1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2016 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more details. 17 ***********************************************************************/ 18 #include <linux/module.h> 19 #include <linux/interrupt.h> 20 #include <linux/pci.h> 21 #include <linux/firmware.h> 22 #include <net/vxlan.h> 23 #include <linux/kthread.h> 24 #include <net/switchdev.h> 25 #include "liquidio_common.h" 26 #include "octeon_droq.h" 27 #include "octeon_iq.h" 28 #include "response_manager.h" 29 #include "octeon_device.h" 30 #include "octeon_nic.h" 31 #include "octeon_main.h" 32 #include "octeon_network.h" 33 #include "cn66xx_regs.h" 34 #include "cn66xx_device.h" 35 #include "cn68xx_device.h" 36 #include "cn23xx_pf_device.h" 37 #include "liquidio_image.h" 38 #include "lio_vf_rep.h" 39 40 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>"); 41 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver"); 42 MODULE_LICENSE("GPL"); 43 MODULE_VERSION(LIQUIDIO_VERSION); 44 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME 45 "_" LIO_FW_NAME_TYPE_NIC LIO_FW_NAME_SUFFIX); 46 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME 47 "_" LIO_FW_NAME_TYPE_NIC LIO_FW_NAME_SUFFIX); 48 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME 49 "_" LIO_FW_NAME_TYPE_NIC LIO_FW_NAME_SUFFIX); 50 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_23XX_NAME 51 "_" LIO_FW_NAME_TYPE_NIC LIO_FW_NAME_SUFFIX); 52 53 static int ddr_timeout = 10000; 54 module_param(ddr_timeout, int, 0644); 55 MODULE_PARM_DESC(ddr_timeout, 56 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check"); 57 58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK) 59 60 static int debug = -1; 61 module_param(debug, int, 0644); 62 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits"); 63 64 static char fw_type[LIO_MAX_FW_TYPE_LEN] = LIO_FW_NAME_TYPE_AUTO; 65 module_param_string(fw_type, fw_type, sizeof(fw_type), 0444); 66 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded (default is \"auto\"), which uses firmware in flash, if present, else loads \"nic\"."); 67 68 static u32 console_bitmask; 69 module_param(console_bitmask, int, 0644); 70 MODULE_PARM_DESC(console_bitmask, 71 "Bitmask indicating which consoles have debug output redirected to syslog."); 72 73 /** 74 * \brief determines if a given console has debug enabled. 75 * @param console console to check 76 * @returns 1 = enabled. 0 otherwise 77 */ 78 static int octeon_console_debug_enabled(u32 console) 79 { 80 return (console_bitmask >> (console)) & 0x1; 81 } 82 83 /* Polling interval for determining when NIC application is alive */ 84 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100 85 86 /* runtime link query interval */ 87 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000 88 /* update localtime to octeon firmware every 60 seconds. 89 * make firmware to use same time reference, so that it will be easy to 90 * correlate firmware logged events/errors with host events, for debugging. 91 */ 92 #define LIO_SYNC_OCTEON_TIME_INTERVAL_MS 60000 93 94 struct lio_trusted_vf_ctx { 95 struct completion complete; 96 int status; 97 }; 98 99 struct liquidio_rx_ctl_context { 100 int octeon_id; 101 102 wait_queue_head_t wc; 103 104 int cond; 105 }; 106 107 struct oct_link_status_resp { 108 u64 rh; 109 struct oct_link_info link_info; 110 u64 status; 111 }; 112 113 struct oct_timestamp_resp { 114 u64 rh; 115 u64 timestamp; 116 u64 status; 117 }; 118 119 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp)) 120 121 union tx_info { 122 u64 u64; 123 struct { 124 #ifdef __BIG_ENDIAN_BITFIELD 125 u16 gso_size; 126 u16 gso_segs; 127 u32 reserved; 128 #else 129 u32 reserved; 130 u16 gso_segs; 131 u16 gso_size; 132 #endif 133 } s; 134 }; 135 136 /** Octeon device properties to be used by the NIC module. 137 * Each octeon device in the system will be represented 138 * by this structure in the NIC module. 139 */ 140 141 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS) 142 143 #define OCTNIC_GSO_MAX_HEADER_SIZE 128 144 #define OCTNIC_GSO_MAX_SIZE \ 145 (CN23XX_DEFAULT_INPUT_JABBER - OCTNIC_GSO_MAX_HEADER_SIZE) 146 147 /** Structure of a node in list of gather components maintained by 148 * NIC driver for each network device. 149 */ 150 struct octnic_gather { 151 /** List manipulation. Next and prev pointers. */ 152 struct list_head list; 153 154 /** Size of the gather component at sg in bytes. */ 155 int sg_size; 156 157 /** Number of bytes that sg was adjusted to make it 8B-aligned. */ 158 int adjust; 159 160 /** Gather component that can accommodate max sized fragment list 161 * received from the IP layer. 162 */ 163 struct octeon_sg_entry *sg; 164 165 dma_addr_t sg_dma_ptr; 166 }; 167 168 struct handshake { 169 struct completion init; 170 struct completion started; 171 struct pci_dev *pci_dev; 172 int init_ok; 173 int started_ok; 174 }; 175 176 #ifdef CONFIG_PCI_IOV 177 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs); 178 #endif 179 180 static int octeon_dbg_console_print(struct octeon_device *oct, u32 console_num, 181 char *prefix, char *suffix); 182 183 static int octeon_device_init(struct octeon_device *); 184 static int liquidio_stop(struct net_device *netdev); 185 static void liquidio_remove(struct pci_dev *pdev); 186 static int liquidio_probe(struct pci_dev *pdev, 187 const struct pci_device_id *ent); 188 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx, 189 int linkstate); 190 191 static struct handshake handshake[MAX_OCTEON_DEVICES]; 192 static struct completion first_stage; 193 194 static void octeon_droq_bh(unsigned long pdev) 195 { 196 int q_no; 197 int reschedule = 0; 198 struct octeon_device *oct = (struct octeon_device *)pdev; 199 struct octeon_device_priv *oct_priv = 200 (struct octeon_device_priv *)oct->priv; 201 202 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES(oct); q_no++) { 203 if (!(oct->io_qmask.oq & BIT_ULL(q_no))) 204 continue; 205 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no], 206 MAX_PACKET_BUDGET); 207 lio_enable_irq(oct->droq[q_no], NULL); 208 209 if (OCTEON_CN23XX_PF(oct) && oct->msix_on) { 210 /* set time and cnt interrupt thresholds for this DROQ 211 * for NAPI 212 */ 213 int adjusted_q_no = q_no + oct->sriov_info.pf_srn; 214 215 octeon_write_csr64( 216 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(adjusted_q_no), 217 0x5700000040ULL); 218 octeon_write_csr64( 219 oct, CN23XX_SLI_OQ_PKTS_SENT(adjusted_q_no), 0); 220 } 221 } 222 223 if (reschedule) 224 tasklet_schedule(&oct_priv->droq_tasklet); 225 } 226 227 static int lio_wait_for_oq_pkts(struct octeon_device *oct) 228 { 229 struct octeon_device_priv *oct_priv = 230 (struct octeon_device_priv *)oct->priv; 231 int retry = 100, pkt_cnt = 0, pending_pkts = 0; 232 int i; 233 234 do { 235 pending_pkts = 0; 236 237 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { 238 if (!(oct->io_qmask.oq & BIT_ULL(i))) 239 continue; 240 pkt_cnt += octeon_droq_check_hw_for_pkts(oct->droq[i]); 241 } 242 if (pkt_cnt > 0) { 243 pending_pkts += pkt_cnt; 244 tasklet_schedule(&oct_priv->droq_tasklet); 245 } 246 pkt_cnt = 0; 247 schedule_timeout_uninterruptible(1); 248 249 } while (retry-- && pending_pkts); 250 251 return pkt_cnt; 252 } 253 254 /** 255 * \brief Forces all IO queues off on a given device 256 * @param oct Pointer to Octeon device 257 */ 258 static void force_io_queues_off(struct octeon_device *oct) 259 { 260 if ((oct->chip_id == OCTEON_CN66XX) || 261 (oct->chip_id == OCTEON_CN68XX)) { 262 /* Reset the Enable bits for Input Queues. */ 263 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0); 264 265 /* Reset the Enable bits for Output Queues. */ 266 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0); 267 } 268 } 269 270 /** 271 * \brief Cause device to go quiet so it can be safely removed/reset/etc 272 * @param oct Pointer to Octeon device 273 */ 274 static inline void pcierror_quiesce_device(struct octeon_device *oct) 275 { 276 int i; 277 278 /* Disable the input and output queues now. No more packets will 279 * arrive from Octeon, but we should wait for all packet processing 280 * to finish. 281 */ 282 force_io_queues_off(oct); 283 284 /* To allow for in-flight requests */ 285 schedule_timeout_uninterruptible(100); 286 287 if (wait_for_pending_requests(oct)) 288 dev_err(&oct->pci_dev->dev, "There were pending requests\n"); 289 290 /* Force all requests waiting to be fetched by OCTEON to complete. */ 291 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 292 struct octeon_instr_queue *iq; 293 294 if (!(oct->io_qmask.iq & BIT_ULL(i))) 295 continue; 296 iq = oct->instr_queue[i]; 297 298 if (atomic_read(&iq->instr_pending)) { 299 spin_lock_bh(&iq->lock); 300 iq->fill_cnt = 0; 301 iq->octeon_read_index = iq->host_write_index; 302 iq->stats.instr_processed += 303 atomic_read(&iq->instr_pending); 304 lio_process_iq_request_list(oct, iq, 0); 305 spin_unlock_bh(&iq->lock); 306 } 307 } 308 309 /* Force all pending ordered list requests to time out. */ 310 lio_process_ordered_list(oct, 1); 311 312 /* We do not need to wait for output queue packets to be processed. */ 313 } 314 315 /** 316 * \brief Cleanup PCI AER uncorrectable error status 317 * @param dev Pointer to PCI device 318 */ 319 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev) 320 { 321 int pos = 0x100; 322 u32 status, mask; 323 324 pr_info("%s :\n", __func__); 325 326 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status); 327 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask); 328 if (dev->error_state == pci_channel_io_normal) 329 status &= ~mask; /* Clear corresponding nonfatal bits */ 330 else 331 status &= mask; /* Clear corresponding fatal bits */ 332 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status); 333 } 334 335 /** 336 * \brief Stop all PCI IO to a given device 337 * @param dev Pointer to Octeon device 338 */ 339 static void stop_pci_io(struct octeon_device *oct) 340 { 341 /* No more instructions will be forwarded. */ 342 atomic_set(&oct->status, OCT_DEV_IN_RESET); 343 344 pci_disable_device(oct->pci_dev); 345 346 /* Disable interrupts */ 347 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 348 349 pcierror_quiesce_device(oct); 350 351 /* Release the interrupt line */ 352 free_irq(oct->pci_dev->irq, oct); 353 354 if (oct->flags & LIO_FLAG_MSI_ENABLED) 355 pci_disable_msi(oct->pci_dev); 356 357 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n", 358 lio_get_state_string(&oct->status)); 359 360 /* making it a common function for all OCTEON models */ 361 cleanup_aer_uncorrect_error_status(oct->pci_dev); 362 } 363 364 /** 365 * \brief called when PCI error is detected 366 * @param pdev Pointer to PCI device 367 * @param state The current pci connection state 368 * 369 * This function is called after a PCI bus error affecting 370 * this device has been detected. 371 */ 372 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev, 373 pci_channel_state_t state) 374 { 375 struct octeon_device *oct = pci_get_drvdata(pdev); 376 377 /* Non-correctable Non-fatal errors */ 378 if (state == pci_channel_io_normal) { 379 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n"); 380 cleanup_aer_uncorrect_error_status(oct->pci_dev); 381 return PCI_ERS_RESULT_CAN_RECOVER; 382 } 383 384 /* Non-correctable Fatal errors */ 385 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n"); 386 stop_pci_io(oct); 387 388 /* Always return a DISCONNECT. There is no support for recovery but only 389 * for a clean shutdown. 390 */ 391 return PCI_ERS_RESULT_DISCONNECT; 392 } 393 394 /** 395 * \brief mmio handler 396 * @param pdev Pointer to PCI device 397 */ 398 static pci_ers_result_t liquidio_pcie_mmio_enabled( 399 struct pci_dev *pdev __attribute__((unused))) 400 { 401 /* We should never hit this since we never ask for a reset for a Fatal 402 * Error. We always return DISCONNECT in io_error above. 403 * But play safe and return RECOVERED for now. 404 */ 405 return PCI_ERS_RESULT_RECOVERED; 406 } 407 408 /** 409 * \brief called after the pci bus has been reset. 410 * @param pdev Pointer to PCI device 411 * 412 * Restart the card from scratch, as if from a cold-boot. Implementation 413 * resembles the first-half of the octeon_resume routine. 414 */ 415 static pci_ers_result_t liquidio_pcie_slot_reset( 416 struct pci_dev *pdev __attribute__((unused))) 417 { 418 /* We should never hit this since we never ask for a reset for a Fatal 419 * Error. We always return DISCONNECT in io_error above. 420 * But play safe and return RECOVERED for now. 421 */ 422 return PCI_ERS_RESULT_RECOVERED; 423 } 424 425 /** 426 * \brief called when traffic can start flowing again. 427 * @param pdev Pointer to PCI device 428 * 429 * This callback is called when the error recovery driver tells us that 430 * its OK to resume normal operation. Implementation resembles the 431 * second-half of the octeon_resume routine. 432 */ 433 static void liquidio_pcie_resume(struct pci_dev *pdev __attribute__((unused))) 434 { 435 /* Nothing to be done here. */ 436 } 437 438 #ifdef CONFIG_PM 439 /** 440 * \brief called when suspending 441 * @param pdev Pointer to PCI device 442 * @param state state to suspend to 443 */ 444 static int liquidio_suspend(struct pci_dev *pdev __attribute__((unused)), 445 pm_message_t state __attribute__((unused))) 446 { 447 return 0; 448 } 449 450 /** 451 * \brief called when resuming 452 * @param pdev Pointer to PCI device 453 */ 454 static int liquidio_resume(struct pci_dev *pdev __attribute__((unused))) 455 { 456 return 0; 457 } 458 #endif 459 460 /* For PCI-E Advanced Error Recovery (AER) Interface */ 461 static const struct pci_error_handlers liquidio_err_handler = { 462 .error_detected = liquidio_pcie_error_detected, 463 .mmio_enabled = liquidio_pcie_mmio_enabled, 464 .slot_reset = liquidio_pcie_slot_reset, 465 .resume = liquidio_pcie_resume, 466 }; 467 468 static const struct pci_device_id liquidio_pci_tbl[] = { 469 { /* 68xx */ 470 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 471 }, 472 { /* 66xx */ 473 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 474 }, 475 { /* 23xx pf */ 476 PCI_VENDOR_ID_CAVIUM, 0x9702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 477 }, 478 { 479 0, 0, 0, 0, 0, 0, 0 480 } 481 }; 482 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl); 483 484 static struct pci_driver liquidio_pci_driver = { 485 .name = "LiquidIO", 486 .id_table = liquidio_pci_tbl, 487 .probe = liquidio_probe, 488 .remove = liquidio_remove, 489 .err_handler = &liquidio_err_handler, /* For AER */ 490 491 #ifdef CONFIG_PM 492 .suspend = liquidio_suspend, 493 .resume = liquidio_resume, 494 #endif 495 #ifdef CONFIG_PCI_IOV 496 .sriov_configure = liquidio_enable_sriov, 497 #endif 498 }; 499 500 /** 501 * \brief register PCI driver 502 */ 503 static int liquidio_init_pci(void) 504 { 505 return pci_register_driver(&liquidio_pci_driver); 506 } 507 508 /** 509 * \brief unregister PCI driver 510 */ 511 static void liquidio_deinit_pci(void) 512 { 513 pci_unregister_driver(&liquidio_pci_driver); 514 } 515 516 /** 517 * \brief Check Tx queue status, and take appropriate action 518 * @param lio per-network private data 519 * @returns 0 if full, number of queues woken up otherwise 520 */ 521 static inline int check_txq_status(struct lio *lio) 522 { 523 int numqs = lio->netdev->num_tx_queues; 524 int ret_val = 0; 525 int q, iq; 526 527 /* check each sub-queue state */ 528 for (q = 0; q < numqs; q++) { 529 iq = lio->linfo.txpciq[q % 530 lio->oct_dev->num_iqs].s.q_no; 531 if (octnet_iq_is_full(lio->oct_dev, iq)) 532 continue; 533 if (__netif_subqueue_stopped(lio->netdev, q)) { 534 netif_wake_subqueue(lio->netdev, q); 535 INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, iq, 536 tx_restart, 1); 537 ret_val++; 538 } 539 } 540 541 return ret_val; 542 } 543 544 /** 545 * Remove the node at the head of the list. The list would be empty at 546 * the end of this call if there are no more nodes in the list. 547 */ 548 static inline struct list_head *list_delete_head(struct list_head *root) 549 { 550 struct list_head *node; 551 552 if ((root->prev == root) && (root->next == root)) 553 node = NULL; 554 else 555 node = root->next; 556 557 if (node) 558 list_del(node); 559 560 return node; 561 } 562 563 /** 564 * \brief Delete gather lists 565 * @param lio per-network private data 566 */ 567 static void delete_glists(struct lio *lio) 568 { 569 struct octnic_gather *g; 570 int i; 571 572 kfree(lio->glist_lock); 573 lio->glist_lock = NULL; 574 575 if (!lio->glist) 576 return; 577 578 for (i = 0; i < lio->linfo.num_txpciq; i++) { 579 do { 580 g = (struct octnic_gather *) 581 list_delete_head(&lio->glist[i]); 582 if (g) 583 kfree(g); 584 } while (g); 585 586 if (lio->glists_virt_base && lio->glists_virt_base[i] && 587 lio->glists_dma_base && lio->glists_dma_base[i]) { 588 lio_dma_free(lio->oct_dev, 589 lio->glist_entry_size * lio->tx_qsize, 590 lio->glists_virt_base[i], 591 lio->glists_dma_base[i]); 592 } 593 } 594 595 kfree(lio->glists_virt_base); 596 lio->glists_virt_base = NULL; 597 598 kfree(lio->glists_dma_base); 599 lio->glists_dma_base = NULL; 600 601 kfree(lio->glist); 602 lio->glist = NULL; 603 } 604 605 /** 606 * \brief Setup gather lists 607 * @param lio per-network private data 608 */ 609 static int setup_glists(struct octeon_device *oct, struct lio *lio, int num_iqs) 610 { 611 int i, j; 612 struct octnic_gather *g; 613 614 lio->glist_lock = kcalloc(num_iqs, sizeof(*lio->glist_lock), 615 GFP_KERNEL); 616 if (!lio->glist_lock) 617 return -ENOMEM; 618 619 lio->glist = kcalloc(num_iqs, sizeof(*lio->glist), 620 GFP_KERNEL); 621 if (!lio->glist) { 622 kfree(lio->glist_lock); 623 lio->glist_lock = NULL; 624 return -ENOMEM; 625 } 626 627 lio->glist_entry_size = 628 ROUNDUP8((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE); 629 630 /* allocate memory to store virtual and dma base address of 631 * per glist consistent memory 632 */ 633 lio->glists_virt_base = kcalloc(num_iqs, sizeof(*lio->glists_virt_base), 634 GFP_KERNEL); 635 lio->glists_dma_base = kcalloc(num_iqs, sizeof(*lio->glists_dma_base), 636 GFP_KERNEL); 637 638 if (!lio->glists_virt_base || !lio->glists_dma_base) { 639 delete_glists(lio); 640 return -ENOMEM; 641 } 642 643 for (i = 0; i < num_iqs; i++) { 644 int numa_node = dev_to_node(&oct->pci_dev->dev); 645 646 spin_lock_init(&lio->glist_lock[i]); 647 648 INIT_LIST_HEAD(&lio->glist[i]); 649 650 lio->glists_virt_base[i] = 651 lio_dma_alloc(oct, 652 lio->glist_entry_size * lio->tx_qsize, 653 &lio->glists_dma_base[i]); 654 655 if (!lio->glists_virt_base[i]) { 656 delete_glists(lio); 657 return -ENOMEM; 658 } 659 660 for (j = 0; j < lio->tx_qsize; j++) { 661 g = kzalloc_node(sizeof(*g), GFP_KERNEL, 662 numa_node); 663 if (!g) 664 g = kzalloc(sizeof(*g), GFP_KERNEL); 665 if (!g) 666 break; 667 668 g->sg = lio->glists_virt_base[i] + 669 (j * lio->glist_entry_size); 670 671 g->sg_dma_ptr = lio->glists_dma_base[i] + 672 (j * lio->glist_entry_size); 673 674 list_add_tail(&g->list, &lio->glist[i]); 675 } 676 677 if (j != lio->tx_qsize) { 678 delete_glists(lio); 679 return -ENOMEM; 680 } 681 } 682 683 return 0; 684 } 685 686 /** 687 * \brief Print link information 688 * @param netdev network device 689 */ 690 static void print_link_info(struct net_device *netdev) 691 { 692 struct lio *lio = GET_LIO(netdev); 693 694 if (!ifstate_check(lio, LIO_IFSTATE_RESETTING) && 695 ifstate_check(lio, LIO_IFSTATE_REGISTERED)) { 696 struct oct_link_info *linfo = &lio->linfo; 697 698 if (linfo->link.s.link_up) { 699 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n", 700 linfo->link.s.speed, 701 (linfo->link.s.duplex) ? "Full" : "Half"); 702 } else { 703 netif_info(lio, link, lio->netdev, "Link Down\n"); 704 } 705 } 706 } 707 708 /** 709 * \brief Routine to notify MTU change 710 * @param work work_struct data structure 711 */ 712 static void octnet_link_status_change(struct work_struct *work) 713 { 714 struct cavium_wk *wk = (struct cavium_wk *)work; 715 struct lio *lio = (struct lio *)wk->ctxptr; 716 717 /* lio->linfo.link.s.mtu always contains max MTU of the lio interface. 718 * this API is invoked only when new max-MTU of the interface is 719 * less than current MTU. 720 */ 721 rtnl_lock(); 722 dev_set_mtu(lio->netdev, lio->linfo.link.s.mtu); 723 rtnl_unlock(); 724 } 725 726 /** 727 * \brief Sets up the mtu status change work 728 * @param netdev network device 729 */ 730 static inline int setup_link_status_change_wq(struct net_device *netdev) 731 { 732 struct lio *lio = GET_LIO(netdev); 733 struct octeon_device *oct = lio->oct_dev; 734 735 lio->link_status_wq.wq = alloc_workqueue("link-status", 736 WQ_MEM_RECLAIM, 0); 737 if (!lio->link_status_wq.wq) { 738 dev_err(&oct->pci_dev->dev, "unable to create cavium link status wq\n"); 739 return -1; 740 } 741 INIT_DELAYED_WORK(&lio->link_status_wq.wk.work, 742 octnet_link_status_change); 743 lio->link_status_wq.wk.ctxptr = lio; 744 745 return 0; 746 } 747 748 static inline void cleanup_link_status_change_wq(struct net_device *netdev) 749 { 750 struct lio *lio = GET_LIO(netdev); 751 752 if (lio->link_status_wq.wq) { 753 cancel_delayed_work_sync(&lio->link_status_wq.wk.work); 754 destroy_workqueue(lio->link_status_wq.wq); 755 } 756 } 757 758 /** 759 * \brief Update link status 760 * @param netdev network device 761 * @param ls link status structure 762 * 763 * Called on receipt of a link status response from the core application to 764 * update each interface's link status. 765 */ 766 static inline void update_link_status(struct net_device *netdev, 767 union oct_link_status *ls) 768 { 769 struct lio *lio = GET_LIO(netdev); 770 int changed = (lio->linfo.link.u64 != ls->u64); 771 int current_max_mtu = lio->linfo.link.s.mtu; 772 struct octeon_device *oct = lio->oct_dev; 773 774 dev_dbg(&oct->pci_dev->dev, "%s: lio->linfo.link.u64=%llx, ls->u64=%llx\n", 775 __func__, lio->linfo.link.u64, ls->u64); 776 lio->linfo.link.u64 = ls->u64; 777 778 if ((lio->intf_open) && (changed)) { 779 print_link_info(netdev); 780 lio->link_changes++; 781 782 if (lio->linfo.link.s.link_up) { 783 dev_dbg(&oct->pci_dev->dev, "%s: link_up", __func__); 784 netif_carrier_on(netdev); 785 wake_txqs(netdev); 786 } else { 787 dev_dbg(&oct->pci_dev->dev, "%s: link_off", __func__); 788 netif_carrier_off(netdev); 789 stop_txqs(netdev); 790 } 791 if (lio->linfo.link.s.mtu != current_max_mtu) { 792 netif_info(lio, probe, lio->netdev, "Max MTU changed from %d to %d\n", 793 current_max_mtu, lio->linfo.link.s.mtu); 794 netdev->max_mtu = lio->linfo.link.s.mtu; 795 } 796 if (lio->linfo.link.s.mtu < netdev->mtu) { 797 dev_warn(&oct->pci_dev->dev, 798 "Current MTU is higher than new max MTU; Reducing the current mtu from %d to %d\n", 799 netdev->mtu, lio->linfo.link.s.mtu); 800 queue_delayed_work(lio->link_status_wq.wq, 801 &lio->link_status_wq.wk.work, 0); 802 } 803 } 804 } 805 806 /** 807 * lio_sync_octeon_time_cb - callback that is invoked when soft command 808 * sent by lio_sync_octeon_time() has completed successfully or failed 809 * 810 * @oct - octeon device structure 811 * @status - indicates success or failure 812 * @buf - pointer to the command that was sent to firmware 813 **/ 814 static void lio_sync_octeon_time_cb(struct octeon_device *oct, 815 u32 status, void *buf) 816 { 817 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 818 819 if (status) 820 dev_err(&oct->pci_dev->dev, 821 "Failed to sync time to octeon; error=%d\n", status); 822 823 octeon_free_soft_command(oct, sc); 824 } 825 826 /** 827 * lio_sync_octeon_time - send latest localtime to octeon firmware so that 828 * firmware will correct it's time, in case there is a time skew 829 * 830 * @work: work scheduled to send time update to octeon firmware 831 **/ 832 static void lio_sync_octeon_time(struct work_struct *work) 833 { 834 struct cavium_wk *wk = (struct cavium_wk *)work; 835 struct lio *lio = (struct lio *)wk->ctxptr; 836 struct octeon_device *oct = lio->oct_dev; 837 struct octeon_soft_command *sc; 838 struct timespec64 ts; 839 struct lio_time *lt; 840 int ret; 841 842 sc = octeon_alloc_soft_command(oct, sizeof(struct lio_time), 0, 0); 843 if (!sc) { 844 dev_err(&oct->pci_dev->dev, 845 "Failed to sync time to octeon: soft command allocation failed\n"); 846 return; 847 } 848 849 lt = (struct lio_time *)sc->virtdptr; 850 851 /* Get time of the day */ 852 getnstimeofday64(&ts); 853 lt->sec = ts.tv_sec; 854 lt->nsec = ts.tv_nsec; 855 octeon_swap_8B_data((u64 *)lt, (sizeof(struct lio_time)) / 8); 856 857 sc->iq_no = lio->linfo.txpciq[0].s.q_no; 858 octeon_prepare_soft_command(oct, sc, OPCODE_NIC, 859 OPCODE_NIC_SYNC_OCTEON_TIME, 0, 0, 0); 860 861 sc->callback = lio_sync_octeon_time_cb; 862 sc->callback_arg = sc; 863 sc->wait_time = 1000; 864 865 ret = octeon_send_soft_command(oct, sc); 866 if (ret == IQ_SEND_FAILED) { 867 dev_err(&oct->pci_dev->dev, 868 "Failed to sync time to octeon: failed to send soft command\n"); 869 octeon_free_soft_command(oct, sc); 870 } 871 872 queue_delayed_work(lio->sync_octeon_time_wq.wq, 873 &lio->sync_octeon_time_wq.wk.work, 874 msecs_to_jiffies(LIO_SYNC_OCTEON_TIME_INTERVAL_MS)); 875 } 876 877 /** 878 * setup_sync_octeon_time_wq - Sets up the work to periodically update 879 * local time to octeon firmware 880 * 881 * @netdev - network device which should send time update to firmware 882 **/ 883 static inline int setup_sync_octeon_time_wq(struct net_device *netdev) 884 { 885 struct lio *lio = GET_LIO(netdev); 886 struct octeon_device *oct = lio->oct_dev; 887 888 lio->sync_octeon_time_wq.wq = 889 alloc_workqueue("update-octeon-time", WQ_MEM_RECLAIM, 0); 890 if (!lio->sync_octeon_time_wq.wq) { 891 dev_err(&oct->pci_dev->dev, "Unable to create wq to update octeon time\n"); 892 return -1; 893 } 894 INIT_DELAYED_WORK(&lio->sync_octeon_time_wq.wk.work, 895 lio_sync_octeon_time); 896 lio->sync_octeon_time_wq.wk.ctxptr = lio; 897 queue_delayed_work(lio->sync_octeon_time_wq.wq, 898 &lio->sync_octeon_time_wq.wk.work, 899 msecs_to_jiffies(LIO_SYNC_OCTEON_TIME_INTERVAL_MS)); 900 901 return 0; 902 } 903 904 /** 905 * cleanup_sync_octeon_time_wq - stop scheduling and destroy the work created 906 * to periodically update local time to octeon firmware 907 * 908 * @netdev - network device which should send time update to firmware 909 **/ 910 static inline void cleanup_sync_octeon_time_wq(struct net_device *netdev) 911 { 912 struct lio *lio = GET_LIO(netdev); 913 struct cavium_wq *time_wq = &lio->sync_octeon_time_wq; 914 915 if (time_wq->wq) { 916 cancel_delayed_work_sync(&time_wq->wk.work); 917 destroy_workqueue(time_wq->wq); 918 } 919 } 920 921 static struct octeon_device *get_other_octeon_device(struct octeon_device *oct) 922 { 923 struct octeon_device *other_oct; 924 925 other_oct = lio_get_device(oct->octeon_id + 1); 926 927 if (other_oct && other_oct->pci_dev) { 928 int oct_busnum, other_oct_busnum; 929 930 oct_busnum = oct->pci_dev->bus->number; 931 other_oct_busnum = other_oct->pci_dev->bus->number; 932 933 if (oct_busnum == other_oct_busnum) { 934 int oct_slot, other_oct_slot; 935 936 oct_slot = PCI_SLOT(oct->pci_dev->devfn); 937 other_oct_slot = PCI_SLOT(other_oct->pci_dev->devfn); 938 939 if (oct_slot == other_oct_slot) 940 return other_oct; 941 } 942 } 943 944 return NULL; 945 } 946 947 static void disable_all_vf_links(struct octeon_device *oct) 948 { 949 struct net_device *netdev; 950 int max_vfs, vf, i; 951 952 if (!oct) 953 return; 954 955 max_vfs = oct->sriov_info.max_vfs; 956 957 for (i = 0; i < oct->ifcount; i++) { 958 netdev = oct->props[i].netdev; 959 if (!netdev) 960 continue; 961 962 for (vf = 0; vf < max_vfs; vf++) 963 liquidio_set_vf_link_state(netdev, vf, 964 IFLA_VF_LINK_STATE_DISABLE); 965 } 966 } 967 968 static int liquidio_watchdog(void *param) 969 { 970 bool err_msg_was_printed[LIO_MAX_CORES]; 971 u16 mask_of_crashed_or_stuck_cores = 0; 972 bool all_vf_links_are_disabled = false; 973 struct octeon_device *oct = param; 974 struct octeon_device *other_oct; 975 #ifdef CONFIG_MODULE_UNLOAD 976 long refcount, vfs_referencing_pf; 977 u64 vfs_mask1, vfs_mask2; 978 #endif 979 int core; 980 981 memset(err_msg_was_printed, 0, sizeof(err_msg_was_printed)); 982 983 while (!kthread_should_stop()) { 984 /* sleep for a couple of seconds so that we don't hog the CPU */ 985 set_current_state(TASK_INTERRUPTIBLE); 986 schedule_timeout(msecs_to_jiffies(2000)); 987 988 mask_of_crashed_or_stuck_cores = 989 (u16)octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2); 990 991 if (!mask_of_crashed_or_stuck_cores) 992 continue; 993 994 WRITE_ONCE(oct->cores_crashed, true); 995 other_oct = get_other_octeon_device(oct); 996 if (other_oct) 997 WRITE_ONCE(other_oct->cores_crashed, true); 998 999 for (core = 0; core < LIO_MAX_CORES; core++) { 1000 bool core_crashed_or_got_stuck; 1001 1002 core_crashed_or_got_stuck = 1003 (mask_of_crashed_or_stuck_cores 1004 >> core) & 1; 1005 1006 if (core_crashed_or_got_stuck && 1007 !err_msg_was_printed[core]) { 1008 dev_err(&oct->pci_dev->dev, 1009 "ERROR: Octeon core %d crashed or got stuck! See oct-fwdump for details.\n", 1010 core); 1011 err_msg_was_printed[core] = true; 1012 } 1013 } 1014 1015 if (all_vf_links_are_disabled) 1016 continue; 1017 1018 disable_all_vf_links(oct); 1019 disable_all_vf_links(other_oct); 1020 all_vf_links_are_disabled = true; 1021 1022 #ifdef CONFIG_MODULE_UNLOAD 1023 vfs_mask1 = READ_ONCE(oct->sriov_info.vf_drv_loaded_mask); 1024 vfs_mask2 = READ_ONCE(other_oct->sriov_info.vf_drv_loaded_mask); 1025 1026 vfs_referencing_pf = hweight64(vfs_mask1); 1027 vfs_referencing_pf += hweight64(vfs_mask2); 1028 1029 refcount = module_refcount(THIS_MODULE); 1030 if (refcount >= vfs_referencing_pf) { 1031 while (vfs_referencing_pf) { 1032 module_put(THIS_MODULE); 1033 vfs_referencing_pf--; 1034 } 1035 } 1036 #endif 1037 } 1038 1039 return 0; 1040 } 1041 1042 /** 1043 * \brief PCI probe handler 1044 * @param pdev PCI device structure 1045 * @param ent unused 1046 */ 1047 static int 1048 liquidio_probe(struct pci_dev *pdev, 1049 const struct pci_device_id *ent __attribute__((unused))) 1050 { 1051 struct octeon_device *oct_dev = NULL; 1052 struct handshake *hs; 1053 1054 oct_dev = octeon_allocate_device(pdev->device, 1055 sizeof(struct octeon_device_priv)); 1056 if (!oct_dev) { 1057 dev_err(&pdev->dev, "Unable to allocate device\n"); 1058 return -ENOMEM; 1059 } 1060 1061 if (pdev->device == OCTEON_CN23XX_PF_VID) 1062 oct_dev->msix_on = LIO_FLAG_MSIX_ENABLED; 1063 1064 /* Enable PTP for 6XXX Device */ 1065 if (((pdev->device == OCTEON_CN66XX) || 1066 (pdev->device == OCTEON_CN68XX))) 1067 oct_dev->ptp_enable = true; 1068 else 1069 oct_dev->ptp_enable = false; 1070 1071 dev_info(&pdev->dev, "Initializing device %x:%x.\n", 1072 (u32)pdev->vendor, (u32)pdev->device); 1073 1074 /* Assign octeon_device for this device to the private data area. */ 1075 pci_set_drvdata(pdev, oct_dev); 1076 1077 /* set linux specific device pointer */ 1078 oct_dev->pci_dev = (void *)pdev; 1079 1080 hs = &handshake[oct_dev->octeon_id]; 1081 init_completion(&hs->init); 1082 init_completion(&hs->started); 1083 hs->pci_dev = pdev; 1084 1085 if (oct_dev->octeon_id == 0) 1086 /* first LiquidIO NIC is detected */ 1087 complete(&first_stage); 1088 1089 if (octeon_device_init(oct_dev)) { 1090 complete(&hs->init); 1091 liquidio_remove(pdev); 1092 return -ENOMEM; 1093 } 1094 1095 if (OCTEON_CN23XX_PF(oct_dev)) { 1096 u8 bus, device, function; 1097 1098 if (atomic_read(oct_dev->adapter_refcount) == 1) { 1099 /* Each NIC gets one watchdog kernel thread. The first 1100 * PF (of each NIC) that gets pci_driver->probe()'d 1101 * creates that thread. 1102 */ 1103 bus = pdev->bus->number; 1104 device = PCI_SLOT(pdev->devfn); 1105 function = PCI_FUNC(pdev->devfn); 1106 oct_dev->watchdog_task = kthread_create( 1107 liquidio_watchdog, oct_dev, 1108 "liowd/%02hhx:%02hhx.%hhx", bus, device, function); 1109 if (!IS_ERR(oct_dev->watchdog_task)) { 1110 wake_up_process(oct_dev->watchdog_task); 1111 } else { 1112 oct_dev->watchdog_task = NULL; 1113 dev_err(&oct_dev->pci_dev->dev, 1114 "failed to create kernel_thread\n"); 1115 liquidio_remove(pdev); 1116 return -1; 1117 } 1118 } 1119 } 1120 1121 oct_dev->rx_pause = 1; 1122 oct_dev->tx_pause = 1; 1123 1124 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n"); 1125 1126 return 0; 1127 } 1128 1129 static bool fw_type_is_auto(void) 1130 { 1131 return strncmp(fw_type, LIO_FW_NAME_TYPE_AUTO, 1132 sizeof(LIO_FW_NAME_TYPE_AUTO)) == 0; 1133 } 1134 1135 /** 1136 * \brief PCI FLR for each Octeon device. 1137 * @param oct octeon device 1138 */ 1139 static void octeon_pci_flr(struct octeon_device *oct) 1140 { 1141 int rc; 1142 1143 pci_save_state(oct->pci_dev); 1144 1145 pci_cfg_access_lock(oct->pci_dev); 1146 1147 /* Quiesce the device completely */ 1148 pci_write_config_word(oct->pci_dev, PCI_COMMAND, 1149 PCI_COMMAND_INTX_DISABLE); 1150 1151 rc = __pci_reset_function_locked(oct->pci_dev); 1152 1153 if (rc != 0) 1154 dev_err(&oct->pci_dev->dev, "Error %d resetting PCI function %d\n", 1155 rc, oct->pf_num); 1156 1157 pci_cfg_access_unlock(oct->pci_dev); 1158 1159 pci_restore_state(oct->pci_dev); 1160 } 1161 1162 /** 1163 *\brief Destroy resources associated with octeon device 1164 * @param pdev PCI device structure 1165 * @param ent unused 1166 */ 1167 static void octeon_destroy_resources(struct octeon_device *oct) 1168 { 1169 int i, refcount; 1170 struct msix_entry *msix_entries; 1171 struct octeon_device_priv *oct_priv = 1172 (struct octeon_device_priv *)oct->priv; 1173 1174 struct handshake *hs; 1175 1176 switch (atomic_read(&oct->status)) { 1177 case OCT_DEV_RUNNING: 1178 case OCT_DEV_CORE_OK: 1179 1180 /* No more instructions will be forwarded. */ 1181 atomic_set(&oct->status, OCT_DEV_IN_RESET); 1182 1183 oct->app_mode = CVM_DRV_INVALID_APP; 1184 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n", 1185 lio_get_state_string(&oct->status)); 1186 1187 schedule_timeout_uninterruptible(HZ / 10); 1188 1189 /* fallthrough */ 1190 case OCT_DEV_HOST_OK: 1191 1192 /* fallthrough */ 1193 case OCT_DEV_CONSOLE_INIT_DONE: 1194 /* Remove any consoles */ 1195 octeon_remove_consoles(oct); 1196 1197 /* fallthrough */ 1198 case OCT_DEV_IO_QUEUES_DONE: 1199 if (wait_for_pending_requests(oct)) 1200 dev_err(&oct->pci_dev->dev, "There were pending requests\n"); 1201 1202 if (lio_wait_for_instr_fetch(oct)) 1203 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n"); 1204 1205 /* Disable the input and output queues now. No more packets will 1206 * arrive from Octeon, but we should wait for all packet 1207 * processing to finish. 1208 */ 1209 oct->fn_list.disable_io_queues(oct); 1210 1211 if (lio_wait_for_oq_pkts(oct)) 1212 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n"); 1213 1214 /* fallthrough */ 1215 case OCT_DEV_INTR_SET_DONE: 1216 /* Disable interrupts */ 1217 oct->fn_list.disable_interrupt(oct, OCTEON_ALL_INTR); 1218 1219 if (oct->msix_on) { 1220 msix_entries = (struct msix_entry *)oct->msix_entries; 1221 for (i = 0; i < oct->num_msix_irqs - 1; i++) { 1222 if (oct->ioq_vector[i].vector) { 1223 /* clear the affinity_cpumask */ 1224 irq_set_affinity_hint( 1225 msix_entries[i].vector, 1226 NULL); 1227 free_irq(msix_entries[i].vector, 1228 &oct->ioq_vector[i]); 1229 oct->ioq_vector[i].vector = 0; 1230 } 1231 } 1232 /* non-iov vector's argument is oct struct */ 1233 free_irq(msix_entries[i].vector, oct); 1234 1235 pci_disable_msix(oct->pci_dev); 1236 kfree(oct->msix_entries); 1237 oct->msix_entries = NULL; 1238 } else { 1239 /* Release the interrupt line */ 1240 free_irq(oct->pci_dev->irq, oct); 1241 1242 if (oct->flags & LIO_FLAG_MSI_ENABLED) 1243 pci_disable_msi(oct->pci_dev); 1244 } 1245 1246 kfree(oct->irq_name_storage); 1247 oct->irq_name_storage = NULL; 1248 1249 /* fallthrough */ 1250 case OCT_DEV_MSIX_ALLOC_VECTOR_DONE: 1251 if (OCTEON_CN23XX_PF(oct)) 1252 octeon_free_ioq_vector(oct); 1253 1254 /* fallthrough */ 1255 case OCT_DEV_MBOX_SETUP_DONE: 1256 if (OCTEON_CN23XX_PF(oct)) 1257 oct->fn_list.free_mbox(oct); 1258 1259 /* fallthrough */ 1260 case OCT_DEV_IN_RESET: 1261 case OCT_DEV_DROQ_INIT_DONE: 1262 /* Wait for any pending operations */ 1263 mdelay(100); 1264 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES(oct); i++) { 1265 if (!(oct->io_qmask.oq & BIT_ULL(i))) 1266 continue; 1267 octeon_delete_droq(oct, i); 1268 } 1269 1270 /* Force any pending handshakes to complete */ 1271 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 1272 hs = &handshake[i]; 1273 1274 if (hs->pci_dev) { 1275 handshake[oct->octeon_id].init_ok = 0; 1276 complete(&handshake[oct->octeon_id].init); 1277 handshake[oct->octeon_id].started_ok = 0; 1278 complete(&handshake[oct->octeon_id].started); 1279 } 1280 } 1281 1282 /* fallthrough */ 1283 case OCT_DEV_RESP_LIST_INIT_DONE: 1284 octeon_delete_response_list(oct); 1285 1286 /* fallthrough */ 1287 case OCT_DEV_INSTR_QUEUE_INIT_DONE: 1288 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) { 1289 if (!(oct->io_qmask.iq & BIT_ULL(i))) 1290 continue; 1291 octeon_delete_instr_queue(oct, i); 1292 } 1293 #ifdef CONFIG_PCI_IOV 1294 if (oct->sriov_info.sriov_enabled) 1295 pci_disable_sriov(oct->pci_dev); 1296 #endif 1297 /* fallthrough */ 1298 case OCT_DEV_SC_BUFF_POOL_INIT_DONE: 1299 octeon_free_sc_buffer_pool(oct); 1300 1301 /* fallthrough */ 1302 case OCT_DEV_DISPATCH_INIT_DONE: 1303 octeon_delete_dispatch_list(oct); 1304 cancel_delayed_work_sync(&oct->nic_poll_work.work); 1305 1306 /* fallthrough */ 1307 case OCT_DEV_PCI_MAP_DONE: 1308 refcount = octeon_deregister_device(oct); 1309 1310 /* Soft reset the octeon device before exiting. 1311 * However, if fw was loaded from card (i.e. autoboot), 1312 * perform an FLR instead. 1313 * Implementation note: only soft-reset the device 1314 * if it is a CN6XXX OR the LAST CN23XX device. 1315 */ 1316 if (atomic_read(oct->adapter_fw_state) == FW_IS_PRELOADED) 1317 octeon_pci_flr(oct); 1318 else if (OCTEON_CN6XXX(oct) || !refcount) 1319 oct->fn_list.soft_reset(oct); 1320 1321 octeon_unmap_pci_barx(oct, 0); 1322 octeon_unmap_pci_barx(oct, 1); 1323 1324 /* fallthrough */ 1325 case OCT_DEV_PCI_ENABLE_DONE: 1326 pci_clear_master(oct->pci_dev); 1327 /* Disable the device, releasing the PCI INT */ 1328 pci_disable_device(oct->pci_dev); 1329 1330 /* fallthrough */ 1331 case OCT_DEV_BEGIN_STATE: 1332 /* Nothing to be done here either */ 1333 break; 1334 } /* end switch (oct->status) */ 1335 1336 tasklet_kill(&oct_priv->droq_tasklet); 1337 } 1338 1339 /** 1340 * \brief Callback for rx ctrl 1341 * @param status status of request 1342 * @param buf pointer to resp structure 1343 */ 1344 static void rx_ctl_callback(struct octeon_device *oct, 1345 u32 status, 1346 void *buf) 1347 { 1348 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 1349 struct liquidio_rx_ctl_context *ctx; 1350 1351 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr; 1352 1353 oct = lio_get_device(ctx->octeon_id); 1354 if (status) 1355 dev_err(&oct->pci_dev->dev, "rx ctl instruction failed. Status: %llx\n", 1356 CVM_CAST64(status)); 1357 WRITE_ONCE(ctx->cond, 1); 1358 1359 /* This barrier is required to be sure that the response has been 1360 * written fully before waking up the handler 1361 */ 1362 wmb(); 1363 1364 wake_up_interruptible(&ctx->wc); 1365 } 1366 1367 /** 1368 * \brief Send Rx control command 1369 * @param lio per-network private data 1370 * @param start_stop whether to start or stop 1371 */ 1372 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop) 1373 { 1374 struct octeon_soft_command *sc; 1375 struct liquidio_rx_ctl_context *ctx; 1376 union octnet_cmd *ncmd; 1377 int ctx_size = sizeof(struct liquidio_rx_ctl_context); 1378 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1379 int retval; 1380 1381 if (oct->props[lio->ifidx].rx_on == start_stop) 1382 return; 1383 1384 sc = (struct octeon_soft_command *) 1385 octeon_alloc_soft_command(oct, OCTNET_CMD_SIZE, 1386 16, ctx_size); 1387 1388 ncmd = (union octnet_cmd *)sc->virtdptr; 1389 ctx = (struct liquidio_rx_ctl_context *)sc->ctxptr; 1390 1391 WRITE_ONCE(ctx->cond, 0); 1392 ctx->octeon_id = lio_get_device_id(oct); 1393 init_waitqueue_head(&ctx->wc); 1394 1395 ncmd->u64 = 0; 1396 ncmd->s.cmd = OCTNET_CMD_RX_CTL; 1397 ncmd->s.param1 = start_stop; 1398 1399 octeon_swap_8B_data((u64 *)ncmd, (OCTNET_CMD_SIZE >> 3)); 1400 1401 sc->iq_no = lio->linfo.txpciq[0].s.q_no; 1402 1403 octeon_prepare_soft_command(oct, sc, OPCODE_NIC, 1404 OPCODE_NIC_CMD, 0, 0, 0); 1405 1406 sc->callback = rx_ctl_callback; 1407 sc->callback_arg = sc; 1408 sc->wait_time = 5000; 1409 1410 retval = octeon_send_soft_command(oct, sc); 1411 if (retval == IQ_SEND_FAILED) { 1412 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n"); 1413 } else { 1414 /* Sleep on a wait queue till the cond flag indicates that the 1415 * response arrived or timed-out. 1416 */ 1417 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) 1418 return; 1419 oct->props[lio->ifidx].rx_on = start_stop; 1420 } 1421 1422 octeon_free_soft_command(oct, sc); 1423 } 1424 1425 /** 1426 * \brief Destroy NIC device interface 1427 * @param oct octeon device 1428 * @param ifidx which interface to destroy 1429 * 1430 * Cleanup associated with each interface for an Octeon device when NIC 1431 * module is being unloaded or if initialization fails during load. 1432 */ 1433 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx) 1434 { 1435 struct net_device *netdev = oct->props[ifidx].netdev; 1436 struct lio *lio; 1437 struct napi_struct *napi, *n; 1438 1439 if (!netdev) { 1440 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n", 1441 __func__, ifidx); 1442 return; 1443 } 1444 1445 lio = GET_LIO(netdev); 1446 1447 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n"); 1448 1449 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) 1450 liquidio_stop(netdev); 1451 1452 if (oct->props[lio->ifidx].napi_enabled == 1) { 1453 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 1454 napi_disable(napi); 1455 1456 oct->props[lio->ifidx].napi_enabled = 0; 1457 1458 if (OCTEON_CN23XX_PF(oct)) 1459 oct->droq[0]->ops.poll_mode = 0; 1460 } 1461 1462 /* Delete NAPI */ 1463 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 1464 netif_napi_del(napi); 1465 1466 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) 1467 unregister_netdev(netdev); 1468 1469 cleanup_sync_octeon_time_wq(netdev); 1470 cleanup_link_status_change_wq(netdev); 1471 1472 cleanup_rx_oom_poll_fn(netdev); 1473 1474 delete_glists(lio); 1475 1476 free_netdev(netdev); 1477 1478 oct->props[ifidx].gmxport = -1; 1479 1480 oct->props[ifidx].netdev = NULL; 1481 } 1482 1483 /** 1484 * \brief Stop complete NIC functionality 1485 * @param oct octeon device 1486 */ 1487 static int liquidio_stop_nic_module(struct octeon_device *oct) 1488 { 1489 int i, j; 1490 struct lio *lio; 1491 1492 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n"); 1493 if (!oct->ifcount) { 1494 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n"); 1495 return 1; 1496 } 1497 1498 spin_lock_bh(&oct->cmd_resp_wqlock); 1499 oct->cmd_resp_state = OCT_DRV_OFFLINE; 1500 spin_unlock_bh(&oct->cmd_resp_wqlock); 1501 1502 lio_vf_rep_destroy(oct); 1503 1504 for (i = 0; i < oct->ifcount; i++) { 1505 lio = GET_LIO(oct->props[i].netdev); 1506 for (j = 0; j < oct->num_oqs; j++) 1507 octeon_unregister_droq_ops(oct, 1508 lio->linfo.rxpciq[j].s.q_no); 1509 } 1510 1511 for (i = 0; i < oct->ifcount; i++) 1512 liquidio_destroy_nic_device(oct, i); 1513 1514 if (oct->devlink) { 1515 devlink_unregister(oct->devlink); 1516 devlink_free(oct->devlink); 1517 oct->devlink = NULL; 1518 } 1519 1520 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n"); 1521 return 0; 1522 } 1523 1524 /** 1525 * \brief Cleans up resources at unload time 1526 * @param pdev PCI device structure 1527 */ 1528 static void liquidio_remove(struct pci_dev *pdev) 1529 { 1530 struct octeon_device *oct_dev = pci_get_drvdata(pdev); 1531 1532 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n"); 1533 1534 if (oct_dev->watchdog_task) 1535 kthread_stop(oct_dev->watchdog_task); 1536 1537 if (!oct_dev->octeon_id && 1538 oct_dev->fw_info.app_cap_flags & LIQUIDIO_SWITCHDEV_CAP) 1539 lio_vf_rep_modexit(); 1540 1541 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP)) 1542 liquidio_stop_nic_module(oct_dev); 1543 1544 /* Reset the octeon device and cleanup all memory allocated for 1545 * the octeon device by driver. 1546 */ 1547 octeon_destroy_resources(oct_dev); 1548 1549 dev_info(&oct_dev->pci_dev->dev, "Device removed\n"); 1550 1551 /* This octeon device has been removed. Update the global 1552 * data structure to reflect this. Free the device structure. 1553 */ 1554 octeon_free_device_mem(oct_dev); 1555 } 1556 1557 /** 1558 * \brief Identify the Octeon device and to map the BAR address space 1559 * @param oct octeon device 1560 */ 1561 static int octeon_chip_specific_setup(struct octeon_device *oct) 1562 { 1563 u32 dev_id, rev_id; 1564 int ret = 1; 1565 char *s; 1566 1567 pci_read_config_dword(oct->pci_dev, 0, &dev_id); 1568 pci_read_config_dword(oct->pci_dev, 8, &rev_id); 1569 oct->rev_id = rev_id & 0xff; 1570 1571 switch (dev_id) { 1572 case OCTEON_CN68XX_PCIID: 1573 oct->chip_id = OCTEON_CN68XX; 1574 ret = lio_setup_cn68xx_octeon_device(oct); 1575 s = "CN68XX"; 1576 break; 1577 1578 case OCTEON_CN66XX_PCIID: 1579 oct->chip_id = OCTEON_CN66XX; 1580 ret = lio_setup_cn66xx_octeon_device(oct); 1581 s = "CN66XX"; 1582 break; 1583 1584 case OCTEON_CN23XX_PCIID_PF: 1585 oct->chip_id = OCTEON_CN23XX_PF_VID; 1586 ret = setup_cn23xx_octeon_pf_device(oct); 1587 if (ret) 1588 break; 1589 #ifdef CONFIG_PCI_IOV 1590 if (!ret) 1591 pci_sriov_set_totalvfs(oct->pci_dev, 1592 oct->sriov_info.max_vfs); 1593 #endif 1594 s = "CN23XX"; 1595 break; 1596 1597 default: 1598 s = "?"; 1599 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n", 1600 dev_id); 1601 } 1602 1603 if (!ret) 1604 dev_info(&oct->pci_dev->dev, "%s PASS%d.%d %s Version: %s\n", s, 1605 OCTEON_MAJOR_REV(oct), 1606 OCTEON_MINOR_REV(oct), 1607 octeon_get_conf(oct)->card_name, 1608 LIQUIDIO_VERSION); 1609 1610 return ret; 1611 } 1612 1613 /** 1614 * \brief PCI initialization for each Octeon device. 1615 * @param oct octeon device 1616 */ 1617 static int octeon_pci_os_setup(struct octeon_device *oct) 1618 { 1619 /* setup PCI stuff first */ 1620 if (pci_enable_device(oct->pci_dev)) { 1621 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n"); 1622 return 1; 1623 } 1624 1625 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) { 1626 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n"); 1627 pci_disable_device(oct->pci_dev); 1628 return 1; 1629 } 1630 1631 /* Enable PCI DMA Master. */ 1632 pci_set_master(oct->pci_dev); 1633 1634 return 0; 1635 } 1636 1637 /** 1638 * \brief Unmap and free network buffer 1639 * @param buf buffer 1640 */ 1641 static void free_netbuf(void *buf) 1642 { 1643 struct sk_buff *skb; 1644 struct octnet_buf_free_info *finfo; 1645 struct lio *lio; 1646 1647 finfo = (struct octnet_buf_free_info *)buf; 1648 skb = finfo->skb; 1649 lio = finfo->lio; 1650 1651 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len, 1652 DMA_TO_DEVICE); 1653 1654 tx_buffer_free(skb); 1655 } 1656 1657 /** 1658 * \brief Unmap and free gather buffer 1659 * @param buf buffer 1660 */ 1661 static void free_netsgbuf(void *buf) 1662 { 1663 struct octnet_buf_free_info *finfo; 1664 struct sk_buff *skb; 1665 struct lio *lio; 1666 struct octnic_gather *g; 1667 int i, frags, iq; 1668 1669 finfo = (struct octnet_buf_free_info *)buf; 1670 skb = finfo->skb; 1671 lio = finfo->lio; 1672 g = finfo->g; 1673 frags = skb_shinfo(skb)->nr_frags; 1674 1675 dma_unmap_single(&lio->oct_dev->pci_dev->dev, 1676 g->sg[0].ptr[0], (skb->len - skb->data_len), 1677 DMA_TO_DEVICE); 1678 1679 i = 1; 1680 while (frags--) { 1681 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1682 1683 pci_unmap_page((lio->oct_dev)->pci_dev, 1684 g->sg[(i >> 2)].ptr[(i & 3)], 1685 frag->size, DMA_TO_DEVICE); 1686 i++; 1687 } 1688 1689 iq = skb_iq(lio, skb); 1690 spin_lock(&lio->glist_lock[iq]); 1691 list_add_tail(&g->list, &lio->glist[iq]); 1692 spin_unlock(&lio->glist_lock[iq]); 1693 1694 tx_buffer_free(skb); 1695 } 1696 1697 /** 1698 * \brief Unmap and free gather buffer with response 1699 * @param buf buffer 1700 */ 1701 static void free_netsgbuf_with_resp(void *buf) 1702 { 1703 struct octeon_soft_command *sc; 1704 struct octnet_buf_free_info *finfo; 1705 struct sk_buff *skb; 1706 struct lio *lio; 1707 struct octnic_gather *g; 1708 int i, frags, iq; 1709 1710 sc = (struct octeon_soft_command *)buf; 1711 skb = (struct sk_buff *)sc->callback_arg; 1712 finfo = (struct octnet_buf_free_info *)&skb->cb; 1713 1714 lio = finfo->lio; 1715 g = finfo->g; 1716 frags = skb_shinfo(skb)->nr_frags; 1717 1718 dma_unmap_single(&lio->oct_dev->pci_dev->dev, 1719 g->sg[0].ptr[0], (skb->len - skb->data_len), 1720 DMA_TO_DEVICE); 1721 1722 i = 1; 1723 while (frags--) { 1724 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1725 1726 pci_unmap_page((lio->oct_dev)->pci_dev, 1727 g->sg[(i >> 2)].ptr[(i & 3)], 1728 frag->size, DMA_TO_DEVICE); 1729 i++; 1730 } 1731 1732 iq = skb_iq(lio, skb); 1733 1734 spin_lock(&lio->glist_lock[iq]); 1735 list_add_tail(&g->list, &lio->glist[iq]); 1736 spin_unlock(&lio->glist_lock[iq]); 1737 1738 /* Don't free the skb yet */ 1739 } 1740 1741 /** 1742 * \brief Adjust ptp frequency 1743 * @param ptp PTP clock info 1744 * @param ppb how much to adjust by, in parts-per-billion 1745 */ 1746 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 1747 { 1748 struct lio *lio = container_of(ptp, struct lio, ptp_info); 1749 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1750 u64 comp, delta; 1751 unsigned long flags; 1752 bool neg_adj = false; 1753 1754 if (ppb < 0) { 1755 neg_adj = true; 1756 ppb = -ppb; 1757 } 1758 1759 /* The hardware adds the clock compensation value to the 1760 * PTP clock on every coprocessor clock cycle, so we 1761 * compute the delta in terms of coprocessor clocks. 1762 */ 1763 delta = (u64)ppb << 32; 1764 do_div(delta, oct->coproc_clock_rate); 1765 1766 spin_lock_irqsave(&lio->ptp_lock, flags); 1767 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP); 1768 if (neg_adj) 1769 comp -= delta; 1770 else 1771 comp += delta; 1772 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP); 1773 spin_unlock_irqrestore(&lio->ptp_lock, flags); 1774 1775 return 0; 1776 } 1777 1778 /** 1779 * \brief Adjust ptp time 1780 * @param ptp PTP clock info 1781 * @param delta how much to adjust by, in nanosecs 1782 */ 1783 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 1784 { 1785 unsigned long flags; 1786 struct lio *lio = container_of(ptp, struct lio, ptp_info); 1787 1788 spin_lock_irqsave(&lio->ptp_lock, flags); 1789 lio->ptp_adjust += delta; 1790 spin_unlock_irqrestore(&lio->ptp_lock, flags); 1791 1792 return 0; 1793 } 1794 1795 /** 1796 * \brief Get hardware clock time, including any adjustment 1797 * @param ptp PTP clock info 1798 * @param ts timespec 1799 */ 1800 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp, 1801 struct timespec64 *ts) 1802 { 1803 u64 ns; 1804 unsigned long flags; 1805 struct lio *lio = container_of(ptp, struct lio, ptp_info); 1806 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1807 1808 spin_lock_irqsave(&lio->ptp_lock, flags); 1809 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI); 1810 ns += lio->ptp_adjust; 1811 spin_unlock_irqrestore(&lio->ptp_lock, flags); 1812 1813 *ts = ns_to_timespec64(ns); 1814 1815 return 0; 1816 } 1817 1818 /** 1819 * \brief Set hardware clock time. Reset adjustment 1820 * @param ptp PTP clock info 1821 * @param ts timespec 1822 */ 1823 static int liquidio_ptp_settime(struct ptp_clock_info *ptp, 1824 const struct timespec64 *ts) 1825 { 1826 u64 ns; 1827 unsigned long flags; 1828 struct lio *lio = container_of(ptp, struct lio, ptp_info); 1829 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1830 1831 ns = timespec64_to_ns(ts); 1832 1833 spin_lock_irqsave(&lio->ptp_lock, flags); 1834 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI); 1835 lio->ptp_adjust = 0; 1836 spin_unlock_irqrestore(&lio->ptp_lock, flags); 1837 1838 return 0; 1839 } 1840 1841 /** 1842 * \brief Check if PTP is enabled 1843 * @param ptp PTP clock info 1844 * @param rq request 1845 * @param on is it on 1846 */ 1847 static int 1848 liquidio_ptp_enable(struct ptp_clock_info *ptp __attribute__((unused)), 1849 struct ptp_clock_request *rq __attribute__((unused)), 1850 int on __attribute__((unused))) 1851 { 1852 return -EOPNOTSUPP; 1853 } 1854 1855 /** 1856 * \brief Open PTP clock source 1857 * @param netdev network device 1858 */ 1859 static void oct_ptp_open(struct net_device *netdev) 1860 { 1861 struct lio *lio = GET_LIO(netdev); 1862 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev; 1863 1864 spin_lock_init(&lio->ptp_lock); 1865 1866 snprintf(lio->ptp_info.name, 16, "%s", netdev->name); 1867 lio->ptp_info.owner = THIS_MODULE; 1868 lio->ptp_info.max_adj = 250000000; 1869 lio->ptp_info.n_alarm = 0; 1870 lio->ptp_info.n_ext_ts = 0; 1871 lio->ptp_info.n_per_out = 0; 1872 lio->ptp_info.pps = 0; 1873 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq; 1874 lio->ptp_info.adjtime = liquidio_ptp_adjtime; 1875 lio->ptp_info.gettime64 = liquidio_ptp_gettime; 1876 lio->ptp_info.settime64 = liquidio_ptp_settime; 1877 lio->ptp_info.enable = liquidio_ptp_enable; 1878 1879 lio->ptp_adjust = 0; 1880 1881 lio->ptp_clock = ptp_clock_register(&lio->ptp_info, 1882 &oct->pci_dev->dev); 1883 1884 if (IS_ERR(lio->ptp_clock)) 1885 lio->ptp_clock = NULL; 1886 } 1887 1888 /** 1889 * \brief Init PTP clock 1890 * @param oct octeon device 1891 */ 1892 static void liquidio_ptp_init(struct octeon_device *oct) 1893 { 1894 u64 clock_comp, cfg; 1895 1896 clock_comp = (u64)NSEC_PER_SEC << 32; 1897 do_div(clock_comp, oct->coproc_clock_rate); 1898 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP); 1899 1900 /* Enable */ 1901 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG); 1902 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG); 1903 } 1904 1905 /** 1906 * \brief Load firmware to device 1907 * @param oct octeon device 1908 * 1909 * Maps device to firmware filename, requests firmware, and downloads it 1910 */ 1911 static int load_firmware(struct octeon_device *oct) 1912 { 1913 int ret = 0; 1914 const struct firmware *fw; 1915 char fw_name[LIO_MAX_FW_FILENAME_LEN]; 1916 char *tmp_fw_type; 1917 1918 if (fw_type_is_auto()) { 1919 tmp_fw_type = LIO_FW_NAME_TYPE_NIC; 1920 strncpy(fw_type, tmp_fw_type, sizeof(fw_type)); 1921 } else { 1922 tmp_fw_type = fw_type; 1923 } 1924 1925 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME, 1926 octeon_get_conf(oct)->card_name, tmp_fw_type, 1927 LIO_FW_NAME_SUFFIX); 1928 1929 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev); 1930 if (ret) { 1931 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.", 1932 fw_name); 1933 release_firmware(fw); 1934 return ret; 1935 } 1936 1937 ret = octeon_download_firmware(oct, fw->data, fw->size); 1938 1939 release_firmware(fw); 1940 1941 return ret; 1942 } 1943 1944 /** 1945 * \brief Callback for getting interface configuration 1946 * @param status status of request 1947 * @param buf pointer to resp structure 1948 */ 1949 static void if_cfg_callback(struct octeon_device *oct, 1950 u32 status __attribute__((unused)), 1951 void *buf) 1952 { 1953 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf; 1954 struct liquidio_if_cfg_resp *resp; 1955 struct liquidio_if_cfg_context *ctx; 1956 1957 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr; 1958 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr; 1959 1960 oct = lio_get_device(ctx->octeon_id); 1961 if (resp->status) 1962 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: 0x%llx (0x%08x)\n", 1963 CVM_CAST64(resp->status), status); 1964 WRITE_ONCE(ctx->cond, 1); 1965 1966 snprintf(oct->fw_info.liquidio_firmware_version, 32, "%s", 1967 resp->cfg_info.liquidio_firmware_version); 1968 1969 /* This barrier is required to be sure that the response has been 1970 * written fully before waking up the handler 1971 */ 1972 wmb(); 1973 1974 wake_up_interruptible(&ctx->wc); 1975 } 1976 1977 /** 1978 * \brief Poll routine for checking transmit queue status 1979 * @param work work_struct data structure 1980 */ 1981 static void octnet_poll_check_txq_status(struct work_struct *work) 1982 { 1983 struct cavium_wk *wk = (struct cavium_wk *)work; 1984 struct lio *lio = (struct lio *)wk->ctxptr; 1985 1986 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) 1987 return; 1988 1989 check_txq_status(lio); 1990 queue_delayed_work(lio->txq_status_wq.wq, 1991 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1)); 1992 } 1993 1994 /** 1995 * \brief Sets up the txq poll check 1996 * @param netdev network device 1997 */ 1998 static inline int setup_tx_poll_fn(struct net_device *netdev) 1999 { 2000 struct lio *lio = GET_LIO(netdev); 2001 struct octeon_device *oct = lio->oct_dev; 2002 2003 lio->txq_status_wq.wq = alloc_workqueue("txq-status", 2004 WQ_MEM_RECLAIM, 0); 2005 if (!lio->txq_status_wq.wq) { 2006 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n"); 2007 return -1; 2008 } 2009 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work, 2010 octnet_poll_check_txq_status); 2011 lio->txq_status_wq.wk.ctxptr = lio; 2012 queue_delayed_work(lio->txq_status_wq.wq, 2013 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1)); 2014 return 0; 2015 } 2016 2017 static inline void cleanup_tx_poll_fn(struct net_device *netdev) 2018 { 2019 struct lio *lio = GET_LIO(netdev); 2020 2021 if (lio->txq_status_wq.wq) { 2022 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work); 2023 destroy_workqueue(lio->txq_status_wq.wq); 2024 } 2025 } 2026 2027 /** 2028 * \brief Net device open for LiquidIO 2029 * @param netdev network device 2030 */ 2031 static int liquidio_open(struct net_device *netdev) 2032 { 2033 struct lio *lio = GET_LIO(netdev); 2034 struct octeon_device *oct = lio->oct_dev; 2035 struct napi_struct *napi, *n; 2036 2037 if (oct->props[lio->ifidx].napi_enabled == 0) { 2038 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 2039 napi_enable(napi); 2040 2041 oct->props[lio->ifidx].napi_enabled = 1; 2042 2043 if (OCTEON_CN23XX_PF(oct)) 2044 oct->droq[0]->ops.poll_mode = 1; 2045 } 2046 2047 if (oct->ptp_enable) 2048 oct_ptp_open(netdev); 2049 2050 ifstate_set(lio, LIO_IFSTATE_RUNNING); 2051 2052 /* Ready for link status updates */ 2053 lio->intf_open = 1; 2054 2055 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n"); 2056 2057 if (OCTEON_CN23XX_PF(oct)) { 2058 if (!oct->msix_on) 2059 if (setup_tx_poll_fn(netdev)) 2060 return -1; 2061 } else { 2062 if (setup_tx_poll_fn(netdev)) 2063 return -1; 2064 } 2065 2066 start_txqs(netdev); 2067 2068 /* tell Octeon to start forwarding packets to host */ 2069 send_rx_ctrl_cmd(lio, 1); 2070 2071 dev_info(&oct->pci_dev->dev, "%s interface is opened\n", 2072 netdev->name); 2073 2074 return 0; 2075 } 2076 2077 /** 2078 * \brief Net device stop for LiquidIO 2079 * @param netdev network device 2080 */ 2081 static int liquidio_stop(struct net_device *netdev) 2082 { 2083 struct lio *lio = GET_LIO(netdev); 2084 struct octeon_device *oct = lio->oct_dev; 2085 struct napi_struct *napi, *n; 2086 2087 ifstate_reset(lio, LIO_IFSTATE_RUNNING); 2088 2089 netif_tx_disable(netdev); 2090 2091 /* Inform that netif carrier is down */ 2092 netif_carrier_off(netdev); 2093 lio->intf_open = 0; 2094 lio->linfo.link.s.link_up = 0; 2095 lio->link_changes++; 2096 2097 /* Tell Octeon that nic interface is down. */ 2098 send_rx_ctrl_cmd(lio, 0); 2099 2100 if (OCTEON_CN23XX_PF(oct)) { 2101 if (!oct->msix_on) 2102 cleanup_tx_poll_fn(netdev); 2103 } else { 2104 cleanup_tx_poll_fn(netdev); 2105 } 2106 2107 if (lio->ptp_clock) { 2108 ptp_clock_unregister(lio->ptp_clock); 2109 lio->ptp_clock = NULL; 2110 } 2111 2112 /* Wait for any pending Rx descriptors */ 2113 if (lio_wait_for_clean_oq(oct)) 2114 netif_info(lio, rx_err, lio->netdev, 2115 "Proceeding with stop interface after partial RX desc processing\n"); 2116 2117 if (oct->props[lio->ifidx].napi_enabled == 1) { 2118 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list) 2119 napi_disable(napi); 2120 2121 oct->props[lio->ifidx].napi_enabled = 0; 2122 2123 if (OCTEON_CN23XX_PF(oct)) 2124 oct->droq[0]->ops.poll_mode = 0; 2125 } 2126 2127 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name); 2128 2129 return 0; 2130 } 2131 2132 /** 2133 * \brief Converts a mask based on net device flags 2134 * @param netdev network device 2135 * 2136 * This routine generates a octnet_ifflags mask from the net device flags 2137 * received from the OS. 2138 */ 2139 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev) 2140 { 2141 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST; 2142 2143 if (netdev->flags & IFF_PROMISC) 2144 f |= OCTNET_IFFLAG_PROMISC; 2145 2146 if (netdev->flags & IFF_ALLMULTI) 2147 f |= OCTNET_IFFLAG_ALLMULTI; 2148 2149 if (netdev->flags & IFF_MULTICAST) { 2150 f |= OCTNET_IFFLAG_MULTICAST; 2151 2152 /* Accept all multicast addresses if there are more than we 2153 * can handle 2154 */ 2155 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR) 2156 f |= OCTNET_IFFLAG_ALLMULTI; 2157 } 2158 2159 if (netdev->flags & IFF_BROADCAST) 2160 f |= OCTNET_IFFLAG_BROADCAST; 2161 2162 return f; 2163 } 2164 2165 /** 2166 * \brief Net device set_multicast_list 2167 * @param netdev network device 2168 */ 2169 static void liquidio_set_mcast_list(struct net_device *netdev) 2170 { 2171 struct lio *lio = GET_LIO(netdev); 2172 struct octeon_device *oct = lio->oct_dev; 2173 struct octnic_ctrl_pkt nctrl; 2174 struct netdev_hw_addr *ha; 2175 u64 *mc; 2176 int ret; 2177 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR); 2178 2179 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2180 2181 /* Create a ctrl pkt command to be sent to core app. */ 2182 nctrl.ncmd.u64 = 0; 2183 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST; 2184 nctrl.ncmd.s.param1 = get_new_flags(netdev); 2185 nctrl.ncmd.s.param2 = mc_count; 2186 nctrl.ncmd.s.more = mc_count; 2187 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2188 nctrl.netpndev = (u64)netdev; 2189 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2190 2191 /* copy all the addresses into the udd */ 2192 mc = &nctrl.udd[0]; 2193 netdev_for_each_mc_addr(ha, netdev) { 2194 *mc = 0; 2195 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN); 2196 /* no need to swap bytes */ 2197 2198 if (++mc > &nctrl.udd[mc_count]) 2199 break; 2200 } 2201 2202 /* Apparently, any activity in this call from the kernel has to 2203 * be atomic. So we won't wait for response. 2204 */ 2205 nctrl.wait_time = 0; 2206 2207 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2208 if (ret < 0) { 2209 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n", 2210 ret); 2211 } 2212 } 2213 2214 /** 2215 * \brief Net device set_mac_address 2216 * @param netdev network device 2217 */ 2218 static int liquidio_set_mac(struct net_device *netdev, void *p) 2219 { 2220 int ret = 0; 2221 struct lio *lio = GET_LIO(netdev); 2222 struct octeon_device *oct = lio->oct_dev; 2223 struct sockaddr *addr = (struct sockaddr *)p; 2224 struct octnic_ctrl_pkt nctrl; 2225 2226 if (!is_valid_ether_addr(addr->sa_data)) 2227 return -EADDRNOTAVAIL; 2228 2229 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2230 2231 nctrl.ncmd.u64 = 0; 2232 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR; 2233 nctrl.ncmd.s.param1 = 0; 2234 nctrl.ncmd.s.more = 1; 2235 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2236 nctrl.netpndev = (u64)netdev; 2237 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2238 nctrl.wait_time = 100; 2239 2240 nctrl.udd[0] = 0; 2241 /* The MAC Address is presented in network byte order. */ 2242 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN); 2243 2244 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2245 if (ret < 0) { 2246 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n"); 2247 return -ENOMEM; 2248 } 2249 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2250 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN); 2251 2252 return 0; 2253 } 2254 2255 /** 2256 * \brief Net device get_stats 2257 * @param netdev network device 2258 */ 2259 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev) 2260 { 2261 struct lio *lio = GET_LIO(netdev); 2262 struct net_device_stats *stats = &netdev->stats; 2263 struct octeon_device *oct; 2264 u64 pkts = 0, drop = 0, bytes = 0; 2265 struct oct_droq_stats *oq_stats; 2266 struct oct_iq_stats *iq_stats; 2267 int i, iq_no, oq_no; 2268 2269 oct = lio->oct_dev; 2270 2271 if (ifstate_check(lio, LIO_IFSTATE_RESETTING)) 2272 return stats; 2273 2274 for (i = 0; i < oct->num_iqs; i++) { 2275 iq_no = lio->linfo.txpciq[i].s.q_no; 2276 iq_stats = &oct->instr_queue[iq_no]->stats; 2277 pkts += iq_stats->tx_done; 2278 drop += iq_stats->tx_dropped; 2279 bytes += iq_stats->tx_tot_bytes; 2280 } 2281 2282 stats->tx_packets = pkts; 2283 stats->tx_bytes = bytes; 2284 stats->tx_dropped = drop; 2285 2286 pkts = 0; 2287 drop = 0; 2288 bytes = 0; 2289 2290 for (i = 0; i < oct->num_oqs; i++) { 2291 oq_no = lio->linfo.rxpciq[i].s.q_no; 2292 oq_stats = &oct->droq[oq_no]->stats; 2293 pkts += oq_stats->rx_pkts_received; 2294 drop += (oq_stats->rx_dropped + 2295 oq_stats->dropped_nodispatch + 2296 oq_stats->dropped_toomany + 2297 oq_stats->dropped_nomem); 2298 bytes += oq_stats->rx_bytes_received; 2299 } 2300 2301 stats->rx_bytes = bytes; 2302 stats->rx_packets = pkts; 2303 stats->rx_dropped = drop; 2304 2305 return stats; 2306 } 2307 2308 /** 2309 * \brief Handler for SIOCSHWTSTAMP ioctl 2310 * @param netdev network device 2311 * @param ifr interface request 2312 * @param cmd command 2313 */ 2314 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr) 2315 { 2316 struct hwtstamp_config conf; 2317 struct lio *lio = GET_LIO(netdev); 2318 2319 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf))) 2320 return -EFAULT; 2321 2322 if (conf.flags) 2323 return -EINVAL; 2324 2325 switch (conf.tx_type) { 2326 case HWTSTAMP_TX_ON: 2327 case HWTSTAMP_TX_OFF: 2328 break; 2329 default: 2330 return -ERANGE; 2331 } 2332 2333 switch (conf.rx_filter) { 2334 case HWTSTAMP_FILTER_NONE: 2335 break; 2336 case HWTSTAMP_FILTER_ALL: 2337 case HWTSTAMP_FILTER_SOME: 2338 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 2339 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 2340 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 2341 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 2342 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 2343 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 2344 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 2345 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 2346 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 2347 case HWTSTAMP_FILTER_PTP_V2_EVENT: 2348 case HWTSTAMP_FILTER_PTP_V2_SYNC: 2349 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 2350 case HWTSTAMP_FILTER_NTP_ALL: 2351 conf.rx_filter = HWTSTAMP_FILTER_ALL; 2352 break; 2353 default: 2354 return -ERANGE; 2355 } 2356 2357 if (conf.rx_filter == HWTSTAMP_FILTER_ALL) 2358 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED); 2359 2360 else 2361 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED); 2362 2363 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0; 2364 } 2365 2366 /** 2367 * \brief ioctl handler 2368 * @param netdev network device 2369 * @param ifr interface request 2370 * @param cmd command 2371 */ 2372 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2373 { 2374 struct lio *lio = GET_LIO(netdev); 2375 2376 switch (cmd) { 2377 case SIOCSHWTSTAMP: 2378 if (lio->oct_dev->ptp_enable) 2379 return hwtstamp_ioctl(netdev, ifr); 2380 default: 2381 return -EOPNOTSUPP; 2382 } 2383 } 2384 2385 /** 2386 * \brief handle a Tx timestamp response 2387 * @param status response status 2388 * @param buf pointer to skb 2389 */ 2390 static void handle_timestamp(struct octeon_device *oct, 2391 u32 status, 2392 void *buf) 2393 { 2394 struct octnet_buf_free_info *finfo; 2395 struct octeon_soft_command *sc; 2396 struct oct_timestamp_resp *resp; 2397 struct lio *lio; 2398 struct sk_buff *skb = (struct sk_buff *)buf; 2399 2400 finfo = (struct octnet_buf_free_info *)skb->cb; 2401 lio = finfo->lio; 2402 sc = finfo->sc; 2403 oct = lio->oct_dev; 2404 resp = (struct oct_timestamp_resp *)sc->virtrptr; 2405 2406 if (status != OCTEON_REQUEST_DONE) { 2407 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n", 2408 CVM_CAST64(status)); 2409 resp->timestamp = 0; 2410 } 2411 2412 octeon_swap_8B_data(&resp->timestamp, 1); 2413 2414 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) != 0)) { 2415 struct skb_shared_hwtstamps ts; 2416 u64 ns = resp->timestamp; 2417 2418 netif_info(lio, tx_done, lio->netdev, 2419 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n", 2420 skb, (unsigned long long)ns); 2421 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust); 2422 skb_tstamp_tx(skb, &ts); 2423 } 2424 2425 octeon_free_soft_command(oct, sc); 2426 tx_buffer_free(skb); 2427 } 2428 2429 /* \brief Send a data packet that will be timestamped 2430 * @param oct octeon device 2431 * @param ndata pointer to network data 2432 * @param finfo pointer to private network data 2433 */ 2434 static inline int send_nic_timestamp_pkt(struct octeon_device *oct, 2435 struct octnic_data_pkt *ndata, 2436 struct octnet_buf_free_info *finfo, 2437 int xmit_more) 2438 { 2439 int retval; 2440 struct octeon_soft_command *sc; 2441 struct lio *lio; 2442 int ring_doorbell; 2443 u32 len; 2444 2445 lio = finfo->lio; 2446 2447 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd, 2448 sizeof(struct oct_timestamp_resp)); 2449 finfo->sc = sc; 2450 2451 if (!sc) { 2452 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n"); 2453 return IQ_SEND_FAILED; 2454 } 2455 2456 if (ndata->reqtype == REQTYPE_NORESP_NET) 2457 ndata->reqtype = REQTYPE_RESP_NET; 2458 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG) 2459 ndata->reqtype = REQTYPE_RESP_NET_SG; 2460 2461 sc->callback = handle_timestamp; 2462 sc->callback_arg = finfo->skb; 2463 sc->iq_no = ndata->q_no; 2464 2465 if (OCTEON_CN23XX_PF(oct)) 2466 len = (u32)((struct octeon_instr_ih3 *) 2467 (&sc->cmd.cmd3.ih3))->dlengsz; 2468 else 2469 len = (u32)((struct octeon_instr_ih2 *) 2470 (&sc->cmd.cmd2.ih2))->dlengsz; 2471 2472 ring_doorbell = !xmit_more; 2473 2474 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd, 2475 sc, len, ndata->reqtype); 2476 2477 if (retval == IQ_SEND_FAILED) { 2478 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n", 2479 retval); 2480 octeon_free_soft_command(oct, sc); 2481 } else { 2482 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n"); 2483 } 2484 2485 return retval; 2486 } 2487 2488 /** \brief Transmit networks packets to the Octeon interface 2489 * @param skbuff skbuff struct to be passed to network layer. 2490 * @param netdev pointer to network device 2491 * @returns whether the packet was transmitted to the device okay or not 2492 * (NETDEV_TX_OK or NETDEV_TX_BUSY) 2493 */ 2494 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev) 2495 { 2496 struct lio *lio; 2497 struct octnet_buf_free_info *finfo; 2498 union octnic_cmd_setup cmdsetup; 2499 struct octnic_data_pkt ndata; 2500 struct octeon_device *oct; 2501 struct oct_iq_stats *stats; 2502 struct octeon_instr_irh *irh; 2503 union tx_info *tx_info; 2504 int status = 0; 2505 int q_idx = 0, iq_no = 0; 2506 int j, xmit_more = 0; 2507 u64 dptr = 0; 2508 u32 tag = 0; 2509 2510 lio = GET_LIO(netdev); 2511 oct = lio->oct_dev; 2512 2513 q_idx = skb_iq(lio, skb); 2514 tag = q_idx; 2515 iq_no = lio->linfo.txpciq[q_idx].s.q_no; 2516 2517 stats = &oct->instr_queue[iq_no]->stats; 2518 2519 /* Check for all conditions in which the current packet cannot be 2520 * transmitted. 2521 */ 2522 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) || 2523 (!lio->linfo.link.s.link_up) || 2524 (skb->len <= 0)) { 2525 netif_info(lio, tx_err, lio->netdev, 2526 "Transmit failed link_status : %d\n", 2527 lio->linfo.link.s.link_up); 2528 goto lio_xmit_failed; 2529 } 2530 2531 /* Use space in skb->cb to store info used to unmap and 2532 * free the buffers. 2533 */ 2534 finfo = (struct octnet_buf_free_info *)skb->cb; 2535 finfo->lio = lio; 2536 finfo->skb = skb; 2537 finfo->sc = NULL; 2538 2539 /* Prepare the attributes for the data to be passed to OSI. */ 2540 memset(&ndata, 0, sizeof(struct octnic_data_pkt)); 2541 2542 ndata.buf = (void *)finfo; 2543 2544 ndata.q_no = iq_no; 2545 2546 if (octnet_iq_is_full(oct, ndata.q_no)) { 2547 /* defer sending if queue is full */ 2548 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n", 2549 ndata.q_no); 2550 stats->tx_iq_busy++; 2551 return NETDEV_TX_BUSY; 2552 } 2553 2554 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n", 2555 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no); 2556 */ 2557 2558 ndata.datasize = skb->len; 2559 2560 cmdsetup.u64 = 0; 2561 cmdsetup.s.iq_no = iq_no; 2562 2563 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2564 if (skb->encapsulation) { 2565 cmdsetup.s.tnl_csum = 1; 2566 stats->tx_vxlan++; 2567 } else { 2568 cmdsetup.s.transport_csum = 1; 2569 } 2570 } 2571 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 2572 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2573 cmdsetup.s.timestamp = 1; 2574 } 2575 2576 if (skb_shinfo(skb)->nr_frags == 0) { 2577 cmdsetup.s.u.datasize = skb->len; 2578 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag); 2579 2580 /* Offload checksum calculation for TCP/UDP packets */ 2581 dptr = dma_map_single(&oct->pci_dev->dev, 2582 skb->data, 2583 skb->len, 2584 DMA_TO_DEVICE); 2585 if (dma_mapping_error(&oct->pci_dev->dev, dptr)) { 2586 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n", 2587 __func__); 2588 stats->tx_dmamap_fail++; 2589 return NETDEV_TX_BUSY; 2590 } 2591 2592 if (OCTEON_CN23XX_PF(oct)) 2593 ndata.cmd.cmd3.dptr = dptr; 2594 else 2595 ndata.cmd.cmd2.dptr = dptr; 2596 finfo->dptr = dptr; 2597 ndata.reqtype = REQTYPE_NORESP_NET; 2598 2599 } else { 2600 int i, frags; 2601 struct skb_frag_struct *frag; 2602 struct octnic_gather *g; 2603 2604 spin_lock(&lio->glist_lock[q_idx]); 2605 g = (struct octnic_gather *) 2606 list_delete_head(&lio->glist[q_idx]); 2607 spin_unlock(&lio->glist_lock[q_idx]); 2608 2609 if (!g) { 2610 netif_info(lio, tx_err, lio->netdev, 2611 "Transmit scatter gather: glist null!\n"); 2612 goto lio_xmit_failed; 2613 } 2614 2615 cmdsetup.s.gather = 1; 2616 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1); 2617 octnet_prepare_pci_cmd(oct, &ndata.cmd, &cmdsetup, tag); 2618 2619 memset(g->sg, 0, g->sg_size); 2620 2621 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev, 2622 skb->data, 2623 (skb->len - skb->data_len), 2624 DMA_TO_DEVICE); 2625 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) { 2626 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n", 2627 __func__); 2628 stats->tx_dmamap_fail++; 2629 return NETDEV_TX_BUSY; 2630 } 2631 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0); 2632 2633 frags = skb_shinfo(skb)->nr_frags; 2634 i = 1; 2635 while (frags--) { 2636 frag = &skb_shinfo(skb)->frags[i - 1]; 2637 2638 g->sg[(i >> 2)].ptr[(i & 3)] = 2639 dma_map_page(&oct->pci_dev->dev, 2640 frag->page.p, 2641 frag->page_offset, 2642 frag->size, 2643 DMA_TO_DEVICE); 2644 2645 if (dma_mapping_error(&oct->pci_dev->dev, 2646 g->sg[i >> 2].ptr[i & 3])) { 2647 dma_unmap_single(&oct->pci_dev->dev, 2648 g->sg[0].ptr[0], 2649 skb->len - skb->data_len, 2650 DMA_TO_DEVICE); 2651 for (j = 1; j < i; j++) { 2652 frag = &skb_shinfo(skb)->frags[j - 1]; 2653 dma_unmap_page(&oct->pci_dev->dev, 2654 g->sg[j >> 2].ptr[j & 3], 2655 frag->size, 2656 DMA_TO_DEVICE); 2657 } 2658 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n", 2659 __func__); 2660 return NETDEV_TX_BUSY; 2661 } 2662 2663 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3)); 2664 i++; 2665 } 2666 2667 dptr = g->sg_dma_ptr; 2668 2669 if (OCTEON_CN23XX_PF(oct)) 2670 ndata.cmd.cmd3.dptr = dptr; 2671 else 2672 ndata.cmd.cmd2.dptr = dptr; 2673 finfo->dptr = dptr; 2674 finfo->g = g; 2675 2676 ndata.reqtype = REQTYPE_NORESP_NET_SG; 2677 } 2678 2679 if (OCTEON_CN23XX_PF(oct)) { 2680 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd3.irh; 2681 tx_info = (union tx_info *)&ndata.cmd.cmd3.ossp[0]; 2682 } else { 2683 irh = (struct octeon_instr_irh *)&ndata.cmd.cmd2.irh; 2684 tx_info = (union tx_info *)&ndata.cmd.cmd2.ossp[0]; 2685 } 2686 2687 if (skb_shinfo(skb)->gso_size) { 2688 tx_info->s.gso_size = skb_shinfo(skb)->gso_size; 2689 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs; 2690 stats->tx_gso++; 2691 } 2692 2693 /* HW insert VLAN tag */ 2694 if (skb_vlan_tag_present(skb)) { 2695 irh->priority = skb_vlan_tag_get(skb) >> 13; 2696 irh->vlan = skb_vlan_tag_get(skb) & 0xfff; 2697 } 2698 2699 xmit_more = skb->xmit_more; 2700 2701 if (unlikely(cmdsetup.s.timestamp)) 2702 status = send_nic_timestamp_pkt(oct, &ndata, finfo, xmit_more); 2703 else 2704 status = octnet_send_nic_data_pkt(oct, &ndata, xmit_more); 2705 if (status == IQ_SEND_FAILED) 2706 goto lio_xmit_failed; 2707 2708 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n"); 2709 2710 if (status == IQ_SEND_STOP) 2711 netif_stop_subqueue(netdev, q_idx); 2712 2713 netif_trans_update(netdev); 2714 2715 if (tx_info->s.gso_segs) 2716 stats->tx_done += tx_info->s.gso_segs; 2717 else 2718 stats->tx_done++; 2719 stats->tx_tot_bytes += ndata.datasize; 2720 2721 return NETDEV_TX_OK; 2722 2723 lio_xmit_failed: 2724 stats->tx_dropped++; 2725 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n", 2726 iq_no, stats->tx_dropped); 2727 if (dptr) 2728 dma_unmap_single(&oct->pci_dev->dev, dptr, 2729 ndata.datasize, DMA_TO_DEVICE); 2730 2731 octeon_ring_doorbell_locked(oct, iq_no); 2732 2733 tx_buffer_free(skb); 2734 return NETDEV_TX_OK; 2735 } 2736 2737 /** \brief Network device Tx timeout 2738 * @param netdev pointer to network device 2739 */ 2740 static void liquidio_tx_timeout(struct net_device *netdev) 2741 { 2742 struct lio *lio; 2743 2744 lio = GET_LIO(netdev); 2745 2746 netif_info(lio, tx_err, lio->netdev, 2747 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n", 2748 netdev->stats.tx_dropped); 2749 netif_trans_update(netdev); 2750 wake_txqs(netdev); 2751 } 2752 2753 static int liquidio_vlan_rx_add_vid(struct net_device *netdev, 2754 __be16 proto __attribute__((unused)), 2755 u16 vid) 2756 { 2757 struct lio *lio = GET_LIO(netdev); 2758 struct octeon_device *oct = lio->oct_dev; 2759 struct octnic_ctrl_pkt nctrl; 2760 int ret = 0; 2761 2762 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2763 2764 nctrl.ncmd.u64 = 0; 2765 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER; 2766 nctrl.ncmd.s.param1 = vid; 2767 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2768 nctrl.wait_time = 100; 2769 nctrl.netpndev = (u64)netdev; 2770 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2771 2772 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2773 if (ret < 0) { 2774 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n", 2775 ret); 2776 } 2777 2778 return ret; 2779 } 2780 2781 static int liquidio_vlan_rx_kill_vid(struct net_device *netdev, 2782 __be16 proto __attribute__((unused)), 2783 u16 vid) 2784 { 2785 struct lio *lio = GET_LIO(netdev); 2786 struct octeon_device *oct = lio->oct_dev; 2787 struct octnic_ctrl_pkt nctrl; 2788 int ret = 0; 2789 2790 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2791 2792 nctrl.ncmd.u64 = 0; 2793 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER; 2794 nctrl.ncmd.s.param1 = vid; 2795 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2796 nctrl.wait_time = 100; 2797 nctrl.netpndev = (u64)netdev; 2798 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2799 2800 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2801 if (ret < 0) { 2802 dev_err(&oct->pci_dev->dev, "Add VLAN filter failed in core (ret: 0x%x)\n", 2803 ret); 2804 } 2805 return ret; 2806 } 2807 2808 /** Sending command to enable/disable RX checksum offload 2809 * @param netdev pointer to network device 2810 * @param command OCTNET_CMD_TNL_RX_CSUM_CTL 2811 * @param rx_cmd_bit OCTNET_CMD_RXCSUM_ENABLE/ 2812 * OCTNET_CMD_RXCSUM_DISABLE 2813 * @returns SUCCESS or FAILURE 2814 */ 2815 static int liquidio_set_rxcsum_command(struct net_device *netdev, int command, 2816 u8 rx_cmd) 2817 { 2818 struct lio *lio = GET_LIO(netdev); 2819 struct octeon_device *oct = lio->oct_dev; 2820 struct octnic_ctrl_pkt nctrl; 2821 int ret = 0; 2822 2823 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2824 2825 nctrl.ncmd.u64 = 0; 2826 nctrl.ncmd.s.cmd = command; 2827 nctrl.ncmd.s.param1 = rx_cmd; 2828 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2829 nctrl.wait_time = 100; 2830 nctrl.netpndev = (u64)netdev; 2831 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2832 2833 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2834 if (ret < 0) { 2835 dev_err(&oct->pci_dev->dev, 2836 "DEVFLAGS RXCSUM change failed in core(ret:0x%x)\n", 2837 ret); 2838 } 2839 return ret; 2840 } 2841 2842 /** Sending command to add/delete VxLAN UDP port to firmware 2843 * @param netdev pointer to network device 2844 * @param command OCTNET_CMD_VXLAN_PORT_CONFIG 2845 * @param vxlan_port VxLAN port to be added or deleted 2846 * @param vxlan_cmd_bit OCTNET_CMD_VXLAN_PORT_ADD, 2847 * OCTNET_CMD_VXLAN_PORT_DEL 2848 * @returns SUCCESS or FAILURE 2849 */ 2850 static int liquidio_vxlan_port_command(struct net_device *netdev, int command, 2851 u16 vxlan_port, u8 vxlan_cmd_bit) 2852 { 2853 struct lio *lio = GET_LIO(netdev); 2854 struct octeon_device *oct = lio->oct_dev; 2855 struct octnic_ctrl_pkt nctrl; 2856 int ret = 0; 2857 2858 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 2859 2860 nctrl.ncmd.u64 = 0; 2861 nctrl.ncmd.s.cmd = command; 2862 nctrl.ncmd.s.more = vxlan_cmd_bit; 2863 nctrl.ncmd.s.param1 = vxlan_port; 2864 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 2865 nctrl.wait_time = 100; 2866 nctrl.netpndev = (u64)netdev; 2867 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 2868 2869 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl); 2870 if (ret < 0) { 2871 dev_err(&oct->pci_dev->dev, 2872 "VxLAN port add/delete failed in core (ret:0x%x)\n", 2873 ret); 2874 } 2875 return ret; 2876 } 2877 2878 /** \brief Net device fix features 2879 * @param netdev pointer to network device 2880 * @param request features requested 2881 * @returns updated features list 2882 */ 2883 static netdev_features_t liquidio_fix_features(struct net_device *netdev, 2884 netdev_features_t request) 2885 { 2886 struct lio *lio = netdev_priv(netdev); 2887 2888 if ((request & NETIF_F_RXCSUM) && 2889 !(lio->dev_capability & NETIF_F_RXCSUM)) 2890 request &= ~NETIF_F_RXCSUM; 2891 2892 if ((request & NETIF_F_HW_CSUM) && 2893 !(lio->dev_capability & NETIF_F_HW_CSUM)) 2894 request &= ~NETIF_F_HW_CSUM; 2895 2896 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO)) 2897 request &= ~NETIF_F_TSO; 2898 2899 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6)) 2900 request &= ~NETIF_F_TSO6; 2901 2902 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO)) 2903 request &= ~NETIF_F_LRO; 2904 2905 /*Disable LRO if RXCSUM is off */ 2906 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) && 2907 (lio->dev_capability & NETIF_F_LRO)) 2908 request &= ~NETIF_F_LRO; 2909 2910 if ((request & NETIF_F_HW_VLAN_CTAG_FILTER) && 2911 !(lio->dev_capability & NETIF_F_HW_VLAN_CTAG_FILTER)) 2912 request &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 2913 2914 return request; 2915 } 2916 2917 /** \brief Net device set features 2918 * @param netdev pointer to network device 2919 * @param features features to enable/disable 2920 */ 2921 static int liquidio_set_features(struct net_device *netdev, 2922 netdev_features_t features) 2923 { 2924 struct lio *lio = netdev_priv(netdev); 2925 2926 if ((features & NETIF_F_LRO) && 2927 (lio->dev_capability & NETIF_F_LRO) && 2928 !(netdev->features & NETIF_F_LRO)) 2929 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE, 2930 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 2931 else if (!(features & NETIF_F_LRO) && 2932 (lio->dev_capability & NETIF_F_LRO) && 2933 (netdev->features & NETIF_F_LRO)) 2934 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE, 2935 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 2936 2937 /* Sending command to firmware to enable/disable RX checksum 2938 * offload settings using ethtool 2939 */ 2940 if (!(netdev->features & NETIF_F_RXCSUM) && 2941 (lio->enc_dev_capability & NETIF_F_RXCSUM) && 2942 (features & NETIF_F_RXCSUM)) 2943 liquidio_set_rxcsum_command(netdev, 2944 OCTNET_CMD_TNL_RX_CSUM_CTL, 2945 OCTNET_CMD_RXCSUM_ENABLE); 2946 else if ((netdev->features & NETIF_F_RXCSUM) && 2947 (lio->enc_dev_capability & NETIF_F_RXCSUM) && 2948 !(features & NETIF_F_RXCSUM)) 2949 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL, 2950 OCTNET_CMD_RXCSUM_DISABLE); 2951 2952 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 2953 (lio->dev_capability & NETIF_F_HW_VLAN_CTAG_FILTER) && 2954 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 2955 liquidio_set_feature(netdev, OCTNET_CMD_VLAN_FILTER_CTL, 2956 OCTNET_CMD_VLAN_FILTER_ENABLE); 2957 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 2958 (lio->dev_capability & NETIF_F_HW_VLAN_CTAG_FILTER) && 2959 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 2960 liquidio_set_feature(netdev, OCTNET_CMD_VLAN_FILTER_CTL, 2961 OCTNET_CMD_VLAN_FILTER_DISABLE); 2962 2963 return 0; 2964 } 2965 2966 static void liquidio_add_vxlan_port(struct net_device *netdev, 2967 struct udp_tunnel_info *ti) 2968 { 2969 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 2970 return; 2971 2972 liquidio_vxlan_port_command(netdev, 2973 OCTNET_CMD_VXLAN_PORT_CONFIG, 2974 htons(ti->port), 2975 OCTNET_CMD_VXLAN_PORT_ADD); 2976 } 2977 2978 static void liquidio_del_vxlan_port(struct net_device *netdev, 2979 struct udp_tunnel_info *ti) 2980 { 2981 if (ti->type != UDP_TUNNEL_TYPE_VXLAN) 2982 return; 2983 2984 liquidio_vxlan_port_command(netdev, 2985 OCTNET_CMD_VXLAN_PORT_CONFIG, 2986 htons(ti->port), 2987 OCTNET_CMD_VXLAN_PORT_DEL); 2988 } 2989 2990 static int __liquidio_set_vf_mac(struct net_device *netdev, int vfidx, 2991 u8 *mac, bool is_admin_assigned) 2992 { 2993 struct lio *lio = GET_LIO(netdev); 2994 struct octeon_device *oct = lio->oct_dev; 2995 struct octnic_ctrl_pkt nctrl; 2996 2997 if (!is_valid_ether_addr(mac)) 2998 return -EINVAL; 2999 3000 if (vfidx < 0 || vfidx >= oct->sriov_info.max_vfs) 3001 return -EINVAL; 3002 3003 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3004 3005 nctrl.ncmd.u64 = 0; 3006 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR; 3007 /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3008 nctrl.ncmd.s.param1 = vfidx + 1; 3009 nctrl.ncmd.s.param2 = (is_admin_assigned ? 1 : 0); 3010 nctrl.ncmd.s.more = 1; 3011 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3012 nctrl.netpndev = (u64)netdev; 3013 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion; 3014 nctrl.wait_time = LIO_CMD_WAIT_TM; 3015 3016 nctrl.udd[0] = 0; 3017 /* The MAC Address is presented in network byte order. */ 3018 ether_addr_copy((u8 *)&nctrl.udd[0] + 2, mac); 3019 3020 oct->sriov_info.vf_macaddr[vfidx] = nctrl.udd[0]; 3021 3022 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3023 3024 return 0; 3025 } 3026 3027 static int liquidio_set_vf_mac(struct net_device *netdev, int vfidx, u8 *mac) 3028 { 3029 struct lio *lio = GET_LIO(netdev); 3030 struct octeon_device *oct = lio->oct_dev; 3031 int retval; 3032 3033 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3034 return -EINVAL; 3035 3036 retval = __liquidio_set_vf_mac(netdev, vfidx, mac, true); 3037 if (!retval) 3038 cn23xx_tell_vf_its_macaddr_changed(oct, vfidx, mac); 3039 3040 return retval; 3041 } 3042 3043 static int liquidio_set_vf_vlan(struct net_device *netdev, int vfidx, 3044 u16 vlan, u8 qos, __be16 vlan_proto) 3045 { 3046 struct lio *lio = GET_LIO(netdev); 3047 struct octeon_device *oct = lio->oct_dev; 3048 struct octnic_ctrl_pkt nctrl; 3049 u16 vlantci; 3050 3051 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3052 return -EINVAL; 3053 3054 if (vlan_proto != htons(ETH_P_8021Q)) 3055 return -EPROTONOSUPPORT; 3056 3057 if (vlan >= VLAN_N_VID || qos > 7) 3058 return -EINVAL; 3059 3060 if (vlan) 3061 vlantci = vlan | (u16)qos << VLAN_PRIO_SHIFT; 3062 else 3063 vlantci = 0; 3064 3065 if (oct->sriov_info.vf_vlantci[vfidx] == vlantci) 3066 return 0; 3067 3068 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3069 3070 if (vlan) 3071 nctrl.ncmd.s.cmd = OCTNET_CMD_ADD_VLAN_FILTER; 3072 else 3073 nctrl.ncmd.s.cmd = OCTNET_CMD_DEL_VLAN_FILTER; 3074 3075 nctrl.ncmd.s.param1 = vlantci; 3076 nctrl.ncmd.s.param2 = 3077 vfidx + 1; /* vfidx is 0 based, but vf_num (param2) is 1 based */ 3078 nctrl.ncmd.s.more = 0; 3079 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3080 nctrl.cb_fn = 0; 3081 nctrl.wait_time = LIO_CMD_WAIT_TM; 3082 3083 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3084 3085 oct->sriov_info.vf_vlantci[vfidx] = vlantci; 3086 3087 return 0; 3088 } 3089 3090 static int liquidio_get_vf_config(struct net_device *netdev, int vfidx, 3091 struct ifla_vf_info *ivi) 3092 { 3093 struct lio *lio = GET_LIO(netdev); 3094 struct octeon_device *oct = lio->oct_dev; 3095 u8 *macaddr; 3096 3097 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3098 return -EINVAL; 3099 3100 ivi->vf = vfidx; 3101 macaddr = 2 + (u8 *)&oct->sriov_info.vf_macaddr[vfidx]; 3102 ether_addr_copy(&ivi->mac[0], macaddr); 3103 ivi->vlan = oct->sriov_info.vf_vlantci[vfidx] & VLAN_VID_MASK; 3104 ivi->qos = oct->sriov_info.vf_vlantci[vfidx] >> VLAN_PRIO_SHIFT; 3105 if (oct->sriov_info.trusted_vf.active && 3106 oct->sriov_info.trusted_vf.id == vfidx) 3107 ivi->trusted = true; 3108 else 3109 ivi->trusted = false; 3110 ivi->linkstate = oct->sriov_info.vf_linkstate[vfidx]; 3111 return 0; 3112 } 3113 3114 static void trusted_vf_callback(struct octeon_device *oct_dev, 3115 u32 status, void *ptr) 3116 { 3117 struct octeon_soft_command *sc = (struct octeon_soft_command *)ptr; 3118 struct lio_trusted_vf_ctx *ctx; 3119 3120 ctx = (struct lio_trusted_vf_ctx *)sc->ctxptr; 3121 ctx->status = status; 3122 3123 complete(&ctx->complete); 3124 } 3125 3126 static int liquidio_send_vf_trust_cmd(struct lio *lio, int vfidx, bool trusted) 3127 { 3128 struct octeon_device *oct = lio->oct_dev; 3129 struct lio_trusted_vf_ctx *ctx; 3130 struct octeon_soft_command *sc; 3131 int ctx_size, retval; 3132 3133 ctx_size = sizeof(struct lio_trusted_vf_ctx); 3134 sc = octeon_alloc_soft_command(oct, 0, 0, ctx_size); 3135 3136 ctx = (struct lio_trusted_vf_ctx *)sc->ctxptr; 3137 init_completion(&ctx->complete); 3138 3139 sc->iq_no = lio->linfo.txpciq[0].s.q_no; 3140 3141 /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3142 octeon_prepare_soft_command(oct, sc, OPCODE_NIC, 3143 OPCODE_NIC_SET_TRUSTED_VF, 0, vfidx + 1, 3144 trusted); 3145 3146 sc->callback = trusted_vf_callback; 3147 sc->callback_arg = sc; 3148 sc->wait_time = 1000; 3149 3150 retval = octeon_send_soft_command(oct, sc); 3151 if (retval == IQ_SEND_FAILED) { 3152 retval = -1; 3153 } else { 3154 /* Wait for response or timeout */ 3155 if (wait_for_completion_timeout(&ctx->complete, 3156 msecs_to_jiffies(2000))) 3157 retval = ctx->status; 3158 else 3159 retval = -1; 3160 } 3161 3162 octeon_free_soft_command(oct, sc); 3163 3164 return retval; 3165 } 3166 3167 static int liquidio_set_vf_trust(struct net_device *netdev, int vfidx, 3168 bool setting) 3169 { 3170 struct lio *lio = GET_LIO(netdev); 3171 struct octeon_device *oct = lio->oct_dev; 3172 3173 if (strcmp(oct->fw_info.liquidio_firmware_version, "1.7.1") < 0) { 3174 /* trusted vf is not supported by firmware older than 1.7.1 */ 3175 return -EOPNOTSUPP; 3176 } 3177 3178 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) { 3179 netif_info(lio, drv, lio->netdev, "Invalid vfidx %d\n", vfidx); 3180 return -EINVAL; 3181 } 3182 3183 if (setting) { 3184 /* Set */ 3185 3186 if (oct->sriov_info.trusted_vf.active && 3187 oct->sriov_info.trusted_vf.id == vfidx) 3188 return 0; 3189 3190 if (oct->sriov_info.trusted_vf.active) { 3191 netif_info(lio, drv, lio->netdev, "More than one trusted VF is not allowed\n"); 3192 return -EPERM; 3193 } 3194 } else { 3195 /* Clear */ 3196 3197 if (!oct->sriov_info.trusted_vf.active) 3198 return 0; 3199 } 3200 3201 if (!liquidio_send_vf_trust_cmd(lio, vfidx, setting)) { 3202 if (setting) { 3203 oct->sriov_info.trusted_vf.id = vfidx; 3204 oct->sriov_info.trusted_vf.active = true; 3205 } else { 3206 oct->sriov_info.trusted_vf.active = false; 3207 } 3208 3209 netif_info(lio, drv, lio->netdev, "VF %u is %strusted\n", vfidx, 3210 setting ? "" : "not "); 3211 } else { 3212 netif_info(lio, drv, lio->netdev, "Failed to set VF trusted\n"); 3213 return -1; 3214 } 3215 3216 return 0; 3217 } 3218 3219 static int liquidio_set_vf_link_state(struct net_device *netdev, int vfidx, 3220 int linkstate) 3221 { 3222 struct lio *lio = GET_LIO(netdev); 3223 struct octeon_device *oct = lio->oct_dev; 3224 struct octnic_ctrl_pkt nctrl; 3225 3226 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3227 return -EINVAL; 3228 3229 if (oct->sriov_info.vf_linkstate[vfidx] == linkstate) 3230 return 0; 3231 3232 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt)); 3233 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_VF_LINKSTATE; 3234 nctrl.ncmd.s.param1 = 3235 vfidx + 1; /* vfidx is 0 based, but vf_num (param1) is 1 based */ 3236 nctrl.ncmd.s.param2 = linkstate; 3237 nctrl.ncmd.s.more = 0; 3238 nctrl.iq_no = lio->linfo.txpciq[0].s.q_no; 3239 nctrl.cb_fn = 0; 3240 nctrl.wait_time = LIO_CMD_WAIT_TM; 3241 3242 octnet_send_nic_ctrl_pkt(oct, &nctrl); 3243 3244 oct->sriov_info.vf_linkstate[vfidx] = linkstate; 3245 3246 return 0; 3247 } 3248 3249 static int 3250 liquidio_eswitch_mode_get(struct devlink *devlink, u16 *mode) 3251 { 3252 struct lio_devlink_priv *priv; 3253 struct octeon_device *oct; 3254 3255 priv = devlink_priv(devlink); 3256 oct = priv->oct; 3257 3258 *mode = oct->eswitch_mode; 3259 3260 return 0; 3261 } 3262 3263 static int 3264 liquidio_eswitch_mode_set(struct devlink *devlink, u16 mode) 3265 { 3266 struct lio_devlink_priv *priv; 3267 struct octeon_device *oct; 3268 int ret = 0; 3269 3270 priv = devlink_priv(devlink); 3271 oct = priv->oct; 3272 3273 if (!(oct->fw_info.app_cap_flags & LIQUIDIO_SWITCHDEV_CAP)) 3274 return -EINVAL; 3275 3276 if (oct->eswitch_mode == mode) 3277 return 0; 3278 3279 switch (mode) { 3280 case DEVLINK_ESWITCH_MODE_SWITCHDEV: 3281 oct->eswitch_mode = mode; 3282 ret = lio_vf_rep_create(oct); 3283 break; 3284 3285 case DEVLINK_ESWITCH_MODE_LEGACY: 3286 lio_vf_rep_destroy(oct); 3287 oct->eswitch_mode = mode; 3288 break; 3289 3290 default: 3291 ret = -EINVAL; 3292 } 3293 3294 return ret; 3295 } 3296 3297 static const struct devlink_ops liquidio_devlink_ops = { 3298 .eswitch_mode_get = liquidio_eswitch_mode_get, 3299 .eswitch_mode_set = liquidio_eswitch_mode_set, 3300 }; 3301 3302 static int 3303 lio_pf_switchdev_attr_get(struct net_device *dev, struct switchdev_attr *attr) 3304 { 3305 struct lio *lio = GET_LIO(dev); 3306 struct octeon_device *oct = lio->oct_dev; 3307 3308 if (oct->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 3309 return -EOPNOTSUPP; 3310 3311 switch (attr->id) { 3312 case SWITCHDEV_ATTR_ID_PORT_PARENT_ID: 3313 attr->u.ppid.id_len = ETH_ALEN; 3314 ether_addr_copy(attr->u.ppid.id, 3315 (void *)&lio->linfo.hw_addr + 2); 3316 break; 3317 3318 default: 3319 return -EOPNOTSUPP; 3320 } 3321 3322 return 0; 3323 } 3324 3325 static const struct switchdev_ops lio_pf_switchdev_ops = { 3326 .switchdev_port_attr_get = lio_pf_switchdev_attr_get, 3327 }; 3328 3329 static int liquidio_get_vf_stats(struct net_device *netdev, int vfidx, 3330 struct ifla_vf_stats *vf_stats) 3331 { 3332 struct lio *lio = GET_LIO(netdev); 3333 struct octeon_device *oct = lio->oct_dev; 3334 struct oct_vf_stats stats; 3335 int ret; 3336 3337 if (vfidx < 0 || vfidx >= oct->sriov_info.num_vfs_alloced) 3338 return -EINVAL; 3339 3340 memset(&stats, 0, sizeof(struct oct_vf_stats)); 3341 ret = cn23xx_get_vf_stats(oct, vfidx, &stats); 3342 if (!ret) { 3343 vf_stats->rx_packets = stats.rx_packets; 3344 vf_stats->tx_packets = stats.tx_packets; 3345 vf_stats->rx_bytes = stats.rx_bytes; 3346 vf_stats->tx_bytes = stats.tx_bytes; 3347 vf_stats->broadcast = stats.broadcast; 3348 vf_stats->multicast = stats.multicast; 3349 } 3350 3351 return ret; 3352 } 3353 3354 static const struct net_device_ops lionetdevops = { 3355 .ndo_open = liquidio_open, 3356 .ndo_stop = liquidio_stop, 3357 .ndo_start_xmit = liquidio_xmit, 3358 .ndo_get_stats = liquidio_get_stats, 3359 .ndo_set_mac_address = liquidio_set_mac, 3360 .ndo_set_rx_mode = liquidio_set_mcast_list, 3361 .ndo_tx_timeout = liquidio_tx_timeout, 3362 3363 .ndo_vlan_rx_add_vid = liquidio_vlan_rx_add_vid, 3364 .ndo_vlan_rx_kill_vid = liquidio_vlan_rx_kill_vid, 3365 .ndo_change_mtu = liquidio_change_mtu, 3366 .ndo_do_ioctl = liquidio_ioctl, 3367 .ndo_fix_features = liquidio_fix_features, 3368 .ndo_set_features = liquidio_set_features, 3369 .ndo_udp_tunnel_add = liquidio_add_vxlan_port, 3370 .ndo_udp_tunnel_del = liquidio_del_vxlan_port, 3371 .ndo_set_vf_mac = liquidio_set_vf_mac, 3372 .ndo_set_vf_vlan = liquidio_set_vf_vlan, 3373 .ndo_get_vf_config = liquidio_get_vf_config, 3374 .ndo_set_vf_trust = liquidio_set_vf_trust, 3375 .ndo_set_vf_link_state = liquidio_set_vf_link_state, 3376 .ndo_get_vf_stats = liquidio_get_vf_stats, 3377 }; 3378 3379 /** \brief Entry point for the liquidio module 3380 */ 3381 static int __init liquidio_init(void) 3382 { 3383 int i; 3384 struct handshake *hs; 3385 3386 init_completion(&first_stage); 3387 3388 octeon_init_device_list(OCTEON_CONFIG_TYPE_DEFAULT); 3389 3390 if (liquidio_init_pci()) 3391 return -EINVAL; 3392 3393 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000)); 3394 3395 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 3396 hs = &handshake[i]; 3397 if (hs->pci_dev) { 3398 wait_for_completion(&hs->init); 3399 if (!hs->init_ok) { 3400 /* init handshake failed */ 3401 dev_err(&hs->pci_dev->dev, 3402 "Failed to init device\n"); 3403 liquidio_deinit_pci(); 3404 return -EIO; 3405 } 3406 } 3407 } 3408 3409 for (i = 0; i < MAX_OCTEON_DEVICES; i++) { 3410 hs = &handshake[i]; 3411 if (hs->pci_dev) { 3412 wait_for_completion_timeout(&hs->started, 3413 msecs_to_jiffies(30000)); 3414 if (!hs->started_ok) { 3415 /* starter handshake failed */ 3416 dev_err(&hs->pci_dev->dev, 3417 "Firmware failed to start\n"); 3418 liquidio_deinit_pci(); 3419 return -EIO; 3420 } 3421 } 3422 } 3423 3424 return 0; 3425 } 3426 3427 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf) 3428 { 3429 struct octeon_device *oct = (struct octeon_device *)buf; 3430 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 3431 int gmxport = 0; 3432 union oct_link_status *ls; 3433 int i; 3434 3435 if (recv_pkt->buffer_size[0] != (sizeof(*ls) + OCT_DROQ_INFO_SIZE)) { 3436 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n", 3437 recv_pkt->buffer_size[0], 3438 recv_pkt->rh.r_nic_info.gmxport); 3439 goto nic_info_err; 3440 } 3441 3442 gmxport = recv_pkt->rh.r_nic_info.gmxport; 3443 ls = (union oct_link_status *)(get_rbd(recv_pkt->buffer_ptr[0]) + 3444 OCT_DROQ_INFO_SIZE); 3445 3446 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3); 3447 for (i = 0; i < oct->ifcount; i++) { 3448 if (oct->props[i].gmxport == gmxport) { 3449 update_link_status(oct->props[i].netdev, ls); 3450 break; 3451 } 3452 } 3453 3454 nic_info_err: 3455 for (i = 0; i < recv_pkt->buffer_count; i++) 3456 recv_buffer_free(recv_pkt->buffer_ptr[i]); 3457 octeon_free_recv_info(recv_info); 3458 return 0; 3459 } 3460 3461 /** 3462 * \brief Setup network interfaces 3463 * @param octeon_dev octeon device 3464 * 3465 * Called during init time for each device. It assumes the NIC 3466 * is already up and running. The link information for each 3467 * interface is passed in link_info. 3468 */ 3469 static int setup_nic_devices(struct octeon_device *octeon_dev) 3470 { 3471 struct lio *lio = NULL; 3472 struct net_device *netdev; 3473 u8 mac[6], i, j, *fw_ver; 3474 struct octeon_soft_command *sc; 3475 struct liquidio_if_cfg_context *ctx; 3476 struct liquidio_if_cfg_resp *resp; 3477 struct octdev_props *props; 3478 int retval, num_iqueues, num_oqueues; 3479 union oct_nic_if_cfg if_cfg; 3480 unsigned int base_queue; 3481 unsigned int gmx_port_id; 3482 u32 resp_size, ctx_size, data_size; 3483 u32 ifidx_or_pfnum; 3484 struct lio_version *vdata; 3485 struct devlink *devlink; 3486 struct lio_devlink_priv *lio_devlink; 3487 3488 /* This is to handle link status changes */ 3489 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 3490 OPCODE_NIC_INFO, 3491 lio_nic_info, octeon_dev); 3492 3493 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions. 3494 * They are handled directly. 3495 */ 3496 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET, 3497 free_netbuf); 3498 3499 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG, 3500 free_netsgbuf); 3501 3502 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG, 3503 free_netsgbuf_with_resp); 3504 3505 for (i = 0; i < octeon_dev->ifcount; i++) { 3506 resp_size = sizeof(struct liquidio_if_cfg_resp); 3507 ctx_size = sizeof(struct liquidio_if_cfg_context); 3508 data_size = sizeof(struct lio_version); 3509 sc = (struct octeon_soft_command *) 3510 octeon_alloc_soft_command(octeon_dev, data_size, 3511 resp_size, ctx_size); 3512 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr; 3513 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr; 3514 vdata = (struct lio_version *)sc->virtdptr; 3515 3516 *((u64 *)vdata) = 0; 3517 vdata->major = cpu_to_be16(LIQUIDIO_BASE_MAJOR_VERSION); 3518 vdata->minor = cpu_to_be16(LIQUIDIO_BASE_MINOR_VERSION); 3519 vdata->micro = cpu_to_be16(LIQUIDIO_BASE_MICRO_VERSION); 3520 3521 if (OCTEON_CN23XX_PF(octeon_dev)) { 3522 num_iqueues = octeon_dev->sriov_info.num_pf_rings; 3523 num_oqueues = octeon_dev->sriov_info.num_pf_rings; 3524 base_queue = octeon_dev->sriov_info.pf_srn; 3525 3526 gmx_port_id = octeon_dev->pf_num; 3527 ifidx_or_pfnum = octeon_dev->pf_num; 3528 } else { 3529 num_iqueues = CFG_GET_NUM_TXQS_NIC_IF( 3530 octeon_get_conf(octeon_dev), i); 3531 num_oqueues = CFG_GET_NUM_RXQS_NIC_IF( 3532 octeon_get_conf(octeon_dev), i); 3533 base_queue = CFG_GET_BASE_QUE_NIC_IF( 3534 octeon_get_conf(octeon_dev), i); 3535 gmx_port_id = CFG_GET_GMXID_NIC_IF( 3536 octeon_get_conf(octeon_dev), i); 3537 ifidx_or_pfnum = i; 3538 } 3539 3540 dev_dbg(&octeon_dev->pci_dev->dev, 3541 "requesting config for interface %d, iqs %d, oqs %d\n", 3542 ifidx_or_pfnum, num_iqueues, num_oqueues); 3543 WRITE_ONCE(ctx->cond, 0); 3544 ctx->octeon_id = lio_get_device_id(octeon_dev); 3545 init_waitqueue_head(&ctx->wc); 3546 3547 if_cfg.u64 = 0; 3548 if_cfg.s.num_iqueues = num_iqueues; 3549 if_cfg.s.num_oqueues = num_oqueues; 3550 if_cfg.s.base_queue = base_queue; 3551 if_cfg.s.gmx_port_id = gmx_port_id; 3552 3553 sc->iq_no = 0; 3554 3555 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC, 3556 OPCODE_NIC_IF_CFG, 0, 3557 if_cfg.u64, 0); 3558 3559 sc->callback = if_cfg_callback; 3560 sc->callback_arg = sc; 3561 sc->wait_time = 3000; 3562 3563 retval = octeon_send_soft_command(octeon_dev, sc); 3564 if (retval == IQ_SEND_FAILED) { 3565 dev_err(&octeon_dev->pci_dev->dev, 3566 "iq/oq config failed status: %x\n", 3567 retval); 3568 /* Soft instr is freed by driver in case of failure. */ 3569 goto setup_nic_dev_fail; 3570 } 3571 3572 /* Sleep on a wait queue till the cond flag indicates that the 3573 * response arrived or timed-out. 3574 */ 3575 if (sleep_cond(&ctx->wc, &ctx->cond) == -EINTR) { 3576 dev_err(&octeon_dev->pci_dev->dev, "Wait interrupted\n"); 3577 goto setup_nic_wait_intr; 3578 } 3579 3580 retval = resp->status; 3581 if (retval) { 3582 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n"); 3583 goto setup_nic_dev_fail; 3584 } 3585 3586 /* Verify f/w version (in case of 'auto' loading from flash) */ 3587 fw_ver = octeon_dev->fw_info.liquidio_firmware_version; 3588 if (memcmp(LIQUIDIO_BASE_VERSION, 3589 fw_ver, 3590 strlen(LIQUIDIO_BASE_VERSION))) { 3591 dev_err(&octeon_dev->pci_dev->dev, 3592 "Unmatched firmware version. Expected %s.x, got %s.\n", 3593 LIQUIDIO_BASE_VERSION, fw_ver); 3594 goto setup_nic_dev_fail; 3595 } else if (atomic_read(octeon_dev->adapter_fw_state) == 3596 FW_IS_PRELOADED) { 3597 dev_info(&octeon_dev->pci_dev->dev, 3598 "Using auto-loaded firmware version %s.\n", 3599 fw_ver); 3600 } 3601 3602 octeon_swap_8B_data((u64 *)(&resp->cfg_info), 3603 (sizeof(struct liquidio_if_cfg_info)) >> 3); 3604 3605 num_iqueues = hweight64(resp->cfg_info.iqmask); 3606 num_oqueues = hweight64(resp->cfg_info.oqmask); 3607 3608 if (!(num_iqueues) || !(num_oqueues)) { 3609 dev_err(&octeon_dev->pci_dev->dev, 3610 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n", 3611 resp->cfg_info.iqmask, 3612 resp->cfg_info.oqmask); 3613 goto setup_nic_dev_fail; 3614 } 3615 dev_dbg(&octeon_dev->pci_dev->dev, 3616 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n", 3617 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask, 3618 num_iqueues, num_oqueues); 3619 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues); 3620 3621 if (!netdev) { 3622 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n"); 3623 goto setup_nic_dev_fail; 3624 } 3625 3626 SET_NETDEV_DEV(netdev, &octeon_dev->pci_dev->dev); 3627 3628 /* Associate the routines that will handle different 3629 * netdev tasks. 3630 */ 3631 netdev->netdev_ops = &lionetdevops; 3632 SWITCHDEV_SET_OPS(netdev, &lio_pf_switchdev_ops); 3633 3634 lio = GET_LIO(netdev); 3635 3636 memset(lio, 0, sizeof(struct lio)); 3637 3638 lio->ifidx = ifidx_or_pfnum; 3639 3640 props = &octeon_dev->props[i]; 3641 props->gmxport = resp->cfg_info.linfo.gmxport; 3642 props->netdev = netdev; 3643 3644 lio->linfo.num_rxpciq = num_oqueues; 3645 lio->linfo.num_txpciq = num_iqueues; 3646 for (j = 0; j < num_oqueues; j++) { 3647 lio->linfo.rxpciq[j].u64 = 3648 resp->cfg_info.linfo.rxpciq[j].u64; 3649 } 3650 for (j = 0; j < num_iqueues; j++) { 3651 lio->linfo.txpciq[j].u64 = 3652 resp->cfg_info.linfo.txpciq[j].u64; 3653 } 3654 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr; 3655 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport; 3656 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64; 3657 3658 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3659 3660 if (OCTEON_CN23XX_PF(octeon_dev) || 3661 OCTEON_CN6XXX(octeon_dev)) { 3662 lio->dev_capability = NETIF_F_HIGHDMA 3663 | NETIF_F_IP_CSUM 3664 | NETIF_F_IPV6_CSUM 3665 | NETIF_F_SG | NETIF_F_RXCSUM 3666 | NETIF_F_GRO 3667 | NETIF_F_TSO | NETIF_F_TSO6 3668 | NETIF_F_LRO; 3669 } 3670 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE); 3671 3672 /* Copy of transmit encapsulation capabilities: 3673 * TSO, TSO6, Checksums for this device 3674 */ 3675 lio->enc_dev_capability = NETIF_F_IP_CSUM 3676 | NETIF_F_IPV6_CSUM 3677 | NETIF_F_GSO_UDP_TUNNEL 3678 | NETIF_F_HW_CSUM | NETIF_F_SG 3679 | NETIF_F_RXCSUM 3680 | NETIF_F_TSO | NETIF_F_TSO6 3681 | NETIF_F_LRO; 3682 3683 netdev->hw_enc_features = (lio->enc_dev_capability & 3684 ~NETIF_F_LRO); 3685 3686 lio->dev_capability |= NETIF_F_GSO_UDP_TUNNEL; 3687 3688 netdev->vlan_features = lio->dev_capability; 3689 /* Add any unchangeable hw features */ 3690 lio->dev_capability |= NETIF_F_HW_VLAN_CTAG_FILTER | 3691 NETIF_F_HW_VLAN_CTAG_RX | 3692 NETIF_F_HW_VLAN_CTAG_TX; 3693 3694 netdev->features = (lio->dev_capability & ~NETIF_F_LRO); 3695 3696 netdev->hw_features = lio->dev_capability; 3697 /*HW_VLAN_RX and HW_VLAN_FILTER is always on*/ 3698 netdev->hw_features = netdev->hw_features & 3699 ~NETIF_F_HW_VLAN_CTAG_RX; 3700 3701 /* MTU range: 68 - 16000 */ 3702 netdev->min_mtu = LIO_MIN_MTU_SIZE; 3703 netdev->max_mtu = LIO_MAX_MTU_SIZE; 3704 3705 /* Point to the properties for octeon device to which this 3706 * interface belongs. 3707 */ 3708 lio->oct_dev = octeon_dev; 3709 lio->octprops = props; 3710 lio->netdev = netdev; 3711 3712 dev_dbg(&octeon_dev->pci_dev->dev, 3713 "if%d gmx: %d hw_addr: 0x%llx\n", i, 3714 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr)); 3715 3716 for (j = 0; j < octeon_dev->sriov_info.max_vfs; j++) { 3717 u8 vfmac[ETH_ALEN]; 3718 3719 random_ether_addr(&vfmac[0]); 3720 if (__liquidio_set_vf_mac(netdev, j, 3721 &vfmac[0], false)) { 3722 dev_err(&octeon_dev->pci_dev->dev, 3723 "Error setting VF%d MAC address\n", 3724 j); 3725 goto setup_nic_dev_fail; 3726 } 3727 } 3728 3729 /* 64-bit swap required on LE machines */ 3730 octeon_swap_8B_data(&lio->linfo.hw_addr, 1); 3731 for (j = 0; j < 6; j++) 3732 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j)); 3733 3734 /* Copy MAC Address to OS network device structure */ 3735 3736 ether_addr_copy(netdev->dev_addr, mac); 3737 3738 /* By default all interfaces on a single Octeon uses the same 3739 * tx and rx queues 3740 */ 3741 lio->txq = lio->linfo.txpciq[0].s.q_no; 3742 lio->rxq = lio->linfo.rxpciq[0].s.q_no; 3743 if (liquidio_setup_io_queues(octeon_dev, i, 3744 lio->linfo.num_txpciq, 3745 lio->linfo.num_rxpciq)) { 3746 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n"); 3747 goto setup_nic_dev_fail; 3748 } 3749 3750 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS); 3751 3752 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq); 3753 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq); 3754 3755 if (setup_glists(octeon_dev, lio, num_iqueues)) { 3756 dev_err(&octeon_dev->pci_dev->dev, 3757 "Gather list allocation failed\n"); 3758 goto setup_nic_dev_fail; 3759 } 3760 3761 /* Register ethtool support */ 3762 liquidio_set_ethtool_ops(netdev); 3763 if (lio->oct_dev->chip_id == OCTEON_CN23XX_PF_VID) 3764 octeon_dev->priv_flags = OCT_PRIV_FLAG_DEFAULT; 3765 else 3766 octeon_dev->priv_flags = 0x0; 3767 3768 if (netdev->features & NETIF_F_LRO) 3769 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE, 3770 OCTNIC_LROIPV4 | OCTNIC_LROIPV6); 3771 3772 liquidio_set_feature(netdev, OCTNET_CMD_VLAN_FILTER_CTL, 3773 OCTNET_CMD_VLAN_FILTER_ENABLE); 3774 3775 if ((debug != -1) && (debug & NETIF_MSG_HW)) 3776 liquidio_set_feature(netdev, 3777 OCTNET_CMD_VERBOSE_ENABLE, 0); 3778 3779 if (setup_link_status_change_wq(netdev)) 3780 goto setup_nic_dev_fail; 3781 3782 if ((octeon_dev->fw_info.app_cap_flags & 3783 LIQUIDIO_TIME_SYNC_CAP) && 3784 setup_sync_octeon_time_wq(netdev)) 3785 goto setup_nic_dev_fail; 3786 3787 if (setup_rx_oom_poll_fn(netdev)) 3788 goto setup_nic_dev_fail; 3789 3790 /* Register the network device with the OS */ 3791 if (register_netdev(netdev)) { 3792 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n"); 3793 goto setup_nic_dev_fail; 3794 } 3795 3796 dev_dbg(&octeon_dev->pci_dev->dev, 3797 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n", 3798 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); 3799 netif_carrier_off(netdev); 3800 lio->link_changes++; 3801 3802 ifstate_set(lio, LIO_IFSTATE_REGISTERED); 3803 3804 /* Sending command to firmware to enable Rx checksum offload 3805 * by default at the time of setup of Liquidio driver for 3806 * this device 3807 */ 3808 liquidio_set_rxcsum_command(netdev, OCTNET_CMD_TNL_RX_CSUM_CTL, 3809 OCTNET_CMD_RXCSUM_ENABLE); 3810 liquidio_set_feature(netdev, OCTNET_CMD_TNL_TX_CSUM_CTL, 3811 OCTNET_CMD_TXCSUM_ENABLE); 3812 3813 dev_dbg(&octeon_dev->pci_dev->dev, 3814 "NIC ifidx:%d Setup successful\n", i); 3815 3816 octeon_free_soft_command(octeon_dev, sc); 3817 } 3818 3819 devlink = devlink_alloc(&liquidio_devlink_ops, 3820 sizeof(struct lio_devlink_priv)); 3821 if (!devlink) { 3822 dev_err(&octeon_dev->pci_dev->dev, "devlink alloc failed\n"); 3823 goto setup_nic_wait_intr; 3824 } 3825 3826 lio_devlink = devlink_priv(devlink); 3827 lio_devlink->oct = octeon_dev; 3828 3829 if (devlink_register(devlink, &octeon_dev->pci_dev->dev)) { 3830 devlink_free(devlink); 3831 dev_err(&octeon_dev->pci_dev->dev, 3832 "devlink registration failed\n"); 3833 goto setup_nic_wait_intr; 3834 } 3835 3836 octeon_dev->devlink = devlink; 3837 octeon_dev->eswitch_mode = DEVLINK_ESWITCH_MODE_LEGACY; 3838 3839 return 0; 3840 3841 setup_nic_dev_fail: 3842 3843 octeon_free_soft_command(octeon_dev, sc); 3844 3845 setup_nic_wait_intr: 3846 3847 while (i--) { 3848 dev_err(&octeon_dev->pci_dev->dev, 3849 "NIC ifidx:%d Setup failed\n", i); 3850 liquidio_destroy_nic_device(octeon_dev, i); 3851 } 3852 return -ENODEV; 3853 } 3854 3855 #ifdef CONFIG_PCI_IOV 3856 static int octeon_enable_sriov(struct octeon_device *oct) 3857 { 3858 unsigned int num_vfs_alloced = oct->sriov_info.num_vfs_alloced; 3859 struct pci_dev *vfdev; 3860 int err; 3861 u32 u; 3862 3863 if (OCTEON_CN23XX_PF(oct) && num_vfs_alloced) { 3864 err = pci_enable_sriov(oct->pci_dev, 3865 oct->sriov_info.num_vfs_alloced); 3866 if (err) { 3867 dev_err(&oct->pci_dev->dev, 3868 "OCTEON: Failed to enable PCI sriov: %d\n", 3869 err); 3870 oct->sriov_info.num_vfs_alloced = 0; 3871 return err; 3872 } 3873 oct->sriov_info.sriov_enabled = 1; 3874 3875 /* init lookup table that maps DPI ring number to VF pci_dev 3876 * struct pointer 3877 */ 3878 u = 0; 3879 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 3880 OCTEON_CN23XX_VF_VID, NULL); 3881 while (vfdev) { 3882 if (vfdev->is_virtfn && 3883 (vfdev->physfn == oct->pci_dev)) { 3884 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = 3885 vfdev; 3886 u += oct->sriov_info.rings_per_vf; 3887 } 3888 vfdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 3889 OCTEON_CN23XX_VF_VID, vfdev); 3890 } 3891 } 3892 3893 return num_vfs_alloced; 3894 } 3895 3896 static int lio_pci_sriov_disable(struct octeon_device *oct) 3897 { 3898 int u; 3899 3900 if (pci_vfs_assigned(oct->pci_dev)) { 3901 dev_err(&oct->pci_dev->dev, "VFs are still assigned to VMs.\n"); 3902 return -EPERM; 3903 } 3904 3905 pci_disable_sriov(oct->pci_dev); 3906 3907 u = 0; 3908 while (u < MAX_POSSIBLE_VFS) { 3909 oct->sriov_info.dpiring_to_vfpcidev_lut[u] = NULL; 3910 u += oct->sriov_info.rings_per_vf; 3911 } 3912 3913 oct->sriov_info.num_vfs_alloced = 0; 3914 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d disabled VFs\n", 3915 oct->pf_num); 3916 3917 return 0; 3918 } 3919 3920 static int liquidio_enable_sriov(struct pci_dev *dev, int num_vfs) 3921 { 3922 struct octeon_device *oct = pci_get_drvdata(dev); 3923 int ret = 0; 3924 3925 if ((num_vfs == oct->sriov_info.num_vfs_alloced) && 3926 (oct->sriov_info.sriov_enabled)) { 3927 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d already enabled num_vfs:%d\n", 3928 oct->pf_num, num_vfs); 3929 return 0; 3930 } 3931 3932 if (!num_vfs) { 3933 lio_vf_rep_destroy(oct); 3934 ret = lio_pci_sriov_disable(oct); 3935 } else if (num_vfs > oct->sriov_info.max_vfs) { 3936 dev_err(&oct->pci_dev->dev, 3937 "OCTEON: Max allowed VFs:%d user requested:%d", 3938 oct->sriov_info.max_vfs, num_vfs); 3939 ret = -EPERM; 3940 } else { 3941 oct->sriov_info.num_vfs_alloced = num_vfs; 3942 ret = octeon_enable_sriov(oct); 3943 dev_info(&oct->pci_dev->dev, "oct->pf_num:%d num_vfs:%d\n", 3944 oct->pf_num, num_vfs); 3945 ret = lio_vf_rep_create(oct); 3946 if (ret) 3947 dev_info(&oct->pci_dev->dev, 3948 "vf representor create failed"); 3949 } 3950 3951 return ret; 3952 } 3953 #endif 3954 3955 /** 3956 * \brief initialize the NIC 3957 * @param oct octeon device 3958 * 3959 * This initialization routine is called once the Octeon device application is 3960 * up and running 3961 */ 3962 static int liquidio_init_nic_module(struct octeon_device *oct) 3963 { 3964 int i, retval = 0; 3965 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct)); 3966 3967 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n"); 3968 3969 /* only default iq and oq were initialized 3970 * initialize the rest as well 3971 */ 3972 /* run port_config command for each port */ 3973 oct->ifcount = num_nic_ports; 3974 3975 memset(oct->props, 0, sizeof(struct octdev_props) * num_nic_ports); 3976 3977 for (i = 0; i < MAX_OCTEON_LINKS; i++) 3978 oct->props[i].gmxport = -1; 3979 3980 retval = setup_nic_devices(oct); 3981 if (retval) { 3982 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n"); 3983 goto octnet_init_failure; 3984 } 3985 3986 /* Call vf_rep_modinit if the firmware is switchdev capable 3987 * and do it from the first liquidio function probed. 3988 */ 3989 if (!oct->octeon_id && 3990 oct->fw_info.app_cap_flags & LIQUIDIO_SWITCHDEV_CAP) { 3991 retval = lio_vf_rep_modinit(); 3992 if (retval) { 3993 liquidio_stop_nic_module(oct); 3994 goto octnet_init_failure; 3995 } 3996 } 3997 3998 liquidio_ptp_init(oct); 3999 4000 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n"); 4001 4002 return retval; 4003 4004 octnet_init_failure: 4005 4006 oct->ifcount = 0; 4007 4008 return retval; 4009 } 4010 4011 /** 4012 * \brief starter callback that invokes the remaining initialization work after 4013 * the NIC is up and running. 4014 * @param octptr work struct work_struct 4015 */ 4016 static void nic_starter(struct work_struct *work) 4017 { 4018 struct octeon_device *oct; 4019 struct cavium_wk *wk = (struct cavium_wk *)work; 4020 4021 oct = (struct octeon_device *)wk->ctxptr; 4022 4023 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) 4024 return; 4025 4026 /* If the status of the device is CORE_OK, the core 4027 * application has reported its application type. Call 4028 * any registered handlers now and move to the RUNNING 4029 * state. 4030 */ 4031 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) { 4032 schedule_delayed_work(&oct->nic_poll_work.work, 4033 LIQUIDIO_STARTER_POLL_INTERVAL_MS); 4034 return; 4035 } 4036 4037 atomic_set(&oct->status, OCT_DEV_RUNNING); 4038 4039 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) { 4040 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n"); 4041 4042 if (liquidio_init_nic_module(oct)) 4043 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n"); 4044 else 4045 handshake[oct->octeon_id].started_ok = 1; 4046 } else { 4047 dev_err(&oct->pci_dev->dev, 4048 "Unexpected application running on NIC (%d). Check firmware.\n", 4049 oct->app_mode); 4050 } 4051 4052 complete(&handshake[oct->octeon_id].started); 4053 } 4054 4055 static int 4056 octeon_recv_vf_drv_notice(struct octeon_recv_info *recv_info, void *buf) 4057 { 4058 struct octeon_device *oct = (struct octeon_device *)buf; 4059 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt; 4060 int i, notice, vf_idx; 4061 bool cores_crashed; 4062 u64 *data, vf_num; 4063 4064 notice = recv_pkt->rh.r.ossp; 4065 data = (u64 *)(get_rbd(recv_pkt->buffer_ptr[0]) + OCT_DROQ_INFO_SIZE); 4066 4067 /* the first 64-bit word of data is the vf_num */ 4068 vf_num = data[0]; 4069 octeon_swap_8B_data(&vf_num, 1); 4070 vf_idx = (int)vf_num - 1; 4071 4072 cores_crashed = READ_ONCE(oct->cores_crashed); 4073 4074 if (notice == VF_DRV_LOADED) { 4075 if (!(oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx))) { 4076 oct->sriov_info.vf_drv_loaded_mask |= BIT_ULL(vf_idx); 4077 dev_info(&oct->pci_dev->dev, 4078 "driver for VF%d was loaded\n", vf_idx); 4079 if (!cores_crashed) 4080 try_module_get(THIS_MODULE); 4081 } 4082 } else if (notice == VF_DRV_REMOVED) { 4083 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vf_idx)) { 4084 oct->sriov_info.vf_drv_loaded_mask &= ~BIT_ULL(vf_idx); 4085 dev_info(&oct->pci_dev->dev, 4086 "driver for VF%d was removed\n", vf_idx); 4087 if (!cores_crashed) 4088 module_put(THIS_MODULE); 4089 } 4090 } else if (notice == VF_DRV_MACADDR_CHANGED) { 4091 u8 *b = (u8 *)&data[1]; 4092 4093 oct->sriov_info.vf_macaddr[vf_idx] = data[1]; 4094 dev_info(&oct->pci_dev->dev, 4095 "VF driver changed VF%d's MAC address to %pM\n", 4096 vf_idx, b + 2); 4097 } 4098 4099 for (i = 0; i < recv_pkt->buffer_count; i++) 4100 recv_buffer_free(recv_pkt->buffer_ptr[i]); 4101 octeon_free_recv_info(recv_info); 4102 4103 return 0; 4104 } 4105 4106 /** 4107 * \brief Device initialization for each Octeon device that is probed 4108 * @param octeon_dev octeon device 4109 */ 4110 static int octeon_device_init(struct octeon_device *octeon_dev) 4111 { 4112 int j, ret; 4113 char bootcmd[] = "\n"; 4114 char *dbg_enb = NULL; 4115 enum lio_fw_state fw_state; 4116 struct octeon_device_priv *oct_priv = 4117 (struct octeon_device_priv *)octeon_dev->priv; 4118 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE); 4119 4120 /* Enable access to the octeon device and make its DMA capability 4121 * known to the OS. 4122 */ 4123 if (octeon_pci_os_setup(octeon_dev)) 4124 return 1; 4125 4126 atomic_set(&octeon_dev->status, OCT_DEV_PCI_ENABLE_DONE); 4127 4128 /* Identify the Octeon type and map the BAR address space. */ 4129 if (octeon_chip_specific_setup(octeon_dev)) { 4130 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n"); 4131 return 1; 4132 } 4133 4134 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE); 4135 4136 /* Only add a reference after setting status 'OCT_DEV_PCI_MAP_DONE', 4137 * since that is what is required for the reference to be removed 4138 * during de-initialization (see 'octeon_destroy_resources'). 4139 */ 4140 octeon_register_device(octeon_dev, octeon_dev->pci_dev->bus->number, 4141 PCI_SLOT(octeon_dev->pci_dev->devfn), 4142 PCI_FUNC(octeon_dev->pci_dev->devfn), 4143 true); 4144 4145 octeon_dev->app_mode = CVM_DRV_INVALID_APP; 4146 4147 /* CN23XX supports preloaded firmware if the following is true: 4148 * 4149 * The adapter indicates that firmware is currently running AND 4150 * 'fw_type' is 'auto'. 4151 * 4152 * (default state is NEEDS_TO_BE_LOADED, override it if appropriate). 4153 */ 4154 if (OCTEON_CN23XX_PF(octeon_dev) && 4155 cn23xx_fw_loaded(octeon_dev) && fw_type_is_auto()) { 4156 atomic_cmpxchg(octeon_dev->adapter_fw_state, 4157 FW_NEEDS_TO_BE_LOADED, FW_IS_PRELOADED); 4158 } 4159 4160 /* If loading firmware, only first device of adapter needs to do so. */ 4161 fw_state = atomic_cmpxchg(octeon_dev->adapter_fw_state, 4162 FW_NEEDS_TO_BE_LOADED, 4163 FW_IS_BEING_LOADED); 4164 4165 /* Here, [local variable] 'fw_state' is set to one of: 4166 * 4167 * FW_IS_PRELOADED: No firmware is to be loaded (see above) 4168 * FW_NEEDS_TO_BE_LOADED: The driver's first instance will load 4169 * firmware to the adapter. 4170 * FW_IS_BEING_LOADED: The driver's second instance will not load 4171 * firmware to the adapter. 4172 */ 4173 4174 /* Prior to f/w load, perform a soft reset of the Octeon device; 4175 * if error resetting, return w/error. 4176 */ 4177 if (fw_state == FW_NEEDS_TO_BE_LOADED) 4178 if (octeon_dev->fn_list.soft_reset(octeon_dev)) 4179 return 1; 4180 4181 /* Initialize the dispatch mechanism used to push packets arriving on 4182 * Octeon Output queues. 4183 */ 4184 if (octeon_init_dispatch_list(octeon_dev)) 4185 return 1; 4186 4187 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 4188 OPCODE_NIC_CORE_DRV_ACTIVE, 4189 octeon_core_drv_init, 4190 octeon_dev); 4191 4192 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC, 4193 OPCODE_NIC_VF_DRV_NOTICE, 4194 octeon_recv_vf_drv_notice, octeon_dev); 4195 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter); 4196 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev; 4197 schedule_delayed_work(&octeon_dev->nic_poll_work.work, 4198 LIQUIDIO_STARTER_POLL_INTERVAL_MS); 4199 4200 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE); 4201 4202 if (octeon_set_io_queues_off(octeon_dev)) { 4203 dev_err(&octeon_dev->pci_dev->dev, "setting io queues off failed\n"); 4204 return 1; 4205 } 4206 4207 if (OCTEON_CN23XX_PF(octeon_dev)) { 4208 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev); 4209 if (ret) { 4210 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Failed to configure device registers\n"); 4211 return ret; 4212 } 4213 } 4214 4215 /* Initialize soft command buffer pool 4216 */ 4217 if (octeon_setup_sc_buffer_pool(octeon_dev)) { 4218 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n"); 4219 return 1; 4220 } 4221 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE); 4222 4223 /* Setup the data structures that manage this Octeon's Input queues. */ 4224 if (octeon_setup_instr_queues(octeon_dev)) { 4225 dev_err(&octeon_dev->pci_dev->dev, 4226 "instruction queue initialization failed\n"); 4227 return 1; 4228 } 4229 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE); 4230 4231 /* Initialize lists to manage the requests of different types that 4232 * arrive from user & kernel applications for this octeon device. 4233 */ 4234 if (octeon_setup_response_list(octeon_dev)) { 4235 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n"); 4236 return 1; 4237 } 4238 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE); 4239 4240 if (octeon_setup_output_queues(octeon_dev)) { 4241 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n"); 4242 return 1; 4243 } 4244 4245 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE); 4246 4247 if (OCTEON_CN23XX_PF(octeon_dev)) { 4248 if (octeon_dev->fn_list.setup_mbox(octeon_dev)) { 4249 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: Mailbox setup failed\n"); 4250 return 1; 4251 } 4252 atomic_set(&octeon_dev->status, OCT_DEV_MBOX_SETUP_DONE); 4253 4254 if (octeon_allocate_ioq_vector(octeon_dev)) { 4255 dev_err(&octeon_dev->pci_dev->dev, "OCTEON: ioq vector allocation failed\n"); 4256 return 1; 4257 } 4258 atomic_set(&octeon_dev->status, OCT_DEV_MSIX_ALLOC_VECTOR_DONE); 4259 4260 } else { 4261 /* The input and output queue registers were setup earlier (the 4262 * queues were not enabled). Any additional registers 4263 * that need to be programmed should be done now. 4264 */ 4265 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev); 4266 if (ret) { 4267 dev_err(&octeon_dev->pci_dev->dev, 4268 "Failed to configure device registers\n"); 4269 return ret; 4270 } 4271 } 4272 4273 /* Initialize the tasklet that handles output queue packet processing.*/ 4274 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n"); 4275 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh, 4276 (unsigned long)octeon_dev); 4277 4278 /* Setup the interrupt handler and record the INT SUM register address 4279 */ 4280 if (octeon_setup_interrupt(octeon_dev, 4281 octeon_dev->sriov_info.num_pf_rings)) 4282 return 1; 4283 4284 /* Enable Octeon device interrupts */ 4285 octeon_dev->fn_list.enable_interrupt(octeon_dev, OCTEON_ALL_INTR); 4286 4287 atomic_set(&octeon_dev->status, OCT_DEV_INTR_SET_DONE); 4288 4289 /* Send Credit for Octeon Output queues. Credits are always sent BEFORE 4290 * the output queue is enabled. 4291 * This ensures that we'll receive the f/w CORE DRV_ACTIVE message in 4292 * case we've configured CN23XX_SLI_GBL_CONTROL[NOPTR_D] = 0. 4293 * Otherwise, it is possible that the DRV_ACTIVE message will be sent 4294 * before any credits have been issued, causing the ring to be reset 4295 * (and the f/w appear to never have started). 4296 */ 4297 for (j = 0; j < octeon_dev->num_oqs; j++) 4298 writel(octeon_dev->droq[j]->max_count, 4299 octeon_dev->droq[j]->pkts_credit_reg); 4300 4301 /* Enable the input and output queues for this Octeon device */ 4302 ret = octeon_dev->fn_list.enable_io_queues(octeon_dev); 4303 if (ret) { 4304 dev_err(&octeon_dev->pci_dev->dev, "Failed to enable input/output queues"); 4305 return ret; 4306 } 4307 4308 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE); 4309 4310 if (fw_state == FW_NEEDS_TO_BE_LOADED) { 4311 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n"); 4312 if (!ddr_timeout) { 4313 dev_info(&octeon_dev->pci_dev->dev, 4314 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n"); 4315 } 4316 4317 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS); 4318 4319 /* Wait for the octeon to initialize DDR after the soft-reset.*/ 4320 while (!ddr_timeout) { 4321 set_current_state(TASK_INTERRUPTIBLE); 4322 if (schedule_timeout(HZ / 10)) { 4323 /* user probably pressed Control-C */ 4324 return 1; 4325 } 4326 } 4327 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout); 4328 if (ret) { 4329 dev_err(&octeon_dev->pci_dev->dev, 4330 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n", 4331 ret); 4332 return 1; 4333 } 4334 4335 if (octeon_wait_for_bootloader(octeon_dev, 1000)) { 4336 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n"); 4337 return 1; 4338 } 4339 4340 /* Divert uboot to take commands from host instead. */ 4341 ret = octeon_console_send_cmd(octeon_dev, bootcmd, 50); 4342 4343 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n"); 4344 ret = octeon_init_consoles(octeon_dev); 4345 if (ret) { 4346 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n"); 4347 return 1; 4348 } 4349 /* If console debug enabled, specify empty string to use default 4350 * enablement ELSE specify NULL string for 'disabled'. 4351 */ 4352 dbg_enb = octeon_console_debug_enabled(0) ? "" : NULL; 4353 ret = octeon_add_console(octeon_dev, 0, dbg_enb); 4354 if (ret) { 4355 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n"); 4356 return 1; 4357 } else if (octeon_console_debug_enabled(0)) { 4358 /* If console was added AND we're logging console output 4359 * then set our console print function. 4360 */ 4361 octeon_dev->console[0].print = octeon_dbg_console_print; 4362 } 4363 4364 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE); 4365 4366 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n"); 4367 ret = load_firmware(octeon_dev); 4368 if (ret) { 4369 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n"); 4370 return 1; 4371 } 4372 4373 atomic_set(octeon_dev->adapter_fw_state, FW_HAS_BEEN_LOADED); 4374 } 4375 4376 handshake[octeon_dev->octeon_id].init_ok = 1; 4377 complete(&handshake[octeon_dev->octeon_id].init); 4378 4379 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK); 4380 4381 return 0; 4382 } 4383 4384 /** 4385 * \brief Debug console print function 4386 * @param octeon_dev octeon device 4387 * @param console_num console number 4388 * @param prefix first portion of line to display 4389 * @param suffix second portion of line to display 4390 * 4391 * The OCTEON debug console outputs entire lines (excluding '\n'). 4392 * Normally, the line will be passed in the 'prefix' parameter. 4393 * However, due to buffering, it is possible for a line to be split into two 4394 * parts, in which case they will be passed as the 'prefix' parameter and 4395 * 'suffix' parameter. 4396 */ 4397 static int octeon_dbg_console_print(struct octeon_device *oct, u32 console_num, 4398 char *prefix, char *suffix) 4399 { 4400 if (prefix && suffix) 4401 dev_info(&oct->pci_dev->dev, "%u: %s%s\n", console_num, prefix, 4402 suffix); 4403 else if (prefix) 4404 dev_info(&oct->pci_dev->dev, "%u: %s\n", console_num, prefix); 4405 else if (suffix) 4406 dev_info(&oct->pci_dev->dev, "%u: %s\n", console_num, suffix); 4407 4408 return 0; 4409 } 4410 4411 /** 4412 * \brief Exits the module 4413 */ 4414 static void __exit liquidio_exit(void) 4415 { 4416 liquidio_deinit_pci(); 4417 4418 pr_info("LiquidIO network module is now unloaded\n"); 4419 } 4420 4421 module_init(liquidio_init); 4422 module_exit(liquidio_exit); 4423