1 /********************************************************************** 2 * Author: Cavium, Inc. 3 * 4 * Contact: support@cavium.com 5 * Please include "LiquidIO" in the subject. 6 * 7 * Copyright (c) 2003-2016 Cavium, Inc. 8 * 9 * This file is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License, Version 2, as 11 * published by the Free Software Foundation. 12 * 13 * This file is distributed in the hope that it will be useful, but 14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty 15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or 16 * NONINFRINGEMENT. See the GNU General Public License for more details. 17 ***********************************************************************/ 18 #include <linux/pci.h> 19 #include <linux/vmalloc.h> 20 #include <linux/etherdevice.h> 21 #include "liquidio_common.h" 22 #include "octeon_droq.h" 23 #include "octeon_iq.h" 24 #include "response_manager.h" 25 #include "octeon_device.h" 26 #include "cn23xx_pf_device.h" 27 #include "octeon_main.h" 28 #include "octeon_mailbox.h" 29 30 #define RESET_NOTDONE 0 31 #define RESET_DONE 1 32 33 /* Change the value of SLI Packet Input Jabber Register to allow 34 * VXLAN TSO packets which can be 64424 bytes, exceeding the 35 * MAX_GSO_SIZE we supplied to the kernel 36 */ 37 #define CN23XX_INPUT_JABBER 64600 38 39 void cn23xx_dump_pf_initialized_regs(struct octeon_device *oct) 40 { 41 int i = 0; 42 u32 regval = 0; 43 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 44 45 /*In cn23xx_soft_reset*/ 46 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%llx\n", 47 "CN23XX_WIN_WR_MASK_REG", CVM_CAST64(CN23XX_WIN_WR_MASK_REG), 48 CVM_CAST64(octeon_read_csr64(oct, CN23XX_WIN_WR_MASK_REG))); 49 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 50 "CN23XX_SLI_SCRATCH1", CVM_CAST64(CN23XX_SLI_SCRATCH1), 51 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1))); 52 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 53 "CN23XX_RST_SOFT_RST", CN23XX_RST_SOFT_RST, 54 lio_pci_readq(oct, CN23XX_RST_SOFT_RST)); 55 56 /*In cn23xx_set_dpi_regs*/ 57 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 58 "CN23XX_DPI_DMA_CONTROL", CN23XX_DPI_DMA_CONTROL, 59 lio_pci_readq(oct, CN23XX_DPI_DMA_CONTROL)); 60 61 for (i = 0; i < 6; i++) { 62 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 63 "CN23XX_DPI_DMA_ENG_ENB", i, 64 CN23XX_DPI_DMA_ENG_ENB(i), 65 lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_ENB(i))); 66 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 67 "CN23XX_DPI_DMA_ENG_BUF", i, 68 CN23XX_DPI_DMA_ENG_BUF(i), 69 lio_pci_readq(oct, CN23XX_DPI_DMA_ENG_BUF(i))); 70 } 71 72 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", "CN23XX_DPI_CTL", 73 CN23XX_DPI_CTL, lio_pci_readq(oct, CN23XX_DPI_CTL)); 74 75 /*In cn23xx_setup_pcie_mps and cn23xx_setup_pcie_mrrs */ 76 pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val); 77 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 78 "CN23XX_CONFIG_PCIE_DEVCTL", 79 CVM_CAST64(CN23XX_CONFIG_PCIE_DEVCTL), CVM_CAST64(regval)); 80 81 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 82 "CN23XX_DPI_SLI_PRTX_CFG", oct->pcie_port, 83 CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port), 84 lio_pci_readq(oct, CN23XX_DPI_SLI_PRTX_CFG(oct->pcie_port))); 85 86 /*In cn23xx_specific_regs_setup */ 87 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 88 "CN23XX_SLI_S2M_PORTX_CTL", oct->pcie_port, 89 CVM_CAST64(CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)), 90 CVM_CAST64(octeon_read_csr64( 91 oct, CN23XX_SLI_S2M_PORTX_CTL(oct->pcie_port)))); 92 93 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 94 "CN23XX_SLI_RING_RST", CVM_CAST64(CN23XX_SLI_PKT_IOQ_RING_RST), 95 (u64)octeon_read_csr64(oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 96 97 /*In cn23xx_setup_global_mac_regs*/ 98 for (i = 0; i < CN23XX_MAX_MACS; i++) { 99 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 100 "CN23XX_SLI_PKT_MAC_RINFO64", i, 101 CVM_CAST64(CN23XX_SLI_PKT_MAC_RINFO64(i, oct->pf_num)), 102 CVM_CAST64(octeon_read_csr64 103 (oct, CN23XX_SLI_PKT_MAC_RINFO64 104 (i, oct->pf_num)))); 105 } 106 107 /*In cn23xx_setup_global_input_regs*/ 108 for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) { 109 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 110 "CN23XX_SLI_IQ_PKT_CONTROL64", i, 111 CVM_CAST64(CN23XX_SLI_IQ_PKT_CONTROL64(i)), 112 CVM_CAST64(octeon_read_csr64 113 (oct, CN23XX_SLI_IQ_PKT_CONTROL64(i)))); 114 } 115 116 /*In cn23xx_setup_global_output_regs*/ 117 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 118 "CN23XX_SLI_OQ_WMARK", CVM_CAST64(CN23XX_SLI_OQ_WMARK), 119 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_OQ_WMARK))); 120 121 for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) { 122 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 123 "CN23XX_SLI_OQ_PKT_CONTROL", i, 124 CVM_CAST64(CN23XX_SLI_OQ_PKT_CONTROL(i)), 125 CVM_CAST64(octeon_read_csr( 126 oct, CN23XX_SLI_OQ_PKT_CONTROL(i)))); 127 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 128 "CN23XX_SLI_OQ_PKT_INT_LEVELS", i, 129 CVM_CAST64(CN23XX_SLI_OQ_PKT_INT_LEVELS(i)), 130 CVM_CAST64(octeon_read_csr64( 131 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(i)))); 132 } 133 134 /*In cn23xx_enable_interrupt and cn23xx_disable_interrupt*/ 135 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 136 "cn23xx->intr_enb_reg64", 137 CVM_CAST64((long)(cn23xx->intr_enb_reg64)), 138 CVM_CAST64(readq(cn23xx->intr_enb_reg64))); 139 140 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 141 "cn23xx->intr_sum_reg64", 142 CVM_CAST64((long)(cn23xx->intr_sum_reg64)), 143 CVM_CAST64(readq(cn23xx->intr_sum_reg64))); 144 145 /*In cn23xx_setup_iq_regs*/ 146 for (i = 0; i < CN23XX_MAX_INPUT_QUEUES; i++) { 147 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 148 "CN23XX_SLI_IQ_BASE_ADDR64", i, 149 CVM_CAST64(CN23XX_SLI_IQ_BASE_ADDR64(i)), 150 CVM_CAST64(octeon_read_csr64( 151 oct, CN23XX_SLI_IQ_BASE_ADDR64(i)))); 152 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 153 "CN23XX_SLI_IQ_SIZE", i, 154 CVM_CAST64(CN23XX_SLI_IQ_SIZE(i)), 155 CVM_CAST64(octeon_read_csr 156 (oct, CN23XX_SLI_IQ_SIZE(i)))); 157 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 158 "CN23XX_SLI_IQ_DOORBELL", i, 159 CVM_CAST64(CN23XX_SLI_IQ_DOORBELL(i)), 160 CVM_CAST64(octeon_read_csr64( 161 oct, CN23XX_SLI_IQ_DOORBELL(i)))); 162 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 163 "CN23XX_SLI_IQ_INSTR_COUNT64", i, 164 CVM_CAST64(CN23XX_SLI_IQ_INSTR_COUNT64(i)), 165 CVM_CAST64(octeon_read_csr64( 166 oct, CN23XX_SLI_IQ_INSTR_COUNT64(i)))); 167 } 168 169 /*In cn23xx_setup_oq_regs*/ 170 for (i = 0; i < CN23XX_MAX_OUTPUT_QUEUES; i++) { 171 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 172 "CN23XX_SLI_OQ_BASE_ADDR64", i, 173 CVM_CAST64(CN23XX_SLI_OQ_BASE_ADDR64(i)), 174 CVM_CAST64(octeon_read_csr64( 175 oct, CN23XX_SLI_OQ_BASE_ADDR64(i)))); 176 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 177 "CN23XX_SLI_OQ_SIZE", i, 178 CVM_CAST64(CN23XX_SLI_OQ_SIZE(i)), 179 CVM_CAST64(octeon_read_csr 180 (oct, CN23XX_SLI_OQ_SIZE(i)))); 181 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 182 "CN23XX_SLI_OQ_BUFF_INFO_SIZE", i, 183 CVM_CAST64(CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)), 184 CVM_CAST64(octeon_read_csr( 185 oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(i)))); 186 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 187 "CN23XX_SLI_OQ_PKTS_SENT", i, 188 CVM_CAST64(CN23XX_SLI_OQ_PKTS_SENT(i)), 189 CVM_CAST64(octeon_read_csr64( 190 oct, CN23XX_SLI_OQ_PKTS_SENT(i)))); 191 dev_dbg(&oct->pci_dev->dev, "%s(%d)[%llx] : 0x%016llx\n", 192 "CN23XX_SLI_OQ_PKTS_CREDIT", i, 193 CVM_CAST64(CN23XX_SLI_OQ_PKTS_CREDIT(i)), 194 CVM_CAST64(octeon_read_csr64( 195 oct, CN23XX_SLI_OQ_PKTS_CREDIT(i)))); 196 } 197 198 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 199 "CN23XX_SLI_PKT_TIME_INT", 200 CVM_CAST64(CN23XX_SLI_PKT_TIME_INT), 201 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_TIME_INT))); 202 dev_dbg(&oct->pci_dev->dev, "%s[%llx] : 0x%016llx\n", 203 "CN23XX_SLI_PKT_CNT_INT", 204 CVM_CAST64(CN23XX_SLI_PKT_CNT_INT), 205 CVM_CAST64(octeon_read_csr64(oct, CN23XX_SLI_PKT_CNT_INT))); 206 } 207 208 static int cn23xx_pf_soft_reset(struct octeon_device *oct) 209 { 210 octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF); 211 212 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: BIST enabled for CN23XX soft reset\n", 213 oct->octeon_id); 214 215 octeon_write_csr64(oct, CN23XX_SLI_SCRATCH1, 0x1234ULL); 216 217 /* Initiate chip-wide soft reset */ 218 lio_pci_readq(oct, CN23XX_RST_SOFT_RST); 219 lio_pci_writeq(oct, 1, CN23XX_RST_SOFT_RST); 220 221 /* Wait for 100ms as Octeon resets. */ 222 mdelay(100); 223 224 if (octeon_read_csr64(oct, CN23XX_SLI_SCRATCH1)) { 225 dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Soft reset failed\n", 226 oct->octeon_id); 227 return 1; 228 } 229 230 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Reset completed\n", 231 oct->octeon_id); 232 233 /* restore the reset value*/ 234 octeon_write_csr64(oct, CN23XX_WIN_WR_MASK_REG, 0xFF); 235 236 return 0; 237 } 238 239 static void cn23xx_enable_error_reporting(struct octeon_device *oct) 240 { 241 u32 regval; 242 u32 uncorrectable_err_mask, corrtable_err_status; 243 244 pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, ®val); 245 if (regval & CN23XX_CONFIG_PCIE_DEVCTL_MASK) { 246 uncorrectable_err_mask = 0; 247 corrtable_err_status = 0; 248 pci_read_config_dword(oct->pci_dev, 249 CN23XX_CONFIG_PCIE_UNCORRECT_ERR_MASK, 250 &uncorrectable_err_mask); 251 pci_read_config_dword(oct->pci_dev, 252 CN23XX_CONFIG_PCIE_CORRECT_ERR_STATUS, 253 &corrtable_err_status); 254 dev_err(&oct->pci_dev->dev, "PCI-E Fatal error detected;\n" 255 "\tdev_ctl_status_reg = 0x%08x\n" 256 "\tuncorrectable_error_mask_reg = 0x%08x\n" 257 "\tcorrectable_error_status_reg = 0x%08x\n", 258 regval, uncorrectable_err_mask, 259 corrtable_err_status); 260 } 261 262 regval |= 0xf; /* Enable Link error reporting */ 263 264 dev_dbg(&oct->pci_dev->dev, "OCTEON[%d]: Enabling PCI-E error reporting..\n", 265 oct->octeon_id); 266 pci_write_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, regval); 267 } 268 269 static u32 cn23xx_coprocessor_clock(struct octeon_device *oct) 270 { 271 /* Bits 29:24 of RST_BOOT[PNR_MUL] holds the ref.clock MULTIPLIER 272 * for SLI. 273 */ 274 275 /* TBD: get the info in Hand-shake */ 276 return (((lio_pci_readq(oct, CN23XX_RST_BOOT) >> 24) & 0x3f) * 50); 277 } 278 279 u32 cn23xx_pf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us) 280 { 281 /* This gives the SLI clock per microsec */ 282 u32 oqticks_per_us = cn23xx_coprocessor_clock(oct); 283 284 oct->pfvf_hsword.coproc_tics_per_us = oqticks_per_us; 285 286 /* This gives the clock cycles per millisecond */ 287 oqticks_per_us *= 1000; 288 289 /* This gives the oq ticks (1024 core clock cycles) per millisecond */ 290 oqticks_per_us /= 1024; 291 292 /* time_intr is in microseconds. The next 2 steps gives the oq ticks 293 * corressponding to time_intr. 294 */ 295 oqticks_per_us *= time_intr_in_us; 296 oqticks_per_us /= 1000; 297 298 return oqticks_per_us; 299 } 300 301 static void cn23xx_setup_global_mac_regs(struct octeon_device *oct) 302 { 303 u16 mac_no = oct->pcie_port; 304 u16 pf_num = oct->pf_num; 305 u64 reg_val; 306 u64 temp; 307 308 /* programming SRN and TRS for each MAC(0..3) */ 309 310 dev_dbg(&oct->pci_dev->dev, "%s:Using pcie port %d\n", 311 __func__, mac_no); 312 /* By default, mapping all 64 IOQs to a single MACs */ 313 314 reg_val = 315 octeon_read_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num)); 316 317 if (oct->rev_id == OCTEON_CN23XX_REV_1_1) { 318 /* setting SRN <6:0> */ 319 reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF_PASS_1_1; 320 } else { 321 /* setting SRN <6:0> */ 322 reg_val = pf_num * CN23XX_MAX_RINGS_PER_PF; 323 } 324 325 /* setting TRS <23:16> */ 326 reg_val = reg_val | 327 (oct->sriov_info.trs << CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS); 328 /* setting RPVF <39:32> */ 329 temp = oct->sriov_info.rings_per_vf & 0xff; 330 reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_RPVF_BIT_POS); 331 332 /* setting NVFS <55:48> */ 333 temp = oct->sriov_info.max_vfs & 0xff; 334 reg_val |= (temp << CN23XX_PKT_MAC_CTL_RINFO_NVFS_BIT_POS); 335 336 /* write these settings to MAC register */ 337 octeon_write_csr64(oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num), 338 reg_val); 339 340 dev_dbg(&oct->pci_dev->dev, "SLI_PKT_MAC(%d)_PF(%d)_RINFO : 0x%016llx\n", 341 mac_no, pf_num, (u64)octeon_read_csr64 342 (oct, CN23XX_SLI_PKT_MAC_RINFO64(mac_no, pf_num))); 343 } 344 345 static int cn23xx_reset_io_queues(struct octeon_device *oct) 346 { 347 int ret_val = 0; 348 u64 d64; 349 u32 q_no, srn, ern; 350 u32 loop = 1000; 351 352 srn = oct->sriov_info.pf_srn; 353 ern = srn + oct->sriov_info.num_pf_rings; 354 355 /*As per HRM reg description, s/w cant write 0 to ENB. */ 356 /*to make the queue off, need to set the RST bit. */ 357 358 /* Reset the Enable bit for all the 64 IQs. */ 359 for (q_no = srn; q_no < ern; q_no++) { 360 /* set RST bit to 1. This bit applies to both IQ and OQ */ 361 d64 = octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 362 d64 = d64 | CN23XX_PKT_INPUT_CTL_RST; 363 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), d64); 364 } 365 366 /*wait until the RST bit is clear or the RST and quite bits are set*/ 367 for (q_no = srn; q_no < ern; q_no++) { 368 u64 reg_val = octeon_read_csr64(oct, 369 CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 370 while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) && 371 !(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) && 372 loop--) { 373 WRITE_ONCE(reg_val, octeon_read_csr64( 374 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); 375 } 376 if (!loop) { 377 dev_err(&oct->pci_dev->dev, 378 "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", 379 q_no); 380 return -1; 381 } 382 WRITE_ONCE(reg_val, READ_ONCE(reg_val) & 383 ~CN23XX_PKT_INPUT_CTL_RST); 384 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 385 READ_ONCE(reg_val)); 386 387 WRITE_ONCE(reg_val, octeon_read_csr64( 388 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); 389 if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) { 390 dev_err(&oct->pci_dev->dev, 391 "clearing the reset failed for qno: %u\n", 392 q_no); 393 ret_val = -1; 394 } 395 } 396 397 return ret_val; 398 } 399 400 static int cn23xx_pf_setup_global_input_regs(struct octeon_device *oct) 401 { 402 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 403 struct octeon_instr_queue *iq; 404 u64 intr_threshold, reg_val; 405 u32 q_no, ern, srn; 406 u64 pf_num; 407 u64 vf_num; 408 409 pf_num = oct->pf_num; 410 411 srn = oct->sriov_info.pf_srn; 412 ern = srn + oct->sriov_info.num_pf_rings; 413 414 if (cn23xx_reset_io_queues(oct)) 415 return -1; 416 417 /** Set the MAC_NUM and PVF_NUM in IQ_PKT_CONTROL reg 418 * for all queues.Only PF can set these bits. 419 * bits 29:30 indicate the MAC num. 420 * bits 32:47 indicate the PVF num. 421 */ 422 for (q_no = 0; q_no < ern; q_no++) { 423 reg_val = (u64)oct->pcie_port << CN23XX_PKT_INPUT_CTL_MAC_NUM_POS; 424 425 /* for VF assigned queues. */ 426 if (q_no < oct->sriov_info.pf_srn) { 427 vf_num = q_no / oct->sriov_info.rings_per_vf; 428 vf_num += 1; /* VF1, VF2,........ */ 429 } else { 430 vf_num = 0; 431 } 432 433 reg_val |= vf_num << CN23XX_PKT_INPUT_CTL_VF_NUM_POS; 434 reg_val |= pf_num << CN23XX_PKT_INPUT_CTL_PF_NUM_POS; 435 436 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 437 reg_val); 438 } 439 440 /* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for 441 * pf queues 442 */ 443 for (q_no = srn; q_no < ern; q_no++) { 444 void __iomem *inst_cnt_reg; 445 446 iq = oct->instr_queue[q_no]; 447 if (iq) 448 inst_cnt_reg = iq->inst_cnt_reg; 449 else 450 inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr + 451 CN23XX_SLI_IQ_INSTR_COUNT64(q_no); 452 453 reg_val = 454 octeon_read_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 455 456 reg_val |= CN23XX_PKT_INPUT_CTL_MASK; 457 458 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 459 reg_val); 460 461 /* Set WMARK level for triggering PI_INT */ 462 /* intr_threshold = CN23XX_DEF_IQ_INTR_THRESHOLD & */ 463 intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) & 464 CN23XX_PKT_IN_DONE_WMARK_MASK; 465 466 writeq((readq(inst_cnt_reg) & 467 ~(CN23XX_PKT_IN_DONE_WMARK_MASK << 468 CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) | 469 (intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS), 470 inst_cnt_reg); 471 } 472 return 0; 473 } 474 475 static void cn23xx_pf_setup_global_output_regs(struct octeon_device *oct) 476 { 477 u32 reg_val; 478 u32 q_no, ern, srn; 479 u64 time_threshold; 480 481 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 482 483 srn = oct->sriov_info.pf_srn; 484 ern = srn + oct->sriov_info.num_pf_rings; 485 486 if (CFG_GET_IS_SLI_BP_ON(cn23xx->conf)) { 487 octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 32); 488 } else { 489 /** Set Output queue watermark to 0 to disable backpressure */ 490 octeon_write_csr64(oct, CN23XX_SLI_OQ_WMARK, 0); 491 } 492 493 for (q_no = srn; q_no < ern; q_no++) { 494 reg_val = octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no)); 495 496 /* clear IPTR */ 497 reg_val &= ~CN23XX_PKT_OUTPUT_CTL_IPTR; 498 499 /* set DPTR */ 500 reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR; 501 502 /* reset BMODE */ 503 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE); 504 505 /* No Relaxed Ordering, No Snoop, 64-bit Byte swap 506 * for Output Queue ScatterList 507 * reset ROR_P, NSR_P 508 */ 509 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P); 510 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P); 511 512 #ifdef __LITTLE_ENDIAN_BITFIELD 513 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P); 514 #else 515 reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P); 516 #endif 517 /* No Relaxed Ordering, No Snoop, 64-bit Byte swap 518 * for Output Queue Data 519 * reset ROR, NSR 520 */ 521 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR); 522 reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR); 523 /* set the ES bit */ 524 reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES); 525 526 /* write all the selected settings */ 527 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), reg_val); 528 529 /* Enabling these interrupt in oct->fn_list.enable_interrupt() 530 * routine which called after IOQ init. 531 * Set up interrupt packet and time thresholds 532 * for all the OQs 533 */ 534 time_threshold = cn23xx_pf_get_oq_ticks( 535 oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf)); 536 537 octeon_write_csr64(oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(q_no), 538 (CFG_GET_OQ_INTR_PKT(cn23xx->conf) | 539 (time_threshold << 32))); 540 } 541 542 /** Setting the water mark level for pko back pressure **/ 543 writeq(0x40, (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_WMARK); 544 545 /** Disabling setting OQs in reset when ring has no dorebells 546 * enabling this will cause of head of line blocking 547 */ 548 /* Do it only for pass1.1. and pass1.2 */ 549 if ((oct->rev_id == OCTEON_CN23XX_REV_1_0) || 550 (oct->rev_id == OCTEON_CN23XX_REV_1_1)) 551 writeq(readq((u8 *)oct->mmio[0].hw_addr + 552 CN23XX_SLI_GBL_CONTROL) | 0x2, 553 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_GBL_CONTROL); 554 555 /** Enable channel-level backpressure */ 556 if (oct->pf_num) 557 writeq(0xffffffffffffffffULL, 558 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN2_W1S); 559 else 560 writeq(0xffffffffffffffffULL, 561 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OUT_BP_EN_W1S); 562 } 563 564 static int cn23xx_setup_pf_device_regs(struct octeon_device *oct) 565 { 566 cn23xx_enable_error_reporting(oct); 567 568 /* program the MAC(0..3)_RINFO before setting up input/output regs */ 569 cn23xx_setup_global_mac_regs(oct); 570 571 if (cn23xx_pf_setup_global_input_regs(oct)) 572 return -1; 573 574 cn23xx_pf_setup_global_output_regs(oct); 575 576 /* Default error timeout value should be 0x200000 to avoid host hang 577 * when reads invalid register 578 */ 579 octeon_write_csr64(oct, CN23XX_SLI_WINDOW_CTL, 580 CN23XX_SLI_WINDOW_CTL_DEFAULT); 581 582 /* set SLI_PKT_IN_JABBER to handle large VXLAN packets */ 583 octeon_write_csr64(oct, CN23XX_SLI_PKT_IN_JABBER, CN23XX_INPUT_JABBER); 584 return 0; 585 } 586 587 static void cn23xx_setup_iq_regs(struct octeon_device *oct, u32 iq_no) 588 { 589 struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; 590 u64 pkt_in_done; 591 592 iq_no += oct->sriov_info.pf_srn; 593 594 /* Write the start of the input queue's ring and its size */ 595 octeon_write_csr64(oct, CN23XX_SLI_IQ_BASE_ADDR64(iq_no), 596 iq->base_addr_dma); 597 octeon_write_csr(oct, CN23XX_SLI_IQ_SIZE(iq_no), iq->max_count); 598 599 /* Remember the doorbell & instruction count register addr 600 * for this queue 601 */ 602 iq->doorbell_reg = 603 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_DOORBELL(iq_no); 604 iq->inst_cnt_reg = 605 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_IQ_INSTR_COUNT64(iq_no); 606 dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n", 607 iq_no, iq->doorbell_reg, iq->inst_cnt_reg); 608 609 /* Store the current instruction counter (used in flush_iq 610 * calculation) 611 */ 612 pkt_in_done = readq(iq->inst_cnt_reg); 613 614 if (oct->msix_on) { 615 /* Set CINT_ENB to enable IQ interrupt */ 616 writeq((pkt_in_done | CN23XX_INTR_CINT_ENB), 617 iq->inst_cnt_reg); 618 } else { 619 /* Clear the count by writing back what we read, but don't 620 * enable interrupts 621 */ 622 writeq(pkt_in_done, iq->inst_cnt_reg); 623 } 624 625 iq->reset_instr_cnt = 0; 626 } 627 628 static void cn23xx_setup_oq_regs(struct octeon_device *oct, u32 oq_no) 629 { 630 u32 reg_val; 631 struct octeon_droq *droq = oct->droq[oq_no]; 632 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 633 u64 time_threshold; 634 u64 cnt_threshold; 635 636 oq_no += oct->sriov_info.pf_srn; 637 638 octeon_write_csr64(oct, CN23XX_SLI_OQ_BASE_ADDR64(oq_no), 639 droq->desc_ring_dma); 640 octeon_write_csr(oct, CN23XX_SLI_OQ_SIZE(oq_no), droq->max_count); 641 642 octeon_write_csr(oct, CN23XX_SLI_OQ_BUFF_INFO_SIZE(oq_no), 643 droq->buffer_size); 644 645 /* Get the mapped address of the pkt_sent and pkts_credit regs */ 646 droq->pkts_sent_reg = 647 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_SENT(oq_no); 648 droq->pkts_credit_reg = 649 (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_OQ_PKTS_CREDIT(oq_no); 650 651 if (!oct->msix_on) { 652 /* Enable this output queue to generate Packet Timer Interrupt 653 */ 654 reg_val = 655 octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); 656 reg_val |= CN23XX_PKT_OUTPUT_CTL_TENB; 657 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no), 658 reg_val); 659 660 /* Enable this output queue to generate Packet Count Interrupt 661 */ 662 reg_val = 663 octeon_read_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no)); 664 reg_val |= CN23XX_PKT_OUTPUT_CTL_CENB; 665 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(oq_no), 666 reg_val); 667 } else { 668 time_threshold = cn23xx_pf_get_oq_ticks( 669 oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf)); 670 cnt_threshold = (u32)CFG_GET_OQ_INTR_PKT(cn23xx->conf); 671 672 octeon_write_csr64( 673 oct, CN23XX_SLI_OQ_PKT_INT_LEVELS(oq_no), 674 ((time_threshold << 32 | cnt_threshold))); 675 } 676 } 677 678 static void cn23xx_pf_mbox_thread(struct work_struct *work) 679 { 680 struct cavium_wk *wk = (struct cavium_wk *)work; 681 struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr; 682 struct octeon_device *oct = mbox->oct_dev; 683 u64 mbox_int_val, val64; 684 u32 q_no, i; 685 686 if (oct->rev_id < OCTEON_CN23XX_REV_1_1) { 687 /*read and clear by writing 1*/ 688 mbox_int_val = readq(mbox->mbox_int_reg); 689 writeq(mbox_int_val, mbox->mbox_int_reg); 690 691 for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) { 692 q_no = i * oct->sriov_info.rings_per_vf; 693 694 val64 = readq(oct->mbox[q_no]->mbox_write_reg); 695 696 if (val64 && (val64 != OCTEON_PFVFACK)) { 697 if (octeon_mbox_read(oct->mbox[q_no])) 698 octeon_mbox_process_message( 699 oct->mbox[q_no]); 700 } 701 } 702 703 schedule_delayed_work(&wk->work, msecs_to_jiffies(10)); 704 } else { 705 octeon_mbox_process_message(mbox); 706 } 707 } 708 709 static int cn23xx_setup_pf_mbox(struct octeon_device *oct) 710 { 711 struct octeon_mbox *mbox = NULL; 712 u16 mac_no = oct->pcie_port; 713 u16 pf_num = oct->pf_num; 714 u32 q_no, i; 715 716 if (!oct->sriov_info.max_vfs) 717 return 0; 718 719 for (i = 0; i < oct->sriov_info.max_vfs; i++) { 720 q_no = i * oct->sriov_info.rings_per_vf; 721 722 mbox = vzalloc(sizeof(*mbox)); 723 if (!mbox) 724 goto free_mbox; 725 726 spin_lock_init(&mbox->lock); 727 728 mbox->oct_dev = oct; 729 730 mbox->q_no = q_no; 731 732 mbox->state = OCTEON_MBOX_STATE_IDLE; 733 734 /* PF mbox interrupt reg */ 735 mbox->mbox_int_reg = (u8 *)oct->mmio[0].hw_addr + 736 CN23XX_SLI_MAC_PF_MBOX_INT(mac_no, pf_num); 737 738 /* PF writes into SIG0 reg */ 739 mbox->mbox_write_reg = (u8 *)oct->mmio[0].hw_addr + 740 CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 0); 741 742 /* PF reads from SIG1 reg */ 743 mbox->mbox_read_reg = (u8 *)oct->mmio[0].hw_addr + 744 CN23XX_SLI_PKT_PF_VF_MBOX_SIG(q_no, 1); 745 746 /*Mail Box Thread creation*/ 747 INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work, 748 cn23xx_pf_mbox_thread); 749 mbox->mbox_poll_wk.ctxptr = (void *)mbox; 750 751 oct->mbox[q_no] = mbox; 752 753 writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg); 754 } 755 756 if (oct->rev_id < OCTEON_CN23XX_REV_1_1) 757 schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work, 758 msecs_to_jiffies(0)); 759 760 return 0; 761 762 free_mbox: 763 while (i) { 764 i--; 765 vfree(oct->mbox[i]); 766 } 767 768 return 1; 769 } 770 771 static int cn23xx_free_pf_mbox(struct octeon_device *oct) 772 { 773 u32 q_no, i; 774 775 if (!oct->sriov_info.max_vfs) 776 return 0; 777 778 for (i = 0; i < oct->sriov_info.max_vfs; i++) { 779 q_no = i * oct->sriov_info.rings_per_vf; 780 cancel_delayed_work_sync( 781 &oct->mbox[q_no]->mbox_poll_wk.work); 782 vfree(oct->mbox[q_no]); 783 } 784 785 return 0; 786 } 787 788 static int cn23xx_enable_io_queues(struct octeon_device *oct) 789 { 790 u64 reg_val; 791 u32 srn, ern, q_no; 792 u32 loop = 1000; 793 794 srn = oct->sriov_info.pf_srn; 795 ern = srn + oct->num_iqs; 796 797 for (q_no = srn; q_no < ern; q_no++) { 798 /* set the corresponding IQ IS_64B bit */ 799 if (oct->io_qmask.iq64B & BIT_ULL(q_no - srn)) { 800 reg_val = octeon_read_csr64( 801 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 802 reg_val = reg_val | CN23XX_PKT_INPUT_CTL_IS_64B; 803 octeon_write_csr64( 804 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); 805 } 806 807 /* set the corresponding IQ ENB bit */ 808 if (oct->io_qmask.iq & BIT_ULL(q_no - srn)) { 809 /* IOQs are in reset by default in PEM2 mode, 810 * clearing reset bit 811 */ 812 reg_val = octeon_read_csr64( 813 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 814 815 if (reg_val & CN23XX_PKT_INPUT_CTL_RST) { 816 while ((reg_val & CN23XX_PKT_INPUT_CTL_RST) && 817 !(reg_val & 818 CN23XX_PKT_INPUT_CTL_QUIET) && 819 --loop) { 820 reg_val = octeon_read_csr64( 821 oct, 822 CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 823 } 824 if (!loop) { 825 dev_err(&oct->pci_dev->dev, 826 "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", 827 q_no); 828 return -1; 829 } 830 reg_val = reg_val & ~CN23XX_PKT_INPUT_CTL_RST; 831 octeon_write_csr64( 832 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 833 reg_val); 834 835 reg_val = octeon_read_csr64( 836 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 837 if (reg_val & CN23XX_PKT_INPUT_CTL_RST) { 838 dev_err(&oct->pci_dev->dev, 839 "clearing the reset failed for qno: %u\n", 840 q_no); 841 return -1; 842 } 843 } 844 reg_val = octeon_read_csr64( 845 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no)); 846 reg_val = reg_val | CN23XX_PKT_INPUT_CTL_RING_ENB; 847 octeon_write_csr64( 848 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), reg_val); 849 } 850 } 851 for (q_no = srn; q_no < ern; q_no++) { 852 u32 reg_val; 853 /* set the corresponding OQ ENB bit */ 854 if (oct->io_qmask.oq & BIT_ULL(q_no - srn)) { 855 reg_val = octeon_read_csr( 856 oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no)); 857 reg_val = reg_val | CN23XX_PKT_OUTPUT_CTL_RING_ENB; 858 octeon_write_csr(oct, CN23XX_SLI_OQ_PKT_CONTROL(q_no), 859 reg_val); 860 } 861 } 862 return 0; 863 } 864 865 static void cn23xx_disable_io_queues(struct octeon_device *oct) 866 { 867 int q_no, loop; 868 u64 d64; 869 u32 d32; 870 u32 srn, ern; 871 872 srn = oct->sriov_info.pf_srn; 873 ern = srn + oct->num_iqs; 874 875 /*** Disable Input Queues. ***/ 876 for (q_no = srn; q_no < ern; q_no++) { 877 loop = HZ; 878 879 /* start the Reset for a particular ring */ 880 WRITE_ONCE(d64, octeon_read_csr64( 881 oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no))); 882 WRITE_ONCE(d64, READ_ONCE(d64) & 883 (~(CN23XX_PKT_INPUT_CTL_RING_ENB))); 884 WRITE_ONCE(d64, READ_ONCE(d64) | CN23XX_PKT_INPUT_CTL_RST); 885 octeon_write_csr64(oct, CN23XX_SLI_IQ_PKT_CONTROL64(q_no), 886 READ_ONCE(d64)); 887 888 /* Wait until hardware indicates that the particular IQ 889 * is out of reset. 890 */ 891 WRITE_ONCE(d64, octeon_read_csr64( 892 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 893 while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) { 894 WRITE_ONCE(d64, octeon_read_csr64( 895 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 896 schedule_timeout_uninterruptible(1); 897 } 898 899 /* Reset the doorbell register for this Input Queue. */ 900 octeon_write_csr(oct, CN23XX_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF); 901 while (octeon_read_csr64(oct, CN23XX_SLI_IQ_DOORBELL(q_no)) && 902 loop--) { 903 schedule_timeout_uninterruptible(1); 904 } 905 } 906 907 /*** Disable Output Queues. ***/ 908 for (q_no = srn; q_no < ern; q_no++) { 909 loop = HZ; 910 911 /* Wait until hardware indicates that the particular IQ 912 * is out of reset.It given that SLI_PKT_RING_RST is 913 * common for both IQs and OQs 914 */ 915 WRITE_ONCE(d64, octeon_read_csr64( 916 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 917 while (!(READ_ONCE(d64) & BIT_ULL(q_no)) && loop--) { 918 WRITE_ONCE(d64, octeon_read_csr64( 919 oct, CN23XX_SLI_PKT_IOQ_RING_RST)); 920 schedule_timeout_uninterruptible(1); 921 } 922 923 /* Reset the doorbell register for this Output Queue. */ 924 octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_CREDIT(q_no), 925 0xFFFFFFFF); 926 while (octeon_read_csr64(oct, 927 CN23XX_SLI_OQ_PKTS_CREDIT(q_no)) && 928 loop--) { 929 schedule_timeout_uninterruptible(1); 930 } 931 932 /* clear the SLI_PKT(0..63)_CNTS[CNT] reg value */ 933 WRITE_ONCE(d32, octeon_read_csr( 934 oct, CN23XX_SLI_OQ_PKTS_SENT(q_no))); 935 octeon_write_csr(oct, CN23XX_SLI_OQ_PKTS_SENT(q_no), 936 READ_ONCE(d32)); 937 } 938 } 939 940 static u64 cn23xx_pf_msix_interrupt_handler(void *dev) 941 { 942 struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev; 943 struct octeon_device *oct = ioq_vector->oct_dev; 944 u64 pkts_sent; 945 u64 ret = 0; 946 struct octeon_droq *droq = oct->droq[ioq_vector->droq_index]; 947 948 dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct); 949 950 if (!droq) { 951 dev_err(&oct->pci_dev->dev, "23XX bringup FIXME: oct pfnum:%d ioq_vector->ioq_num :%d droq is NULL\n", 952 oct->pf_num, ioq_vector->ioq_num); 953 return 0; 954 } 955 956 pkts_sent = readq(droq->pkts_sent_reg); 957 958 /* If our device has interrupted, then proceed. Also check 959 * for all f's if interrupt was triggered on an error 960 * and the PCI read fails. 961 */ 962 if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL)) 963 return ret; 964 965 /* Write count reg in sli_pkt_cnts to clear these int.*/ 966 if ((pkts_sent & CN23XX_INTR_PO_INT) || 967 (pkts_sent & CN23XX_INTR_PI_INT)) { 968 if (pkts_sent & CN23XX_INTR_PO_INT) 969 ret |= MSIX_PO_INT; 970 } 971 972 if (pkts_sent & CN23XX_INTR_PI_INT) 973 /* We will clear the count when we update the read_index. */ 974 ret |= MSIX_PI_INT; 975 976 /* Never need to handle msix mbox intr for pf. They arrive on the last 977 * msix 978 */ 979 return ret; 980 } 981 982 static void cn23xx_handle_pf_mbox_intr(struct octeon_device *oct) 983 { 984 struct delayed_work *work; 985 u64 mbox_int_val; 986 u32 i, q_no; 987 988 mbox_int_val = readq(oct->mbox[0]->mbox_int_reg); 989 990 for (i = 0; i < oct->sriov_info.num_vfs_alloced; i++) { 991 q_no = i * oct->sriov_info.rings_per_vf; 992 993 if (mbox_int_val & BIT_ULL(q_no)) { 994 writeq(BIT_ULL(q_no), 995 oct->mbox[0]->mbox_int_reg); 996 if (octeon_mbox_read(oct->mbox[q_no])) { 997 work = &oct->mbox[q_no]->mbox_poll_wk.work; 998 schedule_delayed_work(work, 999 msecs_to_jiffies(0)); 1000 } 1001 } 1002 } 1003 } 1004 1005 static irqreturn_t cn23xx_interrupt_handler(void *dev) 1006 { 1007 struct octeon_device *oct = (struct octeon_device *)dev; 1008 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1009 u64 intr64; 1010 1011 dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct); 1012 intr64 = readq(cn23xx->intr_sum_reg64); 1013 1014 oct->int_status = 0; 1015 1016 if (intr64 & CN23XX_INTR_ERR) 1017 dev_err(&oct->pci_dev->dev, "OCTEON[%d]: Error Intr: 0x%016llx\n", 1018 oct->octeon_id, CVM_CAST64(intr64)); 1019 1020 /* When VFs write into MBOX_SIG2 reg,these intr is set in PF */ 1021 if (intr64 & CN23XX_INTR_VF_MBOX) 1022 cn23xx_handle_pf_mbox_intr(oct); 1023 1024 if (oct->msix_on != LIO_FLAG_MSIX_ENABLED) { 1025 if (intr64 & CN23XX_INTR_PKT_DATA) 1026 oct->int_status |= OCT_DEV_INTR_PKT_DATA; 1027 } 1028 1029 if (intr64 & (CN23XX_INTR_DMA0_FORCE)) 1030 oct->int_status |= OCT_DEV_INTR_DMA0_FORCE; 1031 if (intr64 & (CN23XX_INTR_DMA1_FORCE)) 1032 oct->int_status |= OCT_DEV_INTR_DMA1_FORCE; 1033 1034 /* Clear the current interrupts */ 1035 writeq(intr64, cn23xx->intr_sum_reg64); 1036 1037 return IRQ_HANDLED; 1038 } 1039 1040 static void cn23xx_bar1_idx_setup(struct octeon_device *oct, u64 core_addr, 1041 u32 idx, int valid) 1042 { 1043 u64 bar1; 1044 u64 reg_adr; 1045 1046 if (!valid) { 1047 reg_adr = lio_pci_readq( 1048 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1049 WRITE_ONCE(bar1, reg_adr); 1050 lio_pci_writeq(oct, (READ_ONCE(bar1) & 0xFFFFFFFEULL), 1051 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1052 reg_adr = lio_pci_readq( 1053 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1054 WRITE_ONCE(bar1, reg_adr); 1055 return; 1056 } 1057 1058 /* The PEM(0..3)_BAR1_INDEX(0..15)[ADDR_IDX]<23:4> stores 1059 * bits <41:22> of the Core Addr 1060 */ 1061 lio_pci_writeq(oct, (((core_addr >> 22) << 4) | PCI_BAR1_MASK), 1062 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1063 1064 WRITE_ONCE(bar1, lio_pci_readq( 1065 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx))); 1066 } 1067 1068 static void cn23xx_bar1_idx_write(struct octeon_device *oct, u32 idx, u32 mask) 1069 { 1070 lio_pci_writeq(oct, mask, 1071 CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1072 } 1073 1074 static u32 cn23xx_bar1_idx_read(struct octeon_device *oct, u32 idx) 1075 { 1076 return (u32)lio_pci_readq( 1077 oct, CN23XX_PEM_BAR1_INDEX_REG(oct->pcie_port, idx)); 1078 } 1079 1080 /* always call with lock held */ 1081 static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq) 1082 { 1083 u32 new_idx; 1084 u32 last_done; 1085 u32 pkt_in_done = readl(iq->inst_cnt_reg); 1086 1087 last_done = pkt_in_done - iq->pkt_in_done; 1088 iq->pkt_in_done = pkt_in_done; 1089 1090 /* Modulo of the new index with the IQ size will give us 1091 * the new index. The iq->reset_instr_cnt is always zero for 1092 * cn23xx, so no extra adjustments are needed. 1093 */ 1094 new_idx = (iq->octeon_read_index + 1095 (u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) % 1096 iq->max_count; 1097 1098 return new_idx; 1099 } 1100 1101 static void cn23xx_enable_pf_interrupt(struct octeon_device *oct, u8 intr_flag) 1102 { 1103 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1104 u64 intr_val = 0; 1105 1106 /* Divide the single write to multiple writes based on the flag. */ 1107 /* Enable Interrupt */ 1108 if (intr_flag == OCTEON_ALL_INTR) { 1109 writeq(cn23xx->intr_mask64, cn23xx->intr_enb_reg64); 1110 } else if (intr_flag & OCTEON_OUTPUT_INTR) { 1111 intr_val = readq(cn23xx->intr_enb_reg64); 1112 intr_val |= CN23XX_INTR_PKT_DATA; 1113 writeq(intr_val, cn23xx->intr_enb_reg64); 1114 } else if ((intr_flag & OCTEON_MBOX_INTR) && 1115 (oct->sriov_info.max_vfs > 0)) { 1116 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) { 1117 intr_val = readq(cn23xx->intr_enb_reg64); 1118 intr_val |= CN23XX_INTR_VF_MBOX; 1119 writeq(intr_val, cn23xx->intr_enb_reg64); 1120 } 1121 } 1122 } 1123 1124 static void cn23xx_disable_pf_interrupt(struct octeon_device *oct, u8 intr_flag) 1125 { 1126 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1127 u64 intr_val = 0; 1128 1129 /* Disable Interrupts */ 1130 if (intr_flag == OCTEON_ALL_INTR) { 1131 writeq(0, cn23xx->intr_enb_reg64); 1132 } else if (intr_flag & OCTEON_OUTPUT_INTR) { 1133 intr_val = readq(cn23xx->intr_enb_reg64); 1134 intr_val &= ~CN23XX_INTR_PKT_DATA; 1135 writeq(intr_val, cn23xx->intr_enb_reg64); 1136 } else if ((intr_flag & OCTEON_MBOX_INTR) && 1137 (oct->sriov_info.max_vfs > 0)) { 1138 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) { 1139 intr_val = readq(cn23xx->intr_enb_reg64); 1140 intr_val &= ~CN23XX_INTR_VF_MBOX; 1141 writeq(intr_val, cn23xx->intr_enb_reg64); 1142 } 1143 } 1144 } 1145 1146 static void cn23xx_get_pcie_qlmport(struct octeon_device *oct) 1147 { 1148 oct->pcie_port = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff; 1149 1150 dev_dbg(&oct->pci_dev->dev, "OCTEON: CN23xx uses PCIE Port %d\n", 1151 oct->pcie_port); 1152 } 1153 1154 static int cn23xx_get_pf_num(struct octeon_device *oct) 1155 { 1156 u32 fdl_bit = 0; 1157 u64 pkt0_in_ctl, d64; 1158 int pfnum, mac, trs, ret; 1159 1160 ret = 0; 1161 1162 /** Read Function Dependency Link reg to get the function number */ 1163 if (pci_read_config_dword(oct->pci_dev, CN23XX_PCIE_SRIOV_FDL, 1164 &fdl_bit) == 0) { 1165 oct->pf_num = ((fdl_bit >> CN23XX_PCIE_SRIOV_FDL_BIT_POS) & 1166 CN23XX_PCIE_SRIOV_FDL_MASK); 1167 } else { 1168 ret = -EINVAL; 1169 1170 /* Under some virtual environments, extended PCI regs are 1171 * inaccessible, in which case the above read will have failed. 1172 * In this case, read the PF number from the 1173 * SLI_PKT0_INPUT_CONTROL reg (written by f/w) 1174 */ 1175 pkt0_in_ctl = octeon_read_csr64(oct, 1176 CN23XX_SLI_IQ_PKT_CONTROL64(0)); 1177 pfnum = (pkt0_in_ctl >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) & 1178 CN23XX_PKT_INPUT_CTL_PF_NUM_MASK; 1179 mac = (octeon_read_csr(oct, CN23XX_SLI_MAC_NUMBER)) & 0xff; 1180 1181 /* validate PF num by reading RINFO; f/w writes RINFO.trs == 1*/ 1182 d64 = octeon_read_csr64(oct, 1183 CN23XX_SLI_PKT_MAC_RINFO64(mac, pfnum)); 1184 trs = (int)(d64 >> CN23XX_PKT_MAC_CTL_RINFO_TRS_BIT_POS) & 0xff; 1185 if (trs == 1) { 1186 dev_err(&oct->pci_dev->dev, 1187 "OCTEON: error reading PCI cfg space pfnum, re-read %u\n", 1188 pfnum); 1189 oct->pf_num = pfnum; 1190 ret = 0; 1191 } else { 1192 dev_err(&oct->pci_dev->dev, 1193 "OCTEON: error reading PCI cfg space pfnum; could not ascertain PF number\n"); 1194 } 1195 } 1196 1197 return ret; 1198 } 1199 1200 static void cn23xx_setup_reg_address(struct octeon_device *oct) 1201 { 1202 u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr; 1203 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1204 1205 oct->reg_list.pci_win_wr_addr_hi = 1206 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_HI); 1207 oct->reg_list.pci_win_wr_addr_lo = 1208 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR_LO); 1209 oct->reg_list.pci_win_wr_addr = 1210 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_ADDR64); 1211 1212 oct->reg_list.pci_win_rd_addr_hi = 1213 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_HI); 1214 oct->reg_list.pci_win_rd_addr_lo = 1215 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR_LO); 1216 oct->reg_list.pci_win_rd_addr = 1217 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_ADDR64); 1218 1219 oct->reg_list.pci_win_wr_data_hi = 1220 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_HI); 1221 oct->reg_list.pci_win_wr_data_lo = 1222 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA_LO); 1223 oct->reg_list.pci_win_wr_data = 1224 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_WR_DATA64); 1225 1226 oct->reg_list.pci_win_rd_data_hi = 1227 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_HI); 1228 oct->reg_list.pci_win_rd_data_lo = 1229 (u32 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA_LO); 1230 oct->reg_list.pci_win_rd_data = 1231 (u64 __iomem *)(bar0_pciaddr + CN23XX_WIN_RD_DATA64); 1232 1233 cn23xx_get_pcie_qlmport(oct); 1234 1235 cn23xx->intr_mask64 = CN23XX_INTR_MASK; 1236 if (!oct->msix_on) 1237 cn23xx->intr_mask64 |= CN23XX_INTR_PKT_TIME; 1238 if (oct->rev_id >= OCTEON_CN23XX_REV_1_1) 1239 cn23xx->intr_mask64 |= CN23XX_INTR_VF_MBOX; 1240 1241 cn23xx->intr_sum_reg64 = 1242 bar0_pciaddr + 1243 CN23XX_SLI_MAC_PF_INT_SUM64(oct->pcie_port, oct->pf_num); 1244 cn23xx->intr_enb_reg64 = 1245 bar0_pciaddr + 1246 CN23XX_SLI_MAC_PF_INT_ENB64(oct->pcie_port, oct->pf_num); 1247 } 1248 1249 int cn23xx_sriov_config(struct octeon_device *oct) 1250 { 1251 struct octeon_cn23xx_pf *cn23xx = (struct octeon_cn23xx_pf *)oct->chip; 1252 u32 max_rings, total_rings, max_vfs, rings_per_vf; 1253 u32 pf_srn, num_pf_rings; 1254 u32 max_possible_vfs; 1255 1256 cn23xx->conf = 1257 (struct octeon_config *)oct_get_config_info(oct, LIO_23XX); 1258 switch (oct->rev_id) { 1259 case OCTEON_CN23XX_REV_1_0: 1260 max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_0; 1261 max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_0; 1262 break; 1263 case OCTEON_CN23XX_REV_1_1: 1264 max_rings = CN23XX_MAX_RINGS_PER_PF_PASS_1_1; 1265 max_possible_vfs = CN23XX_MAX_VFS_PER_PF_PASS_1_1; 1266 break; 1267 default: 1268 max_rings = CN23XX_MAX_RINGS_PER_PF; 1269 max_possible_vfs = CN23XX_MAX_VFS_PER_PF; 1270 break; 1271 } 1272 1273 if (oct->sriov_info.num_pf_rings) 1274 num_pf_rings = oct->sriov_info.num_pf_rings; 1275 else 1276 num_pf_rings = num_present_cpus(); 1277 1278 #ifdef CONFIG_PCI_IOV 1279 max_vfs = min_t(u32, 1280 (max_rings - num_pf_rings), max_possible_vfs); 1281 rings_per_vf = 1; 1282 #else 1283 max_vfs = 0; 1284 rings_per_vf = 0; 1285 #endif 1286 1287 total_rings = num_pf_rings + max_vfs; 1288 1289 /* the first ring of the pf */ 1290 pf_srn = total_rings - num_pf_rings; 1291 1292 oct->sriov_info.trs = total_rings; 1293 oct->sriov_info.max_vfs = max_vfs; 1294 oct->sriov_info.rings_per_vf = rings_per_vf; 1295 oct->sriov_info.pf_srn = pf_srn; 1296 oct->sriov_info.num_pf_rings = num_pf_rings; 1297 dev_notice(&oct->pci_dev->dev, "trs:%d max_vfs:%d rings_per_vf:%d pf_srn:%d num_pf_rings:%d\n", 1298 oct->sriov_info.trs, oct->sriov_info.max_vfs, 1299 oct->sriov_info.rings_per_vf, oct->sriov_info.pf_srn, 1300 oct->sriov_info.num_pf_rings); 1301 1302 oct->sriov_info.sriov_enabled = 0; 1303 1304 return 0; 1305 } 1306 1307 int setup_cn23xx_octeon_pf_device(struct octeon_device *oct) 1308 { 1309 u32 data32; 1310 u64 BAR0, BAR1; 1311 1312 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_0, &data32); 1313 BAR0 = (u64)(data32 & ~0xf); 1314 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_1, &data32); 1315 BAR0 |= ((u64)data32 << 32); 1316 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_2, &data32); 1317 BAR1 = (u64)(data32 & ~0xf); 1318 pci_read_config_dword(oct->pci_dev, PCI_BASE_ADDRESS_3, &data32); 1319 BAR1 |= ((u64)data32 << 32); 1320 1321 if (!BAR0 || !BAR1) { 1322 if (!BAR0) 1323 dev_err(&oct->pci_dev->dev, "device BAR0 unassigned\n"); 1324 if (!BAR1) 1325 dev_err(&oct->pci_dev->dev, "device BAR1 unassigned\n"); 1326 return 1; 1327 } 1328 1329 if (octeon_map_pci_barx(oct, 0, 0)) 1330 return 1; 1331 1332 if (octeon_map_pci_barx(oct, 1, MAX_BAR1_IOREMAP_SIZE)) { 1333 dev_err(&oct->pci_dev->dev, "%s CN23XX BAR1 map failed\n", 1334 __func__); 1335 octeon_unmap_pci_barx(oct, 0); 1336 return 1; 1337 } 1338 1339 if (cn23xx_get_pf_num(oct) != 0) 1340 return 1; 1341 1342 if (cn23xx_sriov_config(oct)) { 1343 octeon_unmap_pci_barx(oct, 0); 1344 octeon_unmap_pci_barx(oct, 1); 1345 return 1; 1346 } 1347 1348 octeon_write_csr64(oct, CN23XX_SLI_MAC_CREDIT_CNT, 0x3F802080802080ULL); 1349 1350 oct->fn_list.setup_iq_regs = cn23xx_setup_iq_regs; 1351 oct->fn_list.setup_oq_regs = cn23xx_setup_oq_regs; 1352 oct->fn_list.setup_mbox = cn23xx_setup_pf_mbox; 1353 oct->fn_list.free_mbox = cn23xx_free_pf_mbox; 1354 1355 oct->fn_list.process_interrupt_regs = cn23xx_interrupt_handler; 1356 oct->fn_list.msix_interrupt_handler = cn23xx_pf_msix_interrupt_handler; 1357 1358 oct->fn_list.soft_reset = cn23xx_pf_soft_reset; 1359 oct->fn_list.setup_device_regs = cn23xx_setup_pf_device_regs; 1360 oct->fn_list.update_iq_read_idx = cn23xx_update_read_index; 1361 1362 oct->fn_list.bar1_idx_setup = cn23xx_bar1_idx_setup; 1363 oct->fn_list.bar1_idx_write = cn23xx_bar1_idx_write; 1364 oct->fn_list.bar1_idx_read = cn23xx_bar1_idx_read; 1365 1366 oct->fn_list.enable_interrupt = cn23xx_enable_pf_interrupt; 1367 oct->fn_list.disable_interrupt = cn23xx_disable_pf_interrupt; 1368 1369 oct->fn_list.enable_io_queues = cn23xx_enable_io_queues; 1370 oct->fn_list.disable_io_queues = cn23xx_disable_io_queues; 1371 1372 cn23xx_setup_reg_address(oct); 1373 1374 oct->coproc_clock_rate = 1000000ULL * cn23xx_coprocessor_clock(oct); 1375 1376 return 0; 1377 } 1378 EXPORT_SYMBOL_GPL(setup_cn23xx_octeon_pf_device); 1379 1380 int validate_cn23xx_pf_config_info(struct octeon_device *oct, 1381 struct octeon_config *conf23xx) 1382 { 1383 if (CFG_GET_IQ_MAX_Q(conf23xx) > CN23XX_MAX_INPUT_QUEUES) { 1384 dev_err(&oct->pci_dev->dev, "%s: Num IQ (%d) exceeds Max (%d)\n", 1385 __func__, CFG_GET_IQ_MAX_Q(conf23xx), 1386 CN23XX_MAX_INPUT_QUEUES); 1387 return 1; 1388 } 1389 1390 if (CFG_GET_OQ_MAX_Q(conf23xx) > CN23XX_MAX_OUTPUT_QUEUES) { 1391 dev_err(&oct->pci_dev->dev, "%s: Num OQ (%d) exceeds Max (%d)\n", 1392 __func__, CFG_GET_OQ_MAX_Q(conf23xx), 1393 CN23XX_MAX_OUTPUT_QUEUES); 1394 return 1; 1395 } 1396 1397 if (CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_32BYTE_INSTR && 1398 CFG_GET_IQ_INSTR_TYPE(conf23xx) != OCTEON_64BYTE_INSTR) { 1399 dev_err(&oct->pci_dev->dev, "%s: Invalid instr type for IQ\n", 1400 __func__); 1401 return 1; 1402 } 1403 1404 if (!CFG_GET_OQ_REFILL_THRESHOLD(conf23xx)) { 1405 dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n", 1406 __func__); 1407 return 1; 1408 } 1409 1410 if (!(CFG_GET_OQ_INTR_TIME(conf23xx))) { 1411 dev_err(&oct->pci_dev->dev, "%s: Invalid parameter for OQ\n", 1412 __func__); 1413 return 1; 1414 } 1415 1416 return 0; 1417 } 1418 1419 int cn23xx_fw_loaded(struct octeon_device *oct) 1420 { 1421 u64 val; 1422 1423 /* If there's more than one active PF on this NIC, then that 1424 * implies that the NIC firmware is loaded and running. This check 1425 * prevents a rare false negative that might occur if we only relied 1426 * on checking the SCR2_BIT_FW_LOADED flag. The false negative would 1427 * happen if the PF driver sees SCR2_BIT_FW_LOADED as cleared even 1428 * though the firmware was already loaded but still booting and has yet 1429 * to set SCR2_BIT_FW_LOADED. 1430 */ 1431 if (atomic_read(oct->adapter_refcount) > 1) 1432 return 1; 1433 1434 val = octeon_read_csr64(oct, CN23XX_SLI_SCRATCH2); 1435 return (val >> SCR2_BIT_FW_LOADED) & 1ULL; 1436 } 1437 EXPORT_SYMBOL_GPL(cn23xx_fw_loaded); 1438 1439 void cn23xx_tell_vf_its_macaddr_changed(struct octeon_device *oct, int vfidx, 1440 u8 *mac) 1441 { 1442 if (oct->sriov_info.vf_drv_loaded_mask & BIT_ULL(vfidx)) { 1443 struct octeon_mbox_cmd mbox_cmd; 1444 1445 mbox_cmd.msg.u64 = 0; 1446 mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST; 1447 mbox_cmd.msg.s.resp_needed = 0; 1448 mbox_cmd.msg.s.cmd = OCTEON_PF_CHANGED_VF_MACADDR; 1449 mbox_cmd.msg.s.len = 1; 1450 mbox_cmd.recv_len = 0; 1451 mbox_cmd.recv_status = 0; 1452 mbox_cmd.fn = NULL; 1453 mbox_cmd.fn_arg = NULL; 1454 ether_addr_copy(mbox_cmd.msg.s.params, mac); 1455 mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf; 1456 octeon_mbox_write(oct, &mbox_cmd); 1457 } 1458 } 1459 EXPORT_SYMBOL_GPL(cn23xx_tell_vf_its_macaddr_changed); 1460 1461 static void 1462 cn23xx_get_vf_stats_callback(struct octeon_device *oct, 1463 struct octeon_mbox_cmd *cmd, void *arg) 1464 { 1465 struct oct_vf_stats_ctx *ctx = arg; 1466 1467 memcpy(ctx->stats, cmd->data, sizeof(struct oct_vf_stats)); 1468 atomic_set(&ctx->status, 1); 1469 } 1470 1471 int cn23xx_get_vf_stats(struct octeon_device *oct, int vfidx, 1472 struct oct_vf_stats *stats) 1473 { 1474 u32 timeout = HZ; // 1sec 1475 struct octeon_mbox_cmd mbox_cmd; 1476 struct oct_vf_stats_ctx ctx; 1477 u32 count = 0, ret; 1478 1479 if (!(oct->sriov_info.vf_drv_loaded_mask & (1ULL << vfidx))) 1480 return -1; 1481 1482 if (sizeof(struct oct_vf_stats) > sizeof(mbox_cmd.data)) 1483 return -1; 1484 1485 mbox_cmd.msg.u64 = 0; 1486 mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST; 1487 mbox_cmd.msg.s.resp_needed = 1; 1488 mbox_cmd.msg.s.cmd = OCTEON_GET_VF_STATS; 1489 mbox_cmd.msg.s.len = 1; 1490 mbox_cmd.q_no = vfidx * oct->sriov_info.rings_per_vf; 1491 mbox_cmd.recv_len = 0; 1492 mbox_cmd.recv_status = 0; 1493 mbox_cmd.fn = cn23xx_get_vf_stats_callback; 1494 ctx.stats = stats; 1495 atomic_set(&ctx.status, 0); 1496 mbox_cmd.fn_arg = (void *)&ctx; 1497 memset(mbox_cmd.data, 0, sizeof(mbox_cmd.data)); 1498 octeon_mbox_write(oct, &mbox_cmd); 1499 1500 do { 1501 schedule_timeout_uninterruptible(1); 1502 } while ((atomic_read(&ctx.status) == 0) && (count++ < timeout)); 1503 1504 ret = atomic_read(&ctx.status); 1505 if (ret == 0) { 1506 octeon_mbox_cancel(oct, 0); 1507 dev_err(&oct->pci_dev->dev, "Unable to get stats from VF-%d, timedout\n", 1508 vfidx); 1509 return -1; 1510 } 1511 1512 return 0; 1513 } 1514 EXPORT_SYMBOL_GPL(cn23xx_get_vf_stats); 1515