xref: /linux/drivers/net/ethernet/cavium/liquidio/cn23xx_pf_device.c (revision 4d5e3b06e1fc1428be14cd4ebe3b37c1bb34f95d)
1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more details.
17  ***********************************************************************/
18 #include <linux/pci.h>
19 #include <linux/vmalloc.h>
20 #include <linux/etherdevice.h>
21 #include "liquidio_common.h"
22 #include "octeon_droq.h"
23 #include "octeon_iq.h"
24 #include "response_manager.h"
25 #include "octeon_device.h"
26 #include "cn23xx_pf_device.h"
27 #include "octeon_main.h"
28 #include "octeon_mailbox.h"
29 
30 #define RESET_NOTDONE 0
31 #define RESET_DONE 1
32 
33 /* Change the value of SLI Packet Input Jabber Register to allow
34  * VXLAN TSO packets which can be 64424 bytes, exceeding the
35  * MAX_GSO_SIZE we supplied to the kernel
36  */
37 #define CN23XX_INPUT_JABBER 64600
38 
39 void cn23xx_dump_pf_initialized_regs(struct octeon_device *oct)
40 {
41 	int i = 0;
42 	u32 regval = 0;
43 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
44 
45 	/*In cn23xx_soft_reset*/
46 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%llx\n",
47 		"CN23XX_WIN_WR_MASK_REG", CVM_CAST64(CN23XX_WIN_WR_MASK_REG),
48 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_WIN_WR_MASK_REG)));
49 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
50 		"CN23XX_SLI_SCRATCH1", CVM_CAST64(CN23XX_SLI_SCRATCH1),
51 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)));
52 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
53 		"CN23XX_RST_SOFT_RST", CN23XX_RST_SOFT_RST,
54 		lio_pci_readq(oct, CN23XX_RST_SOFT_RST));
55 
56 	/*In cn23xx_set_dpi_regs*/
57 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
58 		"CN23XX_DPI_DMA_CONTROL", CN23XX_DPI_DMA_CONTROL,
59 		lio_pci_readq(oct, CN23XX_DPI_DMA_CONTROL));
60 
61 	for (i = 0; i < 6; i++) {
62 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
63 			"CN23XX_DPI_DMA_ENG_ENB", i,
64 			CN23XX_DPI_DMA_ENG_ENB(i),
65 			lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_ENB(i)));
66 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
67 			"CN23XX_DPI_DMA_ENG_BUF", i,
68 			CN23XX_DPI_DMA_ENG_BUF(i),
69 			lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_BUF(i)));
70 	}
71 
72 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_DPI_CTL",
73 		CN23XX_DPI_CTL, lio_pci_readq(oct, CN23XX_DPI_CTL));
74 
75 	/*In cn23xx_setup_pcie_mps and cn23xx_setup_pcie_mrrs */
76 	pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, &regval);
77 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
78 		"CN23XX_CONFIG_PCIE_DEVCTL",
79 		CVM_CAST64(CN23XX_CONFIG_PCIE_DEVCTL), CVM_CAST64(regval));
80 
81 	dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
82 		"CN23XX_DPI_SLI_PRTX_CFG", oct->pcie_port,
83 		CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port),
84 		lio_pci_readq(oct, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port)));
85 
86 	/*In cn23xx_specific_regs_setup */
87 	dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
88 		"CN23XX_SLI_S2M_PORTX_CTL", oct->pcie_port,
89 		CVM_CAST64(CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)),
90 		CVM_CAST64(octeon_read_csr64(
91 			oct, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port))));
92 
93 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
94 		"CN23XX_SLI_RING_RST", CVM_CAST64(CN23XX_SLI_PKT_IOQ_RING_RST),
95 		(u64)octeon_read_csr64(oct, CN23XX_SLI_PKT_IOQ_RING_RST));
96 
97 	/*In cn23xx_setup_global_mac_regs*/
98 	for (i = 0; i < CN23XX_MAX_MACS; i++) {
99 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
100 			"CN23XX_SLI_PKT_MAC_RINFO64", i,
101 			CVM_CAST64(CN23XX_SLI_PKT_MAC_RINFO64(i, oct->pf_num)),
102 			CVM_CAST64(octeon_read_csr64
103 				(oct, CN23XX_SLI_PKT_MAC_RINFO64
104 					(i, oct->pf_num))));
105 	}
106 
107 	/*In cn23xx_setup_global_input_regs*/
108 	for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) {
109 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
110 			"CN23XX_SLI_IQ_PKT_CONTROL64", i,
111 			CVM_CAST64(CN23XX_SLI_IQ_PKT_CONTROL64(i)),
112 			CVM_CAST64(octeon_read_csr64
113 				(oct, CN23XX_SLI_IQ_PKT_CONTROL64(i))));
114 	}
115 
116 	/*In cn23xx_setup_global_output_regs*/
117 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
118 		"CN23XX_SLI_OQ_WMARK", CVM_CAST64(CN23XX_SLI_OQ_WMARK),
119 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_OQ_WMARK)));
120 
121 	for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) {
122 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
123 			"CN23XX_SLI_OQ_PKT_CONTROL", i,
124 			CVM_CAST64(CN23XX_SLI_OQ_PKT_CONTROL(i)),
125 			CVM_CAST64(octeon_read_csr(
126 				oct, CN23XX_SLI_OQ_PKT_CONTROL(i))));
127 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
128 			"CN23XX_SLI_OQ_PKT_INT_LEVELS", i,
129 			CVM_CAST64(CN23XX_SLI_OQ_PKT_INT_LEVELS(i)),
130 			CVM_CAST64(octeon_read_csr64(
131 				oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(i))));
132 	}
133 
134 	/*In cn23xx_enable_interrupt and cn23xx_disable_interrupt*/
135 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
136 		"cn23xx->intr_enb_reg64",
137 		CVM_CAST64((long)(cn23xx->intr_enb_reg64)),
138 		CVM_CAST64(readq(cn23xx->intr_enb_reg64)));
139 
140 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
141 		"cn23xx->intr_sum_reg64",
142 		CVM_CAST64((long)(cn23xx->intr_sum_reg64)),
143 		CVM_CAST64(readq(cn23xx->intr_sum_reg64)));
144 
145 	/*In cn23xx_setup_iq_regs*/
146 	for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) {
147 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
148 			"CN23XX_SLI_IQ_BASE_ADDR64", i,
149 			CVM_CAST64(CN23XX_SLI_IQ_BASE_ADDR64(i)),
150 			CVM_CAST64(octeon_read_csr64(
151 				oct, CN23XX_SLI_IQ_BASE_ADDR64(i))));
152 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
153 			"CN23XX_SLI_IQ_SIZE", i,
154 			CVM_CAST64(CN23XX_SLI_IQ_SIZE(i)),
155 			CVM_CAST64(octeon_read_csr
156 				(oct, CN23XX_SLI_IQ_SIZE(i))));
157 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
158 			"CN23XX_SLI_IQ_DOORBELL", i,
159 			CVM_CAST64(CN23XX_SLI_IQ_DOORBELL(i)),
160 			CVM_CAST64(octeon_read_csr64(
161 				oct, CN23XX_SLI_IQ_DOORBELL(i))));
162 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
163 			"CN23XX_SLI_IQ_INSTR_COUNT64", i,
164 			CVM_CAST64(CN23XX_SLI_IQ_INSTR_COUNT64(i)),
165 			CVM_CAST64(octeon_read_csr64(
166 				oct, CN23XX_SLI_IQ_INSTR_COUNT64(i))));
167 	}
168 
169 	/*In cn23xx_setup_oq_regs*/
170 	for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) {
171 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
172 			"CN23XX_SLI_OQ_BASE_ADDR64", i,
173 			CVM_CAST64(CN23XX_SLI_OQ_BASE_ADDR64(i)),
174 			CVM_CAST64(octeon_read_csr64(
175 				oct, CN23XX_SLI_OQ_BASE_ADDR64(i))));
176 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
177 			"CN23XX_SLI_OQ_SIZE", i,
178 			CVM_CAST64(CN23XX_SLI_OQ_SIZE(i)),
179 			CVM_CAST64(octeon_read_csr
180 				(oct, CN23XX_SLI_OQ_SIZE(i))));
181 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
182 			"CN23XX_SLI_OQ_BUFF_INFO_SIZE", i,
183 			CVM_CAST64(CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)),
184 			CVM_CAST64(octeon_read_csr(
185 				oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(i))));
186 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
187 			"CN23XX_SLI_OQ_PKTS_SENT", i,
188 			CVM_CAST64(CN23XX_SLI_OQ_PKTS_SENT(i)),
189 			CVM_CAST64(octeon_read_csr64(
190 				oct, CN23XX_SLI_OQ_PKTS_SENT(i))));
191 		dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n",
192 			"CN23XX_SLI_OQ_PKTS_CREDIT", i,
193 			CVM_CAST64(CN23XX_SLI_OQ_PKTS_CREDIT(i)),
194 			CVM_CAST64(octeon_read_csr64(
195 				oct, CN23XX_SLI_OQ_PKTS_CREDIT(i))));
196 	}
197 
198 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
199 		"CN23XX_SLI_PKT_TIME_INT",
200 		CVM_CAST64(CN23XX_SLI_PKT_TIME_INT),
201 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_TIME_INT)));
202 	dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n",
203 		"CN23XX_SLI_PKT_CNT_INT",
204 		CVM_CAST64(CN23XX_SLI_PKT_CNT_INT),
205 		CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_CNT_INT)));
206 }
207 
208 static int cn23xx_pf_soft_reset(struct octeon_device *oct)
209 {
210 	octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF);
211 
212 	dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: BIST enabled for CN23XX soft reset\n",
213 		oct->octeon_id);
214 
215 	octeon_write_csr64(oct, CN23XX_SLI_SCRATCH1, 0x1234ULL);
216 
217 	/* Initiate chip-wide soft reset */
218 	lio_pci_readq(oct, CN23XX_RST_SOFT_RST);
219 	lio_pci_writeq(oct, 1, CN23XX_RST_SOFT_RST);
220 
221 	/* Wait for 100ms as Octeon resets. */
222 	mdelay(100);
223 
224 	if (octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)) {
225 		dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Soft reset failed\n",
226 			oct->octeon_id);
227 		return 1;
228 	}
229 
230 	dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Reset completed\n",
231 		oct->octeon_id);
232 
233 	/* restore the  reset value*/
234 	octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF);
235 
236 	return 0;
237 }
238 
239 static void cn23xx_enable_error_reporting(struct octeon_device *oct)
240 {
241 	u32 regval;
242 	u32 uncorrectable_err_mask, corrtable_err_status;
243 
244 	pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, &regval);
245 	if (regval & CN23XX_CONFIG_PCIE_DEVCTL_MASK) {
246 		uncorrectable_err_mask = 0;
247 		corrtable_err_status = 0;
248 		pci_read_config_dword(oct->pci_dev,
249 				      CN23XX_CONFIG_PCIE_UNCORRECT_ERR_MASK,
250 				      &uncorrectable_err_mask);
251 		pci_read_config_dword(oct->pci_dev,
252 				      CN23XX_CONFIG_PCIE_CORRECT_ERR_STATUS,
253 				      &corrtable_err_status);
254 		dev_err(&oct->pci_dev->dev, "PCI-E Fatal error detected;\n"
255 				 "\tdev_ctl_status_reg = 0x%08x\n"
256 				 "\tuncorrectable_error_mask_reg = 0x%08x\n"
257 				 "\tcorrectable_error_status_reg = 0x%08x\n",
258 			    regval, uncorrectable_err_mask,
259 			    corrtable_err_status);
260 	}
261 
262 	regval |= 0xf; /* Enable Link error reporting */
263 
264 	dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Enabling PCI-E error reporting..\n",
265 		oct->octeon_id);
266 	pci_write_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, regval);
267 }
268 
269 static u32 cn23xx_coprocessor_clock(struct octeon_device *oct)
270 {
271 	/* Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER
272 	 * for SLI.
273 	 */
274 
275 	/* TBD: get the info in Hand-shake */
276 	return (((lio_pci_readq(oct, CN23XX_RST_BOOT) >> 24) & 0x3f) * 50);
277 }
278 
279 u32 cn23xx_pf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us)
280 {
281 	/* This gives the SLI clock per microsec */
282 	u32 oqticks_per_us = cn23xx_coprocessor_clock(oct);
283 
284 	oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us;
285 
286 	/* This gives the clock cycles per millisecond */
287 	oqticks_per_us *= 1000;
288 
289 	/* This gives the oq ticks (1024 core clock cycles) per millisecond */
290 	oqticks_per_us /= 1024;
291 
292 	/* time_intr is in microseconds. The next 2 steps gives the oq ticks
293 	 *  corressponding to time_intr.
294 	 */
295 	oqticks_per_us *= time_intr_in_us;
296 	oqticks_per_us /= 1000;
297 
298 	return oqticks_per_us;
299 }
300 
301 static void cn23xx_setup_global_mac_regs(struct octeon_device *oct)
302 {
303 	u16 mac_no = oct->pcie_port;
304 	u16 pf_num = oct->pf_num;
305 	u64 reg_val;
306 	u64 temp;
307 
308 	/* programming SRN and TRS for each MAC(0..3)  */
309 
310 	dev_dbg(&oct->pci_dev->dev, "%s:Using pcie port %d\n",
311 		__func__, mac_no);
312 	/* By default, mapping all 64 IOQs to  a single MACs */
313 
314 	reg_val =
315 	    octeon_read_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num));
316 
317 	if (oct->rev_id == OCTEON_CN23XX_REV_1_1) {
318 		/* setting SRN <6:0>  */
319 		reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF_PASS_1_1;
320 	} else {
321 		/* setting SRN <6:0>  */
322 		reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF;
323 	}
324 
325 	/* setting TRS <23:16> */
326 	reg_val = reg_val |
327 		  (oct->sriov_info.trs << CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS);
328 	/* setting RPVF <39:32> */
329 	temp = oct->sriov_info.rings_per_vf & 0xff;
330 	reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_RPVF_BIT_POS);
331 
332 	/* setting NVFS <55:48> */
333 	temp = oct->sriov_info.max_vfs & 0xff;
334 	reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_NVFS_BIT_POS);
335 
336 	/* write these settings to MAC register */
337 	octeon_write_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num),
338 			   reg_val);
339 
340 	dev_dbg(&oct->pci_dev->dev, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n",
341 		mac_no, pf_num, (u64)octeon_read_csr64
342 		(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)));
343 }
344 
345 static int cn23xx_reset_io_queues(struct octeon_device *oct)
346 {
347 	int ret_val = 0;
348 	u64 d64;
349 	u32 q_no, srn, ern;
350 	u32 loop = 1000;
351 
352 	srn = oct->sriov_info.pf_srn;
353 	ern = srn + oct->sriov_info.num_pf_rings;
354 
355 	/*As per HRM reg description, s/w cant write 0 to ENB. */
356 	/*to make the queue off, need to set the RST bit. */
357 
358 	/* Reset the Enable bit for all the 64 IQs.  */
359 	for (q_no = srn; q_no < ern; q_no++) {
360 		/* set RST bit to 1. This bit applies to both IQ and OQ */
361 		d64 = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
362 		d64 = d64 | CN23XX_PKT_INPUT_CTL_RST;
363 		octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64);
364 	}
365 
366 	/*wait until the RST bit is clear or the RST and quite bits are set*/
367 	for (q_no = srn; q_no < ern; q_no++) {
368 		u64 reg_val = octeon_read_csr64(oct,
369 					CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
370 		while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) &&
371 		       !(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) &&
372 		       loop--) {
373 			WRITE_ONCE(reg_val, octeon_read_csr64(
374 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
375 		}
376 		if (!loop) {
377 			dev_err(&oct->pci_dev->dev,
378 				"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
379 				q_no);
380 			return -1;
381 		}
382 		WRITE_ONCE(reg_val, READ_ONCE(reg_val) &
383 			~CN23XX_PKT_INPUT_CTL_RST);
384 		octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
385 				   READ_ONCE(reg_val));
386 
387 		WRITE_ONCE(reg_val, octeon_read_csr64(
388 			   oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
389 		if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) {
390 			dev_err(&oct->pci_dev->dev,
391 				"clearing the reset failed for qno: %u\n",
392 				q_no);
393 			ret_val = -1;
394 		}
395 	}
396 
397 	return ret_val;
398 }
399 
400 static int cn23xx_pf_setup_global_input_regs(struct octeon_device *oct)
401 {
402 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
403 	struct octeon_instr_queue *iq;
404 	u64 intr_threshold, reg_val;
405 	u32 q_no, ern, srn;
406 	u64 pf_num;
407 	u64 vf_num;
408 
409 	pf_num = oct->pf_num;
410 
411 	srn = oct->sriov_info.pf_srn;
412 	ern = srn + oct->sriov_info.num_pf_rings;
413 
414 	if (cn23xx_reset_io_queues(oct))
415 		return -1;
416 
417 	/** Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg
418 	 * for all queues.Only PF can set these bits.
419 	 * bits 29:30 indicate the MAC num.
420 	 * bits 32:47 indicate the PVF num.
421 	 */
422 	for (q_no = 0; q_no < ern; q_no++) {
423 		reg_val = (u64)oct->pcie_port << CN23XX_PKT_INPUT_CTL_MAC_NUM_POS;
424 
425 		/* for VF assigned queues. */
426 		if (q_no < oct->sriov_info.pf_srn) {
427 			vf_num = q_no / oct->sriov_info.rings_per_vf;
428 			vf_num += 1; /* VF1, VF2,........ */
429 		} else {
430 			vf_num = 0;
431 		}
432 
433 		reg_val |= vf_num << CN23XX_PKT_INPUT_CTL_VF_NUM_POS;
434 		reg_val |= pf_num << CN23XX_PKT_INPUT_CTL_PF_NUM_POS;
435 
436 		octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
437 				   reg_val);
438 	}
439 
440 	/* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for
441 	 * pf queues
442 	 */
443 	for (q_no = srn; q_no < ern; q_no++) {
444 		void __iomem *inst_cnt_reg;
445 
446 		iq = oct->instr_queue[q_no];
447 		if (iq)
448 			inst_cnt_reg = iq->inst_cnt_reg;
449 		else
450 			inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr +
451 				       CN23XX_SLI_IQ_INSTR_COUNT64(q_no);
452 
453 		reg_val =
454 		    octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
455 
456 		reg_val |= CN23XX_PKT_INPUT_CTL_MASK;
457 
458 		octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
459 				   reg_val);
460 
461 		/* Set WMARK level for triggering PI_INT */
462 		/* intr_threshold = CN23XX_DEF_IQ_INTR_THRESHOLD & */
463 		intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) &
464 				 CN23XX_PKT_IN_DONE_WMARK_MASK;
465 
466 		writeq((readq(inst_cnt_reg) &
467 			~(CN23XX_PKT_IN_DONE_WMARK_MASK <<
468 			  CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) |
469 		       (intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS),
470 		       inst_cnt_reg);
471 	}
472 	return 0;
473 }
474 
475 static void cn23xx_pf_setup_global_output_regs(struct octeon_device *oct)
476 {
477 	u32 reg_val;
478 	u32 q_no, ern, srn;
479 	u64 time_threshold;
480 
481 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
482 
483 	srn = oct->sriov_info.pf_srn;
484 	ern = srn + oct->sriov_info.num_pf_rings;
485 
486 	if (CFG_GET_IS_SLI_BP_ON(cn23xx->conf)) {
487 		octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 32);
488 	} else {
489 		/** Set Output queue watermark to 0 to disable backpressure */
490 		octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 0);
491 	}
492 
493 	for (q_no = srn; q_no < ern; q_no++) {
494 		reg_val = octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no));
495 
496 		/* clear IPTR */
497 		reg_val &= ~CN23XX_PKT_OUTPUT_CTL_IPTR;
498 
499 		/* set DPTR */
500 		reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR;
501 
502 		/* reset BMODE */
503 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE);
504 
505 		/* No Relaxed Ordering, No Snoop, 64-bit Byte swap
506 		 * for Output Queue ScatterList
507 		 * reset ROR_P, NSR_P
508 		 */
509 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P);
510 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P);
511 
512 #ifdef __LITTLE_ENDIAN_BITFIELD
513 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P);
514 #else
515 		reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P);
516 #endif
517 		/* No Relaxed Ordering, No Snoop, 64-bit Byte swap
518 		 * for Output Queue Data
519 		 * reset ROR, NSR
520 		 */
521 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR);
522 		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR);
523 		/* set the ES bit */
524 		reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES);
525 
526 		/* write all the selected settings */
527 		octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val);
528 
529 		/* Enabling these interrupt in oct->fn_list.enable_interrupt()
530 		 * routine which called after IOQ init.
531 		 * Set up interrupt packet and time thresholds
532 		 * for all the OQs
533 		 */
534 		time_threshold = cn23xx_pf_get_oq_ticks(
535 		    oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf));
536 
537 		octeon_write_csr64(oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no),
538 				   (CFG_GET_OQ_INTR_PKT(cn23xx->conf) |
539 				    (time_threshold << 32)));
540 	}
541 
542 	/** Setting the water mark level for pko back pressure **/
543 	writeq(0x40, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_WMARK);
544 
545 	/** Disabling setting OQs in reset when ring has no dorebells
546 	 * enabling this will cause of head of line blocking
547 	 */
548 	/* Do it only for pass1.1. and pass1.2 */
549 	if ((oct->rev_id == OCTEON_CN23XX_REV_1_0) ||
550 	    (oct->rev_id == OCTEON_CN23XX_REV_1_1))
551 		writeq(readq((u8 *)oct->mmio[0].hw_addr +
552 				     CN23XX_SLI_GBL_CONTROL) | 0x2,
553 		       (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_GBL_CONTROL);
554 
555 	/** Enable channel-level backpressure */
556 	if (oct->pf_num)
557 		writeq(0xffffffffffffffffULL,
558 		       (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN2_W1S);
559 	else
560 		writeq(0xffffffffffffffffULL,
561 		       (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN_W1S);
562 }
563 
564 static int cn23xx_setup_pf_device_regs(struct octeon_device *oct)
565 {
566 	cn23xx_enable_error_reporting(oct);
567 
568 	/* program the MAC(0..3)_RINFO before setting up input/output regs */
569 	cn23xx_setup_global_mac_regs(oct);
570 
571 	if (cn23xx_pf_setup_global_input_regs(oct))
572 		return -1;
573 
574 	cn23xx_pf_setup_global_output_regs(oct);
575 
576 	/* Default error timeout value should be 0x200000 to avoid host hang
577 	 * when reads invalid register
578 	 */
579 	octeon_write_csr64(oct, CN23XX_SLI_WINDOW_CTL,
580 			   CN23XX_SLI_WINDOW_CTL_DEFAULT);
581 
582 	/* set SLI_PKT_IN_JABBER to handle large VXLAN packets */
583 	octeon_write_csr64(oct, CN23XX_SLI_PKT_IN_JABBER, CN23XX_INPUT_JABBER);
584 	return 0;
585 }
586 
587 static void cn23xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no)
588 {
589 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
590 	u64 pkt_in_done;
591 
592 	iq_no += oct->sriov_info.pf_srn;
593 
594 	/* Write the start of the input queue's ring and its size  */
595 	octeon_write_csr64(oct, CN23XX_SLI_IQ_BASE_ADDR64(iq_no),
596 			   iq->base_addr_dma);
597 	octeon_write_csr(oct, CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count);
598 
599 	/* Remember the doorbell & instruction count register addr
600 	 * for this queue
601 	 */
602 	iq->doorbell_reg =
603 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_DOORBELL(iq_no);
604 	iq->inst_cnt_reg =
605 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_INSTR_COUNT64(iq_no);
606 	dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
607 		iq_no, iq->doorbell_reg, iq->inst_cnt_reg);
608 
609 	/* Store the current instruction counter (used in flush_iq
610 	 * calculation)
611 	 */
612 	pkt_in_done = readq(iq->inst_cnt_reg);
613 
614 	if (oct->msix_on) {
615 		/* Set CINT_ENB to enable IQ interrupt   */
616 		writeq((pkt_in_done | CN23XX_INTR_CINT_ENB),
617 		       iq->inst_cnt_reg);
618 	} else {
619 		/* Clear the count by writing back what we read, but don't
620 		 * enable interrupts
621 		 */
622 		writeq(pkt_in_done, iq->inst_cnt_reg);
623 	}
624 
625 	iq->reset_instr_cnt = 0;
626 }
627 
628 static void cn23xx_setup_oq_regs(struct octeon_device *oct, u32 oq_no)
629 {
630 	u32 reg_val;
631 	struct octeon_droq *droq = oct->droq[oq_no];
632 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
633 	u64 time_threshold;
634 	u64 cnt_threshold;
635 
636 	oq_no += oct->sriov_info.pf_srn;
637 
638 	octeon_write_csr64(oct, CN23XX_SLI_OQ_BASE_ADDR64(oq_no),
639 			   droq->desc_ring_dma);
640 	octeon_write_csr(oct, CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count);
641 
642 	octeon_write_csr(oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no),
643 			 droq->buffer_size);
644 
645 	/* Get the mapped address of the pkt_sent and pkts_credit regs */
646 	droq->pkts_sent_reg =
647 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_SENT(oq_no);
648 	droq->pkts_credit_reg =
649 	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_CREDIT(oq_no);
650 
651 	if (!oct->msix_on) {
652 		/* Enable this output queue to generate Packet Timer Interrupt
653 		 */
654 		reg_val =
655 		    octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
656 		reg_val |= CN23XX_PKT_OUTPUT_CTL_TENB;
657 		octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
658 				 reg_val);
659 
660 		/* Enable this output queue to generate Packet Count Interrupt
661 		 */
662 		reg_val =
663 		    octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no));
664 		reg_val |= CN23XX_PKT_OUTPUT_CTL_CENB;
665 		octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no),
666 				 reg_val);
667 	} else {
668 		time_threshold = cn23xx_pf_get_oq_ticks(
669 		    oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf));
670 		cnt_threshold = (u32)CFG_GET_OQ_INTR_PKT(cn23xx->conf);
671 
672 		octeon_write_csr64(
673 		    oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no),
674 		    ((time_threshold << 32 | cnt_threshold)));
675 	}
676 }
677 
678 static void cn23xx_pf_mbox_thread(struct work_struct *work)
679 {
680 	struct cavium_wk *wk = (struct cavium_wk *)work;
681 	struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr;
682 	struct octeon_device *oct = mbox->oct_dev;
683 	u64 mbox_int_val, val64;
684 	u32 q_no, i;
685 
686 	if (oct->rev_id < OCTEON_CN23XX_REV_1_1) {
687 		/*read and clear by writing 1*/
688 		mbox_int_val = readq(mbox->mbox_int_reg);
689 		writeq(mbox_int_val, mbox->mbox_int_reg);
690 
691 		for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) {
692 			q_no = i * oct->sriov_info.rings_per_vf;
693 
694 			val64 = readq(oct->mbox[q_no]->mbox_write_reg);
695 
696 			if (val64 && (val64 != OCTEON_PFVFACK)) {
697 				if (octeon_mbox_read(oct->mbox[q_no]))
698 					octeon_mbox_process_message(
699 					    oct->mbox[q_no]);
700 			}
701 		}
702 
703 		schedule_delayed_work(&wk->work, msecs_to_jiffies(10));
704 	} else {
705 		octeon_mbox_process_message(mbox);
706 	}
707 }
708 
709 static int cn23xx_setup_pf_mbox(struct octeon_device *oct)
710 {
711 	struct octeon_mbox *mbox = NULL;
712 	u16 mac_no = oct->pcie_port;
713 	u16 pf_num = oct->pf_num;
714 	u32 q_no, i;
715 
716 	if (!oct->sriov_info.max_vfs)
717 		return 0;
718 
719 	for (i = 0; i < oct->sriov_info.max_vfs; i++) {
720 		q_no = i * oct->sriov_info.rings_per_vf;
721 
722 		mbox = vmalloc(sizeof(*mbox));
723 		if (!mbox)
724 			goto free_mbox;
725 
726 		memset(mbox, 0, sizeof(struct octeon_mbox));
727 
728 		spin_lock_init(&mbox->lock);
729 
730 		mbox->oct_dev = oct;
731 
732 		mbox->q_no = q_no;
733 
734 		mbox->state = OCTEON_MBOX_STATE_IDLE;
735 
736 		/* PF mbox interrupt reg */
737 		mbox->mbox_int_reg = (u8 *)oct->mmio[0].hw_addr +
738 				     CN23XX_SLI_MAC_PF_MBOX_INT(mac_no, pf_num);
739 
740 		/* PF writes into SIG0 reg */
741 		mbox->mbox_write_reg = (u8 *)oct->mmio[0].hw_addr +
742 				       CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 0);
743 
744 		/* PF reads from SIG1 reg */
745 		mbox->mbox_read_reg = (u8 *)oct->mmio[0].hw_addr +
746 				      CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 1);
747 
748 		/*Mail Box Thread creation*/
749 		INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work,
750 				  cn23xx_pf_mbox_thread);
751 		mbox->mbox_poll_wk.ctxptr = (void *)mbox;
752 
753 		oct->mbox[q_no] = mbox;
754 
755 		writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg);
756 	}
757 
758 	if (oct->rev_id < OCTEON_CN23XX_REV_1_1)
759 		schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work,
760 				      msecs_to_jiffies(0));
761 
762 	return 0;
763 
764 free_mbox:
765 	while (i) {
766 		i--;
767 		vfree(oct->mbox[i]);
768 	}
769 
770 	return 1;
771 }
772 
773 static int cn23xx_free_pf_mbox(struct octeon_device *oct)
774 {
775 	u32 q_no, i;
776 
777 	if (!oct->sriov_info.max_vfs)
778 		return 0;
779 
780 	for (i = 0; i < oct->sriov_info.max_vfs; i++) {
781 		q_no = i * oct->sriov_info.rings_per_vf;
782 		cancel_delayed_work_sync(
783 		    &oct->mbox[q_no]->mbox_poll_wk.work);
784 		vfree(oct->mbox[q_no]);
785 	}
786 
787 	return 0;
788 }
789 
790 static int cn23xx_enable_io_queues(struct octeon_device *oct)
791 {
792 	u64 reg_val;
793 	u32 srn, ern, q_no;
794 	u32 loop = 1000;
795 
796 	srn = oct->sriov_info.pf_srn;
797 	ern = srn + oct->num_iqs;
798 
799 	for (q_no = srn; q_no < ern; q_no++) {
800 		/* set the corresponding IQ IS_64B bit */
801 		if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) {
802 			reg_val = octeon_read_csr64(
803 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
804 			reg_val = reg_val | CN23XX_PKT_INPUT_CTL_IS_64B;
805 			octeon_write_csr64(
806 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
807 		}
808 
809 		/* set the corresponding IQ ENB bit */
810 		if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) {
811 			/* IOQs are in reset by default in PEM2 mode,
812 			 * clearing reset bit
813 			 */
814 			reg_val = octeon_read_csr64(
815 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
816 
817 			if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
818 				while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) &&
819 				       !(reg_val &
820 					 CN23XX_PKT_INPUT_CTL_QUIET) &&
821 				       --loop) {
822 					reg_val = octeon_read_csr64(
823 					    oct,
824 					    CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
825 				}
826 				if (!loop) {
827 					dev_err(&oct->pci_dev->dev,
828 						"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
829 						q_no);
830 					return -1;
831 				}
832 				reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST;
833 				octeon_write_csr64(
834 				    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
835 				    reg_val);
836 
837 				reg_val = octeon_read_csr64(
838 				    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
839 				if (reg_val & CN23XX_PKT_INPUT_CTL_RST) {
840 					dev_err(&oct->pci_dev->dev,
841 						"clearing the reset failed for qno: %u\n",
842 						q_no);
843 					return -1;
844 				}
845 			}
846 			reg_val = octeon_read_csr64(
847 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no));
848 			reg_val = reg_val | CN23XX_PKT_INPUT_CTL_RING_ENB;
849 			octeon_write_csr64(
850 			    oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
851 		}
852 	}
853 	for (q_no = srn; q_no < ern; q_no++) {
854 		u32 reg_val;
855 		/* set the corresponding OQ ENB bit */
856 		if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) {
857 			reg_val = octeon_read_csr(
858 			    oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no));
859 			reg_val = reg_val | CN23XX_PKT_OUTPUT_CTL_RING_ENB;
860 			octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no),
861 					 reg_val);
862 		}
863 	}
864 	return 0;
865 }
866 
867 static void cn23xx_disable_io_queues(struct octeon_device *oct)
868 {
869 	int q_no, loop;
870 	u64 d64;
871 	u32 d32;
872 	u32 srn, ern;
873 
874 	srn = oct->sriov_info.pf_srn;
875 	ern = srn + oct->num_iqs;
876 
877 	/*** Disable Input Queues. ***/
878 	for (q_no = srn; q_no < ern; q_no++) {
879 		loop = HZ;
880 
881 		/* start the Reset for a particular ring */
882 		WRITE_ONCE(d64, octeon_read_csr64(
883 			   oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)));
884 		WRITE_ONCE(d64, READ_ONCE(d64) &
885 					(~(CN23XX_PKT_INPUT_CTL_RING_ENB)));
886 		WRITE_ONCE(d64, READ_ONCE(d64) | CN23XX_PKT_INPUT_CTL_RST);
887 		octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no),
888 				   READ_ONCE(d64));
889 
890 		/* Wait until hardware indicates that the particular IQ
891 		 * is out of reset.
892 		 */
893 		WRITE_ONCE(d64, octeon_read_csr64(
894 					oct, CN23XX_SLI_PKT_IOQ_RING_RST));
895 		while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) {
896 			WRITE_ONCE(d64, octeon_read_csr64(
897 					oct, CN23XX_SLI_PKT_IOQ_RING_RST));
898 			schedule_timeout_uninterruptible(1);
899 		}
900 
901 		/* Reset the doorbell register for this Input Queue. */
902 		octeon_write_csr(oct, CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF);
903 		while (octeon_read_csr64(oct, CN23XX_SLI_IQ_DOORBELL(q_no)) &&
904 		       loop--) {
905 			schedule_timeout_uninterruptible(1);
906 		}
907 	}
908 
909 	/*** Disable Output Queues. ***/
910 	for (q_no = srn; q_no < ern; q_no++) {
911 		loop = HZ;
912 
913 		/* Wait until hardware indicates that the particular IQ
914 		 * is out of reset.It given that SLI_PKT_RING_RST is
915 		 * common for both IQs and OQs
916 		 */
917 		WRITE_ONCE(d64, octeon_read_csr64(
918 					oct, CN23XX_SLI_PKT_IOQ_RING_RST));
919 		while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) {
920 			WRITE_ONCE(d64, octeon_read_csr64(
921 					oct, CN23XX_SLI_PKT_IOQ_RING_RST));
922 			schedule_timeout_uninterruptible(1);
923 		}
924 
925 		/* Reset the doorbell register for this Output Queue. */
926 		octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_CREDIT(q_no),
927 				 0xFFFFFFFF);
928 		while (octeon_read_csr64(oct,
929 					 CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) &&
930 		       loop--) {
931 			schedule_timeout_uninterruptible(1);
932 		}
933 
934 		/* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */
935 		WRITE_ONCE(d32, octeon_read_csr(
936 					oct, CN23XX_SLI_OQ_PKTS_SENT(q_no)));
937 		octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_SENT(q_no),
938 				 READ_ONCE(d32));
939 	}
940 }
941 
942 static u64 cn23xx_pf_msix_interrupt_handler(void *dev)
943 {
944 	struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
945 	struct octeon_device *oct = ioq_vector->oct_dev;
946 	u64 pkts_sent;
947 	u64 ret = 0;
948 	struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
949 
950 	dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct);
951 
952 	if (!droq) {
953 		dev_err(&oct->pci_dev->dev, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n",
954 			oct->pf_num, ioq_vector->ioq_num);
955 		return 0;
956 	}
957 
958 	pkts_sent = readq(droq->pkts_sent_reg);
959 
960 	/* If our device has interrupted, then proceed. Also check
961 	 * for all f's if interrupt was triggered on an error
962 	 * and the PCI read fails.
963 	 */
964 	if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL))
965 		return ret;
966 
967 	/* Write count reg in sli_pkt_cnts to clear these int.*/
968 	if ((pkts_sent & CN23XX_INTR_PO_INT) ||
969 	    (pkts_sent & CN23XX_INTR_PI_INT)) {
970 		if (pkts_sent & CN23XX_INTR_PO_INT)
971 			ret |= MSIX_PO_INT;
972 	}
973 
974 	if (pkts_sent & CN23XX_INTR_PI_INT)
975 		/* We will clear the count when we update the read_index. */
976 		ret |= MSIX_PI_INT;
977 
978 	/* Never need to handle msix mbox intr for pf. They arrive on the last
979 	 * msix
980 	 */
981 	return ret;
982 }
983 
984 static void cn23xx_handle_pf_mbox_intr(struct octeon_device *oct)
985 {
986 	struct delayed_work *work;
987 	u64 mbox_int_val;
988 	u32 i, q_no;
989 
990 	mbox_int_val = readq(oct->mbox[0]->mbox_int_reg);
991 
992 	for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) {
993 		q_no = i * oct->sriov_info.rings_per_vf;
994 
995 		if (mbox_int_val & BIT_ULL(q_no)) {
996 			writeq(BIT_ULL(q_no),
997 			       oct->mbox[0]->mbox_int_reg);
998 			if (octeon_mbox_read(oct->mbox[q_no])) {
999 				work = &oct->mbox[q_no]->mbox_poll_wk.work;
1000 				schedule_delayed_work(work,
1001 						      msecs_to_jiffies(0));
1002 			}
1003 		}
1004 	}
1005 }
1006 
1007 static irqreturn_t cn23xx_interrupt_handler(void *dev)
1008 {
1009 	struct octeon_device *oct = (struct octeon_device *)dev;
1010 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1011 	u64 intr64;
1012 
1013 	dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct);
1014 	intr64 = readq(cn23xx->intr_sum_reg64);
1015 
1016 	oct->int_status = 0;
1017 
1018 	if (intr64 & CN23XX_INTR_ERR)
1019 		dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Error Intr: 0x%016llx\n",
1020 			oct->octeon_id, CVM_CAST64(intr64));
1021 
1022 	/* When VFs write into MBOX_SIG2 reg,these intr is set in PF */
1023 	if (intr64 & CN23XX_INTR_VF_MBOX)
1024 		cn23xx_handle_pf_mbox_intr(oct);
1025 
1026 	if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) {
1027 		if (intr64 & CN23XX_INTR_PKT_DATA)
1028 			oct->int_status |= OCT_DEV_INTR_PKT_DATA;
1029 	}
1030 
1031 	if (intr64 & (CN23XX_INTR_DMA0_FORCE))
1032 		oct->int_status |= OCT_DEV_INTR_DMA0_FORCE;
1033 	if (intr64 & (CN23XX_INTR_DMA1_FORCE))
1034 		oct->int_status |= OCT_DEV_INTR_DMA1_FORCE;
1035 
1036 	/* Clear the current interrupts */
1037 	writeq(intr64, cn23xx->intr_sum_reg64);
1038 
1039 	return IRQ_HANDLED;
1040 }
1041 
1042 static void cn23xx_bar1_idx_setup(struct octeon_device *oct, u64 core_addr,
1043 				  u32 idx, int valid)
1044 {
1045 	u64 bar1;
1046 	u64 reg_adr;
1047 
1048 	if (!valid) {
1049 		reg_adr = lio_pci_readq(
1050 			oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1051 		WRITE_ONCE(bar1, reg_adr);
1052 		lio_pci_writeq(oct, (READ_ONCE(bar1) & 0xFFFFFFFEULL),
1053 			       CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1054 		reg_adr = lio_pci_readq(
1055 			oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1056 		WRITE_ONCE(bar1, reg_adr);
1057 		return;
1058 	}
1059 
1060 	/*  The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores
1061 	 *  bits <41:22> of the Core Addr
1062 	 */
1063 	lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK),
1064 		       CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1065 
1066 	WRITE_ONCE(bar1, lio_pci_readq(
1067 		   oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)));
1068 }
1069 
1070 static void cn23xx_bar1_idx_write(struct octeon_device *oct, u32 idx, u32 mask)
1071 {
1072 	lio_pci_writeq(oct, mask,
1073 		       CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1074 }
1075 
1076 static u32 cn23xx_bar1_idx_read(struct octeon_device *oct, u32 idx)
1077 {
1078 	return (u32)lio_pci_readq(
1079 	    oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx));
1080 }
1081 
1082 /* always call with lock held */
1083 static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq)
1084 {
1085 	u32 new_idx;
1086 	u32 last_done;
1087 	u32 pkt_in_done = readl(iq->inst_cnt_reg);
1088 
1089 	last_done = pkt_in_done - iq->pkt_in_done;
1090 	iq->pkt_in_done = pkt_in_done;
1091 
1092 	/* Modulo of the new index with the IQ size will give us
1093 	 * the new index.  The iq->reset_instr_cnt is always zero for
1094 	 * cn23xx, so no extra adjustments are needed.
1095 	 */
1096 	new_idx = (iq->octeon_read_index +
1097 		   (u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) %
1098 		  iq->max_count;
1099 
1100 	return new_idx;
1101 }
1102 
1103 static void cn23xx_enable_pf_interrupt(struct octeon_device *oct, u8 intr_flag)
1104 {
1105 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1106 	u64 intr_val = 0;
1107 
1108 	/*  Divide the single write to multiple writes based on the flag. */
1109 	/* Enable Interrupt */
1110 	if (intr_flag == OCTEON_ALL_INTR) {
1111 		writeq(cn23xx->intr_mask64, cn23xx->intr_enb_reg64);
1112 	} else if (intr_flag & OCTEON_OUTPUT_INTR) {
1113 		intr_val = readq(cn23xx->intr_enb_reg64);
1114 		intr_val |= CN23XX_INTR_PKT_DATA;
1115 		writeq(intr_val, cn23xx->intr_enb_reg64);
1116 	} else if ((intr_flag & OCTEON_MBOX_INTR) &&
1117 		   (oct->sriov_info.max_vfs > 0)) {
1118 		if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) {
1119 			intr_val = readq(cn23xx->intr_enb_reg64);
1120 			intr_val |= CN23XX_INTR_VF_MBOX;
1121 			writeq(intr_val, cn23xx->intr_enb_reg64);
1122 		}
1123 	}
1124 }
1125 
1126 static void cn23xx_disable_pf_interrupt(struct octeon_device *oct, u8 intr_flag)
1127 {
1128 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1129 	u64 intr_val = 0;
1130 
1131 	/* Disable Interrupts */
1132 	if (intr_flag == OCTEON_ALL_INTR) {
1133 		writeq(0, cn23xx->intr_enb_reg64);
1134 	} else if (intr_flag & OCTEON_OUTPUT_INTR) {
1135 		intr_val = readq(cn23xx->intr_enb_reg64);
1136 		intr_val &= ~CN23XX_INTR_PKT_DATA;
1137 		writeq(intr_val, cn23xx->intr_enb_reg64);
1138 	} else if ((intr_flag & OCTEON_MBOX_INTR) &&
1139 		   (oct->sriov_info.max_vfs > 0)) {
1140 		if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) {
1141 			intr_val = readq(cn23xx->intr_enb_reg64);
1142 			intr_val &= ~CN23XX_INTR_VF_MBOX;
1143 			writeq(intr_val, cn23xx->intr_enb_reg64);
1144 		}
1145 	}
1146 }
1147 
1148 static void cn23xx_get_pcie_qlmport(struct octeon_device *oct)
1149 {
1150 	oct->pcie_port = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff;
1151 
1152 	dev_dbg(&oct->pci_dev->dev, "OCTEON: CN23xx uses PCIE Port %d\n",
1153 		oct->pcie_port);
1154 }
1155 
1156 static int cn23xx_get_pf_num(struct octeon_device *oct)
1157 {
1158 	u32 fdl_bit = 0;
1159 	u64 pkt0_in_ctl, d64;
1160 	int pfnum, mac, trs, ret;
1161 
1162 	ret = 0;
1163 
1164 	/** Read Function Dependency Link reg to get the function number */
1165 	if (pci_read_config_dword(oct->pci_dev, CN23XX_PCIE_SRIOV_FDL,
1166 				  &fdl_bit) == 0) {
1167 		oct->pf_num = ((fdl_bit >> CN23XX_PCIE_SRIOV_FDL_BIT_POS) &
1168 			       CN23XX_PCIE_SRIOV_FDL_MASK);
1169 	} else {
1170 		ret = -EINVAL;
1171 
1172 		/* Under some virtual environments, extended PCI regs are
1173 		 * inaccessible, in which case the above read will have failed.
1174 		 * In this case, read the PF number from the
1175 		 * SLI_PKT0_INPUT_CONTROL reg (written by f/w)
1176 		 */
1177 		pkt0_in_ctl = octeon_read_csr64(oct,
1178 						CN23XX_SLI_IQ_PKT_CONTROL64(0));
1179 		pfnum = (pkt0_in_ctl >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) &
1180 			CN23XX_PKT_INPUT_CTL_PF_NUM_MASK;
1181 		mac = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff;
1182 
1183 		/* validate PF num by reading RINFO; f/w writes RINFO.trs == 1*/
1184 		d64 = octeon_read_csr64(oct,
1185 					CN23XX_SLI_PKT_MAC_RINFO64(mac, pfnum));
1186 		trs = (int)(d64 >> CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS) & 0xff;
1187 		if (trs == 1) {
1188 			dev_err(&oct->pci_dev->dev,
1189 				"OCTEON: error reading PCI cfg space pfnum, re-read %u\n",
1190 				pfnum);
1191 			oct->pf_num = pfnum;
1192 			ret = 0;
1193 		} else {
1194 			dev_err(&oct->pci_dev->dev,
1195 				"OCTEON: error reading PCI cfg space pfnum; could not ascertain PF number\n");
1196 		}
1197 	}
1198 
1199 	return ret;
1200 }
1201 
1202 static void cn23xx_setup_reg_address(struct octeon_device *oct)
1203 {
1204 	u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
1205 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1206 
1207 	oct->reg_list.pci_win_wr_addr_hi =
1208 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_HI);
1209 	oct->reg_list.pci_win_wr_addr_lo =
1210 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_LO);
1211 	oct->reg_list.pci_win_wr_addr =
1212 	    (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR64);
1213 
1214 	oct->reg_list.pci_win_rd_addr_hi =
1215 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_HI);
1216 	oct->reg_list.pci_win_rd_addr_lo =
1217 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_LO);
1218 	oct->reg_list.pci_win_rd_addr =
1219 	    (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR64);
1220 
1221 	oct->reg_list.pci_win_wr_data_hi =
1222 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_HI);
1223 	oct->reg_list.pci_win_wr_data_lo =
1224 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_LO);
1225 	oct->reg_list.pci_win_wr_data =
1226 	    (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA64);
1227 
1228 	oct->reg_list.pci_win_rd_data_hi =
1229 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_HI);
1230 	oct->reg_list.pci_win_rd_data_lo =
1231 	    (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_LO);
1232 	oct->reg_list.pci_win_rd_data =
1233 	    (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA64);
1234 
1235 	cn23xx_get_pcie_qlmport(oct);
1236 
1237 	cn23xx->intr_mask64 = CN23XX_INTR_MASK;
1238 	if (!oct->msix_on)
1239 		cn23xx->intr_mask64 |= CN23XX_INTR_PKT_TIME;
1240 	if (oct->rev_id >= OCTEON_CN23XX_REV_1_1)
1241 		cn23xx->intr_mask64 |= CN23XX_INTR_VF_MBOX;
1242 
1243 	cn23xx->intr_sum_reg64 =
1244 	    bar0_pciaddr +
1245 	    CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num);
1246 	cn23xx->intr_enb_reg64 =
1247 	    bar0_pciaddr +
1248 	    CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num);
1249 }
1250 
1251 int cn23xx_sriov_config(struct octeon_device *oct)
1252 {
1253 	struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip;
1254 	u32 max_rings, total_rings, max_vfs, rings_per_vf;
1255 	u32 pf_srn, num_pf_rings;
1256 	u32 max_possible_vfs;
1257 
1258 	cn23xx->conf =
1259 		(struct octeon_config *)oct_get_config_info(oct, LIO_23XX);
1260 	switch (oct->rev_id) {
1261 	case OCTEON_CN23XX_REV_1_0:
1262 		max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_0;
1263 		max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_0;
1264 		break;
1265 	case OCTEON_CN23XX_REV_1_1:
1266 		max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_1;
1267 		max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_1;
1268 		break;
1269 	default:
1270 		max_rings = CN23XX_MAX_RINGS_PER_PF;
1271 		max_possible_vfs = CN23XX_MAX_VFS_PER_PF;
1272 		break;
1273 	}
1274 
1275 	if (oct->sriov_info.num_pf_rings)
1276 		num_pf_rings = oct->sriov_info.num_pf_rings;
1277 	else
1278 		num_pf_rings = num_present_cpus();
1279 
1280 #ifdef CONFIG_PCI_IOV
1281 	max_vfs = min_t(u32,
1282 			(max_rings - num_pf_rings), max_possible_vfs);
1283 	rings_per_vf = 1;
1284 #else
1285 	max_vfs = 0;
1286 	rings_per_vf = 0;
1287 #endif
1288 
1289 	total_rings = num_pf_rings + max_vfs;
1290 
1291 	/* the first ring of the pf */
1292 	pf_srn = total_rings - num_pf_rings;
1293 
1294 	oct->sriov_info.trs = total_rings;
1295 	oct->sriov_info.max_vfs = max_vfs;
1296 	oct->sriov_info.rings_per_vf = rings_per_vf;
1297 	oct->sriov_info.pf_srn = pf_srn;
1298 	oct->sriov_info.num_pf_rings = num_pf_rings;
1299 	dev_notice(&oct->pci_dev->dev, "trs:%d max_vfs:%d rings_per_vf:%d pf_srn:%d num_pf_rings:%d\n",
1300 		   oct->sriov_info.trs, oct->sriov_info.max_vfs,
1301 		   oct->sriov_info.rings_per_vf, oct->sriov_info.pf_srn,
1302 		   oct->sriov_info.num_pf_rings);
1303 
1304 	oct->sriov_info.sriov_enabled = 0;
1305 
1306 	return 0;
1307 }
1308 
1309 int setup_cn23xx_octeon_pf_device(struct octeon_device *oct)
1310 {
1311 	u32 data32;
1312 	u64 BAR0, BAR1;
1313 
1314 	pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_0, &data32);
1315 	BAR0 = (u64)(data32 & ~0xf);
1316 	pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_1, &data32);
1317 	BAR0 |= ((u64)data32 << 32);
1318 	pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_2, &data32);
1319 	BAR1 = (u64)(data32 & ~0xf);
1320 	pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_3, &data32);
1321 	BAR1 |= ((u64)data32 << 32);
1322 
1323 	if (!BAR0 || !BAR1) {
1324 		if (!BAR0)
1325 			dev_err(&oct->pci_dev->dev, "device BAR0 unassigned\n");
1326 		if (!BAR1)
1327 			dev_err(&oct->pci_dev->dev, "device BAR1 unassigned\n");
1328 		return 1;
1329 	}
1330 
1331 	if (octeon_map_pci_barx(oct, 0, 0))
1332 		return 1;
1333 
1334 	if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) {
1335 		dev_err(&oct->pci_dev->dev, "%s CN23XX BAR1 map failed\n",
1336 			__func__);
1337 		octeon_unmap_pci_barx(oct, 0);
1338 		return 1;
1339 	}
1340 
1341 	if (cn23xx_get_pf_num(oct) != 0)
1342 		return 1;
1343 
1344 	if (cn23xx_sriov_config(oct)) {
1345 		octeon_unmap_pci_barx(oct, 0);
1346 		octeon_unmap_pci_barx(oct, 1);
1347 		return 1;
1348 	}
1349 
1350 	octeon_write_csr64(oct, CN23XX_SLI_MAC_CREDIT_CNT, 0x3F802080802080ULL);
1351 
1352 	oct->fn_list.setup_iq_regs = cn23xx_setup_iq_regs;
1353 	oct->fn_list.setup_oq_regs = cn23xx_setup_oq_regs;
1354 	oct->fn_list.setup_mbox = cn23xx_setup_pf_mbox;
1355 	oct->fn_list.free_mbox = cn23xx_free_pf_mbox;
1356 
1357 	oct->fn_list.process_interrupt_regs = cn23xx_interrupt_handler;
1358 	oct->fn_list.msix_interrupt_handler = cn23xx_pf_msix_interrupt_handler;
1359 
1360 	oct->fn_list.soft_reset = cn23xx_pf_soft_reset;
1361 	oct->fn_list.setup_device_regs = cn23xx_setup_pf_device_regs;
1362 	oct->fn_list.update_iq_read_idx = cn23xx_update_read_index;
1363 
1364 	oct->fn_list.bar1_idx_setup = cn23xx_bar1_idx_setup;
1365 	oct->fn_list.bar1_idx_write = cn23xx_bar1_idx_write;
1366 	oct->fn_list.bar1_idx_read = cn23xx_bar1_idx_read;
1367 
1368 	oct->fn_list.enable_interrupt = cn23xx_enable_pf_interrupt;
1369 	oct->fn_list.disable_interrupt = cn23xx_disable_pf_interrupt;
1370 
1371 	oct->fn_list.enable_io_queues = cn23xx_enable_io_queues;
1372 	oct->fn_list.disable_io_queues = cn23xx_disable_io_queues;
1373 
1374 	cn23xx_setup_reg_address(oct);
1375 
1376 	oct->coproc_clock_rate = 1000000ULL * cn23xx_coprocessor_clock(oct);
1377 
1378 	return 0;
1379 }
1380 
1381 int validate_cn23xx_pf_config_info(struct octeon_device *oct,
1382 				   struct octeon_config *conf23xx)
1383 {
1384 	if (CFG_GET_IQ_MAX_Q(conf23xx) > CN23XX_MAX_INPUT_QUEUES) {
1385 		dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n",
1386 			__func__, CFG_GET_IQ_MAX_Q(conf23xx),
1387 			CN23XX_MAX_INPUT_QUEUES);
1388 		return 1;
1389 	}
1390 
1391 	if (CFG_GET_OQ_MAX_Q(conf23xx) > CN23XX_MAX_OUTPUT_QUEUES) {
1392 		dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n",
1393 			__func__, CFG_GET_OQ_MAX_Q(conf23xx),
1394 			CN23XX_MAX_OUTPUT_QUEUES);
1395 		return 1;
1396 	}
1397 
1398 	if (CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_32BYTE_INSTR &&
1399 	    CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_64BYTE_INSTR) {
1400 		dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n",
1401 			__func__);
1402 		return 1;
1403 	}
1404 
1405 	if (!CFG_GET_OQ_REFILL_THRESHOLD(conf23xx)) {
1406 		dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
1407 			__func__);
1408 		return 1;
1409 	}
1410 
1411 	if (!(CFG_GET_OQ_INTR_TIME(conf23xx))) {
1412 		dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n",
1413 			__func__);
1414 		return 1;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
1420 int cn23xx_fw_loaded(struct octeon_device *oct)
1421 {
1422 	u64 val;
1423 
1424 	/* If there's more than one active PF on this NIC, then that
1425 	 * implies that the NIC firmware is loaded and running.  This check
1426 	 * prevents a rare false negative that might occur if we only relied
1427 	 * on checking the SCR2_BIT_FW_LOADED flag.  The false negative would
1428 	 * happen if the PF driver sees SCR2_BIT_FW_LOADED as cleared even
1429 	 * though the firmware was already loaded but still booting and has yet
1430 	 * to set SCR2_BIT_FW_LOADED.
1431 	 */
1432 	if (atomic_read(oct->adapter_refcount) > 1)
1433 		return 1;
1434 
1435 	val = octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2);
1436 	return (val >> SCR2_BIT_FW_LOADED) & 1ULL;
1437 }
1438 
1439 void cn23xx_tell_vf_its_macaddr_changed(struct octeon_device *oct, int vfidx,
1440 					u8 *mac)
1441 {
1442 	if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vfidx)) {
1443 		struct octeon_mbox_cmd mbox_cmd;
1444 
1445 		mbox_cmd.msg.u64 = 0;
1446 		mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
1447 		mbox_cmd.msg.s.resp_needed = 0;
1448 		mbox_cmd.msg.s.cmd = OCTEON_PF_CHANGED_VF_MACADDR;
1449 		mbox_cmd.msg.s.len = 1;
1450 		mbox_cmd.recv_len = 0;
1451 		mbox_cmd.recv_status = 0;
1452 		mbox_cmd.fn = NULL;
1453 		mbox_cmd.fn_arg = NULL;
1454 		ether_addr_copy(mbox_cmd.msg.s.params, mac);
1455 		mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf;
1456 		octeon_mbox_write(oct, &mbox_cmd);
1457 	}
1458 }
1459 
1460 static void
1461 cn23xx_get_vf_stats_callback(struct octeon_device *oct,
1462 			     struct octeon_mbox_cmd *cmd, void *arg)
1463 {
1464 	struct oct_vf_stats_ctx *ctx = arg;
1465 
1466 	memcpy(ctx->stats, cmd->data, sizeof(struct oct_vf_stats));
1467 	atomic_set(&ctx->status, 1);
1468 }
1469 
1470 int cn23xx_get_vf_stats(struct octeon_device *oct, int vfidx,
1471 			struct oct_vf_stats *stats)
1472 {
1473 	u32 timeout = HZ; // 1sec
1474 	struct octeon_mbox_cmd mbox_cmd;
1475 	struct oct_vf_stats_ctx ctx;
1476 	u32 count = 0, ret;
1477 
1478 	if (!(oct->sriov_info.vf_drv_loaded_mask & (1ULL << vfidx)))
1479 		return -1;
1480 
1481 	if (sizeof(struct oct_vf_stats) > sizeof(mbox_cmd.data))
1482 		return -1;
1483 
1484 	mbox_cmd.msg.u64 = 0;
1485 	mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
1486 	mbox_cmd.msg.s.resp_needed = 1;
1487 	mbox_cmd.msg.s.cmd = OCTEON_GET_VF_STATS;
1488 	mbox_cmd.msg.s.len = 1;
1489 	mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf;
1490 	mbox_cmd.recv_len = 0;
1491 	mbox_cmd.recv_status = 0;
1492 	mbox_cmd.fn = (octeon_mbox_callback_t)cn23xx_get_vf_stats_callback;
1493 	ctx.stats = stats;
1494 	atomic_set(&ctx.status, 0);
1495 	mbox_cmd.fn_arg = (void *)&ctx;
1496 	memset(mbox_cmd.data, 0, sizeof(mbox_cmd.data));
1497 	octeon_mbox_write(oct, &mbox_cmd);
1498 
1499 	do {
1500 		schedule_timeout_uninterruptible(1);
1501 	} while ((atomic_read(&ctx.status) == 0) && (count++ < timeout));
1502 
1503 	ret = atomic_read(&ctx.status);
1504 	if (ret == 0) {
1505 		octeon_mbox_cancel(oct, 0);
1506 		dev_err(&oct->pci_dev->dev, "Unable to get stats from VF-%d, timedout\n",
1507 			vfidx);
1508 		return -1;
1509 	}
1510 
1511 	return 0;
1512 }
1513