xref: /linux/drivers/net/ethernet/cavium/thunder/nicvf_main.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * Copyright (C) 2015 Cavium, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of version 2 of the GNU General Public License
6  * as published by the Free Software Foundation.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/interrupt.h>
11 #include <linux/pci.h>
12 #include <linux/netdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/log2.h>
17 #include <linux/prefetch.h>
18 #include <linux/irq.h>
19 #include <linux/iommu.h>
20 #include <linux/bpf.h>
21 #include <linux/bpf_trace.h>
22 #include <linux/filter.h>
23 #include <linux/net_tstamp.h>
24 #include <linux/workqueue.h>
25 
26 #include "nic_reg.h"
27 #include "nic.h"
28 #include "nicvf_queues.h"
29 #include "thunder_bgx.h"
30 #include "../common/cavium_ptp.h"
31 
32 #define DRV_NAME	"nicvf"
33 #define DRV_VERSION	"1.0"
34 
35 /* Supported devices */
36 static const struct pci_device_id nicvf_id_table[] = {
37 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
38 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
39 			 PCI_VENDOR_ID_CAVIUM,
40 			 PCI_SUBSYS_DEVID_88XX_NIC_VF) },
41 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
42 			 PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
43 			 PCI_VENDOR_ID_CAVIUM,
44 			 PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
45 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
46 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
47 			 PCI_VENDOR_ID_CAVIUM,
48 			 PCI_SUBSYS_DEVID_81XX_NIC_VF) },
49 	{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
50 			 PCI_DEVICE_ID_THUNDER_NIC_VF,
51 			 PCI_VENDOR_ID_CAVIUM,
52 			 PCI_SUBSYS_DEVID_83XX_NIC_VF) },
53 	{ 0, }  /* end of table */
54 };
55 
56 MODULE_AUTHOR("Sunil Goutham");
57 MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
58 MODULE_LICENSE("GPL v2");
59 MODULE_VERSION(DRV_VERSION);
60 MODULE_DEVICE_TABLE(pci, nicvf_id_table);
61 
62 static int debug = 0x00;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "Debug message level bitmap");
65 
66 static int cpi_alg = CPI_ALG_NONE;
67 module_param(cpi_alg, int, 0444);
68 MODULE_PARM_DESC(cpi_alg,
69 		 "PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
70 
71 /* workqueue for handling kernel ndo_set_rx_mode() calls */
72 static struct workqueue_struct *nicvf_rx_mode_wq;
73 
74 static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
75 {
76 	if (nic->sqs_mode)
77 		return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
78 	else
79 		return qidx;
80 }
81 
82 /* The Cavium ThunderX network controller can *only* be found in SoCs
83  * containing the ThunderX ARM64 CPU implementation.  All accesses to the device
84  * registers on this platform are implicitly strongly ordered with respect
85  * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
86  * with no memory barriers in this driver.  The readq()/writeq() functions add
87  * explicit ordering operation which in this case are redundant, and only
88  * add overhead.
89  */
90 
91 /* Register read/write APIs */
92 void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
93 {
94 	writeq_relaxed(val, nic->reg_base + offset);
95 }
96 
97 u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
98 {
99 	return readq_relaxed(nic->reg_base + offset);
100 }
101 
102 void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
103 			   u64 qidx, u64 val)
104 {
105 	void __iomem *addr = nic->reg_base + offset;
106 
107 	writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
108 }
109 
110 u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
111 {
112 	void __iomem *addr = nic->reg_base + offset;
113 
114 	return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
115 }
116 
117 /* VF -> PF mailbox communication */
118 static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
119 {
120 	u64 *msg = (u64 *)mbx;
121 
122 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
123 	nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
124 }
125 
126 int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
127 {
128 	int timeout = NIC_MBOX_MSG_TIMEOUT;
129 	int sleep = 10;
130 
131 	nic->pf_acked = false;
132 	nic->pf_nacked = false;
133 
134 	nicvf_write_to_mbx(nic, mbx);
135 
136 	/* Wait for previous message to be acked, timeout 2sec */
137 	while (!nic->pf_acked) {
138 		if (nic->pf_nacked) {
139 			netdev_err(nic->netdev,
140 				   "PF NACK to mbox msg 0x%02x from VF%d\n",
141 				   (mbx->msg.msg & 0xFF), nic->vf_id);
142 			return -EINVAL;
143 		}
144 		msleep(sleep);
145 		if (nic->pf_acked)
146 			break;
147 		timeout -= sleep;
148 		if (!timeout) {
149 			netdev_err(nic->netdev,
150 				   "PF didn't ACK to mbox msg 0x%02x from VF%d\n",
151 				   (mbx->msg.msg & 0xFF), nic->vf_id);
152 			return -EBUSY;
153 		}
154 	}
155 	return 0;
156 }
157 
158 /* Checks if VF is able to comminicate with PF
159 * and also gets the VNIC number this VF is associated to.
160 */
161 static int nicvf_check_pf_ready(struct nicvf *nic)
162 {
163 	union nic_mbx mbx = {};
164 
165 	mbx.msg.msg = NIC_MBOX_MSG_READY;
166 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
167 		netdev_err(nic->netdev,
168 			   "PF didn't respond to READY msg\n");
169 		return 0;
170 	}
171 
172 	return 1;
173 }
174 
175 static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
176 {
177 	if (bgx->rx)
178 		nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
179 	else
180 		nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
181 }
182 
183 static void  nicvf_handle_mbx_intr(struct nicvf *nic)
184 {
185 	union nic_mbx mbx = {};
186 	u64 *mbx_data;
187 	u64 mbx_addr;
188 	int i;
189 
190 	mbx_addr = NIC_VF_PF_MAILBOX_0_1;
191 	mbx_data = (u64 *)&mbx;
192 
193 	for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
194 		*mbx_data = nicvf_reg_read(nic, mbx_addr);
195 		mbx_data++;
196 		mbx_addr += sizeof(u64);
197 	}
198 
199 	netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
200 	switch (mbx.msg.msg) {
201 	case NIC_MBOX_MSG_READY:
202 		nic->pf_acked = true;
203 		nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
204 		nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
205 		nic->node = mbx.nic_cfg.node_id;
206 		if (!nic->set_mac_pending)
207 			ether_addr_copy(nic->netdev->dev_addr,
208 					mbx.nic_cfg.mac_addr);
209 		nic->sqs_mode = mbx.nic_cfg.sqs_mode;
210 		nic->loopback_supported = mbx.nic_cfg.loopback_supported;
211 		nic->link_up = false;
212 		nic->duplex = 0;
213 		nic->speed = 0;
214 		break;
215 	case NIC_MBOX_MSG_ACK:
216 		nic->pf_acked = true;
217 		break;
218 	case NIC_MBOX_MSG_NACK:
219 		nic->pf_nacked = true;
220 		break;
221 	case NIC_MBOX_MSG_RSS_SIZE:
222 		nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
223 		nic->pf_acked = true;
224 		break;
225 	case NIC_MBOX_MSG_BGX_STATS:
226 		nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
227 		nic->pf_acked = true;
228 		break;
229 	case NIC_MBOX_MSG_BGX_LINK_CHANGE:
230 		nic->pf_acked = true;
231 		nic->link_up = mbx.link_status.link_up;
232 		nic->duplex = mbx.link_status.duplex;
233 		nic->speed = mbx.link_status.speed;
234 		nic->mac_type = mbx.link_status.mac_type;
235 		if (nic->link_up) {
236 			netdev_info(nic->netdev, "Link is Up %d Mbps %s duplex\n",
237 				    nic->speed,
238 				    nic->duplex == DUPLEX_FULL ?
239 				    "Full" : "Half");
240 			netif_carrier_on(nic->netdev);
241 			netif_tx_start_all_queues(nic->netdev);
242 		} else {
243 			netdev_info(nic->netdev, "Link is Down\n");
244 			netif_carrier_off(nic->netdev);
245 			netif_tx_stop_all_queues(nic->netdev);
246 		}
247 		break;
248 	case NIC_MBOX_MSG_ALLOC_SQS:
249 		nic->sqs_count = mbx.sqs_alloc.qs_count;
250 		nic->pf_acked = true;
251 		break;
252 	case NIC_MBOX_MSG_SNICVF_PTR:
253 		/* Primary VF: make note of secondary VF's pointer
254 		 * to be used while packet transmission.
255 		 */
256 		nic->snicvf[mbx.nicvf.sqs_id] =
257 			(struct nicvf *)mbx.nicvf.nicvf;
258 		nic->pf_acked = true;
259 		break;
260 	case NIC_MBOX_MSG_PNICVF_PTR:
261 		/* Secondary VF/Qset: make note of primary VF's pointer
262 		 * to be used while packet reception, to handover packet
263 		 * to primary VF's netdev.
264 		 */
265 		nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
266 		nic->pf_acked = true;
267 		break;
268 	case NIC_MBOX_MSG_PFC:
269 		nic->pfc.autoneg = mbx.pfc.autoneg;
270 		nic->pfc.fc_rx = mbx.pfc.fc_rx;
271 		nic->pfc.fc_tx = mbx.pfc.fc_tx;
272 		nic->pf_acked = true;
273 		break;
274 	default:
275 		netdev_err(nic->netdev,
276 			   "Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
277 		break;
278 	}
279 	nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
280 }
281 
282 static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
283 {
284 	union nic_mbx mbx = {};
285 
286 	mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
287 	mbx.mac.vf_id = nic->vf_id;
288 	ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
289 
290 	return nicvf_send_msg_to_pf(nic, &mbx);
291 }
292 
293 static void nicvf_config_cpi(struct nicvf *nic)
294 {
295 	union nic_mbx mbx = {};
296 
297 	mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
298 	mbx.cpi_cfg.vf_id = nic->vf_id;
299 	mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
300 	mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
301 
302 	nicvf_send_msg_to_pf(nic, &mbx);
303 }
304 
305 static void nicvf_get_rss_size(struct nicvf *nic)
306 {
307 	union nic_mbx mbx = {};
308 
309 	mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
310 	mbx.rss_size.vf_id = nic->vf_id;
311 	nicvf_send_msg_to_pf(nic, &mbx);
312 }
313 
314 void nicvf_config_rss(struct nicvf *nic)
315 {
316 	union nic_mbx mbx = {};
317 	struct nicvf_rss_info *rss = &nic->rss_info;
318 	int ind_tbl_len = rss->rss_size;
319 	int i, nextq = 0;
320 
321 	mbx.rss_cfg.vf_id = nic->vf_id;
322 	mbx.rss_cfg.hash_bits = rss->hash_bits;
323 	while (ind_tbl_len) {
324 		mbx.rss_cfg.tbl_offset = nextq;
325 		mbx.rss_cfg.tbl_len = min(ind_tbl_len,
326 					       RSS_IND_TBL_LEN_PER_MBX_MSG);
327 		mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
328 			  NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
329 
330 		for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
331 			mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
332 
333 		nicvf_send_msg_to_pf(nic, &mbx);
334 
335 		ind_tbl_len -= mbx.rss_cfg.tbl_len;
336 	}
337 }
338 
339 void nicvf_set_rss_key(struct nicvf *nic)
340 {
341 	struct nicvf_rss_info *rss = &nic->rss_info;
342 	u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
343 	int idx;
344 
345 	for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
346 		nicvf_reg_write(nic, key_addr, rss->key[idx]);
347 		key_addr += sizeof(u64);
348 	}
349 }
350 
351 static int nicvf_rss_init(struct nicvf *nic)
352 {
353 	struct nicvf_rss_info *rss = &nic->rss_info;
354 	int idx;
355 
356 	nicvf_get_rss_size(nic);
357 
358 	if (cpi_alg != CPI_ALG_NONE) {
359 		rss->enable = false;
360 		rss->hash_bits = 0;
361 		return 0;
362 	}
363 
364 	rss->enable = true;
365 
366 	netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
367 	nicvf_set_rss_key(nic);
368 
369 	rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
370 	nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
371 
372 	rss->hash_bits =  ilog2(rounddown_pow_of_two(rss->rss_size));
373 
374 	for (idx = 0; idx < rss->rss_size; idx++)
375 		rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
376 							       nic->rx_queues);
377 	nicvf_config_rss(nic);
378 	return 1;
379 }
380 
381 /* Request PF to allocate additional Qsets */
382 static void nicvf_request_sqs(struct nicvf *nic)
383 {
384 	union nic_mbx mbx = {};
385 	int sqs;
386 	int sqs_count = nic->sqs_count;
387 	int rx_queues = 0, tx_queues = 0;
388 
389 	/* Only primary VF should request */
390 	if (nic->sqs_mode ||  !nic->sqs_count)
391 		return;
392 
393 	mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
394 	mbx.sqs_alloc.vf_id = nic->vf_id;
395 	mbx.sqs_alloc.qs_count = nic->sqs_count;
396 	if (nicvf_send_msg_to_pf(nic, &mbx)) {
397 		/* No response from PF */
398 		nic->sqs_count = 0;
399 		return;
400 	}
401 
402 	/* Return if no Secondary Qsets available */
403 	if (!nic->sqs_count)
404 		return;
405 
406 	if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
407 		rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
408 
409 	tx_queues = nic->tx_queues + nic->xdp_tx_queues;
410 	if (tx_queues > MAX_SND_QUEUES_PER_QS)
411 		tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
412 
413 	/* Set no of Rx/Tx queues in each of the SQsets */
414 	for (sqs = 0; sqs < nic->sqs_count; sqs++) {
415 		mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
416 		mbx.nicvf.vf_id = nic->vf_id;
417 		mbx.nicvf.sqs_id = sqs;
418 		nicvf_send_msg_to_pf(nic, &mbx);
419 
420 		nic->snicvf[sqs]->sqs_id = sqs;
421 		if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
422 			nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
423 			rx_queues -= MAX_RCV_QUEUES_PER_QS;
424 		} else {
425 			nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
426 			rx_queues = 0;
427 		}
428 
429 		if (tx_queues > MAX_SND_QUEUES_PER_QS) {
430 			nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
431 			tx_queues -= MAX_SND_QUEUES_PER_QS;
432 		} else {
433 			nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
434 			tx_queues = 0;
435 		}
436 
437 		nic->snicvf[sqs]->qs->cq_cnt =
438 		max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
439 
440 		/* Initialize secondary Qset's queues and its interrupts */
441 		nicvf_open(nic->snicvf[sqs]->netdev);
442 	}
443 
444 	/* Update stack with actual Rx/Tx queue count allocated */
445 	if (sqs_count != nic->sqs_count)
446 		nicvf_set_real_num_queues(nic->netdev,
447 					  nic->tx_queues, nic->rx_queues);
448 }
449 
450 /* Send this Qset's nicvf pointer to PF.
451  * PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
452  * so that packets received by these Qsets can use primary VF's netdev
453  */
454 static void nicvf_send_vf_struct(struct nicvf *nic)
455 {
456 	union nic_mbx mbx = {};
457 
458 	mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
459 	mbx.nicvf.sqs_mode = nic->sqs_mode;
460 	mbx.nicvf.nicvf = (u64)nic;
461 	nicvf_send_msg_to_pf(nic, &mbx);
462 }
463 
464 static void nicvf_get_primary_vf_struct(struct nicvf *nic)
465 {
466 	union nic_mbx mbx = {};
467 
468 	mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
469 	nicvf_send_msg_to_pf(nic, &mbx);
470 }
471 
472 int nicvf_set_real_num_queues(struct net_device *netdev,
473 			      int tx_queues, int rx_queues)
474 {
475 	int err = 0;
476 
477 	err = netif_set_real_num_tx_queues(netdev, tx_queues);
478 	if (err) {
479 		netdev_err(netdev,
480 			   "Failed to set no of Tx queues: %d\n", tx_queues);
481 		return err;
482 	}
483 
484 	err = netif_set_real_num_rx_queues(netdev, rx_queues);
485 	if (err)
486 		netdev_err(netdev,
487 			   "Failed to set no of Rx queues: %d\n", rx_queues);
488 	return err;
489 }
490 
491 static int nicvf_init_resources(struct nicvf *nic)
492 {
493 	int err;
494 
495 	/* Enable Qset */
496 	nicvf_qset_config(nic, true);
497 
498 	/* Initialize queues and HW for data transfer */
499 	err = nicvf_config_data_transfer(nic, true);
500 	if (err) {
501 		netdev_err(nic->netdev,
502 			   "Failed to alloc/config VF's QSet resources\n");
503 		return err;
504 	}
505 
506 	return 0;
507 }
508 
509 static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
510 				struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
511 				struct rcv_queue *rq, struct sk_buff **skb)
512 {
513 	struct xdp_buff xdp;
514 	struct page *page;
515 	u32 action;
516 	u16 len, offset = 0;
517 	u64 dma_addr, cpu_addr;
518 	void *orig_data;
519 
520 	/* Retrieve packet buffer's DMA address and length */
521 	len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
522 	dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
523 
524 	cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
525 	if (!cpu_addr)
526 		return false;
527 	cpu_addr = (u64)phys_to_virt(cpu_addr);
528 	page = virt_to_page((void *)cpu_addr);
529 
530 	xdp.data_hard_start = page_address(page);
531 	xdp.data = (void *)cpu_addr;
532 	xdp_set_data_meta_invalid(&xdp);
533 	xdp.data_end = xdp.data + len;
534 	xdp.rxq = &rq->xdp_rxq;
535 	orig_data = xdp.data;
536 
537 	rcu_read_lock();
538 	action = bpf_prog_run_xdp(prog, &xdp);
539 	rcu_read_unlock();
540 
541 	len = xdp.data_end - xdp.data;
542 	/* Check if XDP program has changed headers */
543 	if (orig_data != xdp.data) {
544 		offset = orig_data - xdp.data;
545 		dma_addr -= offset;
546 	}
547 
548 	switch (action) {
549 	case XDP_PASS:
550 		/* Check if it's a recycled page, if not
551 		 * unmap the DMA mapping.
552 		 *
553 		 * Recycled page holds an extra reference.
554 		 */
555 		if (page_ref_count(page) == 1) {
556 			dma_addr &= PAGE_MASK;
557 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
558 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
559 					     DMA_FROM_DEVICE,
560 					     DMA_ATTR_SKIP_CPU_SYNC);
561 		}
562 
563 		/* Build SKB and pass on packet to network stack */
564 		*skb = build_skb(xdp.data,
565 				 RCV_FRAG_LEN - cqe_rx->align_pad + offset);
566 		if (!*skb)
567 			put_page(page);
568 		else
569 			skb_put(*skb, len);
570 		return false;
571 	case XDP_TX:
572 		nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
573 		return true;
574 	default:
575 		bpf_warn_invalid_xdp_action(action);
576 		/* fall through */
577 	case XDP_ABORTED:
578 		trace_xdp_exception(nic->netdev, prog, action);
579 		/* fall through */
580 	case XDP_DROP:
581 		/* Check if it's a recycled page, if not
582 		 * unmap the DMA mapping.
583 		 *
584 		 * Recycled page holds an extra reference.
585 		 */
586 		if (page_ref_count(page) == 1) {
587 			dma_addr &= PAGE_MASK;
588 			dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
589 					     RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
590 					     DMA_FROM_DEVICE,
591 					     DMA_ATTR_SKIP_CPU_SYNC);
592 		}
593 		put_page(page);
594 		return true;
595 	}
596 	return false;
597 }
598 
599 static void nicvf_snd_ptp_handler(struct net_device *netdev,
600 				  struct cqe_send_t *cqe_tx)
601 {
602 	struct nicvf *nic = netdev_priv(netdev);
603 	struct skb_shared_hwtstamps ts;
604 	u64 ns;
605 
606 	nic = nic->pnicvf;
607 
608 	/* Sync for 'ptp_skb' */
609 	smp_rmb();
610 
611 	/* New timestamp request can be queued now */
612 	atomic_set(&nic->tx_ptp_skbs, 0);
613 
614 	/* Check for timestamp requested skb */
615 	if (!nic->ptp_skb)
616 		return;
617 
618 	/* Check if timestamping is timedout, which is set to 10us */
619 	if (cqe_tx->send_status == CQ_TX_ERROP_TSTMP_TIMEOUT ||
620 	    cqe_tx->send_status == CQ_TX_ERROP_TSTMP_CONFLICT)
621 		goto no_tstamp;
622 
623 	/* Get the timestamp */
624 	memset(&ts, 0, sizeof(ts));
625 	ns = cavium_ptp_tstamp2time(nic->ptp_clock, cqe_tx->ptp_timestamp);
626 	ts.hwtstamp = ns_to_ktime(ns);
627 	skb_tstamp_tx(nic->ptp_skb, &ts);
628 
629 no_tstamp:
630 	/* Free the original skb */
631 	dev_kfree_skb_any(nic->ptp_skb);
632 	nic->ptp_skb = NULL;
633 	/* Sync 'ptp_skb' */
634 	smp_wmb();
635 }
636 
637 static void nicvf_snd_pkt_handler(struct net_device *netdev,
638 				  struct cqe_send_t *cqe_tx,
639 				  int budget, int *subdesc_cnt,
640 				  unsigned int *tx_pkts, unsigned int *tx_bytes)
641 {
642 	struct sk_buff *skb = NULL;
643 	struct page *page;
644 	struct nicvf *nic = netdev_priv(netdev);
645 	struct snd_queue *sq;
646 	struct sq_hdr_subdesc *hdr;
647 	struct sq_hdr_subdesc *tso_sqe;
648 
649 	sq = &nic->qs->sq[cqe_tx->sq_idx];
650 
651 	hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
652 	if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
653 		return;
654 
655 	/* Check for errors */
656 	if (cqe_tx->send_status)
657 		nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
658 
659 	/* Is this a XDP designated Tx queue */
660 	if (sq->is_xdp) {
661 		page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
662 		/* Check if it's recycled page or else unmap DMA mapping */
663 		if (page && (page_ref_count(page) == 1))
664 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
665 						 hdr->subdesc_cnt);
666 
667 		/* Release page reference for recycling */
668 		if (page)
669 			put_page(page);
670 		sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
671 		*subdesc_cnt += hdr->subdesc_cnt + 1;
672 		return;
673 	}
674 
675 	skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
676 	if (skb) {
677 		/* Check for dummy descriptor used for HW TSO offload on 88xx */
678 		if (hdr->dont_send) {
679 			/* Get actual TSO descriptors and free them */
680 			tso_sqe =
681 			 (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
682 			nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
683 						 tso_sqe->subdesc_cnt);
684 			*subdesc_cnt += tso_sqe->subdesc_cnt + 1;
685 		} else {
686 			nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
687 						 hdr->subdesc_cnt);
688 		}
689 		*subdesc_cnt += hdr->subdesc_cnt + 1;
690 		prefetch(skb);
691 		(*tx_pkts)++;
692 		*tx_bytes += skb->len;
693 		/* If timestamp is requested for this skb, don't free it */
694 		if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
695 		    !nic->pnicvf->ptp_skb)
696 			nic->pnicvf->ptp_skb = skb;
697 		else
698 			napi_consume_skb(skb, budget);
699 		sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
700 	} else {
701 		/* In case of SW TSO on 88xx, only last segment will have
702 		 * a SKB attached, so just free SQEs here.
703 		 */
704 		if (!nic->hw_tso)
705 			*subdesc_cnt += hdr->subdesc_cnt + 1;
706 	}
707 }
708 
709 static inline void nicvf_set_rxhash(struct net_device *netdev,
710 				    struct cqe_rx_t *cqe_rx,
711 				    struct sk_buff *skb)
712 {
713 	u8 hash_type;
714 	u32 hash;
715 
716 	if (!(netdev->features & NETIF_F_RXHASH))
717 		return;
718 
719 	switch (cqe_rx->rss_alg) {
720 	case RSS_ALG_TCP_IP:
721 	case RSS_ALG_UDP_IP:
722 		hash_type = PKT_HASH_TYPE_L4;
723 		hash = cqe_rx->rss_tag;
724 		break;
725 	case RSS_ALG_IP:
726 		hash_type = PKT_HASH_TYPE_L3;
727 		hash = cqe_rx->rss_tag;
728 		break;
729 	default:
730 		hash_type = PKT_HASH_TYPE_NONE;
731 		hash = 0;
732 	}
733 
734 	skb_set_hash(skb, hash, hash_type);
735 }
736 
737 static inline void nicvf_set_rxtstamp(struct nicvf *nic, struct sk_buff *skb)
738 {
739 	u64 ns;
740 
741 	if (!nic->ptp_clock || !nic->hw_rx_tstamp)
742 		return;
743 
744 	/* The first 8 bytes is the timestamp */
745 	ns = cavium_ptp_tstamp2time(nic->ptp_clock,
746 				    be64_to_cpu(*(__be64 *)skb->data));
747 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
748 
749 	__skb_pull(skb, 8);
750 }
751 
752 static void nicvf_rcv_pkt_handler(struct net_device *netdev,
753 				  struct napi_struct *napi,
754 				  struct cqe_rx_t *cqe_rx,
755 				  struct snd_queue *sq, struct rcv_queue *rq)
756 {
757 	struct sk_buff *skb = NULL;
758 	struct nicvf *nic = netdev_priv(netdev);
759 	struct nicvf *snic = nic;
760 	int err = 0;
761 	int rq_idx;
762 
763 	rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
764 
765 	if (nic->sqs_mode) {
766 		/* Use primary VF's 'nicvf' struct */
767 		nic = nic->pnicvf;
768 		netdev = nic->netdev;
769 	}
770 
771 	/* Check for errors */
772 	if (cqe_rx->err_level || cqe_rx->err_opcode) {
773 		err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
774 		if (err && !cqe_rx->rb_cnt)
775 			return;
776 	}
777 
778 	/* For XDP, ignore pkts spanning multiple pages */
779 	if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
780 		/* Packet consumed by XDP */
781 		if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, rq, &skb))
782 			return;
783 	} else {
784 		skb = nicvf_get_rcv_skb(snic, cqe_rx,
785 					nic->xdp_prog ? true : false);
786 	}
787 
788 	if (!skb)
789 		return;
790 
791 	if (netif_msg_pktdata(nic)) {
792 		netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
793 		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
794 			       skb->data, skb->len, true);
795 	}
796 
797 	/* If error packet, drop it here */
798 	if (err) {
799 		dev_kfree_skb_any(skb);
800 		return;
801 	}
802 
803 	nicvf_set_rxtstamp(nic, skb);
804 	nicvf_set_rxhash(netdev, cqe_rx, skb);
805 
806 	skb_record_rx_queue(skb, rq_idx);
807 	if (netdev->hw_features & NETIF_F_RXCSUM) {
808 		/* HW by default verifies TCP/UDP/SCTP checksums */
809 		skb->ip_summed = CHECKSUM_UNNECESSARY;
810 	} else {
811 		skb_checksum_none_assert(skb);
812 	}
813 
814 	skb->protocol = eth_type_trans(skb, netdev);
815 
816 	/* Check for stripped VLAN */
817 	if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
818 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
819 				       ntohs((__force __be16)cqe_rx->vlan_tci));
820 
821 	if (napi && (netdev->features & NETIF_F_GRO))
822 		napi_gro_receive(napi, skb);
823 	else
824 		netif_receive_skb(skb);
825 }
826 
827 static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
828 				 struct napi_struct *napi, int budget)
829 {
830 	int processed_cqe, work_done = 0, tx_done = 0;
831 	int cqe_count, cqe_head;
832 	int subdesc_cnt = 0;
833 	struct nicvf *nic = netdev_priv(netdev);
834 	struct queue_set *qs = nic->qs;
835 	struct cmp_queue *cq = &qs->cq[cq_idx];
836 	struct cqe_rx_t *cq_desc;
837 	struct netdev_queue *txq;
838 	struct snd_queue *sq = &qs->sq[cq_idx];
839 	struct rcv_queue *rq = &qs->rq[cq_idx];
840 	unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
841 
842 	spin_lock_bh(&cq->lock);
843 loop:
844 	processed_cqe = 0;
845 	/* Get no of valid CQ entries to process */
846 	cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
847 	cqe_count &= CQ_CQE_COUNT;
848 	if (!cqe_count)
849 		goto done;
850 
851 	/* Get head of the valid CQ entries */
852 	cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
853 	cqe_head &= 0xFFFF;
854 
855 	while (processed_cqe < cqe_count) {
856 		/* Get the CQ descriptor */
857 		cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
858 		cqe_head++;
859 		cqe_head &= (cq->dmem.q_len - 1);
860 		/* Initiate prefetch for next descriptor */
861 		prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
862 
863 		if ((work_done >= budget) && napi &&
864 		    (cq_desc->cqe_type != CQE_TYPE_SEND)) {
865 			break;
866 		}
867 
868 		switch (cq_desc->cqe_type) {
869 		case CQE_TYPE_RX:
870 			nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq, rq);
871 			work_done++;
872 		break;
873 		case CQE_TYPE_SEND:
874 			nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
875 					      budget, &subdesc_cnt,
876 					      &tx_pkts, &tx_bytes);
877 			tx_done++;
878 		break;
879 		case CQE_TYPE_SEND_PTP:
880 			nicvf_snd_ptp_handler(netdev, (void *)cq_desc);
881 		break;
882 		case CQE_TYPE_INVALID:
883 		case CQE_TYPE_RX_SPLIT:
884 		case CQE_TYPE_RX_TCP:
885 			/* Ignore for now */
886 		break;
887 		}
888 		processed_cqe++;
889 	}
890 
891 	/* Ring doorbell to inform H/W to reuse processed CQEs */
892 	nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
893 			      cq_idx, processed_cqe);
894 
895 	if ((work_done < budget) && napi)
896 		goto loop;
897 
898 done:
899 	/* Update SQ's descriptor free count */
900 	if (subdesc_cnt)
901 		nicvf_put_sq_desc(sq, subdesc_cnt);
902 
903 	txq_idx = nicvf_netdev_qidx(nic, cq_idx);
904 	/* Handle XDP TX queues */
905 	if (nic->pnicvf->xdp_prog) {
906 		if (txq_idx < nic->pnicvf->xdp_tx_queues) {
907 			nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
908 			goto out;
909 		}
910 		nic = nic->pnicvf;
911 		txq_idx -= nic->pnicvf->xdp_tx_queues;
912 	}
913 
914 	/* Wakeup TXQ if its stopped earlier due to SQ full */
915 	if (tx_done ||
916 	    (atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
917 		netdev = nic->pnicvf->netdev;
918 		txq = netdev_get_tx_queue(netdev, txq_idx);
919 		if (tx_pkts)
920 			netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
921 
922 		/* To read updated queue and carrier status */
923 		smp_mb();
924 		if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
925 			netif_tx_wake_queue(txq);
926 			nic = nic->pnicvf;
927 			this_cpu_inc(nic->drv_stats->txq_wake);
928 			netif_warn(nic, tx_err, netdev,
929 				   "Transmit queue wakeup SQ%d\n", txq_idx);
930 		}
931 	}
932 
933 out:
934 	spin_unlock_bh(&cq->lock);
935 	return work_done;
936 }
937 
938 static int nicvf_poll(struct napi_struct *napi, int budget)
939 {
940 	u64  cq_head;
941 	int  work_done = 0;
942 	struct net_device *netdev = napi->dev;
943 	struct nicvf *nic = netdev_priv(netdev);
944 	struct nicvf_cq_poll *cq;
945 
946 	cq = container_of(napi, struct nicvf_cq_poll, napi);
947 	work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
948 
949 	if (work_done < budget) {
950 		/* Slow packet rate, exit polling */
951 		napi_complete_done(napi, work_done);
952 		/* Re-enable interrupts */
953 		cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
954 					       cq->cq_idx);
955 		nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
956 		nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
957 				      cq->cq_idx, cq_head);
958 		nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
959 	}
960 	return work_done;
961 }
962 
963 /* Qset error interrupt handler
964  *
965  * As of now only CQ errors are handled
966  */
967 static void nicvf_handle_qs_err(unsigned long data)
968 {
969 	struct nicvf *nic = (struct nicvf *)data;
970 	struct queue_set *qs = nic->qs;
971 	int qidx;
972 	u64 status;
973 
974 	netif_tx_disable(nic->netdev);
975 
976 	/* Check if it is CQ err */
977 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
978 		status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
979 					      qidx);
980 		if (!(status & CQ_ERR_MASK))
981 			continue;
982 		/* Process already queued CQEs and reconfig CQ */
983 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
984 		nicvf_sq_disable(nic, qidx);
985 		nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
986 		nicvf_cmp_queue_config(nic, qs, qidx, true);
987 		nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
988 		nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
989 
990 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
991 	}
992 
993 	netif_tx_start_all_queues(nic->netdev);
994 	/* Re-enable Qset error interrupt */
995 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
996 }
997 
998 static void nicvf_dump_intr_status(struct nicvf *nic)
999 {
1000 	netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
1001 		   nicvf_reg_read(nic, NIC_VF_INT));
1002 }
1003 
1004 static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
1005 {
1006 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1007 	u64 intr;
1008 
1009 	nicvf_dump_intr_status(nic);
1010 
1011 	intr = nicvf_reg_read(nic, NIC_VF_INT);
1012 	/* Check for spurious interrupt */
1013 	if (!(intr & NICVF_INTR_MBOX_MASK))
1014 		return IRQ_HANDLED;
1015 
1016 	nicvf_handle_mbx_intr(nic);
1017 
1018 	return IRQ_HANDLED;
1019 }
1020 
1021 static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
1022 {
1023 	struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
1024 	struct nicvf *nic = cq_poll->nicvf;
1025 	int qidx = cq_poll->cq_idx;
1026 
1027 	nicvf_dump_intr_status(nic);
1028 
1029 	/* Disable interrupts */
1030 	nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1031 
1032 	/* Schedule NAPI */
1033 	napi_schedule_irqoff(&cq_poll->napi);
1034 
1035 	/* Clear interrupt */
1036 	nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1037 
1038 	return IRQ_HANDLED;
1039 }
1040 
1041 static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
1042 {
1043 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1044 	u8 qidx;
1045 
1046 
1047 	nicvf_dump_intr_status(nic);
1048 
1049 	/* Disable RBDR interrupt and schedule softirq */
1050 	for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
1051 		if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
1052 			continue;
1053 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1054 		tasklet_hi_schedule(&nic->rbdr_task);
1055 		/* Clear interrupt */
1056 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1057 	}
1058 
1059 	return IRQ_HANDLED;
1060 }
1061 
1062 static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
1063 {
1064 	struct nicvf *nic = (struct nicvf *)nicvf_irq;
1065 
1066 	nicvf_dump_intr_status(nic);
1067 
1068 	/* Disable Qset err interrupt and schedule softirq */
1069 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1070 	tasklet_hi_schedule(&nic->qs_err_task);
1071 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1072 
1073 	return IRQ_HANDLED;
1074 }
1075 
1076 static void nicvf_set_irq_affinity(struct nicvf *nic)
1077 {
1078 	int vec, cpu;
1079 
1080 	for (vec = 0; vec < nic->num_vec; vec++) {
1081 		if (!nic->irq_allocated[vec])
1082 			continue;
1083 
1084 		if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
1085 			return;
1086 		 /* CQ interrupts */
1087 		if (vec < NICVF_INTR_ID_SQ)
1088 			/* Leave CPU0 for RBDR and other interrupts */
1089 			cpu = nicvf_netdev_qidx(nic, vec) + 1;
1090 		else
1091 			cpu = 0;
1092 
1093 		cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
1094 				nic->affinity_mask[vec]);
1095 		irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
1096 				      nic->affinity_mask[vec]);
1097 	}
1098 }
1099 
1100 static int nicvf_register_interrupts(struct nicvf *nic)
1101 {
1102 	int irq, ret = 0;
1103 
1104 	for_each_cq_irq(irq)
1105 		sprintf(nic->irq_name[irq], "%s-rxtx-%d",
1106 			nic->pnicvf->netdev->name,
1107 			nicvf_netdev_qidx(nic, irq));
1108 
1109 	for_each_sq_irq(irq)
1110 		sprintf(nic->irq_name[irq], "%s-sq-%d",
1111 			nic->pnicvf->netdev->name,
1112 			nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
1113 
1114 	for_each_rbdr_irq(irq)
1115 		sprintf(nic->irq_name[irq], "%s-rbdr-%d",
1116 			nic->pnicvf->netdev->name,
1117 			nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1118 
1119 	/* Register CQ interrupts */
1120 	for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
1121 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1122 				  nicvf_intr_handler,
1123 				  0, nic->irq_name[irq], nic->napi[irq]);
1124 		if (ret)
1125 			goto err;
1126 		nic->irq_allocated[irq] = true;
1127 	}
1128 
1129 	/* Register RBDR interrupt */
1130 	for (irq = NICVF_INTR_ID_RBDR;
1131 	     irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
1132 		ret = request_irq(pci_irq_vector(nic->pdev, irq),
1133 				  nicvf_rbdr_intr_handler,
1134 				  0, nic->irq_name[irq], nic);
1135 		if (ret)
1136 			goto err;
1137 		nic->irq_allocated[irq] = true;
1138 	}
1139 
1140 	/* Register QS error interrupt */
1141 	sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
1142 		nic->pnicvf->netdev->name,
1143 		nic->sqs_mode ? (nic->sqs_id + 1) : 0);
1144 	irq = NICVF_INTR_ID_QS_ERR;
1145 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1146 			  nicvf_qs_err_intr_handler,
1147 			  0, nic->irq_name[irq], nic);
1148 	if (ret)
1149 		goto err;
1150 
1151 	nic->irq_allocated[irq] = true;
1152 
1153 	/* Set IRQ affinities */
1154 	nicvf_set_irq_affinity(nic);
1155 
1156 err:
1157 	if (ret)
1158 		netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
1159 
1160 	return ret;
1161 }
1162 
1163 static void nicvf_unregister_interrupts(struct nicvf *nic)
1164 {
1165 	struct pci_dev *pdev = nic->pdev;
1166 	int irq;
1167 
1168 	/* Free registered interrupts */
1169 	for (irq = 0; irq < nic->num_vec; irq++) {
1170 		if (!nic->irq_allocated[irq])
1171 			continue;
1172 
1173 		irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
1174 		free_cpumask_var(nic->affinity_mask[irq]);
1175 
1176 		if (irq < NICVF_INTR_ID_SQ)
1177 			free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
1178 		else
1179 			free_irq(pci_irq_vector(pdev, irq), nic);
1180 
1181 		nic->irq_allocated[irq] = false;
1182 	}
1183 
1184 	/* Disable MSI-X */
1185 	pci_free_irq_vectors(pdev);
1186 	nic->num_vec = 0;
1187 }
1188 
1189 /* Initialize MSIX vectors and register MISC interrupt.
1190  * Send READY message to PF to check if its alive
1191  */
1192 static int nicvf_register_misc_interrupt(struct nicvf *nic)
1193 {
1194 	int ret = 0;
1195 	int irq = NICVF_INTR_ID_MISC;
1196 
1197 	/* Return if mailbox interrupt is already registered */
1198 	if (nic->pdev->msix_enabled)
1199 		return 0;
1200 
1201 	/* Enable MSI-X */
1202 	nic->num_vec = pci_msix_vec_count(nic->pdev);
1203 	ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
1204 				    PCI_IRQ_MSIX);
1205 	if (ret < 0) {
1206 		netdev_err(nic->netdev,
1207 			   "Req for #%d msix vectors failed\n", nic->num_vec);
1208 		return 1;
1209 	}
1210 
1211 	sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
1212 	/* Register Misc interrupt */
1213 	ret = request_irq(pci_irq_vector(nic->pdev, irq),
1214 			  nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
1215 
1216 	if (ret)
1217 		return ret;
1218 	nic->irq_allocated[irq] = true;
1219 
1220 	/* Enable mailbox interrupt */
1221 	nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
1222 
1223 	/* Check if VF is able to communicate with PF */
1224 	if (!nicvf_check_pf_ready(nic)) {
1225 		nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1226 		nicvf_unregister_interrupts(nic);
1227 		return 1;
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
1234 {
1235 	struct nicvf *nic = netdev_priv(netdev);
1236 	int qid = skb_get_queue_mapping(skb);
1237 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
1238 	struct nicvf *snic;
1239 	struct snd_queue *sq;
1240 	int tmp;
1241 
1242 	/* Check for minimum packet length */
1243 	if (skb->len <= ETH_HLEN) {
1244 		dev_kfree_skb(skb);
1245 		return NETDEV_TX_OK;
1246 	}
1247 
1248 	/* In XDP case, initial HW tx queues are used for XDP,
1249 	 * but stack's queue mapping starts at '0', so skip the
1250 	 * Tx queues attached to Rx queues for XDP.
1251 	 */
1252 	if (nic->xdp_prog)
1253 		qid += nic->xdp_tx_queues;
1254 
1255 	snic = nic;
1256 	/* Get secondary Qset's SQ structure */
1257 	if (qid >= MAX_SND_QUEUES_PER_QS) {
1258 		tmp = qid / MAX_SND_QUEUES_PER_QS;
1259 		snic = (struct nicvf *)nic->snicvf[tmp - 1];
1260 		if (!snic) {
1261 			netdev_warn(nic->netdev,
1262 				    "Secondary Qset#%d's ptr not initialized\n",
1263 				    tmp - 1);
1264 			dev_kfree_skb(skb);
1265 			return NETDEV_TX_OK;
1266 		}
1267 		qid = qid % MAX_SND_QUEUES_PER_QS;
1268 	}
1269 
1270 	sq = &snic->qs->sq[qid];
1271 	if (!netif_tx_queue_stopped(txq) &&
1272 	    !nicvf_sq_append_skb(snic, sq, skb, qid)) {
1273 		netif_tx_stop_queue(txq);
1274 
1275 		/* Barrier, so that stop_queue visible to other cpus */
1276 		smp_mb();
1277 
1278 		/* Check again, incase another cpu freed descriptors */
1279 		if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
1280 			netif_tx_wake_queue(txq);
1281 		} else {
1282 			this_cpu_inc(nic->drv_stats->txq_stop);
1283 			netif_warn(nic, tx_err, netdev,
1284 				   "Transmit ring full, stopping SQ%d\n", qid);
1285 		}
1286 		return NETDEV_TX_BUSY;
1287 	}
1288 
1289 	return NETDEV_TX_OK;
1290 }
1291 
1292 static inline void nicvf_free_cq_poll(struct nicvf *nic)
1293 {
1294 	struct nicvf_cq_poll *cq_poll;
1295 	int qidx;
1296 
1297 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1298 		cq_poll = nic->napi[qidx];
1299 		if (!cq_poll)
1300 			continue;
1301 		nic->napi[qidx] = NULL;
1302 		kfree(cq_poll);
1303 	}
1304 }
1305 
1306 int nicvf_stop(struct net_device *netdev)
1307 {
1308 	int irq, qidx;
1309 	struct nicvf *nic = netdev_priv(netdev);
1310 	struct queue_set *qs = nic->qs;
1311 	struct nicvf_cq_poll *cq_poll = NULL;
1312 	union nic_mbx mbx = {};
1313 
1314 	mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
1315 	nicvf_send_msg_to_pf(nic, &mbx);
1316 
1317 	netif_carrier_off(netdev);
1318 	netif_tx_stop_all_queues(nic->netdev);
1319 	nic->link_up = false;
1320 
1321 	/* Teardown secondary qsets first */
1322 	if (!nic->sqs_mode) {
1323 		for (qidx = 0; qidx < nic->sqs_count; qidx++) {
1324 			if (!nic->snicvf[qidx])
1325 				continue;
1326 			nicvf_stop(nic->snicvf[qidx]->netdev);
1327 			nic->snicvf[qidx] = NULL;
1328 		}
1329 	}
1330 
1331 	/* Disable RBDR & QS error interrupts */
1332 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
1333 		nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
1334 		nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
1335 	}
1336 	nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
1337 	nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
1338 
1339 	/* Wait for pending IRQ handlers to finish */
1340 	for (irq = 0; irq < nic->num_vec; irq++)
1341 		synchronize_irq(pci_irq_vector(nic->pdev, irq));
1342 
1343 	tasklet_kill(&nic->rbdr_task);
1344 	tasklet_kill(&nic->qs_err_task);
1345 	if (nic->rb_work_scheduled)
1346 		cancel_delayed_work_sync(&nic->rbdr_work);
1347 
1348 	for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
1349 		cq_poll = nic->napi[qidx];
1350 		if (!cq_poll)
1351 			continue;
1352 		napi_synchronize(&cq_poll->napi);
1353 		/* CQ intr is enabled while napi_complete,
1354 		 * so disable it now
1355 		 */
1356 		nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
1357 		nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
1358 		napi_disable(&cq_poll->napi);
1359 		netif_napi_del(&cq_poll->napi);
1360 	}
1361 
1362 	netif_tx_disable(netdev);
1363 
1364 	for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
1365 		netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
1366 
1367 	/* Free resources */
1368 	nicvf_config_data_transfer(nic, false);
1369 
1370 	/* Disable HW Qset */
1371 	nicvf_qset_config(nic, false);
1372 
1373 	/* disable mailbox interrupt */
1374 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1375 
1376 	nicvf_unregister_interrupts(nic);
1377 
1378 	nicvf_free_cq_poll(nic);
1379 
1380 	/* Free any pending SKB saved to receive timestamp */
1381 	if (nic->ptp_skb) {
1382 		dev_kfree_skb_any(nic->ptp_skb);
1383 		nic->ptp_skb = NULL;
1384 	}
1385 
1386 	/* Clear multiqset info */
1387 	nic->pnicvf = nic;
1388 
1389 	return 0;
1390 }
1391 
1392 static int nicvf_config_hw_rx_tstamp(struct nicvf *nic, bool enable)
1393 {
1394 	union nic_mbx mbx = {};
1395 
1396 	mbx.ptp.msg = NIC_MBOX_MSG_PTP_CFG;
1397 	mbx.ptp.enable = enable;
1398 
1399 	return nicvf_send_msg_to_pf(nic, &mbx);
1400 }
1401 
1402 static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
1403 {
1404 	union nic_mbx mbx = {};
1405 
1406 	mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
1407 	mbx.frs.max_frs = mtu;
1408 	mbx.frs.vf_id = nic->vf_id;
1409 
1410 	return nicvf_send_msg_to_pf(nic, &mbx);
1411 }
1412 
1413 int nicvf_open(struct net_device *netdev)
1414 {
1415 	int cpu, err, qidx;
1416 	struct nicvf *nic = netdev_priv(netdev);
1417 	struct queue_set *qs = nic->qs;
1418 	struct nicvf_cq_poll *cq_poll = NULL;
1419 	union nic_mbx mbx = {};
1420 
1421 	netif_carrier_off(netdev);
1422 
1423 	err = nicvf_register_misc_interrupt(nic);
1424 	if (err)
1425 		return err;
1426 
1427 	/* Register NAPI handler for processing CQEs */
1428 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1429 		cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
1430 		if (!cq_poll) {
1431 			err = -ENOMEM;
1432 			goto napi_del;
1433 		}
1434 		cq_poll->cq_idx = qidx;
1435 		cq_poll->nicvf = nic;
1436 		netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
1437 			       NAPI_POLL_WEIGHT);
1438 		napi_enable(&cq_poll->napi);
1439 		nic->napi[qidx] = cq_poll;
1440 	}
1441 
1442 	/* Check if we got MAC address from PF or else generate a radom MAC */
1443 	if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
1444 		eth_hw_addr_random(netdev);
1445 		nicvf_hw_set_mac_addr(nic, netdev);
1446 	}
1447 
1448 	if (nic->set_mac_pending) {
1449 		nic->set_mac_pending = false;
1450 		nicvf_hw_set_mac_addr(nic, netdev);
1451 	}
1452 
1453 	/* Init tasklet for handling Qset err interrupt */
1454 	tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
1455 		     (unsigned long)nic);
1456 
1457 	/* Init RBDR tasklet which will refill RBDR */
1458 	tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
1459 		     (unsigned long)nic);
1460 	INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
1461 
1462 	/* Configure CPI alorithm */
1463 	nic->cpi_alg = cpi_alg;
1464 	if (!nic->sqs_mode)
1465 		nicvf_config_cpi(nic);
1466 
1467 	nicvf_request_sqs(nic);
1468 	if (nic->sqs_mode)
1469 		nicvf_get_primary_vf_struct(nic);
1470 
1471 	/* Configure PTP timestamp */
1472 	if (nic->ptp_clock)
1473 		nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1474 	atomic_set(&nic->tx_ptp_skbs, 0);
1475 	nic->ptp_skb = NULL;
1476 
1477 	/* Configure receive side scaling and MTU */
1478 	if (!nic->sqs_mode) {
1479 		nicvf_rss_init(nic);
1480 		err = nicvf_update_hw_max_frs(nic, netdev->mtu);
1481 		if (err)
1482 			goto cleanup;
1483 
1484 		/* Clear percpu stats */
1485 		for_each_possible_cpu(cpu)
1486 			memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
1487 			       sizeof(struct nicvf_drv_stats));
1488 	}
1489 
1490 	err = nicvf_register_interrupts(nic);
1491 	if (err)
1492 		goto cleanup;
1493 
1494 	/* Initialize the queues */
1495 	err = nicvf_init_resources(nic);
1496 	if (err)
1497 		goto cleanup;
1498 
1499 	/* Make sure queue initialization is written */
1500 	wmb();
1501 
1502 	nicvf_reg_write(nic, NIC_VF_INT, -1);
1503 	/* Enable Qset err interrupt */
1504 	nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
1505 
1506 	/* Enable completion queue interrupt */
1507 	for (qidx = 0; qidx < qs->cq_cnt; qidx++)
1508 		nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
1509 
1510 	/* Enable RBDR threshold interrupt */
1511 	for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
1512 		nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
1513 
1514 	/* Send VF config done msg to PF */
1515 	mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
1516 	nicvf_write_to_mbx(nic, &mbx);
1517 
1518 	return 0;
1519 cleanup:
1520 	nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
1521 	nicvf_unregister_interrupts(nic);
1522 	tasklet_kill(&nic->qs_err_task);
1523 	tasklet_kill(&nic->rbdr_task);
1524 napi_del:
1525 	for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
1526 		cq_poll = nic->napi[qidx];
1527 		if (!cq_poll)
1528 			continue;
1529 		napi_disable(&cq_poll->napi);
1530 		netif_napi_del(&cq_poll->napi);
1531 	}
1532 	nicvf_free_cq_poll(nic);
1533 	return err;
1534 }
1535 
1536 static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
1537 {
1538 	struct nicvf *nic = netdev_priv(netdev);
1539 	int orig_mtu = netdev->mtu;
1540 
1541 	netdev->mtu = new_mtu;
1542 
1543 	if (!netif_running(netdev))
1544 		return 0;
1545 
1546 	if (nicvf_update_hw_max_frs(nic, new_mtu)) {
1547 		netdev->mtu = orig_mtu;
1548 		return -EINVAL;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 static int nicvf_set_mac_address(struct net_device *netdev, void *p)
1555 {
1556 	struct sockaddr *addr = p;
1557 	struct nicvf *nic = netdev_priv(netdev);
1558 
1559 	if (!is_valid_ether_addr(addr->sa_data))
1560 		return -EADDRNOTAVAIL;
1561 
1562 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1563 
1564 	if (nic->pdev->msix_enabled) {
1565 		if (nicvf_hw_set_mac_addr(nic, netdev))
1566 			return -EBUSY;
1567 	} else {
1568 		nic->set_mac_pending = true;
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 void nicvf_update_lmac_stats(struct nicvf *nic)
1575 {
1576 	int stat = 0;
1577 	union nic_mbx mbx = {};
1578 
1579 	if (!netif_running(nic->netdev))
1580 		return;
1581 
1582 	mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
1583 	mbx.bgx_stats.vf_id = nic->vf_id;
1584 	/* Rx stats */
1585 	mbx.bgx_stats.rx = 1;
1586 	while (stat < BGX_RX_STATS_COUNT) {
1587 		mbx.bgx_stats.idx = stat;
1588 		if (nicvf_send_msg_to_pf(nic, &mbx))
1589 			return;
1590 		stat++;
1591 	}
1592 
1593 	stat = 0;
1594 
1595 	/* Tx stats */
1596 	mbx.bgx_stats.rx = 0;
1597 	while (stat < BGX_TX_STATS_COUNT) {
1598 		mbx.bgx_stats.idx = stat;
1599 		if (nicvf_send_msg_to_pf(nic, &mbx))
1600 			return;
1601 		stat++;
1602 	}
1603 }
1604 
1605 void nicvf_update_stats(struct nicvf *nic)
1606 {
1607 	int qidx, cpu;
1608 	u64 tmp_stats = 0;
1609 	struct nicvf_hw_stats *stats = &nic->hw_stats;
1610 	struct nicvf_drv_stats *drv_stats;
1611 	struct queue_set *qs = nic->qs;
1612 
1613 #define GET_RX_STATS(reg) \
1614 	nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
1615 #define GET_TX_STATS(reg) \
1616 	nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
1617 
1618 	stats->rx_bytes = GET_RX_STATS(RX_OCTS);
1619 	stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
1620 	stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
1621 	stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
1622 	stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
1623 	stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
1624 	stats->rx_drop_red = GET_RX_STATS(RX_RED);
1625 	stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
1626 	stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
1627 	stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
1628 	stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
1629 	stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
1630 	stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
1631 	stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
1632 
1633 	stats->tx_bytes = GET_TX_STATS(TX_OCTS);
1634 	stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
1635 	stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
1636 	stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
1637 	stats->tx_drops = GET_TX_STATS(TX_DROP);
1638 
1639 	/* On T88 pass 2.0, the dummy SQE added for TSO notification
1640 	 * via CQE has 'dont_send' set. Hence HW drops the pkt pointed
1641 	 * pointed by dummy SQE and results in tx_drops counter being
1642 	 * incremented. Subtracting it from tx_tso counter will give
1643 	 * exact tx_drops counter.
1644 	 */
1645 	if (nic->t88 && nic->hw_tso) {
1646 		for_each_possible_cpu(cpu) {
1647 			drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
1648 			tmp_stats += drv_stats->tx_tso;
1649 		}
1650 		stats->tx_drops = tmp_stats - stats->tx_drops;
1651 	}
1652 	stats->tx_frames = stats->tx_ucast_frames +
1653 			   stats->tx_bcast_frames +
1654 			   stats->tx_mcast_frames;
1655 	stats->rx_frames = stats->rx_ucast_frames +
1656 			   stats->rx_bcast_frames +
1657 			   stats->rx_mcast_frames;
1658 	stats->rx_drops = stats->rx_drop_red +
1659 			  stats->rx_drop_overrun;
1660 
1661 	/* Update RQ and SQ stats */
1662 	for (qidx = 0; qidx < qs->rq_cnt; qidx++)
1663 		nicvf_update_rq_stats(nic, qidx);
1664 	for (qidx = 0; qidx < qs->sq_cnt; qidx++)
1665 		nicvf_update_sq_stats(nic, qidx);
1666 }
1667 
1668 static void nicvf_get_stats64(struct net_device *netdev,
1669 			      struct rtnl_link_stats64 *stats)
1670 {
1671 	struct nicvf *nic = netdev_priv(netdev);
1672 	struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
1673 
1674 	nicvf_update_stats(nic);
1675 
1676 	stats->rx_bytes = hw_stats->rx_bytes;
1677 	stats->rx_packets = hw_stats->rx_frames;
1678 	stats->rx_dropped = hw_stats->rx_drops;
1679 	stats->multicast = hw_stats->rx_mcast_frames;
1680 
1681 	stats->tx_bytes = hw_stats->tx_bytes;
1682 	stats->tx_packets = hw_stats->tx_frames;
1683 	stats->tx_dropped = hw_stats->tx_drops;
1684 
1685 }
1686 
1687 static void nicvf_tx_timeout(struct net_device *dev)
1688 {
1689 	struct nicvf *nic = netdev_priv(dev);
1690 
1691 	netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
1692 
1693 	this_cpu_inc(nic->drv_stats->tx_timeout);
1694 	schedule_work(&nic->reset_task);
1695 }
1696 
1697 static void nicvf_reset_task(struct work_struct *work)
1698 {
1699 	struct nicvf *nic;
1700 
1701 	nic = container_of(work, struct nicvf, reset_task);
1702 
1703 	if (!netif_running(nic->netdev))
1704 		return;
1705 
1706 	nicvf_stop(nic->netdev);
1707 	nicvf_open(nic->netdev);
1708 	netif_trans_update(nic->netdev);
1709 }
1710 
1711 static int nicvf_config_loopback(struct nicvf *nic,
1712 				 netdev_features_t features)
1713 {
1714 	union nic_mbx mbx = {};
1715 
1716 	mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
1717 	mbx.lbk.vf_id = nic->vf_id;
1718 	mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
1719 
1720 	return nicvf_send_msg_to_pf(nic, &mbx);
1721 }
1722 
1723 static netdev_features_t nicvf_fix_features(struct net_device *netdev,
1724 					    netdev_features_t features)
1725 {
1726 	struct nicvf *nic = netdev_priv(netdev);
1727 
1728 	if ((features & NETIF_F_LOOPBACK) &&
1729 	    netif_running(netdev) && !nic->loopback_supported)
1730 		features &= ~NETIF_F_LOOPBACK;
1731 
1732 	return features;
1733 }
1734 
1735 static int nicvf_set_features(struct net_device *netdev,
1736 			      netdev_features_t features)
1737 {
1738 	struct nicvf *nic = netdev_priv(netdev);
1739 	netdev_features_t changed = features ^ netdev->features;
1740 
1741 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1742 		nicvf_config_vlan_stripping(nic, features);
1743 
1744 	if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
1745 		return nicvf_config_loopback(nic, features);
1746 
1747 	return 0;
1748 }
1749 
1750 static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
1751 {
1752 	u8 cq_count, txq_count;
1753 
1754 	/* Set XDP Tx queue count same as Rx queue count */
1755 	if (!bpf_attached)
1756 		nic->xdp_tx_queues = 0;
1757 	else
1758 		nic->xdp_tx_queues = nic->rx_queues;
1759 
1760 	/* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
1761 	 * needs to be allocated, check how many.
1762 	 */
1763 	txq_count = nic->xdp_tx_queues + nic->tx_queues;
1764 	cq_count = max(nic->rx_queues, txq_count);
1765 	if (cq_count > MAX_CMP_QUEUES_PER_QS) {
1766 		nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
1767 		nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
1768 	} else {
1769 		nic->sqs_count = 0;
1770 	}
1771 
1772 	/* Set primary Qset's resources */
1773 	nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
1774 	nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
1775 	nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
1776 
1777 	/* Update stack */
1778 	nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
1779 }
1780 
1781 static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
1782 {
1783 	struct net_device *dev = nic->netdev;
1784 	bool if_up = netif_running(nic->netdev);
1785 	struct bpf_prog *old_prog;
1786 	bool bpf_attached = false;
1787 	int ret = 0;
1788 
1789 	/* For now just support only the usual MTU sized frames */
1790 	if (prog && (dev->mtu > 1500)) {
1791 		netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
1792 			    dev->mtu);
1793 		return -EOPNOTSUPP;
1794 	}
1795 
1796 	/* ALL SQs attached to CQs i.e same as RQs, are treated as
1797 	 * XDP Tx queues and more Tx queues are allocated for
1798 	 * network stack to send pkts out.
1799 	 *
1800 	 * No of Tx queues are either same as Rx queues or whatever
1801 	 * is left in max no of queues possible.
1802 	 */
1803 	if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
1804 		netdev_warn(dev,
1805 			    "Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
1806 			    nic->max_queues);
1807 		return -ENOMEM;
1808 	}
1809 
1810 	if (if_up)
1811 		nicvf_stop(nic->netdev);
1812 
1813 	old_prog = xchg(&nic->xdp_prog, prog);
1814 	/* Detach old prog, if any */
1815 	if (old_prog)
1816 		bpf_prog_put(old_prog);
1817 
1818 	if (nic->xdp_prog) {
1819 		/* Attach BPF program */
1820 		nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
1821 		if (!IS_ERR(nic->xdp_prog)) {
1822 			bpf_attached = true;
1823 		} else {
1824 			ret = PTR_ERR(nic->xdp_prog);
1825 			nic->xdp_prog = NULL;
1826 		}
1827 	}
1828 
1829 	/* Calculate Tx queues needed for XDP and network stack */
1830 	nicvf_set_xdp_queues(nic, bpf_attached);
1831 
1832 	if (if_up) {
1833 		/* Reinitialize interface, clean slate */
1834 		nicvf_open(nic->netdev);
1835 		netif_trans_update(nic->netdev);
1836 	}
1837 
1838 	return ret;
1839 }
1840 
1841 static int nicvf_xdp(struct net_device *netdev, struct netdev_bpf *xdp)
1842 {
1843 	struct nicvf *nic = netdev_priv(netdev);
1844 
1845 	/* To avoid checks while retrieving buffer address from CQE_RX,
1846 	 * do not support XDP for T88 pass1.x silicons which are anyway
1847 	 * not in use widely.
1848 	 */
1849 	if (pass1_silicon(nic->pdev))
1850 		return -EOPNOTSUPP;
1851 
1852 	switch (xdp->command) {
1853 	case XDP_SETUP_PROG:
1854 		return nicvf_xdp_setup(nic, xdp->prog);
1855 	case XDP_QUERY_PROG:
1856 		xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0;
1857 		return 0;
1858 	default:
1859 		return -EINVAL;
1860 	}
1861 }
1862 
1863 static int nicvf_config_hwtstamp(struct net_device *netdev, struct ifreq *ifr)
1864 {
1865 	struct hwtstamp_config config;
1866 	struct nicvf *nic = netdev_priv(netdev);
1867 
1868 	if (!nic->ptp_clock)
1869 		return -ENODEV;
1870 
1871 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1872 		return -EFAULT;
1873 
1874 	/* reserved for future extensions */
1875 	if (config.flags)
1876 		return -EINVAL;
1877 
1878 	switch (config.tx_type) {
1879 	case HWTSTAMP_TX_OFF:
1880 	case HWTSTAMP_TX_ON:
1881 		break;
1882 	default:
1883 		return -ERANGE;
1884 	}
1885 
1886 	switch (config.rx_filter) {
1887 	case HWTSTAMP_FILTER_NONE:
1888 		nic->hw_rx_tstamp = false;
1889 		break;
1890 	case HWTSTAMP_FILTER_ALL:
1891 	case HWTSTAMP_FILTER_SOME:
1892 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1893 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1894 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1895 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1896 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1897 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1898 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1899 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1900 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1901 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1902 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1903 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1904 		nic->hw_rx_tstamp = true;
1905 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1906 		break;
1907 	default:
1908 		return -ERANGE;
1909 	}
1910 
1911 	if (netif_running(netdev))
1912 		nicvf_config_hw_rx_tstamp(nic, nic->hw_rx_tstamp);
1913 
1914 	if (copy_to_user(ifr->ifr_data, &config, sizeof(config)))
1915 		return -EFAULT;
1916 
1917 	return 0;
1918 }
1919 
1920 static int nicvf_ioctl(struct net_device *netdev, struct ifreq *req, int cmd)
1921 {
1922 	switch (cmd) {
1923 	case SIOCSHWTSTAMP:
1924 		return nicvf_config_hwtstamp(netdev, req);
1925 	default:
1926 		return -EOPNOTSUPP;
1927 	}
1928 }
1929 
1930 static void __nicvf_set_rx_mode_task(u8 mode, struct xcast_addr_list *mc_addrs,
1931 				     struct nicvf *nic)
1932 {
1933 	union nic_mbx mbx = {};
1934 	int idx;
1935 
1936 	/* From the inside of VM code flow we have only 128 bits memory
1937 	 * available to send message to host's PF, so send all mc addrs
1938 	 * one by one, starting from flush command in case if kernel
1939 	 * requests to configure specific MAC filtering
1940 	 */
1941 
1942 	/* flush DMAC filters and reset RX mode */
1943 	mbx.xcast.msg = NIC_MBOX_MSG_RESET_XCAST;
1944 	nicvf_send_msg_to_pf(nic, &mbx);
1945 
1946 	if (mode & BGX_XCAST_MCAST_FILTER) {
1947 		/* once enabling filtering, we need to signal to PF to add
1948 		 * its' own LMAC to the filter to accept packets for it.
1949 		 */
1950 		mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
1951 		mbx.xcast.data.mac = 0;
1952 		nicvf_send_msg_to_pf(nic, &mbx);
1953 	}
1954 
1955 	/* check if we have any specific MACs to be added to PF DMAC filter */
1956 	if (mc_addrs) {
1957 		/* now go through kernel list of MACs and add them one by one */
1958 		for (idx = 0; idx < mc_addrs->count; idx++) {
1959 			mbx.xcast.msg = NIC_MBOX_MSG_ADD_MCAST;
1960 			mbx.xcast.data.mac = mc_addrs->mc[idx];
1961 			nicvf_send_msg_to_pf(nic, &mbx);
1962 		}
1963 		kfree(mc_addrs);
1964 	}
1965 
1966 	/* and finally set rx mode for PF accordingly */
1967 	mbx.xcast.msg = NIC_MBOX_MSG_SET_XCAST;
1968 	mbx.xcast.data.mode = mode;
1969 
1970 	nicvf_send_msg_to_pf(nic, &mbx);
1971 }
1972 
1973 static void nicvf_set_rx_mode_task(struct work_struct *work_arg)
1974 {
1975 	struct nicvf_work *vf_work = container_of(work_arg, struct nicvf_work,
1976 						  work.work);
1977 	struct nicvf *nic = container_of(vf_work, struct nicvf, rx_mode_work);
1978 	u8 mode;
1979 	struct xcast_addr_list *mc;
1980 
1981 	if (!vf_work)
1982 		return;
1983 
1984 	/* Save message data locally to prevent them from
1985 	 * being overwritten by next ndo_set_rx_mode call().
1986 	 */
1987 	spin_lock(&nic->rx_mode_wq_lock);
1988 	mode = vf_work->mode;
1989 	mc = vf_work->mc;
1990 	vf_work->mc = NULL;
1991 	spin_unlock(&nic->rx_mode_wq_lock);
1992 
1993 	__nicvf_set_rx_mode_task(mode, mc, nic);
1994 }
1995 
1996 static void nicvf_set_rx_mode(struct net_device *netdev)
1997 {
1998 	struct nicvf *nic = netdev_priv(netdev);
1999 	struct netdev_hw_addr *ha;
2000 	struct xcast_addr_list *mc_list = NULL;
2001 	u8 mode = 0;
2002 
2003 	if (netdev->flags & IFF_PROMISC) {
2004 		mode = BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT;
2005 	} else {
2006 		if (netdev->flags & IFF_BROADCAST)
2007 			mode |= BGX_XCAST_BCAST_ACCEPT;
2008 
2009 		if (netdev->flags & IFF_ALLMULTI) {
2010 			mode |= BGX_XCAST_MCAST_ACCEPT;
2011 		} else if (netdev->flags & IFF_MULTICAST) {
2012 			mode |= BGX_XCAST_MCAST_FILTER;
2013 			/* here we need to copy mc addrs */
2014 			if (netdev_mc_count(netdev)) {
2015 				mc_list = kmalloc(offsetof(typeof(*mc_list),
2016 							   mc[netdev_mc_count(netdev)]),
2017 						  GFP_ATOMIC);
2018 				if (unlikely(!mc_list))
2019 					return;
2020 				mc_list->count = 0;
2021 				netdev_hw_addr_list_for_each(ha, &netdev->mc) {
2022 					mc_list->mc[mc_list->count] =
2023 						ether_addr_to_u64(ha->addr);
2024 					mc_list->count++;
2025 				}
2026 			}
2027 		}
2028 	}
2029 	spin_lock(&nic->rx_mode_wq_lock);
2030 	kfree(nic->rx_mode_work.mc);
2031 	nic->rx_mode_work.mc = mc_list;
2032 	nic->rx_mode_work.mode = mode;
2033 	queue_delayed_work(nicvf_rx_mode_wq, &nic->rx_mode_work.work, 0);
2034 	spin_unlock(&nic->rx_mode_wq_lock);
2035 }
2036 
2037 static const struct net_device_ops nicvf_netdev_ops = {
2038 	.ndo_open		= nicvf_open,
2039 	.ndo_stop		= nicvf_stop,
2040 	.ndo_start_xmit		= nicvf_xmit,
2041 	.ndo_change_mtu		= nicvf_change_mtu,
2042 	.ndo_set_mac_address	= nicvf_set_mac_address,
2043 	.ndo_get_stats64	= nicvf_get_stats64,
2044 	.ndo_tx_timeout         = nicvf_tx_timeout,
2045 	.ndo_fix_features       = nicvf_fix_features,
2046 	.ndo_set_features       = nicvf_set_features,
2047 	.ndo_bpf		= nicvf_xdp,
2048 	.ndo_do_ioctl           = nicvf_ioctl,
2049 	.ndo_set_rx_mode        = nicvf_set_rx_mode,
2050 };
2051 
2052 static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2053 {
2054 	struct device *dev = &pdev->dev;
2055 	struct net_device *netdev;
2056 	struct nicvf *nic;
2057 	int    err, qcount;
2058 	u16    sdevid;
2059 	struct cavium_ptp *ptp_clock;
2060 
2061 	ptp_clock = cavium_ptp_get();
2062 	if (IS_ERR(ptp_clock)) {
2063 		if (PTR_ERR(ptp_clock) == -ENODEV)
2064 			/* In virtualized environment we proceed without ptp */
2065 			ptp_clock = NULL;
2066 		else
2067 			return PTR_ERR(ptp_clock);
2068 	}
2069 
2070 	err = pci_enable_device(pdev);
2071 	if (err) {
2072 		dev_err(dev, "Failed to enable PCI device\n");
2073 		return err;
2074 	}
2075 
2076 	err = pci_request_regions(pdev, DRV_NAME);
2077 	if (err) {
2078 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2079 		goto err_disable_device;
2080 	}
2081 
2082 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
2083 	if (err) {
2084 		dev_err(dev, "Unable to get usable DMA configuration\n");
2085 		goto err_release_regions;
2086 	}
2087 
2088 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
2089 	if (err) {
2090 		dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
2091 		goto err_release_regions;
2092 	}
2093 
2094 	qcount = netif_get_num_default_rss_queues();
2095 
2096 	/* Restrict multiqset support only for host bound VFs */
2097 	if (pdev->is_virtfn) {
2098 		/* Set max number of queues per VF */
2099 		qcount = min_t(int, num_online_cpus(),
2100 			       (MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
2101 	}
2102 
2103 	netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
2104 	if (!netdev) {
2105 		err = -ENOMEM;
2106 		goto err_release_regions;
2107 	}
2108 
2109 	pci_set_drvdata(pdev, netdev);
2110 
2111 	SET_NETDEV_DEV(netdev, &pdev->dev);
2112 
2113 	nic = netdev_priv(netdev);
2114 	nic->netdev = netdev;
2115 	nic->pdev = pdev;
2116 	nic->pnicvf = nic;
2117 	nic->max_queues = qcount;
2118 	/* If no of CPUs are too low, there won't be any queues left
2119 	 * for XDP_TX, hence double it.
2120 	 */
2121 	if (!nic->t88)
2122 		nic->max_queues *= 2;
2123 	nic->ptp_clock = ptp_clock;
2124 
2125 	/* MAP VF's configuration registers */
2126 	nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
2127 	if (!nic->reg_base) {
2128 		dev_err(dev, "Cannot map config register space, aborting\n");
2129 		err = -ENOMEM;
2130 		goto err_free_netdev;
2131 	}
2132 
2133 	nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
2134 	if (!nic->drv_stats) {
2135 		err = -ENOMEM;
2136 		goto err_free_netdev;
2137 	}
2138 
2139 	err = nicvf_set_qset_resources(nic);
2140 	if (err)
2141 		goto err_free_netdev;
2142 
2143 	/* Check if PF is alive and get MAC address for this VF */
2144 	err = nicvf_register_misc_interrupt(nic);
2145 	if (err)
2146 		goto err_free_netdev;
2147 
2148 	nicvf_send_vf_struct(nic);
2149 
2150 	if (!pass1_silicon(nic->pdev))
2151 		nic->hw_tso = true;
2152 
2153 	/* Get iommu domain for iova to physical addr conversion */
2154 	nic->iommu_domain = iommu_get_domain_for_dev(dev);
2155 
2156 	pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
2157 	if (sdevid == 0xA134)
2158 		nic->t88 = true;
2159 
2160 	/* Check if this VF is in QS only mode */
2161 	if (nic->sqs_mode)
2162 		return 0;
2163 
2164 	err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
2165 	if (err)
2166 		goto err_unregister_interrupts;
2167 
2168 	netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
2169 			       NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
2170 			       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2171 			       NETIF_F_HW_VLAN_CTAG_RX);
2172 
2173 	netdev->hw_features |= NETIF_F_RXHASH;
2174 
2175 	netdev->features |= netdev->hw_features;
2176 	netdev->hw_features |= NETIF_F_LOOPBACK;
2177 
2178 	netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
2179 				NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
2180 
2181 	netdev->netdev_ops = &nicvf_netdev_ops;
2182 	netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
2183 
2184 	/* MTU range: 64 - 9200 */
2185 	netdev->min_mtu = NIC_HW_MIN_FRS;
2186 	netdev->max_mtu = NIC_HW_MAX_FRS;
2187 
2188 	INIT_WORK(&nic->reset_task, nicvf_reset_task);
2189 
2190 	INIT_DELAYED_WORK(&nic->rx_mode_work.work, nicvf_set_rx_mode_task);
2191 	spin_lock_init(&nic->rx_mode_wq_lock);
2192 
2193 	err = register_netdev(netdev);
2194 	if (err) {
2195 		dev_err(dev, "Failed to register netdevice\n");
2196 		goto err_unregister_interrupts;
2197 	}
2198 
2199 	nic->msg_enable = debug;
2200 
2201 	nicvf_set_ethtool_ops(netdev);
2202 
2203 	return 0;
2204 
2205 err_unregister_interrupts:
2206 	nicvf_unregister_interrupts(nic);
2207 err_free_netdev:
2208 	pci_set_drvdata(pdev, NULL);
2209 	if (nic->drv_stats)
2210 		free_percpu(nic->drv_stats);
2211 	free_netdev(netdev);
2212 err_release_regions:
2213 	pci_release_regions(pdev);
2214 err_disable_device:
2215 	pci_disable_device(pdev);
2216 	return err;
2217 }
2218 
2219 static void nicvf_remove(struct pci_dev *pdev)
2220 {
2221 	struct net_device *netdev = pci_get_drvdata(pdev);
2222 	struct nicvf *nic;
2223 	struct net_device *pnetdev;
2224 
2225 	if (!netdev)
2226 		return;
2227 
2228 	nic = netdev_priv(netdev);
2229 	pnetdev = nic->pnicvf->netdev;
2230 
2231 	cancel_delayed_work_sync(&nic->rx_mode_work.work);
2232 
2233 	/* Check if this Qset is assigned to different VF.
2234 	 * If yes, clean primary and all secondary Qsets.
2235 	 */
2236 	if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
2237 		unregister_netdev(pnetdev);
2238 	nicvf_unregister_interrupts(nic);
2239 	pci_set_drvdata(pdev, NULL);
2240 	if (nic->drv_stats)
2241 		free_percpu(nic->drv_stats);
2242 	cavium_ptp_put(nic->ptp_clock);
2243 	free_netdev(netdev);
2244 	pci_release_regions(pdev);
2245 	pci_disable_device(pdev);
2246 }
2247 
2248 static void nicvf_shutdown(struct pci_dev *pdev)
2249 {
2250 	nicvf_remove(pdev);
2251 }
2252 
2253 static struct pci_driver nicvf_driver = {
2254 	.name = DRV_NAME,
2255 	.id_table = nicvf_id_table,
2256 	.probe = nicvf_probe,
2257 	.remove = nicvf_remove,
2258 	.shutdown = nicvf_shutdown,
2259 };
2260 
2261 static int __init nicvf_init_module(void)
2262 {
2263 	pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
2264 	nicvf_rx_mode_wq = alloc_ordered_workqueue("nicvf_generic",
2265 						   WQ_MEM_RECLAIM);
2266 	return pci_register_driver(&nicvf_driver);
2267 }
2268 
2269 static void __exit nicvf_cleanup_module(void)
2270 {
2271 	if (nicvf_rx_mode_wq) {
2272 		destroy_workqueue(nicvf_rx_mode_wq);
2273 		nicvf_rx_mode_wq = NULL;
2274 	}
2275 	pci_unregister_driver(&nicvf_driver);
2276 }
2277 
2278 module_init(nicvf_init_module);
2279 module_exit(nicvf_cleanup_module);
2280