xref: /linux/drivers/net/ethernet/chelsio/cxgb/mv88e1xxx.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /* $Date: 2005/10/24 23:18:13 $ $RCSfile: mv88e1xxx.c,v $ $Revision: 1.49 $ */
2 #include "common.h"
3 #include "mv88e1xxx.h"
4 #include "cphy.h"
5 #include "elmer0.h"
6 
7 /* MV88E1XXX MDI crossover register values */
8 #define CROSSOVER_MDI   0
9 #define CROSSOVER_MDIX  1
10 #define CROSSOVER_AUTO  3
11 
12 #define INTR_ENABLE_MASK 0x6CA0
13 
14 /*
15  * Set the bits given by 'bitval' in PHY register 'reg'.
16  */
17 static void mdio_set_bit(struct cphy *cphy, int reg, u32 bitval)
18 {
19 	u32 val;
20 
21 	(void) simple_mdio_read(cphy, reg, &val);
22 	(void) simple_mdio_write(cphy, reg, val | bitval);
23 }
24 
25 /*
26  * Clear the bits given by 'bitval' in PHY register 'reg'.
27  */
28 static void mdio_clear_bit(struct cphy *cphy, int reg, u32 bitval)
29 {
30 	u32 val;
31 
32 	(void) simple_mdio_read(cphy, reg, &val);
33 	(void) simple_mdio_write(cphy, reg, val & ~bitval);
34 }
35 
36 /*
37  * NAME:   phy_reset
38  *
39  * DESC:   Reset the given PHY's port. NOTE: This is not a global
40  *         chip reset.
41  *
42  * PARAMS: cphy     - Pointer to PHY instance data.
43  *
44  * RETURN:  0 - Successful reset.
45  *         -1 - Timeout.
46  */
47 static int mv88e1xxx_reset(struct cphy *cphy, int wait)
48 {
49 	u32 ctl;
50 	int time_out = 1000;
51 
52 	mdio_set_bit(cphy, MII_BMCR, BMCR_RESET);
53 
54 	do {
55 		(void) simple_mdio_read(cphy, MII_BMCR, &ctl);
56 		ctl &= BMCR_RESET;
57 		if (ctl)
58 			udelay(1);
59 	} while (ctl && --time_out);
60 
61 	return ctl ? -1 : 0;
62 }
63 
64 static int mv88e1xxx_interrupt_enable(struct cphy *cphy)
65 {
66 	/* Enable PHY interrupts. */
67 	(void) simple_mdio_write(cphy, MV88E1XXX_INTERRUPT_ENABLE_REGISTER,
68 		   INTR_ENABLE_MASK);
69 
70 	/* Enable Marvell interrupts through Elmer0. */
71 	if (t1_is_asic(cphy->adapter)) {
72 		u32 elmer;
73 
74 		t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
75 		elmer |= ELMER0_GP_BIT1;
76 		if (is_T2(cphy->adapter))
77 		    elmer |= ELMER0_GP_BIT2 | ELMER0_GP_BIT3 | ELMER0_GP_BIT4;
78 		t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
79 	}
80 	return 0;
81 }
82 
83 static int mv88e1xxx_interrupt_disable(struct cphy *cphy)
84 {
85 	/* Disable all phy interrupts. */
86 	(void) simple_mdio_write(cphy, MV88E1XXX_INTERRUPT_ENABLE_REGISTER, 0);
87 
88 	/* Disable Marvell interrupts through Elmer0. */
89 	if (t1_is_asic(cphy->adapter)) {
90 		u32 elmer;
91 
92 		t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
93 		elmer &= ~ELMER0_GP_BIT1;
94 		if (is_T2(cphy->adapter))
95 		    elmer &= ~(ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4);
96 		t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
97 	}
98 	return 0;
99 }
100 
101 static int mv88e1xxx_interrupt_clear(struct cphy *cphy)
102 {
103 	u32 elmer;
104 
105 	/* Clear PHY interrupts by reading the register. */
106 	(void) simple_mdio_read(cphy,
107 			MV88E1XXX_INTERRUPT_STATUS_REGISTER, &elmer);
108 
109 	/* Clear Marvell interrupts through Elmer0. */
110 	if (t1_is_asic(cphy->adapter)) {
111 		t1_tpi_read(cphy->adapter, A_ELMER0_INT_CAUSE, &elmer);
112 		elmer |= ELMER0_GP_BIT1;
113 		if (is_T2(cphy->adapter))
114 		    elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4;
115 		t1_tpi_write(cphy->adapter, A_ELMER0_INT_CAUSE, elmer);
116 	}
117 	return 0;
118 }
119 
120 /*
121  * Set the PHY speed and duplex.  This also disables auto-negotiation, except
122  * for 1Gb/s, where auto-negotiation is mandatory.
123  */
124 static int mv88e1xxx_set_speed_duplex(struct cphy *phy, int speed, int duplex)
125 {
126 	u32 ctl;
127 
128 	(void) simple_mdio_read(phy, MII_BMCR, &ctl);
129 	if (speed >= 0) {
130 		ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
131 		if (speed == SPEED_100)
132 			ctl |= BMCR_SPEED100;
133 		else if (speed == SPEED_1000)
134 			ctl |= BMCR_SPEED1000;
135 	}
136 	if (duplex >= 0) {
137 		ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
138 		if (duplex == DUPLEX_FULL)
139 			ctl |= BMCR_FULLDPLX;
140 	}
141 	if (ctl & BMCR_SPEED1000)  /* auto-negotiation required for 1Gb/s */
142 		ctl |= BMCR_ANENABLE;
143 	(void) simple_mdio_write(phy, MII_BMCR, ctl);
144 	return 0;
145 }
146 
147 static int mv88e1xxx_crossover_set(struct cphy *cphy, int crossover)
148 {
149 	u32 data32;
150 
151 	(void) simple_mdio_read(cphy,
152 			MV88E1XXX_SPECIFIC_CNTRL_REGISTER, &data32);
153 	data32 &= ~V_PSCR_MDI_XOVER_MODE(M_PSCR_MDI_XOVER_MODE);
154 	data32 |= V_PSCR_MDI_XOVER_MODE(crossover);
155 	(void) simple_mdio_write(cphy,
156 			MV88E1XXX_SPECIFIC_CNTRL_REGISTER, data32);
157 	return 0;
158 }
159 
160 static int mv88e1xxx_autoneg_enable(struct cphy *cphy)
161 {
162 	u32 ctl;
163 
164 	(void) mv88e1xxx_crossover_set(cphy, CROSSOVER_AUTO);
165 
166 	(void) simple_mdio_read(cphy, MII_BMCR, &ctl);
167 	/* restart autoneg for change to take effect */
168 	ctl |= BMCR_ANENABLE | BMCR_ANRESTART;
169 	(void) simple_mdio_write(cphy, MII_BMCR, ctl);
170 	return 0;
171 }
172 
173 static int mv88e1xxx_autoneg_disable(struct cphy *cphy)
174 {
175 	u32 ctl;
176 
177 	/*
178 	 * Crossover *must* be set to manual in order to disable auto-neg.
179 	 * The Alaska FAQs document highlights this point.
180 	 */
181 	(void) mv88e1xxx_crossover_set(cphy, CROSSOVER_MDI);
182 
183 	/*
184 	 * Must include autoneg reset when disabling auto-neg. This
185 	 * is described in the Alaska FAQ document.
186 	 */
187 	(void) simple_mdio_read(cphy, MII_BMCR, &ctl);
188 	ctl &= ~BMCR_ANENABLE;
189 	(void) simple_mdio_write(cphy, MII_BMCR, ctl | BMCR_ANRESTART);
190 	return 0;
191 }
192 
193 static int mv88e1xxx_autoneg_restart(struct cphy *cphy)
194 {
195 	mdio_set_bit(cphy, MII_BMCR, BMCR_ANRESTART);
196 	return 0;
197 }
198 
199 static int mv88e1xxx_advertise(struct cphy *phy, unsigned int advertise_map)
200 {
201 	u32 val = 0;
202 
203 	if (advertise_map &
204 	    (ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full)) {
205 		(void) simple_mdio_read(phy, MII_GBCR, &val);
206 		val &= ~(GBCR_ADV_1000HALF | GBCR_ADV_1000FULL);
207 		if (advertise_map & ADVERTISED_1000baseT_Half)
208 			val |= GBCR_ADV_1000HALF;
209 		if (advertise_map & ADVERTISED_1000baseT_Full)
210 			val |= GBCR_ADV_1000FULL;
211 	}
212 	(void) simple_mdio_write(phy, MII_GBCR, val);
213 
214 	val = 1;
215 	if (advertise_map & ADVERTISED_10baseT_Half)
216 		val |= ADVERTISE_10HALF;
217 	if (advertise_map & ADVERTISED_10baseT_Full)
218 		val |= ADVERTISE_10FULL;
219 	if (advertise_map & ADVERTISED_100baseT_Half)
220 		val |= ADVERTISE_100HALF;
221 	if (advertise_map & ADVERTISED_100baseT_Full)
222 		val |= ADVERTISE_100FULL;
223 	if (advertise_map & ADVERTISED_PAUSE)
224 		val |= ADVERTISE_PAUSE;
225 	if (advertise_map & ADVERTISED_ASYM_PAUSE)
226 		val |= ADVERTISE_PAUSE_ASYM;
227 	(void) simple_mdio_write(phy, MII_ADVERTISE, val);
228 	return 0;
229 }
230 
231 static int mv88e1xxx_set_loopback(struct cphy *cphy, int on)
232 {
233 	if (on)
234 		mdio_set_bit(cphy, MII_BMCR, BMCR_LOOPBACK);
235 	else
236 		mdio_clear_bit(cphy, MII_BMCR, BMCR_LOOPBACK);
237 	return 0;
238 }
239 
240 static int mv88e1xxx_get_link_status(struct cphy *cphy, int *link_ok,
241 				     int *speed, int *duplex, int *fc)
242 {
243 	u32 status;
244 	int sp = -1, dplx = -1, pause = 0;
245 
246 	(void) simple_mdio_read(cphy,
247 			MV88E1XXX_SPECIFIC_STATUS_REGISTER, &status);
248 	if ((status & V_PSSR_STATUS_RESOLVED) != 0) {
249 		if (status & V_PSSR_RX_PAUSE)
250 			pause |= PAUSE_RX;
251 		if (status & V_PSSR_TX_PAUSE)
252 			pause |= PAUSE_TX;
253 		dplx = (status & V_PSSR_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF;
254 		sp = G_PSSR_SPEED(status);
255 		if (sp == 0)
256 			sp = SPEED_10;
257 		else if (sp == 1)
258 			sp = SPEED_100;
259 		else
260 			sp = SPEED_1000;
261 	}
262 	if (link_ok)
263 		*link_ok = (status & V_PSSR_LINK) != 0;
264 	if (speed)
265 		*speed = sp;
266 	if (duplex)
267 		*duplex = dplx;
268 	if (fc)
269 		*fc = pause;
270 	return 0;
271 }
272 
273 static int mv88e1xxx_downshift_set(struct cphy *cphy, int downshift_enable)
274 {
275 	u32 val;
276 
277 	(void) simple_mdio_read(cphy,
278 		MV88E1XXX_EXT_PHY_SPECIFIC_CNTRL_REGISTER, &val);
279 
280 	/*
281 	 * Set the downshift counter to 2 so we try to establish Gb link
282 	 * twice before downshifting.
283 	 */
284 	val &= ~(V_DOWNSHIFT_ENABLE | V_DOWNSHIFT_CNT(M_DOWNSHIFT_CNT));
285 
286 	if (downshift_enable)
287 		val |= V_DOWNSHIFT_ENABLE | V_DOWNSHIFT_CNT(2);
288 	(void) simple_mdio_write(cphy,
289 			MV88E1XXX_EXT_PHY_SPECIFIC_CNTRL_REGISTER, val);
290 	return 0;
291 }
292 
293 static int mv88e1xxx_interrupt_handler(struct cphy *cphy)
294 {
295 	int cphy_cause = 0;
296 	u32 status;
297 
298 	/*
299 	 * Loop until cause reads zero. Need to handle bouncing interrupts.
300 	 */
301 	while (1) {
302 		u32 cause;
303 
304 		(void) simple_mdio_read(cphy,
305 				MV88E1XXX_INTERRUPT_STATUS_REGISTER,
306 				&cause);
307 		cause &= INTR_ENABLE_MASK;
308 		if (!cause)
309 			break;
310 
311 		if (cause & MV88E1XXX_INTR_LINK_CHNG) {
312 			(void) simple_mdio_read(cphy,
313 				MV88E1XXX_SPECIFIC_STATUS_REGISTER, &status);
314 
315 			if (status & MV88E1XXX_INTR_LINK_CHNG)
316 				cphy->state |= PHY_LINK_UP;
317 			else {
318 				cphy->state &= ~PHY_LINK_UP;
319 				if (cphy->state & PHY_AUTONEG_EN)
320 					cphy->state &= ~PHY_AUTONEG_RDY;
321 				cphy_cause |= cphy_cause_link_change;
322 			}
323 		}
324 
325 		if (cause & MV88E1XXX_INTR_AUTONEG_DONE)
326 			cphy->state |= PHY_AUTONEG_RDY;
327 
328 		if ((cphy->state & (PHY_LINK_UP | PHY_AUTONEG_RDY)) ==
329 			(PHY_LINK_UP | PHY_AUTONEG_RDY))
330 				cphy_cause |= cphy_cause_link_change;
331 	}
332 	return cphy_cause;
333 }
334 
335 static void mv88e1xxx_destroy(struct cphy *cphy)
336 {
337 	kfree(cphy);
338 }
339 
340 static const struct cphy_ops mv88e1xxx_ops = {
341 	.destroy              = mv88e1xxx_destroy,
342 	.reset                = mv88e1xxx_reset,
343 	.interrupt_enable     = mv88e1xxx_interrupt_enable,
344 	.interrupt_disable    = mv88e1xxx_interrupt_disable,
345 	.interrupt_clear      = mv88e1xxx_interrupt_clear,
346 	.interrupt_handler    = mv88e1xxx_interrupt_handler,
347 	.autoneg_enable       = mv88e1xxx_autoneg_enable,
348 	.autoneg_disable      = mv88e1xxx_autoneg_disable,
349 	.autoneg_restart      = mv88e1xxx_autoneg_restart,
350 	.advertise            = mv88e1xxx_advertise,
351 	.set_loopback         = mv88e1xxx_set_loopback,
352 	.set_speed_duplex     = mv88e1xxx_set_speed_duplex,
353 	.get_link_status      = mv88e1xxx_get_link_status,
354 };
355 
356 static struct cphy *mv88e1xxx_phy_create(struct net_device *dev, int phy_addr,
357 					 const struct mdio_ops *mdio_ops)
358 {
359 	struct adapter *adapter = netdev_priv(dev);
360 	struct cphy *cphy = kzalloc(sizeof(*cphy), GFP_KERNEL);
361 
362 	if (!cphy)
363 		return NULL;
364 
365 	cphy_init(cphy, dev, phy_addr, &mv88e1xxx_ops, mdio_ops);
366 
367 	/* Configure particular PHY's to run in a different mode. */
368 	if ((board_info(adapter)->caps & SUPPORTED_TP) &&
369 	    board_info(adapter)->chip_phy == CHBT_PHY_88E1111) {
370 		/*
371 		 * Configure the PHY transmitter as class A to reduce EMI.
372 		 */
373 		(void) simple_mdio_write(cphy,
374 				MV88E1XXX_EXTENDED_ADDR_REGISTER, 0xB);
375 		(void) simple_mdio_write(cphy,
376 				MV88E1XXX_EXTENDED_REGISTER, 0x8004);
377 	}
378 	(void) mv88e1xxx_downshift_set(cphy, 1);   /* Enable downshift */
379 
380 	/* LED */
381 	if (is_T2(adapter)) {
382 		(void) simple_mdio_write(cphy,
383 				MV88E1XXX_LED_CONTROL_REGISTER, 0x1);
384 	}
385 
386 	return cphy;
387 }
388 
389 static int mv88e1xxx_phy_reset(adapter_t* adapter)
390 {
391 	return 0;
392 }
393 
394 const struct gphy t1_mv88e1xxx_ops = {
395 	.create = mv88e1xxx_phy_create,
396 	.reset =  mv88e1xxx_phy_reset
397 };
398