2801 2802 static void db_empty_task(struct work_struct *work) 2803 { 2804 struct adapter *adapter = container_of(work, struct adapter, 2805 db_empty_task); 2806 2807 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0); 2808 } 2809 2810 static void db_drop_task(struct work_struct *work) 2811 { 2812 struct adapter *adapter = container_of(work, struct adapter, 2813 db_drop_task); 2814 unsigned long delay = 1000; 2815 unsigned short r; 2816 2817 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0); 2818 2819 /* 2820 * Sleep a while before ringing the driver qset dbs. 2821 * The delay is between 1000-2023 usecs. 2822 */ 2823 get_random_bytes(&r, 2); 2824 delay += r & 1023; 2825 set_current_state(TASK_UNINTERRUPTIBLE); 2826 schedule_timeout(usecs_to_jiffies(delay)); 2827 ring_dbs(adapter); 2828 } 2829 2830 /* 2831 * Processes external (PHY) interrupts in process context. 2832 */ 2833 static void ext_intr_task(struct work_struct *work) 2834 { 2835 struct adapter *adapter = container_of(work, struct adapter, 2836 ext_intr_handler_task); 2837 int i; 2838 2839 /* Disable link fault interrupts */ 2840 for_each_port(adapter, i) { 2841 struct net_device *dev = adapter->port[i]; 2842 struct port_info *p = netdev_priv(dev); 2843 2844 t3_xgm_intr_disable(adapter, i); 2845 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset); 2846 } 2847 2848 /* Re-enable link fault interrupts */ 2849 t3_phy_intr_handler(adapter); 2850 2851 for_each_port(adapter, i) 2852 t3_xgm_intr_enable(adapter, i); 2853 2854 /* Now reenable external interrupts */ 2855 spin_lock_irq(&adapter->work_lock); 2856 if (adapter->slow_intr_mask) { 2857 adapter->slow_intr_mask |= F_T3DBG; 2858 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG); 2859 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2860 adapter->slow_intr_mask); 2861 } 2862 spin_unlock_irq(&adapter->work_lock); 2863 } 2864 2865 /* 2866 * Interrupt-context handler for external (PHY) interrupts. 2867 */ 2868 void t3_os_ext_intr_handler(struct adapter *adapter) 2869 { 2870 /* 2871 * Schedule a task to handle external interrupts as they may be slow 2872 * and we use a mutex to protect MDIO registers. We disable PHY 2873 * interrupts in the meantime and let the task reenable them when 2874 * it's done. 2875 */ 2876 spin_lock(&adapter->work_lock); 2877 if (adapter->slow_intr_mask) { 2878 adapter->slow_intr_mask &= ~F_T3DBG; 2879 t3_write_reg(adapter, A_PL_INT_ENABLE0, 2880 adapter->slow_intr_mask); 2881 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task); 2882 } 2883 spin_unlock(&adapter->work_lock); 2884 } 2885 2886 void t3_os_link_fault_handler(struct adapter *adapter, int port_id) 2887 { 2888 struct net_device *netdev = adapter->port[port_id]; 2889 struct port_info *pi = netdev_priv(netdev); 2890 2891 spin_lock(&adapter->work_lock); 2892 pi->link_fault = 1; 2893 spin_unlock(&adapter->work_lock); 2894 } 2895 2896 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq) 2897 { 2898 int i, ret = 0; 2899 2900 if (is_offload(adapter) && 2901 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) { 2902 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0); 2903 offload_close(&adapter->tdev); 2904 } 2905 2906 /* Stop all ports */ 2907 for_each_port(adapter, i) { 2908 struct net_device *netdev = adapter->port[i]; 2909 2910 if (netif_running(netdev)) 2911 __cxgb_close(netdev, on_wq); 2912 } 2913 2914 /* Stop SGE timers */ 2915 t3_stop_sge_timers(adapter); 2916 2917 adapter->flags &= ~FULL_INIT_DONE; 2918 2919 if (reset) 2920 ret = t3_reset_adapter(adapter); 2921 2922 pci_disable_device(adapter->pdev); 2923 2924 return ret; 2925 } 2926 2927 static int t3_reenable_adapter(struct adapter *adapter) 2928 { 2929 if (pci_enable_device(adapter->pdev)) { 2930 dev_err(&adapter->pdev->dev, 2931 "Cannot re-enable PCI device after reset.\n"); 2932 goto err; 2933 } 2934 pci_set_master(adapter->pdev); 2935 pci_restore_state(adapter->pdev); 2936 pci_save_state(adapter->pdev); 2937 2938 /* Free sge resources */ 2939 t3_free_sge_resources(adapter); 2940 2941 if (t3_replay_prep_adapter(adapter)) 2942 goto err; 2943 2944 return 0; 2945 err: 2946 return -1; 2947 } 2948 2949 static void t3_resume_ports(struct adapter *adapter) 2950 { 2951 int i; 2952 2953 /* Restart the ports */ 2954 for_each_port(adapter, i) { 2955 struct net_device *netdev = adapter->port[i]; 2956 2957 if (netif_running(netdev)) { 2958 if (cxgb_open(netdev)) { 2959 dev_err(&adapter->pdev->dev, 2960 "can't bring device back up" 2961 " after reset\n"); 2962 continue; 2963 } 2964 } 2965 } 2966 2967 if (is_offload(adapter) && !ofld_disable) 2968 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0); 2969 } 2970 2971 /* 2972 * processes a fatal error. 2973 * Bring the ports down, reset the chip, bring the ports back up. 2974 */ 2975 static void fatal_error_task(struct work_struct *work) 2976 { 2977 struct adapter *adapter = container_of(work, struct adapter, 2978 fatal_error_handler_task); 2979 int err = 0; 2980 2981 rtnl_lock(); 2982 err = t3_adapter_error(adapter, 1, 1); 2983 if (!err) 2984 err = t3_reenable_adapter(adapter); 2985 if (!err) 2986 t3_resume_ports(adapter); 2987 2988 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded"); 2989 rtnl_unlock(); 2990 } 2991 2992 void t3_fatal_err(struct adapter *adapter) 2993 { 2994 unsigned int fw_status[4]; 2995 2996 if (adapter->flags & FULL_INIT_DONE) { 2997 t3_sge_stop_dma(adapter); 2998 t3_write_reg(adapter, A_XGM_TX_CTRL, 0); 2999 t3_write_reg(adapter, A_XGM_RX_CTRL, 0); 3000 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0); 3001 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0); 3002 3003 spin_lock(&adapter->work_lock); 3004 t3_intr_disable(adapter); 3005 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task); 3006 spin_unlock(&adapter->work_lock); 3007 } 3008 CH_ALERT(adapter, "encountered fatal error, operation suspended\n"); 3009 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status)) 3010 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n", 3011 fw_status[0], fw_status[1], 3012 fw_status[2], fw_status[3]); 3013 } 3014 3015 /** 3016 * t3_io_error_detected - called when PCI error is detected 3017 * @pdev: Pointer to PCI device 3018 * @state: The current pci connection state 3019 * 3020 * This function is called after a PCI bus error affecting 3021 * this device has been detected. 3022 */ 3023 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev, 3024 pci_channel_state_t state) 3025 { 3026 struct adapter *adapter = pci_get_drvdata(pdev); 3027 3028 if (state == pci_channel_io_perm_failure) 3029 return PCI_ERS_RESULT_DISCONNECT; 3030 3031 t3_adapter_error(adapter, 0, 0); 3032 3033 /* Request a slot reset. */ 3034 return PCI_ERS_RESULT_NEED_RESET; 3035 } 3036 3037 /** 3038 * t3_io_slot_reset - called after the pci bus has been reset. 3039 * @pdev: Pointer to PCI device 3040 * 3041 * Restart the card from scratch, as if from a cold-boot. 3042 */ 3043 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev) 3044 { 3045 struct adapter *adapter = pci_get_drvdata(pdev); 3046 3047 if (!t3_reenable_adapter(adapter)) 3048 return PCI_ERS_RESULT_RECOVERED; 3049 3050 return PCI_ERS_RESULT_DISCONNECT; 3051 } 3052 3053 /** 3054 * t3_io_resume - called when traffic can start flowing again. 3055 * @pdev: Pointer to PCI device 3056 * 3057 * This callback is called when the error recovery driver tells us that 3058 * its OK to resume normal operation. 3059 */ 3060 static void t3_io_resume(struct pci_dev *pdev) 3061 { 3062 struct adapter *adapter = pci_get_drvdata(pdev); 3063 3064 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n", 3065 t3_read_reg(adapter, A_PCIE_PEX_ERR)); 3066 3067 rtnl_lock(); 3068 t3_resume_ports(adapter); 3069 rtnl_unlock(); 3070 } 3071 3072 static const struct pci_error_handlers t3_err_handler = { 3073 .error_detected = t3_io_error_detected, 3074 .slot_reset = t3_io_slot_reset, 3075 .resume = t3_io_resume, 3076 }; 3077 3078 /* 3079 * Set the number of qsets based on the number of CPUs and the number of ports, 3080 * not to exceed the number of available qsets, assuming there are enough qsets 3081 * per port in HW. 3082 */ 3083 static void set_nqsets(struct adapter *adap) 3084 { 3085 int i, j = 0; 3086 int num_cpus = netif_get_num_default_rss_queues(); 3087 int hwports = adap->params.nports; 3088 int nqsets = adap->msix_nvectors - 1; 3089 3090 if (adap->params.rev > 0 && adap->flags & USING_MSIX) { 3091 if (hwports == 2 && 3092 (hwports * nqsets > SGE_QSETS || 3093 num_cpus >= nqsets / hwports)) 3094 nqsets /= hwports; 3095 if (nqsets > num_cpus) 3096 nqsets = num_cpus; 3097 if (nqsets < 1 || hwports == 4) 3098 nqsets = 1; 3099 } else { 3100 nqsets = 1; 3101 } 3102 3103 for_each_port(adap, i) { 3104 struct port_info *pi = adap2pinfo(adap, i); 3105 3106 pi->first_qset = j; 3107 pi->nqsets = nqsets; 3108 j = pi->first_qset + nqsets; 3109 3110 dev_info(&adap->pdev->dev, 3111 "Port %d using %d queue sets.\n", i, nqsets); 3112 } 3113 } 3114 3115 static int cxgb_enable_msix(struct adapter *adap) 3116 { 3117 struct msix_entry entries[SGE_QSETS + 1]; 3118 int vectors; 3119 int i; 3120 3121 vectors = ARRAY_SIZE(entries); 3122 for (i = 0; i < vectors; ++i) 3123 entries[i].entry = i; 3124 3125 vectors = pci_enable_msix_range(adap->pdev, entries, 3126 adap->params.nports + 1, vectors); 3127 if (vectors < 0) 3128 return vectors; 3129 3130 for (i = 0; i < vectors; ++i) 3131 adap->msix_info[i].vec = entries[i].vector; 3132 adap->msix_nvectors = vectors; 3133 3134 return 0; 3135 } 3136 3137 static void print_port_info(struct adapter *adap, const struct adapter_info *ai) 3138 { 3139 static const char *pci_variant[] = { 3140 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express" 3141 }; 3142 3143 int i; 3144 char buf[80]; 3145 3146 if (is_pcie(adap)) 3147 snprintf(buf, sizeof(buf), "%s x%d", 3148 pci_variant[adap->params.pci.variant], 3149 adap->params.pci.width); 3150 else 3151 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit", 3152 pci_variant[adap->params.pci.variant], 3153 adap->params.pci.speed, adap->params.pci.width); 3154 3155 for_each_port(adap, i) { 3156 struct net_device *dev = adap->port[i]; 3157 const struct port_info *pi = netdev_priv(dev); 3158 3159 if (!test_bit(i, &adap->registered_device_map)) 3160 continue; 3161 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n", 3162 ai->desc, pi->phy.desc, 3163 is_offload(adap) ? "R" : "", adap->params.rev, buf, 3164 (adap->flags & USING_MSIX) ? " MSI-X" : 3165 (adap->flags & USING_MSI) ? " MSI" : ""); 3166 if (adap->name == dev->name && adap->params.vpd.mclk) 3167 pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n", 3168 adap->name, t3_mc7_size(&adap->cm) >> 20, 3169 t3_mc7_size(&adap->pmtx) >> 20, 3170 t3_mc7_size(&adap->pmrx) >> 20, 3171 adap->params.vpd.sn); 3172 } 3173 } 3174 3175 static const struct net_device_ops cxgb_netdev_ops = { 3176 .ndo_open = cxgb_open, 3177 .ndo_stop = cxgb_close, 3178 .ndo_start_xmit = t3_eth_xmit, 3179 .ndo_get_stats = cxgb_get_stats, 3180 .ndo_validate_addr = eth_validate_addr, 3181 .ndo_set_rx_mode = cxgb_set_rxmode, 3182 .ndo_eth_ioctl = cxgb_ioctl, 3183 .ndo_siocdevprivate = cxgb_siocdevprivate, 3184 .ndo_change_mtu = cxgb_change_mtu, 3185 .ndo_set_mac_address = cxgb_set_mac_addr, 3186 .ndo_fix_features = cxgb_fix_features, 3187 .ndo_set_features = cxgb_set_features, 3188 #ifdef CONFIG_NET_POLL_CONTROLLER 3189 .ndo_poll_controller = cxgb_netpoll, 3190 #endif 3191 }; 3192 3193 static void cxgb3_init_iscsi_mac(struct net_device *dev) 3194 { 3195 struct port_info *pi = netdev_priv(dev); 3196 3197 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN); 3198 pi->iscsic.mac_addr[3] |= 0x80; 3199 } 3200 3201 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 3202 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \ 3203 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA) 3204 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 3205 { 3206 int i, err; 3207 resource_size_t mmio_start, mmio_len; 3208 const struct adapter_info *ai; 3209 struct adapter *adapter = NULL; 3210 struct port_info *pi; 3211 3212 if (!cxgb3_wq) { 3213 cxgb3_wq = create_singlethread_workqueue(DRV_NAME); 3214 if (!cxgb3_wq) { 3215 pr_err("cannot initialize work queue\n"); 3216 return -ENOMEM; 3217 } 3218 } 3219 3220 err = pci_enable_device(pdev); 3221 if (err) { 3222 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3223 goto out; 3224 } 3225 3226 err = pci_request_regions(pdev, DRV_NAME); 3227 if (err) { 3228 /* Just info, some other driver may have claimed the device. */ 3229 dev_info(&pdev->dev, "cannot obtain PCI resources\n"); 3230 goto out_disable_device; 3231 } 3232 3233 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3234 if (err) { 3235 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3236 goto out_release_regions; 3237 } 3238 3239 pci_set_master(pdev); 3240 pci_save_state(pdev); 3241 3242 mmio_start = pci_resource_start(pdev, 0); 3243 mmio_len = pci_resource_len(pdev, 0); 3244 ai = t3_get_adapter_info(ent->driver_data); 3245 3246 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL); 3247 if (!adapter) { 3248 err = -ENOMEM; 3249 goto out_release_regions; 3250 } 3251 3252 adapter->nofail_skb = 3253 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL); 3254 if (!adapter->nofail_skb) { 3255 dev_err(&pdev->dev, "cannot allocate nofail buffer\n"); 3256 err = -ENOMEM; 3257 goto out_free_adapter; 3258 } 3259 3260 adapter->regs = ioremap(mmio_start, mmio_len); 3261 if (!adapter->regs) { 3262 dev_err(&pdev->dev, "cannot map device registers\n"); 3263 err = -ENOMEM; 3264 goto out_free_adapter_nofail; 3265 } 3266 3267 adapter->pdev = pdev; 3268 adapter->name = pci_name(pdev); 3269 adapter->msg_enable = dflt_msg_enable; 3270 adapter->mmio_len = mmio_len; 3271 3272 mutex_init(&adapter->mdio_lock); 3273 spin_lock_init(&adapter->work_lock); 3274 spin_lock_init(&adapter->stats_lock); 3275 3276 INIT_LIST_HEAD(&adapter->adapter_list); 3277 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task); 3278 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task); 3279 3280 INIT_WORK(&adapter->db_full_task, db_full_task); 3281 INIT_WORK(&adapter->db_empty_task, db_empty_task); 3282 INIT_WORK(&adapter->db_drop_task, db_drop_task); 3283 3284 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task); 3285 3286 for (i = 0; i < ai->nports0 + ai->nports1; ++i) { 3287 struct net_device *netdev; 3288 3289 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS); 3290 if (!netdev) { 3291 err = -ENOMEM; 3292 goto out_free_dev; 3293 } 3294 3295 SET_NETDEV_DEV(netdev, &pdev->dev); 3296 3297 adapter->port[i] = netdev; 3298 pi = netdev_priv(netdev); 3299 pi->adapter = adapter; 3300 pi->port_id = i; 3301 netif_carrier_off(netdev); 3302 netdev->irq = pdev->irq; 3303 netdev->mem_start = mmio_start; 3304 netdev->mem_end = mmio_start + mmio_len - 1; 3305 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 3306 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX; 3307 netdev->features |= netdev->hw_features | 3308 NETIF_F_HW_VLAN_CTAG_TX; 3309 netdev->vlan_features |= netdev->features & VLAN_FEAT; 3310 3311 netdev->features |= NETIF_F_HIGHDMA; 3312 3313 netdev->netdev_ops = &cxgb_netdev_ops; 3314 netdev->ethtool_ops = &cxgb_ethtool_ops; 3315 netdev->min_mtu = 81; 3316 netdev->max_mtu = ETH_MAX_MTU; 3317 netdev->dev_port = pi->port_id; 3318 } 3319 3320 pci_set_drvdata(pdev, adapter); 3321 if (t3_prep_adapter(adapter, ai, 1) < 0) { 3322 err = -ENODEV; 3323 goto out_free_dev; 3324 } 3325 3326 /* 3327 * The card is now ready to go. If any errors occur during device 3328 * registration we do not fail the whole card but rather proceed only 3329 * with the ports we manage to register successfully. However we must 3330 * register at least one net device. 3331 */ 3332 for_each_port(adapter, i) { 3333 err = register_netdev(adapter->port[i]); 3334 if (err) 3335 dev_warn(&pdev->dev, 3336 "cannot register net device %s, skipping\n", 3337 adapter->port[i]->name); 3338 else { 3339 /* 3340 * Change the name we use for messages to the name of 3341 * the first successfully registered interface. 3342 */ 3343 if (!adapter->registered_device_map) 3344 adapter->name = adapter->port[i]->name; 3345 3346 __set_bit(i, &adapter->registered_device_map); 3347 } 3348 } 3349 if (!adapter->registered_device_map) { 3350 dev_err(&pdev->dev, "could not register any net devices\n"); 3351 err = -ENODEV; 3352 goto out_free_dev; 3353 } 3354 3355 for_each_port(adapter, i) 3356 cxgb3_init_iscsi_mac(adapter->port[i]); 3357 3358 /* Driver's ready. Reflect it on LEDs */ 3359 t3_led_ready(adapter); 3360 3361 if (is_offload(adapter)) { 3362 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map); 3363 cxgb3_adapter_ofld(adapter); 3364 } 3365 3366 /* See what interrupts we'll be using */ 3367 if (msi > 1 && cxgb_enable_msix(adapter) == 0) 3368 adapter->flags |= USING_MSIX; 3369 else if (msi > 0 && pci_enable_msi(pdev) == 0) 3370 adapter->flags |= USING_MSI; 3371 3372 set_nqsets(adapter); 3373 3374 err = sysfs_create_group(&adapter->port[0]->dev.kobj, 3375 &cxgb3_attr_group); 3376 if (err) { 3377 dev_err(&pdev->dev, "cannot create sysfs group\n"); 3378 goto out_close_led; 3379 } 3380 3381 print_port_info(adapter, ai); 3382 return 0; 3383 3384 out_close_led: 3385 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0); 3386 3387 out_free_dev: 3388 iounmap(adapter->regs); 3389 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i) 3390 if (adapter->port[i]) 3391 free_netdev(adapter->port[i]); 3392 3393 out_free_adapter_nofail: 3394 kfree_skb(adapter->nofail_skb); 3395 3396 out_free_adapter: 3397 kfree(adapter); 3398 3399 out_release_regions: 3400 pci_release_regions(pdev); 3401 out_disable_device: 3402 pci_disable_device(pdev); 3403 out: 3404 return err; 3405 } 3406 3407 static void remove_one(struct pci_dev *pdev) 3408 { 3409 struct adapter *adapter = pci_get_drvdata(pdev); 3410 3411 if (adapter) { 3412 int i; 3413 3414 t3_sge_stop(adapter); 3415 sysfs_remove_group(&adapter->port[0]->dev.kobj, 3416 &cxgb3_attr_group); 3417 3418 if (is_offload(adapter)) { 3419 cxgb3_adapter_unofld(adapter); 3420 if (test_bit(OFFLOAD_DEVMAP_BIT, 3421 &adapter->open_device_map)) 3422 offload_close(&adapter->tdev); 3423 } 3424 3425 for_each_port(adapter, i) 3426 if (test_bit(i, &adapter->registered_device_map)) 3427 unregister_netdev(adapter->port[i]); 3428 3429 t3_stop_sge_timers(adapter); 3430 t3_free_sge_resources(adapter); 3431 cxgb_disable_msi(adapter); 3432 3433 for_each_port(adapter, i) 3434 if (adapter->port[i]) 3435 free_netdev(adapter->port[i]); 3436 3437 iounmap(adapter->regs); 3438 kfree_skb(adapter->nofail_skb); 3439 kfree(adapter); 3440 pci_release_regions(pdev); 3441 pci_disable_device(pdev); 3442 } 3443 } 3444 3445 static struct pci_driver driver = { 3446 .name = DRV_NAME, 3447 .id_table = cxgb3_pci_tbl, 3448 .probe = init_one, 3449 .remove = remove_one, 3450 .err_handler = &t3_err_handler, 3451 }; 3452 3453 static int __init cxgb3_init_module(void) 3454 { 3455 int ret; 3456 3457 cxgb3_offload_init(); 3458 3459 ret = pci_register_driver(&driver); 3460 return ret; 3461 } 3462 3463 static void __exit cxgb3_cleanup_module(void) 3464 { 3465 pci_unregister_driver(&driver); 3466 if (cxgb3_wq) 3467 destroy_workqueue(cxgb3_wq); 3468 } 3469 3470 module_init(cxgb3_init_module); 3471 module_exit(cxgb3_cleanup_module); 3472