1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2015 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more 17 * details. 18 * 19 * This file may also be available under a different license from Cavium. 20 * Contact Cavium, Inc. for more information 21 **********************************************************************/ 22 #include <linux/version.h> 23 #include <linux/types.h> 24 #include <linux/list.h> 25 #include <linux/interrupt.h> 26 #include <linux/pci.h> 27 #include <linux/crc32.h> 28 #include <linux/kthread.h> 29 #include <linux/netdevice.h> 30 #include <linux/vmalloc.h> 31 #include "octeon_config.h" 32 #include "liquidio_common.h" 33 #include "octeon_droq.h" 34 #include "octeon_iq.h" 35 #include "response_manager.h" 36 #include "octeon_device.h" 37 #include "octeon_nic.h" 38 #include "octeon_main.h" 39 #include "octeon_network.h" 40 #include "cn66xx_regs.h" 41 #include "cn66xx_device.h" 42 #include "cn68xx_regs.h" 43 #include "cn68xx_device.h" 44 #include "liquidio_image.h" 45 #include "octeon_mem_ops.h" 46 47 /** Default configuration 48 * for CN66XX OCTEON Models. 49 */ 50 static struct octeon_config default_cn66xx_conf = { 51 .card_type = LIO_210SV, 52 .card_name = LIO_210SV_NAME, 53 54 /** IQ attributes */ 55 .iq = { 56 .max_iqs = CN6XXX_CFG_IO_QUEUES, 57 .pending_list_size = 58 (CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES), 59 .instr_type = OCTEON_64BYTE_INSTR, 60 .db_min = CN6XXX_DB_MIN, 61 .db_timeout = CN6XXX_DB_TIMEOUT, 62 } 63 , 64 65 /** OQ attributes */ 66 .oq = { 67 .max_oqs = CN6XXX_CFG_IO_QUEUES, 68 .info_ptr = OCTEON_OQ_INFOPTR_MODE, 69 .refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD, 70 .oq_intr_pkt = CN6XXX_OQ_INTR_PKT, 71 .oq_intr_time = CN6XXX_OQ_INTR_TIME, 72 .pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR, 73 } 74 , 75 76 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_66XX, 77 .num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 78 .num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 79 .def_rx_buf_size = CN6XXX_OQ_BUF_SIZE, 80 81 /* For ethernet interface 0: Port cfg Attributes */ 82 .nic_if_cfg[0] = { 83 /* Max Txqs: Half for each of the two ports :max_iq/2 */ 84 .max_txqs = MAX_TXQS_PER_INTF, 85 86 /* Actual configured value. Range could be: 1...max_txqs */ 87 .num_txqs = DEF_TXQS_PER_INTF, 88 89 /* Max Rxqs: Half for each of the two ports :max_oq/2 */ 90 .max_rxqs = MAX_RXQS_PER_INTF, 91 92 /* Actual configured value. Range could be: 1...max_rxqs */ 93 .num_rxqs = DEF_RXQS_PER_INTF, 94 95 /* Num of desc for rx rings */ 96 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 97 98 /* Num of desc for tx rings */ 99 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 100 101 /* SKB size, We need not change buf size even for Jumbo frames. 102 * Octeon can send jumbo frames in 4 consecutive descriptors, 103 */ 104 .rx_buf_size = CN6XXX_OQ_BUF_SIZE, 105 106 .base_queue = BASE_QUEUE_NOT_REQUESTED, 107 108 .gmx_port_id = 0, 109 }, 110 111 .nic_if_cfg[1] = { 112 /* Max Txqs: Half for each of the two ports :max_iq/2 */ 113 .max_txqs = MAX_TXQS_PER_INTF, 114 115 /* Actual configured value. Range could be: 1...max_txqs */ 116 .num_txqs = DEF_TXQS_PER_INTF, 117 118 /* Max Rxqs: Half for each of the two ports :max_oq/2 */ 119 .max_rxqs = MAX_RXQS_PER_INTF, 120 121 /* Actual configured value. Range could be: 1...max_rxqs */ 122 .num_rxqs = DEF_RXQS_PER_INTF, 123 124 /* Num of desc for rx rings */ 125 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 126 127 /* Num of desc for tx rings */ 128 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 129 130 /* SKB size, We need not change buf size even for Jumbo frames. 131 * Octeon can send jumbo frames in 4 consecutive descriptors, 132 */ 133 .rx_buf_size = CN6XXX_OQ_BUF_SIZE, 134 135 .base_queue = BASE_QUEUE_NOT_REQUESTED, 136 137 .gmx_port_id = 1, 138 }, 139 140 /** Miscellaneous attributes */ 141 .misc = { 142 /* Host driver link query interval */ 143 .oct_link_query_interval = 100, 144 145 /* Octeon link query interval */ 146 .host_link_query_interval = 500, 147 148 .enable_sli_oq_bp = 0, 149 150 /* Control queue group */ 151 .ctrlq_grp = 1, 152 } 153 , 154 }; 155 156 /** Default configuration 157 * for CN68XX OCTEON Model. 158 */ 159 160 static struct octeon_config default_cn68xx_conf = { 161 .card_type = LIO_410NV, 162 .card_name = LIO_410NV_NAME, 163 164 /** IQ attributes */ 165 .iq = { 166 .max_iqs = CN6XXX_CFG_IO_QUEUES, 167 .pending_list_size = 168 (CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES), 169 .instr_type = OCTEON_64BYTE_INSTR, 170 .db_min = CN6XXX_DB_MIN, 171 .db_timeout = CN6XXX_DB_TIMEOUT, 172 } 173 , 174 175 /** OQ attributes */ 176 .oq = { 177 .max_oqs = CN6XXX_CFG_IO_QUEUES, 178 .info_ptr = OCTEON_OQ_INFOPTR_MODE, 179 .refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD, 180 .oq_intr_pkt = CN6XXX_OQ_INTR_PKT, 181 .oq_intr_time = CN6XXX_OQ_INTR_TIME, 182 .pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR, 183 } 184 , 185 186 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_68XX, 187 .num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 188 .num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 189 .def_rx_buf_size = CN6XXX_OQ_BUF_SIZE, 190 191 .nic_if_cfg[0] = { 192 /* Max Txqs: Half for each of the two ports :max_iq/2 */ 193 .max_txqs = MAX_TXQS_PER_INTF, 194 195 /* Actual configured value. Range could be: 1...max_txqs */ 196 .num_txqs = DEF_TXQS_PER_INTF, 197 198 /* Max Rxqs: Half for each of the two ports :max_oq/2 */ 199 .max_rxqs = MAX_RXQS_PER_INTF, 200 201 /* Actual configured value. Range could be: 1...max_rxqs */ 202 .num_rxqs = DEF_RXQS_PER_INTF, 203 204 /* Num of desc for rx rings */ 205 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 206 207 /* Num of desc for tx rings */ 208 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 209 210 /* SKB size, We need not change buf size even for Jumbo frames. 211 * Octeon can send jumbo frames in 4 consecutive descriptors, 212 */ 213 .rx_buf_size = CN6XXX_OQ_BUF_SIZE, 214 215 .base_queue = BASE_QUEUE_NOT_REQUESTED, 216 217 .gmx_port_id = 0, 218 }, 219 220 .nic_if_cfg[1] = { 221 /* Max Txqs: Half for each of the two ports :max_iq/2 */ 222 .max_txqs = MAX_TXQS_PER_INTF, 223 224 /* Actual configured value. Range could be: 1...max_txqs */ 225 .num_txqs = DEF_TXQS_PER_INTF, 226 227 /* Max Rxqs: Half for each of the two ports :max_oq/2 */ 228 .max_rxqs = MAX_RXQS_PER_INTF, 229 230 /* Actual configured value. Range could be: 1...max_rxqs */ 231 .num_rxqs = DEF_RXQS_PER_INTF, 232 233 /* Num of desc for rx rings */ 234 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 235 236 /* Num of desc for tx rings */ 237 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 238 239 /* SKB size, We need not change buf size even for Jumbo frames. 240 * Octeon can send jumbo frames in 4 consecutive descriptors, 241 */ 242 .rx_buf_size = CN6XXX_OQ_BUF_SIZE, 243 244 .base_queue = BASE_QUEUE_NOT_REQUESTED, 245 246 .gmx_port_id = 1, 247 }, 248 249 .nic_if_cfg[2] = { 250 /* Max Txqs: Half for each of the two ports :max_iq/2 */ 251 .max_txqs = MAX_TXQS_PER_INTF, 252 253 /* Actual configured value. Range could be: 1...max_txqs */ 254 .num_txqs = DEF_TXQS_PER_INTF, 255 256 /* Max Rxqs: Half for each of the two ports :max_oq/2 */ 257 .max_rxqs = MAX_RXQS_PER_INTF, 258 259 /* Actual configured value. Range could be: 1...max_rxqs */ 260 .num_rxqs = DEF_RXQS_PER_INTF, 261 262 /* Num of desc for rx rings */ 263 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 264 265 /* Num of desc for tx rings */ 266 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 267 268 /* SKB size, We need not change buf size even for Jumbo frames. 269 * Octeon can send jumbo frames in 4 consecutive descriptors, 270 */ 271 .rx_buf_size = CN6XXX_OQ_BUF_SIZE, 272 273 .base_queue = BASE_QUEUE_NOT_REQUESTED, 274 275 .gmx_port_id = 2, 276 }, 277 278 .nic_if_cfg[3] = { 279 /* Max Txqs: Half for each of the two ports :max_iq/2 */ 280 .max_txqs = MAX_TXQS_PER_INTF, 281 282 /* Actual configured value. Range could be: 1...max_txqs */ 283 .num_txqs = DEF_TXQS_PER_INTF, 284 285 /* Max Rxqs: Half for each of the two ports :max_oq/2 */ 286 .max_rxqs = MAX_RXQS_PER_INTF, 287 288 /* Actual configured value. Range could be: 1...max_rxqs */ 289 .num_rxqs = DEF_RXQS_PER_INTF, 290 291 /* Num of desc for rx rings */ 292 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 293 294 /* Num of desc for tx rings */ 295 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 296 297 /* SKB size, We need not change buf size even for Jumbo frames. 298 * Octeon can send jumbo frames in 4 consecutive descriptors, 299 */ 300 .rx_buf_size = CN6XXX_OQ_BUF_SIZE, 301 302 .base_queue = BASE_QUEUE_NOT_REQUESTED, 303 304 .gmx_port_id = 3, 305 }, 306 307 /** Miscellaneous attributes */ 308 .misc = { 309 /* Host driver link query interval */ 310 .oct_link_query_interval = 100, 311 312 /* Octeon link query interval */ 313 .host_link_query_interval = 500, 314 315 .enable_sli_oq_bp = 0, 316 317 /* Control queue group */ 318 .ctrlq_grp = 1, 319 } 320 , 321 }; 322 323 /** Default configuration 324 * for CN68XX OCTEON Model. 325 */ 326 static struct octeon_config default_cn68xx_210nv_conf = { 327 .card_type = LIO_210NV, 328 .card_name = LIO_210NV_NAME, 329 330 /** IQ attributes */ 331 332 .iq = { 333 .max_iqs = CN6XXX_CFG_IO_QUEUES, 334 .pending_list_size = 335 (CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES), 336 .instr_type = OCTEON_64BYTE_INSTR, 337 .db_min = CN6XXX_DB_MIN, 338 .db_timeout = CN6XXX_DB_TIMEOUT, 339 } 340 , 341 342 /** OQ attributes */ 343 .oq = { 344 .max_oqs = CN6XXX_CFG_IO_QUEUES, 345 .info_ptr = OCTEON_OQ_INFOPTR_MODE, 346 .refill_threshold = CN6XXX_OQ_REFIL_THRESHOLD, 347 .oq_intr_pkt = CN6XXX_OQ_INTR_PKT, 348 .oq_intr_time = CN6XXX_OQ_INTR_TIME, 349 .pkts_per_intr = CN6XXX_OQ_PKTSPER_INTR, 350 } 351 , 352 353 .num_nic_ports = DEFAULT_NUM_NIC_PORTS_68XX_210NV, 354 .num_def_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 355 .num_def_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 356 .def_rx_buf_size = CN6XXX_OQ_BUF_SIZE, 357 358 .nic_if_cfg[0] = { 359 /* Max Txqs: Half for each of the two ports :max_iq/2 */ 360 .max_txqs = MAX_TXQS_PER_INTF, 361 362 /* Actual configured value. Range could be: 1...max_txqs */ 363 .num_txqs = DEF_TXQS_PER_INTF, 364 365 /* Max Rxqs: Half for each of the two ports :max_oq/2 */ 366 .max_rxqs = MAX_RXQS_PER_INTF, 367 368 /* Actual configured value. Range could be: 1...max_rxqs */ 369 .num_rxqs = DEF_RXQS_PER_INTF, 370 371 /* Num of desc for rx rings */ 372 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 373 374 /* Num of desc for tx rings */ 375 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 376 377 /* SKB size, We need not change buf size even for Jumbo frames. 378 * Octeon can send jumbo frames in 4 consecutive descriptors, 379 */ 380 .rx_buf_size = CN6XXX_OQ_BUF_SIZE, 381 382 .base_queue = BASE_QUEUE_NOT_REQUESTED, 383 384 .gmx_port_id = 0, 385 }, 386 387 .nic_if_cfg[1] = { 388 /* Max Txqs: Half for each of the two ports :max_iq/2 */ 389 .max_txqs = MAX_TXQS_PER_INTF, 390 391 /* Actual configured value. Range could be: 1...max_txqs */ 392 .num_txqs = DEF_TXQS_PER_INTF, 393 394 /* Max Rxqs: Half for each of the two ports :max_oq/2 */ 395 .max_rxqs = MAX_RXQS_PER_INTF, 396 397 /* Actual configured value. Range could be: 1...max_rxqs */ 398 .num_rxqs = DEF_RXQS_PER_INTF, 399 400 /* Num of desc for rx rings */ 401 .num_rx_descs = CN6XXX_MAX_OQ_DESCRIPTORS, 402 403 /* Num of desc for tx rings */ 404 .num_tx_descs = CN6XXX_MAX_IQ_DESCRIPTORS, 405 406 /* SKB size, We need not change buf size even for Jumbo frames. 407 * Octeon can send jumbo frames in 4 consecutive descriptors, 408 */ 409 .rx_buf_size = CN6XXX_OQ_BUF_SIZE, 410 411 .base_queue = BASE_QUEUE_NOT_REQUESTED, 412 413 .gmx_port_id = 1, 414 }, 415 416 /** Miscellaneous attributes */ 417 .misc = { 418 /* Host driver link query interval */ 419 .oct_link_query_interval = 100, 420 421 /* Octeon link query interval */ 422 .host_link_query_interval = 500, 423 424 .enable_sli_oq_bp = 0, 425 426 /* Control queue group */ 427 .ctrlq_grp = 1, 428 } 429 , 430 }; 431 432 enum { 433 OCTEON_CONFIG_TYPE_DEFAULT = 0, 434 NUM_OCTEON_CONFS, 435 }; 436 437 static struct octeon_config_ptr { 438 u32 conf_type; 439 } oct_conf_info[MAX_OCTEON_DEVICES] = { 440 { 441 OCTEON_CONFIG_TYPE_DEFAULT, 442 }, { 443 OCTEON_CONFIG_TYPE_DEFAULT, 444 }, { 445 OCTEON_CONFIG_TYPE_DEFAULT, 446 }, { 447 OCTEON_CONFIG_TYPE_DEFAULT, 448 }, 449 }; 450 451 static char oct_dev_state_str[OCT_DEV_STATES + 1][32] = { 452 "BEGIN", "PCI-MAP-DONE", "DISPATCH-INIT-DONE", 453 "IQ-INIT-DONE", "SCBUFF-POOL-INIT-DONE", "RESPLIST-INIT-DONE", 454 "DROQ-INIT-DONE", "IO-QUEUES-INIT-DONE", "CONSOLE-INIT-DONE", 455 "HOST-READY", "CORE-READY", "RUNNING", "IN-RESET", 456 "INVALID" 457 }; 458 459 static char oct_dev_app_str[CVM_DRV_APP_COUNT + 1][32] = { 460 "BASE", "NIC", "UNKNOWN"}; 461 462 static struct octeon_device *octeon_device[MAX_OCTEON_DEVICES]; 463 static u32 octeon_device_count; 464 465 static struct octeon_core_setup core_setup[MAX_OCTEON_DEVICES]; 466 467 static void oct_set_config_info(int oct_id, int conf_type) 468 { 469 if (conf_type < 0 || conf_type > (NUM_OCTEON_CONFS - 1)) 470 conf_type = OCTEON_CONFIG_TYPE_DEFAULT; 471 oct_conf_info[oct_id].conf_type = conf_type; 472 } 473 474 void octeon_init_device_list(int conf_type) 475 { 476 int i; 477 478 memset(octeon_device, 0, (sizeof(void *) * MAX_OCTEON_DEVICES)); 479 for (i = 0; i < MAX_OCTEON_DEVICES; i++) 480 oct_set_config_info(i, conf_type); 481 } 482 483 static void *__retrieve_octeon_config_info(struct octeon_device *oct, 484 u16 card_type) 485 { 486 u32 oct_id = oct->octeon_id; 487 void *ret = NULL; 488 489 switch (oct_conf_info[oct_id].conf_type) { 490 case OCTEON_CONFIG_TYPE_DEFAULT: 491 if (oct->chip_id == OCTEON_CN66XX) { 492 ret = (void *)&default_cn66xx_conf; 493 } else if ((oct->chip_id == OCTEON_CN68XX) && 494 (card_type == LIO_210NV)) { 495 ret = (void *)&default_cn68xx_210nv_conf; 496 } else if ((oct->chip_id == OCTEON_CN68XX) && 497 (card_type == LIO_410NV)) { 498 ret = (void *)&default_cn68xx_conf; 499 } 500 break; 501 default: 502 break; 503 } 504 return ret; 505 } 506 507 static int __verify_octeon_config_info(struct octeon_device *oct, void *conf) 508 { 509 switch (oct->chip_id) { 510 case OCTEON_CN66XX: 511 case OCTEON_CN68XX: 512 return lio_validate_cn6xxx_config_info(oct, conf); 513 514 default: 515 break; 516 } 517 518 return 1; 519 } 520 521 void *oct_get_config_info(struct octeon_device *oct, u16 card_type) 522 { 523 void *conf = NULL; 524 525 conf = __retrieve_octeon_config_info(oct, card_type); 526 if (!conf) 527 return NULL; 528 529 if (__verify_octeon_config_info(oct, conf)) { 530 dev_err(&oct->pci_dev->dev, "Configuration verification failed\n"); 531 return NULL; 532 } 533 534 return conf; 535 } 536 537 char *lio_get_state_string(atomic_t *state_ptr) 538 { 539 s32 istate = (s32)atomic_read(state_ptr); 540 541 if (istate > OCT_DEV_STATES || istate < 0) 542 return oct_dev_state_str[OCT_DEV_STATE_INVALID]; 543 return oct_dev_state_str[istate]; 544 } 545 546 static char *get_oct_app_string(u32 app_mode) 547 { 548 if (app_mode <= CVM_DRV_APP_END) 549 return oct_dev_app_str[app_mode - CVM_DRV_APP_START]; 550 return oct_dev_app_str[CVM_DRV_INVALID_APP - CVM_DRV_APP_START]; 551 } 552 553 int octeon_download_firmware(struct octeon_device *oct, const u8 *data, 554 size_t size) 555 { 556 int ret = 0; 557 u8 *p; 558 u8 *buffer; 559 u32 crc32_result; 560 u64 load_addr; 561 u32 image_len; 562 struct octeon_firmware_file_header *h; 563 u32 i; 564 565 if (size < sizeof(struct octeon_firmware_file_header)) { 566 dev_err(&oct->pci_dev->dev, "Firmware file too small (%d < %d).\n", 567 (u32)size, 568 (u32)sizeof(struct octeon_firmware_file_header)); 569 return -EINVAL; 570 } 571 572 h = (struct octeon_firmware_file_header *)data; 573 574 if (be32_to_cpu(h->magic) != LIO_NIC_MAGIC) { 575 dev_err(&oct->pci_dev->dev, "Unrecognized firmware file.\n"); 576 return -EINVAL; 577 } 578 579 crc32_result = 580 crc32(~0, data, 581 sizeof(struct octeon_firmware_file_header) - 582 sizeof(u32)) ^ ~0U; 583 if (crc32_result != be32_to_cpu(h->crc32)) { 584 dev_err(&oct->pci_dev->dev, "Firmware CRC mismatch (0x%08x != 0x%08x).\n", 585 crc32_result, be32_to_cpu(h->crc32)); 586 return -EINVAL; 587 } 588 589 if (memcmp(LIQUIDIO_VERSION, h->version, strlen(LIQUIDIO_VERSION))) { 590 dev_err(&oct->pci_dev->dev, "Unmatched firmware version. Expected %s, got %s.\n", 591 LIQUIDIO_VERSION, h->version); 592 return -EINVAL; 593 } 594 595 if (be32_to_cpu(h->num_images) > LIO_MAX_IMAGES) { 596 dev_err(&oct->pci_dev->dev, "Too many images in firmware file (%d).\n", 597 be32_to_cpu(h->num_images)); 598 return -EINVAL; 599 } 600 601 dev_info(&oct->pci_dev->dev, "Firmware version: %s\n", h->version); 602 snprintf(oct->fw_info.liquidio_firmware_version, 32, "LIQUIDIO: %s", 603 h->version); 604 605 buffer = kmalloc(size, GFP_KERNEL); 606 if (!buffer) 607 return -ENOMEM; 608 609 memcpy(buffer, data, size); 610 611 p = buffer + sizeof(struct octeon_firmware_file_header); 612 613 /* load all images */ 614 for (i = 0; i < be32_to_cpu(h->num_images); i++) { 615 load_addr = be64_to_cpu(h->desc[i].addr); 616 image_len = be32_to_cpu(h->desc[i].len); 617 618 /* validate the image */ 619 crc32_result = crc32(~0, p, image_len) ^ ~0U; 620 if (crc32_result != be32_to_cpu(h->desc[i].crc32)) { 621 dev_err(&oct->pci_dev->dev, 622 "Firmware CRC mismatch in image %d (0x%08x != 0x%08x).\n", 623 i, crc32_result, 624 be32_to_cpu(h->desc[i].crc32)); 625 ret = -EINVAL; 626 goto done_downloading; 627 } 628 629 /* download the image */ 630 octeon_pci_write_core_mem(oct, load_addr, p, image_len); 631 632 p += image_len; 633 dev_dbg(&oct->pci_dev->dev, 634 "Downloaded image %d (%d bytes) to address 0x%016llx\n", 635 i, image_len, load_addr); 636 } 637 638 /* Invoke the bootcmd */ 639 ret = octeon_console_send_cmd(oct, h->bootcmd, 50); 640 641 done_downloading: 642 kfree(buffer); 643 644 return ret; 645 } 646 647 void octeon_free_device_mem(struct octeon_device *oct) 648 { 649 u32 i; 650 651 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) { 652 /* could check mask as well */ 653 vfree(oct->droq[i]); 654 } 655 656 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) { 657 /* could check mask as well */ 658 vfree(oct->instr_queue[i]); 659 } 660 661 i = oct->octeon_id; 662 vfree(oct); 663 664 octeon_device[i] = NULL; 665 octeon_device_count--; 666 } 667 668 static struct octeon_device *octeon_allocate_device_mem(u32 pci_id, 669 u32 priv_size) 670 { 671 struct octeon_device *oct; 672 u8 *buf = NULL; 673 u32 octdevsize = 0, configsize = 0, size; 674 675 switch (pci_id) { 676 case OCTEON_CN68XX: 677 case OCTEON_CN66XX: 678 configsize = sizeof(struct octeon_cn6xxx); 679 break; 680 681 default: 682 pr_err("%s: Unknown PCI Device: 0x%x\n", 683 __func__, 684 pci_id); 685 return NULL; 686 } 687 688 if (configsize & 0x7) 689 configsize += (8 - (configsize & 0x7)); 690 691 octdevsize = sizeof(struct octeon_device); 692 if (octdevsize & 0x7) 693 octdevsize += (8 - (octdevsize & 0x7)); 694 695 if (priv_size & 0x7) 696 priv_size += (8 - (priv_size & 0x7)); 697 698 size = octdevsize + priv_size + configsize + 699 (sizeof(struct octeon_dispatch) * DISPATCH_LIST_SIZE); 700 701 buf = vmalloc(size); 702 if (!buf) 703 return NULL; 704 705 memset(buf, 0, size); 706 707 oct = (struct octeon_device *)buf; 708 oct->priv = (void *)(buf + octdevsize); 709 oct->chip = (void *)(buf + octdevsize + priv_size); 710 oct->dispatch.dlist = (struct octeon_dispatch *) 711 (buf + octdevsize + priv_size + configsize); 712 713 return oct; 714 } 715 716 struct octeon_device *octeon_allocate_device(u32 pci_id, 717 u32 priv_size) 718 { 719 u32 oct_idx = 0; 720 struct octeon_device *oct = NULL; 721 722 for (oct_idx = 0; oct_idx < MAX_OCTEON_DEVICES; oct_idx++) 723 if (!octeon_device[oct_idx]) 724 break; 725 726 if (oct_idx == MAX_OCTEON_DEVICES) 727 return NULL; 728 729 oct = octeon_allocate_device_mem(pci_id, priv_size); 730 if (!oct) 731 return NULL; 732 733 spin_lock_init(&oct->pci_win_lock); 734 spin_lock_init(&oct->mem_access_lock); 735 736 octeon_device_count++; 737 octeon_device[oct_idx] = oct; 738 739 oct->octeon_id = oct_idx; 740 snprintf((oct->device_name), sizeof(oct->device_name), 741 "LiquidIO%d", (oct->octeon_id)); 742 743 return oct; 744 } 745 746 int octeon_setup_instr_queues(struct octeon_device *oct) 747 { 748 u32 i, num_iqs = 0; 749 u32 num_descs = 0; 750 751 /* this causes queue 0 to be default queue */ 752 if (OCTEON_CN6XXX(oct)) { 753 num_iqs = 1; 754 num_descs = 755 CFG_GET_NUM_DEF_TX_DESCS(CHIP_FIELD(oct, cn6xxx, conf)); 756 } 757 758 oct->num_iqs = 0; 759 760 for (i = 0; i < num_iqs; i++) { 761 oct->instr_queue[i] = 762 vmalloc(sizeof(struct octeon_instr_queue)); 763 if (!oct->instr_queue[i]) 764 return 1; 765 766 memset(oct->instr_queue[i], 0, 767 sizeof(struct octeon_instr_queue)); 768 769 oct->instr_queue[i]->app_ctx = (void *)(size_t)i; 770 if (octeon_init_instr_queue(oct, i, num_descs)) 771 return 1; 772 773 oct->num_iqs++; 774 } 775 776 return 0; 777 } 778 779 int octeon_setup_output_queues(struct octeon_device *oct) 780 { 781 u32 i, num_oqs = 0; 782 u32 num_descs = 0; 783 u32 desc_size = 0; 784 785 /* this causes queue 0 to be default queue */ 786 if (OCTEON_CN6XXX(oct)) { 787 /* CFG_GET_OQ_MAX_BASE_Q(CHIP_FIELD(oct, cn6xxx, conf)); */ 788 num_oqs = 1; 789 num_descs = 790 CFG_GET_NUM_DEF_RX_DESCS(CHIP_FIELD(oct, cn6xxx, conf)); 791 desc_size = 792 CFG_GET_DEF_RX_BUF_SIZE(CHIP_FIELD(oct, cn6xxx, conf)); 793 } 794 795 oct->num_oqs = 0; 796 797 for (i = 0; i < num_oqs; i++) { 798 oct->droq[i] = vmalloc(sizeof(*oct->droq[i])); 799 if (!oct->droq[i]) 800 return 1; 801 802 memset(oct->droq[i], 0, sizeof(struct octeon_droq)); 803 804 if (octeon_init_droq(oct, i, num_descs, desc_size, NULL)) 805 return 1; 806 807 oct->num_oqs++; 808 } 809 810 return 0; 811 } 812 813 void octeon_set_io_queues_off(struct octeon_device *oct) 814 { 815 /* Disable the i/p and o/p queues for this Octeon. */ 816 817 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0); 818 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0); 819 } 820 821 void octeon_set_droq_pkt_op(struct octeon_device *oct, 822 u32 q_no, 823 u32 enable) 824 { 825 u32 reg_val = 0; 826 827 /* Disable the i/p and o/p queues for this Octeon. */ 828 reg_val = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB); 829 830 if (enable) 831 reg_val = reg_val | (1 << q_no); 832 else 833 reg_val = reg_val & (~(1 << q_no)); 834 835 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, reg_val); 836 } 837 838 int octeon_init_dispatch_list(struct octeon_device *oct) 839 { 840 u32 i; 841 842 oct->dispatch.count = 0; 843 844 for (i = 0; i < DISPATCH_LIST_SIZE; i++) { 845 oct->dispatch.dlist[i].opcode = 0; 846 INIT_LIST_HEAD(&oct->dispatch.dlist[i].list); 847 } 848 849 for (i = 0; i <= REQTYPE_LAST; i++) 850 octeon_register_reqtype_free_fn(oct, i, NULL); 851 852 spin_lock_init(&oct->dispatch.lock); 853 854 return 0; 855 } 856 857 void octeon_delete_dispatch_list(struct octeon_device *oct) 858 { 859 u32 i; 860 struct list_head freelist, *temp, *tmp2; 861 862 INIT_LIST_HEAD(&freelist); 863 864 spin_lock_bh(&oct->dispatch.lock); 865 866 for (i = 0; i < DISPATCH_LIST_SIZE; i++) { 867 struct list_head *dispatch; 868 869 dispatch = &oct->dispatch.dlist[i].list; 870 while (dispatch->next != dispatch) { 871 temp = dispatch->next; 872 list_del(temp); 873 list_add_tail(temp, &freelist); 874 } 875 876 oct->dispatch.dlist[i].opcode = 0; 877 } 878 879 oct->dispatch.count = 0; 880 881 spin_unlock_bh(&oct->dispatch.lock); 882 883 list_for_each_safe(temp, tmp2, &freelist) { 884 list_del(temp); 885 vfree(temp); 886 } 887 } 888 889 octeon_dispatch_fn_t 890 octeon_get_dispatch(struct octeon_device *octeon_dev, u16 opcode, 891 u16 subcode) 892 { 893 u32 idx; 894 struct list_head *dispatch; 895 octeon_dispatch_fn_t fn = NULL; 896 u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode); 897 898 idx = combined_opcode & OCTEON_OPCODE_MASK; 899 900 spin_lock_bh(&octeon_dev->dispatch.lock); 901 902 if (octeon_dev->dispatch.count == 0) { 903 spin_unlock_bh(&octeon_dev->dispatch.lock); 904 return NULL; 905 } 906 907 if (!(octeon_dev->dispatch.dlist[idx].opcode)) { 908 spin_unlock_bh(&octeon_dev->dispatch.lock); 909 return NULL; 910 } 911 912 if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) { 913 fn = octeon_dev->dispatch.dlist[idx].dispatch_fn; 914 } else { 915 list_for_each(dispatch, 916 &octeon_dev->dispatch.dlist[idx].list) { 917 if (((struct octeon_dispatch *)dispatch)->opcode == 918 combined_opcode) { 919 fn = ((struct octeon_dispatch *) 920 dispatch)->dispatch_fn; 921 break; 922 } 923 } 924 } 925 926 spin_unlock_bh(&octeon_dev->dispatch.lock); 927 return fn; 928 } 929 930 /* octeon_register_dispatch_fn 931 * Parameters: 932 * octeon_id - id of the octeon device. 933 * opcode - opcode for which driver should call the registered function 934 * subcode - subcode for which driver should call the registered function 935 * fn - The function to call when a packet with "opcode" arrives in 936 * octeon output queues. 937 * fn_arg - The argument to be passed when calling function "fn". 938 * Description: 939 * Registers a function and its argument to be called when a packet 940 * arrives in Octeon output queues with "opcode". 941 * Returns: 942 * Success: 0 943 * Failure: 1 944 * Locks: 945 * No locks are held. 946 */ 947 int 948 octeon_register_dispatch_fn(struct octeon_device *oct, 949 u16 opcode, 950 u16 subcode, 951 octeon_dispatch_fn_t fn, void *fn_arg) 952 { 953 u32 idx; 954 octeon_dispatch_fn_t pfn; 955 u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode); 956 957 idx = combined_opcode & OCTEON_OPCODE_MASK; 958 959 spin_lock_bh(&oct->dispatch.lock); 960 /* Add dispatch function to first level of lookup table */ 961 if (oct->dispatch.dlist[idx].opcode == 0) { 962 oct->dispatch.dlist[idx].opcode = combined_opcode; 963 oct->dispatch.dlist[idx].dispatch_fn = fn; 964 oct->dispatch.dlist[idx].arg = fn_arg; 965 oct->dispatch.count++; 966 spin_unlock_bh(&oct->dispatch.lock); 967 return 0; 968 } 969 970 spin_unlock_bh(&oct->dispatch.lock); 971 972 /* Check if there was a function already registered for this 973 * opcode/subcode. 974 */ 975 pfn = octeon_get_dispatch(oct, opcode, subcode); 976 if (!pfn) { 977 struct octeon_dispatch *dispatch; 978 979 dev_dbg(&oct->pci_dev->dev, 980 "Adding opcode to dispatch list linked list\n"); 981 dispatch = (struct octeon_dispatch *) 982 vmalloc(sizeof(struct octeon_dispatch)); 983 if (!dispatch) { 984 dev_err(&oct->pci_dev->dev, 985 "No memory to add dispatch function\n"); 986 return 1; 987 } 988 dispatch->opcode = combined_opcode; 989 dispatch->dispatch_fn = fn; 990 dispatch->arg = fn_arg; 991 992 /* Add dispatch function to linked list of fn ptrs 993 * at the hashed index. 994 */ 995 spin_lock_bh(&oct->dispatch.lock); 996 list_add(&dispatch->list, &oct->dispatch.dlist[idx].list); 997 oct->dispatch.count++; 998 spin_unlock_bh(&oct->dispatch.lock); 999 1000 } else { 1001 dev_err(&oct->pci_dev->dev, 1002 "Found previously registered dispatch fn for opcode/subcode: %x/%x\n", 1003 opcode, subcode); 1004 return 1; 1005 } 1006 1007 return 0; 1008 } 1009 1010 /* octeon_unregister_dispatch_fn 1011 * Parameters: 1012 * oct - octeon device 1013 * opcode - driver should unregister the function for this opcode 1014 * subcode - driver should unregister the function for this subcode 1015 * Description: 1016 * Unregister the function set for this opcode+subcode. 1017 * Returns: 1018 * Success: 0 1019 * Failure: 1 1020 * Locks: 1021 * No locks are held. 1022 */ 1023 int 1024 octeon_unregister_dispatch_fn(struct octeon_device *oct, u16 opcode, 1025 u16 subcode) 1026 { 1027 int retval = 0; 1028 u32 idx; 1029 struct list_head *dispatch, *dfree = NULL, *tmp2; 1030 u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode); 1031 1032 idx = combined_opcode & OCTEON_OPCODE_MASK; 1033 1034 spin_lock_bh(&oct->dispatch.lock); 1035 1036 if (oct->dispatch.count == 0) { 1037 spin_unlock_bh(&oct->dispatch.lock); 1038 dev_err(&oct->pci_dev->dev, 1039 "No dispatch functions registered for this device\n"); 1040 return 1; 1041 } 1042 1043 if (oct->dispatch.dlist[idx].opcode == combined_opcode) { 1044 dispatch = &oct->dispatch.dlist[idx].list; 1045 if (dispatch->next != dispatch) { 1046 dispatch = dispatch->next; 1047 oct->dispatch.dlist[idx].opcode = 1048 ((struct octeon_dispatch *)dispatch)->opcode; 1049 oct->dispatch.dlist[idx].dispatch_fn = 1050 ((struct octeon_dispatch *) 1051 dispatch)->dispatch_fn; 1052 oct->dispatch.dlist[idx].arg = 1053 ((struct octeon_dispatch *)dispatch)->arg; 1054 list_del(dispatch); 1055 dfree = dispatch; 1056 } else { 1057 oct->dispatch.dlist[idx].opcode = 0; 1058 oct->dispatch.dlist[idx].dispatch_fn = NULL; 1059 oct->dispatch.dlist[idx].arg = NULL; 1060 } 1061 } else { 1062 retval = 1; 1063 list_for_each_safe(dispatch, tmp2, 1064 &(oct->dispatch.dlist[idx]. 1065 list)) { 1066 if (((struct octeon_dispatch *)dispatch)->opcode == 1067 combined_opcode) { 1068 list_del(dispatch); 1069 dfree = dispatch; 1070 retval = 0; 1071 } 1072 } 1073 } 1074 1075 if (!retval) 1076 oct->dispatch.count--; 1077 1078 spin_unlock_bh(&oct->dispatch.lock); 1079 vfree(dfree); 1080 return retval; 1081 } 1082 1083 int octeon_core_drv_init(struct octeon_recv_info *recv_info, void *buf) 1084 { 1085 u32 i; 1086 char app_name[16]; 1087 struct octeon_device *oct = (struct octeon_device *)buf; 1088 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 1089 struct octeon_core_setup *cs = NULL; 1090 u32 num_nic_ports = 0; 1091 1092 if (OCTEON_CN6XXX(oct)) 1093 num_nic_ports = 1094 CFG_GET_NUM_NIC_PORTS(CHIP_FIELD(oct, cn6xxx, conf)); 1095 1096 if (atomic_read(&oct->status) >= OCT_DEV_RUNNING) { 1097 dev_err(&oct->pci_dev->dev, "Received CORE OK when device state is 0x%x\n", 1098 atomic_read(&oct->status)); 1099 goto core_drv_init_err; 1100 } 1101 1102 strncpy(app_name, 1103 get_oct_app_string( 1104 (u32)recv_pkt->rh.r_core_drv_init.app_mode), 1105 sizeof(app_name) - 1); 1106 oct->app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode; 1107 if (recv_pkt->rh.r_core_drv_init.app_mode == CVM_DRV_NIC_APP) { 1108 oct->fw_info.max_nic_ports = 1109 (u32)recv_pkt->rh.r_core_drv_init.max_nic_ports; 1110 oct->fw_info.num_gmx_ports = 1111 (u32)recv_pkt->rh.r_core_drv_init.num_gmx_ports; 1112 } 1113 1114 if (oct->fw_info.max_nic_ports < num_nic_ports) { 1115 dev_err(&oct->pci_dev->dev, 1116 "Config has more ports than firmware allows (%d > %d).\n", 1117 num_nic_ports, oct->fw_info.max_nic_ports); 1118 goto core_drv_init_err; 1119 } 1120 oct->fw_info.app_cap_flags = recv_pkt->rh.r_core_drv_init.app_cap_flags; 1121 oct->fw_info.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode; 1122 1123 atomic_set(&oct->status, OCT_DEV_CORE_OK); 1124 1125 cs = &core_setup[oct->octeon_id]; 1126 1127 if (recv_pkt->buffer_size[0] != sizeof(*cs)) { 1128 dev_dbg(&oct->pci_dev->dev, "Core setup bytes expected %u found %d\n", 1129 (u32)sizeof(*cs), 1130 recv_pkt->buffer_size[0]); 1131 } 1132 1133 memcpy(cs, get_rbd(recv_pkt->buffer_ptr[0]), sizeof(*cs)); 1134 strncpy(oct->boardinfo.name, cs->boardname, OCT_BOARD_NAME); 1135 strncpy(oct->boardinfo.serial_number, cs->board_serial_number, 1136 OCT_SERIAL_LEN); 1137 1138 octeon_swap_8B_data((u64 *)cs, (sizeof(*cs) >> 3)); 1139 1140 oct->boardinfo.major = cs->board_rev_major; 1141 oct->boardinfo.minor = cs->board_rev_minor; 1142 1143 dev_info(&oct->pci_dev->dev, 1144 "Running %s (%llu Hz)\n", 1145 app_name, CVM_CAST64(cs->corefreq)); 1146 1147 core_drv_init_err: 1148 for (i = 0; i < recv_pkt->buffer_count; i++) 1149 recv_buffer_free(recv_pkt->buffer_ptr[i]); 1150 octeon_free_recv_info(recv_info); 1151 return 0; 1152 } 1153 1154 int octeon_get_tx_qsize(struct octeon_device *oct, u32 q_no) 1155 1156 { 1157 if (oct && (q_no < MAX_OCTEON_INSTR_QUEUES) && 1158 (oct->io_qmask.iq & (1UL << q_no))) 1159 return oct->instr_queue[q_no]->max_count; 1160 1161 return -1; 1162 } 1163 1164 int octeon_get_rx_qsize(struct octeon_device *oct, u32 q_no) 1165 { 1166 if (oct && (q_no < MAX_OCTEON_OUTPUT_QUEUES) && 1167 (oct->io_qmask.oq & (1UL << q_no))) 1168 return oct->droq[q_no]->max_count; 1169 return -1; 1170 } 1171 1172 /* Retruns the host firmware handshake OCTEON specific configuration */ 1173 struct octeon_config *octeon_get_conf(struct octeon_device *oct) 1174 { 1175 struct octeon_config *default_oct_conf = NULL; 1176 1177 /* check the OCTEON Device model & return the corresponding octeon 1178 * configuration 1179 */ 1180 1181 if (OCTEON_CN6XXX(oct)) { 1182 default_oct_conf = 1183 (struct octeon_config *)(CHIP_FIELD(oct, cn6xxx, conf)); 1184 } 1185 1186 return default_oct_conf; 1187 } 1188 1189 /* scratch register address is same in all the OCT-II and CN70XX models */ 1190 #define CNXX_SLI_SCRATCH1 0x3C0 1191 1192 /** Get the octeon device pointer. 1193 * @param octeon_id - The id for which the octeon device pointer is required. 1194 * @return Success: Octeon device pointer. 1195 * @return Failure: NULL. 1196 */ 1197 struct octeon_device *lio_get_device(u32 octeon_id) 1198 { 1199 if (octeon_id >= MAX_OCTEON_DEVICES) 1200 return NULL; 1201 else 1202 return octeon_device[octeon_id]; 1203 } 1204 1205 u64 lio_pci_readq(struct octeon_device *oct, u64 addr) 1206 { 1207 u64 val64; 1208 unsigned long flags; 1209 u32 val32, addrhi; 1210 1211 spin_lock_irqsave(&oct->pci_win_lock, flags); 1212 1213 /* The windowed read happens when the LSB of the addr is written. 1214 * So write MSB first 1215 */ 1216 addrhi = (addr >> 32); 1217 if ((oct->chip_id == OCTEON_CN66XX) || (oct->chip_id == OCTEON_CN68XX)) 1218 addrhi |= 0x00060000; 1219 writel(addrhi, oct->reg_list.pci_win_rd_addr_hi); 1220 1221 /* Read back to preserve ordering of writes */ 1222 val32 = readl(oct->reg_list.pci_win_rd_addr_hi); 1223 1224 writel(addr & 0xffffffff, oct->reg_list.pci_win_rd_addr_lo); 1225 val32 = readl(oct->reg_list.pci_win_rd_addr_lo); 1226 1227 val64 = readq(oct->reg_list.pci_win_rd_data); 1228 1229 spin_unlock_irqrestore(&oct->pci_win_lock, flags); 1230 1231 return val64; 1232 } 1233 1234 void lio_pci_writeq(struct octeon_device *oct, 1235 u64 val, 1236 u64 addr) 1237 { 1238 u32 val32; 1239 unsigned long flags; 1240 1241 spin_lock_irqsave(&oct->pci_win_lock, flags); 1242 1243 writeq(addr, oct->reg_list.pci_win_wr_addr); 1244 1245 /* The write happens when the LSB is written. So write MSB first. */ 1246 writel(val >> 32, oct->reg_list.pci_win_wr_data_hi); 1247 /* Read the MSB to ensure ordering of writes. */ 1248 val32 = readl(oct->reg_list.pci_win_wr_data_hi); 1249 1250 writel(val & 0xffffffff, oct->reg_list.pci_win_wr_data_lo); 1251 1252 spin_unlock_irqrestore(&oct->pci_win_lock, flags); 1253 } 1254 1255 int octeon_mem_access_ok(struct octeon_device *oct) 1256 { 1257 u64 access_okay = 0; 1258 1259 /* Check to make sure a DDR interface is enabled */ 1260 u64 lmc0_reset_ctl = lio_pci_readq(oct, CN6XXX_LMC0_RESET_CTL); 1261 1262 access_okay = (lmc0_reset_ctl & CN6XXX_LMC0_RESET_CTL_DDR3RST_MASK); 1263 1264 return access_okay ? 0 : 1; 1265 } 1266 1267 int octeon_wait_for_ddr_init(struct octeon_device *oct, u32 *timeout) 1268 { 1269 int ret = 1; 1270 u32 ms; 1271 1272 if (!timeout) 1273 return ret; 1274 1275 while (*timeout == 0) 1276 schedule_timeout_uninterruptible(HZ / 10); 1277 1278 for (ms = 0; (ret != 0) && ((*timeout == 0) || (ms <= *timeout)); 1279 ms += HZ / 10) { 1280 ret = octeon_mem_access_ok(oct); 1281 1282 /* wait 100 ms */ 1283 if (ret) 1284 schedule_timeout_uninterruptible(HZ / 10); 1285 } 1286 1287 return ret; 1288 } 1289 1290 /** Get the octeon id assigned to the octeon device passed as argument. 1291 * This function is exported to other modules. 1292 * @param dev - octeon device pointer passed as a void *. 1293 * @return octeon device id 1294 */ 1295 int lio_get_device_id(void *dev) 1296 { 1297 struct octeon_device *octeon_dev = (struct octeon_device *)dev; 1298 u32 i; 1299 1300 for (i = 0; i < MAX_OCTEON_DEVICES; i++) 1301 if (octeon_device[i] == octeon_dev) 1302 return octeon_dev->octeon_id; 1303 return -1; 1304 } 1305