xref: /linux/drivers/net/ethernet/cavium/liquidio/octeon_device.c (revision 4e94ddfe2aab72139acb8d5372fac9e6c3f3e383)
1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/netdevice.h>
20 #include <linux/vmalloc.h>
21 #include "liquidio_common.h"
22 #include "octeon_droq.h"
23 #include "octeon_iq.h"
24 #include "response_manager.h"
25 #include "octeon_device.h"
26 #include "octeon_main.h"
27 #include "octeon_network.h"
28 #include "cn66xx_regs.h"
29 #include "cn66xx_device.h"
30 #include "cn23xx_pf_device.h"
31 #include "cn23xx_vf_device.h"
32 
33 /** Default configuration
34  *  for CN66XX OCTEON Models.
35  */
36 static struct octeon_config default_cn66xx_conf = {
37 	.card_type                              = LIO_210SV,
38 	.card_name                              = LIO_210SV_NAME,
39 
40 	/** IQ attributes */
41 	.iq					= {
42 		.max_iqs			= CN6XXX_CFG_IO_QUEUES,
43 		.pending_list_size		=
44 			(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
45 		.instr_type			= OCTEON_64BYTE_INSTR,
46 		.db_min				= CN6XXX_DB_MIN,
47 		.db_timeout			= CN6XXX_DB_TIMEOUT,
48 	}
49 	,
50 
51 	/** OQ attributes */
52 	.oq					= {
53 		.max_oqs			= CN6XXX_CFG_IO_QUEUES,
54 		.refill_threshold		= CN6XXX_OQ_REFIL_THRESHOLD,
55 		.oq_intr_pkt			= CN6XXX_OQ_INTR_PKT,
56 		.oq_intr_time			= CN6XXX_OQ_INTR_TIME,
57 		.pkts_per_intr			= CN6XXX_OQ_PKTSPER_INTR,
58 	}
59 	,
60 
61 	.num_nic_ports				= DEFAULT_NUM_NIC_PORTS_66XX,
62 	.num_def_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
63 	.num_def_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
64 	.def_rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
65 
66 	/* For ethernet interface 0:  Port cfg Attributes */
67 	.nic_if_cfg[0] = {
68 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
69 		.max_txqs			= MAX_TXQS_PER_INTF,
70 
71 		/* Actual configured value. Range could be: 1...max_txqs */
72 		.num_txqs			= DEF_TXQS_PER_INTF,
73 
74 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
75 		.max_rxqs			= MAX_RXQS_PER_INTF,
76 
77 		/* Actual configured value. Range could be: 1...max_rxqs */
78 		.num_rxqs			= DEF_RXQS_PER_INTF,
79 
80 		/* Num of desc for rx rings */
81 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
82 
83 		/* Num of desc for tx rings */
84 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
85 
86 		/* SKB size, We need not change buf size even for Jumbo frames.
87 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
88 		 */
89 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
90 
91 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
92 
93 		.gmx_port_id			= 0,
94 	},
95 
96 	.nic_if_cfg[1] = {
97 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
98 		.max_txqs			= MAX_TXQS_PER_INTF,
99 
100 		/* Actual configured value. Range could be: 1...max_txqs */
101 		.num_txqs			= DEF_TXQS_PER_INTF,
102 
103 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
104 		.max_rxqs			= MAX_RXQS_PER_INTF,
105 
106 		/* Actual configured value. Range could be: 1...max_rxqs */
107 		.num_rxqs			= DEF_RXQS_PER_INTF,
108 
109 		/* Num of desc for rx rings */
110 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
111 
112 		/* Num of desc for tx rings */
113 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
114 
115 		/* SKB size, We need not change buf size even for Jumbo frames.
116 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
117 		 */
118 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
119 
120 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
121 
122 		.gmx_port_id			= 1,
123 	},
124 
125 	/** Miscellaneous attributes */
126 	.misc					= {
127 		/* Host driver link query interval */
128 		.oct_link_query_interval	= 100,
129 
130 		/* Octeon link query interval */
131 		.host_link_query_interval	= 500,
132 
133 		.enable_sli_oq_bp		= 0,
134 
135 		/* Control queue group */
136 		.ctrlq_grp			= 1,
137 	}
138 	,
139 };
140 
141 /** Default configuration
142  *  for CN68XX OCTEON Model.
143  */
144 
145 static struct octeon_config default_cn68xx_conf = {
146 	.card_type                              = LIO_410NV,
147 	.card_name                              = LIO_410NV_NAME,
148 
149 	/** IQ attributes */
150 	.iq					= {
151 		.max_iqs			= CN6XXX_CFG_IO_QUEUES,
152 		.pending_list_size		=
153 			(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
154 		.instr_type			= OCTEON_64BYTE_INSTR,
155 		.db_min				= CN6XXX_DB_MIN,
156 		.db_timeout			= CN6XXX_DB_TIMEOUT,
157 	}
158 	,
159 
160 	/** OQ attributes */
161 	.oq					= {
162 		.max_oqs			= CN6XXX_CFG_IO_QUEUES,
163 		.refill_threshold		= CN6XXX_OQ_REFIL_THRESHOLD,
164 		.oq_intr_pkt			= CN6XXX_OQ_INTR_PKT,
165 		.oq_intr_time			= CN6XXX_OQ_INTR_TIME,
166 		.pkts_per_intr			= CN6XXX_OQ_PKTSPER_INTR,
167 	}
168 	,
169 
170 	.num_nic_ports				= DEFAULT_NUM_NIC_PORTS_68XX,
171 	.num_def_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
172 	.num_def_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
173 	.def_rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
174 
175 	.nic_if_cfg[0] = {
176 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
177 		.max_txqs			= MAX_TXQS_PER_INTF,
178 
179 		/* Actual configured value. Range could be: 1...max_txqs */
180 		.num_txqs			= DEF_TXQS_PER_INTF,
181 
182 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
183 		.max_rxqs			= MAX_RXQS_PER_INTF,
184 
185 		/* Actual configured value. Range could be: 1...max_rxqs */
186 		.num_rxqs			= DEF_RXQS_PER_INTF,
187 
188 		/* Num of desc for rx rings */
189 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
190 
191 		/* Num of desc for tx rings */
192 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
193 
194 		/* SKB size, We need not change buf size even for Jumbo frames.
195 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
196 		 */
197 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
198 
199 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
200 
201 		.gmx_port_id			= 0,
202 	},
203 
204 	.nic_if_cfg[1] = {
205 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
206 		.max_txqs			= MAX_TXQS_PER_INTF,
207 
208 		/* Actual configured value. Range could be: 1...max_txqs */
209 		.num_txqs			= DEF_TXQS_PER_INTF,
210 
211 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
212 		.max_rxqs			= MAX_RXQS_PER_INTF,
213 
214 		/* Actual configured value. Range could be: 1...max_rxqs */
215 		.num_rxqs			= DEF_RXQS_PER_INTF,
216 
217 		/* Num of desc for rx rings */
218 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
219 
220 		/* Num of desc for tx rings */
221 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
222 
223 		/* SKB size, We need not change buf size even for Jumbo frames.
224 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
225 		 */
226 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
227 
228 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
229 
230 		.gmx_port_id			= 1,
231 	},
232 
233 	.nic_if_cfg[2] = {
234 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
235 		.max_txqs			= MAX_TXQS_PER_INTF,
236 
237 		/* Actual configured value. Range could be: 1...max_txqs */
238 		.num_txqs			= DEF_TXQS_PER_INTF,
239 
240 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
241 		.max_rxqs			= MAX_RXQS_PER_INTF,
242 
243 		/* Actual configured value. Range could be: 1...max_rxqs */
244 		.num_rxqs			= DEF_RXQS_PER_INTF,
245 
246 		/* Num of desc for rx rings */
247 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
248 
249 		/* Num of desc for tx rings */
250 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
251 
252 		/* SKB size, We need not change buf size even for Jumbo frames.
253 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
254 		 */
255 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
256 
257 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
258 
259 		.gmx_port_id			= 2,
260 	},
261 
262 	.nic_if_cfg[3] = {
263 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
264 		.max_txqs			= MAX_TXQS_PER_INTF,
265 
266 		/* Actual configured value. Range could be: 1...max_txqs */
267 		.num_txqs			= DEF_TXQS_PER_INTF,
268 
269 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
270 		.max_rxqs			= MAX_RXQS_PER_INTF,
271 
272 		/* Actual configured value. Range could be: 1...max_rxqs */
273 		.num_rxqs			= DEF_RXQS_PER_INTF,
274 
275 		/* Num of desc for rx rings */
276 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
277 
278 		/* Num of desc for tx rings */
279 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
280 
281 		/* SKB size, We need not change buf size even for Jumbo frames.
282 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
283 		 */
284 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
285 
286 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
287 
288 		.gmx_port_id			= 3,
289 	},
290 
291 	/** Miscellaneous attributes */
292 	.misc					= {
293 		/* Host driver link query interval */
294 		.oct_link_query_interval	= 100,
295 
296 		/* Octeon link query interval */
297 		.host_link_query_interval	= 500,
298 
299 		.enable_sli_oq_bp		= 0,
300 
301 		/* Control queue group */
302 		.ctrlq_grp			= 1,
303 	}
304 	,
305 };
306 
307 /** Default configuration
308  *  for CN68XX OCTEON Model.
309  */
310 static struct octeon_config default_cn68xx_210nv_conf = {
311 	.card_type                              = LIO_210NV,
312 	.card_name                              = LIO_210NV_NAME,
313 
314 	/** IQ attributes */
315 
316 	.iq					= {
317 		.max_iqs			= CN6XXX_CFG_IO_QUEUES,
318 		.pending_list_size		=
319 			(CN6XXX_MAX_IQ_DESCRIPTORS * CN6XXX_CFG_IO_QUEUES),
320 		.instr_type			= OCTEON_64BYTE_INSTR,
321 		.db_min				= CN6XXX_DB_MIN,
322 		.db_timeout			= CN6XXX_DB_TIMEOUT,
323 	}
324 	,
325 
326 	/** OQ attributes */
327 	.oq					= {
328 		.max_oqs			= CN6XXX_CFG_IO_QUEUES,
329 		.refill_threshold		= CN6XXX_OQ_REFIL_THRESHOLD,
330 		.oq_intr_pkt			= CN6XXX_OQ_INTR_PKT,
331 		.oq_intr_time			= CN6XXX_OQ_INTR_TIME,
332 		.pkts_per_intr			= CN6XXX_OQ_PKTSPER_INTR,
333 	}
334 	,
335 
336 	.num_nic_ports			= DEFAULT_NUM_NIC_PORTS_68XX_210NV,
337 	.num_def_rx_descs		= CN6XXX_MAX_OQ_DESCRIPTORS,
338 	.num_def_tx_descs		= CN6XXX_MAX_IQ_DESCRIPTORS,
339 	.def_rx_buf_size		= CN6XXX_OQ_BUF_SIZE,
340 
341 	.nic_if_cfg[0] = {
342 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
343 		.max_txqs			= MAX_TXQS_PER_INTF,
344 
345 		/* Actual configured value. Range could be: 1...max_txqs */
346 		.num_txqs			= DEF_TXQS_PER_INTF,
347 
348 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
349 		.max_rxqs			= MAX_RXQS_PER_INTF,
350 
351 		/* Actual configured value. Range could be: 1...max_rxqs */
352 		.num_rxqs			= DEF_RXQS_PER_INTF,
353 
354 		/* Num of desc for rx rings */
355 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
356 
357 		/* Num of desc for tx rings */
358 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
359 
360 		/* SKB size, We need not change buf size even for Jumbo frames.
361 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
362 		 */
363 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
364 
365 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
366 
367 		.gmx_port_id			= 0,
368 	},
369 
370 	.nic_if_cfg[1] = {
371 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
372 		.max_txqs			= MAX_TXQS_PER_INTF,
373 
374 		/* Actual configured value. Range could be: 1...max_txqs */
375 		.num_txqs			= DEF_TXQS_PER_INTF,
376 
377 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
378 		.max_rxqs			= MAX_RXQS_PER_INTF,
379 
380 		/* Actual configured value. Range could be: 1...max_rxqs */
381 		.num_rxqs			= DEF_RXQS_PER_INTF,
382 
383 		/* Num of desc for rx rings */
384 		.num_rx_descs			= CN6XXX_MAX_OQ_DESCRIPTORS,
385 
386 		/* Num of desc for tx rings */
387 		.num_tx_descs			= CN6XXX_MAX_IQ_DESCRIPTORS,
388 
389 		/* SKB size, We need not change buf size even for Jumbo frames.
390 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
391 		 */
392 		.rx_buf_size			= CN6XXX_OQ_BUF_SIZE,
393 
394 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
395 
396 		.gmx_port_id			= 1,
397 	},
398 
399 	/** Miscellaneous attributes */
400 	.misc					= {
401 		/* Host driver link query interval */
402 		.oct_link_query_interval	= 100,
403 
404 		/* Octeon link query interval */
405 		.host_link_query_interval	= 500,
406 
407 		.enable_sli_oq_bp		= 0,
408 
409 		/* Control queue group */
410 		.ctrlq_grp			= 1,
411 	}
412 	,
413 };
414 
415 static struct octeon_config default_cn23xx_conf = {
416 	.card_type                              = LIO_23XX,
417 	.card_name                              = LIO_23XX_NAME,
418 	/** IQ attributes */
419 	.iq = {
420 		.max_iqs		= CN23XX_CFG_IO_QUEUES,
421 		.pending_list_size	= (CN23XX_DEFAULT_IQ_DESCRIPTORS *
422 					   CN23XX_CFG_IO_QUEUES),
423 		.instr_type		= OCTEON_64BYTE_INSTR,
424 		.db_min			= CN23XX_DB_MIN,
425 		.db_timeout		= CN23XX_DB_TIMEOUT,
426 		.iq_intr_pkt		= CN23XX_DEF_IQ_INTR_THRESHOLD,
427 	},
428 
429 	/** OQ attributes */
430 	.oq = {
431 		.max_oqs		= CN23XX_CFG_IO_QUEUES,
432 		.pkts_per_intr	= CN23XX_OQ_PKTSPER_INTR,
433 		.refill_threshold	= CN23XX_OQ_REFIL_THRESHOLD,
434 		.oq_intr_pkt	= CN23XX_OQ_INTR_PKT,
435 		.oq_intr_time	= CN23XX_OQ_INTR_TIME,
436 	},
437 
438 	.num_nic_ports				= DEFAULT_NUM_NIC_PORTS_23XX,
439 	.num_def_rx_descs			= CN23XX_DEFAULT_OQ_DESCRIPTORS,
440 	.num_def_tx_descs			= CN23XX_DEFAULT_IQ_DESCRIPTORS,
441 	.def_rx_buf_size			= CN23XX_OQ_BUF_SIZE,
442 
443 	/* For ethernet interface 0:  Port cfg Attributes */
444 	.nic_if_cfg[0] = {
445 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
446 		.max_txqs			= MAX_TXQS_PER_INTF,
447 
448 		/* Actual configured value. Range could be: 1...max_txqs */
449 		.num_txqs			= DEF_TXQS_PER_INTF,
450 
451 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
452 		.max_rxqs			= MAX_RXQS_PER_INTF,
453 
454 		/* Actual configured value. Range could be: 1...max_rxqs */
455 		.num_rxqs			= DEF_RXQS_PER_INTF,
456 
457 		/* Num of desc for rx rings */
458 		.num_rx_descs			= CN23XX_DEFAULT_OQ_DESCRIPTORS,
459 
460 		/* Num of desc for tx rings */
461 		.num_tx_descs			= CN23XX_DEFAULT_IQ_DESCRIPTORS,
462 
463 		/* SKB size, We need not change buf size even for Jumbo frames.
464 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
465 		 */
466 		.rx_buf_size			= CN23XX_OQ_BUF_SIZE,
467 
468 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
469 
470 		.gmx_port_id			= 0,
471 	},
472 
473 	.nic_if_cfg[1] = {
474 		/* Max Txqs: Half for each of the two ports :max_iq/2 */
475 		.max_txqs			= MAX_TXQS_PER_INTF,
476 
477 		/* Actual configured value. Range could be: 1...max_txqs */
478 		.num_txqs			= DEF_TXQS_PER_INTF,
479 
480 		/* Max Rxqs: Half for each of the two ports :max_oq/2  */
481 		.max_rxqs			= MAX_RXQS_PER_INTF,
482 
483 		/* Actual configured value. Range could be: 1...max_rxqs */
484 		.num_rxqs			= DEF_RXQS_PER_INTF,
485 
486 		/* Num of desc for rx rings */
487 		.num_rx_descs			= CN23XX_DEFAULT_OQ_DESCRIPTORS,
488 
489 		/* Num of desc for tx rings */
490 		.num_tx_descs			= CN23XX_DEFAULT_IQ_DESCRIPTORS,
491 
492 		/* SKB size, We need not change buf size even for Jumbo frames.
493 		 * Octeon can send jumbo frames in 4 consecutive descriptors,
494 		 */
495 		.rx_buf_size			= CN23XX_OQ_BUF_SIZE,
496 
497 		.base_queue			= BASE_QUEUE_NOT_REQUESTED,
498 
499 		.gmx_port_id			= 1,
500 	},
501 
502 	.misc					= {
503 		/* Host driver link query interval */
504 		.oct_link_query_interval	= 100,
505 
506 		/* Octeon link query interval */
507 		.host_link_query_interval	= 500,
508 
509 		.enable_sli_oq_bp		= 0,
510 
511 		/* Control queue group */
512 		.ctrlq_grp			= 1,
513 	}
514 };
515 
516 static struct octeon_config_ptr {
517 	u32 conf_type;
518 } oct_conf_info[MAX_OCTEON_DEVICES] = {
519 	{
520 		OCTEON_CONFIG_TYPE_DEFAULT,
521 	}, {
522 		OCTEON_CONFIG_TYPE_DEFAULT,
523 	}, {
524 		OCTEON_CONFIG_TYPE_DEFAULT,
525 	}, {
526 		OCTEON_CONFIG_TYPE_DEFAULT,
527 	},
528 };
529 
530 static char oct_dev_state_str[OCT_DEV_STATES + 1][32] = {
531 	"BEGIN", "PCI-ENABLE-DONE", "PCI-MAP-DONE", "DISPATCH-INIT-DONE",
532 	"IQ-INIT-DONE", "SCBUFF-POOL-INIT-DONE", "RESPLIST-INIT-DONE",
533 	"DROQ-INIT-DONE", "MBOX-SETUP-DONE", "MSIX-ALLOC-VECTOR-DONE",
534 	"INTR-SET-DONE", "IO-QUEUES-INIT-DONE", "CONSOLE-INIT-DONE",
535 	"HOST-READY", "CORE-READY", "RUNNING", "IN-RESET",
536 	"INVALID"
537 };
538 
539 static char oct_dev_app_str[CVM_DRV_APP_COUNT + 1][32] = {
540 	"BASE", "NIC", "UNKNOWN"};
541 
542 static struct octeon_device *octeon_device[MAX_OCTEON_DEVICES];
543 static atomic_t adapter_refcounts[MAX_OCTEON_DEVICES];
544 static atomic_t adapter_fw_states[MAX_OCTEON_DEVICES];
545 
546 static u32 octeon_device_count;
547 /* locks device array (i.e. octeon_device[]) */
548 static DEFINE_SPINLOCK(octeon_devices_lock);
549 
550 static struct octeon_core_setup core_setup[MAX_OCTEON_DEVICES];
551 
552 static void oct_set_config_info(int oct_id, int conf_type)
553 {
554 	if (conf_type < 0 || conf_type > (NUM_OCTEON_CONFS - 1))
555 		conf_type = OCTEON_CONFIG_TYPE_DEFAULT;
556 	oct_conf_info[oct_id].conf_type = conf_type;
557 }
558 
559 void octeon_init_device_list(int conf_type)
560 {
561 	int i;
562 
563 	memset(octeon_device, 0, (sizeof(void *) * MAX_OCTEON_DEVICES));
564 	for (i = 0; i <  MAX_OCTEON_DEVICES; i++)
565 		oct_set_config_info(i, conf_type);
566 }
567 EXPORT_SYMBOL_GPL(octeon_init_device_list);
568 
569 static void *__retrieve_octeon_config_info(struct octeon_device *oct,
570 					   u16 card_type)
571 {
572 	u32 oct_id = oct->octeon_id;
573 	void *ret = NULL;
574 
575 	switch (oct_conf_info[oct_id].conf_type) {
576 	case OCTEON_CONFIG_TYPE_DEFAULT:
577 		if (oct->chip_id == OCTEON_CN66XX) {
578 			ret = &default_cn66xx_conf;
579 		} else if ((oct->chip_id == OCTEON_CN68XX) &&
580 			   (card_type == LIO_210NV)) {
581 			ret = &default_cn68xx_210nv_conf;
582 		} else if ((oct->chip_id == OCTEON_CN68XX) &&
583 			   (card_type == LIO_410NV)) {
584 			ret = &default_cn68xx_conf;
585 		} else if (oct->chip_id == OCTEON_CN23XX_PF_VID) {
586 			ret = &default_cn23xx_conf;
587 		} else if (oct->chip_id == OCTEON_CN23XX_VF_VID) {
588 			ret = &default_cn23xx_conf;
589 		}
590 		break;
591 	default:
592 		break;
593 	}
594 	return ret;
595 }
596 
597 static int __verify_octeon_config_info(struct octeon_device *oct, void *conf)
598 {
599 	switch (oct->chip_id) {
600 	case OCTEON_CN66XX:
601 	case OCTEON_CN68XX:
602 		return lio_validate_cn6xxx_config_info(oct, conf);
603 	case OCTEON_CN23XX_PF_VID:
604 	case OCTEON_CN23XX_VF_VID:
605 		return 0;
606 	default:
607 		break;
608 	}
609 
610 	return 1;
611 }
612 
613 void *oct_get_config_info(struct octeon_device *oct, u16 card_type)
614 {
615 	void *conf = NULL;
616 
617 	conf = __retrieve_octeon_config_info(oct, card_type);
618 	if (!conf)
619 		return NULL;
620 
621 	if (__verify_octeon_config_info(oct, conf)) {
622 		dev_err(&oct->pci_dev->dev, "Configuration verification failed\n");
623 		return NULL;
624 	}
625 
626 	return conf;
627 }
628 
629 char *lio_get_state_string(atomic_t *state_ptr)
630 {
631 	s32 istate = (s32)atomic_read(state_ptr);
632 
633 	if (istate > OCT_DEV_STATES || istate < 0)
634 		return oct_dev_state_str[OCT_DEV_STATE_INVALID];
635 	return oct_dev_state_str[istate];
636 }
637 EXPORT_SYMBOL_GPL(lio_get_state_string);
638 
639 static char *get_oct_app_string(u32 app_mode)
640 {
641 	if (app_mode <= CVM_DRV_APP_END)
642 		return oct_dev_app_str[app_mode - CVM_DRV_APP_START];
643 	return oct_dev_app_str[CVM_DRV_INVALID_APP - CVM_DRV_APP_START];
644 }
645 
646 void octeon_free_device_mem(struct octeon_device *oct)
647 {
648 	int i;
649 
650 	for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) {
651 		if (oct->io_qmask.oq & BIT_ULL(i))
652 			vfree(oct->droq[i]);
653 	}
654 
655 	for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
656 		if (oct->io_qmask.iq & BIT_ULL(i))
657 			vfree(oct->instr_queue[i]);
658 	}
659 
660 	i = oct->octeon_id;
661 	vfree(oct);
662 
663 	octeon_device[i] = NULL;
664 	octeon_device_count--;
665 }
666 EXPORT_SYMBOL_GPL(octeon_free_device_mem);
667 
668 static struct octeon_device *octeon_allocate_device_mem(u32 pci_id,
669 							u32 priv_size)
670 {
671 	struct octeon_device *oct;
672 	u8 *buf = NULL;
673 	u32 octdevsize = 0, configsize = 0, size;
674 
675 	switch (pci_id) {
676 	case OCTEON_CN68XX:
677 	case OCTEON_CN66XX:
678 		configsize = sizeof(struct octeon_cn6xxx);
679 		break;
680 
681 	case OCTEON_CN23XX_PF_VID:
682 		configsize = sizeof(struct octeon_cn23xx_pf);
683 		break;
684 	case OCTEON_CN23XX_VF_VID:
685 		configsize = sizeof(struct octeon_cn23xx_vf);
686 		break;
687 	default:
688 		pr_err("%s: Unknown PCI Device: 0x%x\n",
689 		       __func__,
690 		       pci_id);
691 		return NULL;
692 	}
693 
694 	if (configsize & 0x7)
695 		configsize += (8 - (configsize & 0x7));
696 
697 	octdevsize = sizeof(struct octeon_device);
698 	if (octdevsize & 0x7)
699 		octdevsize += (8 - (octdevsize & 0x7));
700 
701 	if (priv_size & 0x7)
702 		priv_size += (8 - (priv_size & 0x7));
703 
704 	size = octdevsize + priv_size + configsize +
705 		(sizeof(struct octeon_dispatch) * DISPATCH_LIST_SIZE);
706 
707 	buf = vzalloc(size);
708 	if (!buf)
709 		return NULL;
710 
711 	oct = (struct octeon_device *)buf;
712 	oct->priv = (void *)(buf + octdevsize);
713 	oct->chip = (void *)(buf + octdevsize + priv_size);
714 	oct->dispatch.dlist = (struct octeon_dispatch *)
715 		(buf + octdevsize + priv_size + configsize);
716 
717 	return oct;
718 }
719 
720 struct octeon_device *octeon_allocate_device(u32 pci_id,
721 					     u32 priv_size)
722 {
723 	u32 oct_idx = 0;
724 	struct octeon_device *oct = NULL;
725 
726 	spin_lock(&octeon_devices_lock);
727 
728 	for (oct_idx = 0; oct_idx < MAX_OCTEON_DEVICES; oct_idx++)
729 		if (!octeon_device[oct_idx])
730 			break;
731 
732 	if (oct_idx < MAX_OCTEON_DEVICES) {
733 		oct = octeon_allocate_device_mem(pci_id, priv_size);
734 		if (oct) {
735 			octeon_device_count++;
736 			octeon_device[oct_idx] = oct;
737 		}
738 	}
739 
740 	spin_unlock(&octeon_devices_lock);
741 	if (!oct)
742 		return NULL;
743 
744 	spin_lock_init(&oct->pci_win_lock);
745 	spin_lock_init(&oct->mem_access_lock);
746 
747 	oct->octeon_id = oct_idx;
748 	snprintf(oct->device_name, sizeof(oct->device_name),
749 		 "LiquidIO%d", (oct->octeon_id));
750 
751 	return oct;
752 }
753 EXPORT_SYMBOL_GPL(octeon_allocate_device);
754 
755 /** Register a device's bus location at initialization time.
756  *  @param octeon_dev - pointer to the octeon device structure.
757  *  @param bus        - PCIe bus #
758  *  @param dev        - PCIe device #
759  *  @param func       - PCIe function #
760  *  @param is_pf      - TRUE for PF, FALSE for VF
761  *  @return reference count of device's adapter
762  */
763 int octeon_register_device(struct octeon_device *oct,
764 			   int bus, int dev, int func, int is_pf)
765 {
766 	int idx, refcount;
767 
768 	oct->loc.bus = bus;
769 	oct->loc.dev = dev;
770 	oct->loc.func = func;
771 
772 	oct->adapter_refcount = &adapter_refcounts[oct->octeon_id];
773 	atomic_set(oct->adapter_refcount, 0);
774 
775 	/* Like the reference count, the f/w state is shared 'per-adapter' */
776 	oct->adapter_fw_state = &adapter_fw_states[oct->octeon_id];
777 	atomic_set(oct->adapter_fw_state, FW_NEEDS_TO_BE_LOADED);
778 
779 	spin_lock(&octeon_devices_lock);
780 	for (idx = (int)oct->octeon_id - 1; idx >= 0; idx--) {
781 		if (!octeon_device[idx]) {
782 			dev_err(&oct->pci_dev->dev,
783 				"%s: Internal driver error, missing dev",
784 				__func__);
785 			spin_unlock(&octeon_devices_lock);
786 			atomic_inc(oct->adapter_refcount);
787 			return 1; /* here, refcount is guaranteed to be 1 */
788 		}
789 		/* If another device is at same bus/dev, use its refcounter
790 		 * (and f/w state variable).
791 		 */
792 		if ((octeon_device[idx]->loc.bus == bus) &&
793 		    (octeon_device[idx]->loc.dev == dev)) {
794 			oct->adapter_refcount =
795 				octeon_device[idx]->adapter_refcount;
796 			oct->adapter_fw_state =
797 				octeon_device[idx]->adapter_fw_state;
798 			break;
799 		}
800 	}
801 	spin_unlock(&octeon_devices_lock);
802 
803 	atomic_inc(oct->adapter_refcount);
804 	refcount = atomic_read(oct->adapter_refcount);
805 
806 	dev_dbg(&oct->pci_dev->dev, "%s: %02x:%02x:%d refcount %u", __func__,
807 		oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
808 
809 	return refcount;
810 }
811 EXPORT_SYMBOL_GPL(octeon_register_device);
812 
813 /** Deregister a device at de-initialization time.
814  *  @param octeon_dev - pointer to the octeon device structure.
815  *  @return reference count of device's adapter
816  */
817 int octeon_deregister_device(struct octeon_device *oct)
818 {
819 	int refcount;
820 
821 	atomic_dec(oct->adapter_refcount);
822 	refcount = atomic_read(oct->adapter_refcount);
823 
824 	dev_dbg(&oct->pci_dev->dev, "%s: %04d:%02d:%d refcount %u", __func__,
825 		oct->loc.bus, oct->loc.dev, oct->loc.func, refcount);
826 
827 	return refcount;
828 }
829 EXPORT_SYMBOL_GPL(octeon_deregister_device);
830 
831 int
832 octeon_allocate_ioq_vector(struct octeon_device *oct, u32 num_ioqs)
833 {
834 	struct octeon_ioq_vector *ioq_vector;
835 	int cpu_num;
836 	int size;
837 	int i;
838 
839 	size = sizeof(struct octeon_ioq_vector) * num_ioqs;
840 
841 	oct->ioq_vector = vzalloc(size);
842 	if (!oct->ioq_vector)
843 		return -1;
844 	for (i = 0; i < num_ioqs; i++) {
845 		ioq_vector		= &oct->ioq_vector[i];
846 		ioq_vector->oct_dev	= oct;
847 		ioq_vector->iq_index	= i;
848 		ioq_vector->droq_index	= i;
849 		ioq_vector->mbox	= oct->mbox[i];
850 
851 		cpu_num = i % num_online_cpus();
852 		cpumask_set_cpu(cpu_num, &ioq_vector->affinity_mask);
853 
854 		if (oct->chip_id == OCTEON_CN23XX_PF_VID)
855 			ioq_vector->ioq_num	= i + oct->sriov_info.pf_srn;
856 		else
857 			ioq_vector->ioq_num	= i;
858 	}
859 
860 	return 0;
861 }
862 EXPORT_SYMBOL_GPL(octeon_allocate_ioq_vector);
863 
864 void
865 octeon_free_ioq_vector(struct octeon_device *oct)
866 {
867 	vfree(oct->ioq_vector);
868 }
869 EXPORT_SYMBOL_GPL(octeon_free_ioq_vector);
870 
871 /* this function is only for setting up the first queue */
872 int octeon_setup_instr_queues(struct octeon_device *oct)
873 {
874 	u32 num_descs = 0;
875 	u32 iq_no = 0;
876 	union oct_txpciq txpciq;
877 	int numa_node = dev_to_node(&oct->pci_dev->dev);
878 
879 	if (OCTEON_CN6XXX(oct))
880 		num_descs =
881 			CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn6xxx));
882 	else if (OCTEON_CN23XX_PF(oct))
883 		num_descs = CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn23xx_pf));
884 	else if (OCTEON_CN23XX_VF(oct))
885 		num_descs = CFG_GET_NUM_DEF_TX_DESCS(CHIP_CONF(oct, cn23xx_vf));
886 
887 	oct->num_iqs = 0;
888 
889 	oct->instr_queue[0] = vzalloc_node(sizeof(*oct->instr_queue[0]),
890 				numa_node);
891 	if (!oct->instr_queue[0])
892 		oct->instr_queue[0] =
893 			vzalloc(sizeof(struct octeon_instr_queue));
894 	if (!oct->instr_queue[0])
895 		return 1;
896 	memset(oct->instr_queue[0], 0, sizeof(struct octeon_instr_queue));
897 	oct->instr_queue[0]->q_index = 0;
898 	oct->instr_queue[0]->app_ctx = (void *)(size_t)0;
899 	oct->instr_queue[0]->ifidx = 0;
900 	txpciq.u64 = 0;
901 	txpciq.s.q_no = iq_no;
902 	txpciq.s.pkind = oct->pfvf_hsword.pkind;
903 	txpciq.s.use_qpg = 0;
904 	txpciq.s.qpg = 0;
905 	if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
906 		/* prevent memory leak */
907 		vfree(oct->instr_queue[0]);
908 		oct->instr_queue[0] = NULL;
909 		return 1;
910 	}
911 
912 	oct->num_iqs++;
913 	return 0;
914 }
915 EXPORT_SYMBOL_GPL(octeon_setup_instr_queues);
916 
917 int octeon_setup_output_queues(struct octeon_device *oct)
918 {
919 	u32 num_descs = 0;
920 	u32 desc_size = 0;
921 	u32 oq_no = 0;
922 	int numa_node = dev_to_node(&oct->pci_dev->dev);
923 
924 	if (OCTEON_CN6XXX(oct)) {
925 		num_descs =
926 			CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn6xxx));
927 		desc_size =
928 			CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn6xxx));
929 	} else if (OCTEON_CN23XX_PF(oct)) {
930 		num_descs = CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn23xx_pf));
931 		desc_size = CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn23xx_pf));
932 	} else if (OCTEON_CN23XX_VF(oct)) {
933 		num_descs = CFG_GET_NUM_DEF_RX_DESCS(CHIP_CONF(oct, cn23xx_vf));
934 		desc_size = CFG_GET_DEF_RX_BUF_SIZE(CHIP_CONF(oct, cn23xx_vf));
935 	}
936 	oct->num_oqs = 0;
937 	oct->droq[0] = vzalloc_node(sizeof(*oct->droq[0]), numa_node);
938 	if (!oct->droq[0])
939 		oct->droq[0] = vzalloc(sizeof(*oct->droq[0]));
940 	if (!oct->droq[0])
941 		return 1;
942 
943 	if (octeon_init_droq(oct, oq_no, num_descs, desc_size, NULL)) {
944 		vfree(oct->droq[oq_no]);
945 		oct->droq[oq_no] = NULL;
946 		return 1;
947 	}
948 	oct->num_oqs++;
949 
950 	return 0;
951 }
952 EXPORT_SYMBOL_GPL(octeon_setup_output_queues);
953 
954 int octeon_set_io_queues_off(struct octeon_device *oct)
955 {
956 	int loop = BUSY_READING_REG_VF_LOOP_COUNT;
957 
958 	if (OCTEON_CN6XXX(oct)) {
959 		octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
960 		octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
961 	} else if (oct->chip_id == OCTEON_CN23XX_VF_VID) {
962 		u32 q_no;
963 
964 		/* IOQs will already be in reset.
965 		 * If RST bit is set, wait for quiet bit to be set.
966 		 * Once quiet bit is set, clear the RST bit.
967 		 */
968 		for (q_no = 0; q_no < oct->sriov_info.rings_per_vf; q_no++) {
969 			u64 reg_val = octeon_read_csr64(
970 				oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
971 
972 			while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) &&
973 			       !(reg_val &  CN23XX_PKT_INPUT_CTL_QUIET) &&
974 			       loop) {
975 				reg_val = octeon_read_csr64(
976 					oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
977 				loop--;
978 			}
979 			if (!loop) {
980 				dev_err(&oct->pci_dev->dev,
981 					"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
982 					q_no);
983 				return -1;
984 			}
985 
986 			reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST;
987 			octeon_write_csr64(oct,
988 					   CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
989 					   reg_val);
990 
991 			reg_val = octeon_read_csr64(
992 					oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
993 			if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
994 				dev_err(&oct->pci_dev->dev,
995 					"unable to reset qno %u\n", q_no);
996 				return -1;
997 			}
998 		}
999 	}
1000 	return 0;
1001 }
1002 EXPORT_SYMBOL_GPL(octeon_set_io_queues_off);
1003 
1004 void octeon_set_droq_pkt_op(struct octeon_device *oct,
1005 			    u32 q_no,
1006 			    u32 enable)
1007 {
1008 	u32 reg_val = 0;
1009 
1010 	/* Disable the i/p and o/p queues for this Octeon. */
1011 	if (OCTEON_CN6XXX(oct)) {
1012 		reg_val = octeon_read_csr(oct, CN6XXX_SLI_PKT_OUT_ENB);
1013 
1014 		if (enable)
1015 			reg_val = reg_val | (1 << q_no);
1016 		else
1017 			reg_val = reg_val & (~(1 << q_no));
1018 
1019 		octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, reg_val);
1020 	}
1021 }
1022 
1023 int octeon_init_dispatch_list(struct octeon_device *oct)
1024 {
1025 	u32 i;
1026 
1027 	oct->dispatch.count = 0;
1028 
1029 	for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
1030 		oct->dispatch.dlist[i].opcode = 0;
1031 		INIT_LIST_HEAD(&oct->dispatch.dlist[i].list);
1032 	}
1033 
1034 	for (i = 0; i <= REQTYPE_LAST; i++)
1035 		octeon_register_reqtype_free_fn(oct, i, NULL);
1036 
1037 	spin_lock_init(&oct->dispatch.lock);
1038 
1039 	return 0;
1040 }
1041 EXPORT_SYMBOL_GPL(octeon_init_dispatch_list);
1042 
1043 void octeon_delete_dispatch_list(struct octeon_device *oct)
1044 {
1045 	u32 i;
1046 	struct list_head freelist, *temp, *tmp2;
1047 
1048 	INIT_LIST_HEAD(&freelist);
1049 
1050 	spin_lock_bh(&oct->dispatch.lock);
1051 
1052 	for (i = 0; i < DISPATCH_LIST_SIZE; i++) {
1053 		struct list_head *dispatch;
1054 
1055 		dispatch = &oct->dispatch.dlist[i].list;
1056 		while (dispatch->next != dispatch) {
1057 			temp = dispatch->next;
1058 			list_move_tail(temp, &freelist);
1059 		}
1060 
1061 		oct->dispatch.dlist[i].opcode = 0;
1062 	}
1063 
1064 	oct->dispatch.count = 0;
1065 
1066 	spin_unlock_bh(&oct->dispatch.lock);
1067 
1068 	list_for_each_safe(temp, tmp2, &freelist) {
1069 		list_del(temp);
1070 		kfree(temp);
1071 	}
1072 }
1073 EXPORT_SYMBOL_GPL(octeon_delete_dispatch_list);
1074 
1075 octeon_dispatch_fn_t
1076 octeon_get_dispatch(struct octeon_device *octeon_dev, u16 opcode,
1077 		    u16 subcode)
1078 {
1079 	u32 idx;
1080 	struct list_head *dispatch;
1081 	octeon_dispatch_fn_t fn = NULL;
1082 	u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
1083 
1084 	idx = combined_opcode & OCTEON_OPCODE_MASK;
1085 
1086 	spin_lock_bh(&octeon_dev->dispatch.lock);
1087 
1088 	if (octeon_dev->dispatch.count == 0) {
1089 		spin_unlock_bh(&octeon_dev->dispatch.lock);
1090 		return NULL;
1091 	}
1092 
1093 	if (!(octeon_dev->dispatch.dlist[idx].opcode)) {
1094 		spin_unlock_bh(&octeon_dev->dispatch.lock);
1095 		return NULL;
1096 	}
1097 
1098 	if (octeon_dev->dispatch.dlist[idx].opcode == combined_opcode) {
1099 		fn = octeon_dev->dispatch.dlist[idx].dispatch_fn;
1100 	} else {
1101 		list_for_each(dispatch,
1102 			      &octeon_dev->dispatch.dlist[idx].list) {
1103 			if (((struct octeon_dispatch *)dispatch)->opcode ==
1104 			    combined_opcode) {
1105 				fn = ((struct octeon_dispatch *)
1106 				      dispatch)->dispatch_fn;
1107 				break;
1108 			}
1109 		}
1110 	}
1111 
1112 	spin_unlock_bh(&octeon_dev->dispatch.lock);
1113 	return fn;
1114 }
1115 
1116 /* octeon_register_dispatch_fn
1117  * Parameters:
1118  *   octeon_id - id of the octeon device.
1119  *   opcode    - opcode for which driver should call the registered function
1120  *   subcode   - subcode for which driver should call the registered function
1121  *   fn        - The function to call when a packet with "opcode" arrives in
1122  *		  octeon output queues.
1123  *   fn_arg    - The argument to be passed when calling function "fn".
1124  * Description:
1125  *   Registers a function and its argument to be called when a packet
1126  *   arrives in Octeon output queues with "opcode".
1127  * Returns:
1128  *   Success: 0
1129  *   Failure: 1
1130  * Locks:
1131  *   No locks are held.
1132  */
1133 int
1134 octeon_register_dispatch_fn(struct octeon_device *oct,
1135 			    u16 opcode,
1136 			    u16 subcode,
1137 			    octeon_dispatch_fn_t fn, void *fn_arg)
1138 {
1139 	u32 idx;
1140 	octeon_dispatch_fn_t pfn;
1141 	u16 combined_opcode = OPCODE_SUBCODE(opcode, subcode);
1142 
1143 	idx = combined_opcode & OCTEON_OPCODE_MASK;
1144 
1145 	spin_lock_bh(&oct->dispatch.lock);
1146 	/* Add dispatch function to first level of lookup table */
1147 	if (oct->dispatch.dlist[idx].opcode == 0) {
1148 		oct->dispatch.dlist[idx].opcode = combined_opcode;
1149 		oct->dispatch.dlist[idx].dispatch_fn = fn;
1150 		oct->dispatch.dlist[idx].arg = fn_arg;
1151 		oct->dispatch.count++;
1152 		spin_unlock_bh(&oct->dispatch.lock);
1153 		return 0;
1154 	}
1155 
1156 	spin_unlock_bh(&oct->dispatch.lock);
1157 
1158 	/* Check if there was a function already registered for this
1159 	 * opcode/subcode.
1160 	 */
1161 	pfn = octeon_get_dispatch(oct, opcode, subcode);
1162 	if (!pfn) {
1163 		struct octeon_dispatch *dispatch;
1164 
1165 		dev_dbg(&oct->pci_dev->dev,
1166 			"Adding opcode to dispatch list linked list\n");
1167 		dispatch = kmalloc(sizeof(*dispatch), GFP_KERNEL);
1168 		if (!dispatch)
1169 			return 1;
1170 
1171 		dispatch->opcode = combined_opcode;
1172 		dispatch->dispatch_fn = fn;
1173 		dispatch->arg = fn_arg;
1174 
1175 		/* Add dispatch function to linked list of fn ptrs
1176 		 * at the hashed index.
1177 		 */
1178 		spin_lock_bh(&oct->dispatch.lock);
1179 		list_add(&dispatch->list, &oct->dispatch.dlist[idx].list);
1180 		oct->dispatch.count++;
1181 		spin_unlock_bh(&oct->dispatch.lock);
1182 
1183 	} else {
1184 		if (pfn == fn &&
1185 		    octeon_get_dispatch_arg(oct, opcode, subcode) == fn_arg)
1186 			return 0;
1187 
1188 		dev_err(&oct->pci_dev->dev,
1189 			"Found previously registered dispatch fn for opcode/subcode: %x/%x\n",
1190 			opcode, subcode);
1191 		return 1;
1192 	}
1193 
1194 	return 0;
1195 }
1196 EXPORT_SYMBOL_GPL(octeon_register_dispatch_fn);
1197 
1198 int octeon_core_drv_init(struct octeon_recv_info *recv_info, void *buf)
1199 {
1200 	u32 i;
1201 	char app_name[16];
1202 	struct octeon_device *oct = (struct octeon_device *)buf;
1203 	struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
1204 	struct octeon_core_setup *cs = NULL;
1205 	u32 num_nic_ports = 0;
1206 
1207 	if (OCTEON_CN6XXX(oct))
1208 		num_nic_ports =
1209 			CFG_GET_NUM_NIC_PORTS(CHIP_CONF(oct, cn6xxx));
1210 	else if (OCTEON_CN23XX_PF(oct))
1211 		num_nic_ports =
1212 			CFG_GET_NUM_NIC_PORTS(CHIP_CONF(oct, cn23xx_pf));
1213 
1214 	if (atomic_read(&oct->status) >= OCT_DEV_RUNNING) {
1215 		dev_err(&oct->pci_dev->dev, "Received CORE OK when device state is 0x%x\n",
1216 			atomic_read(&oct->status));
1217 		goto core_drv_init_err;
1218 	}
1219 
1220 	strscpy(app_name,
1221 		get_oct_app_string(
1222 		(u32)recv_pkt->rh.r_core_drv_init.app_mode),
1223 		sizeof(app_name));
1224 	oct->app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1225 	if (recv_pkt->rh.r_core_drv_init.app_mode == CVM_DRV_NIC_APP) {
1226 		oct->fw_info.max_nic_ports =
1227 			(u32)recv_pkt->rh.r_core_drv_init.max_nic_ports;
1228 		oct->fw_info.num_gmx_ports =
1229 			(u32)recv_pkt->rh.r_core_drv_init.num_gmx_ports;
1230 	}
1231 
1232 	if (oct->fw_info.max_nic_ports < num_nic_ports) {
1233 		dev_err(&oct->pci_dev->dev,
1234 			"Config has more ports than firmware allows (%d > %d).\n",
1235 			num_nic_ports, oct->fw_info.max_nic_ports);
1236 		goto core_drv_init_err;
1237 	}
1238 	oct->fw_info.app_cap_flags = recv_pkt->rh.r_core_drv_init.app_cap_flags;
1239 	oct->fw_info.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1240 	oct->pfvf_hsword.app_mode = (u32)recv_pkt->rh.r_core_drv_init.app_mode;
1241 
1242 	oct->pfvf_hsword.pkind = recv_pkt->rh.r_core_drv_init.pkind;
1243 
1244 	for (i = 0; i < oct->num_iqs; i++)
1245 		oct->instr_queue[i]->txpciq.s.pkind = oct->pfvf_hsword.pkind;
1246 
1247 	atomic_set(&oct->status, OCT_DEV_CORE_OK);
1248 
1249 	cs = &core_setup[oct->octeon_id];
1250 
1251 	if (recv_pkt->buffer_size[0] != (sizeof(*cs) + OCT_DROQ_INFO_SIZE)) {
1252 		dev_dbg(&oct->pci_dev->dev, "Core setup bytes expected %u found %d\n",
1253 			(u32)sizeof(*cs),
1254 			recv_pkt->buffer_size[0]);
1255 	}
1256 
1257 	memcpy(cs, get_rbd(
1258 	       recv_pkt->buffer_ptr[0]) + OCT_DROQ_INFO_SIZE, sizeof(*cs));
1259 
1260 	strscpy(oct->boardinfo.name, cs->boardname,
1261 		    sizeof(oct->boardinfo.name));
1262 	strscpy(oct->boardinfo.serial_number, cs->board_serial_number,
1263 		    sizeof(oct->boardinfo.serial_number));
1264 
1265 	octeon_swap_8B_data((u64 *)cs, (sizeof(*cs) >> 3));
1266 
1267 	oct->boardinfo.major = cs->board_rev_major;
1268 	oct->boardinfo.minor = cs->board_rev_minor;
1269 
1270 	dev_info(&oct->pci_dev->dev,
1271 		 "Running %s (%llu Hz)\n",
1272 		 app_name, CVM_CAST64(cs->corefreq));
1273 
1274 core_drv_init_err:
1275 	for (i = 0; i < recv_pkt->buffer_count; i++)
1276 		recv_buffer_free(recv_pkt->buffer_ptr[i]);
1277 	octeon_free_recv_info(recv_info);
1278 	return 0;
1279 }
1280 EXPORT_SYMBOL_GPL(octeon_core_drv_init);
1281 
1282 int octeon_get_tx_qsize(struct octeon_device *oct, u32 q_no)
1283 
1284 {
1285 	if (oct && (q_no < MAX_OCTEON_INSTR_QUEUES(oct)) &&
1286 	    (oct->io_qmask.iq & BIT_ULL(q_no)))
1287 		return oct->instr_queue[q_no]->max_count;
1288 
1289 	return -1;
1290 }
1291 EXPORT_SYMBOL_GPL(octeon_get_tx_qsize);
1292 
1293 int octeon_get_rx_qsize(struct octeon_device *oct, u32 q_no)
1294 {
1295 	if (oct && (q_no < MAX_OCTEON_OUTPUT_QUEUES(oct)) &&
1296 	    (oct->io_qmask.oq & BIT_ULL(q_no)))
1297 		return oct->droq[q_no]->max_count;
1298 	return -1;
1299 }
1300 EXPORT_SYMBOL_GPL(octeon_get_rx_qsize);
1301 
1302 /* Retruns the host firmware handshake OCTEON specific configuration */
1303 struct octeon_config *octeon_get_conf(struct octeon_device *oct)
1304 {
1305 	struct octeon_config *default_oct_conf = NULL;
1306 
1307 	/* check the OCTEON Device model & return the corresponding octeon
1308 	 * configuration
1309 	 */
1310 
1311 	if (OCTEON_CN6XXX(oct)) {
1312 		default_oct_conf =
1313 			(struct octeon_config *)(CHIP_CONF(oct, cn6xxx));
1314 	} else if (OCTEON_CN23XX_PF(oct)) {
1315 		default_oct_conf = (struct octeon_config *)
1316 			(CHIP_CONF(oct, cn23xx_pf));
1317 	} else if (OCTEON_CN23XX_VF(oct)) {
1318 		default_oct_conf = (struct octeon_config *)
1319 			(CHIP_CONF(oct, cn23xx_vf));
1320 	}
1321 	return default_oct_conf;
1322 }
1323 EXPORT_SYMBOL_GPL(octeon_get_conf);
1324 
1325 /* scratch register address is same in all the OCT-II and CN70XX models */
1326 #define CNXX_SLI_SCRATCH1   0x3C0
1327 
1328 /* Get the octeon device pointer.
1329  *  @param octeon_id  - The id for which the octeon device pointer is required.
1330  *  @return Success: Octeon device pointer.
1331  *  @return Failure: NULL.
1332  */
1333 struct octeon_device *lio_get_device(u32 octeon_id)
1334 {
1335 	if (octeon_id >= MAX_OCTEON_DEVICES)
1336 		return NULL;
1337 	else
1338 		return octeon_device[octeon_id];
1339 }
1340 EXPORT_SYMBOL_GPL(lio_get_device);
1341 
1342 u64 lio_pci_readq(struct octeon_device *oct, u64 addr)
1343 {
1344 	u64 val64;
1345 	unsigned long flags;
1346 	u32 addrhi;
1347 
1348 	spin_lock_irqsave(&oct->pci_win_lock, flags);
1349 
1350 	/* The windowed read happens when the LSB of the addr is written.
1351 	 * So write MSB first
1352 	 */
1353 	addrhi = (addr >> 32);
1354 	if ((oct->chip_id == OCTEON_CN66XX) ||
1355 	    (oct->chip_id == OCTEON_CN68XX) ||
1356 	    (oct->chip_id == OCTEON_CN23XX_PF_VID))
1357 		addrhi |= 0x00060000;
1358 	writel(addrhi, oct->reg_list.pci_win_rd_addr_hi);
1359 
1360 	/* Read back to preserve ordering of writes */
1361 	readl(oct->reg_list.pci_win_rd_addr_hi);
1362 
1363 	writel(addr & 0xffffffff, oct->reg_list.pci_win_rd_addr_lo);
1364 	readl(oct->reg_list.pci_win_rd_addr_lo);
1365 
1366 	val64 = readq(oct->reg_list.pci_win_rd_data);
1367 
1368 	spin_unlock_irqrestore(&oct->pci_win_lock, flags);
1369 
1370 	return val64;
1371 }
1372 EXPORT_SYMBOL_GPL(lio_pci_readq);
1373 
1374 void lio_pci_writeq(struct octeon_device *oct,
1375 		    u64 val,
1376 		    u64 addr)
1377 {
1378 	unsigned long flags;
1379 
1380 	spin_lock_irqsave(&oct->pci_win_lock, flags);
1381 
1382 	writeq(addr, oct->reg_list.pci_win_wr_addr);
1383 
1384 	/* The write happens when the LSB is written. So write MSB first. */
1385 	writel(val >> 32, oct->reg_list.pci_win_wr_data_hi);
1386 	/* Read the MSB to ensure ordering of writes. */
1387 	readl(oct->reg_list.pci_win_wr_data_hi);
1388 
1389 	writel(val & 0xffffffff, oct->reg_list.pci_win_wr_data_lo);
1390 
1391 	spin_unlock_irqrestore(&oct->pci_win_lock, flags);
1392 }
1393 EXPORT_SYMBOL_GPL(lio_pci_writeq);
1394 
1395 int octeon_mem_access_ok(struct octeon_device *oct)
1396 {
1397 	u64 access_okay = 0;
1398 	u64 lmc0_reset_ctl;
1399 
1400 	/* Check to make sure a DDR interface is enabled */
1401 	if (OCTEON_CN23XX_PF(oct)) {
1402 		lmc0_reset_ctl = lio_pci_readq(oct, CN23XX_LMC0_RESET_CTL);
1403 		access_okay =
1404 			(lmc0_reset_ctl & CN23XX_LMC0_RESET_CTL_DDR3RST_MASK);
1405 	} else {
1406 		lmc0_reset_ctl = lio_pci_readq(oct, CN6XXX_LMC0_RESET_CTL);
1407 		access_okay =
1408 			(lmc0_reset_ctl & CN6XXX_LMC0_RESET_CTL_DDR3RST_MASK);
1409 	}
1410 
1411 	return access_okay ? 0 : 1;
1412 }
1413 EXPORT_SYMBOL_GPL(octeon_mem_access_ok);
1414 
1415 int octeon_wait_for_ddr_init(struct octeon_device *oct, u32 *timeout)
1416 {
1417 	int ret = 1;
1418 	u32 ms;
1419 
1420 	if (!timeout)
1421 		return ret;
1422 
1423 	for (ms = 0; (ret != 0) && ((*timeout == 0) || (ms <= *timeout));
1424 	     ms += HZ / 10) {
1425 		ret = octeon_mem_access_ok(oct);
1426 
1427 		/* wait 100 ms */
1428 		if (ret)
1429 			schedule_timeout_uninterruptible(HZ / 10);
1430 	}
1431 
1432 	return ret;
1433 }
1434 EXPORT_SYMBOL_GPL(octeon_wait_for_ddr_init);
1435 
1436 /* Get the octeon id assigned to the octeon device passed as argument.
1437  *  This function is exported to other modules.
1438  *  @param dev - octeon device pointer passed as a void *.
1439  *  @return octeon device id
1440  */
1441 int lio_get_device_id(void *dev)
1442 {
1443 	struct octeon_device *octeon_dev = (struct octeon_device *)dev;
1444 	u32 i;
1445 
1446 	for (i = 0; i < MAX_OCTEON_DEVICES; i++)
1447 		if (octeon_device[i] == octeon_dev)
1448 			return octeon_dev->octeon_id;
1449 	return -1;
1450 }
1451 
1452 void lio_enable_irq(struct octeon_droq *droq, struct octeon_instr_queue *iq)
1453 {
1454 	u64 instr_cnt;
1455 	u32 pkts_pend;
1456 	struct octeon_device *oct = NULL;
1457 
1458 	/* the whole thing needs to be atomic, ideally */
1459 	if (droq) {
1460 		pkts_pend = (u32)atomic_read(&droq->pkts_pending);
1461 		writel(droq->pkt_count - pkts_pend, droq->pkts_sent_reg);
1462 		droq->pkt_count = pkts_pend;
1463 		oct = droq->oct_dev;
1464 	}
1465 	if (iq) {
1466 		spin_lock_bh(&iq->lock);
1467 		writel(iq->pkts_processed, iq->inst_cnt_reg);
1468 		iq->pkt_in_done -= iq->pkts_processed;
1469 		iq->pkts_processed = 0;
1470 		/* this write needs to be flushed before we release the lock */
1471 		spin_unlock_bh(&iq->lock);
1472 		oct = iq->oct_dev;
1473 	}
1474 	/*write resend. Writing RESEND in SLI_PKTX_CNTS should be enough
1475 	 *to trigger tx interrupts as well, if they are pending.
1476 	 */
1477 	if (oct && (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))) {
1478 		if (droq)
1479 			writeq(CN23XX_INTR_RESEND, droq->pkts_sent_reg);
1480 		/*we race with firmrware here. read and write the IN_DONE_CNTS*/
1481 		else if (iq) {
1482 			instr_cnt =  readq(iq->inst_cnt_reg);
1483 			writeq(((instr_cnt & 0xFFFFFFFF00000000ULL) |
1484 				CN23XX_INTR_RESEND),
1485 			       iq->inst_cnt_reg);
1486 		}
1487 	}
1488 }
1489 EXPORT_SYMBOL_GPL(lio_enable_irq);
1490