xref: /linux/drivers/net/ethernet/cavium/octeon/octeon_mgmt.c (revision 95298d63c67673c654c08952672d016212b26054)
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2009-2012 Cavium, Inc
7  */
8 
9 #include <linux/platform_device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/etherdevice.h>
12 #include <linux/capability.h>
13 #include <linux/net_tstamp.h>
14 #include <linux/interrupt.h>
15 #include <linux/netdevice.h>
16 #include <linux/spinlock.h>
17 #include <linux/if_vlan.h>
18 #include <linux/of_mdio.h>
19 #include <linux/module.h>
20 #include <linux/of_net.h>
21 #include <linux/init.h>
22 #include <linux/slab.h>
23 #include <linux/phy.h>
24 #include <linux/io.h>
25 
26 #include <asm/octeon/octeon.h>
27 #include <asm/octeon/cvmx-mixx-defs.h>
28 #include <asm/octeon/cvmx-agl-defs.h>
29 
30 #define DRV_NAME "octeon_mgmt"
31 #define DRV_DESCRIPTION \
32 	"Cavium Networks Octeon MII (management) port Network Driver"
33 
34 #define OCTEON_MGMT_NAPI_WEIGHT 16
35 
36 /* Ring sizes that are powers of two allow for more efficient modulo
37  * opertions.
38  */
39 #define OCTEON_MGMT_RX_RING_SIZE 512
40 #define OCTEON_MGMT_TX_RING_SIZE 128
41 
42 /* Allow 8 bytes for vlan and FCS. */
43 #define OCTEON_MGMT_RX_HEADROOM (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN)
44 
45 union mgmt_port_ring_entry {
46 	u64 d64;
47 	struct {
48 #define RING_ENTRY_CODE_DONE 0xf
49 #define RING_ENTRY_CODE_MORE 0x10
50 #ifdef __BIG_ENDIAN_BITFIELD
51 		u64 reserved_62_63:2;
52 		/* Length of the buffer/packet in bytes */
53 		u64 len:14;
54 		/* For TX, signals that the packet should be timestamped */
55 		u64 tstamp:1;
56 		/* The RX error code */
57 		u64 code:7;
58 		/* Physical address of the buffer */
59 		u64 addr:40;
60 #else
61 		u64 addr:40;
62 		u64 code:7;
63 		u64 tstamp:1;
64 		u64 len:14;
65 		u64 reserved_62_63:2;
66 #endif
67 	} s;
68 };
69 
70 #define MIX_ORING1	0x0
71 #define MIX_ORING2	0x8
72 #define MIX_IRING1	0x10
73 #define MIX_IRING2	0x18
74 #define MIX_CTL		0x20
75 #define MIX_IRHWM	0x28
76 #define MIX_IRCNT	0x30
77 #define MIX_ORHWM	0x38
78 #define MIX_ORCNT	0x40
79 #define MIX_ISR		0x48
80 #define MIX_INTENA	0x50
81 #define MIX_REMCNT	0x58
82 #define MIX_BIST	0x78
83 
84 #define AGL_GMX_PRT_CFG			0x10
85 #define AGL_GMX_RX_FRM_CTL		0x18
86 #define AGL_GMX_RX_FRM_MAX		0x30
87 #define AGL_GMX_RX_JABBER		0x38
88 #define AGL_GMX_RX_STATS_CTL		0x50
89 
90 #define AGL_GMX_RX_STATS_PKTS_DRP	0xb0
91 #define AGL_GMX_RX_STATS_OCTS_DRP	0xb8
92 #define AGL_GMX_RX_STATS_PKTS_BAD	0xc0
93 
94 #define AGL_GMX_RX_ADR_CTL		0x100
95 #define AGL_GMX_RX_ADR_CAM_EN		0x108
96 #define AGL_GMX_RX_ADR_CAM0		0x180
97 #define AGL_GMX_RX_ADR_CAM1		0x188
98 #define AGL_GMX_RX_ADR_CAM2		0x190
99 #define AGL_GMX_RX_ADR_CAM3		0x198
100 #define AGL_GMX_RX_ADR_CAM4		0x1a0
101 #define AGL_GMX_RX_ADR_CAM5		0x1a8
102 
103 #define AGL_GMX_TX_CLK			0x208
104 #define AGL_GMX_TX_STATS_CTL		0x268
105 #define AGL_GMX_TX_CTL			0x270
106 #define AGL_GMX_TX_STAT0		0x280
107 #define AGL_GMX_TX_STAT1		0x288
108 #define AGL_GMX_TX_STAT2		0x290
109 #define AGL_GMX_TX_STAT3		0x298
110 #define AGL_GMX_TX_STAT4		0x2a0
111 #define AGL_GMX_TX_STAT5		0x2a8
112 #define AGL_GMX_TX_STAT6		0x2b0
113 #define AGL_GMX_TX_STAT7		0x2b8
114 #define AGL_GMX_TX_STAT8		0x2c0
115 #define AGL_GMX_TX_STAT9		0x2c8
116 
117 struct octeon_mgmt {
118 	struct net_device *netdev;
119 	u64 mix;
120 	u64 agl;
121 	u64 agl_prt_ctl;
122 	int port;
123 	int irq;
124 	bool has_rx_tstamp;
125 	u64 *tx_ring;
126 	dma_addr_t tx_ring_handle;
127 	unsigned int tx_next;
128 	unsigned int tx_next_clean;
129 	unsigned int tx_current_fill;
130 	/* The tx_list lock also protects the ring related variables */
131 	struct sk_buff_head tx_list;
132 
133 	/* RX variables only touched in napi_poll.  No locking necessary. */
134 	u64 *rx_ring;
135 	dma_addr_t rx_ring_handle;
136 	unsigned int rx_next;
137 	unsigned int rx_next_fill;
138 	unsigned int rx_current_fill;
139 	struct sk_buff_head rx_list;
140 
141 	spinlock_t lock;
142 	unsigned int last_duplex;
143 	unsigned int last_link;
144 	unsigned int last_speed;
145 	struct device *dev;
146 	struct napi_struct napi;
147 	struct tasklet_struct tx_clean_tasklet;
148 	struct device_node *phy_np;
149 	resource_size_t mix_phys;
150 	resource_size_t mix_size;
151 	resource_size_t agl_phys;
152 	resource_size_t agl_size;
153 	resource_size_t agl_prt_ctl_phys;
154 	resource_size_t agl_prt_ctl_size;
155 };
156 
157 static void octeon_mgmt_set_rx_irq(struct octeon_mgmt *p, int enable)
158 {
159 	union cvmx_mixx_intena mix_intena;
160 	unsigned long flags;
161 
162 	spin_lock_irqsave(&p->lock, flags);
163 	mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA);
164 	mix_intena.s.ithena = enable ? 1 : 0;
165 	cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
166 	spin_unlock_irqrestore(&p->lock, flags);
167 }
168 
169 static void octeon_mgmt_set_tx_irq(struct octeon_mgmt *p, int enable)
170 {
171 	union cvmx_mixx_intena mix_intena;
172 	unsigned long flags;
173 
174 	spin_lock_irqsave(&p->lock, flags);
175 	mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA);
176 	mix_intena.s.othena = enable ? 1 : 0;
177 	cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
178 	spin_unlock_irqrestore(&p->lock, flags);
179 }
180 
181 static void octeon_mgmt_enable_rx_irq(struct octeon_mgmt *p)
182 {
183 	octeon_mgmt_set_rx_irq(p, 1);
184 }
185 
186 static void octeon_mgmt_disable_rx_irq(struct octeon_mgmt *p)
187 {
188 	octeon_mgmt_set_rx_irq(p, 0);
189 }
190 
191 static void octeon_mgmt_enable_tx_irq(struct octeon_mgmt *p)
192 {
193 	octeon_mgmt_set_tx_irq(p, 1);
194 }
195 
196 static void octeon_mgmt_disable_tx_irq(struct octeon_mgmt *p)
197 {
198 	octeon_mgmt_set_tx_irq(p, 0);
199 }
200 
201 static unsigned int ring_max_fill(unsigned int ring_size)
202 {
203 	return ring_size - 8;
204 }
205 
206 static unsigned int ring_size_to_bytes(unsigned int ring_size)
207 {
208 	return ring_size * sizeof(union mgmt_port_ring_entry);
209 }
210 
211 static void octeon_mgmt_rx_fill_ring(struct net_device *netdev)
212 {
213 	struct octeon_mgmt *p = netdev_priv(netdev);
214 
215 	while (p->rx_current_fill < ring_max_fill(OCTEON_MGMT_RX_RING_SIZE)) {
216 		unsigned int size;
217 		union mgmt_port_ring_entry re;
218 		struct sk_buff *skb;
219 
220 		/* CN56XX pass 1 needs 8 bytes of padding.  */
221 		size = netdev->mtu + OCTEON_MGMT_RX_HEADROOM + 8 + NET_IP_ALIGN;
222 
223 		skb = netdev_alloc_skb(netdev, size);
224 		if (!skb)
225 			break;
226 		skb_reserve(skb, NET_IP_ALIGN);
227 		__skb_queue_tail(&p->rx_list, skb);
228 
229 		re.d64 = 0;
230 		re.s.len = size;
231 		re.s.addr = dma_map_single(p->dev, skb->data,
232 					   size,
233 					   DMA_FROM_DEVICE);
234 
235 		/* Put it in the ring.  */
236 		p->rx_ring[p->rx_next_fill] = re.d64;
237 		/* Make sure there is no reorder of filling the ring and ringing
238 		 * the bell
239 		 */
240 		wmb();
241 
242 		dma_sync_single_for_device(p->dev, p->rx_ring_handle,
243 					   ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
244 					   DMA_BIDIRECTIONAL);
245 		p->rx_next_fill =
246 			(p->rx_next_fill + 1) % OCTEON_MGMT_RX_RING_SIZE;
247 		p->rx_current_fill++;
248 		/* Ring the bell.  */
249 		cvmx_write_csr(p->mix + MIX_IRING2, 1);
250 	}
251 }
252 
253 static void octeon_mgmt_clean_tx_buffers(struct octeon_mgmt *p)
254 {
255 	union cvmx_mixx_orcnt mix_orcnt;
256 	union mgmt_port_ring_entry re;
257 	struct sk_buff *skb;
258 	int cleaned = 0;
259 	unsigned long flags;
260 
261 	mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
262 	while (mix_orcnt.s.orcnt) {
263 		spin_lock_irqsave(&p->tx_list.lock, flags);
264 
265 		mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
266 
267 		if (mix_orcnt.s.orcnt == 0) {
268 			spin_unlock_irqrestore(&p->tx_list.lock, flags);
269 			break;
270 		}
271 
272 		dma_sync_single_for_cpu(p->dev, p->tx_ring_handle,
273 					ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
274 					DMA_BIDIRECTIONAL);
275 
276 		re.d64 = p->tx_ring[p->tx_next_clean];
277 		p->tx_next_clean =
278 			(p->tx_next_clean + 1) % OCTEON_MGMT_TX_RING_SIZE;
279 		skb = __skb_dequeue(&p->tx_list);
280 
281 		mix_orcnt.u64 = 0;
282 		mix_orcnt.s.orcnt = 1;
283 
284 		/* Acknowledge to hardware that we have the buffer.  */
285 		cvmx_write_csr(p->mix + MIX_ORCNT, mix_orcnt.u64);
286 		p->tx_current_fill--;
287 
288 		spin_unlock_irqrestore(&p->tx_list.lock, flags);
289 
290 		dma_unmap_single(p->dev, re.s.addr, re.s.len,
291 				 DMA_TO_DEVICE);
292 
293 		/* Read the hardware TX timestamp if one was recorded */
294 		if (unlikely(re.s.tstamp)) {
295 			struct skb_shared_hwtstamps ts;
296 			u64 ns;
297 
298 			memset(&ts, 0, sizeof(ts));
299 			/* Read the timestamp */
300 			ns = cvmx_read_csr(CVMX_MIXX_TSTAMP(p->port));
301 			/* Remove the timestamp from the FIFO */
302 			cvmx_write_csr(CVMX_MIXX_TSCTL(p->port), 0);
303 			/* Tell the kernel about the timestamp */
304 			ts.hwtstamp = ns_to_ktime(ns);
305 			skb_tstamp_tx(skb, &ts);
306 		}
307 
308 		dev_kfree_skb_any(skb);
309 		cleaned++;
310 
311 		mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT);
312 	}
313 
314 	if (cleaned && netif_queue_stopped(p->netdev))
315 		netif_wake_queue(p->netdev);
316 }
317 
318 static void octeon_mgmt_clean_tx_tasklet(unsigned long arg)
319 {
320 	struct octeon_mgmt *p = (struct octeon_mgmt *)arg;
321 	octeon_mgmt_clean_tx_buffers(p);
322 	octeon_mgmt_enable_tx_irq(p);
323 }
324 
325 static void octeon_mgmt_update_rx_stats(struct net_device *netdev)
326 {
327 	struct octeon_mgmt *p = netdev_priv(netdev);
328 	unsigned long flags;
329 	u64 drop, bad;
330 
331 	/* These reads also clear the count registers.  */
332 	drop = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP);
333 	bad = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD);
334 
335 	if (drop || bad) {
336 		/* Do an atomic update. */
337 		spin_lock_irqsave(&p->lock, flags);
338 		netdev->stats.rx_errors += bad;
339 		netdev->stats.rx_dropped += drop;
340 		spin_unlock_irqrestore(&p->lock, flags);
341 	}
342 }
343 
344 static void octeon_mgmt_update_tx_stats(struct net_device *netdev)
345 {
346 	struct octeon_mgmt *p = netdev_priv(netdev);
347 	unsigned long flags;
348 
349 	union cvmx_agl_gmx_txx_stat0 s0;
350 	union cvmx_agl_gmx_txx_stat1 s1;
351 
352 	/* These reads also clear the count registers.  */
353 	s0.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT0);
354 	s1.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT1);
355 
356 	if (s0.s.xsdef || s0.s.xscol || s1.s.scol || s1.s.mcol) {
357 		/* Do an atomic update. */
358 		spin_lock_irqsave(&p->lock, flags);
359 		netdev->stats.tx_errors += s0.s.xsdef + s0.s.xscol;
360 		netdev->stats.collisions += s1.s.scol + s1.s.mcol;
361 		spin_unlock_irqrestore(&p->lock, flags);
362 	}
363 }
364 
365 /*
366  * Dequeue a receive skb and its corresponding ring entry.  The ring
367  * entry is returned, *pskb is updated to point to the skb.
368  */
369 static u64 octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt *p,
370 					 struct sk_buff **pskb)
371 {
372 	union mgmt_port_ring_entry re;
373 
374 	dma_sync_single_for_cpu(p->dev, p->rx_ring_handle,
375 				ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
376 				DMA_BIDIRECTIONAL);
377 
378 	re.d64 = p->rx_ring[p->rx_next];
379 	p->rx_next = (p->rx_next + 1) % OCTEON_MGMT_RX_RING_SIZE;
380 	p->rx_current_fill--;
381 	*pskb = __skb_dequeue(&p->rx_list);
382 
383 	dma_unmap_single(p->dev, re.s.addr,
384 			 ETH_FRAME_LEN + OCTEON_MGMT_RX_HEADROOM,
385 			 DMA_FROM_DEVICE);
386 
387 	return re.d64;
388 }
389 
390 
391 static int octeon_mgmt_receive_one(struct octeon_mgmt *p)
392 {
393 	struct net_device *netdev = p->netdev;
394 	union cvmx_mixx_ircnt mix_ircnt;
395 	union mgmt_port_ring_entry re;
396 	struct sk_buff *skb;
397 	struct sk_buff *skb2;
398 	struct sk_buff *skb_new;
399 	union mgmt_port_ring_entry re2;
400 	int rc = 1;
401 
402 
403 	re.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb);
404 	if (likely(re.s.code == RING_ENTRY_CODE_DONE)) {
405 		/* A good packet, send it up. */
406 		skb_put(skb, re.s.len);
407 good:
408 		/* Process the RX timestamp if it was recorded */
409 		if (p->has_rx_tstamp) {
410 			/* The first 8 bytes are the timestamp */
411 			u64 ns = *(u64 *)skb->data;
412 			struct skb_shared_hwtstamps *ts;
413 			ts = skb_hwtstamps(skb);
414 			ts->hwtstamp = ns_to_ktime(ns);
415 			__skb_pull(skb, 8);
416 		}
417 		skb->protocol = eth_type_trans(skb, netdev);
418 		netdev->stats.rx_packets++;
419 		netdev->stats.rx_bytes += skb->len;
420 		netif_receive_skb(skb);
421 		rc = 0;
422 	} else if (re.s.code == RING_ENTRY_CODE_MORE) {
423 		/* Packet split across skbs.  This can happen if we
424 		 * increase the MTU.  Buffers that are already in the
425 		 * rx ring can then end up being too small.  As the rx
426 		 * ring is refilled, buffers sized for the new MTU
427 		 * will be used and we should go back to the normal
428 		 * non-split case.
429 		 */
430 		skb_put(skb, re.s.len);
431 		do {
432 			re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2);
433 			if (re2.s.code != RING_ENTRY_CODE_MORE
434 				&& re2.s.code != RING_ENTRY_CODE_DONE)
435 				goto split_error;
436 			skb_put(skb2,  re2.s.len);
437 			skb_new = skb_copy_expand(skb, 0, skb2->len,
438 						  GFP_ATOMIC);
439 			if (!skb_new)
440 				goto split_error;
441 			if (skb_copy_bits(skb2, 0, skb_tail_pointer(skb_new),
442 					  skb2->len))
443 				goto split_error;
444 			skb_put(skb_new, skb2->len);
445 			dev_kfree_skb_any(skb);
446 			dev_kfree_skb_any(skb2);
447 			skb = skb_new;
448 		} while (re2.s.code == RING_ENTRY_CODE_MORE);
449 		goto good;
450 	} else {
451 		/* Some other error, discard it. */
452 		dev_kfree_skb_any(skb);
453 		/* Error statistics are accumulated in
454 		 * octeon_mgmt_update_rx_stats.
455 		 */
456 	}
457 	goto done;
458 split_error:
459 	/* Discard the whole mess. */
460 	dev_kfree_skb_any(skb);
461 	dev_kfree_skb_any(skb2);
462 	while (re2.s.code == RING_ENTRY_CODE_MORE) {
463 		re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2);
464 		dev_kfree_skb_any(skb2);
465 	}
466 	netdev->stats.rx_errors++;
467 
468 done:
469 	/* Tell the hardware we processed a packet.  */
470 	mix_ircnt.u64 = 0;
471 	mix_ircnt.s.ircnt = 1;
472 	cvmx_write_csr(p->mix + MIX_IRCNT, mix_ircnt.u64);
473 	return rc;
474 }
475 
476 static int octeon_mgmt_receive_packets(struct octeon_mgmt *p, int budget)
477 {
478 	unsigned int work_done = 0;
479 	union cvmx_mixx_ircnt mix_ircnt;
480 	int rc;
481 
482 	mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT);
483 	while (work_done < budget && mix_ircnt.s.ircnt) {
484 
485 		rc = octeon_mgmt_receive_one(p);
486 		if (!rc)
487 			work_done++;
488 
489 		/* Check for more packets. */
490 		mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT);
491 	}
492 
493 	octeon_mgmt_rx_fill_ring(p->netdev);
494 
495 	return work_done;
496 }
497 
498 static int octeon_mgmt_napi_poll(struct napi_struct *napi, int budget)
499 {
500 	struct octeon_mgmt *p = container_of(napi, struct octeon_mgmt, napi);
501 	struct net_device *netdev = p->netdev;
502 	unsigned int work_done = 0;
503 
504 	work_done = octeon_mgmt_receive_packets(p, budget);
505 
506 	if (work_done < budget) {
507 		/* We stopped because no more packets were available. */
508 		napi_complete_done(napi, work_done);
509 		octeon_mgmt_enable_rx_irq(p);
510 	}
511 	octeon_mgmt_update_rx_stats(netdev);
512 
513 	return work_done;
514 }
515 
516 /* Reset the hardware to clean state.  */
517 static void octeon_mgmt_reset_hw(struct octeon_mgmt *p)
518 {
519 	union cvmx_mixx_ctl mix_ctl;
520 	union cvmx_mixx_bist mix_bist;
521 	union cvmx_agl_gmx_bist agl_gmx_bist;
522 
523 	mix_ctl.u64 = 0;
524 	cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
525 	do {
526 		mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
527 	} while (mix_ctl.s.busy);
528 	mix_ctl.s.reset = 1;
529 	cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
530 	cvmx_read_csr(p->mix + MIX_CTL);
531 	octeon_io_clk_delay(64);
532 
533 	mix_bist.u64 = cvmx_read_csr(p->mix + MIX_BIST);
534 	if (mix_bist.u64)
535 		dev_warn(p->dev, "MIX failed BIST (0x%016llx)\n",
536 			(unsigned long long)mix_bist.u64);
537 
538 	agl_gmx_bist.u64 = cvmx_read_csr(CVMX_AGL_GMX_BIST);
539 	if (agl_gmx_bist.u64)
540 		dev_warn(p->dev, "AGL failed BIST (0x%016llx)\n",
541 			 (unsigned long long)agl_gmx_bist.u64);
542 }
543 
544 struct octeon_mgmt_cam_state {
545 	u64 cam[6];
546 	u64 cam_mask;
547 	int cam_index;
548 };
549 
550 static void octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state *cs,
551 				      unsigned char *addr)
552 {
553 	int i;
554 
555 	for (i = 0; i < 6; i++)
556 		cs->cam[i] |= (u64)addr[i] << (8 * (cs->cam_index));
557 	cs->cam_mask |= (1ULL << cs->cam_index);
558 	cs->cam_index++;
559 }
560 
561 static void octeon_mgmt_set_rx_filtering(struct net_device *netdev)
562 {
563 	struct octeon_mgmt *p = netdev_priv(netdev);
564 	union cvmx_agl_gmx_rxx_adr_ctl adr_ctl;
565 	union cvmx_agl_gmx_prtx_cfg agl_gmx_prtx;
566 	unsigned long flags;
567 	unsigned int prev_packet_enable;
568 	unsigned int cam_mode = 1; /* 1 - Accept on CAM match */
569 	unsigned int multicast_mode = 1; /* 1 - Reject all multicast.  */
570 	struct octeon_mgmt_cam_state cam_state;
571 	struct netdev_hw_addr *ha;
572 	int available_cam_entries;
573 
574 	memset(&cam_state, 0, sizeof(cam_state));
575 
576 	if ((netdev->flags & IFF_PROMISC) || netdev->uc.count > 7) {
577 		cam_mode = 0;
578 		available_cam_entries = 8;
579 	} else {
580 		/* One CAM entry for the primary address, leaves seven
581 		 * for the secondary addresses.
582 		 */
583 		available_cam_entries = 7 - netdev->uc.count;
584 	}
585 
586 	if (netdev->flags & IFF_MULTICAST) {
587 		if (cam_mode == 0 || (netdev->flags & IFF_ALLMULTI) ||
588 		    netdev_mc_count(netdev) > available_cam_entries)
589 			multicast_mode = 2; /* 2 - Accept all multicast.  */
590 		else
591 			multicast_mode = 0; /* 0 - Use CAM.  */
592 	}
593 
594 	if (cam_mode == 1) {
595 		/* Add primary address. */
596 		octeon_mgmt_cam_state_add(&cam_state, netdev->dev_addr);
597 		netdev_for_each_uc_addr(ha, netdev)
598 			octeon_mgmt_cam_state_add(&cam_state, ha->addr);
599 	}
600 	if (multicast_mode == 0) {
601 		netdev_for_each_mc_addr(ha, netdev)
602 			octeon_mgmt_cam_state_add(&cam_state, ha->addr);
603 	}
604 
605 	spin_lock_irqsave(&p->lock, flags);
606 
607 	/* Disable packet I/O. */
608 	agl_gmx_prtx.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
609 	prev_packet_enable = agl_gmx_prtx.s.en;
610 	agl_gmx_prtx.s.en = 0;
611 	cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64);
612 
613 	adr_ctl.u64 = 0;
614 	adr_ctl.s.cam_mode = cam_mode;
615 	adr_ctl.s.mcst = multicast_mode;
616 	adr_ctl.s.bcst = 1;     /* Allow broadcast */
617 
618 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CTL, adr_ctl.u64);
619 
620 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM0, cam_state.cam[0]);
621 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM1, cam_state.cam[1]);
622 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM2, cam_state.cam[2]);
623 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM3, cam_state.cam[3]);
624 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM4, cam_state.cam[4]);
625 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM5, cam_state.cam[5]);
626 	cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM_EN, cam_state.cam_mask);
627 
628 	/* Restore packet I/O. */
629 	agl_gmx_prtx.s.en = prev_packet_enable;
630 	cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64);
631 
632 	spin_unlock_irqrestore(&p->lock, flags);
633 }
634 
635 static int octeon_mgmt_set_mac_address(struct net_device *netdev, void *addr)
636 {
637 	int r = eth_mac_addr(netdev, addr);
638 
639 	if (r)
640 		return r;
641 
642 	octeon_mgmt_set_rx_filtering(netdev);
643 
644 	return 0;
645 }
646 
647 static int octeon_mgmt_change_mtu(struct net_device *netdev, int new_mtu)
648 {
649 	struct octeon_mgmt *p = netdev_priv(netdev);
650 	int max_packet = new_mtu + ETH_HLEN + ETH_FCS_LEN;
651 
652 	netdev->mtu = new_mtu;
653 
654 	/* HW lifts the limit if the frame is VLAN tagged
655 	 * (+4 bytes per each tag, up to two tags)
656 	 */
657 	cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_MAX, max_packet);
658 	/* Set the hardware to truncate packets larger than the MTU. The jabber
659 	 * register must be set to a multiple of 8 bytes, so round up. JABBER is
660 	 * an unconditional limit, so we need to account for two possible VLAN
661 	 * tags.
662 	 */
663 	cvmx_write_csr(p->agl + AGL_GMX_RX_JABBER,
664 		       (max_packet + 7 + VLAN_HLEN * 2) & 0xfff8);
665 
666 	return 0;
667 }
668 
669 static irqreturn_t octeon_mgmt_interrupt(int cpl, void *dev_id)
670 {
671 	struct net_device *netdev = dev_id;
672 	struct octeon_mgmt *p = netdev_priv(netdev);
673 	union cvmx_mixx_isr mixx_isr;
674 
675 	mixx_isr.u64 = cvmx_read_csr(p->mix + MIX_ISR);
676 
677 	/* Clear any pending interrupts */
678 	cvmx_write_csr(p->mix + MIX_ISR, mixx_isr.u64);
679 	cvmx_read_csr(p->mix + MIX_ISR);
680 
681 	if (mixx_isr.s.irthresh) {
682 		octeon_mgmt_disable_rx_irq(p);
683 		napi_schedule(&p->napi);
684 	}
685 	if (mixx_isr.s.orthresh) {
686 		octeon_mgmt_disable_tx_irq(p);
687 		tasklet_schedule(&p->tx_clean_tasklet);
688 	}
689 
690 	return IRQ_HANDLED;
691 }
692 
693 static int octeon_mgmt_ioctl_hwtstamp(struct net_device *netdev,
694 				      struct ifreq *rq, int cmd)
695 {
696 	struct octeon_mgmt *p = netdev_priv(netdev);
697 	struct hwtstamp_config config;
698 	union cvmx_mio_ptp_clock_cfg ptp;
699 	union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl;
700 	bool have_hw_timestamps = false;
701 
702 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
703 		return -EFAULT;
704 
705 	if (config.flags) /* reserved for future extensions */
706 		return -EINVAL;
707 
708 	/* Check the status of hardware for tiemstamps */
709 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
710 		/* Get the current state of the PTP clock */
711 		ptp.u64 = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_CFG);
712 		if (!ptp.s.ext_clk_en) {
713 			/* The clock has not been configured to use an
714 			 * external source.  Program it to use the main clock
715 			 * reference.
716 			 */
717 			u64 clock_comp = (NSEC_PER_SEC << 32) /	octeon_get_io_clock_rate();
718 			if (!ptp.s.ptp_en)
719 				cvmx_write_csr(CVMX_MIO_PTP_CLOCK_COMP, clock_comp);
720 			netdev_info(netdev,
721 				    "PTP Clock using sclk reference @ %lldHz\n",
722 				    (NSEC_PER_SEC << 32) / clock_comp);
723 		} else {
724 			/* The clock is already programmed to use a GPIO */
725 			u64 clock_comp = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_COMP);
726 			netdev_info(netdev,
727 				    "PTP Clock using GPIO%d @ %lld Hz\n",
728 				    ptp.s.ext_clk_in, (NSEC_PER_SEC << 32) / clock_comp);
729 		}
730 
731 		/* Enable the clock if it wasn't done already */
732 		if (!ptp.s.ptp_en) {
733 			ptp.s.ptp_en = 1;
734 			cvmx_write_csr(CVMX_MIO_PTP_CLOCK_CFG, ptp.u64);
735 		}
736 		have_hw_timestamps = true;
737 	}
738 
739 	if (!have_hw_timestamps)
740 		return -EINVAL;
741 
742 	switch (config.tx_type) {
743 	case HWTSTAMP_TX_OFF:
744 	case HWTSTAMP_TX_ON:
745 		break;
746 	default:
747 		return -ERANGE;
748 	}
749 
750 	switch (config.rx_filter) {
751 	case HWTSTAMP_FILTER_NONE:
752 		p->has_rx_tstamp = false;
753 		rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL);
754 		rxx_frm_ctl.s.ptp_mode = 0;
755 		cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
756 		break;
757 	case HWTSTAMP_FILTER_ALL:
758 	case HWTSTAMP_FILTER_SOME:
759 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
760 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
761 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
762 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
763 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
764 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
765 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
766 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
767 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
768 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
769 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
770 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
771 	case HWTSTAMP_FILTER_NTP_ALL:
772 		p->has_rx_tstamp = have_hw_timestamps;
773 		config.rx_filter = HWTSTAMP_FILTER_ALL;
774 		if (p->has_rx_tstamp) {
775 			rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL);
776 			rxx_frm_ctl.s.ptp_mode = 1;
777 			cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
778 		}
779 		break;
780 	default:
781 		return -ERANGE;
782 	}
783 
784 	if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
785 		return -EFAULT;
786 
787 	return 0;
788 }
789 
790 static int octeon_mgmt_ioctl(struct net_device *netdev,
791 			     struct ifreq *rq, int cmd)
792 {
793 	switch (cmd) {
794 	case SIOCSHWTSTAMP:
795 		return octeon_mgmt_ioctl_hwtstamp(netdev, rq, cmd);
796 	default:
797 		return phy_do_ioctl(netdev, rq, cmd);
798 	}
799 }
800 
801 static void octeon_mgmt_disable_link(struct octeon_mgmt *p)
802 {
803 	union cvmx_agl_gmx_prtx_cfg prtx_cfg;
804 
805 	/* Disable GMX before we make any changes. */
806 	prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
807 	prtx_cfg.s.en = 0;
808 	prtx_cfg.s.tx_en = 0;
809 	prtx_cfg.s.rx_en = 0;
810 	cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
811 
812 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
813 		int i;
814 		for (i = 0; i < 10; i++) {
815 			prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
816 			if (prtx_cfg.s.tx_idle == 1 || prtx_cfg.s.rx_idle == 1)
817 				break;
818 			mdelay(1);
819 			i++;
820 		}
821 	}
822 }
823 
824 static void octeon_mgmt_enable_link(struct octeon_mgmt *p)
825 {
826 	union cvmx_agl_gmx_prtx_cfg prtx_cfg;
827 
828 	/* Restore the GMX enable state only if link is set */
829 	prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
830 	prtx_cfg.s.tx_en = 1;
831 	prtx_cfg.s.rx_en = 1;
832 	prtx_cfg.s.en = 1;
833 	cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
834 }
835 
836 static void octeon_mgmt_update_link(struct octeon_mgmt *p)
837 {
838 	struct net_device *ndev = p->netdev;
839 	struct phy_device *phydev = ndev->phydev;
840 	union cvmx_agl_gmx_prtx_cfg prtx_cfg;
841 
842 	prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
843 
844 	if (!phydev->link)
845 		prtx_cfg.s.duplex = 1;
846 	else
847 		prtx_cfg.s.duplex = phydev->duplex;
848 
849 	switch (phydev->speed) {
850 	case 10:
851 		prtx_cfg.s.speed = 0;
852 		prtx_cfg.s.slottime = 0;
853 
854 		if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
855 			prtx_cfg.s.burst = 1;
856 			prtx_cfg.s.speed_msb = 1;
857 		}
858 		break;
859 	case 100:
860 		prtx_cfg.s.speed = 0;
861 		prtx_cfg.s.slottime = 0;
862 
863 		if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
864 			prtx_cfg.s.burst = 1;
865 			prtx_cfg.s.speed_msb = 0;
866 		}
867 		break;
868 	case 1000:
869 		/* 1000 MBits is only supported on 6XXX chips */
870 		if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
871 			prtx_cfg.s.speed = 1;
872 			prtx_cfg.s.speed_msb = 0;
873 			/* Only matters for half-duplex */
874 			prtx_cfg.s.slottime = 1;
875 			prtx_cfg.s.burst = phydev->duplex;
876 		}
877 		break;
878 	case 0:  /* No link */
879 	default:
880 		break;
881 	}
882 
883 	/* Write the new GMX setting with the port still disabled. */
884 	cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64);
885 
886 	/* Read GMX CFG again to make sure the config is completed. */
887 	prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG);
888 
889 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
890 		union cvmx_agl_gmx_txx_clk agl_clk;
891 		union cvmx_agl_prtx_ctl prtx_ctl;
892 
893 		prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
894 		agl_clk.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_CLK);
895 		/* MII (both speeds) and RGMII 1000 speed. */
896 		agl_clk.s.clk_cnt = 1;
897 		if (prtx_ctl.s.mode == 0) { /* RGMII mode */
898 			if (phydev->speed == 10)
899 				agl_clk.s.clk_cnt = 50;
900 			else if (phydev->speed == 100)
901 				agl_clk.s.clk_cnt = 5;
902 		}
903 		cvmx_write_csr(p->agl + AGL_GMX_TX_CLK, agl_clk.u64);
904 	}
905 }
906 
907 static void octeon_mgmt_adjust_link(struct net_device *netdev)
908 {
909 	struct octeon_mgmt *p = netdev_priv(netdev);
910 	struct phy_device *phydev = netdev->phydev;
911 	unsigned long flags;
912 	int link_changed = 0;
913 
914 	if (!phydev)
915 		return;
916 
917 	spin_lock_irqsave(&p->lock, flags);
918 
919 
920 	if (!phydev->link && p->last_link)
921 		link_changed = -1;
922 
923 	if (phydev->link &&
924 	    (p->last_duplex != phydev->duplex ||
925 	     p->last_link != phydev->link ||
926 	     p->last_speed != phydev->speed)) {
927 		octeon_mgmt_disable_link(p);
928 		link_changed = 1;
929 		octeon_mgmt_update_link(p);
930 		octeon_mgmt_enable_link(p);
931 	}
932 
933 	p->last_link = phydev->link;
934 	p->last_speed = phydev->speed;
935 	p->last_duplex = phydev->duplex;
936 
937 	spin_unlock_irqrestore(&p->lock, flags);
938 
939 	if (link_changed != 0) {
940 		if (link_changed > 0)
941 			netdev_info(netdev, "Link is up - %d/%s\n",
942 				    phydev->speed, phydev->duplex == DUPLEX_FULL ? "Full" : "Half");
943 		else
944 			netdev_info(netdev, "Link is down\n");
945 	}
946 }
947 
948 static int octeon_mgmt_init_phy(struct net_device *netdev)
949 {
950 	struct octeon_mgmt *p = netdev_priv(netdev);
951 	struct phy_device *phydev = NULL;
952 
953 	if (octeon_is_simulation() || p->phy_np == NULL) {
954 		/* No PHYs in the simulator. */
955 		netif_carrier_on(netdev);
956 		return 0;
957 	}
958 
959 	phydev = of_phy_connect(netdev, p->phy_np,
960 				octeon_mgmt_adjust_link, 0,
961 				PHY_INTERFACE_MODE_MII);
962 
963 	if (!phydev)
964 		return -ENODEV;
965 
966 	return 0;
967 }
968 
969 static int octeon_mgmt_open(struct net_device *netdev)
970 {
971 	struct octeon_mgmt *p = netdev_priv(netdev);
972 	union cvmx_mixx_ctl mix_ctl;
973 	union cvmx_agl_gmx_inf_mode agl_gmx_inf_mode;
974 	union cvmx_mixx_oring1 oring1;
975 	union cvmx_mixx_iring1 iring1;
976 	union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl;
977 	union cvmx_mixx_irhwm mix_irhwm;
978 	union cvmx_mixx_orhwm mix_orhwm;
979 	union cvmx_mixx_intena mix_intena;
980 	struct sockaddr sa;
981 
982 	/* Allocate ring buffers.  */
983 	p->tx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
984 			     GFP_KERNEL);
985 	if (!p->tx_ring)
986 		return -ENOMEM;
987 	p->tx_ring_handle =
988 		dma_map_single(p->dev, p->tx_ring,
989 			       ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
990 			       DMA_BIDIRECTIONAL);
991 	p->tx_next = 0;
992 	p->tx_next_clean = 0;
993 	p->tx_current_fill = 0;
994 
995 
996 	p->rx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
997 			     GFP_KERNEL);
998 	if (!p->rx_ring)
999 		goto err_nomem;
1000 	p->rx_ring_handle =
1001 		dma_map_single(p->dev, p->rx_ring,
1002 			       ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1003 			       DMA_BIDIRECTIONAL);
1004 
1005 	p->rx_next = 0;
1006 	p->rx_next_fill = 0;
1007 	p->rx_current_fill = 0;
1008 
1009 	octeon_mgmt_reset_hw(p);
1010 
1011 	mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
1012 
1013 	/* Bring it out of reset if needed. */
1014 	if (mix_ctl.s.reset) {
1015 		mix_ctl.s.reset = 0;
1016 		cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
1017 		do {
1018 			mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL);
1019 		} while (mix_ctl.s.reset);
1020 	}
1021 
1022 	if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
1023 		agl_gmx_inf_mode.u64 = 0;
1024 		agl_gmx_inf_mode.s.en = 1;
1025 		cvmx_write_csr(CVMX_AGL_GMX_INF_MODE, agl_gmx_inf_mode.u64);
1026 	}
1027 	if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X)
1028 		|| OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) {
1029 		/* Force compensation values, as they are not
1030 		 * determined properly by HW
1031 		 */
1032 		union cvmx_agl_gmx_drv_ctl drv_ctl;
1033 
1034 		drv_ctl.u64 = cvmx_read_csr(CVMX_AGL_GMX_DRV_CTL);
1035 		if (p->port) {
1036 			drv_ctl.s.byp_en1 = 1;
1037 			drv_ctl.s.nctl1 = 6;
1038 			drv_ctl.s.pctl1 = 6;
1039 		} else {
1040 			drv_ctl.s.byp_en = 1;
1041 			drv_ctl.s.nctl = 6;
1042 			drv_ctl.s.pctl = 6;
1043 		}
1044 		cvmx_write_csr(CVMX_AGL_GMX_DRV_CTL, drv_ctl.u64);
1045 	}
1046 
1047 	oring1.u64 = 0;
1048 	oring1.s.obase = p->tx_ring_handle >> 3;
1049 	oring1.s.osize = OCTEON_MGMT_TX_RING_SIZE;
1050 	cvmx_write_csr(p->mix + MIX_ORING1, oring1.u64);
1051 
1052 	iring1.u64 = 0;
1053 	iring1.s.ibase = p->rx_ring_handle >> 3;
1054 	iring1.s.isize = OCTEON_MGMT_RX_RING_SIZE;
1055 	cvmx_write_csr(p->mix + MIX_IRING1, iring1.u64);
1056 
1057 	memcpy(sa.sa_data, netdev->dev_addr, ETH_ALEN);
1058 	octeon_mgmt_set_mac_address(netdev, &sa);
1059 
1060 	octeon_mgmt_change_mtu(netdev, netdev->mtu);
1061 
1062 	/* Enable the port HW. Packets are not allowed until
1063 	 * cvmx_mgmt_port_enable() is called.
1064 	 */
1065 	mix_ctl.u64 = 0;
1066 	mix_ctl.s.crc_strip = 1;    /* Strip the ending CRC */
1067 	mix_ctl.s.en = 1;           /* Enable the port */
1068 	mix_ctl.s.nbtarb = 0;       /* Arbitration mode */
1069 	/* MII CB-request FIFO programmable high watermark */
1070 	mix_ctl.s.mrq_hwm = 1;
1071 #ifdef __LITTLE_ENDIAN
1072 	mix_ctl.s.lendian = 1;
1073 #endif
1074 	cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64);
1075 
1076 	/* Read the PHY to find the mode of the interface. */
1077 	if (octeon_mgmt_init_phy(netdev)) {
1078 		dev_err(p->dev, "Cannot initialize PHY on MIX%d.\n", p->port);
1079 		goto err_noirq;
1080 	}
1081 
1082 	/* Set the mode of the interface, RGMII/MII. */
1083 	if (OCTEON_IS_MODEL(OCTEON_CN6XXX) && netdev->phydev) {
1084 		union cvmx_agl_prtx_ctl agl_prtx_ctl;
1085 		int rgmii_mode =
1086 			(linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT,
1087 					   netdev->phydev->supported) |
1088 			 linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
1089 					   netdev->phydev->supported)) != 0;
1090 
1091 		agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1092 		agl_prtx_ctl.s.mode = rgmii_mode ? 0 : 1;
1093 		cvmx_write_csr(p->agl_prt_ctl,	agl_prtx_ctl.u64);
1094 
1095 		/* MII clocks counts are based on the 125Mhz
1096 		 * reference, which has an 8nS period. So our delays
1097 		 * need to be multiplied by this factor.
1098 		 */
1099 #define NS_PER_PHY_CLK 8
1100 
1101 		/* Take the DLL and clock tree out of reset */
1102 		agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1103 		agl_prtx_ctl.s.clkrst = 0;
1104 		if (rgmii_mode) {
1105 			agl_prtx_ctl.s.dllrst = 0;
1106 			agl_prtx_ctl.s.clktx_byp = 0;
1107 		}
1108 		cvmx_write_csr(p->agl_prt_ctl,	agl_prtx_ctl.u64);
1109 		cvmx_read_csr(p->agl_prt_ctl); /* Force write out before wait */
1110 
1111 		/* Wait for the DLL to lock. External 125 MHz
1112 		 * reference clock must be stable at this point.
1113 		 */
1114 		ndelay(256 * NS_PER_PHY_CLK);
1115 
1116 		/* Enable the interface */
1117 		agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1118 		agl_prtx_ctl.s.enable = 1;
1119 		cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64);
1120 
1121 		/* Read the value back to force the previous write */
1122 		agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl);
1123 
1124 		/* Enable the compensation controller */
1125 		agl_prtx_ctl.s.comp = 1;
1126 		agl_prtx_ctl.s.drv_byp = 0;
1127 		cvmx_write_csr(p->agl_prt_ctl,	agl_prtx_ctl.u64);
1128 		/* Force write out before wait. */
1129 		cvmx_read_csr(p->agl_prt_ctl);
1130 
1131 		/* For compensation state to lock. */
1132 		ndelay(1040 * NS_PER_PHY_CLK);
1133 
1134 		/* Default Interframe Gaps are too small.  Recommended
1135 		 * workaround is.
1136 		 *
1137 		 * AGL_GMX_TX_IFG[IFG1]=14
1138 		 * AGL_GMX_TX_IFG[IFG2]=10
1139 		 */
1140 		cvmx_write_csr(CVMX_AGL_GMX_TX_IFG, 0xae);
1141 	}
1142 
1143 	octeon_mgmt_rx_fill_ring(netdev);
1144 
1145 	/* Clear statistics. */
1146 	/* Clear on read. */
1147 	cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_CTL, 1);
1148 	cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP, 0);
1149 	cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD, 0);
1150 
1151 	cvmx_write_csr(p->agl + AGL_GMX_TX_STATS_CTL, 1);
1152 	cvmx_write_csr(p->agl + AGL_GMX_TX_STAT0, 0);
1153 	cvmx_write_csr(p->agl + AGL_GMX_TX_STAT1, 0);
1154 
1155 	/* Clear any pending interrupts */
1156 	cvmx_write_csr(p->mix + MIX_ISR, cvmx_read_csr(p->mix + MIX_ISR));
1157 
1158 	if (request_irq(p->irq, octeon_mgmt_interrupt, 0, netdev->name,
1159 			netdev)) {
1160 		dev_err(p->dev, "request_irq(%d) failed.\n", p->irq);
1161 		goto err_noirq;
1162 	}
1163 
1164 	/* Interrupt every single RX packet */
1165 	mix_irhwm.u64 = 0;
1166 	mix_irhwm.s.irhwm = 0;
1167 	cvmx_write_csr(p->mix + MIX_IRHWM, mix_irhwm.u64);
1168 
1169 	/* Interrupt when we have 1 or more packets to clean.  */
1170 	mix_orhwm.u64 = 0;
1171 	mix_orhwm.s.orhwm = 0;
1172 	cvmx_write_csr(p->mix + MIX_ORHWM, mix_orhwm.u64);
1173 
1174 	/* Enable receive and transmit interrupts */
1175 	mix_intena.u64 = 0;
1176 	mix_intena.s.ithena = 1;
1177 	mix_intena.s.othena = 1;
1178 	cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64);
1179 
1180 	/* Enable packet I/O. */
1181 
1182 	rxx_frm_ctl.u64 = 0;
1183 	rxx_frm_ctl.s.ptp_mode = p->has_rx_tstamp ? 1 : 0;
1184 	rxx_frm_ctl.s.pre_align = 1;
1185 	/* When set, disables the length check for non-min sized pkts
1186 	 * with padding in the client data.
1187 	 */
1188 	rxx_frm_ctl.s.pad_len = 1;
1189 	/* When set, disables the length check for VLAN pkts */
1190 	rxx_frm_ctl.s.vlan_len = 1;
1191 	/* When set, PREAMBLE checking is  less strict */
1192 	rxx_frm_ctl.s.pre_free = 1;
1193 	/* Control Pause Frames can match station SMAC */
1194 	rxx_frm_ctl.s.ctl_smac = 0;
1195 	/* Control Pause Frames can match globally assign Multicast address */
1196 	rxx_frm_ctl.s.ctl_mcst = 1;
1197 	/* Forward pause information to TX block */
1198 	rxx_frm_ctl.s.ctl_bck = 1;
1199 	/* Drop Control Pause Frames */
1200 	rxx_frm_ctl.s.ctl_drp = 1;
1201 	/* Strip off the preamble */
1202 	rxx_frm_ctl.s.pre_strp = 1;
1203 	/* This port is configured to send PREAMBLE+SFD to begin every
1204 	 * frame.  GMX checks that the PREAMBLE is sent correctly.
1205 	 */
1206 	rxx_frm_ctl.s.pre_chk = 1;
1207 	cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64);
1208 
1209 	/* Configure the port duplex, speed and enables */
1210 	octeon_mgmt_disable_link(p);
1211 	if (netdev->phydev)
1212 		octeon_mgmt_update_link(p);
1213 	octeon_mgmt_enable_link(p);
1214 
1215 	p->last_link = 0;
1216 	p->last_speed = 0;
1217 	/* PHY is not present in simulator. The carrier is enabled
1218 	 * while initializing the phy for simulator, leave it enabled.
1219 	 */
1220 	if (netdev->phydev) {
1221 		netif_carrier_off(netdev);
1222 		phy_start_aneg(netdev->phydev);
1223 	}
1224 
1225 	netif_wake_queue(netdev);
1226 	napi_enable(&p->napi);
1227 
1228 	return 0;
1229 err_noirq:
1230 	octeon_mgmt_reset_hw(p);
1231 	dma_unmap_single(p->dev, p->rx_ring_handle,
1232 			 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1233 			 DMA_BIDIRECTIONAL);
1234 	kfree(p->rx_ring);
1235 err_nomem:
1236 	dma_unmap_single(p->dev, p->tx_ring_handle,
1237 			 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1238 			 DMA_BIDIRECTIONAL);
1239 	kfree(p->tx_ring);
1240 	return -ENOMEM;
1241 }
1242 
1243 static int octeon_mgmt_stop(struct net_device *netdev)
1244 {
1245 	struct octeon_mgmt *p = netdev_priv(netdev);
1246 
1247 	napi_disable(&p->napi);
1248 	netif_stop_queue(netdev);
1249 
1250 	if (netdev->phydev)
1251 		phy_disconnect(netdev->phydev);
1252 
1253 	netif_carrier_off(netdev);
1254 
1255 	octeon_mgmt_reset_hw(p);
1256 
1257 	free_irq(p->irq, netdev);
1258 
1259 	/* dma_unmap is a nop on Octeon, so just free everything.  */
1260 	skb_queue_purge(&p->tx_list);
1261 	skb_queue_purge(&p->rx_list);
1262 
1263 	dma_unmap_single(p->dev, p->rx_ring_handle,
1264 			 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE),
1265 			 DMA_BIDIRECTIONAL);
1266 	kfree(p->rx_ring);
1267 
1268 	dma_unmap_single(p->dev, p->tx_ring_handle,
1269 			 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1270 			 DMA_BIDIRECTIONAL);
1271 	kfree(p->tx_ring);
1272 
1273 	return 0;
1274 }
1275 
1276 static netdev_tx_t
1277 octeon_mgmt_xmit(struct sk_buff *skb, struct net_device *netdev)
1278 {
1279 	struct octeon_mgmt *p = netdev_priv(netdev);
1280 	union mgmt_port_ring_entry re;
1281 	unsigned long flags;
1282 	netdev_tx_t rv = NETDEV_TX_BUSY;
1283 
1284 	re.d64 = 0;
1285 	re.s.tstamp = ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) != 0);
1286 	re.s.len = skb->len;
1287 	re.s.addr = dma_map_single(p->dev, skb->data,
1288 				   skb->len,
1289 				   DMA_TO_DEVICE);
1290 
1291 	spin_lock_irqsave(&p->tx_list.lock, flags);
1292 
1293 	if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE) - 1)) {
1294 		spin_unlock_irqrestore(&p->tx_list.lock, flags);
1295 		netif_stop_queue(netdev);
1296 		spin_lock_irqsave(&p->tx_list.lock, flags);
1297 	}
1298 
1299 	if (unlikely(p->tx_current_fill >=
1300 		     ring_max_fill(OCTEON_MGMT_TX_RING_SIZE))) {
1301 		spin_unlock_irqrestore(&p->tx_list.lock, flags);
1302 		dma_unmap_single(p->dev, re.s.addr, re.s.len,
1303 				 DMA_TO_DEVICE);
1304 		goto out;
1305 	}
1306 
1307 	__skb_queue_tail(&p->tx_list, skb);
1308 
1309 	/* Put it in the ring.  */
1310 	p->tx_ring[p->tx_next] = re.d64;
1311 	p->tx_next = (p->tx_next + 1) % OCTEON_MGMT_TX_RING_SIZE;
1312 	p->tx_current_fill++;
1313 
1314 	spin_unlock_irqrestore(&p->tx_list.lock, flags);
1315 
1316 	dma_sync_single_for_device(p->dev, p->tx_ring_handle,
1317 				   ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE),
1318 				   DMA_BIDIRECTIONAL);
1319 
1320 	netdev->stats.tx_packets++;
1321 	netdev->stats.tx_bytes += skb->len;
1322 
1323 	/* Ring the bell.  */
1324 	cvmx_write_csr(p->mix + MIX_ORING2, 1);
1325 
1326 	netif_trans_update(netdev);
1327 	rv = NETDEV_TX_OK;
1328 out:
1329 	octeon_mgmt_update_tx_stats(netdev);
1330 	return rv;
1331 }
1332 
1333 #ifdef CONFIG_NET_POLL_CONTROLLER
1334 static void octeon_mgmt_poll_controller(struct net_device *netdev)
1335 {
1336 	struct octeon_mgmt *p = netdev_priv(netdev);
1337 
1338 	octeon_mgmt_receive_packets(p, 16);
1339 	octeon_mgmt_update_rx_stats(netdev);
1340 }
1341 #endif
1342 
1343 static void octeon_mgmt_get_drvinfo(struct net_device *netdev,
1344 				    struct ethtool_drvinfo *info)
1345 {
1346 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1347 }
1348 
1349 static int octeon_mgmt_nway_reset(struct net_device *dev)
1350 {
1351 	if (!capable(CAP_NET_ADMIN))
1352 		return -EPERM;
1353 
1354 	if (dev->phydev)
1355 		return phy_start_aneg(dev->phydev);
1356 
1357 	return -EOPNOTSUPP;
1358 }
1359 
1360 static const struct ethtool_ops octeon_mgmt_ethtool_ops = {
1361 	.get_drvinfo = octeon_mgmt_get_drvinfo,
1362 	.nway_reset = octeon_mgmt_nway_reset,
1363 	.get_link = ethtool_op_get_link,
1364 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1365 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1366 };
1367 
1368 static const struct net_device_ops octeon_mgmt_ops = {
1369 	.ndo_open =			octeon_mgmt_open,
1370 	.ndo_stop =			octeon_mgmt_stop,
1371 	.ndo_start_xmit =		octeon_mgmt_xmit,
1372 	.ndo_set_rx_mode =		octeon_mgmt_set_rx_filtering,
1373 	.ndo_set_mac_address =		octeon_mgmt_set_mac_address,
1374 	.ndo_do_ioctl =			octeon_mgmt_ioctl,
1375 	.ndo_change_mtu =		octeon_mgmt_change_mtu,
1376 #ifdef CONFIG_NET_POLL_CONTROLLER
1377 	.ndo_poll_controller =		octeon_mgmt_poll_controller,
1378 #endif
1379 };
1380 
1381 static int octeon_mgmt_probe(struct platform_device *pdev)
1382 {
1383 	struct net_device *netdev;
1384 	struct octeon_mgmt *p;
1385 	const __be32 *data;
1386 	const u8 *mac;
1387 	struct resource *res_mix;
1388 	struct resource *res_agl;
1389 	struct resource *res_agl_prt_ctl;
1390 	int len;
1391 	int result;
1392 
1393 	netdev = alloc_etherdev(sizeof(struct octeon_mgmt));
1394 	if (netdev == NULL)
1395 		return -ENOMEM;
1396 
1397 	SET_NETDEV_DEV(netdev, &pdev->dev);
1398 
1399 	platform_set_drvdata(pdev, netdev);
1400 	p = netdev_priv(netdev);
1401 	netif_napi_add(netdev, &p->napi, octeon_mgmt_napi_poll,
1402 		       OCTEON_MGMT_NAPI_WEIGHT);
1403 
1404 	p->netdev = netdev;
1405 	p->dev = &pdev->dev;
1406 	p->has_rx_tstamp = false;
1407 
1408 	data = of_get_property(pdev->dev.of_node, "cell-index", &len);
1409 	if (data && len == sizeof(*data)) {
1410 		p->port = be32_to_cpup(data);
1411 	} else {
1412 		dev_err(&pdev->dev, "no 'cell-index' property\n");
1413 		result = -ENXIO;
1414 		goto err;
1415 	}
1416 
1417 	snprintf(netdev->name, IFNAMSIZ, "mgmt%d", p->port);
1418 
1419 	result = platform_get_irq(pdev, 0);
1420 	if (result < 0)
1421 		goto err;
1422 
1423 	p->irq = result;
1424 
1425 	res_mix = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1426 	if (res_mix == NULL) {
1427 		dev_err(&pdev->dev, "no 'reg' resource\n");
1428 		result = -ENXIO;
1429 		goto err;
1430 	}
1431 
1432 	res_agl = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1433 	if (res_agl == NULL) {
1434 		dev_err(&pdev->dev, "no 'reg' resource\n");
1435 		result = -ENXIO;
1436 		goto err;
1437 	}
1438 
1439 	res_agl_prt_ctl = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1440 	if (res_agl_prt_ctl == NULL) {
1441 		dev_err(&pdev->dev, "no 'reg' resource\n");
1442 		result = -ENXIO;
1443 		goto err;
1444 	}
1445 
1446 	p->mix_phys = res_mix->start;
1447 	p->mix_size = resource_size(res_mix);
1448 	p->agl_phys = res_agl->start;
1449 	p->agl_size = resource_size(res_agl);
1450 	p->agl_prt_ctl_phys = res_agl_prt_ctl->start;
1451 	p->agl_prt_ctl_size = resource_size(res_agl_prt_ctl);
1452 
1453 
1454 	if (!devm_request_mem_region(&pdev->dev, p->mix_phys, p->mix_size,
1455 				     res_mix->name)) {
1456 		dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1457 			res_mix->name);
1458 		result = -ENXIO;
1459 		goto err;
1460 	}
1461 
1462 	if (!devm_request_mem_region(&pdev->dev, p->agl_phys, p->agl_size,
1463 				     res_agl->name)) {
1464 		result = -ENXIO;
1465 		dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1466 			res_agl->name);
1467 		goto err;
1468 	}
1469 
1470 	if (!devm_request_mem_region(&pdev->dev, p->agl_prt_ctl_phys,
1471 				     p->agl_prt_ctl_size, res_agl_prt_ctl->name)) {
1472 		result = -ENXIO;
1473 		dev_err(&pdev->dev, "request_mem_region (%s) failed\n",
1474 			res_agl_prt_ctl->name);
1475 		goto err;
1476 	}
1477 
1478 	p->mix = (u64)devm_ioremap(&pdev->dev, p->mix_phys, p->mix_size);
1479 	p->agl = (u64)devm_ioremap(&pdev->dev, p->agl_phys, p->agl_size);
1480 	p->agl_prt_ctl = (u64)devm_ioremap(&pdev->dev, p->agl_prt_ctl_phys,
1481 					   p->agl_prt_ctl_size);
1482 	if (!p->mix || !p->agl || !p->agl_prt_ctl) {
1483 		dev_err(&pdev->dev, "failed to map I/O memory\n");
1484 		result = -ENOMEM;
1485 		goto err;
1486 	}
1487 
1488 	spin_lock_init(&p->lock);
1489 
1490 	skb_queue_head_init(&p->tx_list);
1491 	skb_queue_head_init(&p->rx_list);
1492 	tasklet_init(&p->tx_clean_tasklet,
1493 		     octeon_mgmt_clean_tx_tasklet, (unsigned long)p);
1494 
1495 	netdev->priv_flags |= IFF_UNICAST_FLT;
1496 
1497 	netdev->netdev_ops = &octeon_mgmt_ops;
1498 	netdev->ethtool_ops = &octeon_mgmt_ethtool_ops;
1499 
1500 	netdev->min_mtu = 64 - OCTEON_MGMT_RX_HEADROOM;
1501 	netdev->max_mtu = 16383 - OCTEON_MGMT_RX_HEADROOM - VLAN_HLEN;
1502 
1503 	mac = of_get_mac_address(pdev->dev.of_node);
1504 
1505 	if (!IS_ERR(mac))
1506 		ether_addr_copy(netdev->dev_addr, mac);
1507 	else
1508 		eth_hw_addr_random(netdev);
1509 
1510 	p->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1511 
1512 	result = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1513 	if (result)
1514 		goto err;
1515 
1516 	netif_carrier_off(netdev);
1517 	result = register_netdev(netdev);
1518 	if (result)
1519 		goto err;
1520 
1521 	return 0;
1522 
1523 err:
1524 	of_node_put(p->phy_np);
1525 	free_netdev(netdev);
1526 	return result;
1527 }
1528 
1529 static int octeon_mgmt_remove(struct platform_device *pdev)
1530 {
1531 	struct net_device *netdev = platform_get_drvdata(pdev);
1532 	struct octeon_mgmt *p = netdev_priv(netdev);
1533 
1534 	unregister_netdev(netdev);
1535 	of_node_put(p->phy_np);
1536 	free_netdev(netdev);
1537 	return 0;
1538 }
1539 
1540 static const struct of_device_id octeon_mgmt_match[] = {
1541 	{
1542 		.compatible = "cavium,octeon-5750-mix",
1543 	},
1544 	{},
1545 };
1546 MODULE_DEVICE_TABLE(of, octeon_mgmt_match);
1547 
1548 static struct platform_driver octeon_mgmt_driver = {
1549 	.driver = {
1550 		.name		= "octeon_mgmt",
1551 		.of_match_table = octeon_mgmt_match,
1552 	},
1553 	.probe		= octeon_mgmt_probe,
1554 	.remove		= octeon_mgmt_remove,
1555 };
1556 
1557 extern void octeon_mdiobus_force_mod_depencency(void);
1558 
1559 static int __init octeon_mgmt_mod_init(void)
1560 {
1561 	/* Force our mdiobus driver module to be loaded first. */
1562 	octeon_mdiobus_force_mod_depencency();
1563 	return platform_driver_register(&octeon_mgmt_driver);
1564 }
1565 
1566 static void __exit octeon_mgmt_mod_exit(void)
1567 {
1568 	platform_driver_unregister(&octeon_mgmt_driver);
1569 }
1570 
1571 module_init(octeon_mgmt_mod_init);
1572 module_exit(octeon_mgmt_mod_exit);
1573 
1574 MODULE_DESCRIPTION(DRV_DESCRIPTION);
1575 MODULE_AUTHOR("David Daney");
1576 MODULE_LICENSE("GPL");
1577