1 // SPDX-License-Identifier: GPL-2.0-only 2 /***************************************************************************** 3 * * 4 * File: subr.c * 5 * $Revision: 1.27 $ * 6 * $Date: 2005/06/22 01:08:36 $ * 7 * Description: * 8 * Various subroutines (intr,pio,etc.) used by Chelsio 10G Ethernet driver. * 9 * part of the Chelsio 10Gb Ethernet Driver. * 10 * * 11 * * 12 * http://www.chelsio.com * 13 * * 14 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * 15 * All rights reserved. * 16 * * 17 * Maintainers: maintainers@chelsio.com * 18 * * 19 * Authors: Dimitrios Michailidis <dm@chelsio.com> * 20 * Tina Yang <tainay@chelsio.com> * 21 * Felix Marti <felix@chelsio.com> * 22 * Scott Bardone <sbardone@chelsio.com> * 23 * Kurt Ottaway <kottaway@chelsio.com> * 24 * Frank DiMambro <frank@chelsio.com> * 25 * * 26 * History: * 27 * * 28 ****************************************************************************/ 29 30 #include "common.h" 31 #include "elmer0.h" 32 #include "regs.h" 33 #include "gmac.h" 34 #include "cphy.h" 35 #include "sge.h" 36 #include "tp.h" 37 #include "espi.h" 38 39 /** 40 * t1_wait_op_done - wait until an operation is completed 41 * @adapter: the adapter performing the operation 42 * @reg: the register to check for completion 43 * @mask: a single-bit field within @reg that indicates completion 44 * @polarity: the value of the field when the operation is completed 45 * @attempts: number of check iterations 46 * @delay: delay in usecs between iterations 47 * 48 * Wait until an operation is completed by checking a bit in a register 49 * up to @attempts times. Returns %0 if the operation completes and %1 50 * otherwise. 51 */ 52 static int t1_wait_op_done(adapter_t *adapter, int reg, u32 mask, int polarity, 53 int attempts, int delay) 54 { 55 while (1) { 56 u32 val = readl(adapter->regs + reg) & mask; 57 58 if (!!val == polarity) 59 return 0; 60 if (--attempts == 0) 61 return 1; 62 if (delay) 63 udelay(delay); 64 } 65 } 66 67 #define TPI_ATTEMPTS 50 68 69 /* 70 * Write a register over the TPI interface (unlocked and locked versions). 71 */ 72 int __t1_tpi_write(adapter_t *adapter, u32 addr, u32 value) 73 { 74 int tpi_busy; 75 76 writel(addr, adapter->regs + A_TPI_ADDR); 77 writel(value, adapter->regs + A_TPI_WR_DATA); 78 writel(F_TPIWR, adapter->regs + A_TPI_CSR); 79 80 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1, 81 TPI_ATTEMPTS, 3); 82 if (tpi_busy) 83 pr_alert("%s: TPI write to 0x%x failed\n", 84 adapter->name, addr); 85 return tpi_busy; 86 } 87 88 int t1_tpi_write(adapter_t *adapter, u32 addr, u32 value) 89 { 90 int ret; 91 92 spin_lock(&adapter->tpi_lock); 93 ret = __t1_tpi_write(adapter, addr, value); 94 spin_unlock(&adapter->tpi_lock); 95 return ret; 96 } 97 98 /* 99 * Read a register over the TPI interface (unlocked and locked versions). 100 */ 101 int __t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp) 102 { 103 int tpi_busy; 104 105 writel(addr, adapter->regs + A_TPI_ADDR); 106 writel(0, adapter->regs + A_TPI_CSR); 107 108 tpi_busy = t1_wait_op_done(adapter, A_TPI_CSR, F_TPIRDY, 1, 109 TPI_ATTEMPTS, 3); 110 if (tpi_busy) 111 pr_alert("%s: TPI read from 0x%x failed\n", 112 adapter->name, addr); 113 else 114 *valp = readl(adapter->regs + A_TPI_RD_DATA); 115 return tpi_busy; 116 } 117 118 int t1_tpi_read(adapter_t *adapter, u32 addr, u32 *valp) 119 { 120 int ret; 121 122 spin_lock(&adapter->tpi_lock); 123 ret = __t1_tpi_read(adapter, addr, valp); 124 spin_unlock(&adapter->tpi_lock); 125 return ret; 126 } 127 128 /* 129 * Set a TPI parameter. 130 */ 131 static void t1_tpi_par(adapter_t *adapter, u32 value) 132 { 133 writel(V_TPIPAR(value), adapter->regs + A_TPI_PAR); 134 } 135 136 /* 137 * Called when a port's link settings change to propagate the new values to the 138 * associated PHY and MAC. After performing the common tasks it invokes an 139 * OS-specific handler. 140 */ 141 void t1_link_changed(adapter_t *adapter, int port_id) 142 { 143 int link_ok, speed, duplex, fc; 144 struct cphy *phy = adapter->port[port_id].phy; 145 struct link_config *lc = &adapter->port[port_id].link_config; 146 147 phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc); 148 149 lc->speed = speed < 0 ? SPEED_INVALID : speed; 150 lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex; 151 if (!(lc->requested_fc & PAUSE_AUTONEG)) 152 fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 153 154 if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) { 155 /* Set MAC speed, duplex, and flow control to match PHY. */ 156 struct cmac *mac = adapter->port[port_id].mac; 157 158 mac->ops->set_speed_duplex_fc(mac, speed, duplex, fc); 159 lc->fc = (unsigned char)fc; 160 } 161 t1_link_negotiated(adapter, port_id, link_ok, speed, duplex, fc); 162 } 163 164 static bool t1_pci_intr_handler(adapter_t *adapter) 165 { 166 u32 pcix_cause; 167 168 pci_read_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, &pcix_cause); 169 170 if (pcix_cause) { 171 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 172 pcix_cause); 173 /* PCI errors are fatal */ 174 t1_interrupts_disable(adapter); 175 adapter->pending_thread_intr |= F_PL_INTR_SGE_ERR; 176 pr_alert("%s: PCI error encountered.\n", adapter->name); 177 return true; 178 } 179 return false; 180 } 181 182 #ifdef CONFIG_CHELSIO_T1_1G 183 #include "fpga_defs.h" 184 185 /* 186 * PHY interrupt handler for FPGA boards. 187 */ 188 static int fpga_phy_intr_handler(adapter_t *adapter) 189 { 190 int p; 191 u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE); 192 193 for_each_port(adapter, p) 194 if (cause & (1 << p)) { 195 struct cphy *phy = adapter->port[p].phy; 196 int phy_cause = phy->ops->interrupt_handler(phy); 197 198 if (phy_cause & cphy_cause_link_change) 199 t1_link_changed(adapter, p); 200 } 201 writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE); 202 return 0; 203 } 204 205 /* 206 * Slow path interrupt handler for FPGAs. 207 */ 208 static irqreturn_t fpga_slow_intr(adapter_t *adapter) 209 { 210 u32 cause = readl(adapter->regs + A_PL_CAUSE); 211 irqreturn_t ret = IRQ_NONE; 212 213 cause &= ~F_PL_INTR_SGE_DATA; 214 if (cause & F_PL_INTR_SGE_ERR) { 215 if (t1_sge_intr_error_handler(adapter->sge)) 216 ret = IRQ_WAKE_THREAD; 217 } 218 219 if (cause & FPGA_PCIX_INTERRUPT_GMAC) 220 fpga_phy_intr_handler(adapter); 221 222 if (cause & FPGA_PCIX_INTERRUPT_TP) { 223 /* 224 * FPGA doesn't support MC4 interrupts and it requires 225 * this odd layer of indirection for MC5. 226 */ 227 u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE); 228 229 /* Clear TP interrupt */ 230 writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE); 231 } 232 if (cause & FPGA_PCIX_INTERRUPT_PCIX) { 233 if (t1_pci_intr_handler(adapter)) 234 ret = IRQ_WAKE_THREAD; 235 } 236 237 /* Clear the interrupts just processed. */ 238 if (cause) 239 writel(cause, adapter->regs + A_PL_CAUSE); 240 241 if (ret != IRQ_NONE) 242 return ret; 243 244 return cause == 0 ? IRQ_NONE : IRQ_HANDLED; 245 } 246 #endif 247 248 /* 249 * Wait until Elmer's MI1 interface is ready for new operations. 250 */ 251 static int mi1_wait_until_ready(adapter_t *adapter, int mi1_reg) 252 { 253 int attempts = 100, busy; 254 255 do { 256 u32 val; 257 258 __t1_tpi_read(adapter, mi1_reg, &val); 259 busy = val & F_MI1_OP_BUSY; 260 if (busy) 261 udelay(10); 262 } while (busy && --attempts); 263 if (busy) 264 pr_alert("%s: MDIO operation timed out\n", adapter->name); 265 return busy; 266 } 267 268 /* 269 * MI1 MDIO initialization. 270 */ 271 static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi) 272 { 273 u32 clkdiv = bi->clock_elmer0 / (2 * bi->mdio_mdc) - 1; 274 u32 val = F_MI1_PREAMBLE_ENABLE | V_MI1_MDI_INVERT(bi->mdio_mdiinv) | 275 V_MI1_MDI_ENABLE(bi->mdio_mdien) | V_MI1_CLK_DIV(clkdiv); 276 277 if (!(bi->caps & SUPPORTED_10000baseT_Full)) 278 val |= V_MI1_SOF(1); 279 t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val); 280 } 281 282 #if defined(CONFIG_CHELSIO_T1_1G) 283 /* 284 * Elmer MI1 MDIO read/write operations. 285 */ 286 static int mi1_mdio_read(struct net_device *dev, int phy_addr, int mmd_addr, 287 u16 reg_addr) 288 { 289 struct adapter *adapter = dev->ml_priv; 290 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr); 291 unsigned int val; 292 293 spin_lock(&adapter->tpi_lock); 294 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); 295 __t1_tpi_write(adapter, 296 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ); 297 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 298 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val); 299 spin_unlock(&adapter->tpi_lock); 300 return val; 301 } 302 303 static int mi1_mdio_write(struct net_device *dev, int phy_addr, int mmd_addr, 304 u16 reg_addr, u16 val) 305 { 306 struct adapter *adapter = dev->ml_priv; 307 u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr); 308 309 spin_lock(&adapter->tpi_lock); 310 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); 311 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val); 312 __t1_tpi_write(adapter, 313 A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE); 314 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 315 spin_unlock(&adapter->tpi_lock); 316 return 0; 317 } 318 319 static const struct mdio_ops mi1_mdio_ops = { 320 .init = mi1_mdio_init, 321 .read = mi1_mdio_read, 322 .write = mi1_mdio_write, 323 .mode_support = MDIO_SUPPORTS_C22 324 }; 325 326 #endif 327 328 static int mi1_mdio_ext_read(struct net_device *dev, int phy_addr, int mmd_addr, 329 u16 reg_addr) 330 { 331 struct adapter *adapter = dev->ml_priv; 332 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr); 333 unsigned int val; 334 335 spin_lock(&adapter->tpi_lock); 336 337 /* Write the address we want. */ 338 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); 339 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr); 340 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, 341 MI1_OP_INDIRECT_ADDRESS); 342 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 343 344 /* Write the operation we want. */ 345 __t1_tpi_write(adapter, 346 A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_READ); 347 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 348 349 /* Read the data. */ 350 __t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, &val); 351 spin_unlock(&adapter->tpi_lock); 352 return val; 353 } 354 355 static int mi1_mdio_ext_write(struct net_device *dev, int phy_addr, 356 int mmd_addr, u16 reg_addr, u16 val) 357 { 358 struct adapter *adapter = dev->ml_priv; 359 u32 addr = V_MI1_REG_ADDR(mmd_addr) | V_MI1_PHY_ADDR(phy_addr); 360 361 spin_lock(&adapter->tpi_lock); 362 363 /* Write the address we want. */ 364 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr); 365 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, reg_addr); 366 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, 367 MI1_OP_INDIRECT_ADDRESS); 368 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 369 370 /* Write the data. */ 371 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val); 372 __t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_OP, MI1_OP_INDIRECT_WRITE); 373 mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP); 374 spin_unlock(&adapter->tpi_lock); 375 return 0; 376 } 377 378 static const struct mdio_ops mi1_mdio_ext_ops = { 379 .init = mi1_mdio_init, 380 .read = mi1_mdio_ext_read, 381 .write = mi1_mdio_ext_write, 382 .mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22 383 }; 384 385 enum { 386 CH_BRD_T110_1CU, 387 CH_BRD_N110_1F, 388 CH_BRD_N210_1F, 389 CH_BRD_T210_1F, 390 CH_BRD_T210_1CU, 391 CH_BRD_N204_4CU, 392 }; 393 394 static const struct board_info t1_board[] = { 395 { 396 .board = CHBT_BOARD_CHT110, 397 .port_number = 1, 398 .caps = SUPPORTED_10000baseT_Full, 399 .chip_term = CHBT_TERM_T1, 400 .chip_mac = CHBT_MAC_PM3393, 401 .chip_phy = CHBT_PHY_MY3126, 402 .clock_core = 125000000, 403 .clock_mc3 = 150000000, 404 .clock_mc4 = 125000000, 405 .espi_nports = 1, 406 .clock_elmer0 = 44, 407 .mdio_mdien = 1, 408 .mdio_mdiinv = 1, 409 .mdio_mdc = 1, 410 .mdio_phybaseaddr = 1, 411 .gmac = &t1_pm3393_ops, 412 .gphy = &t1_my3126_ops, 413 .mdio_ops = &mi1_mdio_ext_ops, 414 .desc = "Chelsio T110 1x10GBase-CX4 TOE", 415 }, 416 417 { 418 .board = CHBT_BOARD_N110, 419 .port_number = 1, 420 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE, 421 .chip_term = CHBT_TERM_T1, 422 .chip_mac = CHBT_MAC_PM3393, 423 .chip_phy = CHBT_PHY_88X2010, 424 .clock_core = 125000000, 425 .espi_nports = 1, 426 .clock_elmer0 = 44, 427 .mdio_mdien = 0, 428 .mdio_mdiinv = 0, 429 .mdio_mdc = 1, 430 .mdio_phybaseaddr = 0, 431 .gmac = &t1_pm3393_ops, 432 .gphy = &t1_mv88x201x_ops, 433 .mdio_ops = &mi1_mdio_ext_ops, 434 .desc = "Chelsio N110 1x10GBaseX NIC", 435 }, 436 437 { 438 .board = CHBT_BOARD_N210, 439 .port_number = 1, 440 .caps = SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE, 441 .chip_term = CHBT_TERM_T2, 442 .chip_mac = CHBT_MAC_PM3393, 443 .chip_phy = CHBT_PHY_88X2010, 444 .clock_core = 125000000, 445 .espi_nports = 1, 446 .clock_elmer0 = 44, 447 .mdio_mdien = 0, 448 .mdio_mdiinv = 0, 449 .mdio_mdc = 1, 450 .mdio_phybaseaddr = 0, 451 .gmac = &t1_pm3393_ops, 452 .gphy = &t1_mv88x201x_ops, 453 .mdio_ops = &mi1_mdio_ext_ops, 454 .desc = "Chelsio N210 1x10GBaseX NIC", 455 }, 456 457 { 458 .board = CHBT_BOARD_CHT210, 459 .port_number = 1, 460 .caps = SUPPORTED_10000baseT_Full, 461 .chip_term = CHBT_TERM_T2, 462 .chip_mac = CHBT_MAC_PM3393, 463 .chip_phy = CHBT_PHY_88X2010, 464 .clock_core = 125000000, 465 .clock_mc3 = 133000000, 466 .clock_mc4 = 125000000, 467 .espi_nports = 1, 468 .clock_elmer0 = 44, 469 .mdio_mdien = 0, 470 .mdio_mdiinv = 0, 471 .mdio_mdc = 1, 472 .mdio_phybaseaddr = 0, 473 .gmac = &t1_pm3393_ops, 474 .gphy = &t1_mv88x201x_ops, 475 .mdio_ops = &mi1_mdio_ext_ops, 476 .desc = "Chelsio T210 1x10GBaseX TOE", 477 }, 478 479 { 480 .board = CHBT_BOARD_CHT210, 481 .port_number = 1, 482 .caps = SUPPORTED_10000baseT_Full, 483 .chip_term = CHBT_TERM_T2, 484 .chip_mac = CHBT_MAC_PM3393, 485 .chip_phy = CHBT_PHY_MY3126, 486 .clock_core = 125000000, 487 .clock_mc3 = 133000000, 488 .clock_mc4 = 125000000, 489 .espi_nports = 1, 490 .clock_elmer0 = 44, 491 .mdio_mdien = 1, 492 .mdio_mdiinv = 1, 493 .mdio_mdc = 1, 494 .mdio_phybaseaddr = 1, 495 .gmac = &t1_pm3393_ops, 496 .gphy = &t1_my3126_ops, 497 .mdio_ops = &mi1_mdio_ext_ops, 498 .desc = "Chelsio T210 1x10GBase-CX4 TOE", 499 }, 500 501 #ifdef CONFIG_CHELSIO_T1_1G 502 { 503 .board = CHBT_BOARD_CHN204, 504 .port_number = 4, 505 .caps = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full 506 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full 507 | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | 508 SUPPORTED_PAUSE | SUPPORTED_TP, 509 .chip_term = CHBT_TERM_T2, 510 .chip_mac = CHBT_MAC_VSC7321, 511 .chip_phy = CHBT_PHY_88E1111, 512 .clock_core = 100000000, 513 .espi_nports = 4, 514 .clock_elmer0 = 44, 515 .mdio_mdien = 0, 516 .mdio_mdiinv = 0, 517 .mdio_mdc = 0, 518 .mdio_phybaseaddr = 4, 519 .gmac = &t1_vsc7326_ops, 520 .gphy = &t1_mv88e1xxx_ops, 521 .mdio_ops = &mi1_mdio_ops, 522 .desc = "Chelsio N204 4x100/1000BaseT NIC", 523 }, 524 #endif 525 526 }; 527 528 const struct pci_device_id t1_pci_tbl[] = { 529 CH_DEVICE(8, 0, CH_BRD_T110_1CU), 530 CH_DEVICE(8, 1, CH_BRD_T110_1CU), 531 CH_DEVICE(7, 0, CH_BRD_N110_1F), 532 CH_DEVICE(10, 1, CH_BRD_N210_1F), 533 CH_DEVICE(11, 1, CH_BRD_T210_1F), 534 CH_DEVICE(14, 1, CH_BRD_T210_1CU), 535 CH_DEVICE(16, 1, CH_BRD_N204_4CU), 536 { 0 } 537 }; 538 539 MODULE_DEVICE_TABLE(pci, t1_pci_tbl); 540 541 /* 542 * Return the board_info structure with a given index. Out-of-range indices 543 * return NULL. 544 */ 545 const struct board_info *t1_get_board_info(unsigned int board_id) 546 { 547 return board_id < ARRAY_SIZE(t1_board) ? &t1_board[board_id] : NULL; 548 } 549 550 struct chelsio_vpd_t { 551 u32 format_version; 552 u8 serial_number[16]; 553 u8 mac_base_address[6]; 554 u8 pad[2]; /* make multiple-of-4 size requirement explicit */ 555 }; 556 557 #define EEPROMSIZE (8 * 1024) 558 #define EEPROM_MAX_POLL 4 559 560 /* 561 * Read SEEPROM. A zero is written to the flag register when the address is 562 * written to the Control register. The hardware device will set the flag to a 563 * one when 4B have been transferred to the Data register. 564 */ 565 int t1_seeprom_read(adapter_t *adapter, u32 addr, __le32 *data) 566 { 567 int i = EEPROM_MAX_POLL; 568 u16 val; 569 u32 v; 570 571 if (addr >= EEPROMSIZE || (addr & 3)) 572 return -EINVAL; 573 574 pci_write_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, (u16)addr); 575 do { 576 udelay(50); 577 pci_read_config_word(adapter->pdev, A_PCICFG_VPD_ADDR, &val); 578 } while (!(val & F_VPD_OP_FLAG) && --i); 579 580 if (!(val & F_VPD_OP_FLAG)) { 581 pr_err("%s: reading EEPROM address 0x%x failed\n", 582 adapter->name, addr); 583 return -EIO; 584 } 585 pci_read_config_dword(adapter->pdev, A_PCICFG_VPD_DATA, &v); 586 *data = cpu_to_le32(v); 587 return 0; 588 } 589 590 static int t1_eeprom_vpd_get(adapter_t *adapter, struct chelsio_vpd_t *vpd) 591 { 592 int addr, ret = 0; 593 594 for (addr = 0; !ret && addr < sizeof(*vpd); addr += sizeof(u32)) 595 ret = t1_seeprom_read(adapter, addr, 596 (__le32 *)((u8 *)vpd + addr)); 597 598 return ret; 599 } 600 601 /* 602 * Read a port's MAC address from the VPD ROM. 603 */ 604 static int vpd_macaddress_get(adapter_t *adapter, int index, u8 mac_addr[]) 605 { 606 struct chelsio_vpd_t vpd; 607 608 if (t1_eeprom_vpd_get(adapter, &vpd)) 609 return 1; 610 memcpy(mac_addr, vpd.mac_base_address, 5); 611 mac_addr[5] = vpd.mac_base_address[5] + index; 612 return 0; 613 } 614 615 /* 616 * Set up the MAC/PHY according to the requested link settings. 617 * 618 * If the PHY can auto-negotiate first decide what to advertise, then 619 * enable/disable auto-negotiation as desired and reset. 620 * 621 * If the PHY does not auto-negotiate we just reset it. 622 * 623 * If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 624 * otherwise do it later based on the outcome of auto-negotiation. 625 */ 626 int t1_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc) 627 { 628 unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); 629 630 if (lc->supported & SUPPORTED_Autoneg) { 631 lc->advertising &= ~(ADVERTISED_ASYM_PAUSE | ADVERTISED_PAUSE); 632 if (fc) { 633 if (fc == ((PAUSE_RX | PAUSE_TX) & 634 (mac->adapter->params.nports < 2))) 635 lc->advertising |= ADVERTISED_PAUSE; 636 else { 637 lc->advertising |= ADVERTISED_ASYM_PAUSE; 638 if (fc == PAUSE_RX) 639 lc->advertising |= ADVERTISED_PAUSE; 640 } 641 } 642 phy->ops->advertise(phy, lc->advertising); 643 644 if (lc->autoneg == AUTONEG_DISABLE) { 645 lc->speed = lc->requested_speed; 646 lc->duplex = lc->requested_duplex; 647 lc->fc = (unsigned char)fc; 648 mac->ops->set_speed_duplex_fc(mac, lc->speed, 649 lc->duplex, fc); 650 /* Also disables autoneg */ 651 phy->state = PHY_AUTONEG_RDY; 652 phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex); 653 phy->ops->reset(phy, 0); 654 } else { 655 phy->state = PHY_AUTONEG_EN; 656 phy->ops->autoneg_enable(phy); /* also resets PHY */ 657 } 658 } else { 659 phy->state = PHY_AUTONEG_RDY; 660 mac->ops->set_speed_duplex_fc(mac, -1, -1, fc); 661 lc->fc = (unsigned char)fc; 662 phy->ops->reset(phy, 0); 663 } 664 return 0; 665 } 666 667 /* 668 * External interrupt handler for boards using elmer0. 669 */ 670 int t1_elmer0_ext_intr_handler(adapter_t *adapter) 671 { 672 struct cphy *phy; 673 int phy_cause; 674 u32 cause; 675 676 t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause); 677 678 switch (board_info(adapter)->board) { 679 #ifdef CONFIG_CHELSIO_T1_1G 680 case CHBT_BOARD_CHT204: 681 case CHBT_BOARD_CHT204E: 682 case CHBT_BOARD_CHN204: 683 case CHBT_BOARD_CHT204V: { 684 int i, port_bit; 685 for_each_port(adapter, i) { 686 port_bit = i + 1; 687 if (!(cause & (1 << port_bit))) 688 continue; 689 690 phy = adapter->port[i].phy; 691 phy_cause = phy->ops->interrupt_handler(phy); 692 if (phy_cause & cphy_cause_link_change) 693 t1_link_changed(adapter, i); 694 } 695 break; 696 } 697 case CHBT_BOARD_CHT101: 698 if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */ 699 phy = adapter->port[0].phy; 700 phy_cause = phy->ops->interrupt_handler(phy); 701 if (phy_cause & cphy_cause_link_change) 702 t1_link_changed(adapter, 0); 703 } 704 break; 705 case CHBT_BOARD_7500: { 706 int p; 707 /* 708 * Elmer0's interrupt cause isn't useful here because there is 709 * only one bit that can be set for all 4 ports. This means 710 * we are forced to check every PHY's interrupt status 711 * register to see who initiated the interrupt. 712 */ 713 for_each_port(adapter, p) { 714 phy = adapter->port[p].phy; 715 phy_cause = phy->ops->interrupt_handler(phy); 716 if (phy_cause & cphy_cause_link_change) 717 t1_link_changed(adapter, p); 718 } 719 break; 720 } 721 #endif 722 case CHBT_BOARD_CHT210: 723 case CHBT_BOARD_N210: 724 case CHBT_BOARD_N110: 725 if (cause & ELMER0_GP_BIT6) { /* Marvell 88x2010 interrupt */ 726 phy = adapter->port[0].phy; 727 phy_cause = phy->ops->interrupt_handler(phy); 728 if (phy_cause & cphy_cause_link_change) 729 t1_link_changed(adapter, 0); 730 } 731 break; 732 case CHBT_BOARD_8000: 733 case CHBT_BOARD_CHT110: 734 if (netif_msg_intr(adapter)) 735 dev_dbg(&adapter->pdev->dev, 736 "External interrupt cause 0x%x\n", cause); 737 if (cause & ELMER0_GP_BIT1) { /* PMC3393 INTB */ 738 struct cmac *mac = adapter->port[0].mac; 739 740 mac->ops->interrupt_handler(mac); 741 } 742 if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */ 743 u32 mod_detect; 744 745 t1_tpi_read(adapter, 746 A_ELMER0_GPI_STAT, &mod_detect); 747 if (netif_msg_link(adapter)) 748 dev_info(&adapter->pdev->dev, "XPAK %s\n", 749 mod_detect ? "removed" : "inserted"); 750 } 751 break; 752 } 753 t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause); 754 return 0; 755 } 756 757 /* Enables all interrupts. */ 758 void t1_interrupts_enable(adapter_t *adapter) 759 { 760 unsigned int i; 761 762 adapter->slow_intr_mask = F_PL_INTR_SGE_ERR | F_PL_INTR_TP; 763 764 t1_sge_intr_enable(adapter->sge); 765 t1_tp_intr_enable(adapter->tp); 766 if (adapter->espi) { 767 adapter->slow_intr_mask |= F_PL_INTR_ESPI; 768 t1_espi_intr_enable(adapter->espi); 769 } 770 771 /* Enable MAC/PHY interrupts for each port. */ 772 for_each_port(adapter, i) { 773 adapter->port[i].mac->ops->interrupt_enable(adapter->port[i].mac); 774 adapter->port[i].phy->ops->interrupt_enable(adapter->port[i].phy); 775 } 776 777 /* Enable PCIX & external chip interrupts on ASIC boards. */ 778 if (t1_is_asic(adapter)) { 779 u32 pl_intr = readl(adapter->regs + A_PL_ENABLE); 780 781 /* PCI-X interrupts */ 782 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 783 0xffffffff); 784 785 adapter->slow_intr_mask |= F_PL_INTR_EXT | F_PL_INTR_PCIX; 786 pl_intr |= F_PL_INTR_EXT | F_PL_INTR_PCIX; 787 writel(pl_intr, adapter->regs + A_PL_ENABLE); 788 } 789 } 790 791 /* Disables all interrupts. */ 792 void t1_interrupts_disable(adapter_t* adapter) 793 { 794 unsigned int i; 795 796 t1_sge_intr_disable(adapter->sge); 797 t1_tp_intr_disable(adapter->tp); 798 if (adapter->espi) 799 t1_espi_intr_disable(adapter->espi); 800 801 /* Disable MAC/PHY interrupts for each port. */ 802 for_each_port(adapter, i) { 803 adapter->port[i].mac->ops->interrupt_disable(adapter->port[i].mac); 804 adapter->port[i].phy->ops->interrupt_disable(adapter->port[i].phy); 805 } 806 807 /* Disable PCIX & external chip interrupts. */ 808 if (t1_is_asic(adapter)) 809 writel(0, adapter->regs + A_PL_ENABLE); 810 811 /* PCI-X interrupts */ 812 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_ENABLE, 0); 813 814 adapter->slow_intr_mask = 0; 815 } 816 817 /* Clears all interrupts */ 818 void t1_interrupts_clear(adapter_t* adapter) 819 { 820 unsigned int i; 821 822 t1_sge_intr_clear(adapter->sge); 823 t1_tp_intr_clear(adapter->tp); 824 if (adapter->espi) 825 t1_espi_intr_clear(adapter->espi); 826 827 /* Clear MAC/PHY interrupts for each port. */ 828 for_each_port(adapter, i) { 829 adapter->port[i].mac->ops->interrupt_clear(adapter->port[i].mac); 830 adapter->port[i].phy->ops->interrupt_clear(adapter->port[i].phy); 831 } 832 833 /* Enable interrupts for external devices. */ 834 if (t1_is_asic(adapter)) { 835 u32 pl_intr = readl(adapter->regs + A_PL_CAUSE); 836 837 writel(pl_intr | F_PL_INTR_EXT | F_PL_INTR_PCIX, 838 adapter->regs + A_PL_CAUSE); 839 } 840 841 /* PCI-X interrupts */ 842 pci_write_config_dword(adapter->pdev, A_PCICFG_INTR_CAUSE, 0xffffffff); 843 } 844 845 /* 846 * Slow path interrupt handler for ASICs. 847 */ 848 static irqreturn_t asic_slow_intr(adapter_t *adapter) 849 { 850 u32 cause = readl(adapter->regs + A_PL_CAUSE); 851 irqreturn_t ret = IRQ_HANDLED; 852 853 cause &= adapter->slow_intr_mask; 854 if (!cause) 855 return IRQ_NONE; 856 if (cause & F_PL_INTR_SGE_ERR) { 857 if (t1_sge_intr_error_handler(adapter->sge)) 858 ret = IRQ_WAKE_THREAD; 859 } 860 if (cause & F_PL_INTR_TP) 861 t1_tp_intr_handler(adapter->tp); 862 if (cause & F_PL_INTR_ESPI) 863 t1_espi_intr_handler(adapter->espi); 864 if (cause & F_PL_INTR_PCIX) { 865 if (t1_pci_intr_handler(adapter)) 866 ret = IRQ_WAKE_THREAD; 867 } 868 if (cause & F_PL_INTR_EXT) { 869 /* Wake the threaded interrupt to handle external interrupts as 870 * we require a process context. We disable EXT interrupts in 871 * the interim and let the thread reenable them when it's done. 872 */ 873 adapter->pending_thread_intr |= F_PL_INTR_EXT; 874 adapter->slow_intr_mask &= ~F_PL_INTR_EXT; 875 writel(adapter->slow_intr_mask | F_PL_INTR_SGE_DATA, 876 adapter->regs + A_PL_ENABLE); 877 ret = IRQ_WAKE_THREAD; 878 } 879 880 /* Clear the interrupts just processed. */ 881 writel(cause, adapter->regs + A_PL_CAUSE); 882 readl(adapter->regs + A_PL_CAUSE); /* flush writes */ 883 return ret; 884 } 885 886 irqreturn_t t1_slow_intr_handler(adapter_t *adapter) 887 { 888 #ifdef CONFIG_CHELSIO_T1_1G 889 if (!t1_is_asic(adapter)) 890 return fpga_slow_intr(adapter); 891 #endif 892 return asic_slow_intr(adapter); 893 } 894 895 /* Power sequencing is a work-around for Intel's XPAKs. */ 896 static void power_sequence_xpak(adapter_t* adapter) 897 { 898 u32 mod_detect; 899 u32 gpo; 900 901 /* Check for XPAK */ 902 t1_tpi_read(adapter, A_ELMER0_GPI_STAT, &mod_detect); 903 if (!(ELMER0_GP_BIT5 & mod_detect)) { 904 /* XPAK is present */ 905 t1_tpi_read(adapter, A_ELMER0_GPO, &gpo); 906 gpo |= ELMER0_GP_BIT18; 907 t1_tpi_write(adapter, A_ELMER0_GPO, gpo); 908 } 909 } 910 911 int t1_get_board_rev(adapter_t *adapter, const struct board_info *bi, 912 struct adapter_params *p) 913 { 914 p->chip_version = bi->chip_term; 915 p->is_asic = (p->chip_version != CHBT_TERM_FPGA); 916 if (p->chip_version == CHBT_TERM_T1 || 917 p->chip_version == CHBT_TERM_T2 || 918 p->chip_version == CHBT_TERM_FPGA) { 919 u32 val = readl(adapter->regs + A_TP_PC_CONFIG); 920 921 val = G_TP_PC_REV(val); 922 if (val == 2) 923 p->chip_revision = TERM_T1B; 924 else if (val == 3) 925 p->chip_revision = TERM_T2; 926 else 927 return -1; 928 } else 929 return -1; 930 return 0; 931 } 932 933 /* 934 * Enable board components other than the Chelsio chip, such as external MAC 935 * and PHY. 936 */ 937 static int board_init(adapter_t *adapter, const struct board_info *bi) 938 { 939 switch (bi->board) { 940 case CHBT_BOARD_8000: 941 case CHBT_BOARD_N110: 942 case CHBT_BOARD_N210: 943 case CHBT_BOARD_CHT210: 944 t1_tpi_par(adapter, 0xf); 945 t1_tpi_write(adapter, A_ELMER0_GPO, 0x800); 946 break; 947 case CHBT_BOARD_CHT110: 948 t1_tpi_par(adapter, 0xf); 949 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1800); 950 951 /* TBD XXX Might not need. This fixes a problem 952 * described in the Intel SR XPAK errata. 953 */ 954 power_sequence_xpak(adapter); 955 break; 956 #ifdef CONFIG_CHELSIO_T1_1G 957 case CHBT_BOARD_CHT204E: 958 /* add config space write here */ 959 case CHBT_BOARD_CHT204: 960 case CHBT_BOARD_CHT204V: 961 case CHBT_BOARD_CHN204: 962 t1_tpi_par(adapter, 0xf); 963 t1_tpi_write(adapter, A_ELMER0_GPO, 0x804); 964 break; 965 case CHBT_BOARD_CHT101: 966 case CHBT_BOARD_7500: 967 t1_tpi_par(adapter, 0xf); 968 t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804); 969 break; 970 #endif 971 } 972 return 0; 973 } 974 975 /* 976 * Initialize and configure the Terminator HW modules. Note that external 977 * MAC and PHYs are initialized separately. 978 */ 979 int t1_init_hw_modules(adapter_t *adapter) 980 { 981 int err = -EIO; 982 const struct board_info *bi = board_info(adapter); 983 984 if (!bi->clock_mc4) { 985 u32 val = readl(adapter->regs + A_MC4_CFG); 986 987 writel(val | F_READY | F_MC4_SLOW, adapter->regs + A_MC4_CFG); 988 writel(F_M_BUS_ENABLE | F_TCAM_RESET, 989 adapter->regs + A_MC5_CONFIG); 990 } 991 992 if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac, 993 bi->espi_nports)) 994 goto out_err; 995 996 if (t1_tp_reset(adapter->tp, &adapter->params.tp, bi->clock_core)) 997 goto out_err; 998 999 err = t1_sge_configure(adapter->sge, &adapter->params.sge); 1000 if (err) 1001 goto out_err; 1002 1003 err = 0; 1004 out_err: 1005 return err; 1006 } 1007 1008 /* 1009 * Determine a card's PCI mode. 1010 */ 1011 static void get_pci_mode(adapter_t *adapter, struct chelsio_pci_params *p) 1012 { 1013 static const unsigned short speed_map[] = { 33, 66, 100, 133 }; 1014 u32 pci_mode; 1015 1016 pci_read_config_dword(adapter->pdev, A_PCICFG_MODE, &pci_mode); 1017 p->speed = speed_map[G_PCI_MODE_CLK(pci_mode)]; 1018 p->width = (pci_mode & F_PCI_MODE_64BIT) ? 64 : 32; 1019 p->is_pcix = (pci_mode & F_PCI_MODE_PCIX) != 0; 1020 } 1021 1022 /* 1023 * Release the structures holding the SW per-Terminator-HW-module state. 1024 */ 1025 void t1_free_sw_modules(adapter_t *adapter) 1026 { 1027 unsigned int i; 1028 1029 for_each_port(adapter, i) { 1030 struct cmac *mac = adapter->port[i].mac; 1031 struct cphy *phy = adapter->port[i].phy; 1032 1033 if (mac) 1034 mac->ops->destroy(mac); 1035 if (phy) 1036 phy->ops->destroy(phy); 1037 } 1038 1039 if (adapter->sge) 1040 t1_sge_destroy(adapter->sge); 1041 if (adapter->tp) 1042 t1_tp_destroy(adapter->tp); 1043 if (adapter->espi) 1044 t1_espi_destroy(adapter->espi); 1045 } 1046 1047 static void init_link_config(struct link_config *lc, 1048 const struct board_info *bi) 1049 { 1050 lc->supported = bi->caps; 1051 lc->requested_speed = lc->speed = SPEED_INVALID; 1052 lc->requested_duplex = lc->duplex = DUPLEX_INVALID; 1053 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; 1054 if (lc->supported & SUPPORTED_Autoneg) { 1055 lc->advertising = lc->supported; 1056 lc->autoneg = AUTONEG_ENABLE; 1057 lc->requested_fc |= PAUSE_AUTONEG; 1058 } else { 1059 lc->advertising = 0; 1060 lc->autoneg = AUTONEG_DISABLE; 1061 } 1062 } 1063 1064 /* 1065 * Allocate and initialize the data structures that hold the SW state of 1066 * the Terminator HW modules. 1067 */ 1068 int t1_init_sw_modules(adapter_t *adapter, const struct board_info *bi) 1069 { 1070 unsigned int i; 1071 1072 adapter->params.brd_info = bi; 1073 adapter->params.nports = bi->port_number; 1074 adapter->params.stats_update_period = bi->gmac->stats_update_period; 1075 1076 adapter->sge = t1_sge_create(adapter, &adapter->params.sge); 1077 if (!adapter->sge) { 1078 pr_err("%s: SGE initialization failed\n", 1079 adapter->name); 1080 goto error; 1081 } 1082 1083 if (bi->espi_nports && !(adapter->espi = t1_espi_create(adapter))) { 1084 pr_err("%s: ESPI initialization failed\n", 1085 adapter->name); 1086 goto error; 1087 } 1088 1089 adapter->tp = t1_tp_create(adapter, &adapter->params.tp); 1090 if (!adapter->tp) { 1091 pr_err("%s: TP initialization failed\n", 1092 adapter->name); 1093 goto error; 1094 } 1095 1096 board_init(adapter, bi); 1097 bi->mdio_ops->init(adapter, bi); 1098 if (bi->gphy->reset) 1099 bi->gphy->reset(adapter); 1100 if (bi->gmac->reset) 1101 bi->gmac->reset(adapter); 1102 1103 for_each_port(adapter, i) { 1104 u8 hw_addr[6]; 1105 struct cmac *mac; 1106 int phy_addr = bi->mdio_phybaseaddr + i; 1107 1108 adapter->port[i].phy = bi->gphy->create(adapter->port[i].dev, 1109 phy_addr, bi->mdio_ops); 1110 if (!adapter->port[i].phy) { 1111 pr_err("%s: PHY %d initialization failed\n", 1112 adapter->name, i); 1113 goto error; 1114 } 1115 1116 adapter->port[i].mac = mac = bi->gmac->create(adapter, i); 1117 if (!mac) { 1118 pr_err("%s: MAC %d initialization failed\n", 1119 adapter->name, i); 1120 goto error; 1121 } 1122 1123 /* 1124 * Get the port's MAC addresses either from the EEPROM if one 1125 * exists or the one hardcoded in the MAC. 1126 */ 1127 if (!t1_is_asic(adapter) || bi->chip_mac == CHBT_MAC_DUMMY) 1128 mac->ops->macaddress_get(mac, hw_addr); 1129 else if (vpd_macaddress_get(adapter, i, hw_addr)) { 1130 pr_err("%s: could not read MAC address from VPD ROM\n", 1131 adapter->port[i].dev->name); 1132 goto error; 1133 } 1134 eth_hw_addr_set(adapter->port[i].dev, hw_addr); 1135 init_link_config(&adapter->port[i].link_config, bi); 1136 } 1137 1138 get_pci_mode(adapter, &adapter->params.pci); 1139 t1_interrupts_clear(adapter); 1140 return 0; 1141 1142 error: 1143 t1_free_sw_modules(adapter); 1144 return -1; 1145 } 1146