1 // SPDX-License-Identifier: GPL-2.0-only 2 /***************************************************************************** 3 * * 4 * File: pm3393.c * 5 * $Revision: 1.16 $ * 6 * $Date: 2005/05/14 00:59:32 $ * 7 * Description: * 8 * PMC/SIERRA (pm3393) MAC-PHY functionality. * 9 * part of the Chelsio 10Gb Ethernet Driver. * 10 * * 11 * * 12 * http://www.chelsio.com * 13 * * 14 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. * 15 * All rights reserved. * 16 * * 17 * Maintainers: maintainers@chelsio.com * 18 * * 19 * Authors: Dimitrios Michailidis <dm@chelsio.com> * 20 * Tina Yang <tainay@chelsio.com> * 21 * Felix Marti <felix@chelsio.com> * 22 * Scott Bardone <sbardone@chelsio.com> * 23 * Kurt Ottaway <kottaway@chelsio.com> * 24 * Frank DiMambro <frank@chelsio.com> * 25 * * 26 * History: * 27 * * 28 ****************************************************************************/ 29 30 #include "common.h" 31 #include "regs.h" 32 #include "gmac.h" 33 #include "elmer0.h" 34 #include "suni1x10gexp_regs.h" 35 36 #include <linux/crc32.h> 37 #include <linux/slab.h> 38 39 #define OFFSET(REG_ADDR) ((REG_ADDR) << 2) 40 41 #define IPG 12 42 #define TXXG_CONF1_VAL ((IPG << SUNI1x10GEXP_BITOFF_TXXG_IPGT) | \ 43 SUNI1x10GEXP_BITMSK_TXXG_32BIT_ALIGN | SUNI1x10GEXP_BITMSK_TXXG_CRCEN | \ 44 SUNI1x10GEXP_BITMSK_TXXG_PADEN) 45 #define RXXG_CONF1_VAL (SUNI1x10GEXP_BITMSK_RXXG_PUREP | 0x14 | \ 46 SUNI1x10GEXP_BITMSK_RXXG_FLCHK | SUNI1x10GEXP_BITMSK_RXXG_CRC_STRIP) 47 48 /* Update statistics every 15 minutes */ 49 #define STATS_TICK_SECS (15 * 60) 50 51 enum { /* RMON registers */ 52 RxOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_1_LOW, 53 RxUnicastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_4_LOW, 54 RxMulticastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_5_LOW, 55 RxBroadcastFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_6_LOW, 56 RxPAUSEMACCtrlFramesReceived = SUNI1x10GEXP_REG_MSTAT_COUNTER_8_LOW, 57 RxFrameCheckSequenceErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_10_LOW, 58 RxFramesLostDueToInternalMACErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_11_LOW, 59 RxSymbolErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_12_LOW, 60 RxInRangeLengthErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_13_LOW, 61 RxFramesTooLongErrors = SUNI1x10GEXP_REG_MSTAT_COUNTER_15_LOW, 62 RxJabbers = SUNI1x10GEXP_REG_MSTAT_COUNTER_16_LOW, 63 RxFragments = SUNI1x10GEXP_REG_MSTAT_COUNTER_17_LOW, 64 RxUndersizedFrames = SUNI1x10GEXP_REG_MSTAT_COUNTER_18_LOW, 65 RxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_25_LOW, 66 RxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_26_LOW, 67 68 TxOctetsTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_33_LOW, 69 TxFramesLostDueToInternalMACTransmissionError = SUNI1x10GEXP_REG_MSTAT_COUNTER_35_LOW, 70 TxTransmitSystemError = SUNI1x10GEXP_REG_MSTAT_COUNTER_36_LOW, 71 TxUnicastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_38_LOW, 72 TxMulticastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_40_LOW, 73 TxBroadcastFramesTransmittedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_42_LOW, 74 TxPAUSEMACCtrlFramesTransmitted = SUNI1x10GEXP_REG_MSTAT_COUNTER_43_LOW, 75 TxJumboFramesReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_51_LOW, 76 TxJumboOctetsReceivedOK = SUNI1x10GEXP_REG_MSTAT_COUNTER_52_LOW 77 }; 78 79 struct _cmac_instance { 80 u8 enabled; 81 u8 fc; 82 u8 mac_addr[6]; 83 }; 84 85 static int pmread(struct cmac *cmac, u32 reg, u32 * data32) 86 { 87 t1_tpi_read(cmac->adapter, OFFSET(reg), data32); 88 return 0; 89 } 90 91 static int pmwrite(struct cmac *cmac, u32 reg, u32 data32) 92 { 93 t1_tpi_write(cmac->adapter, OFFSET(reg), data32); 94 return 0; 95 } 96 97 /* Port reset. */ 98 static int pm3393_reset(struct cmac *cmac) 99 { 100 return 0; 101 } 102 103 /* 104 * Enable interrupts for the PM3393 105 * 106 * 1. Enable PM3393 BLOCK interrupts. 107 * 2. Enable PM3393 Master Interrupt bit(INTE) 108 * 3. Enable ELMER's PM3393 bit. 109 * 4. Enable Terminator external interrupt. 110 */ 111 static int pm3393_interrupt_enable(struct cmac *cmac) 112 { 113 u32 pl_intr; 114 115 /* PM3393 - Enabling all hardware block interrupts. 116 */ 117 pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0xffff); 118 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0xffff); 119 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0xffff); 120 pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0xffff); 121 122 /* Don't interrupt on statistics overflow, we are polling */ 123 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0); 124 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0); 125 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0); 126 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0); 127 128 pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0xffff); 129 pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0xffff); 130 pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0xffff); 131 pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0xffff); 132 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0xffff); 133 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0xffff); 134 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0xffff); 135 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0xffff); 136 pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0xffff); 137 138 /* PM3393 - Global interrupt enable 139 */ 140 /* TBD XXX Disable for now until we figure out why error interrupts keep asserting. */ 141 pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE, 142 0 /*SUNI1x10GEXP_BITMSK_TOP_INTE */ ); 143 144 /* TERMINATOR - PL_INTERUPTS_EXT */ 145 pl_intr = readl(cmac->adapter->regs + A_PL_ENABLE); 146 pl_intr |= F_PL_INTR_EXT; 147 writel(pl_intr, cmac->adapter->regs + A_PL_ENABLE); 148 return 0; 149 } 150 151 static int pm3393_interrupt_disable(struct cmac *cmac) 152 { 153 u32 elmer; 154 155 /* PM3393 - Enabling HW interrupt blocks. */ 156 pmwrite(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_ENABLE, 0); 157 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_ENABLE, 0); 158 pmwrite(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_ENABLE, 0); 159 pmwrite(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_ENABLE, 0); 160 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_0, 0); 161 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_1, 0); 162 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_2, 0); 163 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_INTERRUPT_MASK_3, 0); 164 pmwrite(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_ENABLE, 0); 165 pmwrite(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT_MASK, 0); 166 pmwrite(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_ENABLE, 0); 167 pmwrite(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_ENABLE, 0); 168 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_3, 0); 169 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_MASK, 0); 170 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_3, 0); 171 pmwrite(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT_MASK, 0); 172 pmwrite(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_ENABLE, 0); 173 174 /* PM3393 - Global interrupt enable */ 175 pmwrite(cmac, SUNI1x10GEXP_REG_GLOBAL_INTERRUPT_ENABLE, 0); 176 177 /* ELMER - External chip interrupts. */ 178 t1_tpi_read(cmac->adapter, A_ELMER0_INT_ENABLE, &elmer); 179 elmer &= ~ELMER0_GP_BIT1; 180 t1_tpi_write(cmac->adapter, A_ELMER0_INT_ENABLE, elmer); 181 182 /* TERMINATOR - PL_INTERUPTS_EXT */ 183 /* DO NOT DISABLE TERMINATOR's EXTERNAL INTERRUPTS. ANOTHER CHIP 184 * COULD WANT THEM ENABLED. We disable PM3393 at the ELMER level. 185 */ 186 187 return 0; 188 } 189 190 static int pm3393_interrupt_clear(struct cmac *cmac) 191 { 192 u32 elmer; 193 u32 pl_intr; 194 u32 val32; 195 196 /* PM3393 - Clearing HW interrupt blocks. Note, this assumes 197 * bit WCIMODE=0 for a clear-on-read. 198 */ 199 pmread(cmac, SUNI1x10GEXP_REG_SERDES_3125_INTERRUPT_STATUS, &val32); 200 pmread(cmac, SUNI1x10GEXP_REG_XRF_INTERRUPT_STATUS, &val32); 201 pmread(cmac, SUNI1x10GEXP_REG_XRF_DIAG_INTERRUPT_STATUS, &val32); 202 pmread(cmac, SUNI1x10GEXP_REG_RXOAM_INTERRUPT_STATUS, &val32); 203 pmread(cmac, SUNI1x10GEXP_REG_PL4ODP_INTERRUPT, &val32); 204 pmread(cmac, SUNI1x10GEXP_REG_XTEF_INTERRUPT_STATUS, &val32); 205 pmread(cmac, SUNI1x10GEXP_REG_IFLX_FIFO_OVERFLOW_INTERRUPT, &val32); 206 pmread(cmac, SUNI1x10GEXP_REG_TXOAM_INTERRUPT_STATUS, &val32); 207 pmread(cmac, SUNI1x10GEXP_REG_RXXG_INTERRUPT, &val32); 208 pmread(cmac, SUNI1x10GEXP_REG_TXXG_INTERRUPT, &val32); 209 pmread(cmac, SUNI1x10GEXP_REG_PL4IDU_INTERRUPT, &val32); 210 pmread(cmac, SUNI1x10GEXP_REG_EFLX_FIFO_OVERFLOW_ERROR_INDICATION, 211 &val32); 212 pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_STATUS, &val32); 213 pmread(cmac, SUNI1x10GEXP_REG_PL4IO_LOCK_DETECT_CHANGE, &val32); 214 215 /* PM3393 - Global interrupt status 216 */ 217 pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS, &val32); 218 219 /* ELMER - External chip interrupts. 220 */ 221 t1_tpi_read(cmac->adapter, A_ELMER0_INT_CAUSE, &elmer); 222 elmer |= ELMER0_GP_BIT1; 223 t1_tpi_write(cmac->adapter, A_ELMER0_INT_CAUSE, elmer); 224 225 /* TERMINATOR - PL_INTERUPTS_EXT 226 */ 227 pl_intr = readl(cmac->adapter->regs + A_PL_CAUSE); 228 pl_intr |= F_PL_INTR_EXT; 229 writel(pl_intr, cmac->adapter->regs + A_PL_CAUSE); 230 231 return 0; 232 } 233 234 /* Interrupt handler */ 235 static int pm3393_interrupt_handler(struct cmac *cmac) 236 { 237 u32 master_intr_status; 238 239 /* Read the master interrupt status register. */ 240 pmread(cmac, SUNI1x10GEXP_REG_MASTER_INTERRUPT_STATUS, 241 &master_intr_status); 242 if (netif_msg_intr(cmac->adapter)) 243 dev_dbg(&cmac->adapter->pdev->dev, "PM3393 intr cause 0x%x\n", 244 master_intr_status); 245 246 /* TBD XXX Lets just clear everything for now */ 247 pm3393_interrupt_clear(cmac); 248 249 return 0; 250 } 251 252 static int pm3393_enable(struct cmac *cmac, int which) 253 { 254 if (which & MAC_DIRECTION_RX) 255 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1, 256 (RXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_RXXG_RXEN)); 257 258 if (which & MAC_DIRECTION_TX) { 259 u32 val = TXXG_CONF1_VAL | SUNI1x10GEXP_BITMSK_TXXG_TXEN0; 260 261 if (cmac->instance->fc & PAUSE_RX) 262 val |= SUNI1x10GEXP_BITMSK_TXXG_FCRX; 263 if (cmac->instance->fc & PAUSE_TX) 264 val |= SUNI1x10GEXP_BITMSK_TXXG_FCTX; 265 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, val); 266 } 267 268 cmac->instance->enabled |= which; 269 return 0; 270 } 271 272 static int pm3393_enable_port(struct cmac *cmac, int which) 273 { 274 /* Clear port statistics */ 275 pmwrite(cmac, SUNI1x10GEXP_REG_MSTAT_CONTROL, 276 SUNI1x10GEXP_BITMSK_MSTAT_CLEAR); 277 udelay(2); 278 memset(&cmac->stats, 0, sizeof(struct cmac_statistics)); 279 280 pm3393_enable(cmac, which); 281 282 /* 283 * XXX This should be done by the PHY and preferably not at all. 284 * The PHY doesn't give us link status indication on its own so have 285 * the link management code query it instead. 286 */ 287 t1_link_changed(cmac->adapter, 0); 288 return 0; 289 } 290 291 static int pm3393_disable(struct cmac *cmac, int which) 292 { 293 if (which & MAC_DIRECTION_RX) 294 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_CONFIG_1, RXXG_CONF1_VAL); 295 if (which & MAC_DIRECTION_TX) 296 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_CONFIG_1, TXXG_CONF1_VAL); 297 298 /* 299 * The disable is graceful. Give the PM3393 time. Can't wait very 300 * long here, we may be holding locks. 301 */ 302 udelay(20); 303 304 cmac->instance->enabled &= ~which; 305 return 0; 306 } 307 308 static int pm3393_loopback_enable(struct cmac *cmac) 309 { 310 return 0; 311 } 312 313 static int pm3393_loopback_disable(struct cmac *cmac) 314 { 315 return 0; 316 } 317 318 static int pm3393_set_mtu(struct cmac *cmac, int mtu) 319 { 320 int enabled = cmac->instance->enabled; 321 322 mtu += ETH_HLEN + ETH_FCS_LEN; 323 324 /* Disable Rx/Tx MAC before configuring it. */ 325 if (enabled) 326 pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 327 328 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MAX_FRAME_LENGTH, mtu); 329 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_MAX_FRAME_SIZE, mtu); 330 331 if (enabled) 332 pm3393_enable(cmac, enabled); 333 return 0; 334 } 335 336 static int pm3393_set_rx_mode(struct cmac *cmac, struct t1_rx_mode *rm) 337 { 338 int enabled = cmac->instance->enabled & MAC_DIRECTION_RX; 339 u32 rx_mode; 340 341 /* Disable MAC RX before reconfiguring it */ 342 if (enabled) 343 pm3393_disable(cmac, MAC_DIRECTION_RX); 344 345 pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, &rx_mode); 346 rx_mode &= ~(SUNI1x10GEXP_BITMSK_RXXG_PMODE | 347 SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN); 348 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, 349 (u16)rx_mode); 350 351 if (t1_rx_mode_promisc(rm)) { 352 /* Promiscuous mode. */ 353 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_PMODE; 354 } 355 if (t1_rx_mode_allmulti(rm)) { 356 /* Accept all multicast. */ 357 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, 0xffff); 358 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, 0xffff); 359 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, 0xffff); 360 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, 0xffff); 361 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN; 362 } else if (t1_rx_mode_mc_cnt(rm)) { 363 /* Accept one or more multicast(s). */ 364 struct netdev_hw_addr *ha; 365 int bit; 366 u16 mc_filter[4] = { 0, }; 367 368 netdev_for_each_mc_addr(ha, t1_get_netdev(rm)) { 369 /* bit[23:28] */ 370 bit = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x3f; 371 mc_filter[bit >> 4] |= 1 << (bit & 0xf); 372 } 373 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_LOW, mc_filter[0]); 374 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDLOW, mc_filter[1]); 375 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_MIDHIGH, mc_filter[2]); 376 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_MULTICAST_HASH_HIGH, mc_filter[3]); 377 rx_mode |= SUNI1x10GEXP_BITMSK_RXXG_MHASH_EN; 378 } 379 380 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_2, (u16)rx_mode); 381 382 if (enabled) 383 pm3393_enable(cmac, MAC_DIRECTION_RX); 384 385 return 0; 386 } 387 388 static int pm3393_get_speed_duplex_fc(struct cmac *cmac, int *speed, 389 int *duplex, int *fc) 390 { 391 if (speed) 392 *speed = SPEED_10000; 393 if (duplex) 394 *duplex = DUPLEX_FULL; 395 if (fc) 396 *fc = cmac->instance->fc; 397 return 0; 398 } 399 400 static int pm3393_set_speed_duplex_fc(struct cmac *cmac, int speed, int duplex, 401 int fc) 402 { 403 if (speed >= 0 && speed != SPEED_10000) 404 return -1; 405 if (duplex >= 0 && duplex != DUPLEX_FULL) 406 return -1; 407 if (fc & ~(PAUSE_TX | PAUSE_RX)) 408 return -1; 409 410 if (fc != cmac->instance->fc) { 411 cmac->instance->fc = (u8) fc; 412 if (cmac->instance->enabled & MAC_DIRECTION_TX) 413 pm3393_enable(cmac, MAC_DIRECTION_TX); 414 } 415 return 0; 416 } 417 418 #define RMON_UPDATE(mac, name, stat_name) \ 419 { \ 420 t1_tpi_read((mac)->adapter, OFFSET(name), &val0); \ 421 t1_tpi_read((mac)->adapter, OFFSET((name)+1), &val1); \ 422 t1_tpi_read((mac)->adapter, OFFSET((name)+2), &val2); \ 423 (mac)->stats.stat_name = (u64)(val0 & 0xffff) | \ 424 ((u64)(val1 & 0xffff) << 16) | \ 425 ((u64)(val2 & 0xff) << 32) | \ 426 ((mac)->stats.stat_name & \ 427 0xffffff0000000000ULL); \ 428 if (ro & \ 429 (1ULL << ((name - SUNI1x10GEXP_REG_MSTAT_COUNTER_0_LOW) >> 2))) \ 430 (mac)->stats.stat_name += 1ULL << 40; \ 431 } 432 433 static const struct cmac_statistics *pm3393_update_statistics(struct cmac *mac, 434 int flag) 435 { 436 u64 ro; 437 u32 val0, val1, val2, val3; 438 439 /* Snap the counters */ 440 pmwrite(mac, SUNI1x10GEXP_REG_MSTAT_CONTROL, 441 SUNI1x10GEXP_BITMSK_MSTAT_SNAP); 442 443 /* Counter rollover, clear on read */ 444 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_0, &val0); 445 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_1, &val1); 446 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_2, &val2); 447 pmread(mac, SUNI1x10GEXP_REG_MSTAT_COUNTER_ROLLOVER_3, &val3); 448 ro = ((u64)val0 & 0xffff) | (((u64)val1 & 0xffff) << 16) | 449 (((u64)val2 & 0xffff) << 32) | (((u64)val3 & 0xffff) << 48); 450 451 /* Rx stats */ 452 RMON_UPDATE(mac, RxOctetsReceivedOK, RxOctetsOK); 453 RMON_UPDATE(mac, RxUnicastFramesReceivedOK, RxUnicastFramesOK); 454 RMON_UPDATE(mac, RxMulticastFramesReceivedOK, RxMulticastFramesOK); 455 RMON_UPDATE(mac, RxBroadcastFramesReceivedOK, RxBroadcastFramesOK); 456 RMON_UPDATE(mac, RxPAUSEMACCtrlFramesReceived, RxPauseFrames); 457 RMON_UPDATE(mac, RxFrameCheckSequenceErrors, RxFCSErrors); 458 RMON_UPDATE(mac, RxFramesLostDueToInternalMACErrors, 459 RxInternalMACRcvError); 460 RMON_UPDATE(mac, RxSymbolErrors, RxSymbolErrors); 461 RMON_UPDATE(mac, RxInRangeLengthErrors, RxInRangeLengthErrors); 462 RMON_UPDATE(mac, RxFramesTooLongErrors , RxFrameTooLongErrors); 463 RMON_UPDATE(mac, RxJabbers, RxJabberErrors); 464 RMON_UPDATE(mac, RxFragments, RxRuntErrors); 465 RMON_UPDATE(mac, RxUndersizedFrames, RxRuntErrors); 466 RMON_UPDATE(mac, RxJumboFramesReceivedOK, RxJumboFramesOK); 467 RMON_UPDATE(mac, RxJumboOctetsReceivedOK, RxJumboOctetsOK); 468 469 /* Tx stats */ 470 RMON_UPDATE(mac, TxOctetsTransmittedOK, TxOctetsOK); 471 RMON_UPDATE(mac, TxFramesLostDueToInternalMACTransmissionError, 472 TxInternalMACXmitError); 473 RMON_UPDATE(mac, TxTransmitSystemError, TxFCSErrors); 474 RMON_UPDATE(mac, TxUnicastFramesTransmittedOK, TxUnicastFramesOK); 475 RMON_UPDATE(mac, TxMulticastFramesTransmittedOK, TxMulticastFramesOK); 476 RMON_UPDATE(mac, TxBroadcastFramesTransmittedOK, TxBroadcastFramesOK); 477 RMON_UPDATE(mac, TxPAUSEMACCtrlFramesTransmitted, TxPauseFrames); 478 RMON_UPDATE(mac, TxJumboFramesReceivedOK, TxJumboFramesOK); 479 RMON_UPDATE(mac, TxJumboOctetsReceivedOK, TxJumboOctetsOK); 480 481 return &mac->stats; 482 } 483 484 static int pm3393_macaddress_get(struct cmac *cmac, u8 mac_addr[6]) 485 { 486 memcpy(mac_addr, cmac->instance->mac_addr, ETH_ALEN); 487 return 0; 488 } 489 490 static int pm3393_macaddress_set(struct cmac *cmac, const u8 ma[6]) 491 { 492 u32 val, lo, mid, hi, enabled = cmac->instance->enabled; 493 494 /* 495 * MAC addr: 00:07:43:00:13:09 496 * 497 * ma[5] = 0x09 498 * ma[4] = 0x13 499 * ma[3] = 0x00 500 * ma[2] = 0x43 501 * ma[1] = 0x07 502 * ma[0] = 0x00 503 * 504 * The PM3393 requires byte swapping and reverse order entry 505 * when programming MAC addresses: 506 * 507 * low_bits[15:0] = ma[1]:ma[0] 508 * mid_bits[31:16] = ma[3]:ma[2] 509 * high_bits[47:32] = ma[5]:ma[4] 510 */ 511 512 /* Store local copy */ 513 memcpy(cmac->instance->mac_addr, ma, ETH_ALEN); 514 515 lo = ((u32) ma[1] << 8) | (u32) ma[0]; 516 mid = ((u32) ma[3] << 8) | (u32) ma[2]; 517 hi = ((u32) ma[5] << 8) | (u32) ma[4]; 518 519 /* Disable Rx/Tx MAC before configuring it. */ 520 if (enabled) 521 pm3393_disable(cmac, MAC_DIRECTION_RX | MAC_DIRECTION_TX); 522 523 /* Set RXXG Station Address */ 524 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_15_0, lo); 525 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_31_16, mid); 526 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_SA_47_32, hi); 527 528 /* Set TXXG Station Address */ 529 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_15_0, lo); 530 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_31_16, mid); 531 pmwrite(cmac, SUNI1x10GEXP_REG_TXXG_SA_47_32, hi); 532 533 /* Setup Exact Match Filter 1 with our MAC address 534 * 535 * Must disable exact match filter before configuring it. 536 */ 537 pmread(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, &val); 538 val &= 0xff0f; 539 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val); 540 541 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_LOW, lo); 542 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_MID, mid); 543 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_EXACT_MATCH_ADDR_1_HIGH, hi); 544 545 val |= 0x0090; 546 pmwrite(cmac, SUNI1x10GEXP_REG_RXXG_ADDRESS_FILTER_CONTROL_0, val); 547 548 if (enabled) 549 pm3393_enable(cmac, enabled); 550 return 0; 551 } 552 553 static void pm3393_destroy(struct cmac *cmac) 554 { 555 kfree(cmac); 556 } 557 558 static const struct cmac_ops pm3393_ops = { 559 .destroy = pm3393_destroy, 560 .reset = pm3393_reset, 561 .interrupt_enable = pm3393_interrupt_enable, 562 .interrupt_disable = pm3393_interrupt_disable, 563 .interrupt_clear = pm3393_interrupt_clear, 564 .interrupt_handler = pm3393_interrupt_handler, 565 .enable = pm3393_enable_port, 566 .disable = pm3393_disable, 567 .loopback_enable = pm3393_loopback_enable, 568 .loopback_disable = pm3393_loopback_disable, 569 .set_mtu = pm3393_set_mtu, 570 .set_rx_mode = pm3393_set_rx_mode, 571 .get_speed_duplex_fc = pm3393_get_speed_duplex_fc, 572 .set_speed_duplex_fc = pm3393_set_speed_duplex_fc, 573 .statistics_update = pm3393_update_statistics, 574 .macaddress_get = pm3393_macaddress_get, 575 .macaddress_set = pm3393_macaddress_set 576 }; 577 578 static struct cmac *pm3393_mac_create(adapter_t *adapter, int index) 579 { 580 struct cmac *cmac; 581 582 cmac = kzalloc(sizeof(*cmac) + sizeof(cmac_instance), GFP_KERNEL); 583 if (!cmac) 584 return NULL; 585 586 cmac->ops = &pm3393_ops; 587 cmac->instance = (cmac_instance *) (cmac + 1); 588 cmac->adapter = adapter; 589 cmac->instance->fc = PAUSE_TX | PAUSE_RX; 590 591 t1_tpi_write(adapter, OFFSET(0x0001), 0x00008000); 592 t1_tpi_write(adapter, OFFSET(0x0001), 0x00000000); 593 t1_tpi_write(adapter, OFFSET(0x2308), 0x00009800); 594 t1_tpi_write(adapter, OFFSET(0x2305), 0x00001001); /* PL4IO Enable */ 595 t1_tpi_write(adapter, OFFSET(0x2320), 0x00008800); 596 t1_tpi_write(adapter, OFFSET(0x2321), 0x00008800); 597 t1_tpi_write(adapter, OFFSET(0x2322), 0x00008800); 598 t1_tpi_write(adapter, OFFSET(0x2323), 0x00008800); 599 t1_tpi_write(adapter, OFFSET(0x2324), 0x00008800); 600 t1_tpi_write(adapter, OFFSET(0x2325), 0x00008800); 601 t1_tpi_write(adapter, OFFSET(0x2326), 0x00008800); 602 t1_tpi_write(adapter, OFFSET(0x2327), 0x00008800); 603 t1_tpi_write(adapter, OFFSET(0x2328), 0x00008800); 604 t1_tpi_write(adapter, OFFSET(0x2329), 0x00008800); 605 t1_tpi_write(adapter, OFFSET(0x232a), 0x00008800); 606 t1_tpi_write(adapter, OFFSET(0x232b), 0x00008800); 607 t1_tpi_write(adapter, OFFSET(0x232c), 0x00008800); 608 t1_tpi_write(adapter, OFFSET(0x232d), 0x00008800); 609 t1_tpi_write(adapter, OFFSET(0x232e), 0x00008800); 610 t1_tpi_write(adapter, OFFSET(0x232f), 0x00008800); 611 t1_tpi_write(adapter, OFFSET(0x230d), 0x00009c00); 612 t1_tpi_write(adapter, OFFSET(0x2304), 0x00000202); /* PL4IO Calendar Repetitions */ 613 614 t1_tpi_write(adapter, OFFSET(0x3200), 0x00008080); /* EFLX Enable */ 615 t1_tpi_write(adapter, OFFSET(0x3210), 0x00000000); /* EFLX Channel Deprovision */ 616 t1_tpi_write(adapter, OFFSET(0x3203), 0x00000000); /* EFLX Low Limit */ 617 t1_tpi_write(adapter, OFFSET(0x3204), 0x00000040); /* EFLX High Limit */ 618 t1_tpi_write(adapter, OFFSET(0x3205), 0x000002cc); /* EFLX Almost Full */ 619 t1_tpi_write(adapter, OFFSET(0x3206), 0x00000199); /* EFLX Almost Empty */ 620 t1_tpi_write(adapter, OFFSET(0x3207), 0x00000240); /* EFLX Cut Through Threshold */ 621 t1_tpi_write(adapter, OFFSET(0x3202), 0x00000000); /* EFLX Indirect Register Update */ 622 t1_tpi_write(adapter, OFFSET(0x3210), 0x00000001); /* EFLX Channel Provision */ 623 t1_tpi_write(adapter, OFFSET(0x3208), 0x0000ffff); /* EFLX Undocumented */ 624 t1_tpi_write(adapter, OFFSET(0x320a), 0x0000ffff); /* EFLX Undocumented */ 625 t1_tpi_write(adapter, OFFSET(0x320c), 0x0000ffff); /* EFLX enable overflow interrupt The other bit are undocumented */ 626 t1_tpi_write(adapter, OFFSET(0x320e), 0x0000ffff); /* EFLX Undocumented */ 627 628 t1_tpi_write(adapter, OFFSET(0x2200), 0x0000c000); /* IFLX Configuration - enable */ 629 t1_tpi_write(adapter, OFFSET(0x2201), 0x00000000); /* IFLX Channel Deprovision */ 630 t1_tpi_write(adapter, OFFSET(0x220e), 0x00000000); /* IFLX Low Limit */ 631 t1_tpi_write(adapter, OFFSET(0x220f), 0x00000100); /* IFLX High Limit */ 632 t1_tpi_write(adapter, OFFSET(0x2210), 0x00000c00); /* IFLX Almost Full Limit */ 633 t1_tpi_write(adapter, OFFSET(0x2211), 0x00000599); /* IFLX Almost Empty Limit */ 634 t1_tpi_write(adapter, OFFSET(0x220d), 0x00000000); /* IFLX Indirect Register Update */ 635 t1_tpi_write(adapter, OFFSET(0x2201), 0x00000001); /* IFLX Channel Provision */ 636 t1_tpi_write(adapter, OFFSET(0x2203), 0x0000ffff); /* IFLX Undocumented */ 637 t1_tpi_write(adapter, OFFSET(0x2205), 0x0000ffff); /* IFLX Undocumented */ 638 t1_tpi_write(adapter, OFFSET(0x2209), 0x0000ffff); /* IFLX Enable overflow interrupt. The other bit are undocumented */ 639 640 t1_tpi_write(adapter, OFFSET(0x2241), 0xfffffffe); /* PL4MOS Undocumented */ 641 t1_tpi_write(adapter, OFFSET(0x2242), 0x0000ffff); /* PL4MOS Undocumented */ 642 t1_tpi_write(adapter, OFFSET(0x2243), 0x00000008); /* PL4MOS Starving Burst Size */ 643 t1_tpi_write(adapter, OFFSET(0x2244), 0x00000008); /* PL4MOS Hungry Burst Size */ 644 t1_tpi_write(adapter, OFFSET(0x2245), 0x00000008); /* PL4MOS Transfer Size */ 645 t1_tpi_write(adapter, OFFSET(0x2240), 0x00000005); /* PL4MOS Disable */ 646 647 t1_tpi_write(adapter, OFFSET(0x2280), 0x00002103); /* PL4ODP Training Repeat and SOP rule */ 648 t1_tpi_write(adapter, OFFSET(0x2284), 0x00000000); /* PL4ODP MAX_T setting */ 649 650 t1_tpi_write(adapter, OFFSET(0x3280), 0x00000087); /* PL4IDU Enable data forward, port state machine. Set ALLOW_NON_ZERO_OLB */ 651 t1_tpi_write(adapter, OFFSET(0x3282), 0x0000001f); /* PL4IDU Enable Dip4 check error interrupts */ 652 653 t1_tpi_write(adapter, OFFSET(0x3040), 0x0c32); /* # TXXG Config */ 654 /* For T1 use timer based Mac flow control. */ 655 t1_tpi_write(adapter, OFFSET(0x304d), 0x8000); 656 t1_tpi_write(adapter, OFFSET(0x2040), 0x059c); /* # RXXG Config */ 657 t1_tpi_write(adapter, OFFSET(0x2049), 0x0001); /* # RXXG Cut Through */ 658 t1_tpi_write(adapter, OFFSET(0x2070), 0x0000); /* # Disable promiscuous mode */ 659 660 /* Setup Exact Match Filter 0 to allow broadcast packets. 661 */ 662 t1_tpi_write(adapter, OFFSET(0x206e), 0x0000); /* # Disable Match Enable bit */ 663 t1_tpi_write(adapter, OFFSET(0x204a), 0xffff); /* # low addr */ 664 t1_tpi_write(adapter, OFFSET(0x204b), 0xffff); /* # mid addr */ 665 t1_tpi_write(adapter, OFFSET(0x204c), 0xffff); /* # high addr */ 666 t1_tpi_write(adapter, OFFSET(0x206e), 0x0009); /* # Enable Match Enable bit */ 667 668 t1_tpi_write(adapter, OFFSET(0x0003), 0x0000); /* # NO SOP/ PAD_EN setup */ 669 t1_tpi_write(adapter, OFFSET(0x0100), 0x0ff0); /* # RXEQB disabled */ 670 t1_tpi_write(adapter, OFFSET(0x0101), 0x0f0f); /* # No Preemphasis */ 671 672 return cmac; 673 } 674 675 static int pm3393_mac_reset(adapter_t * adapter) 676 { 677 u32 val; 678 u32 x; 679 u32 is_pl4_reset_finished; 680 u32 is_pl4_outof_lock; 681 u32 is_xaui_mabc_pll_locked; 682 u32 successful_reset; 683 int i; 684 685 /* The following steps are required to properly reset 686 * the PM3393. This information is provided in the 687 * PM3393 datasheet (Issue 2: November 2002) 688 * section 13.1 -- Device Reset. 689 * 690 * The PM3393 has three types of components that are 691 * individually reset: 692 * 693 * DRESETB - Digital circuitry 694 * PL4_ARESETB - PL4 analog circuitry 695 * XAUI_ARESETB - XAUI bus analog circuitry 696 * 697 * Steps to reset PM3393 using RSTB pin: 698 * 699 * 1. Assert RSTB pin low ( write 0 ) 700 * 2. Wait at least 1ms to initiate a complete initialization of device. 701 * 3. Wait until all external clocks and REFSEL are stable. 702 * 4. Wait minimum of 1ms. (after external clocks and REFEL are stable) 703 * 5. De-assert RSTB ( write 1 ) 704 * 6. Wait until internal timers to expires after ~14ms. 705 * - Allows analog clock synthesizer(PL4CSU) to stabilize to 706 * selected reference frequency before allowing the digital 707 * portion of the device to operate. 708 * 7. Wait at least 200us for XAUI interface to stabilize. 709 * 8. Verify the PM3393 came out of reset successfully. 710 * Set successful reset flag if everything worked else try again 711 * a few more times. 712 */ 713 714 successful_reset = 0; 715 for (i = 0; i < 3 && !successful_reset; i++) { 716 /* 1 */ 717 t1_tpi_read(adapter, A_ELMER0_GPO, &val); 718 val &= ~1; 719 t1_tpi_write(adapter, A_ELMER0_GPO, val); 720 721 /* 2 */ 722 msleep(1); 723 724 /* 3 */ 725 msleep(1); 726 727 /* 4 */ 728 msleep(2 /*1 extra ms for safety */ ); 729 730 /* 5 */ 731 val |= 1; 732 t1_tpi_write(adapter, A_ELMER0_GPO, val); 733 734 /* 6 */ 735 msleep(15 /*1 extra ms for safety */ ); 736 737 /* 7 */ 738 msleep(1); 739 740 /* 8 */ 741 742 /* Has PL4 analog block come out of reset correctly? */ 743 t1_tpi_read(adapter, OFFSET(SUNI1x10GEXP_REG_DEVICE_STATUS), &val); 744 is_pl4_reset_finished = (val & SUNI1x10GEXP_BITMSK_TOP_EXPIRED); 745 746 /* TBD XXX SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL gets locked later in the init sequence 747 * figure out why? */ 748 749 /* Have all PL4 block clocks locked? */ 750 x = (SUNI1x10GEXP_BITMSK_TOP_PL4_ID_DOOL 751 /*| SUNI1x10GEXP_BITMSK_TOP_PL4_IS_DOOL */ | 752 SUNI1x10GEXP_BITMSK_TOP_PL4_ID_ROOL | 753 SUNI1x10GEXP_BITMSK_TOP_PL4_IS_ROOL | 754 SUNI1x10GEXP_BITMSK_TOP_PL4_OUT_ROOL); 755 is_pl4_outof_lock = (val & x); 756 757 /* ??? If this fails, might be able to software reset the XAUI part 758 * and try to recover... thus saving us from doing another HW reset */ 759 /* Has the XAUI MABC PLL circuitry stablized? */ 760 is_xaui_mabc_pll_locked = 761 (val & SUNI1x10GEXP_BITMSK_TOP_SXRA_EXPIRED); 762 763 successful_reset = (is_pl4_reset_finished && !is_pl4_outof_lock 764 && is_xaui_mabc_pll_locked); 765 766 if (netif_msg_hw(adapter)) 767 dev_dbg(&adapter->pdev->dev, 768 "PM3393 HW reset %d: pl4_reset 0x%x, val 0x%x, " 769 "is_pl4_outof_lock 0x%x, xaui_locked 0x%x\n", 770 i, is_pl4_reset_finished, val, 771 is_pl4_outof_lock, is_xaui_mabc_pll_locked); 772 } 773 return successful_reset ? 0 : 1; 774 } 775 776 const struct gmac t1_pm3393_ops = { 777 .stats_update_period = STATS_TICK_SECS, 778 .create = pm3393_mac_create, 779 .reset = pm3393_mac_reset, 780 }; 781