1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2009-2012 Cavium, Inc 7 */ 8 9 #include <linux/platform_device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/etherdevice.h> 12 #include <linux/capability.h> 13 #include <linux/net_tstamp.h> 14 #include <linux/interrupt.h> 15 #include <linux/netdevice.h> 16 #include <linux/spinlock.h> 17 #include <linux/if_vlan.h> 18 #include <linux/of_mdio.h> 19 #include <linux/module.h> 20 #include <linux/of_net.h> 21 #include <linux/init.h> 22 #include <linux/slab.h> 23 #include <linux/phy.h> 24 #include <linux/io.h> 25 26 #include <asm/octeon/octeon.h> 27 #include <asm/octeon/cvmx-mixx-defs.h> 28 #include <asm/octeon/cvmx-agl-defs.h> 29 30 #define DRV_NAME "octeon_mgmt" 31 #define DRV_VERSION "2.0" 32 #define DRV_DESCRIPTION \ 33 "Cavium Networks Octeon MII (management) port Network Driver" 34 35 #define OCTEON_MGMT_NAPI_WEIGHT 16 36 37 /* Ring sizes that are powers of two allow for more efficient modulo 38 * opertions. 39 */ 40 #define OCTEON_MGMT_RX_RING_SIZE 512 41 #define OCTEON_MGMT_TX_RING_SIZE 128 42 43 /* Allow 8 bytes for vlan and FCS. */ 44 #define OCTEON_MGMT_RX_HEADROOM (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN) 45 46 union mgmt_port_ring_entry { 47 u64 d64; 48 struct { 49 #define RING_ENTRY_CODE_DONE 0xf 50 #define RING_ENTRY_CODE_MORE 0x10 51 #ifdef __BIG_ENDIAN_BITFIELD 52 u64 reserved_62_63:2; 53 /* Length of the buffer/packet in bytes */ 54 u64 len:14; 55 /* For TX, signals that the packet should be timestamped */ 56 u64 tstamp:1; 57 /* The RX error code */ 58 u64 code:7; 59 /* Physical address of the buffer */ 60 u64 addr:40; 61 #else 62 u64 addr:40; 63 u64 code:7; 64 u64 tstamp:1; 65 u64 len:14; 66 u64 reserved_62_63:2; 67 #endif 68 } s; 69 }; 70 71 #define MIX_ORING1 0x0 72 #define MIX_ORING2 0x8 73 #define MIX_IRING1 0x10 74 #define MIX_IRING2 0x18 75 #define MIX_CTL 0x20 76 #define MIX_IRHWM 0x28 77 #define MIX_IRCNT 0x30 78 #define MIX_ORHWM 0x38 79 #define MIX_ORCNT 0x40 80 #define MIX_ISR 0x48 81 #define MIX_INTENA 0x50 82 #define MIX_REMCNT 0x58 83 #define MIX_BIST 0x78 84 85 #define AGL_GMX_PRT_CFG 0x10 86 #define AGL_GMX_RX_FRM_CTL 0x18 87 #define AGL_GMX_RX_FRM_MAX 0x30 88 #define AGL_GMX_RX_JABBER 0x38 89 #define AGL_GMX_RX_STATS_CTL 0x50 90 91 #define AGL_GMX_RX_STATS_PKTS_DRP 0xb0 92 #define AGL_GMX_RX_STATS_OCTS_DRP 0xb8 93 #define AGL_GMX_RX_STATS_PKTS_BAD 0xc0 94 95 #define AGL_GMX_RX_ADR_CTL 0x100 96 #define AGL_GMX_RX_ADR_CAM_EN 0x108 97 #define AGL_GMX_RX_ADR_CAM0 0x180 98 #define AGL_GMX_RX_ADR_CAM1 0x188 99 #define AGL_GMX_RX_ADR_CAM2 0x190 100 #define AGL_GMX_RX_ADR_CAM3 0x198 101 #define AGL_GMX_RX_ADR_CAM4 0x1a0 102 #define AGL_GMX_RX_ADR_CAM5 0x1a8 103 104 #define AGL_GMX_TX_CLK 0x208 105 #define AGL_GMX_TX_STATS_CTL 0x268 106 #define AGL_GMX_TX_CTL 0x270 107 #define AGL_GMX_TX_STAT0 0x280 108 #define AGL_GMX_TX_STAT1 0x288 109 #define AGL_GMX_TX_STAT2 0x290 110 #define AGL_GMX_TX_STAT3 0x298 111 #define AGL_GMX_TX_STAT4 0x2a0 112 #define AGL_GMX_TX_STAT5 0x2a8 113 #define AGL_GMX_TX_STAT6 0x2b0 114 #define AGL_GMX_TX_STAT7 0x2b8 115 #define AGL_GMX_TX_STAT8 0x2c0 116 #define AGL_GMX_TX_STAT9 0x2c8 117 118 struct octeon_mgmt { 119 struct net_device *netdev; 120 u64 mix; 121 u64 agl; 122 u64 agl_prt_ctl; 123 int port; 124 int irq; 125 bool has_rx_tstamp; 126 u64 *tx_ring; 127 dma_addr_t tx_ring_handle; 128 unsigned int tx_next; 129 unsigned int tx_next_clean; 130 unsigned int tx_current_fill; 131 /* The tx_list lock also protects the ring related variables */ 132 struct sk_buff_head tx_list; 133 134 /* RX variables only touched in napi_poll. No locking necessary. */ 135 u64 *rx_ring; 136 dma_addr_t rx_ring_handle; 137 unsigned int rx_next; 138 unsigned int rx_next_fill; 139 unsigned int rx_current_fill; 140 struct sk_buff_head rx_list; 141 142 spinlock_t lock; 143 unsigned int last_duplex; 144 unsigned int last_link; 145 unsigned int last_speed; 146 struct device *dev; 147 struct napi_struct napi; 148 struct tasklet_struct tx_clean_tasklet; 149 struct device_node *phy_np; 150 resource_size_t mix_phys; 151 resource_size_t mix_size; 152 resource_size_t agl_phys; 153 resource_size_t agl_size; 154 resource_size_t agl_prt_ctl_phys; 155 resource_size_t agl_prt_ctl_size; 156 }; 157 158 static void octeon_mgmt_set_rx_irq(struct octeon_mgmt *p, int enable) 159 { 160 union cvmx_mixx_intena mix_intena; 161 unsigned long flags; 162 163 spin_lock_irqsave(&p->lock, flags); 164 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA); 165 mix_intena.s.ithena = enable ? 1 : 0; 166 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 167 spin_unlock_irqrestore(&p->lock, flags); 168 } 169 170 static void octeon_mgmt_set_tx_irq(struct octeon_mgmt *p, int enable) 171 { 172 union cvmx_mixx_intena mix_intena; 173 unsigned long flags; 174 175 spin_lock_irqsave(&p->lock, flags); 176 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA); 177 mix_intena.s.othena = enable ? 1 : 0; 178 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 179 spin_unlock_irqrestore(&p->lock, flags); 180 } 181 182 static void octeon_mgmt_enable_rx_irq(struct octeon_mgmt *p) 183 { 184 octeon_mgmt_set_rx_irq(p, 1); 185 } 186 187 static void octeon_mgmt_disable_rx_irq(struct octeon_mgmt *p) 188 { 189 octeon_mgmt_set_rx_irq(p, 0); 190 } 191 192 static void octeon_mgmt_enable_tx_irq(struct octeon_mgmt *p) 193 { 194 octeon_mgmt_set_tx_irq(p, 1); 195 } 196 197 static void octeon_mgmt_disable_tx_irq(struct octeon_mgmt *p) 198 { 199 octeon_mgmt_set_tx_irq(p, 0); 200 } 201 202 static unsigned int ring_max_fill(unsigned int ring_size) 203 { 204 return ring_size - 8; 205 } 206 207 static unsigned int ring_size_to_bytes(unsigned int ring_size) 208 { 209 return ring_size * sizeof(union mgmt_port_ring_entry); 210 } 211 212 static void octeon_mgmt_rx_fill_ring(struct net_device *netdev) 213 { 214 struct octeon_mgmt *p = netdev_priv(netdev); 215 216 while (p->rx_current_fill < ring_max_fill(OCTEON_MGMT_RX_RING_SIZE)) { 217 unsigned int size; 218 union mgmt_port_ring_entry re; 219 struct sk_buff *skb; 220 221 /* CN56XX pass 1 needs 8 bytes of padding. */ 222 size = netdev->mtu + OCTEON_MGMT_RX_HEADROOM + 8 + NET_IP_ALIGN; 223 224 skb = netdev_alloc_skb(netdev, size); 225 if (!skb) 226 break; 227 skb_reserve(skb, NET_IP_ALIGN); 228 __skb_queue_tail(&p->rx_list, skb); 229 230 re.d64 = 0; 231 re.s.len = size; 232 re.s.addr = dma_map_single(p->dev, skb->data, 233 size, 234 DMA_FROM_DEVICE); 235 236 /* Put it in the ring. */ 237 p->rx_ring[p->rx_next_fill] = re.d64; 238 dma_sync_single_for_device(p->dev, p->rx_ring_handle, 239 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 240 DMA_BIDIRECTIONAL); 241 p->rx_next_fill = 242 (p->rx_next_fill + 1) % OCTEON_MGMT_RX_RING_SIZE; 243 p->rx_current_fill++; 244 /* Ring the bell. */ 245 cvmx_write_csr(p->mix + MIX_IRING2, 1); 246 } 247 } 248 249 static void octeon_mgmt_clean_tx_buffers(struct octeon_mgmt *p) 250 { 251 union cvmx_mixx_orcnt mix_orcnt; 252 union mgmt_port_ring_entry re; 253 struct sk_buff *skb; 254 int cleaned = 0; 255 unsigned long flags; 256 257 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 258 while (mix_orcnt.s.orcnt) { 259 spin_lock_irqsave(&p->tx_list.lock, flags); 260 261 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 262 263 if (mix_orcnt.s.orcnt == 0) { 264 spin_unlock_irqrestore(&p->tx_list.lock, flags); 265 break; 266 } 267 268 dma_sync_single_for_cpu(p->dev, p->tx_ring_handle, 269 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 270 DMA_BIDIRECTIONAL); 271 272 re.d64 = p->tx_ring[p->tx_next_clean]; 273 p->tx_next_clean = 274 (p->tx_next_clean + 1) % OCTEON_MGMT_TX_RING_SIZE; 275 skb = __skb_dequeue(&p->tx_list); 276 277 mix_orcnt.u64 = 0; 278 mix_orcnt.s.orcnt = 1; 279 280 /* Acknowledge to hardware that we have the buffer. */ 281 cvmx_write_csr(p->mix + MIX_ORCNT, mix_orcnt.u64); 282 p->tx_current_fill--; 283 284 spin_unlock_irqrestore(&p->tx_list.lock, flags); 285 286 dma_unmap_single(p->dev, re.s.addr, re.s.len, 287 DMA_TO_DEVICE); 288 289 /* Read the hardware TX timestamp if one was recorded */ 290 if (unlikely(re.s.tstamp)) { 291 struct skb_shared_hwtstamps ts; 292 u64 ns; 293 294 memset(&ts, 0, sizeof(ts)); 295 /* Read the timestamp */ 296 ns = cvmx_read_csr(CVMX_MIXX_TSTAMP(p->port)); 297 /* Remove the timestamp from the FIFO */ 298 cvmx_write_csr(CVMX_MIXX_TSCTL(p->port), 0); 299 /* Tell the kernel about the timestamp */ 300 ts.hwtstamp = ns_to_ktime(ns); 301 skb_tstamp_tx(skb, &ts); 302 } 303 304 dev_kfree_skb_any(skb); 305 cleaned++; 306 307 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 308 } 309 310 if (cleaned && netif_queue_stopped(p->netdev)) 311 netif_wake_queue(p->netdev); 312 } 313 314 static void octeon_mgmt_clean_tx_tasklet(unsigned long arg) 315 { 316 struct octeon_mgmt *p = (struct octeon_mgmt *)arg; 317 octeon_mgmt_clean_tx_buffers(p); 318 octeon_mgmt_enable_tx_irq(p); 319 } 320 321 static void octeon_mgmt_update_rx_stats(struct net_device *netdev) 322 { 323 struct octeon_mgmt *p = netdev_priv(netdev); 324 unsigned long flags; 325 u64 drop, bad; 326 327 /* These reads also clear the count registers. */ 328 drop = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP); 329 bad = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD); 330 331 if (drop || bad) { 332 /* Do an atomic update. */ 333 spin_lock_irqsave(&p->lock, flags); 334 netdev->stats.rx_errors += bad; 335 netdev->stats.rx_dropped += drop; 336 spin_unlock_irqrestore(&p->lock, flags); 337 } 338 } 339 340 static void octeon_mgmt_update_tx_stats(struct net_device *netdev) 341 { 342 struct octeon_mgmt *p = netdev_priv(netdev); 343 unsigned long flags; 344 345 union cvmx_agl_gmx_txx_stat0 s0; 346 union cvmx_agl_gmx_txx_stat1 s1; 347 348 /* These reads also clear the count registers. */ 349 s0.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT0); 350 s1.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT1); 351 352 if (s0.s.xsdef || s0.s.xscol || s1.s.scol || s1.s.mcol) { 353 /* Do an atomic update. */ 354 spin_lock_irqsave(&p->lock, flags); 355 netdev->stats.tx_errors += s0.s.xsdef + s0.s.xscol; 356 netdev->stats.collisions += s1.s.scol + s1.s.mcol; 357 spin_unlock_irqrestore(&p->lock, flags); 358 } 359 } 360 361 /* 362 * Dequeue a receive skb and its corresponding ring entry. The ring 363 * entry is returned, *pskb is updated to point to the skb. 364 */ 365 static u64 octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt *p, 366 struct sk_buff **pskb) 367 { 368 union mgmt_port_ring_entry re; 369 370 dma_sync_single_for_cpu(p->dev, p->rx_ring_handle, 371 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 372 DMA_BIDIRECTIONAL); 373 374 re.d64 = p->rx_ring[p->rx_next]; 375 p->rx_next = (p->rx_next + 1) % OCTEON_MGMT_RX_RING_SIZE; 376 p->rx_current_fill--; 377 *pskb = __skb_dequeue(&p->rx_list); 378 379 dma_unmap_single(p->dev, re.s.addr, 380 ETH_FRAME_LEN + OCTEON_MGMT_RX_HEADROOM, 381 DMA_FROM_DEVICE); 382 383 return re.d64; 384 } 385 386 387 static int octeon_mgmt_receive_one(struct octeon_mgmt *p) 388 { 389 struct net_device *netdev = p->netdev; 390 union cvmx_mixx_ircnt mix_ircnt; 391 union mgmt_port_ring_entry re; 392 struct sk_buff *skb; 393 struct sk_buff *skb2; 394 struct sk_buff *skb_new; 395 union mgmt_port_ring_entry re2; 396 int rc = 1; 397 398 399 re.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb); 400 if (likely(re.s.code == RING_ENTRY_CODE_DONE)) { 401 /* A good packet, send it up. */ 402 skb_put(skb, re.s.len); 403 good: 404 /* Process the RX timestamp if it was recorded */ 405 if (p->has_rx_tstamp) { 406 /* The first 8 bytes are the timestamp */ 407 u64 ns = *(u64 *)skb->data; 408 struct skb_shared_hwtstamps *ts; 409 ts = skb_hwtstamps(skb); 410 ts->hwtstamp = ns_to_ktime(ns); 411 __skb_pull(skb, 8); 412 } 413 skb->protocol = eth_type_trans(skb, netdev); 414 netdev->stats.rx_packets++; 415 netdev->stats.rx_bytes += skb->len; 416 netif_receive_skb(skb); 417 rc = 0; 418 } else if (re.s.code == RING_ENTRY_CODE_MORE) { 419 /* Packet split across skbs. This can happen if we 420 * increase the MTU. Buffers that are already in the 421 * rx ring can then end up being too small. As the rx 422 * ring is refilled, buffers sized for the new MTU 423 * will be used and we should go back to the normal 424 * non-split case. 425 */ 426 skb_put(skb, re.s.len); 427 do { 428 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2); 429 if (re2.s.code != RING_ENTRY_CODE_MORE 430 && re2.s.code != RING_ENTRY_CODE_DONE) 431 goto split_error; 432 skb_put(skb2, re2.s.len); 433 skb_new = skb_copy_expand(skb, 0, skb2->len, 434 GFP_ATOMIC); 435 if (!skb_new) 436 goto split_error; 437 if (skb_copy_bits(skb2, 0, skb_tail_pointer(skb_new), 438 skb2->len)) 439 goto split_error; 440 skb_put(skb_new, skb2->len); 441 dev_kfree_skb_any(skb); 442 dev_kfree_skb_any(skb2); 443 skb = skb_new; 444 } while (re2.s.code == RING_ENTRY_CODE_MORE); 445 goto good; 446 } else { 447 /* Some other error, discard it. */ 448 dev_kfree_skb_any(skb); 449 /* Error statistics are accumulated in 450 * octeon_mgmt_update_rx_stats. 451 */ 452 } 453 goto done; 454 split_error: 455 /* Discard the whole mess. */ 456 dev_kfree_skb_any(skb); 457 dev_kfree_skb_any(skb2); 458 while (re2.s.code == RING_ENTRY_CODE_MORE) { 459 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2); 460 dev_kfree_skb_any(skb2); 461 } 462 netdev->stats.rx_errors++; 463 464 done: 465 /* Tell the hardware we processed a packet. */ 466 mix_ircnt.u64 = 0; 467 mix_ircnt.s.ircnt = 1; 468 cvmx_write_csr(p->mix + MIX_IRCNT, mix_ircnt.u64); 469 return rc; 470 } 471 472 static int octeon_mgmt_receive_packets(struct octeon_mgmt *p, int budget) 473 { 474 unsigned int work_done = 0; 475 union cvmx_mixx_ircnt mix_ircnt; 476 int rc; 477 478 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT); 479 while (work_done < budget && mix_ircnt.s.ircnt) { 480 481 rc = octeon_mgmt_receive_one(p); 482 if (!rc) 483 work_done++; 484 485 /* Check for more packets. */ 486 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT); 487 } 488 489 octeon_mgmt_rx_fill_ring(p->netdev); 490 491 return work_done; 492 } 493 494 static int octeon_mgmt_napi_poll(struct napi_struct *napi, int budget) 495 { 496 struct octeon_mgmt *p = container_of(napi, struct octeon_mgmt, napi); 497 struct net_device *netdev = p->netdev; 498 unsigned int work_done = 0; 499 500 work_done = octeon_mgmt_receive_packets(p, budget); 501 502 if (work_done < budget) { 503 /* We stopped because no more packets were available. */ 504 napi_complete_done(napi, work_done); 505 octeon_mgmt_enable_rx_irq(p); 506 } 507 octeon_mgmt_update_rx_stats(netdev); 508 509 return work_done; 510 } 511 512 /* Reset the hardware to clean state. */ 513 static void octeon_mgmt_reset_hw(struct octeon_mgmt *p) 514 { 515 union cvmx_mixx_ctl mix_ctl; 516 union cvmx_mixx_bist mix_bist; 517 union cvmx_agl_gmx_bist agl_gmx_bist; 518 519 mix_ctl.u64 = 0; 520 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 521 do { 522 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 523 } while (mix_ctl.s.busy); 524 mix_ctl.s.reset = 1; 525 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 526 cvmx_read_csr(p->mix + MIX_CTL); 527 octeon_io_clk_delay(64); 528 529 mix_bist.u64 = cvmx_read_csr(p->mix + MIX_BIST); 530 if (mix_bist.u64) 531 dev_warn(p->dev, "MIX failed BIST (0x%016llx)\n", 532 (unsigned long long)mix_bist.u64); 533 534 agl_gmx_bist.u64 = cvmx_read_csr(CVMX_AGL_GMX_BIST); 535 if (agl_gmx_bist.u64) 536 dev_warn(p->dev, "AGL failed BIST (0x%016llx)\n", 537 (unsigned long long)agl_gmx_bist.u64); 538 } 539 540 struct octeon_mgmt_cam_state { 541 u64 cam[6]; 542 u64 cam_mask; 543 int cam_index; 544 }; 545 546 static void octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state *cs, 547 unsigned char *addr) 548 { 549 int i; 550 551 for (i = 0; i < 6; i++) 552 cs->cam[i] |= (u64)addr[i] << (8 * (cs->cam_index)); 553 cs->cam_mask |= (1ULL << cs->cam_index); 554 cs->cam_index++; 555 } 556 557 static void octeon_mgmt_set_rx_filtering(struct net_device *netdev) 558 { 559 struct octeon_mgmt *p = netdev_priv(netdev); 560 union cvmx_agl_gmx_rxx_adr_ctl adr_ctl; 561 union cvmx_agl_gmx_prtx_cfg agl_gmx_prtx; 562 unsigned long flags; 563 unsigned int prev_packet_enable; 564 unsigned int cam_mode = 1; /* 1 - Accept on CAM match */ 565 unsigned int multicast_mode = 1; /* 1 - Reject all multicast. */ 566 struct octeon_mgmt_cam_state cam_state; 567 struct netdev_hw_addr *ha; 568 int available_cam_entries; 569 570 memset(&cam_state, 0, sizeof(cam_state)); 571 572 if ((netdev->flags & IFF_PROMISC) || netdev->uc.count > 7) { 573 cam_mode = 0; 574 available_cam_entries = 8; 575 } else { 576 /* One CAM entry for the primary address, leaves seven 577 * for the secondary addresses. 578 */ 579 available_cam_entries = 7 - netdev->uc.count; 580 } 581 582 if (netdev->flags & IFF_MULTICAST) { 583 if (cam_mode == 0 || (netdev->flags & IFF_ALLMULTI) || 584 netdev_mc_count(netdev) > available_cam_entries) 585 multicast_mode = 2; /* 2 - Accept all multicast. */ 586 else 587 multicast_mode = 0; /* 0 - Use CAM. */ 588 } 589 590 if (cam_mode == 1) { 591 /* Add primary address. */ 592 octeon_mgmt_cam_state_add(&cam_state, netdev->dev_addr); 593 netdev_for_each_uc_addr(ha, netdev) 594 octeon_mgmt_cam_state_add(&cam_state, ha->addr); 595 } 596 if (multicast_mode == 0) { 597 netdev_for_each_mc_addr(ha, netdev) 598 octeon_mgmt_cam_state_add(&cam_state, ha->addr); 599 } 600 601 spin_lock_irqsave(&p->lock, flags); 602 603 /* Disable packet I/O. */ 604 agl_gmx_prtx.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 605 prev_packet_enable = agl_gmx_prtx.s.en; 606 agl_gmx_prtx.s.en = 0; 607 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64); 608 609 adr_ctl.u64 = 0; 610 adr_ctl.s.cam_mode = cam_mode; 611 adr_ctl.s.mcst = multicast_mode; 612 adr_ctl.s.bcst = 1; /* Allow broadcast */ 613 614 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CTL, adr_ctl.u64); 615 616 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM0, cam_state.cam[0]); 617 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM1, cam_state.cam[1]); 618 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM2, cam_state.cam[2]); 619 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM3, cam_state.cam[3]); 620 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM4, cam_state.cam[4]); 621 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM5, cam_state.cam[5]); 622 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM_EN, cam_state.cam_mask); 623 624 /* Restore packet I/O. */ 625 agl_gmx_prtx.s.en = prev_packet_enable; 626 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64); 627 628 spin_unlock_irqrestore(&p->lock, flags); 629 } 630 631 static int octeon_mgmt_set_mac_address(struct net_device *netdev, void *addr) 632 { 633 int r = eth_mac_addr(netdev, addr); 634 635 if (r) 636 return r; 637 638 octeon_mgmt_set_rx_filtering(netdev); 639 640 return 0; 641 } 642 643 static int octeon_mgmt_change_mtu(struct net_device *netdev, int new_mtu) 644 { 645 struct octeon_mgmt *p = netdev_priv(netdev); 646 int max_packet = new_mtu + ETH_HLEN + ETH_FCS_LEN; 647 648 netdev->mtu = new_mtu; 649 650 /* HW lifts the limit if the frame is VLAN tagged 651 * (+4 bytes per each tag, up to two tags) 652 */ 653 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_MAX, max_packet); 654 /* Set the hardware to truncate packets larger than the MTU. The jabber 655 * register must be set to a multiple of 8 bytes, so round up. JABBER is 656 * an unconditional limit, so we need to account for two possible VLAN 657 * tags. 658 */ 659 cvmx_write_csr(p->agl + AGL_GMX_RX_JABBER, 660 (max_packet + 7 + VLAN_HLEN * 2) & 0xfff8); 661 662 return 0; 663 } 664 665 static irqreturn_t octeon_mgmt_interrupt(int cpl, void *dev_id) 666 { 667 struct net_device *netdev = dev_id; 668 struct octeon_mgmt *p = netdev_priv(netdev); 669 union cvmx_mixx_isr mixx_isr; 670 671 mixx_isr.u64 = cvmx_read_csr(p->mix + MIX_ISR); 672 673 /* Clear any pending interrupts */ 674 cvmx_write_csr(p->mix + MIX_ISR, mixx_isr.u64); 675 cvmx_read_csr(p->mix + MIX_ISR); 676 677 if (mixx_isr.s.irthresh) { 678 octeon_mgmt_disable_rx_irq(p); 679 napi_schedule(&p->napi); 680 } 681 if (mixx_isr.s.orthresh) { 682 octeon_mgmt_disable_tx_irq(p); 683 tasklet_schedule(&p->tx_clean_tasklet); 684 } 685 686 return IRQ_HANDLED; 687 } 688 689 static int octeon_mgmt_ioctl_hwtstamp(struct net_device *netdev, 690 struct ifreq *rq, int cmd) 691 { 692 struct octeon_mgmt *p = netdev_priv(netdev); 693 struct hwtstamp_config config; 694 union cvmx_mio_ptp_clock_cfg ptp; 695 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl; 696 bool have_hw_timestamps = false; 697 698 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 699 return -EFAULT; 700 701 if (config.flags) /* reserved for future extensions */ 702 return -EINVAL; 703 704 /* Check the status of hardware for tiemstamps */ 705 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 706 /* Get the current state of the PTP clock */ 707 ptp.u64 = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_CFG); 708 if (!ptp.s.ext_clk_en) { 709 /* The clock has not been configured to use an 710 * external source. Program it to use the main clock 711 * reference. 712 */ 713 u64 clock_comp = (NSEC_PER_SEC << 32) / octeon_get_io_clock_rate(); 714 if (!ptp.s.ptp_en) 715 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_COMP, clock_comp); 716 netdev_info(netdev, 717 "PTP Clock using sclk reference @ %lldHz\n", 718 (NSEC_PER_SEC << 32) / clock_comp); 719 } else { 720 /* The clock is already programmed to use a GPIO */ 721 u64 clock_comp = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_COMP); 722 netdev_info(netdev, 723 "PTP Clock using GPIO%d @ %lld Hz\n", 724 ptp.s.ext_clk_in, (NSEC_PER_SEC << 32) / clock_comp); 725 } 726 727 /* Enable the clock if it wasn't done already */ 728 if (!ptp.s.ptp_en) { 729 ptp.s.ptp_en = 1; 730 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_CFG, ptp.u64); 731 } 732 have_hw_timestamps = true; 733 } 734 735 if (!have_hw_timestamps) 736 return -EINVAL; 737 738 switch (config.tx_type) { 739 case HWTSTAMP_TX_OFF: 740 case HWTSTAMP_TX_ON: 741 break; 742 default: 743 return -ERANGE; 744 } 745 746 switch (config.rx_filter) { 747 case HWTSTAMP_FILTER_NONE: 748 p->has_rx_tstamp = false; 749 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL); 750 rxx_frm_ctl.s.ptp_mode = 0; 751 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 752 break; 753 case HWTSTAMP_FILTER_ALL: 754 case HWTSTAMP_FILTER_SOME: 755 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 756 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 757 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 758 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 759 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 760 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 761 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 762 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 763 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 764 case HWTSTAMP_FILTER_PTP_V2_EVENT: 765 case HWTSTAMP_FILTER_PTP_V2_SYNC: 766 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 767 case HWTSTAMP_FILTER_NTP_ALL: 768 p->has_rx_tstamp = have_hw_timestamps; 769 config.rx_filter = HWTSTAMP_FILTER_ALL; 770 if (p->has_rx_tstamp) { 771 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL); 772 rxx_frm_ctl.s.ptp_mode = 1; 773 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 774 } 775 break; 776 default: 777 return -ERANGE; 778 } 779 780 if (copy_to_user(rq->ifr_data, &config, sizeof(config))) 781 return -EFAULT; 782 783 return 0; 784 } 785 786 static int octeon_mgmt_ioctl(struct net_device *netdev, 787 struct ifreq *rq, int cmd) 788 { 789 switch (cmd) { 790 case SIOCSHWTSTAMP: 791 return octeon_mgmt_ioctl_hwtstamp(netdev, rq, cmd); 792 default: 793 if (netdev->phydev) 794 return phy_mii_ioctl(netdev->phydev, rq, cmd); 795 return -EINVAL; 796 } 797 } 798 799 static void octeon_mgmt_disable_link(struct octeon_mgmt *p) 800 { 801 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 802 803 /* Disable GMX before we make any changes. */ 804 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 805 prtx_cfg.s.en = 0; 806 prtx_cfg.s.tx_en = 0; 807 prtx_cfg.s.rx_en = 0; 808 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 809 810 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 811 int i; 812 for (i = 0; i < 10; i++) { 813 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 814 if (prtx_cfg.s.tx_idle == 1 || prtx_cfg.s.rx_idle == 1) 815 break; 816 mdelay(1); 817 i++; 818 } 819 } 820 } 821 822 static void octeon_mgmt_enable_link(struct octeon_mgmt *p) 823 { 824 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 825 826 /* Restore the GMX enable state only if link is set */ 827 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 828 prtx_cfg.s.tx_en = 1; 829 prtx_cfg.s.rx_en = 1; 830 prtx_cfg.s.en = 1; 831 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 832 } 833 834 static void octeon_mgmt_update_link(struct octeon_mgmt *p) 835 { 836 struct net_device *ndev = p->netdev; 837 struct phy_device *phydev = ndev->phydev; 838 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 839 840 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 841 842 if (!phydev->link) 843 prtx_cfg.s.duplex = 1; 844 else 845 prtx_cfg.s.duplex = phydev->duplex; 846 847 switch (phydev->speed) { 848 case 10: 849 prtx_cfg.s.speed = 0; 850 prtx_cfg.s.slottime = 0; 851 852 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 853 prtx_cfg.s.burst = 1; 854 prtx_cfg.s.speed_msb = 1; 855 } 856 break; 857 case 100: 858 prtx_cfg.s.speed = 0; 859 prtx_cfg.s.slottime = 0; 860 861 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 862 prtx_cfg.s.burst = 1; 863 prtx_cfg.s.speed_msb = 0; 864 } 865 break; 866 case 1000: 867 /* 1000 MBits is only supported on 6XXX chips */ 868 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 869 prtx_cfg.s.speed = 1; 870 prtx_cfg.s.speed_msb = 0; 871 /* Only matters for half-duplex */ 872 prtx_cfg.s.slottime = 1; 873 prtx_cfg.s.burst = phydev->duplex; 874 } 875 break; 876 case 0: /* No link */ 877 default: 878 break; 879 } 880 881 /* Write the new GMX setting with the port still disabled. */ 882 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 883 884 /* Read GMX CFG again to make sure the config is completed. */ 885 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 886 887 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 888 union cvmx_agl_gmx_txx_clk agl_clk; 889 union cvmx_agl_prtx_ctl prtx_ctl; 890 891 prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 892 agl_clk.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_CLK); 893 /* MII (both speeds) and RGMII 1000 speed. */ 894 agl_clk.s.clk_cnt = 1; 895 if (prtx_ctl.s.mode == 0) { /* RGMII mode */ 896 if (phydev->speed == 10) 897 agl_clk.s.clk_cnt = 50; 898 else if (phydev->speed == 100) 899 agl_clk.s.clk_cnt = 5; 900 } 901 cvmx_write_csr(p->agl + AGL_GMX_TX_CLK, agl_clk.u64); 902 } 903 } 904 905 static void octeon_mgmt_adjust_link(struct net_device *netdev) 906 { 907 struct octeon_mgmt *p = netdev_priv(netdev); 908 struct phy_device *phydev = netdev->phydev; 909 unsigned long flags; 910 int link_changed = 0; 911 912 if (!phydev) 913 return; 914 915 spin_lock_irqsave(&p->lock, flags); 916 917 918 if (!phydev->link && p->last_link) 919 link_changed = -1; 920 921 if (phydev->link && 922 (p->last_duplex != phydev->duplex || 923 p->last_link != phydev->link || 924 p->last_speed != phydev->speed)) { 925 octeon_mgmt_disable_link(p); 926 link_changed = 1; 927 octeon_mgmt_update_link(p); 928 octeon_mgmt_enable_link(p); 929 } 930 931 p->last_link = phydev->link; 932 p->last_speed = phydev->speed; 933 p->last_duplex = phydev->duplex; 934 935 spin_unlock_irqrestore(&p->lock, flags); 936 937 if (link_changed != 0) { 938 if (link_changed > 0) 939 netdev_info(netdev, "Link is up - %d/%s\n", 940 phydev->speed, phydev->duplex == DUPLEX_FULL ? "Full" : "Half"); 941 else 942 netdev_info(netdev, "Link is down\n"); 943 } 944 } 945 946 static int octeon_mgmt_init_phy(struct net_device *netdev) 947 { 948 struct octeon_mgmt *p = netdev_priv(netdev); 949 struct phy_device *phydev = NULL; 950 951 if (octeon_is_simulation() || p->phy_np == NULL) { 952 /* No PHYs in the simulator. */ 953 netif_carrier_on(netdev); 954 return 0; 955 } 956 957 phydev = of_phy_connect(netdev, p->phy_np, 958 octeon_mgmt_adjust_link, 0, 959 PHY_INTERFACE_MODE_MII); 960 961 if (!phydev) 962 return -ENODEV; 963 964 return 0; 965 } 966 967 static int octeon_mgmt_open(struct net_device *netdev) 968 { 969 struct octeon_mgmt *p = netdev_priv(netdev); 970 union cvmx_mixx_ctl mix_ctl; 971 union cvmx_agl_gmx_inf_mode agl_gmx_inf_mode; 972 union cvmx_mixx_oring1 oring1; 973 union cvmx_mixx_iring1 iring1; 974 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl; 975 union cvmx_mixx_irhwm mix_irhwm; 976 union cvmx_mixx_orhwm mix_orhwm; 977 union cvmx_mixx_intena mix_intena; 978 struct sockaddr sa; 979 980 /* Allocate ring buffers. */ 981 p->tx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 982 GFP_KERNEL); 983 if (!p->tx_ring) 984 return -ENOMEM; 985 p->tx_ring_handle = 986 dma_map_single(p->dev, p->tx_ring, 987 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 988 DMA_BIDIRECTIONAL); 989 p->tx_next = 0; 990 p->tx_next_clean = 0; 991 p->tx_current_fill = 0; 992 993 994 p->rx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 995 GFP_KERNEL); 996 if (!p->rx_ring) 997 goto err_nomem; 998 p->rx_ring_handle = 999 dma_map_single(p->dev, p->rx_ring, 1000 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1001 DMA_BIDIRECTIONAL); 1002 1003 p->rx_next = 0; 1004 p->rx_next_fill = 0; 1005 p->rx_current_fill = 0; 1006 1007 octeon_mgmt_reset_hw(p); 1008 1009 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 1010 1011 /* Bring it out of reset if needed. */ 1012 if (mix_ctl.s.reset) { 1013 mix_ctl.s.reset = 0; 1014 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 1015 do { 1016 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 1017 } while (mix_ctl.s.reset); 1018 } 1019 1020 if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) { 1021 agl_gmx_inf_mode.u64 = 0; 1022 agl_gmx_inf_mode.s.en = 1; 1023 cvmx_write_csr(CVMX_AGL_GMX_INF_MODE, agl_gmx_inf_mode.u64); 1024 } 1025 if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X) 1026 || OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) { 1027 /* Force compensation values, as they are not 1028 * determined properly by HW 1029 */ 1030 union cvmx_agl_gmx_drv_ctl drv_ctl; 1031 1032 drv_ctl.u64 = cvmx_read_csr(CVMX_AGL_GMX_DRV_CTL); 1033 if (p->port) { 1034 drv_ctl.s.byp_en1 = 1; 1035 drv_ctl.s.nctl1 = 6; 1036 drv_ctl.s.pctl1 = 6; 1037 } else { 1038 drv_ctl.s.byp_en = 1; 1039 drv_ctl.s.nctl = 6; 1040 drv_ctl.s.pctl = 6; 1041 } 1042 cvmx_write_csr(CVMX_AGL_GMX_DRV_CTL, drv_ctl.u64); 1043 } 1044 1045 oring1.u64 = 0; 1046 oring1.s.obase = p->tx_ring_handle >> 3; 1047 oring1.s.osize = OCTEON_MGMT_TX_RING_SIZE; 1048 cvmx_write_csr(p->mix + MIX_ORING1, oring1.u64); 1049 1050 iring1.u64 = 0; 1051 iring1.s.ibase = p->rx_ring_handle >> 3; 1052 iring1.s.isize = OCTEON_MGMT_RX_RING_SIZE; 1053 cvmx_write_csr(p->mix + MIX_IRING1, iring1.u64); 1054 1055 memcpy(sa.sa_data, netdev->dev_addr, ETH_ALEN); 1056 octeon_mgmt_set_mac_address(netdev, &sa); 1057 1058 octeon_mgmt_change_mtu(netdev, netdev->mtu); 1059 1060 /* Enable the port HW. Packets are not allowed until 1061 * cvmx_mgmt_port_enable() is called. 1062 */ 1063 mix_ctl.u64 = 0; 1064 mix_ctl.s.crc_strip = 1; /* Strip the ending CRC */ 1065 mix_ctl.s.en = 1; /* Enable the port */ 1066 mix_ctl.s.nbtarb = 0; /* Arbitration mode */ 1067 /* MII CB-request FIFO programmable high watermark */ 1068 mix_ctl.s.mrq_hwm = 1; 1069 #ifdef __LITTLE_ENDIAN 1070 mix_ctl.s.lendian = 1; 1071 #endif 1072 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 1073 1074 /* Read the PHY to find the mode of the interface. */ 1075 if (octeon_mgmt_init_phy(netdev)) { 1076 dev_err(p->dev, "Cannot initialize PHY on MIX%d.\n", p->port); 1077 goto err_noirq; 1078 } 1079 1080 /* Set the mode of the interface, RGMII/MII. */ 1081 if (OCTEON_IS_MODEL(OCTEON_CN6XXX) && netdev->phydev) { 1082 union cvmx_agl_prtx_ctl agl_prtx_ctl; 1083 int rgmii_mode = (netdev->phydev->supported & 1084 (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)) != 0; 1085 1086 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1087 agl_prtx_ctl.s.mode = rgmii_mode ? 0 : 1; 1088 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1089 1090 /* MII clocks counts are based on the 125Mhz 1091 * reference, which has an 8nS period. So our delays 1092 * need to be multiplied by this factor. 1093 */ 1094 #define NS_PER_PHY_CLK 8 1095 1096 /* Take the DLL and clock tree out of reset */ 1097 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1098 agl_prtx_ctl.s.clkrst = 0; 1099 if (rgmii_mode) { 1100 agl_prtx_ctl.s.dllrst = 0; 1101 agl_prtx_ctl.s.clktx_byp = 0; 1102 } 1103 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1104 cvmx_read_csr(p->agl_prt_ctl); /* Force write out before wait */ 1105 1106 /* Wait for the DLL to lock. External 125 MHz 1107 * reference clock must be stable at this point. 1108 */ 1109 ndelay(256 * NS_PER_PHY_CLK); 1110 1111 /* Enable the interface */ 1112 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1113 agl_prtx_ctl.s.enable = 1; 1114 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1115 1116 /* Read the value back to force the previous write */ 1117 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1118 1119 /* Enable the compensation controller */ 1120 agl_prtx_ctl.s.comp = 1; 1121 agl_prtx_ctl.s.drv_byp = 0; 1122 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1123 /* Force write out before wait. */ 1124 cvmx_read_csr(p->agl_prt_ctl); 1125 1126 /* For compensation state to lock. */ 1127 ndelay(1040 * NS_PER_PHY_CLK); 1128 1129 /* Default Interframe Gaps are too small. Recommended 1130 * workaround is. 1131 * 1132 * AGL_GMX_TX_IFG[IFG1]=14 1133 * AGL_GMX_TX_IFG[IFG2]=10 1134 */ 1135 cvmx_write_csr(CVMX_AGL_GMX_TX_IFG, 0xae); 1136 } 1137 1138 octeon_mgmt_rx_fill_ring(netdev); 1139 1140 /* Clear statistics. */ 1141 /* Clear on read. */ 1142 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_CTL, 1); 1143 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP, 0); 1144 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD, 0); 1145 1146 cvmx_write_csr(p->agl + AGL_GMX_TX_STATS_CTL, 1); 1147 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT0, 0); 1148 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT1, 0); 1149 1150 /* Clear any pending interrupts */ 1151 cvmx_write_csr(p->mix + MIX_ISR, cvmx_read_csr(p->mix + MIX_ISR)); 1152 1153 if (request_irq(p->irq, octeon_mgmt_interrupt, 0, netdev->name, 1154 netdev)) { 1155 dev_err(p->dev, "request_irq(%d) failed.\n", p->irq); 1156 goto err_noirq; 1157 } 1158 1159 /* Interrupt every single RX packet */ 1160 mix_irhwm.u64 = 0; 1161 mix_irhwm.s.irhwm = 0; 1162 cvmx_write_csr(p->mix + MIX_IRHWM, mix_irhwm.u64); 1163 1164 /* Interrupt when we have 1 or more packets to clean. */ 1165 mix_orhwm.u64 = 0; 1166 mix_orhwm.s.orhwm = 0; 1167 cvmx_write_csr(p->mix + MIX_ORHWM, mix_orhwm.u64); 1168 1169 /* Enable receive and transmit interrupts */ 1170 mix_intena.u64 = 0; 1171 mix_intena.s.ithena = 1; 1172 mix_intena.s.othena = 1; 1173 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 1174 1175 /* Enable packet I/O. */ 1176 1177 rxx_frm_ctl.u64 = 0; 1178 rxx_frm_ctl.s.ptp_mode = p->has_rx_tstamp ? 1 : 0; 1179 rxx_frm_ctl.s.pre_align = 1; 1180 /* When set, disables the length check for non-min sized pkts 1181 * with padding in the client data. 1182 */ 1183 rxx_frm_ctl.s.pad_len = 1; 1184 /* When set, disables the length check for VLAN pkts */ 1185 rxx_frm_ctl.s.vlan_len = 1; 1186 /* When set, PREAMBLE checking is less strict */ 1187 rxx_frm_ctl.s.pre_free = 1; 1188 /* Control Pause Frames can match station SMAC */ 1189 rxx_frm_ctl.s.ctl_smac = 0; 1190 /* Control Pause Frames can match globally assign Multicast address */ 1191 rxx_frm_ctl.s.ctl_mcst = 1; 1192 /* Forward pause information to TX block */ 1193 rxx_frm_ctl.s.ctl_bck = 1; 1194 /* Drop Control Pause Frames */ 1195 rxx_frm_ctl.s.ctl_drp = 1; 1196 /* Strip off the preamble */ 1197 rxx_frm_ctl.s.pre_strp = 1; 1198 /* This port is configured to send PREAMBLE+SFD to begin every 1199 * frame. GMX checks that the PREAMBLE is sent correctly. 1200 */ 1201 rxx_frm_ctl.s.pre_chk = 1; 1202 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 1203 1204 /* Configure the port duplex, speed and enables */ 1205 octeon_mgmt_disable_link(p); 1206 if (netdev->phydev) 1207 octeon_mgmt_update_link(p); 1208 octeon_mgmt_enable_link(p); 1209 1210 p->last_link = 0; 1211 p->last_speed = 0; 1212 /* PHY is not present in simulator. The carrier is enabled 1213 * while initializing the phy for simulator, leave it enabled. 1214 */ 1215 if (netdev->phydev) { 1216 netif_carrier_off(netdev); 1217 phy_start_aneg(netdev->phydev); 1218 } 1219 1220 netif_wake_queue(netdev); 1221 napi_enable(&p->napi); 1222 1223 return 0; 1224 err_noirq: 1225 octeon_mgmt_reset_hw(p); 1226 dma_unmap_single(p->dev, p->rx_ring_handle, 1227 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1228 DMA_BIDIRECTIONAL); 1229 kfree(p->rx_ring); 1230 err_nomem: 1231 dma_unmap_single(p->dev, p->tx_ring_handle, 1232 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1233 DMA_BIDIRECTIONAL); 1234 kfree(p->tx_ring); 1235 return -ENOMEM; 1236 } 1237 1238 static int octeon_mgmt_stop(struct net_device *netdev) 1239 { 1240 struct octeon_mgmt *p = netdev_priv(netdev); 1241 1242 napi_disable(&p->napi); 1243 netif_stop_queue(netdev); 1244 1245 if (netdev->phydev) 1246 phy_disconnect(netdev->phydev); 1247 1248 netif_carrier_off(netdev); 1249 1250 octeon_mgmt_reset_hw(p); 1251 1252 free_irq(p->irq, netdev); 1253 1254 /* dma_unmap is a nop on Octeon, so just free everything. */ 1255 skb_queue_purge(&p->tx_list); 1256 skb_queue_purge(&p->rx_list); 1257 1258 dma_unmap_single(p->dev, p->rx_ring_handle, 1259 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1260 DMA_BIDIRECTIONAL); 1261 kfree(p->rx_ring); 1262 1263 dma_unmap_single(p->dev, p->tx_ring_handle, 1264 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1265 DMA_BIDIRECTIONAL); 1266 kfree(p->tx_ring); 1267 1268 return 0; 1269 } 1270 1271 static int octeon_mgmt_xmit(struct sk_buff *skb, struct net_device *netdev) 1272 { 1273 struct octeon_mgmt *p = netdev_priv(netdev); 1274 union mgmt_port_ring_entry re; 1275 unsigned long flags; 1276 int rv = NETDEV_TX_BUSY; 1277 1278 re.d64 = 0; 1279 re.s.tstamp = ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) != 0); 1280 re.s.len = skb->len; 1281 re.s.addr = dma_map_single(p->dev, skb->data, 1282 skb->len, 1283 DMA_TO_DEVICE); 1284 1285 spin_lock_irqsave(&p->tx_list.lock, flags); 1286 1287 if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE) - 1)) { 1288 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1289 netif_stop_queue(netdev); 1290 spin_lock_irqsave(&p->tx_list.lock, flags); 1291 } 1292 1293 if (unlikely(p->tx_current_fill >= 1294 ring_max_fill(OCTEON_MGMT_TX_RING_SIZE))) { 1295 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1296 dma_unmap_single(p->dev, re.s.addr, re.s.len, 1297 DMA_TO_DEVICE); 1298 goto out; 1299 } 1300 1301 __skb_queue_tail(&p->tx_list, skb); 1302 1303 /* Put it in the ring. */ 1304 p->tx_ring[p->tx_next] = re.d64; 1305 p->tx_next = (p->tx_next + 1) % OCTEON_MGMT_TX_RING_SIZE; 1306 p->tx_current_fill++; 1307 1308 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1309 1310 dma_sync_single_for_device(p->dev, p->tx_ring_handle, 1311 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1312 DMA_BIDIRECTIONAL); 1313 1314 netdev->stats.tx_packets++; 1315 netdev->stats.tx_bytes += skb->len; 1316 1317 /* Ring the bell. */ 1318 cvmx_write_csr(p->mix + MIX_ORING2, 1); 1319 1320 netif_trans_update(netdev); 1321 rv = NETDEV_TX_OK; 1322 out: 1323 octeon_mgmt_update_tx_stats(netdev); 1324 return rv; 1325 } 1326 1327 #ifdef CONFIG_NET_POLL_CONTROLLER 1328 static void octeon_mgmt_poll_controller(struct net_device *netdev) 1329 { 1330 struct octeon_mgmt *p = netdev_priv(netdev); 1331 1332 octeon_mgmt_receive_packets(p, 16); 1333 octeon_mgmt_update_rx_stats(netdev); 1334 } 1335 #endif 1336 1337 static void octeon_mgmt_get_drvinfo(struct net_device *netdev, 1338 struct ethtool_drvinfo *info) 1339 { 1340 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1341 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1342 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 1343 strlcpy(info->bus_info, "N/A", sizeof(info->bus_info)); 1344 } 1345 1346 static int octeon_mgmt_nway_reset(struct net_device *dev) 1347 { 1348 if (!capable(CAP_NET_ADMIN)) 1349 return -EPERM; 1350 1351 if (dev->phydev) 1352 return phy_start_aneg(dev->phydev); 1353 1354 return -EOPNOTSUPP; 1355 } 1356 1357 static const struct ethtool_ops octeon_mgmt_ethtool_ops = { 1358 .get_drvinfo = octeon_mgmt_get_drvinfo, 1359 .nway_reset = octeon_mgmt_nway_reset, 1360 .get_link = ethtool_op_get_link, 1361 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1362 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1363 }; 1364 1365 static const struct net_device_ops octeon_mgmt_ops = { 1366 .ndo_open = octeon_mgmt_open, 1367 .ndo_stop = octeon_mgmt_stop, 1368 .ndo_start_xmit = octeon_mgmt_xmit, 1369 .ndo_set_rx_mode = octeon_mgmt_set_rx_filtering, 1370 .ndo_set_mac_address = octeon_mgmt_set_mac_address, 1371 .ndo_do_ioctl = octeon_mgmt_ioctl, 1372 .ndo_change_mtu = octeon_mgmt_change_mtu, 1373 #ifdef CONFIG_NET_POLL_CONTROLLER 1374 .ndo_poll_controller = octeon_mgmt_poll_controller, 1375 #endif 1376 }; 1377 1378 static int octeon_mgmt_probe(struct platform_device *pdev) 1379 { 1380 struct net_device *netdev; 1381 struct octeon_mgmt *p; 1382 const __be32 *data; 1383 const u8 *mac; 1384 struct resource *res_mix; 1385 struct resource *res_agl; 1386 struct resource *res_agl_prt_ctl; 1387 int len; 1388 int result; 1389 1390 netdev = alloc_etherdev(sizeof(struct octeon_mgmt)); 1391 if (netdev == NULL) 1392 return -ENOMEM; 1393 1394 SET_NETDEV_DEV(netdev, &pdev->dev); 1395 1396 platform_set_drvdata(pdev, netdev); 1397 p = netdev_priv(netdev); 1398 netif_napi_add(netdev, &p->napi, octeon_mgmt_napi_poll, 1399 OCTEON_MGMT_NAPI_WEIGHT); 1400 1401 p->netdev = netdev; 1402 p->dev = &pdev->dev; 1403 p->has_rx_tstamp = false; 1404 1405 data = of_get_property(pdev->dev.of_node, "cell-index", &len); 1406 if (data && len == sizeof(*data)) { 1407 p->port = be32_to_cpup(data); 1408 } else { 1409 dev_err(&pdev->dev, "no 'cell-index' property\n"); 1410 result = -ENXIO; 1411 goto err; 1412 } 1413 1414 snprintf(netdev->name, IFNAMSIZ, "mgmt%d", p->port); 1415 1416 result = platform_get_irq(pdev, 0); 1417 if (result < 0) 1418 goto err; 1419 1420 p->irq = result; 1421 1422 res_mix = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1423 if (res_mix == NULL) { 1424 dev_err(&pdev->dev, "no 'reg' resource\n"); 1425 result = -ENXIO; 1426 goto err; 1427 } 1428 1429 res_agl = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1430 if (res_agl == NULL) { 1431 dev_err(&pdev->dev, "no 'reg' resource\n"); 1432 result = -ENXIO; 1433 goto err; 1434 } 1435 1436 res_agl_prt_ctl = platform_get_resource(pdev, IORESOURCE_MEM, 3); 1437 if (res_agl_prt_ctl == NULL) { 1438 dev_err(&pdev->dev, "no 'reg' resource\n"); 1439 result = -ENXIO; 1440 goto err; 1441 } 1442 1443 p->mix_phys = res_mix->start; 1444 p->mix_size = resource_size(res_mix); 1445 p->agl_phys = res_agl->start; 1446 p->agl_size = resource_size(res_agl); 1447 p->agl_prt_ctl_phys = res_agl_prt_ctl->start; 1448 p->agl_prt_ctl_size = resource_size(res_agl_prt_ctl); 1449 1450 1451 if (!devm_request_mem_region(&pdev->dev, p->mix_phys, p->mix_size, 1452 res_mix->name)) { 1453 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1454 res_mix->name); 1455 result = -ENXIO; 1456 goto err; 1457 } 1458 1459 if (!devm_request_mem_region(&pdev->dev, p->agl_phys, p->agl_size, 1460 res_agl->name)) { 1461 result = -ENXIO; 1462 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1463 res_agl->name); 1464 goto err; 1465 } 1466 1467 if (!devm_request_mem_region(&pdev->dev, p->agl_prt_ctl_phys, 1468 p->agl_prt_ctl_size, res_agl_prt_ctl->name)) { 1469 result = -ENXIO; 1470 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1471 res_agl_prt_ctl->name); 1472 goto err; 1473 } 1474 1475 p->mix = (u64)devm_ioremap(&pdev->dev, p->mix_phys, p->mix_size); 1476 p->agl = (u64)devm_ioremap(&pdev->dev, p->agl_phys, p->agl_size); 1477 p->agl_prt_ctl = (u64)devm_ioremap(&pdev->dev, p->agl_prt_ctl_phys, 1478 p->agl_prt_ctl_size); 1479 if (!p->mix || !p->agl || !p->agl_prt_ctl) { 1480 dev_err(&pdev->dev, "failed to map I/O memory\n"); 1481 result = -ENOMEM; 1482 goto err; 1483 } 1484 1485 spin_lock_init(&p->lock); 1486 1487 skb_queue_head_init(&p->tx_list); 1488 skb_queue_head_init(&p->rx_list); 1489 tasklet_init(&p->tx_clean_tasklet, 1490 octeon_mgmt_clean_tx_tasklet, (unsigned long)p); 1491 1492 netdev->priv_flags |= IFF_UNICAST_FLT; 1493 1494 netdev->netdev_ops = &octeon_mgmt_ops; 1495 netdev->ethtool_ops = &octeon_mgmt_ethtool_ops; 1496 1497 netdev->min_mtu = 64 - OCTEON_MGMT_RX_HEADROOM; 1498 netdev->max_mtu = 16383 - OCTEON_MGMT_RX_HEADROOM; 1499 1500 mac = of_get_mac_address(pdev->dev.of_node); 1501 1502 if (mac) 1503 memcpy(netdev->dev_addr, mac, ETH_ALEN); 1504 else 1505 eth_hw_addr_random(netdev); 1506 1507 p->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 1508 1509 result = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1510 if (result) 1511 goto err; 1512 1513 netif_carrier_off(netdev); 1514 result = register_netdev(netdev); 1515 if (result) 1516 goto err; 1517 1518 dev_info(&pdev->dev, "Version " DRV_VERSION "\n"); 1519 return 0; 1520 1521 err: 1522 of_node_put(p->phy_np); 1523 free_netdev(netdev); 1524 return result; 1525 } 1526 1527 static int octeon_mgmt_remove(struct platform_device *pdev) 1528 { 1529 struct net_device *netdev = platform_get_drvdata(pdev); 1530 struct octeon_mgmt *p = netdev_priv(netdev); 1531 1532 unregister_netdev(netdev); 1533 of_node_put(p->phy_np); 1534 free_netdev(netdev); 1535 return 0; 1536 } 1537 1538 static const struct of_device_id octeon_mgmt_match[] = { 1539 { 1540 .compatible = "cavium,octeon-5750-mix", 1541 }, 1542 {}, 1543 }; 1544 MODULE_DEVICE_TABLE(of, octeon_mgmt_match); 1545 1546 static struct platform_driver octeon_mgmt_driver = { 1547 .driver = { 1548 .name = "octeon_mgmt", 1549 .of_match_table = octeon_mgmt_match, 1550 }, 1551 .probe = octeon_mgmt_probe, 1552 .remove = octeon_mgmt_remove, 1553 }; 1554 1555 extern void octeon_mdiobus_force_mod_depencency(void); 1556 1557 static int __init octeon_mgmt_mod_init(void) 1558 { 1559 /* Force our mdiobus driver module to be loaded first. */ 1560 octeon_mdiobus_force_mod_depencency(); 1561 return platform_driver_register(&octeon_mgmt_driver); 1562 } 1563 1564 static void __exit octeon_mgmt_mod_exit(void) 1565 { 1566 platform_driver_unregister(&octeon_mgmt_driver); 1567 } 1568 1569 module_init(octeon_mgmt_mod_init); 1570 module_exit(octeon_mgmt_mod_exit); 1571 1572 MODULE_DESCRIPTION(DRV_DESCRIPTION); 1573 MODULE_AUTHOR("David Daney"); 1574 MODULE_LICENSE("GPL"); 1575 MODULE_VERSION(DRV_VERSION); 1576