xref: /linux/drivers/net/ethernet/cavium/common/cavium_ptp.c (revision 78beef629fd95be4ed853b2d37b832f766bd96ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /* cavium_ptp.c - PTP 1588 clock on Cavium hardware
3  * Copyright (c) 2003-2015, 2017 Cavium, Inc.
4  */
5 
6 #include <linux/device.h>
7 #include <linux/module.h>
8 #include <linux/timecounter.h>
9 #include <linux/pci.h>
10 
11 #include "cavium_ptp.h"
12 
13 #define DRV_NAME "cavium_ptp"
14 
15 #define PCI_DEVICE_ID_CAVIUM_PTP	0xA00C
16 #define PCI_DEVICE_ID_CAVIUM_RST	0xA00E
17 
18 #define PCI_PTP_BAR_NO	0
19 #define PCI_RST_BAR_NO	0
20 
21 #define PTP_CLOCK_CFG		0xF00ULL
22 #define  PTP_CLOCK_CFG_PTP_EN	BIT(0)
23 #define PTP_CLOCK_LO		0xF08ULL
24 #define PTP_CLOCK_HI		0xF10ULL
25 #define PTP_CLOCK_COMP		0xF18ULL
26 
27 #define RST_BOOT	0x1600ULL
28 #define CLOCK_BASE_RATE	50000000ULL
29 
30 static u64 ptp_cavium_clock_get(void)
31 {
32 	struct pci_dev *pdev;
33 	void __iomem *base;
34 	u64 ret = CLOCK_BASE_RATE * 16;
35 
36 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
37 			      PCI_DEVICE_ID_CAVIUM_RST, NULL);
38 	if (!pdev)
39 		goto error;
40 
41 	base = pci_ioremap_bar(pdev, PCI_RST_BAR_NO);
42 	if (!base)
43 		goto error_put_pdev;
44 
45 	ret = CLOCK_BASE_RATE * ((readq(base + RST_BOOT) >> 33) & 0x3f);
46 
47 	iounmap(base);
48 
49 error_put_pdev:
50 	pci_dev_put(pdev);
51 
52 error:
53 	return ret;
54 }
55 
56 struct cavium_ptp *cavium_ptp_get(void)
57 {
58 	struct cavium_ptp *ptp;
59 	struct pci_dev *pdev;
60 
61 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
62 			      PCI_DEVICE_ID_CAVIUM_PTP, NULL);
63 	if (!pdev)
64 		return ERR_PTR(-ENODEV);
65 
66 	ptp = pci_get_drvdata(pdev);
67 	if (!ptp)
68 		ptp = ERR_PTR(-EPROBE_DEFER);
69 	if (IS_ERR(ptp))
70 		pci_dev_put(pdev);
71 
72 	return ptp;
73 }
74 EXPORT_SYMBOL(cavium_ptp_get);
75 
76 void cavium_ptp_put(struct cavium_ptp *ptp)
77 {
78 	if (!ptp)
79 		return;
80 	pci_dev_put(ptp->pdev);
81 }
82 EXPORT_SYMBOL(cavium_ptp_put);
83 
84 /**
85  * cavium_ptp_adjfine() - Adjust ptp frequency
86  * @ptp: PTP clock info
87  * @scaled_ppm: how much to adjust by, in parts per million, but with a
88  *              16 bit binary fractional field
89  */
90 static int cavium_ptp_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
91 {
92 	struct cavium_ptp *clock =
93 		container_of(ptp_info, struct cavium_ptp, ptp_info);
94 	unsigned long flags;
95 	u64 comp;
96 	u64 adj;
97 	bool neg_adj = false;
98 
99 	if (scaled_ppm < 0) {
100 		neg_adj = true;
101 		scaled_ppm = -scaled_ppm;
102 	}
103 
104 	/* The hardware adds the clock compensation value to the PTP clock
105 	 * on every coprocessor clock cycle. Typical convention is that it
106 	 * represent number of nanosecond betwen each cycle. In this
107 	 * convention compensation value is in 64 bit fixed-point
108 	 * representation where upper 32 bits are number of nanoseconds
109 	 * and lower is fractions of nanosecond.
110 	 * The scaled_ppm represent the ratio in "parts per bilion" by which the
111 	 * compensation value should be corrected.
112 	 * To calculate new compenstation value we use 64bit fixed point
113 	 * arithmetic on following formula
114 	 * comp = tbase + tbase * scaled_ppm / (1M * 2^16)
115 	 * where tbase is the basic compensation value calculated initialy
116 	 * in cavium_ptp_init() -> tbase = 1/Hz. Then we use endian
117 	 * independent structure definition to write data to PTP register.
118 	 */
119 	comp = ((u64)1000000000ull << 32) / clock->clock_rate;
120 	adj = comp * scaled_ppm;
121 	adj >>= 16;
122 	adj = div_u64(adj, 1000000ull);
123 	comp = neg_adj ? comp - adj : comp + adj;
124 
125 	spin_lock_irqsave(&clock->spin_lock, flags);
126 	writeq(comp, clock->reg_base + PTP_CLOCK_COMP);
127 	spin_unlock_irqrestore(&clock->spin_lock, flags);
128 
129 	return 0;
130 }
131 
132 /**
133  * cavium_ptp_adjtime() - Adjust ptp time
134  * @ptp:   PTP clock info
135  * @delta: how much to adjust by, in nanosecs
136  */
137 static int cavium_ptp_adjtime(struct ptp_clock_info *ptp_info, s64 delta)
138 {
139 	struct cavium_ptp *clock =
140 		container_of(ptp_info, struct cavium_ptp, ptp_info);
141 	unsigned long flags;
142 
143 	spin_lock_irqsave(&clock->spin_lock, flags);
144 	timecounter_adjtime(&clock->time_counter, delta);
145 	spin_unlock_irqrestore(&clock->spin_lock, flags);
146 
147 	/* Sync, for network driver to get latest value */
148 	smp_mb();
149 
150 	return 0;
151 }
152 
153 /**
154  * cavium_ptp_gettime() - Get hardware clock time with adjustment
155  * @ptp: PTP clock info
156  * @ts:  timespec
157  */
158 static int cavium_ptp_gettime(struct ptp_clock_info *ptp_info,
159 			      struct timespec64 *ts)
160 {
161 	struct cavium_ptp *clock =
162 		container_of(ptp_info, struct cavium_ptp, ptp_info);
163 	unsigned long flags;
164 	u64 nsec;
165 
166 	spin_lock_irqsave(&clock->spin_lock, flags);
167 	nsec = timecounter_read(&clock->time_counter);
168 	spin_unlock_irqrestore(&clock->spin_lock, flags);
169 
170 	*ts = ns_to_timespec64(nsec);
171 
172 	return 0;
173 }
174 
175 /**
176  * cavium_ptp_settime() - Set hardware clock time. Reset adjustment
177  * @ptp: PTP clock info
178  * @ts:  timespec
179  */
180 static int cavium_ptp_settime(struct ptp_clock_info *ptp_info,
181 			      const struct timespec64 *ts)
182 {
183 	struct cavium_ptp *clock =
184 		container_of(ptp_info, struct cavium_ptp, ptp_info);
185 	unsigned long flags;
186 	u64 nsec;
187 
188 	nsec = timespec64_to_ns(ts);
189 
190 	spin_lock_irqsave(&clock->spin_lock, flags);
191 	timecounter_init(&clock->time_counter, &clock->cycle_counter, nsec);
192 	spin_unlock_irqrestore(&clock->spin_lock, flags);
193 
194 	return 0;
195 }
196 
197 /**
198  * cavium_ptp_enable() - Request to enable or disable an ancillary feature.
199  * @ptp: PTP clock info
200  * @rq:  request
201  * @on:  is it on
202  */
203 static int cavium_ptp_enable(struct ptp_clock_info *ptp_info,
204 			     struct ptp_clock_request *rq, int on)
205 {
206 	return -EOPNOTSUPP;
207 }
208 
209 static u64 cavium_ptp_cc_read(const struct cyclecounter *cc)
210 {
211 	struct cavium_ptp *clock =
212 		container_of(cc, struct cavium_ptp, cycle_counter);
213 
214 	return readq(clock->reg_base + PTP_CLOCK_HI);
215 }
216 
217 static int cavium_ptp_probe(struct pci_dev *pdev,
218 			    const struct pci_device_id *ent)
219 {
220 	struct device *dev = &pdev->dev;
221 	struct cavium_ptp *clock;
222 	struct cyclecounter *cc;
223 	u64 clock_cfg;
224 	u64 clock_comp;
225 	int err;
226 
227 	clock = devm_kzalloc(dev, sizeof(*clock), GFP_KERNEL);
228 	if (!clock) {
229 		err = -ENOMEM;
230 		goto error;
231 	}
232 
233 	clock->pdev = pdev;
234 
235 	err = pcim_enable_device(pdev);
236 	if (err)
237 		goto error_free;
238 
239 	err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev));
240 	if (err)
241 		goto error_free;
242 
243 	clock->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO];
244 
245 	spin_lock_init(&clock->spin_lock);
246 
247 	cc = &clock->cycle_counter;
248 	cc->read = cavium_ptp_cc_read;
249 	cc->mask = CYCLECOUNTER_MASK(64);
250 	cc->mult = 1;
251 	cc->shift = 0;
252 
253 	timecounter_init(&clock->time_counter, &clock->cycle_counter,
254 			 ktime_to_ns(ktime_get_real()));
255 
256 	clock->clock_rate = ptp_cavium_clock_get();
257 
258 	clock->ptp_info = (struct ptp_clock_info) {
259 		.owner		= THIS_MODULE,
260 		.name		= "ThunderX PTP",
261 		.max_adj	= 1000000000ull,
262 		.n_ext_ts	= 0,
263 		.n_pins		= 0,
264 		.pps		= 0,
265 		.adjfine	= cavium_ptp_adjfine,
266 		.adjtime	= cavium_ptp_adjtime,
267 		.gettime64	= cavium_ptp_gettime,
268 		.settime64	= cavium_ptp_settime,
269 		.enable		= cavium_ptp_enable,
270 	};
271 
272 	clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG);
273 	clock_cfg |= PTP_CLOCK_CFG_PTP_EN;
274 	writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG);
275 
276 	clock_comp = ((u64)1000000000ull << 32) / clock->clock_rate;
277 	writeq(clock_comp, clock->reg_base + PTP_CLOCK_COMP);
278 
279 	clock->ptp_clock = ptp_clock_register(&clock->ptp_info, dev);
280 	if (IS_ERR(clock->ptp_clock)) {
281 		err = PTR_ERR(clock->ptp_clock);
282 		goto error_stop;
283 	}
284 
285 	pci_set_drvdata(pdev, clock);
286 	return 0;
287 
288 error_stop:
289 	clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG);
290 	clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
291 	writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG);
292 	pcim_iounmap_regions(pdev, 1 << PCI_PTP_BAR_NO);
293 
294 error_free:
295 	devm_kfree(dev, clock);
296 
297 error:
298 	/* For `cavium_ptp_get()` we need to differentiate between the case
299 	 * when the core has not tried to probe this device and the case when
300 	 * the probe failed.  In the later case we pretend that the
301 	 * initialization was successful and keep the error in
302 	 * `dev->driver_data`.
303 	 */
304 	pci_set_drvdata(pdev, ERR_PTR(err));
305 	return 0;
306 }
307 
308 static void cavium_ptp_remove(struct pci_dev *pdev)
309 {
310 	struct cavium_ptp *clock = pci_get_drvdata(pdev);
311 	u64 clock_cfg;
312 
313 	if (IS_ERR_OR_NULL(clock))
314 		return;
315 
316 	ptp_clock_unregister(clock->ptp_clock);
317 
318 	clock_cfg = readq(clock->reg_base + PTP_CLOCK_CFG);
319 	clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN;
320 	writeq(clock_cfg, clock->reg_base + PTP_CLOCK_CFG);
321 }
322 
323 static const struct pci_device_id cavium_ptp_id_table[] = {
324 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_CAVIUM_PTP) },
325 	{ 0, }
326 };
327 
328 static struct pci_driver cavium_ptp_driver = {
329 	.name = DRV_NAME,
330 	.id_table = cavium_ptp_id_table,
331 	.probe = cavium_ptp_probe,
332 	.remove = cavium_ptp_remove,
333 };
334 
335 module_pci_driver(cavium_ptp_driver);
336 
337 MODULE_DESCRIPTION(DRV_NAME);
338 MODULE_AUTHOR("Cavium Networks <support@cavium.com>");
339 MODULE_LICENSE("GPL v2");
340 MODULE_DEVICE_TABLE(pci, cavium_ptp_id_table);
341