1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2009-2012 Cavium, Inc 7 */ 8 9 #include <linux/platform_device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/etherdevice.h> 12 #include <linux/capability.h> 13 #include <linux/net_tstamp.h> 14 #include <linux/interrupt.h> 15 #include <linux/netdevice.h> 16 #include <linux/spinlock.h> 17 #include <linux/if_vlan.h> 18 #include <linux/of_mdio.h> 19 #include <linux/module.h> 20 #include <linux/of_net.h> 21 #include <linux/init.h> 22 #include <linux/slab.h> 23 #include <linux/phy.h> 24 #include <linux/io.h> 25 26 #include <asm/octeon/octeon.h> 27 #include <asm/octeon/cvmx-mixx-defs.h> 28 #include <asm/octeon/cvmx-agl-defs.h> 29 30 #define DRV_NAME "octeon_mgmt" 31 #define DRV_VERSION "2.0" 32 #define DRV_DESCRIPTION \ 33 "Cavium Networks Octeon MII (management) port Network Driver" 34 35 #define OCTEON_MGMT_NAPI_WEIGHT 16 36 37 /* Ring sizes that are powers of two allow for more efficient modulo 38 * opertions. 39 */ 40 #define OCTEON_MGMT_RX_RING_SIZE 512 41 #define OCTEON_MGMT_TX_RING_SIZE 128 42 43 /* Allow 8 bytes for vlan and FCS. */ 44 #define OCTEON_MGMT_RX_HEADROOM (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN) 45 46 union mgmt_port_ring_entry { 47 u64 d64; 48 struct { 49 #define RING_ENTRY_CODE_DONE 0xf 50 #define RING_ENTRY_CODE_MORE 0x10 51 #ifdef __BIG_ENDIAN_BITFIELD 52 u64 reserved_62_63:2; 53 /* Length of the buffer/packet in bytes */ 54 u64 len:14; 55 /* For TX, signals that the packet should be timestamped */ 56 u64 tstamp:1; 57 /* The RX error code */ 58 u64 code:7; 59 /* Physical address of the buffer */ 60 u64 addr:40; 61 #else 62 u64 addr:40; 63 u64 code:7; 64 u64 tstamp:1; 65 u64 len:14; 66 u64 reserved_62_63:2; 67 #endif 68 } s; 69 }; 70 71 #define MIX_ORING1 0x0 72 #define MIX_ORING2 0x8 73 #define MIX_IRING1 0x10 74 #define MIX_IRING2 0x18 75 #define MIX_CTL 0x20 76 #define MIX_IRHWM 0x28 77 #define MIX_IRCNT 0x30 78 #define MIX_ORHWM 0x38 79 #define MIX_ORCNT 0x40 80 #define MIX_ISR 0x48 81 #define MIX_INTENA 0x50 82 #define MIX_REMCNT 0x58 83 #define MIX_BIST 0x78 84 85 #define AGL_GMX_PRT_CFG 0x10 86 #define AGL_GMX_RX_FRM_CTL 0x18 87 #define AGL_GMX_RX_FRM_MAX 0x30 88 #define AGL_GMX_RX_JABBER 0x38 89 #define AGL_GMX_RX_STATS_CTL 0x50 90 91 #define AGL_GMX_RX_STATS_PKTS_DRP 0xb0 92 #define AGL_GMX_RX_STATS_OCTS_DRP 0xb8 93 #define AGL_GMX_RX_STATS_PKTS_BAD 0xc0 94 95 #define AGL_GMX_RX_ADR_CTL 0x100 96 #define AGL_GMX_RX_ADR_CAM_EN 0x108 97 #define AGL_GMX_RX_ADR_CAM0 0x180 98 #define AGL_GMX_RX_ADR_CAM1 0x188 99 #define AGL_GMX_RX_ADR_CAM2 0x190 100 #define AGL_GMX_RX_ADR_CAM3 0x198 101 #define AGL_GMX_RX_ADR_CAM4 0x1a0 102 #define AGL_GMX_RX_ADR_CAM5 0x1a8 103 104 #define AGL_GMX_TX_CLK 0x208 105 #define AGL_GMX_TX_STATS_CTL 0x268 106 #define AGL_GMX_TX_CTL 0x270 107 #define AGL_GMX_TX_STAT0 0x280 108 #define AGL_GMX_TX_STAT1 0x288 109 #define AGL_GMX_TX_STAT2 0x290 110 #define AGL_GMX_TX_STAT3 0x298 111 #define AGL_GMX_TX_STAT4 0x2a0 112 #define AGL_GMX_TX_STAT5 0x2a8 113 #define AGL_GMX_TX_STAT6 0x2b0 114 #define AGL_GMX_TX_STAT7 0x2b8 115 #define AGL_GMX_TX_STAT8 0x2c0 116 #define AGL_GMX_TX_STAT9 0x2c8 117 118 struct octeon_mgmt { 119 struct net_device *netdev; 120 u64 mix; 121 u64 agl; 122 u64 agl_prt_ctl; 123 int port; 124 int irq; 125 bool has_rx_tstamp; 126 u64 *tx_ring; 127 dma_addr_t tx_ring_handle; 128 unsigned int tx_next; 129 unsigned int tx_next_clean; 130 unsigned int tx_current_fill; 131 /* The tx_list lock also protects the ring related variables */ 132 struct sk_buff_head tx_list; 133 134 /* RX variables only touched in napi_poll. No locking necessary. */ 135 u64 *rx_ring; 136 dma_addr_t rx_ring_handle; 137 unsigned int rx_next; 138 unsigned int rx_next_fill; 139 unsigned int rx_current_fill; 140 struct sk_buff_head rx_list; 141 142 spinlock_t lock; 143 unsigned int last_duplex; 144 unsigned int last_link; 145 unsigned int last_speed; 146 struct device *dev; 147 struct napi_struct napi; 148 struct tasklet_struct tx_clean_tasklet; 149 struct phy_device *phydev; 150 struct device_node *phy_np; 151 resource_size_t mix_phys; 152 resource_size_t mix_size; 153 resource_size_t agl_phys; 154 resource_size_t agl_size; 155 resource_size_t agl_prt_ctl_phys; 156 resource_size_t agl_prt_ctl_size; 157 }; 158 159 static void octeon_mgmt_set_rx_irq(struct octeon_mgmt *p, int enable) 160 { 161 union cvmx_mixx_intena mix_intena; 162 unsigned long flags; 163 164 spin_lock_irqsave(&p->lock, flags); 165 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA); 166 mix_intena.s.ithena = enable ? 1 : 0; 167 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 168 spin_unlock_irqrestore(&p->lock, flags); 169 } 170 171 static void octeon_mgmt_set_tx_irq(struct octeon_mgmt *p, int enable) 172 { 173 union cvmx_mixx_intena mix_intena; 174 unsigned long flags; 175 176 spin_lock_irqsave(&p->lock, flags); 177 mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA); 178 mix_intena.s.othena = enable ? 1 : 0; 179 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 180 spin_unlock_irqrestore(&p->lock, flags); 181 } 182 183 static void octeon_mgmt_enable_rx_irq(struct octeon_mgmt *p) 184 { 185 octeon_mgmt_set_rx_irq(p, 1); 186 } 187 188 static void octeon_mgmt_disable_rx_irq(struct octeon_mgmt *p) 189 { 190 octeon_mgmt_set_rx_irq(p, 0); 191 } 192 193 static void octeon_mgmt_enable_tx_irq(struct octeon_mgmt *p) 194 { 195 octeon_mgmt_set_tx_irq(p, 1); 196 } 197 198 static void octeon_mgmt_disable_tx_irq(struct octeon_mgmt *p) 199 { 200 octeon_mgmt_set_tx_irq(p, 0); 201 } 202 203 static unsigned int ring_max_fill(unsigned int ring_size) 204 { 205 return ring_size - 8; 206 } 207 208 static unsigned int ring_size_to_bytes(unsigned int ring_size) 209 { 210 return ring_size * sizeof(union mgmt_port_ring_entry); 211 } 212 213 static void octeon_mgmt_rx_fill_ring(struct net_device *netdev) 214 { 215 struct octeon_mgmt *p = netdev_priv(netdev); 216 217 while (p->rx_current_fill < ring_max_fill(OCTEON_MGMT_RX_RING_SIZE)) { 218 unsigned int size; 219 union mgmt_port_ring_entry re; 220 struct sk_buff *skb; 221 222 /* CN56XX pass 1 needs 8 bytes of padding. */ 223 size = netdev->mtu + OCTEON_MGMT_RX_HEADROOM + 8 + NET_IP_ALIGN; 224 225 skb = netdev_alloc_skb(netdev, size); 226 if (!skb) 227 break; 228 skb_reserve(skb, NET_IP_ALIGN); 229 __skb_queue_tail(&p->rx_list, skb); 230 231 re.d64 = 0; 232 re.s.len = size; 233 re.s.addr = dma_map_single(p->dev, skb->data, 234 size, 235 DMA_FROM_DEVICE); 236 237 /* Put it in the ring. */ 238 p->rx_ring[p->rx_next_fill] = re.d64; 239 dma_sync_single_for_device(p->dev, p->rx_ring_handle, 240 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 241 DMA_BIDIRECTIONAL); 242 p->rx_next_fill = 243 (p->rx_next_fill + 1) % OCTEON_MGMT_RX_RING_SIZE; 244 p->rx_current_fill++; 245 /* Ring the bell. */ 246 cvmx_write_csr(p->mix + MIX_IRING2, 1); 247 } 248 } 249 250 static void octeon_mgmt_clean_tx_buffers(struct octeon_mgmt *p) 251 { 252 union cvmx_mixx_orcnt mix_orcnt; 253 union mgmt_port_ring_entry re; 254 struct sk_buff *skb; 255 int cleaned = 0; 256 unsigned long flags; 257 258 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 259 while (mix_orcnt.s.orcnt) { 260 spin_lock_irqsave(&p->tx_list.lock, flags); 261 262 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 263 264 if (mix_orcnt.s.orcnt == 0) { 265 spin_unlock_irqrestore(&p->tx_list.lock, flags); 266 break; 267 } 268 269 dma_sync_single_for_cpu(p->dev, p->tx_ring_handle, 270 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 271 DMA_BIDIRECTIONAL); 272 273 re.d64 = p->tx_ring[p->tx_next_clean]; 274 p->tx_next_clean = 275 (p->tx_next_clean + 1) % OCTEON_MGMT_TX_RING_SIZE; 276 skb = __skb_dequeue(&p->tx_list); 277 278 mix_orcnt.u64 = 0; 279 mix_orcnt.s.orcnt = 1; 280 281 /* Acknowledge to hardware that we have the buffer. */ 282 cvmx_write_csr(p->mix + MIX_ORCNT, mix_orcnt.u64); 283 p->tx_current_fill--; 284 285 spin_unlock_irqrestore(&p->tx_list.lock, flags); 286 287 dma_unmap_single(p->dev, re.s.addr, re.s.len, 288 DMA_TO_DEVICE); 289 290 /* Read the hardware TX timestamp if one was recorded */ 291 if (unlikely(re.s.tstamp)) { 292 struct skb_shared_hwtstamps ts; 293 u64 ns; 294 295 memset(&ts, 0, sizeof(ts)); 296 /* Read the timestamp */ 297 ns = cvmx_read_csr(CVMX_MIXX_TSTAMP(p->port)); 298 /* Remove the timestamp from the FIFO */ 299 cvmx_write_csr(CVMX_MIXX_TSCTL(p->port), 0); 300 /* Tell the kernel about the timestamp */ 301 ts.hwtstamp = ns_to_ktime(ns); 302 skb_tstamp_tx(skb, &ts); 303 } 304 305 dev_kfree_skb_any(skb); 306 cleaned++; 307 308 mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); 309 } 310 311 if (cleaned && netif_queue_stopped(p->netdev)) 312 netif_wake_queue(p->netdev); 313 } 314 315 static void octeon_mgmt_clean_tx_tasklet(unsigned long arg) 316 { 317 struct octeon_mgmt *p = (struct octeon_mgmt *)arg; 318 octeon_mgmt_clean_tx_buffers(p); 319 octeon_mgmt_enable_tx_irq(p); 320 } 321 322 static void octeon_mgmt_update_rx_stats(struct net_device *netdev) 323 { 324 struct octeon_mgmt *p = netdev_priv(netdev); 325 unsigned long flags; 326 u64 drop, bad; 327 328 /* These reads also clear the count registers. */ 329 drop = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP); 330 bad = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD); 331 332 if (drop || bad) { 333 /* Do an atomic update. */ 334 spin_lock_irqsave(&p->lock, flags); 335 netdev->stats.rx_errors += bad; 336 netdev->stats.rx_dropped += drop; 337 spin_unlock_irqrestore(&p->lock, flags); 338 } 339 } 340 341 static void octeon_mgmt_update_tx_stats(struct net_device *netdev) 342 { 343 struct octeon_mgmt *p = netdev_priv(netdev); 344 unsigned long flags; 345 346 union cvmx_agl_gmx_txx_stat0 s0; 347 union cvmx_agl_gmx_txx_stat1 s1; 348 349 /* These reads also clear the count registers. */ 350 s0.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT0); 351 s1.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT1); 352 353 if (s0.s.xsdef || s0.s.xscol || s1.s.scol || s1.s.mcol) { 354 /* Do an atomic update. */ 355 spin_lock_irqsave(&p->lock, flags); 356 netdev->stats.tx_errors += s0.s.xsdef + s0.s.xscol; 357 netdev->stats.collisions += s1.s.scol + s1.s.mcol; 358 spin_unlock_irqrestore(&p->lock, flags); 359 } 360 } 361 362 /* 363 * Dequeue a receive skb and its corresponding ring entry. The ring 364 * entry is returned, *pskb is updated to point to the skb. 365 */ 366 static u64 octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt *p, 367 struct sk_buff **pskb) 368 { 369 union mgmt_port_ring_entry re; 370 371 dma_sync_single_for_cpu(p->dev, p->rx_ring_handle, 372 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 373 DMA_BIDIRECTIONAL); 374 375 re.d64 = p->rx_ring[p->rx_next]; 376 p->rx_next = (p->rx_next + 1) % OCTEON_MGMT_RX_RING_SIZE; 377 p->rx_current_fill--; 378 *pskb = __skb_dequeue(&p->rx_list); 379 380 dma_unmap_single(p->dev, re.s.addr, 381 ETH_FRAME_LEN + OCTEON_MGMT_RX_HEADROOM, 382 DMA_FROM_DEVICE); 383 384 return re.d64; 385 } 386 387 388 static int octeon_mgmt_receive_one(struct octeon_mgmt *p) 389 { 390 struct net_device *netdev = p->netdev; 391 union cvmx_mixx_ircnt mix_ircnt; 392 union mgmt_port_ring_entry re; 393 struct sk_buff *skb; 394 struct sk_buff *skb2; 395 struct sk_buff *skb_new; 396 union mgmt_port_ring_entry re2; 397 int rc = 1; 398 399 400 re.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb); 401 if (likely(re.s.code == RING_ENTRY_CODE_DONE)) { 402 /* A good packet, send it up. */ 403 skb_put(skb, re.s.len); 404 good: 405 /* Process the RX timestamp if it was recorded */ 406 if (p->has_rx_tstamp) { 407 /* The first 8 bytes are the timestamp */ 408 u64 ns = *(u64 *)skb->data; 409 struct skb_shared_hwtstamps *ts; 410 ts = skb_hwtstamps(skb); 411 ts->hwtstamp = ns_to_ktime(ns); 412 __skb_pull(skb, 8); 413 } 414 skb->protocol = eth_type_trans(skb, netdev); 415 netdev->stats.rx_packets++; 416 netdev->stats.rx_bytes += skb->len; 417 netif_receive_skb(skb); 418 rc = 0; 419 } else if (re.s.code == RING_ENTRY_CODE_MORE) { 420 /* Packet split across skbs. This can happen if we 421 * increase the MTU. Buffers that are already in the 422 * rx ring can then end up being too small. As the rx 423 * ring is refilled, buffers sized for the new MTU 424 * will be used and we should go back to the normal 425 * non-split case. 426 */ 427 skb_put(skb, re.s.len); 428 do { 429 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2); 430 if (re2.s.code != RING_ENTRY_CODE_MORE 431 && re2.s.code != RING_ENTRY_CODE_DONE) 432 goto split_error; 433 skb_put(skb2, re2.s.len); 434 skb_new = skb_copy_expand(skb, 0, skb2->len, 435 GFP_ATOMIC); 436 if (!skb_new) 437 goto split_error; 438 if (skb_copy_bits(skb2, 0, skb_tail_pointer(skb_new), 439 skb2->len)) 440 goto split_error; 441 skb_put(skb_new, skb2->len); 442 dev_kfree_skb_any(skb); 443 dev_kfree_skb_any(skb2); 444 skb = skb_new; 445 } while (re2.s.code == RING_ENTRY_CODE_MORE); 446 goto good; 447 } else { 448 /* Some other error, discard it. */ 449 dev_kfree_skb_any(skb); 450 /* Error statistics are accumulated in 451 * octeon_mgmt_update_rx_stats. 452 */ 453 } 454 goto done; 455 split_error: 456 /* Discard the whole mess. */ 457 dev_kfree_skb_any(skb); 458 dev_kfree_skb_any(skb2); 459 while (re2.s.code == RING_ENTRY_CODE_MORE) { 460 re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2); 461 dev_kfree_skb_any(skb2); 462 } 463 netdev->stats.rx_errors++; 464 465 done: 466 /* Tell the hardware we processed a packet. */ 467 mix_ircnt.u64 = 0; 468 mix_ircnt.s.ircnt = 1; 469 cvmx_write_csr(p->mix + MIX_IRCNT, mix_ircnt.u64); 470 return rc; 471 } 472 473 static int octeon_mgmt_receive_packets(struct octeon_mgmt *p, int budget) 474 { 475 unsigned int work_done = 0; 476 union cvmx_mixx_ircnt mix_ircnt; 477 int rc; 478 479 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT); 480 while (work_done < budget && mix_ircnt.s.ircnt) { 481 482 rc = octeon_mgmt_receive_one(p); 483 if (!rc) 484 work_done++; 485 486 /* Check for more packets. */ 487 mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT); 488 } 489 490 octeon_mgmt_rx_fill_ring(p->netdev); 491 492 return work_done; 493 } 494 495 static int octeon_mgmt_napi_poll(struct napi_struct *napi, int budget) 496 { 497 struct octeon_mgmt *p = container_of(napi, struct octeon_mgmt, napi); 498 struct net_device *netdev = p->netdev; 499 unsigned int work_done = 0; 500 501 work_done = octeon_mgmt_receive_packets(p, budget); 502 503 if (work_done < budget) { 504 /* We stopped because no more packets were available. */ 505 napi_complete(napi); 506 octeon_mgmt_enable_rx_irq(p); 507 } 508 octeon_mgmt_update_rx_stats(netdev); 509 510 return work_done; 511 } 512 513 /* Reset the hardware to clean state. */ 514 static void octeon_mgmt_reset_hw(struct octeon_mgmt *p) 515 { 516 union cvmx_mixx_ctl mix_ctl; 517 union cvmx_mixx_bist mix_bist; 518 union cvmx_agl_gmx_bist agl_gmx_bist; 519 520 mix_ctl.u64 = 0; 521 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 522 do { 523 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 524 } while (mix_ctl.s.busy); 525 mix_ctl.s.reset = 1; 526 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 527 cvmx_read_csr(p->mix + MIX_CTL); 528 octeon_io_clk_delay(64); 529 530 mix_bist.u64 = cvmx_read_csr(p->mix + MIX_BIST); 531 if (mix_bist.u64) 532 dev_warn(p->dev, "MIX failed BIST (0x%016llx)\n", 533 (unsigned long long)mix_bist.u64); 534 535 agl_gmx_bist.u64 = cvmx_read_csr(CVMX_AGL_GMX_BIST); 536 if (agl_gmx_bist.u64) 537 dev_warn(p->dev, "AGL failed BIST (0x%016llx)\n", 538 (unsigned long long)agl_gmx_bist.u64); 539 } 540 541 struct octeon_mgmt_cam_state { 542 u64 cam[6]; 543 u64 cam_mask; 544 int cam_index; 545 }; 546 547 static void octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state *cs, 548 unsigned char *addr) 549 { 550 int i; 551 552 for (i = 0; i < 6; i++) 553 cs->cam[i] |= (u64)addr[i] << (8 * (cs->cam_index)); 554 cs->cam_mask |= (1ULL << cs->cam_index); 555 cs->cam_index++; 556 } 557 558 static void octeon_mgmt_set_rx_filtering(struct net_device *netdev) 559 { 560 struct octeon_mgmt *p = netdev_priv(netdev); 561 union cvmx_agl_gmx_rxx_adr_ctl adr_ctl; 562 union cvmx_agl_gmx_prtx_cfg agl_gmx_prtx; 563 unsigned long flags; 564 unsigned int prev_packet_enable; 565 unsigned int cam_mode = 1; /* 1 - Accept on CAM match */ 566 unsigned int multicast_mode = 1; /* 1 - Reject all multicast. */ 567 struct octeon_mgmt_cam_state cam_state; 568 struct netdev_hw_addr *ha; 569 int available_cam_entries; 570 571 memset(&cam_state, 0, sizeof(cam_state)); 572 573 if ((netdev->flags & IFF_PROMISC) || netdev->uc.count > 7) { 574 cam_mode = 0; 575 available_cam_entries = 8; 576 } else { 577 /* One CAM entry for the primary address, leaves seven 578 * for the secondary addresses. 579 */ 580 available_cam_entries = 7 - netdev->uc.count; 581 } 582 583 if (netdev->flags & IFF_MULTICAST) { 584 if (cam_mode == 0 || (netdev->flags & IFF_ALLMULTI) || 585 netdev_mc_count(netdev) > available_cam_entries) 586 multicast_mode = 2; /* 2 - Accept all multicast. */ 587 else 588 multicast_mode = 0; /* 0 - Use CAM. */ 589 } 590 591 if (cam_mode == 1) { 592 /* Add primary address. */ 593 octeon_mgmt_cam_state_add(&cam_state, netdev->dev_addr); 594 netdev_for_each_uc_addr(ha, netdev) 595 octeon_mgmt_cam_state_add(&cam_state, ha->addr); 596 } 597 if (multicast_mode == 0) { 598 netdev_for_each_mc_addr(ha, netdev) 599 octeon_mgmt_cam_state_add(&cam_state, ha->addr); 600 } 601 602 spin_lock_irqsave(&p->lock, flags); 603 604 /* Disable packet I/O. */ 605 agl_gmx_prtx.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 606 prev_packet_enable = agl_gmx_prtx.s.en; 607 agl_gmx_prtx.s.en = 0; 608 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64); 609 610 adr_ctl.u64 = 0; 611 adr_ctl.s.cam_mode = cam_mode; 612 adr_ctl.s.mcst = multicast_mode; 613 adr_ctl.s.bcst = 1; /* Allow broadcast */ 614 615 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CTL, adr_ctl.u64); 616 617 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM0, cam_state.cam[0]); 618 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM1, cam_state.cam[1]); 619 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM2, cam_state.cam[2]); 620 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM3, cam_state.cam[3]); 621 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM4, cam_state.cam[4]); 622 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM5, cam_state.cam[5]); 623 cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM_EN, cam_state.cam_mask); 624 625 /* Restore packet I/O. */ 626 agl_gmx_prtx.s.en = prev_packet_enable; 627 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64); 628 629 spin_unlock_irqrestore(&p->lock, flags); 630 } 631 632 static int octeon_mgmt_set_mac_address(struct net_device *netdev, void *addr) 633 { 634 int r = eth_mac_addr(netdev, addr); 635 636 if (r) 637 return r; 638 639 octeon_mgmt_set_rx_filtering(netdev); 640 641 return 0; 642 } 643 644 static int octeon_mgmt_change_mtu(struct net_device *netdev, int new_mtu) 645 { 646 struct octeon_mgmt *p = netdev_priv(netdev); 647 int size_without_fcs = new_mtu + OCTEON_MGMT_RX_HEADROOM; 648 649 /* Limit the MTU to make sure the ethernet packets are between 650 * 64 bytes and 16383 bytes. 651 */ 652 if (size_without_fcs < 64 || size_without_fcs > 16383) { 653 dev_warn(p->dev, "MTU must be between %d and %d.\n", 654 64 - OCTEON_MGMT_RX_HEADROOM, 655 16383 - OCTEON_MGMT_RX_HEADROOM); 656 return -EINVAL; 657 } 658 659 netdev->mtu = new_mtu; 660 661 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_MAX, size_without_fcs); 662 cvmx_write_csr(p->agl + AGL_GMX_RX_JABBER, 663 (size_without_fcs + 7) & 0xfff8); 664 665 return 0; 666 } 667 668 static irqreturn_t octeon_mgmt_interrupt(int cpl, void *dev_id) 669 { 670 struct net_device *netdev = dev_id; 671 struct octeon_mgmt *p = netdev_priv(netdev); 672 union cvmx_mixx_isr mixx_isr; 673 674 mixx_isr.u64 = cvmx_read_csr(p->mix + MIX_ISR); 675 676 /* Clear any pending interrupts */ 677 cvmx_write_csr(p->mix + MIX_ISR, mixx_isr.u64); 678 cvmx_read_csr(p->mix + MIX_ISR); 679 680 if (mixx_isr.s.irthresh) { 681 octeon_mgmt_disable_rx_irq(p); 682 napi_schedule(&p->napi); 683 } 684 if (mixx_isr.s.orthresh) { 685 octeon_mgmt_disable_tx_irq(p); 686 tasklet_schedule(&p->tx_clean_tasklet); 687 } 688 689 return IRQ_HANDLED; 690 } 691 692 static int octeon_mgmt_ioctl_hwtstamp(struct net_device *netdev, 693 struct ifreq *rq, int cmd) 694 { 695 struct octeon_mgmt *p = netdev_priv(netdev); 696 struct hwtstamp_config config; 697 union cvmx_mio_ptp_clock_cfg ptp; 698 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl; 699 bool have_hw_timestamps = false; 700 701 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 702 return -EFAULT; 703 704 if (config.flags) /* reserved for future extensions */ 705 return -EINVAL; 706 707 /* Check the status of hardware for tiemstamps */ 708 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 709 /* Get the current state of the PTP clock */ 710 ptp.u64 = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_CFG); 711 if (!ptp.s.ext_clk_en) { 712 /* The clock has not been configured to use an 713 * external source. Program it to use the main clock 714 * reference. 715 */ 716 u64 clock_comp = (NSEC_PER_SEC << 32) / octeon_get_io_clock_rate(); 717 if (!ptp.s.ptp_en) 718 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_COMP, clock_comp); 719 pr_info("PTP Clock: Using sclk reference at %lld Hz\n", 720 (NSEC_PER_SEC << 32) / clock_comp); 721 } else { 722 /* The clock is already programmed to use a GPIO */ 723 u64 clock_comp = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_COMP); 724 pr_info("PTP Clock: Using GPIO %d at %lld Hz\n", 725 ptp.s.ext_clk_in, 726 (NSEC_PER_SEC << 32) / clock_comp); 727 } 728 729 /* Enable the clock if it wasn't done already */ 730 if (!ptp.s.ptp_en) { 731 ptp.s.ptp_en = 1; 732 cvmx_write_csr(CVMX_MIO_PTP_CLOCK_CFG, ptp.u64); 733 } 734 have_hw_timestamps = true; 735 } 736 737 if (!have_hw_timestamps) 738 return -EINVAL; 739 740 switch (config.tx_type) { 741 case HWTSTAMP_TX_OFF: 742 case HWTSTAMP_TX_ON: 743 break; 744 default: 745 return -ERANGE; 746 } 747 748 switch (config.rx_filter) { 749 case HWTSTAMP_FILTER_NONE: 750 p->has_rx_tstamp = false; 751 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL); 752 rxx_frm_ctl.s.ptp_mode = 0; 753 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 754 break; 755 case HWTSTAMP_FILTER_ALL: 756 case HWTSTAMP_FILTER_SOME: 757 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 758 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 759 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 760 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 761 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 762 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 763 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 764 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 765 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 766 case HWTSTAMP_FILTER_PTP_V2_EVENT: 767 case HWTSTAMP_FILTER_PTP_V2_SYNC: 768 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 769 p->has_rx_tstamp = have_hw_timestamps; 770 config.rx_filter = HWTSTAMP_FILTER_ALL; 771 if (p->has_rx_tstamp) { 772 rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL); 773 rxx_frm_ctl.s.ptp_mode = 1; 774 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 775 } 776 break; 777 default: 778 return -ERANGE; 779 } 780 781 if (copy_to_user(rq->ifr_data, &config, sizeof(config))) 782 return -EFAULT; 783 784 return 0; 785 } 786 787 static int octeon_mgmt_ioctl(struct net_device *netdev, 788 struct ifreq *rq, int cmd) 789 { 790 struct octeon_mgmt *p = netdev_priv(netdev); 791 792 switch (cmd) { 793 case SIOCSHWTSTAMP: 794 return octeon_mgmt_ioctl_hwtstamp(netdev, rq, cmd); 795 default: 796 if (p->phydev) 797 return phy_mii_ioctl(p->phydev, rq, cmd); 798 return -EINVAL; 799 } 800 } 801 802 static void octeon_mgmt_disable_link(struct octeon_mgmt *p) 803 { 804 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 805 806 /* Disable GMX before we make any changes. */ 807 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 808 prtx_cfg.s.en = 0; 809 prtx_cfg.s.tx_en = 0; 810 prtx_cfg.s.rx_en = 0; 811 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 812 813 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 814 int i; 815 for (i = 0; i < 10; i++) { 816 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 817 if (prtx_cfg.s.tx_idle == 1 || prtx_cfg.s.rx_idle == 1) 818 break; 819 mdelay(1); 820 i++; 821 } 822 } 823 } 824 825 static void octeon_mgmt_enable_link(struct octeon_mgmt *p) 826 { 827 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 828 829 /* Restore the GMX enable state only if link is set */ 830 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 831 prtx_cfg.s.tx_en = 1; 832 prtx_cfg.s.rx_en = 1; 833 prtx_cfg.s.en = 1; 834 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 835 } 836 837 static void octeon_mgmt_update_link(struct octeon_mgmt *p) 838 { 839 union cvmx_agl_gmx_prtx_cfg prtx_cfg; 840 841 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 842 843 if (!p->phydev->link) 844 prtx_cfg.s.duplex = 1; 845 else 846 prtx_cfg.s.duplex = p->phydev->duplex; 847 848 switch (p->phydev->speed) { 849 case 10: 850 prtx_cfg.s.speed = 0; 851 prtx_cfg.s.slottime = 0; 852 853 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 854 prtx_cfg.s.burst = 1; 855 prtx_cfg.s.speed_msb = 1; 856 } 857 break; 858 case 100: 859 prtx_cfg.s.speed = 0; 860 prtx_cfg.s.slottime = 0; 861 862 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 863 prtx_cfg.s.burst = 1; 864 prtx_cfg.s.speed_msb = 0; 865 } 866 break; 867 case 1000: 868 /* 1000 MBits is only supported on 6XXX chips */ 869 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 870 prtx_cfg.s.speed = 1; 871 prtx_cfg.s.speed_msb = 0; 872 /* Only matters for half-duplex */ 873 prtx_cfg.s.slottime = 1; 874 prtx_cfg.s.burst = p->phydev->duplex; 875 } 876 break; 877 case 0: /* No link */ 878 default: 879 break; 880 } 881 882 /* Write the new GMX setting with the port still disabled. */ 883 cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); 884 885 /* Read GMX CFG again to make sure the config is completed. */ 886 prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); 887 888 if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { 889 union cvmx_agl_gmx_txx_clk agl_clk; 890 union cvmx_agl_prtx_ctl prtx_ctl; 891 892 prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 893 agl_clk.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_CLK); 894 /* MII (both speeds) and RGMII 1000 speed. */ 895 agl_clk.s.clk_cnt = 1; 896 if (prtx_ctl.s.mode == 0) { /* RGMII mode */ 897 if (p->phydev->speed == 10) 898 agl_clk.s.clk_cnt = 50; 899 else if (p->phydev->speed == 100) 900 agl_clk.s.clk_cnt = 5; 901 } 902 cvmx_write_csr(p->agl + AGL_GMX_TX_CLK, agl_clk.u64); 903 } 904 } 905 906 static void octeon_mgmt_adjust_link(struct net_device *netdev) 907 { 908 struct octeon_mgmt *p = netdev_priv(netdev); 909 unsigned long flags; 910 int link_changed = 0; 911 912 if (!p->phydev) 913 return; 914 915 spin_lock_irqsave(&p->lock, flags); 916 917 918 if (!p->phydev->link && p->last_link) 919 link_changed = -1; 920 921 if (p->phydev->link 922 && (p->last_duplex != p->phydev->duplex 923 || p->last_link != p->phydev->link 924 || p->last_speed != p->phydev->speed)) { 925 octeon_mgmt_disable_link(p); 926 link_changed = 1; 927 octeon_mgmt_update_link(p); 928 octeon_mgmt_enable_link(p); 929 } 930 931 p->last_link = p->phydev->link; 932 p->last_speed = p->phydev->speed; 933 p->last_duplex = p->phydev->duplex; 934 935 spin_unlock_irqrestore(&p->lock, flags); 936 937 if (link_changed != 0) { 938 if (link_changed > 0) { 939 pr_info("%s: Link is up - %d/%s\n", netdev->name, 940 p->phydev->speed, 941 DUPLEX_FULL == p->phydev->duplex ? 942 "Full" : "Half"); 943 } else { 944 pr_info("%s: Link is down\n", netdev->name); 945 } 946 } 947 } 948 949 static int octeon_mgmt_init_phy(struct net_device *netdev) 950 { 951 struct octeon_mgmt *p = netdev_priv(netdev); 952 953 if (octeon_is_simulation() || p->phy_np == NULL) { 954 /* No PHYs in the simulator. */ 955 netif_carrier_on(netdev); 956 return 0; 957 } 958 959 p->phydev = of_phy_connect(netdev, p->phy_np, 960 octeon_mgmt_adjust_link, 0, 961 PHY_INTERFACE_MODE_MII); 962 963 if (!p->phydev) 964 return -ENODEV; 965 966 return 0; 967 } 968 969 static int octeon_mgmt_open(struct net_device *netdev) 970 { 971 struct octeon_mgmt *p = netdev_priv(netdev); 972 union cvmx_mixx_ctl mix_ctl; 973 union cvmx_agl_gmx_inf_mode agl_gmx_inf_mode; 974 union cvmx_mixx_oring1 oring1; 975 union cvmx_mixx_iring1 iring1; 976 union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl; 977 union cvmx_mixx_irhwm mix_irhwm; 978 union cvmx_mixx_orhwm mix_orhwm; 979 union cvmx_mixx_intena mix_intena; 980 struct sockaddr sa; 981 982 /* Allocate ring buffers. */ 983 p->tx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 984 GFP_KERNEL); 985 if (!p->tx_ring) 986 return -ENOMEM; 987 p->tx_ring_handle = 988 dma_map_single(p->dev, p->tx_ring, 989 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 990 DMA_BIDIRECTIONAL); 991 p->tx_next = 0; 992 p->tx_next_clean = 0; 993 p->tx_current_fill = 0; 994 995 996 p->rx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 997 GFP_KERNEL); 998 if (!p->rx_ring) 999 goto err_nomem; 1000 p->rx_ring_handle = 1001 dma_map_single(p->dev, p->rx_ring, 1002 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1003 DMA_BIDIRECTIONAL); 1004 1005 p->rx_next = 0; 1006 p->rx_next_fill = 0; 1007 p->rx_current_fill = 0; 1008 1009 octeon_mgmt_reset_hw(p); 1010 1011 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 1012 1013 /* Bring it out of reset if needed. */ 1014 if (mix_ctl.s.reset) { 1015 mix_ctl.s.reset = 0; 1016 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 1017 do { 1018 mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); 1019 } while (mix_ctl.s.reset); 1020 } 1021 1022 if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) { 1023 agl_gmx_inf_mode.u64 = 0; 1024 agl_gmx_inf_mode.s.en = 1; 1025 cvmx_write_csr(CVMX_AGL_GMX_INF_MODE, agl_gmx_inf_mode.u64); 1026 } 1027 if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X) 1028 || OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) { 1029 /* Force compensation values, as they are not 1030 * determined properly by HW 1031 */ 1032 union cvmx_agl_gmx_drv_ctl drv_ctl; 1033 1034 drv_ctl.u64 = cvmx_read_csr(CVMX_AGL_GMX_DRV_CTL); 1035 if (p->port) { 1036 drv_ctl.s.byp_en1 = 1; 1037 drv_ctl.s.nctl1 = 6; 1038 drv_ctl.s.pctl1 = 6; 1039 } else { 1040 drv_ctl.s.byp_en = 1; 1041 drv_ctl.s.nctl = 6; 1042 drv_ctl.s.pctl = 6; 1043 } 1044 cvmx_write_csr(CVMX_AGL_GMX_DRV_CTL, drv_ctl.u64); 1045 } 1046 1047 oring1.u64 = 0; 1048 oring1.s.obase = p->tx_ring_handle >> 3; 1049 oring1.s.osize = OCTEON_MGMT_TX_RING_SIZE; 1050 cvmx_write_csr(p->mix + MIX_ORING1, oring1.u64); 1051 1052 iring1.u64 = 0; 1053 iring1.s.ibase = p->rx_ring_handle >> 3; 1054 iring1.s.isize = OCTEON_MGMT_RX_RING_SIZE; 1055 cvmx_write_csr(p->mix + MIX_IRING1, iring1.u64); 1056 1057 memcpy(sa.sa_data, netdev->dev_addr, ETH_ALEN); 1058 octeon_mgmt_set_mac_address(netdev, &sa); 1059 1060 octeon_mgmt_change_mtu(netdev, netdev->mtu); 1061 1062 /* Enable the port HW. Packets are not allowed until 1063 * cvmx_mgmt_port_enable() is called. 1064 */ 1065 mix_ctl.u64 = 0; 1066 mix_ctl.s.crc_strip = 1; /* Strip the ending CRC */ 1067 mix_ctl.s.en = 1; /* Enable the port */ 1068 mix_ctl.s.nbtarb = 0; /* Arbitration mode */ 1069 /* MII CB-request FIFO programmable high watermark */ 1070 mix_ctl.s.mrq_hwm = 1; 1071 #ifdef __LITTLE_ENDIAN 1072 mix_ctl.s.lendian = 1; 1073 #endif 1074 cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); 1075 1076 /* Read the PHY to find the mode of the interface. */ 1077 if (octeon_mgmt_init_phy(netdev)) { 1078 dev_err(p->dev, "Cannot initialize PHY on MIX%d.\n", p->port); 1079 goto err_noirq; 1080 } 1081 1082 /* Set the mode of the interface, RGMII/MII. */ 1083 if (OCTEON_IS_MODEL(OCTEON_CN6XXX) && p->phydev) { 1084 union cvmx_agl_prtx_ctl agl_prtx_ctl; 1085 int rgmii_mode = (p->phydev->supported & 1086 (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)) != 0; 1087 1088 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1089 agl_prtx_ctl.s.mode = rgmii_mode ? 0 : 1; 1090 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1091 1092 /* MII clocks counts are based on the 125Mhz 1093 * reference, which has an 8nS period. So our delays 1094 * need to be multiplied by this factor. 1095 */ 1096 #define NS_PER_PHY_CLK 8 1097 1098 /* Take the DLL and clock tree out of reset */ 1099 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1100 agl_prtx_ctl.s.clkrst = 0; 1101 if (rgmii_mode) { 1102 agl_prtx_ctl.s.dllrst = 0; 1103 agl_prtx_ctl.s.clktx_byp = 0; 1104 } 1105 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1106 cvmx_read_csr(p->agl_prt_ctl); /* Force write out before wait */ 1107 1108 /* Wait for the DLL to lock. External 125 MHz 1109 * reference clock must be stable at this point. 1110 */ 1111 ndelay(256 * NS_PER_PHY_CLK); 1112 1113 /* Enable the interface */ 1114 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1115 agl_prtx_ctl.s.enable = 1; 1116 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1117 1118 /* Read the value back to force the previous write */ 1119 agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); 1120 1121 /* Enable the compensation controller */ 1122 agl_prtx_ctl.s.comp = 1; 1123 agl_prtx_ctl.s.drv_byp = 0; 1124 cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); 1125 /* Force write out before wait. */ 1126 cvmx_read_csr(p->agl_prt_ctl); 1127 1128 /* For compensation state to lock. */ 1129 ndelay(1040 * NS_PER_PHY_CLK); 1130 1131 /* Default Interframe Gaps are too small. Recommended 1132 * workaround is. 1133 * 1134 * AGL_GMX_TX_IFG[IFG1]=14 1135 * AGL_GMX_TX_IFG[IFG2]=10 1136 */ 1137 cvmx_write_csr(CVMX_AGL_GMX_TX_IFG, 0xae); 1138 } 1139 1140 octeon_mgmt_rx_fill_ring(netdev); 1141 1142 /* Clear statistics. */ 1143 /* Clear on read. */ 1144 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_CTL, 1); 1145 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP, 0); 1146 cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD, 0); 1147 1148 cvmx_write_csr(p->agl + AGL_GMX_TX_STATS_CTL, 1); 1149 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT0, 0); 1150 cvmx_write_csr(p->agl + AGL_GMX_TX_STAT1, 0); 1151 1152 /* Clear any pending interrupts */ 1153 cvmx_write_csr(p->mix + MIX_ISR, cvmx_read_csr(p->mix + MIX_ISR)); 1154 1155 if (request_irq(p->irq, octeon_mgmt_interrupt, 0, netdev->name, 1156 netdev)) { 1157 dev_err(p->dev, "request_irq(%d) failed.\n", p->irq); 1158 goto err_noirq; 1159 } 1160 1161 /* Interrupt every single RX packet */ 1162 mix_irhwm.u64 = 0; 1163 mix_irhwm.s.irhwm = 0; 1164 cvmx_write_csr(p->mix + MIX_IRHWM, mix_irhwm.u64); 1165 1166 /* Interrupt when we have 1 or more packets to clean. */ 1167 mix_orhwm.u64 = 0; 1168 mix_orhwm.s.orhwm = 0; 1169 cvmx_write_csr(p->mix + MIX_ORHWM, mix_orhwm.u64); 1170 1171 /* Enable receive and transmit interrupts */ 1172 mix_intena.u64 = 0; 1173 mix_intena.s.ithena = 1; 1174 mix_intena.s.othena = 1; 1175 cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); 1176 1177 /* Enable packet I/O. */ 1178 1179 rxx_frm_ctl.u64 = 0; 1180 rxx_frm_ctl.s.ptp_mode = p->has_rx_tstamp ? 1 : 0; 1181 rxx_frm_ctl.s.pre_align = 1; 1182 /* When set, disables the length check for non-min sized pkts 1183 * with padding in the client data. 1184 */ 1185 rxx_frm_ctl.s.pad_len = 1; 1186 /* When set, disables the length check for VLAN pkts */ 1187 rxx_frm_ctl.s.vlan_len = 1; 1188 /* When set, PREAMBLE checking is less strict */ 1189 rxx_frm_ctl.s.pre_free = 1; 1190 /* Control Pause Frames can match station SMAC */ 1191 rxx_frm_ctl.s.ctl_smac = 0; 1192 /* Control Pause Frames can match globally assign Multicast address */ 1193 rxx_frm_ctl.s.ctl_mcst = 1; 1194 /* Forward pause information to TX block */ 1195 rxx_frm_ctl.s.ctl_bck = 1; 1196 /* Drop Control Pause Frames */ 1197 rxx_frm_ctl.s.ctl_drp = 1; 1198 /* Strip off the preamble */ 1199 rxx_frm_ctl.s.pre_strp = 1; 1200 /* This port is configured to send PREAMBLE+SFD to begin every 1201 * frame. GMX checks that the PREAMBLE is sent correctly. 1202 */ 1203 rxx_frm_ctl.s.pre_chk = 1; 1204 cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); 1205 1206 /* Configure the port duplex, speed and enables */ 1207 octeon_mgmt_disable_link(p); 1208 if (p->phydev) 1209 octeon_mgmt_update_link(p); 1210 octeon_mgmt_enable_link(p); 1211 1212 p->last_link = 0; 1213 p->last_speed = 0; 1214 /* PHY is not present in simulator. The carrier is enabled 1215 * while initializing the phy for simulator, leave it enabled. 1216 */ 1217 if (p->phydev) { 1218 netif_carrier_off(netdev); 1219 phy_start_aneg(p->phydev); 1220 } 1221 1222 netif_wake_queue(netdev); 1223 napi_enable(&p->napi); 1224 1225 return 0; 1226 err_noirq: 1227 octeon_mgmt_reset_hw(p); 1228 dma_unmap_single(p->dev, p->rx_ring_handle, 1229 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1230 DMA_BIDIRECTIONAL); 1231 kfree(p->rx_ring); 1232 err_nomem: 1233 dma_unmap_single(p->dev, p->tx_ring_handle, 1234 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1235 DMA_BIDIRECTIONAL); 1236 kfree(p->tx_ring); 1237 return -ENOMEM; 1238 } 1239 1240 static int octeon_mgmt_stop(struct net_device *netdev) 1241 { 1242 struct octeon_mgmt *p = netdev_priv(netdev); 1243 1244 napi_disable(&p->napi); 1245 netif_stop_queue(netdev); 1246 1247 if (p->phydev) 1248 phy_disconnect(p->phydev); 1249 p->phydev = NULL; 1250 1251 netif_carrier_off(netdev); 1252 1253 octeon_mgmt_reset_hw(p); 1254 1255 free_irq(p->irq, netdev); 1256 1257 /* dma_unmap is a nop on Octeon, so just free everything. */ 1258 skb_queue_purge(&p->tx_list); 1259 skb_queue_purge(&p->rx_list); 1260 1261 dma_unmap_single(p->dev, p->rx_ring_handle, 1262 ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), 1263 DMA_BIDIRECTIONAL); 1264 kfree(p->rx_ring); 1265 1266 dma_unmap_single(p->dev, p->tx_ring_handle, 1267 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1268 DMA_BIDIRECTIONAL); 1269 kfree(p->tx_ring); 1270 1271 return 0; 1272 } 1273 1274 static int octeon_mgmt_xmit(struct sk_buff *skb, struct net_device *netdev) 1275 { 1276 struct octeon_mgmt *p = netdev_priv(netdev); 1277 union mgmt_port_ring_entry re; 1278 unsigned long flags; 1279 int rv = NETDEV_TX_BUSY; 1280 1281 re.d64 = 0; 1282 re.s.tstamp = ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) != 0); 1283 re.s.len = skb->len; 1284 re.s.addr = dma_map_single(p->dev, skb->data, 1285 skb->len, 1286 DMA_TO_DEVICE); 1287 1288 spin_lock_irqsave(&p->tx_list.lock, flags); 1289 1290 if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE) - 1)) { 1291 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1292 netif_stop_queue(netdev); 1293 spin_lock_irqsave(&p->tx_list.lock, flags); 1294 } 1295 1296 if (unlikely(p->tx_current_fill >= 1297 ring_max_fill(OCTEON_MGMT_TX_RING_SIZE))) { 1298 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1299 dma_unmap_single(p->dev, re.s.addr, re.s.len, 1300 DMA_TO_DEVICE); 1301 goto out; 1302 } 1303 1304 __skb_queue_tail(&p->tx_list, skb); 1305 1306 /* Put it in the ring. */ 1307 p->tx_ring[p->tx_next] = re.d64; 1308 p->tx_next = (p->tx_next + 1) % OCTEON_MGMT_TX_RING_SIZE; 1309 p->tx_current_fill++; 1310 1311 spin_unlock_irqrestore(&p->tx_list.lock, flags); 1312 1313 dma_sync_single_for_device(p->dev, p->tx_ring_handle, 1314 ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), 1315 DMA_BIDIRECTIONAL); 1316 1317 netdev->stats.tx_packets++; 1318 netdev->stats.tx_bytes += skb->len; 1319 1320 /* Ring the bell. */ 1321 cvmx_write_csr(p->mix + MIX_ORING2, 1); 1322 1323 netif_trans_update(netdev); 1324 rv = NETDEV_TX_OK; 1325 out: 1326 octeon_mgmt_update_tx_stats(netdev); 1327 return rv; 1328 } 1329 1330 #ifdef CONFIG_NET_POLL_CONTROLLER 1331 static void octeon_mgmt_poll_controller(struct net_device *netdev) 1332 { 1333 struct octeon_mgmt *p = netdev_priv(netdev); 1334 1335 octeon_mgmt_receive_packets(p, 16); 1336 octeon_mgmt_update_rx_stats(netdev); 1337 } 1338 #endif 1339 1340 static void octeon_mgmt_get_drvinfo(struct net_device *netdev, 1341 struct ethtool_drvinfo *info) 1342 { 1343 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1344 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1345 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 1346 strlcpy(info->bus_info, "N/A", sizeof(info->bus_info)); 1347 } 1348 1349 static int octeon_mgmt_get_settings(struct net_device *netdev, 1350 struct ethtool_cmd *cmd) 1351 { 1352 struct octeon_mgmt *p = netdev_priv(netdev); 1353 1354 if (p->phydev) 1355 return phy_ethtool_gset(p->phydev, cmd); 1356 1357 return -EOPNOTSUPP; 1358 } 1359 1360 static int octeon_mgmt_set_settings(struct net_device *netdev, 1361 struct ethtool_cmd *cmd) 1362 { 1363 struct octeon_mgmt *p = netdev_priv(netdev); 1364 1365 if (!capable(CAP_NET_ADMIN)) 1366 return -EPERM; 1367 1368 if (p->phydev) 1369 return phy_ethtool_sset(p->phydev, cmd); 1370 1371 return -EOPNOTSUPP; 1372 } 1373 1374 static int octeon_mgmt_nway_reset(struct net_device *dev) 1375 { 1376 struct octeon_mgmt *p = netdev_priv(dev); 1377 1378 if (!capable(CAP_NET_ADMIN)) 1379 return -EPERM; 1380 1381 if (p->phydev) 1382 return phy_start_aneg(p->phydev); 1383 1384 return -EOPNOTSUPP; 1385 } 1386 1387 static const struct ethtool_ops octeon_mgmt_ethtool_ops = { 1388 .get_drvinfo = octeon_mgmt_get_drvinfo, 1389 .get_settings = octeon_mgmt_get_settings, 1390 .set_settings = octeon_mgmt_set_settings, 1391 .nway_reset = octeon_mgmt_nway_reset, 1392 .get_link = ethtool_op_get_link, 1393 }; 1394 1395 static const struct net_device_ops octeon_mgmt_ops = { 1396 .ndo_open = octeon_mgmt_open, 1397 .ndo_stop = octeon_mgmt_stop, 1398 .ndo_start_xmit = octeon_mgmt_xmit, 1399 .ndo_set_rx_mode = octeon_mgmt_set_rx_filtering, 1400 .ndo_set_mac_address = octeon_mgmt_set_mac_address, 1401 .ndo_do_ioctl = octeon_mgmt_ioctl, 1402 .ndo_change_mtu = octeon_mgmt_change_mtu, 1403 #ifdef CONFIG_NET_POLL_CONTROLLER 1404 .ndo_poll_controller = octeon_mgmt_poll_controller, 1405 #endif 1406 }; 1407 1408 static int octeon_mgmt_probe(struct platform_device *pdev) 1409 { 1410 struct net_device *netdev; 1411 struct octeon_mgmt *p; 1412 const __be32 *data; 1413 const u8 *mac; 1414 struct resource *res_mix; 1415 struct resource *res_agl; 1416 struct resource *res_agl_prt_ctl; 1417 int len; 1418 int result; 1419 1420 netdev = alloc_etherdev(sizeof(struct octeon_mgmt)); 1421 if (netdev == NULL) 1422 return -ENOMEM; 1423 1424 SET_NETDEV_DEV(netdev, &pdev->dev); 1425 1426 platform_set_drvdata(pdev, netdev); 1427 p = netdev_priv(netdev); 1428 netif_napi_add(netdev, &p->napi, octeon_mgmt_napi_poll, 1429 OCTEON_MGMT_NAPI_WEIGHT); 1430 1431 p->netdev = netdev; 1432 p->dev = &pdev->dev; 1433 p->has_rx_tstamp = false; 1434 1435 data = of_get_property(pdev->dev.of_node, "cell-index", &len); 1436 if (data && len == sizeof(*data)) { 1437 p->port = be32_to_cpup(data); 1438 } else { 1439 dev_err(&pdev->dev, "no 'cell-index' property\n"); 1440 result = -ENXIO; 1441 goto err; 1442 } 1443 1444 snprintf(netdev->name, IFNAMSIZ, "mgmt%d", p->port); 1445 1446 result = platform_get_irq(pdev, 0); 1447 if (result < 0) 1448 goto err; 1449 1450 p->irq = result; 1451 1452 res_mix = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1453 if (res_mix == NULL) { 1454 dev_err(&pdev->dev, "no 'reg' resource\n"); 1455 result = -ENXIO; 1456 goto err; 1457 } 1458 1459 res_agl = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1460 if (res_agl == NULL) { 1461 dev_err(&pdev->dev, "no 'reg' resource\n"); 1462 result = -ENXIO; 1463 goto err; 1464 } 1465 1466 res_agl_prt_ctl = platform_get_resource(pdev, IORESOURCE_MEM, 3); 1467 if (res_agl_prt_ctl == NULL) { 1468 dev_err(&pdev->dev, "no 'reg' resource\n"); 1469 result = -ENXIO; 1470 goto err; 1471 } 1472 1473 p->mix_phys = res_mix->start; 1474 p->mix_size = resource_size(res_mix); 1475 p->agl_phys = res_agl->start; 1476 p->agl_size = resource_size(res_agl); 1477 p->agl_prt_ctl_phys = res_agl_prt_ctl->start; 1478 p->agl_prt_ctl_size = resource_size(res_agl_prt_ctl); 1479 1480 1481 if (!devm_request_mem_region(&pdev->dev, p->mix_phys, p->mix_size, 1482 res_mix->name)) { 1483 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1484 res_mix->name); 1485 result = -ENXIO; 1486 goto err; 1487 } 1488 1489 if (!devm_request_mem_region(&pdev->dev, p->agl_phys, p->agl_size, 1490 res_agl->name)) { 1491 result = -ENXIO; 1492 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1493 res_agl->name); 1494 goto err; 1495 } 1496 1497 if (!devm_request_mem_region(&pdev->dev, p->agl_prt_ctl_phys, 1498 p->agl_prt_ctl_size, res_agl_prt_ctl->name)) { 1499 result = -ENXIO; 1500 dev_err(&pdev->dev, "request_mem_region (%s) failed\n", 1501 res_agl_prt_ctl->name); 1502 goto err; 1503 } 1504 1505 p->mix = (u64)devm_ioremap(&pdev->dev, p->mix_phys, p->mix_size); 1506 p->agl = (u64)devm_ioremap(&pdev->dev, p->agl_phys, p->agl_size); 1507 p->agl_prt_ctl = (u64)devm_ioremap(&pdev->dev, p->agl_prt_ctl_phys, 1508 p->agl_prt_ctl_size); 1509 spin_lock_init(&p->lock); 1510 1511 skb_queue_head_init(&p->tx_list); 1512 skb_queue_head_init(&p->rx_list); 1513 tasklet_init(&p->tx_clean_tasklet, 1514 octeon_mgmt_clean_tx_tasklet, (unsigned long)p); 1515 1516 netdev->priv_flags |= IFF_UNICAST_FLT; 1517 1518 netdev->netdev_ops = &octeon_mgmt_ops; 1519 netdev->ethtool_ops = &octeon_mgmt_ethtool_ops; 1520 1521 mac = of_get_mac_address(pdev->dev.of_node); 1522 1523 if (mac) 1524 memcpy(netdev->dev_addr, mac, ETH_ALEN); 1525 else 1526 eth_hw_addr_random(netdev); 1527 1528 p->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 1529 1530 result = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1531 if (result) 1532 goto err; 1533 1534 netif_carrier_off(netdev); 1535 result = register_netdev(netdev); 1536 if (result) 1537 goto err; 1538 1539 dev_info(&pdev->dev, "Version " DRV_VERSION "\n"); 1540 return 0; 1541 1542 err: 1543 free_netdev(netdev); 1544 return result; 1545 } 1546 1547 static int octeon_mgmt_remove(struct platform_device *pdev) 1548 { 1549 struct net_device *netdev = platform_get_drvdata(pdev); 1550 1551 unregister_netdev(netdev); 1552 free_netdev(netdev); 1553 return 0; 1554 } 1555 1556 static const struct of_device_id octeon_mgmt_match[] = { 1557 { 1558 .compatible = "cavium,octeon-5750-mix", 1559 }, 1560 {}, 1561 }; 1562 MODULE_DEVICE_TABLE(of, octeon_mgmt_match); 1563 1564 static struct platform_driver octeon_mgmt_driver = { 1565 .driver = { 1566 .name = "octeon_mgmt", 1567 .of_match_table = octeon_mgmt_match, 1568 }, 1569 .probe = octeon_mgmt_probe, 1570 .remove = octeon_mgmt_remove, 1571 }; 1572 1573 extern void octeon_mdiobus_force_mod_depencency(void); 1574 1575 static int __init octeon_mgmt_mod_init(void) 1576 { 1577 /* Force our mdiobus driver module to be loaded first. */ 1578 octeon_mdiobus_force_mod_depencency(); 1579 return platform_driver_register(&octeon_mgmt_driver); 1580 } 1581 1582 static void __exit octeon_mgmt_mod_exit(void) 1583 { 1584 platform_driver_unregister(&octeon_mgmt_driver); 1585 } 1586 1587 module_init(octeon_mgmt_mod_init); 1588 module_exit(octeon_mgmt_mod_exit); 1589 1590 MODULE_DESCRIPTION(DRV_DESCRIPTION); 1591 MODULE_AUTHOR("David Daney"); 1592 MODULE_LICENSE("GPL"); 1593 MODULE_VERSION(DRV_VERSION); 1594