xref: /linux/drivers/net/ethernet/cadence/macb_main.c (revision 9e7c9b8eb719835638ee74d93dccc2173581324c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cadence MACB/GEM Ethernet Controller driver
4  *
5  * Copyright (C) 2004-2006 Atmel Corporation
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/crc32.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/circ_buf.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/phylink.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/of_gpio.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/ip.h>
34 #include <linux/udp.h>
35 #include <linux/tcp.h>
36 #include <linux/iopoll.h>
37 #include <linux/phy/phy.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/ptp_classify.h>
40 #include <linux/reset.h>
41 #include "macb.h"
42 
43 /* This structure is only used for MACB on SiFive FU540 devices */
44 struct sifive_fu540_macb_mgmt {
45 	void __iomem *reg;
46 	unsigned long rate;
47 	struct clk_hw hw;
48 };
49 
50 #define MACB_RX_BUFFER_SIZE	128
51 #define RX_BUFFER_MULTIPLE	64  /* bytes */
52 
53 #define DEFAULT_RX_RING_SIZE	512 /* must be power of 2 */
54 #define MIN_RX_RING_SIZE	64
55 #define MAX_RX_RING_SIZE	8192
56 #define RX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
57 				 * (bp)->rx_ring_size)
58 
59 #define DEFAULT_TX_RING_SIZE	512 /* must be power of 2 */
60 #define MIN_TX_RING_SIZE	64
61 #define MAX_TX_RING_SIZE	4096
62 #define TX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
63 				 * (bp)->tx_ring_size)
64 
65 /* level of occupied TX descriptors under which we wake up TX process */
66 #define MACB_TX_WAKEUP_THRESH(bp)	(3 * (bp)->tx_ring_size / 4)
67 
68 #define MACB_RX_INT_FLAGS	(MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR))
69 #define MACB_TX_ERR_FLAGS	(MACB_BIT(ISR_TUND)			\
70 					| MACB_BIT(ISR_RLE)		\
71 					| MACB_BIT(TXERR))
72 #define MACB_TX_INT_FLAGS	(MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP)	\
73 					| MACB_BIT(TXUBR))
74 
75 /* Max length of transmit frame must be a multiple of 8 bytes */
76 #define MACB_TX_LEN_ALIGN	8
77 #define MACB_MAX_TX_LEN		((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
78 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a
79  * false amba_error in TX path from the DMA assuming there is not enough
80  * space in the SRAM (16KB) even when there is.
81  */
82 #define GEM_MAX_TX_LEN		(unsigned int)(0x3FC0)
83 
84 #define GEM_MTU_MIN_SIZE	ETH_MIN_MTU
85 #define MACB_NETIF_LSO		NETIF_F_TSO
86 
87 #define MACB_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
88 #define MACB_WOL_ENABLED		(0x1 << 1)
89 
90 #define HS_SPEED_10000M			4
91 #define MACB_SERDES_RATE_10G		1
92 
93 /* Graceful stop timeouts in us. We should allow up to
94  * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
95  */
96 #define MACB_HALT_TIMEOUT	1230
97 
98 #define MACB_PM_TIMEOUT  100 /* ms */
99 
100 #define MACB_MDIO_TIMEOUT	1000000 /* in usecs */
101 
102 /* DMA buffer descriptor might be different size
103  * depends on hardware configuration:
104  *
105  * 1. dma address width 32 bits:
106  *    word 1: 32 bit address of Data Buffer
107  *    word 2: control
108  *
109  * 2. dma address width 64 bits:
110  *    word 1: 32 bit address of Data Buffer
111  *    word 2: control
112  *    word 3: upper 32 bit address of Data Buffer
113  *    word 4: unused
114  *
115  * 3. dma address width 32 bits with hardware timestamping:
116  *    word 1: 32 bit address of Data Buffer
117  *    word 2: control
118  *    word 3: timestamp word 1
119  *    word 4: timestamp word 2
120  *
121  * 4. dma address width 64 bits with hardware timestamping:
122  *    word 1: 32 bit address of Data Buffer
123  *    word 2: control
124  *    word 3: upper 32 bit address of Data Buffer
125  *    word 4: unused
126  *    word 5: timestamp word 1
127  *    word 6: timestamp word 2
128  */
129 static unsigned int macb_dma_desc_get_size(struct macb *bp)
130 {
131 #ifdef MACB_EXT_DESC
132 	unsigned int desc_size;
133 
134 	switch (bp->hw_dma_cap) {
135 	case HW_DMA_CAP_64B:
136 		desc_size = sizeof(struct macb_dma_desc)
137 			+ sizeof(struct macb_dma_desc_64);
138 		break;
139 	case HW_DMA_CAP_PTP:
140 		desc_size = sizeof(struct macb_dma_desc)
141 			+ sizeof(struct macb_dma_desc_ptp);
142 		break;
143 	case HW_DMA_CAP_64B_PTP:
144 		desc_size = sizeof(struct macb_dma_desc)
145 			+ sizeof(struct macb_dma_desc_64)
146 			+ sizeof(struct macb_dma_desc_ptp);
147 		break;
148 	default:
149 		desc_size = sizeof(struct macb_dma_desc);
150 	}
151 	return desc_size;
152 #endif
153 	return sizeof(struct macb_dma_desc);
154 }
155 
156 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx)
157 {
158 #ifdef MACB_EXT_DESC
159 	switch (bp->hw_dma_cap) {
160 	case HW_DMA_CAP_64B:
161 	case HW_DMA_CAP_PTP:
162 		desc_idx <<= 1;
163 		break;
164 	case HW_DMA_CAP_64B_PTP:
165 		desc_idx *= 3;
166 		break;
167 	default:
168 		break;
169 	}
170 #endif
171 	return desc_idx;
172 }
173 
174 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
175 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc)
176 {
177 	return (struct macb_dma_desc_64 *)((void *)desc
178 		+ sizeof(struct macb_dma_desc));
179 }
180 #endif
181 
182 /* Ring buffer accessors */
183 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index)
184 {
185 	return index & (bp->tx_ring_size - 1);
186 }
187 
188 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
189 					  unsigned int index)
190 {
191 	index = macb_tx_ring_wrap(queue->bp, index);
192 	index = macb_adj_dma_desc_idx(queue->bp, index);
193 	return &queue->tx_ring[index];
194 }
195 
196 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
197 				       unsigned int index)
198 {
199 	return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)];
200 }
201 
202 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
203 {
204 	dma_addr_t offset;
205 
206 	offset = macb_tx_ring_wrap(queue->bp, index) *
207 			macb_dma_desc_get_size(queue->bp);
208 
209 	return queue->tx_ring_dma + offset;
210 }
211 
212 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index)
213 {
214 	return index & (bp->rx_ring_size - 1);
215 }
216 
217 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index)
218 {
219 	index = macb_rx_ring_wrap(queue->bp, index);
220 	index = macb_adj_dma_desc_idx(queue->bp, index);
221 	return &queue->rx_ring[index];
222 }
223 
224 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index)
225 {
226 	return queue->rx_buffers + queue->bp->rx_buffer_size *
227 	       macb_rx_ring_wrap(queue->bp, index);
228 }
229 
230 /* I/O accessors */
231 static u32 hw_readl_native(struct macb *bp, int offset)
232 {
233 	return __raw_readl(bp->regs + offset);
234 }
235 
236 static void hw_writel_native(struct macb *bp, int offset, u32 value)
237 {
238 	__raw_writel(value, bp->regs + offset);
239 }
240 
241 static u32 hw_readl(struct macb *bp, int offset)
242 {
243 	return readl_relaxed(bp->regs + offset);
244 }
245 
246 static void hw_writel(struct macb *bp, int offset, u32 value)
247 {
248 	writel_relaxed(value, bp->regs + offset);
249 }
250 
251 /* Find the CPU endianness by using the loopback bit of NCR register. When the
252  * CPU is in big endian we need to program swapped mode for management
253  * descriptor access.
254  */
255 static bool hw_is_native_io(void __iomem *addr)
256 {
257 	u32 value = MACB_BIT(LLB);
258 
259 	__raw_writel(value, addr + MACB_NCR);
260 	value = __raw_readl(addr + MACB_NCR);
261 
262 	/* Write 0 back to disable everything */
263 	__raw_writel(0, addr + MACB_NCR);
264 
265 	return value == MACB_BIT(LLB);
266 }
267 
268 static bool hw_is_gem(void __iomem *addr, bool native_io)
269 {
270 	u32 id;
271 
272 	if (native_io)
273 		id = __raw_readl(addr + MACB_MID);
274 	else
275 		id = readl_relaxed(addr + MACB_MID);
276 
277 	return MACB_BFEXT(IDNUM, id) >= 0x2;
278 }
279 
280 static void macb_set_hwaddr(struct macb *bp)
281 {
282 	u32 bottom;
283 	u16 top;
284 
285 	bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
286 	macb_or_gem_writel(bp, SA1B, bottom);
287 	top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
288 	macb_or_gem_writel(bp, SA1T, top);
289 
290 	/* Clear unused address register sets */
291 	macb_or_gem_writel(bp, SA2B, 0);
292 	macb_or_gem_writel(bp, SA2T, 0);
293 	macb_or_gem_writel(bp, SA3B, 0);
294 	macb_or_gem_writel(bp, SA3T, 0);
295 	macb_or_gem_writel(bp, SA4B, 0);
296 	macb_or_gem_writel(bp, SA4T, 0);
297 }
298 
299 static void macb_get_hwaddr(struct macb *bp)
300 {
301 	u32 bottom;
302 	u16 top;
303 	u8 addr[6];
304 	int i;
305 
306 	/* Check all 4 address register for valid address */
307 	for (i = 0; i < 4; i++) {
308 		bottom = macb_or_gem_readl(bp, SA1B + i * 8);
309 		top = macb_or_gem_readl(bp, SA1T + i * 8);
310 
311 		addr[0] = bottom & 0xff;
312 		addr[1] = (bottom >> 8) & 0xff;
313 		addr[2] = (bottom >> 16) & 0xff;
314 		addr[3] = (bottom >> 24) & 0xff;
315 		addr[4] = top & 0xff;
316 		addr[5] = (top >> 8) & 0xff;
317 
318 		if (is_valid_ether_addr(addr)) {
319 			eth_hw_addr_set(bp->dev, addr);
320 			return;
321 		}
322 	}
323 
324 	dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
325 	eth_hw_addr_random(bp->dev);
326 }
327 
328 static int macb_mdio_wait_for_idle(struct macb *bp)
329 {
330 	u32 val;
331 
332 	return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE),
333 				  1, MACB_MDIO_TIMEOUT);
334 }
335 
336 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
337 {
338 	struct macb *bp = bus->priv;
339 	int status;
340 
341 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
342 	if (status < 0)
343 		goto mdio_pm_exit;
344 
345 	status = macb_mdio_wait_for_idle(bp);
346 	if (status < 0)
347 		goto mdio_read_exit;
348 
349 	if (regnum & MII_ADDR_C45) {
350 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
351 			    | MACB_BF(RW, MACB_MAN_C45_ADDR)
352 			    | MACB_BF(PHYA, mii_id)
353 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
354 			    | MACB_BF(DATA, regnum & 0xFFFF)
355 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
356 
357 		status = macb_mdio_wait_for_idle(bp);
358 		if (status < 0)
359 			goto mdio_read_exit;
360 
361 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
362 			    | MACB_BF(RW, MACB_MAN_C45_READ)
363 			    | MACB_BF(PHYA, mii_id)
364 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
365 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
366 	} else {
367 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
368 				| MACB_BF(RW, MACB_MAN_C22_READ)
369 				| MACB_BF(PHYA, mii_id)
370 				| MACB_BF(REGA, regnum)
371 				| MACB_BF(CODE, MACB_MAN_C22_CODE)));
372 	}
373 
374 	status = macb_mdio_wait_for_idle(bp);
375 	if (status < 0)
376 		goto mdio_read_exit;
377 
378 	status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
379 
380 mdio_read_exit:
381 	pm_runtime_mark_last_busy(&bp->pdev->dev);
382 	pm_runtime_put_autosuspend(&bp->pdev->dev);
383 mdio_pm_exit:
384 	return status;
385 }
386 
387 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
388 			   u16 value)
389 {
390 	struct macb *bp = bus->priv;
391 	int status;
392 
393 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
394 	if (status < 0)
395 		goto mdio_pm_exit;
396 
397 	status = macb_mdio_wait_for_idle(bp);
398 	if (status < 0)
399 		goto mdio_write_exit;
400 
401 	if (regnum & MII_ADDR_C45) {
402 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
403 			    | MACB_BF(RW, MACB_MAN_C45_ADDR)
404 			    | MACB_BF(PHYA, mii_id)
405 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
406 			    | MACB_BF(DATA, regnum & 0xFFFF)
407 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
408 
409 		status = macb_mdio_wait_for_idle(bp);
410 		if (status < 0)
411 			goto mdio_write_exit;
412 
413 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
414 			    | MACB_BF(RW, MACB_MAN_C45_WRITE)
415 			    | MACB_BF(PHYA, mii_id)
416 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
417 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)
418 			    | MACB_BF(DATA, value)));
419 	} else {
420 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
421 				| MACB_BF(RW, MACB_MAN_C22_WRITE)
422 				| MACB_BF(PHYA, mii_id)
423 				| MACB_BF(REGA, regnum)
424 				| MACB_BF(CODE, MACB_MAN_C22_CODE)
425 				| MACB_BF(DATA, value)));
426 	}
427 
428 	status = macb_mdio_wait_for_idle(bp);
429 	if (status < 0)
430 		goto mdio_write_exit;
431 
432 mdio_write_exit:
433 	pm_runtime_mark_last_busy(&bp->pdev->dev);
434 	pm_runtime_put_autosuspend(&bp->pdev->dev);
435 mdio_pm_exit:
436 	return status;
437 }
438 
439 static void macb_init_buffers(struct macb *bp)
440 {
441 	struct macb_queue *queue;
442 	unsigned int q;
443 
444 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
445 		queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma));
446 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
447 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
448 			queue_writel(queue, RBQPH,
449 				     upper_32_bits(queue->rx_ring_dma));
450 #endif
451 		queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
452 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
453 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
454 			queue_writel(queue, TBQPH,
455 				     upper_32_bits(queue->tx_ring_dma));
456 #endif
457 	}
458 }
459 
460 /**
461  * macb_set_tx_clk() - Set a clock to a new frequency
462  * @bp:		pointer to struct macb
463  * @speed:	New frequency in Hz
464  */
465 static void macb_set_tx_clk(struct macb *bp, int speed)
466 {
467 	long ferr, rate, rate_rounded;
468 
469 	if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG))
470 		return;
471 
472 	/* In case of MII the PHY is the clock master */
473 	if (bp->phy_interface == PHY_INTERFACE_MODE_MII)
474 		return;
475 
476 	switch (speed) {
477 	case SPEED_10:
478 		rate = 2500000;
479 		break;
480 	case SPEED_100:
481 		rate = 25000000;
482 		break;
483 	case SPEED_1000:
484 		rate = 125000000;
485 		break;
486 	default:
487 		return;
488 	}
489 
490 	rate_rounded = clk_round_rate(bp->tx_clk, rate);
491 	if (rate_rounded < 0)
492 		return;
493 
494 	/* RGMII allows 50 ppm frequency error. Test and warn if this limit
495 	 * is not satisfied.
496 	 */
497 	ferr = abs(rate_rounded - rate);
498 	ferr = DIV_ROUND_UP(ferr, rate / 100000);
499 	if (ferr > 5)
500 		netdev_warn(bp->dev,
501 			    "unable to generate target frequency: %ld Hz\n",
502 			    rate);
503 
504 	if (clk_set_rate(bp->tx_clk, rate_rounded))
505 		netdev_err(bp->dev, "adjusting tx_clk failed.\n");
506 }
507 
508 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
509 				 phy_interface_t interface, int speed,
510 				 int duplex)
511 {
512 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
513 	u32 config;
514 
515 	config = gem_readl(bp, USX_CONTROL);
516 	config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config);
517 	config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config);
518 	config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS));
519 	config |= GEM_BIT(TX_EN);
520 	gem_writel(bp, USX_CONTROL, config);
521 }
522 
523 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs,
524 				   struct phylink_link_state *state)
525 {
526 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
527 	u32 val;
528 
529 	state->speed = SPEED_10000;
530 	state->duplex = 1;
531 	state->an_complete = 1;
532 
533 	val = gem_readl(bp, USX_STATUS);
534 	state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK));
535 	val = gem_readl(bp, NCFGR);
536 	if (val & GEM_BIT(PAE))
537 		state->pause = MLO_PAUSE_RX;
538 }
539 
540 static int macb_usx_pcs_config(struct phylink_pcs *pcs,
541 			       unsigned int mode,
542 			       phy_interface_t interface,
543 			       const unsigned long *advertising,
544 			       bool permit_pause_to_mac)
545 {
546 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
547 
548 	gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) |
549 		   GEM_BIT(SIGNAL_OK));
550 
551 	return 0;
552 }
553 
554 static void macb_pcs_get_state(struct phylink_pcs *pcs,
555 			       struct phylink_link_state *state)
556 {
557 	state->link = 0;
558 }
559 
560 static void macb_pcs_an_restart(struct phylink_pcs *pcs)
561 {
562 	/* Not supported */
563 }
564 
565 static int macb_pcs_config(struct phylink_pcs *pcs,
566 			   unsigned int mode,
567 			   phy_interface_t interface,
568 			   const unsigned long *advertising,
569 			   bool permit_pause_to_mac)
570 {
571 	return 0;
572 }
573 
574 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = {
575 	.pcs_get_state = macb_usx_pcs_get_state,
576 	.pcs_config = macb_usx_pcs_config,
577 	.pcs_link_up = macb_usx_pcs_link_up,
578 };
579 
580 static const struct phylink_pcs_ops macb_phylink_pcs_ops = {
581 	.pcs_get_state = macb_pcs_get_state,
582 	.pcs_an_restart = macb_pcs_an_restart,
583 	.pcs_config = macb_pcs_config,
584 };
585 
586 static void macb_mac_config(struct phylink_config *config, unsigned int mode,
587 			    const struct phylink_link_state *state)
588 {
589 	struct net_device *ndev = to_net_dev(config->dev);
590 	struct macb *bp = netdev_priv(ndev);
591 	unsigned long flags;
592 	u32 old_ctrl, ctrl;
593 	u32 old_ncr, ncr;
594 
595 	spin_lock_irqsave(&bp->lock, flags);
596 
597 	old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR);
598 	old_ncr = ncr = macb_or_gem_readl(bp, NCR);
599 
600 	if (bp->caps & MACB_CAPS_MACB_IS_EMAC) {
601 		if (state->interface == PHY_INTERFACE_MODE_RMII)
602 			ctrl |= MACB_BIT(RM9200_RMII);
603 	} else if (macb_is_gem(bp)) {
604 		ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL));
605 		ncr &= ~GEM_BIT(ENABLE_HS_MAC);
606 
607 		if (state->interface == PHY_INTERFACE_MODE_SGMII) {
608 			ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
609 		} else if (state->interface == PHY_INTERFACE_MODE_10GBASER) {
610 			ctrl |= GEM_BIT(PCSSEL);
611 			ncr |= GEM_BIT(ENABLE_HS_MAC);
612 		} else if (bp->caps & MACB_CAPS_MIIONRGMII &&
613 			   bp->phy_interface == PHY_INTERFACE_MODE_MII) {
614 			ncr |= MACB_BIT(MIIONRGMII);
615 		}
616 	}
617 
618 	/* Apply the new configuration, if any */
619 	if (old_ctrl ^ ctrl)
620 		macb_or_gem_writel(bp, NCFGR, ctrl);
621 
622 	if (old_ncr ^ ncr)
623 		macb_or_gem_writel(bp, NCR, ncr);
624 
625 	/* Disable AN for SGMII fixed link configuration, enable otherwise.
626 	 * Must be written after PCSSEL is set in NCFGR,
627 	 * otherwise writes will not take effect.
628 	 */
629 	if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) {
630 		u32 pcsctrl, old_pcsctrl;
631 
632 		old_pcsctrl = gem_readl(bp, PCSCNTRL);
633 		if (mode == MLO_AN_FIXED)
634 			pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG);
635 		else
636 			pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG);
637 		if (old_pcsctrl != pcsctrl)
638 			gem_writel(bp, PCSCNTRL, pcsctrl);
639 	}
640 
641 	spin_unlock_irqrestore(&bp->lock, flags);
642 }
643 
644 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode,
645 			       phy_interface_t interface)
646 {
647 	struct net_device *ndev = to_net_dev(config->dev);
648 	struct macb *bp = netdev_priv(ndev);
649 	struct macb_queue *queue;
650 	unsigned int q;
651 	u32 ctrl;
652 
653 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
654 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
655 			queue_writel(queue, IDR,
656 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
657 
658 	/* Disable Rx and Tx */
659 	ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE));
660 	macb_writel(bp, NCR, ctrl);
661 
662 	netif_tx_stop_all_queues(ndev);
663 }
664 
665 static void macb_mac_link_up(struct phylink_config *config,
666 			     struct phy_device *phy,
667 			     unsigned int mode, phy_interface_t interface,
668 			     int speed, int duplex,
669 			     bool tx_pause, bool rx_pause)
670 {
671 	struct net_device *ndev = to_net_dev(config->dev);
672 	struct macb *bp = netdev_priv(ndev);
673 	struct macb_queue *queue;
674 	unsigned long flags;
675 	unsigned int q;
676 	u32 ctrl;
677 
678 	spin_lock_irqsave(&bp->lock, flags);
679 
680 	ctrl = macb_or_gem_readl(bp, NCFGR);
681 
682 	ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
683 
684 	if (speed == SPEED_100)
685 		ctrl |= MACB_BIT(SPD);
686 
687 	if (duplex)
688 		ctrl |= MACB_BIT(FD);
689 
690 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) {
691 		ctrl &= ~MACB_BIT(PAE);
692 		if (macb_is_gem(bp)) {
693 			ctrl &= ~GEM_BIT(GBE);
694 
695 			if (speed == SPEED_1000)
696 				ctrl |= GEM_BIT(GBE);
697 		}
698 
699 		if (rx_pause)
700 			ctrl |= MACB_BIT(PAE);
701 
702 		macb_set_tx_clk(bp, speed);
703 
704 		/* Initialize rings & buffers as clearing MACB_BIT(TE) in link down
705 		 * cleared the pipeline and control registers.
706 		 */
707 		bp->macbgem_ops.mog_init_rings(bp);
708 		macb_init_buffers(bp);
709 
710 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
711 			queue_writel(queue, IER,
712 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
713 	}
714 
715 	macb_or_gem_writel(bp, NCFGR, ctrl);
716 
717 	if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER)
718 		gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M,
719 							gem_readl(bp, HS_MAC_CONFIG)));
720 
721 	spin_unlock_irqrestore(&bp->lock, flags);
722 
723 	/* Enable Rx and Tx */
724 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(RE) | MACB_BIT(TE));
725 
726 	netif_tx_wake_all_queues(ndev);
727 }
728 
729 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config,
730 					       phy_interface_t interface)
731 {
732 	struct net_device *ndev = to_net_dev(config->dev);
733 	struct macb *bp = netdev_priv(ndev);
734 
735 	if (interface == PHY_INTERFACE_MODE_10GBASER)
736 		return &bp->phylink_usx_pcs;
737 	else if (interface == PHY_INTERFACE_MODE_SGMII)
738 		return &bp->phylink_sgmii_pcs;
739 	else
740 		return NULL;
741 }
742 
743 static const struct phylink_mac_ops macb_phylink_ops = {
744 	.validate = phylink_generic_validate,
745 	.mac_select_pcs = macb_mac_select_pcs,
746 	.mac_config = macb_mac_config,
747 	.mac_link_down = macb_mac_link_down,
748 	.mac_link_up = macb_mac_link_up,
749 };
750 
751 static bool macb_phy_handle_exists(struct device_node *dn)
752 {
753 	dn = of_parse_phandle(dn, "phy-handle", 0);
754 	of_node_put(dn);
755 	return dn != NULL;
756 }
757 
758 static int macb_phylink_connect(struct macb *bp)
759 {
760 	struct device_node *dn = bp->pdev->dev.of_node;
761 	struct net_device *dev = bp->dev;
762 	struct phy_device *phydev;
763 	int ret;
764 
765 	if (dn)
766 		ret = phylink_of_phy_connect(bp->phylink, dn, 0);
767 
768 	if (!dn || (ret && !macb_phy_handle_exists(dn))) {
769 		phydev = phy_find_first(bp->mii_bus);
770 		if (!phydev) {
771 			netdev_err(dev, "no PHY found\n");
772 			return -ENXIO;
773 		}
774 
775 		/* attach the mac to the phy */
776 		ret = phylink_connect_phy(bp->phylink, phydev);
777 	}
778 
779 	if (ret) {
780 		netdev_err(dev, "Could not attach PHY (%d)\n", ret);
781 		return ret;
782 	}
783 
784 	phylink_start(bp->phylink);
785 
786 	return 0;
787 }
788 
789 static void macb_get_pcs_fixed_state(struct phylink_config *config,
790 				     struct phylink_link_state *state)
791 {
792 	struct net_device *ndev = to_net_dev(config->dev);
793 	struct macb *bp = netdev_priv(ndev);
794 
795 	state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0;
796 }
797 
798 /* based on au1000_eth. c*/
799 static int macb_mii_probe(struct net_device *dev)
800 {
801 	struct macb *bp = netdev_priv(dev);
802 
803 	bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops;
804 	bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops;
805 
806 	bp->phylink_config.dev = &dev->dev;
807 	bp->phylink_config.type = PHYLINK_NETDEV;
808 
809 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
810 		bp->phylink_config.poll_fixed_state = true;
811 		bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state;
812 	}
813 
814 	bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE |
815 		MAC_10 | MAC_100;
816 
817 	__set_bit(PHY_INTERFACE_MODE_MII,
818 		  bp->phylink_config.supported_interfaces);
819 	__set_bit(PHY_INTERFACE_MODE_RMII,
820 		  bp->phylink_config.supported_interfaces);
821 
822 	/* Determine what modes are supported */
823 	if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) {
824 		bp->phylink_config.mac_capabilities |= MAC_1000FD;
825 		if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF))
826 			bp->phylink_config.mac_capabilities |= MAC_1000HD;
827 
828 		__set_bit(PHY_INTERFACE_MODE_GMII,
829 			  bp->phylink_config.supported_interfaces);
830 		phy_interface_set_rgmii(bp->phylink_config.supported_interfaces);
831 
832 		if (bp->caps & MACB_CAPS_PCS)
833 			__set_bit(PHY_INTERFACE_MODE_SGMII,
834 				  bp->phylink_config.supported_interfaces);
835 
836 		if (bp->caps & MACB_CAPS_HIGH_SPEED) {
837 			__set_bit(PHY_INTERFACE_MODE_10GBASER,
838 				  bp->phylink_config.supported_interfaces);
839 			bp->phylink_config.mac_capabilities |= MAC_10000FD;
840 		}
841 	}
842 
843 	bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode,
844 				     bp->phy_interface, &macb_phylink_ops);
845 	if (IS_ERR(bp->phylink)) {
846 		netdev_err(dev, "Could not create a phylink instance (%ld)\n",
847 			   PTR_ERR(bp->phylink));
848 		return PTR_ERR(bp->phylink);
849 	}
850 
851 	return 0;
852 }
853 
854 static int macb_mdiobus_register(struct macb *bp)
855 {
856 	struct device_node *child, *np = bp->pdev->dev.of_node;
857 
858 	/* If we have a child named mdio, probe it instead of looking for PHYs
859 	 * directly under the MAC node
860 	 */
861 	child = of_get_child_by_name(np, "mdio");
862 	if (child) {
863 		int ret = of_mdiobus_register(bp->mii_bus, child);
864 
865 		of_node_put(child);
866 		return ret;
867 	}
868 
869 	if (of_phy_is_fixed_link(np))
870 		return mdiobus_register(bp->mii_bus);
871 
872 	/* Only create the PHY from the device tree if at least one PHY is
873 	 * described. Otherwise scan the entire MDIO bus. We do this to support
874 	 * old device tree that did not follow the best practices and did not
875 	 * describe their network PHYs.
876 	 */
877 	for_each_available_child_of_node(np, child)
878 		if (of_mdiobus_child_is_phy(child)) {
879 			/* The loop increments the child refcount,
880 			 * decrement it before returning.
881 			 */
882 			of_node_put(child);
883 
884 			return of_mdiobus_register(bp->mii_bus, np);
885 		}
886 
887 	return mdiobus_register(bp->mii_bus);
888 }
889 
890 static int macb_mii_init(struct macb *bp)
891 {
892 	int err = -ENXIO;
893 
894 	/* Enable management port */
895 	macb_writel(bp, NCR, MACB_BIT(MPE));
896 
897 	bp->mii_bus = mdiobus_alloc();
898 	if (!bp->mii_bus) {
899 		err = -ENOMEM;
900 		goto err_out;
901 	}
902 
903 	bp->mii_bus->name = "MACB_mii_bus";
904 	bp->mii_bus->read = &macb_mdio_read;
905 	bp->mii_bus->write = &macb_mdio_write;
906 	snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
907 		 bp->pdev->name, bp->pdev->id);
908 	bp->mii_bus->priv = bp;
909 	bp->mii_bus->parent = &bp->pdev->dev;
910 
911 	dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
912 
913 	err = macb_mdiobus_register(bp);
914 	if (err)
915 		goto err_out_free_mdiobus;
916 
917 	err = macb_mii_probe(bp->dev);
918 	if (err)
919 		goto err_out_unregister_bus;
920 
921 	return 0;
922 
923 err_out_unregister_bus:
924 	mdiobus_unregister(bp->mii_bus);
925 err_out_free_mdiobus:
926 	mdiobus_free(bp->mii_bus);
927 err_out:
928 	return err;
929 }
930 
931 static void macb_update_stats(struct macb *bp)
932 {
933 	u32 *p = &bp->hw_stats.macb.rx_pause_frames;
934 	u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
935 	int offset = MACB_PFR;
936 
937 	WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
938 
939 	for (; p < end; p++, offset += 4)
940 		*p += bp->macb_reg_readl(bp, offset);
941 }
942 
943 static int macb_halt_tx(struct macb *bp)
944 {
945 	unsigned long	halt_time, timeout;
946 	u32		status;
947 
948 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
949 
950 	timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
951 	do {
952 		halt_time = jiffies;
953 		status = macb_readl(bp, TSR);
954 		if (!(status & MACB_BIT(TGO)))
955 			return 0;
956 
957 		udelay(250);
958 	} while (time_before(halt_time, timeout));
959 
960 	return -ETIMEDOUT;
961 }
962 
963 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget)
964 {
965 	if (tx_skb->mapping) {
966 		if (tx_skb->mapped_as_page)
967 			dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
968 				       tx_skb->size, DMA_TO_DEVICE);
969 		else
970 			dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
971 					 tx_skb->size, DMA_TO_DEVICE);
972 		tx_skb->mapping = 0;
973 	}
974 
975 	if (tx_skb->skb) {
976 		napi_consume_skb(tx_skb->skb, budget);
977 		tx_skb->skb = NULL;
978 	}
979 }
980 
981 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr)
982 {
983 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
984 	struct macb_dma_desc_64 *desc_64;
985 
986 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
987 		desc_64 = macb_64b_desc(bp, desc);
988 		desc_64->addrh = upper_32_bits(addr);
989 		/* The low bits of RX address contain the RX_USED bit, clearing
990 		 * of which allows packet RX. Make sure the high bits are also
991 		 * visible to HW at that point.
992 		 */
993 		dma_wmb();
994 	}
995 #endif
996 	desc->addr = lower_32_bits(addr);
997 }
998 
999 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc)
1000 {
1001 	dma_addr_t addr = 0;
1002 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1003 	struct macb_dma_desc_64 *desc_64;
1004 
1005 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1006 		desc_64 = macb_64b_desc(bp, desc);
1007 		addr = ((u64)(desc_64->addrh) << 32);
1008 	}
1009 #endif
1010 	addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1011 	return addr;
1012 }
1013 
1014 static void macb_tx_error_task(struct work_struct *work)
1015 {
1016 	struct macb_queue	*queue = container_of(work, struct macb_queue,
1017 						      tx_error_task);
1018 	struct macb		*bp = queue->bp;
1019 	struct macb_tx_skb	*tx_skb;
1020 	struct macb_dma_desc	*desc;
1021 	struct sk_buff		*skb;
1022 	unsigned int		tail;
1023 	unsigned long		flags;
1024 
1025 	netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
1026 		    (unsigned int)(queue - bp->queues),
1027 		    queue->tx_tail, queue->tx_head);
1028 
1029 	/* Prevent the queue NAPI TX poll from running, as it calls
1030 	 * macb_tx_complete(), which in turn may call netif_wake_subqueue().
1031 	 * As explained below, we have to halt the transmission before updating
1032 	 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
1033 	 * network engine about the macb/gem being halted.
1034 	 */
1035 	napi_disable(&queue->napi_tx);
1036 	spin_lock_irqsave(&bp->lock, flags);
1037 
1038 	/* Make sure nobody is trying to queue up new packets */
1039 	netif_tx_stop_all_queues(bp->dev);
1040 
1041 	/* Stop transmission now
1042 	 * (in case we have just queued new packets)
1043 	 * macb/gem must be halted to write TBQP register
1044 	 */
1045 	if (macb_halt_tx(bp))
1046 		/* Just complain for now, reinitializing TX path can be good */
1047 		netdev_err(bp->dev, "BUG: halt tx timed out\n");
1048 
1049 	/* Treat frames in TX queue including the ones that caused the error.
1050 	 * Free transmit buffers in upper layer.
1051 	 */
1052 	for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
1053 		u32	ctrl;
1054 
1055 		desc = macb_tx_desc(queue, tail);
1056 		ctrl = desc->ctrl;
1057 		tx_skb = macb_tx_skb(queue, tail);
1058 		skb = tx_skb->skb;
1059 
1060 		if (ctrl & MACB_BIT(TX_USED)) {
1061 			/* skb is set for the last buffer of the frame */
1062 			while (!skb) {
1063 				macb_tx_unmap(bp, tx_skb, 0);
1064 				tail++;
1065 				tx_skb = macb_tx_skb(queue, tail);
1066 				skb = tx_skb->skb;
1067 			}
1068 
1069 			/* ctrl still refers to the first buffer descriptor
1070 			 * since it's the only one written back by the hardware
1071 			 */
1072 			if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
1073 				netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
1074 					    macb_tx_ring_wrap(bp, tail),
1075 					    skb->data);
1076 				bp->dev->stats.tx_packets++;
1077 				queue->stats.tx_packets++;
1078 				bp->dev->stats.tx_bytes += skb->len;
1079 				queue->stats.tx_bytes += skb->len;
1080 			}
1081 		} else {
1082 			/* "Buffers exhausted mid-frame" errors may only happen
1083 			 * if the driver is buggy, so complain loudly about
1084 			 * those. Statistics are updated by hardware.
1085 			 */
1086 			if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
1087 				netdev_err(bp->dev,
1088 					   "BUG: TX buffers exhausted mid-frame\n");
1089 
1090 			desc->ctrl = ctrl | MACB_BIT(TX_USED);
1091 		}
1092 
1093 		macb_tx_unmap(bp, tx_skb, 0);
1094 	}
1095 
1096 	/* Set end of TX queue */
1097 	desc = macb_tx_desc(queue, 0);
1098 	macb_set_addr(bp, desc, 0);
1099 	desc->ctrl = MACB_BIT(TX_USED);
1100 
1101 	/* Make descriptor updates visible to hardware */
1102 	wmb();
1103 
1104 	/* Reinitialize the TX desc queue */
1105 	queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
1106 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1107 	if (bp->hw_dma_cap & HW_DMA_CAP_64B)
1108 		queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma));
1109 #endif
1110 	/* Make TX ring reflect state of hardware */
1111 	queue->tx_head = 0;
1112 	queue->tx_tail = 0;
1113 
1114 	/* Housework before enabling TX IRQ */
1115 	macb_writel(bp, TSR, macb_readl(bp, TSR));
1116 	queue_writel(queue, IER, MACB_TX_INT_FLAGS);
1117 
1118 	/* Now we are ready to start transmission again */
1119 	netif_tx_start_all_queues(bp->dev);
1120 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1121 
1122 	spin_unlock_irqrestore(&bp->lock, flags);
1123 	napi_enable(&queue->napi_tx);
1124 }
1125 
1126 static bool ptp_one_step_sync(struct sk_buff *skb)
1127 {
1128 	struct ptp_header *hdr;
1129 	unsigned int ptp_class;
1130 	u8 msgtype;
1131 
1132 	/* No need to parse packet if PTP TS is not involved */
1133 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1134 		goto not_oss;
1135 
1136 	/* Identify and return whether PTP one step sync is being processed */
1137 	ptp_class = ptp_classify_raw(skb);
1138 	if (ptp_class == PTP_CLASS_NONE)
1139 		goto not_oss;
1140 
1141 	hdr = ptp_parse_header(skb, ptp_class);
1142 	if (!hdr)
1143 		goto not_oss;
1144 
1145 	if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP)
1146 		goto not_oss;
1147 
1148 	msgtype = ptp_get_msgtype(hdr, ptp_class);
1149 	if (msgtype == PTP_MSGTYPE_SYNC)
1150 		return true;
1151 
1152 not_oss:
1153 	return false;
1154 }
1155 
1156 static int macb_tx_complete(struct macb_queue *queue, int budget)
1157 {
1158 	struct macb *bp = queue->bp;
1159 	u16 queue_index = queue - bp->queues;
1160 	unsigned int tail;
1161 	unsigned int head;
1162 	int packets = 0;
1163 
1164 	spin_lock(&queue->tx_ptr_lock);
1165 	head = queue->tx_head;
1166 	for (tail = queue->tx_tail; tail != head && packets < budget; tail++) {
1167 		struct macb_tx_skb	*tx_skb;
1168 		struct sk_buff		*skb;
1169 		struct macb_dma_desc	*desc;
1170 		u32			ctrl;
1171 
1172 		desc = macb_tx_desc(queue, tail);
1173 
1174 		/* Make hw descriptor updates visible to CPU */
1175 		rmb();
1176 
1177 		ctrl = desc->ctrl;
1178 
1179 		/* TX_USED bit is only set by hardware on the very first buffer
1180 		 * descriptor of the transmitted frame.
1181 		 */
1182 		if (!(ctrl & MACB_BIT(TX_USED)))
1183 			break;
1184 
1185 		/* Process all buffers of the current transmitted frame */
1186 		for (;; tail++) {
1187 			tx_skb = macb_tx_skb(queue, tail);
1188 			skb = tx_skb->skb;
1189 
1190 			/* First, update TX stats if needed */
1191 			if (skb) {
1192 				if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1193 				    !ptp_one_step_sync(skb) &&
1194 				    gem_ptp_do_txstamp(queue, skb, desc) == 0) {
1195 					/* skb now belongs to timestamp buffer
1196 					 * and will be removed later
1197 					 */
1198 					tx_skb->skb = NULL;
1199 				}
1200 				netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
1201 					    macb_tx_ring_wrap(bp, tail),
1202 					    skb->data);
1203 				bp->dev->stats.tx_packets++;
1204 				queue->stats.tx_packets++;
1205 				bp->dev->stats.tx_bytes += skb->len;
1206 				queue->stats.tx_bytes += skb->len;
1207 				packets++;
1208 			}
1209 
1210 			/* Now we can safely release resources */
1211 			macb_tx_unmap(bp, tx_skb, budget);
1212 
1213 			/* skb is set only for the last buffer of the frame.
1214 			 * WARNING: at this point skb has been freed by
1215 			 * macb_tx_unmap().
1216 			 */
1217 			if (skb)
1218 				break;
1219 		}
1220 	}
1221 
1222 	queue->tx_tail = tail;
1223 	if (__netif_subqueue_stopped(bp->dev, queue_index) &&
1224 	    CIRC_CNT(queue->tx_head, queue->tx_tail,
1225 		     bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp))
1226 		netif_wake_subqueue(bp->dev, queue_index);
1227 	spin_unlock(&queue->tx_ptr_lock);
1228 
1229 	return packets;
1230 }
1231 
1232 static void gem_rx_refill(struct macb_queue *queue)
1233 {
1234 	unsigned int		entry;
1235 	struct sk_buff		*skb;
1236 	dma_addr_t		paddr;
1237 	struct macb *bp = queue->bp;
1238 	struct macb_dma_desc *desc;
1239 
1240 	while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail,
1241 			bp->rx_ring_size) > 0) {
1242 		entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head);
1243 
1244 		/* Make hw descriptor updates visible to CPU */
1245 		rmb();
1246 
1247 		desc = macb_rx_desc(queue, entry);
1248 
1249 		if (!queue->rx_skbuff[entry]) {
1250 			/* allocate sk_buff for this free entry in ring */
1251 			skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
1252 			if (unlikely(!skb)) {
1253 				netdev_err(bp->dev,
1254 					   "Unable to allocate sk_buff\n");
1255 				break;
1256 			}
1257 
1258 			/* now fill corresponding descriptor entry */
1259 			paddr = dma_map_single(&bp->pdev->dev, skb->data,
1260 					       bp->rx_buffer_size,
1261 					       DMA_FROM_DEVICE);
1262 			if (dma_mapping_error(&bp->pdev->dev, paddr)) {
1263 				dev_kfree_skb(skb);
1264 				break;
1265 			}
1266 
1267 			queue->rx_skbuff[entry] = skb;
1268 
1269 			if (entry == bp->rx_ring_size - 1)
1270 				paddr |= MACB_BIT(RX_WRAP);
1271 			desc->ctrl = 0;
1272 			/* Setting addr clears RX_USED and allows reception,
1273 			 * make sure ctrl is cleared first to avoid a race.
1274 			 */
1275 			dma_wmb();
1276 			macb_set_addr(bp, desc, paddr);
1277 
1278 			/* properly align Ethernet header */
1279 			skb_reserve(skb, NET_IP_ALIGN);
1280 		} else {
1281 			desc->ctrl = 0;
1282 			dma_wmb();
1283 			desc->addr &= ~MACB_BIT(RX_USED);
1284 		}
1285 		queue->rx_prepared_head++;
1286 	}
1287 
1288 	/* Make descriptor updates visible to hardware */
1289 	wmb();
1290 
1291 	netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n",
1292 			queue, queue->rx_prepared_head, queue->rx_tail);
1293 }
1294 
1295 /* Mark DMA descriptors from begin up to and not including end as unused */
1296 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin,
1297 				  unsigned int end)
1298 {
1299 	unsigned int frag;
1300 
1301 	for (frag = begin; frag != end; frag++) {
1302 		struct macb_dma_desc *desc = macb_rx_desc(queue, frag);
1303 
1304 		desc->addr &= ~MACB_BIT(RX_USED);
1305 	}
1306 
1307 	/* Make descriptor updates visible to hardware */
1308 	wmb();
1309 
1310 	/* When this happens, the hardware stats registers for
1311 	 * whatever caused this is updated, so we don't have to record
1312 	 * anything.
1313 	 */
1314 }
1315 
1316 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi,
1317 		  int budget)
1318 {
1319 	struct macb *bp = queue->bp;
1320 	unsigned int		len;
1321 	unsigned int		entry;
1322 	struct sk_buff		*skb;
1323 	struct macb_dma_desc	*desc;
1324 	int			count = 0;
1325 
1326 	while (count < budget) {
1327 		u32 ctrl;
1328 		dma_addr_t addr;
1329 		bool rxused;
1330 
1331 		entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1332 		desc = macb_rx_desc(queue, entry);
1333 
1334 		/* Make hw descriptor updates visible to CPU */
1335 		rmb();
1336 
1337 		rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
1338 		addr = macb_get_addr(bp, desc);
1339 
1340 		if (!rxused)
1341 			break;
1342 
1343 		/* Ensure ctrl is at least as up-to-date as rxused */
1344 		dma_rmb();
1345 
1346 		ctrl = desc->ctrl;
1347 
1348 		queue->rx_tail++;
1349 		count++;
1350 
1351 		if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
1352 			netdev_err(bp->dev,
1353 				   "not whole frame pointed by descriptor\n");
1354 			bp->dev->stats.rx_dropped++;
1355 			queue->stats.rx_dropped++;
1356 			break;
1357 		}
1358 		skb = queue->rx_skbuff[entry];
1359 		if (unlikely(!skb)) {
1360 			netdev_err(bp->dev,
1361 				   "inconsistent Rx descriptor chain\n");
1362 			bp->dev->stats.rx_dropped++;
1363 			queue->stats.rx_dropped++;
1364 			break;
1365 		}
1366 		/* now everything is ready for receiving packet */
1367 		queue->rx_skbuff[entry] = NULL;
1368 		len = ctrl & bp->rx_frm_len_mask;
1369 
1370 		netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
1371 
1372 		skb_put(skb, len);
1373 		dma_unmap_single(&bp->pdev->dev, addr,
1374 				 bp->rx_buffer_size, DMA_FROM_DEVICE);
1375 
1376 		skb->protocol = eth_type_trans(skb, bp->dev);
1377 		skb_checksum_none_assert(skb);
1378 		if (bp->dev->features & NETIF_F_RXCSUM &&
1379 		    !(bp->dev->flags & IFF_PROMISC) &&
1380 		    GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
1381 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1382 
1383 		bp->dev->stats.rx_packets++;
1384 		queue->stats.rx_packets++;
1385 		bp->dev->stats.rx_bytes += skb->len;
1386 		queue->stats.rx_bytes += skb->len;
1387 
1388 		gem_ptp_do_rxstamp(bp, skb, desc);
1389 
1390 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1391 		netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1392 			    skb->len, skb->csum);
1393 		print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
1394 			       skb_mac_header(skb), 16, true);
1395 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
1396 			       skb->data, 32, true);
1397 #endif
1398 
1399 		napi_gro_receive(napi, skb);
1400 	}
1401 
1402 	gem_rx_refill(queue);
1403 
1404 	return count;
1405 }
1406 
1407 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi,
1408 			 unsigned int first_frag, unsigned int last_frag)
1409 {
1410 	unsigned int len;
1411 	unsigned int frag;
1412 	unsigned int offset;
1413 	struct sk_buff *skb;
1414 	struct macb_dma_desc *desc;
1415 	struct macb *bp = queue->bp;
1416 
1417 	desc = macb_rx_desc(queue, last_frag);
1418 	len = desc->ctrl & bp->rx_frm_len_mask;
1419 
1420 	netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
1421 		macb_rx_ring_wrap(bp, first_frag),
1422 		macb_rx_ring_wrap(bp, last_frag), len);
1423 
1424 	/* The ethernet header starts NET_IP_ALIGN bytes into the
1425 	 * first buffer. Since the header is 14 bytes, this makes the
1426 	 * payload word-aligned.
1427 	 *
1428 	 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
1429 	 * the two padding bytes into the skb so that we avoid hitting
1430 	 * the slowpath in memcpy(), and pull them off afterwards.
1431 	 */
1432 	skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
1433 	if (!skb) {
1434 		bp->dev->stats.rx_dropped++;
1435 		for (frag = first_frag; ; frag++) {
1436 			desc = macb_rx_desc(queue, frag);
1437 			desc->addr &= ~MACB_BIT(RX_USED);
1438 			if (frag == last_frag)
1439 				break;
1440 		}
1441 
1442 		/* Make descriptor updates visible to hardware */
1443 		wmb();
1444 
1445 		return 1;
1446 	}
1447 
1448 	offset = 0;
1449 	len += NET_IP_ALIGN;
1450 	skb_checksum_none_assert(skb);
1451 	skb_put(skb, len);
1452 
1453 	for (frag = first_frag; ; frag++) {
1454 		unsigned int frag_len = bp->rx_buffer_size;
1455 
1456 		if (offset + frag_len > len) {
1457 			if (unlikely(frag != last_frag)) {
1458 				dev_kfree_skb_any(skb);
1459 				return -1;
1460 			}
1461 			frag_len = len - offset;
1462 		}
1463 		skb_copy_to_linear_data_offset(skb, offset,
1464 					       macb_rx_buffer(queue, frag),
1465 					       frag_len);
1466 		offset += bp->rx_buffer_size;
1467 		desc = macb_rx_desc(queue, frag);
1468 		desc->addr &= ~MACB_BIT(RX_USED);
1469 
1470 		if (frag == last_frag)
1471 			break;
1472 	}
1473 
1474 	/* Make descriptor updates visible to hardware */
1475 	wmb();
1476 
1477 	__skb_pull(skb, NET_IP_ALIGN);
1478 	skb->protocol = eth_type_trans(skb, bp->dev);
1479 
1480 	bp->dev->stats.rx_packets++;
1481 	bp->dev->stats.rx_bytes += skb->len;
1482 	netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1483 		    skb->len, skb->csum);
1484 	napi_gro_receive(napi, skb);
1485 
1486 	return 0;
1487 }
1488 
1489 static inline void macb_init_rx_ring(struct macb_queue *queue)
1490 {
1491 	struct macb *bp = queue->bp;
1492 	dma_addr_t addr;
1493 	struct macb_dma_desc *desc = NULL;
1494 	int i;
1495 
1496 	addr = queue->rx_buffers_dma;
1497 	for (i = 0; i < bp->rx_ring_size; i++) {
1498 		desc = macb_rx_desc(queue, i);
1499 		macb_set_addr(bp, desc, addr);
1500 		desc->ctrl = 0;
1501 		addr += bp->rx_buffer_size;
1502 	}
1503 	desc->addr |= MACB_BIT(RX_WRAP);
1504 	queue->rx_tail = 0;
1505 }
1506 
1507 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi,
1508 		   int budget)
1509 {
1510 	struct macb *bp = queue->bp;
1511 	bool reset_rx_queue = false;
1512 	int received = 0;
1513 	unsigned int tail;
1514 	int first_frag = -1;
1515 
1516 	for (tail = queue->rx_tail; budget > 0; tail++) {
1517 		struct macb_dma_desc *desc = macb_rx_desc(queue, tail);
1518 		u32 ctrl;
1519 
1520 		/* Make hw descriptor updates visible to CPU */
1521 		rmb();
1522 
1523 		if (!(desc->addr & MACB_BIT(RX_USED)))
1524 			break;
1525 
1526 		/* Ensure ctrl is at least as up-to-date as addr */
1527 		dma_rmb();
1528 
1529 		ctrl = desc->ctrl;
1530 
1531 		if (ctrl & MACB_BIT(RX_SOF)) {
1532 			if (first_frag != -1)
1533 				discard_partial_frame(queue, first_frag, tail);
1534 			first_frag = tail;
1535 		}
1536 
1537 		if (ctrl & MACB_BIT(RX_EOF)) {
1538 			int dropped;
1539 
1540 			if (unlikely(first_frag == -1)) {
1541 				reset_rx_queue = true;
1542 				continue;
1543 			}
1544 
1545 			dropped = macb_rx_frame(queue, napi, first_frag, tail);
1546 			first_frag = -1;
1547 			if (unlikely(dropped < 0)) {
1548 				reset_rx_queue = true;
1549 				continue;
1550 			}
1551 			if (!dropped) {
1552 				received++;
1553 				budget--;
1554 			}
1555 		}
1556 	}
1557 
1558 	if (unlikely(reset_rx_queue)) {
1559 		unsigned long flags;
1560 		u32 ctrl;
1561 
1562 		netdev_err(bp->dev, "RX queue corruption: reset it\n");
1563 
1564 		spin_lock_irqsave(&bp->lock, flags);
1565 
1566 		ctrl = macb_readl(bp, NCR);
1567 		macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1568 
1569 		macb_init_rx_ring(queue);
1570 		queue_writel(queue, RBQP, queue->rx_ring_dma);
1571 
1572 		macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1573 
1574 		spin_unlock_irqrestore(&bp->lock, flags);
1575 		return received;
1576 	}
1577 
1578 	if (first_frag != -1)
1579 		queue->rx_tail = first_frag;
1580 	else
1581 		queue->rx_tail = tail;
1582 
1583 	return received;
1584 }
1585 
1586 static bool macb_rx_pending(struct macb_queue *queue)
1587 {
1588 	struct macb *bp = queue->bp;
1589 	unsigned int		entry;
1590 	struct macb_dma_desc	*desc;
1591 
1592 	entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1593 	desc = macb_rx_desc(queue, entry);
1594 
1595 	/* Make hw descriptor updates visible to CPU */
1596 	rmb();
1597 
1598 	return (desc->addr & MACB_BIT(RX_USED)) != 0;
1599 }
1600 
1601 static int macb_rx_poll(struct napi_struct *napi, int budget)
1602 {
1603 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx);
1604 	struct macb *bp = queue->bp;
1605 	int work_done;
1606 
1607 	work_done = bp->macbgem_ops.mog_rx(queue, napi, budget);
1608 
1609 	netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n",
1610 		    (unsigned int)(queue - bp->queues), work_done, budget);
1611 
1612 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1613 		queue_writel(queue, IER, bp->rx_intr_mask);
1614 
1615 		/* Packet completions only seem to propagate to raise
1616 		 * interrupts when interrupts are enabled at the time, so if
1617 		 * packets were received while interrupts were disabled,
1618 		 * they will not cause another interrupt to be generated when
1619 		 * interrupts are re-enabled.
1620 		 * Check for this case here to avoid losing a wakeup. This can
1621 		 * potentially race with the interrupt handler doing the same
1622 		 * actions if an interrupt is raised just after enabling them,
1623 		 * but this should be harmless.
1624 		 */
1625 		if (macb_rx_pending(queue)) {
1626 			queue_writel(queue, IDR, bp->rx_intr_mask);
1627 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1628 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1629 			netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n");
1630 			napi_schedule(napi);
1631 		}
1632 	}
1633 
1634 	/* TODO: Handle errors */
1635 
1636 	return work_done;
1637 }
1638 
1639 static void macb_tx_restart(struct macb_queue *queue)
1640 {
1641 	struct macb *bp = queue->bp;
1642 	unsigned int head_idx, tbqp;
1643 
1644 	spin_lock(&queue->tx_ptr_lock);
1645 
1646 	if (queue->tx_head == queue->tx_tail)
1647 		goto out_tx_ptr_unlock;
1648 
1649 	tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp);
1650 	tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp));
1651 	head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head));
1652 
1653 	if (tbqp == head_idx)
1654 		goto out_tx_ptr_unlock;
1655 
1656 	spin_lock_irq(&bp->lock);
1657 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1658 	spin_unlock_irq(&bp->lock);
1659 
1660 out_tx_ptr_unlock:
1661 	spin_unlock(&queue->tx_ptr_lock);
1662 }
1663 
1664 static bool macb_tx_complete_pending(struct macb_queue *queue)
1665 {
1666 	bool retval = false;
1667 
1668 	spin_lock(&queue->tx_ptr_lock);
1669 	if (queue->tx_head != queue->tx_tail) {
1670 		/* Make hw descriptor updates visible to CPU */
1671 		rmb();
1672 
1673 		if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED))
1674 			retval = true;
1675 	}
1676 	spin_unlock(&queue->tx_ptr_lock);
1677 	return retval;
1678 }
1679 
1680 static int macb_tx_poll(struct napi_struct *napi, int budget)
1681 {
1682 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx);
1683 	struct macb *bp = queue->bp;
1684 	int work_done;
1685 
1686 	work_done = macb_tx_complete(queue, budget);
1687 
1688 	rmb(); // ensure txubr_pending is up to date
1689 	if (queue->txubr_pending) {
1690 		queue->txubr_pending = false;
1691 		netdev_vdbg(bp->dev, "poll: tx restart\n");
1692 		macb_tx_restart(queue);
1693 	}
1694 
1695 	netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n",
1696 		    (unsigned int)(queue - bp->queues), work_done, budget);
1697 
1698 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1699 		queue_writel(queue, IER, MACB_BIT(TCOMP));
1700 
1701 		/* Packet completions only seem to propagate to raise
1702 		 * interrupts when interrupts are enabled at the time, so if
1703 		 * packets were sent while interrupts were disabled,
1704 		 * they will not cause another interrupt to be generated when
1705 		 * interrupts are re-enabled.
1706 		 * Check for this case here to avoid losing a wakeup. This can
1707 		 * potentially race with the interrupt handler doing the same
1708 		 * actions if an interrupt is raised just after enabling them,
1709 		 * but this should be harmless.
1710 		 */
1711 		if (macb_tx_complete_pending(queue)) {
1712 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1713 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1714 				queue_writel(queue, ISR, MACB_BIT(TCOMP));
1715 			netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n");
1716 			napi_schedule(napi);
1717 		}
1718 	}
1719 
1720 	return work_done;
1721 }
1722 
1723 static void macb_hresp_error_task(struct tasklet_struct *t)
1724 {
1725 	struct macb *bp = from_tasklet(bp, t, hresp_err_tasklet);
1726 	struct net_device *dev = bp->dev;
1727 	struct macb_queue *queue;
1728 	unsigned int q;
1729 	u32 ctrl;
1730 
1731 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1732 		queue_writel(queue, IDR, bp->rx_intr_mask |
1733 					 MACB_TX_INT_FLAGS |
1734 					 MACB_BIT(HRESP));
1735 	}
1736 	ctrl = macb_readl(bp, NCR);
1737 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
1738 	macb_writel(bp, NCR, ctrl);
1739 
1740 	netif_tx_stop_all_queues(dev);
1741 	netif_carrier_off(dev);
1742 
1743 	bp->macbgem_ops.mog_init_rings(bp);
1744 
1745 	/* Initialize TX and RX buffers */
1746 	macb_init_buffers(bp);
1747 
1748 	/* Enable interrupts */
1749 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1750 		queue_writel(queue, IER,
1751 			     bp->rx_intr_mask |
1752 			     MACB_TX_INT_FLAGS |
1753 			     MACB_BIT(HRESP));
1754 
1755 	ctrl |= MACB_BIT(RE) | MACB_BIT(TE);
1756 	macb_writel(bp, NCR, ctrl);
1757 
1758 	netif_carrier_on(dev);
1759 	netif_tx_start_all_queues(dev);
1760 }
1761 
1762 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id)
1763 {
1764 	struct macb_queue *queue = dev_id;
1765 	struct macb *bp = queue->bp;
1766 	u32 status;
1767 
1768 	status = queue_readl(queue, ISR);
1769 
1770 	if (unlikely(!status))
1771 		return IRQ_NONE;
1772 
1773 	spin_lock(&bp->lock);
1774 
1775 	if (status & MACB_BIT(WOL)) {
1776 		queue_writel(queue, IDR, MACB_BIT(WOL));
1777 		macb_writel(bp, WOL, 0);
1778 		netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n",
1779 			    (unsigned int)(queue - bp->queues),
1780 			    (unsigned long)status);
1781 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1782 			queue_writel(queue, ISR, MACB_BIT(WOL));
1783 		pm_wakeup_event(&bp->pdev->dev, 0);
1784 	}
1785 
1786 	spin_unlock(&bp->lock);
1787 
1788 	return IRQ_HANDLED;
1789 }
1790 
1791 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id)
1792 {
1793 	struct macb_queue *queue = dev_id;
1794 	struct macb *bp = queue->bp;
1795 	u32 status;
1796 
1797 	status = queue_readl(queue, ISR);
1798 
1799 	if (unlikely(!status))
1800 		return IRQ_NONE;
1801 
1802 	spin_lock(&bp->lock);
1803 
1804 	if (status & GEM_BIT(WOL)) {
1805 		queue_writel(queue, IDR, GEM_BIT(WOL));
1806 		gem_writel(bp, WOL, 0);
1807 		netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n",
1808 			    (unsigned int)(queue - bp->queues),
1809 			    (unsigned long)status);
1810 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1811 			queue_writel(queue, ISR, GEM_BIT(WOL));
1812 		pm_wakeup_event(&bp->pdev->dev, 0);
1813 	}
1814 
1815 	spin_unlock(&bp->lock);
1816 
1817 	return IRQ_HANDLED;
1818 }
1819 
1820 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1821 {
1822 	struct macb_queue *queue = dev_id;
1823 	struct macb *bp = queue->bp;
1824 	struct net_device *dev = bp->dev;
1825 	u32 status, ctrl;
1826 
1827 	status = queue_readl(queue, ISR);
1828 
1829 	if (unlikely(!status))
1830 		return IRQ_NONE;
1831 
1832 	spin_lock(&bp->lock);
1833 
1834 	while (status) {
1835 		/* close possible race with dev_close */
1836 		if (unlikely(!netif_running(dev))) {
1837 			queue_writel(queue, IDR, -1);
1838 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1839 				queue_writel(queue, ISR, -1);
1840 			break;
1841 		}
1842 
1843 		netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1844 			    (unsigned int)(queue - bp->queues),
1845 			    (unsigned long)status);
1846 
1847 		if (status & bp->rx_intr_mask) {
1848 			/* There's no point taking any more interrupts
1849 			 * until we have processed the buffers. The
1850 			 * scheduling call may fail if the poll routine
1851 			 * is already scheduled, so disable interrupts
1852 			 * now.
1853 			 */
1854 			queue_writel(queue, IDR, bp->rx_intr_mask);
1855 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1856 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1857 
1858 			if (napi_schedule_prep(&queue->napi_rx)) {
1859 				netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1860 				__napi_schedule(&queue->napi_rx);
1861 			}
1862 		}
1863 
1864 		if (status & (MACB_BIT(TCOMP) |
1865 			      MACB_BIT(TXUBR))) {
1866 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1867 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1868 				queue_writel(queue, ISR, MACB_BIT(TCOMP) |
1869 							 MACB_BIT(TXUBR));
1870 
1871 			if (status & MACB_BIT(TXUBR)) {
1872 				queue->txubr_pending = true;
1873 				wmb(); // ensure softirq can see update
1874 			}
1875 
1876 			if (napi_schedule_prep(&queue->napi_tx)) {
1877 				netdev_vdbg(bp->dev, "scheduling TX softirq\n");
1878 				__napi_schedule(&queue->napi_tx);
1879 			}
1880 		}
1881 
1882 		if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1883 			queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1884 			schedule_work(&queue->tx_error_task);
1885 
1886 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1887 				queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1888 
1889 			break;
1890 		}
1891 
1892 		/* Link change detection isn't possible with RMII, so we'll
1893 		 * add that if/when we get our hands on a full-blown MII PHY.
1894 		 */
1895 
1896 		/* There is a hardware issue under heavy load where DMA can
1897 		 * stop, this causes endless "used buffer descriptor read"
1898 		 * interrupts but it can be cleared by re-enabling RX. See
1899 		 * the at91rm9200 manual, section 41.3.1 or the Zynq manual
1900 		 * section 16.7.4 for details. RXUBR is only enabled for
1901 		 * these two versions.
1902 		 */
1903 		if (status & MACB_BIT(RXUBR)) {
1904 			ctrl = macb_readl(bp, NCR);
1905 			macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1906 			wmb();
1907 			macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1908 
1909 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1910 				queue_writel(queue, ISR, MACB_BIT(RXUBR));
1911 		}
1912 
1913 		if (status & MACB_BIT(ISR_ROVR)) {
1914 			/* We missed at least one packet */
1915 			if (macb_is_gem(bp))
1916 				bp->hw_stats.gem.rx_overruns++;
1917 			else
1918 				bp->hw_stats.macb.rx_overruns++;
1919 
1920 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1921 				queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1922 		}
1923 
1924 		if (status & MACB_BIT(HRESP)) {
1925 			tasklet_schedule(&bp->hresp_err_tasklet);
1926 			netdev_err(dev, "DMA bus error: HRESP not OK\n");
1927 
1928 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1929 				queue_writel(queue, ISR, MACB_BIT(HRESP));
1930 		}
1931 		status = queue_readl(queue, ISR);
1932 	}
1933 
1934 	spin_unlock(&bp->lock);
1935 
1936 	return IRQ_HANDLED;
1937 }
1938 
1939 #ifdef CONFIG_NET_POLL_CONTROLLER
1940 /* Polling receive - used by netconsole and other diagnostic tools
1941  * to allow network i/o with interrupts disabled.
1942  */
1943 static void macb_poll_controller(struct net_device *dev)
1944 {
1945 	struct macb *bp = netdev_priv(dev);
1946 	struct macb_queue *queue;
1947 	unsigned long flags;
1948 	unsigned int q;
1949 
1950 	local_irq_save(flags);
1951 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1952 		macb_interrupt(dev->irq, queue);
1953 	local_irq_restore(flags);
1954 }
1955 #endif
1956 
1957 static unsigned int macb_tx_map(struct macb *bp,
1958 				struct macb_queue *queue,
1959 				struct sk_buff *skb,
1960 				unsigned int hdrlen)
1961 {
1962 	dma_addr_t mapping;
1963 	unsigned int len, entry, i, tx_head = queue->tx_head;
1964 	struct macb_tx_skb *tx_skb = NULL;
1965 	struct macb_dma_desc *desc;
1966 	unsigned int offset, size, count = 0;
1967 	unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
1968 	unsigned int eof = 1, mss_mfs = 0;
1969 	u32 ctrl, lso_ctrl = 0, seq_ctrl = 0;
1970 
1971 	/* LSO */
1972 	if (skb_shinfo(skb)->gso_size != 0) {
1973 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
1974 			/* UDP - UFO */
1975 			lso_ctrl = MACB_LSO_UFO_ENABLE;
1976 		else
1977 			/* TCP - TSO */
1978 			lso_ctrl = MACB_LSO_TSO_ENABLE;
1979 	}
1980 
1981 	/* First, map non-paged data */
1982 	len = skb_headlen(skb);
1983 
1984 	/* first buffer length */
1985 	size = hdrlen;
1986 
1987 	offset = 0;
1988 	while (len) {
1989 		entry = macb_tx_ring_wrap(bp, tx_head);
1990 		tx_skb = &queue->tx_skb[entry];
1991 
1992 		mapping = dma_map_single(&bp->pdev->dev,
1993 					 skb->data + offset,
1994 					 size, DMA_TO_DEVICE);
1995 		if (dma_mapping_error(&bp->pdev->dev, mapping))
1996 			goto dma_error;
1997 
1998 		/* Save info to properly release resources */
1999 		tx_skb->skb = NULL;
2000 		tx_skb->mapping = mapping;
2001 		tx_skb->size = size;
2002 		tx_skb->mapped_as_page = false;
2003 
2004 		len -= size;
2005 		offset += size;
2006 		count++;
2007 		tx_head++;
2008 
2009 		size = min(len, bp->max_tx_length);
2010 	}
2011 
2012 	/* Then, map paged data from fragments */
2013 	for (f = 0; f < nr_frags; f++) {
2014 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2015 
2016 		len = skb_frag_size(frag);
2017 		offset = 0;
2018 		while (len) {
2019 			size = min(len, bp->max_tx_length);
2020 			entry = macb_tx_ring_wrap(bp, tx_head);
2021 			tx_skb = &queue->tx_skb[entry];
2022 
2023 			mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
2024 						   offset, size, DMA_TO_DEVICE);
2025 			if (dma_mapping_error(&bp->pdev->dev, mapping))
2026 				goto dma_error;
2027 
2028 			/* Save info to properly release resources */
2029 			tx_skb->skb = NULL;
2030 			tx_skb->mapping = mapping;
2031 			tx_skb->size = size;
2032 			tx_skb->mapped_as_page = true;
2033 
2034 			len -= size;
2035 			offset += size;
2036 			count++;
2037 			tx_head++;
2038 		}
2039 	}
2040 
2041 	/* Should never happen */
2042 	if (unlikely(!tx_skb)) {
2043 		netdev_err(bp->dev, "BUG! empty skb!\n");
2044 		return 0;
2045 	}
2046 
2047 	/* This is the last buffer of the frame: save socket buffer */
2048 	tx_skb->skb = skb;
2049 
2050 	/* Update TX ring: update buffer descriptors in reverse order
2051 	 * to avoid race condition
2052 	 */
2053 
2054 	/* Set 'TX_USED' bit in buffer descriptor at tx_head position
2055 	 * to set the end of TX queue
2056 	 */
2057 	i = tx_head;
2058 	entry = macb_tx_ring_wrap(bp, i);
2059 	ctrl = MACB_BIT(TX_USED);
2060 	desc = macb_tx_desc(queue, entry);
2061 	desc->ctrl = ctrl;
2062 
2063 	if (lso_ctrl) {
2064 		if (lso_ctrl == MACB_LSO_UFO_ENABLE)
2065 			/* include header and FCS in value given to h/w */
2066 			mss_mfs = skb_shinfo(skb)->gso_size +
2067 					skb_transport_offset(skb) +
2068 					ETH_FCS_LEN;
2069 		else /* TSO */ {
2070 			mss_mfs = skb_shinfo(skb)->gso_size;
2071 			/* TCP Sequence Number Source Select
2072 			 * can be set only for TSO
2073 			 */
2074 			seq_ctrl = 0;
2075 		}
2076 	}
2077 
2078 	do {
2079 		i--;
2080 		entry = macb_tx_ring_wrap(bp, i);
2081 		tx_skb = &queue->tx_skb[entry];
2082 		desc = macb_tx_desc(queue, entry);
2083 
2084 		ctrl = (u32)tx_skb->size;
2085 		if (eof) {
2086 			ctrl |= MACB_BIT(TX_LAST);
2087 			eof = 0;
2088 		}
2089 		if (unlikely(entry == (bp->tx_ring_size - 1)))
2090 			ctrl |= MACB_BIT(TX_WRAP);
2091 
2092 		/* First descriptor is header descriptor */
2093 		if (i == queue->tx_head) {
2094 			ctrl |= MACB_BF(TX_LSO, lso_ctrl);
2095 			ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl);
2096 			if ((bp->dev->features & NETIF_F_HW_CSUM) &&
2097 			    skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl &&
2098 			    !ptp_one_step_sync(skb))
2099 				ctrl |= MACB_BIT(TX_NOCRC);
2100 		} else
2101 			/* Only set MSS/MFS on payload descriptors
2102 			 * (second or later descriptor)
2103 			 */
2104 			ctrl |= MACB_BF(MSS_MFS, mss_mfs);
2105 
2106 		/* Set TX buffer descriptor */
2107 		macb_set_addr(bp, desc, tx_skb->mapping);
2108 		/* desc->addr must be visible to hardware before clearing
2109 		 * 'TX_USED' bit in desc->ctrl.
2110 		 */
2111 		wmb();
2112 		desc->ctrl = ctrl;
2113 	} while (i != queue->tx_head);
2114 
2115 	queue->tx_head = tx_head;
2116 
2117 	return count;
2118 
2119 dma_error:
2120 	netdev_err(bp->dev, "TX DMA map failed\n");
2121 
2122 	for (i = queue->tx_head; i != tx_head; i++) {
2123 		tx_skb = macb_tx_skb(queue, i);
2124 
2125 		macb_tx_unmap(bp, tx_skb, 0);
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static netdev_features_t macb_features_check(struct sk_buff *skb,
2132 					     struct net_device *dev,
2133 					     netdev_features_t features)
2134 {
2135 	unsigned int nr_frags, f;
2136 	unsigned int hdrlen;
2137 
2138 	/* Validate LSO compatibility */
2139 
2140 	/* there is only one buffer or protocol is not UDP */
2141 	if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP))
2142 		return features;
2143 
2144 	/* length of header */
2145 	hdrlen = skb_transport_offset(skb);
2146 
2147 	/* For UFO only:
2148 	 * When software supplies two or more payload buffers all payload buffers
2149 	 * apart from the last must be a multiple of 8 bytes in size.
2150 	 */
2151 	if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN))
2152 		return features & ~MACB_NETIF_LSO;
2153 
2154 	nr_frags = skb_shinfo(skb)->nr_frags;
2155 	/* No need to check last fragment */
2156 	nr_frags--;
2157 	for (f = 0; f < nr_frags; f++) {
2158 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2159 
2160 		if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN))
2161 			return features & ~MACB_NETIF_LSO;
2162 	}
2163 	return features;
2164 }
2165 
2166 static inline int macb_clear_csum(struct sk_buff *skb)
2167 {
2168 	/* no change for packets without checksum offloading */
2169 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2170 		return 0;
2171 
2172 	/* make sure we can modify the header */
2173 	if (unlikely(skb_cow_head(skb, 0)))
2174 		return -1;
2175 
2176 	/* initialize checksum field
2177 	 * This is required - at least for Zynq, which otherwise calculates
2178 	 * wrong UDP header checksums for UDP packets with UDP data len <=2
2179 	 */
2180 	*(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
2181 	return 0;
2182 }
2183 
2184 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev)
2185 {
2186 	bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) ||
2187 		      skb_is_nonlinear(*skb);
2188 	int padlen = ETH_ZLEN - (*skb)->len;
2189 	int headroom = skb_headroom(*skb);
2190 	int tailroom = skb_tailroom(*skb);
2191 	struct sk_buff *nskb;
2192 	u32 fcs;
2193 
2194 	if (!(ndev->features & NETIF_F_HW_CSUM) ||
2195 	    !((*skb)->ip_summed != CHECKSUM_PARTIAL) ||
2196 	    skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb))
2197 		return 0;
2198 
2199 	if (padlen <= 0) {
2200 		/* FCS could be appeded to tailroom. */
2201 		if (tailroom >= ETH_FCS_LEN)
2202 			goto add_fcs;
2203 		/* FCS could be appeded by moving data to headroom. */
2204 		else if (!cloned && headroom + tailroom >= ETH_FCS_LEN)
2205 			padlen = 0;
2206 		/* No room for FCS, need to reallocate skb. */
2207 		else
2208 			padlen = ETH_FCS_LEN;
2209 	} else {
2210 		/* Add room for FCS. */
2211 		padlen += ETH_FCS_LEN;
2212 	}
2213 
2214 	if (!cloned && headroom + tailroom >= padlen) {
2215 		(*skb)->data = memmove((*skb)->head, (*skb)->data, (*skb)->len);
2216 		skb_set_tail_pointer(*skb, (*skb)->len);
2217 	} else {
2218 		nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC);
2219 		if (!nskb)
2220 			return -ENOMEM;
2221 
2222 		dev_consume_skb_any(*skb);
2223 		*skb = nskb;
2224 	}
2225 
2226 	if (padlen > ETH_FCS_LEN)
2227 		skb_put_zero(*skb, padlen - ETH_FCS_LEN);
2228 
2229 add_fcs:
2230 	/* set FCS to packet */
2231 	fcs = crc32_le(~0, (*skb)->data, (*skb)->len);
2232 	fcs = ~fcs;
2233 
2234 	skb_put_u8(*skb, fcs		& 0xff);
2235 	skb_put_u8(*skb, (fcs >> 8)	& 0xff);
2236 	skb_put_u8(*skb, (fcs >> 16)	& 0xff);
2237 	skb_put_u8(*skb, (fcs >> 24)	& 0xff);
2238 
2239 	return 0;
2240 }
2241 
2242 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
2243 {
2244 	u16 queue_index = skb_get_queue_mapping(skb);
2245 	struct macb *bp = netdev_priv(dev);
2246 	struct macb_queue *queue = &bp->queues[queue_index];
2247 	unsigned int desc_cnt, nr_frags, frag_size, f;
2248 	unsigned int hdrlen;
2249 	bool is_lso;
2250 	netdev_tx_t ret = NETDEV_TX_OK;
2251 
2252 	if (macb_clear_csum(skb)) {
2253 		dev_kfree_skb_any(skb);
2254 		return ret;
2255 	}
2256 
2257 	if (macb_pad_and_fcs(&skb, dev)) {
2258 		dev_kfree_skb_any(skb);
2259 		return ret;
2260 	}
2261 
2262 	is_lso = (skb_shinfo(skb)->gso_size != 0);
2263 
2264 	if (is_lso) {
2265 		/* length of headers */
2266 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2267 			/* only queue eth + ip headers separately for UDP */
2268 			hdrlen = skb_transport_offset(skb);
2269 		else
2270 			hdrlen = skb_tcp_all_headers(skb);
2271 		if (skb_headlen(skb) < hdrlen) {
2272 			netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n");
2273 			/* if this is required, would need to copy to single buffer */
2274 			return NETDEV_TX_BUSY;
2275 		}
2276 	} else
2277 		hdrlen = min(skb_headlen(skb), bp->max_tx_length);
2278 
2279 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
2280 	netdev_vdbg(bp->dev,
2281 		    "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
2282 		    queue_index, skb->len, skb->head, skb->data,
2283 		    skb_tail_pointer(skb), skb_end_pointer(skb));
2284 	print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
2285 		       skb->data, 16, true);
2286 #endif
2287 
2288 	/* Count how many TX buffer descriptors are needed to send this
2289 	 * socket buffer: skb fragments of jumbo frames may need to be
2290 	 * split into many buffer descriptors.
2291 	 */
2292 	if (is_lso && (skb_headlen(skb) > hdrlen))
2293 		/* extra header descriptor if also payload in first buffer */
2294 		desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1;
2295 	else
2296 		desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
2297 	nr_frags = skb_shinfo(skb)->nr_frags;
2298 	for (f = 0; f < nr_frags; f++) {
2299 		frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2300 		desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length);
2301 	}
2302 
2303 	spin_lock_bh(&queue->tx_ptr_lock);
2304 
2305 	/* This is a hard error, log it. */
2306 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail,
2307 		       bp->tx_ring_size) < desc_cnt) {
2308 		netif_stop_subqueue(dev, queue_index);
2309 		netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
2310 			   queue->tx_head, queue->tx_tail);
2311 		ret = NETDEV_TX_BUSY;
2312 		goto unlock;
2313 	}
2314 
2315 	/* Map socket buffer for DMA transfer */
2316 	if (!macb_tx_map(bp, queue, skb, hdrlen)) {
2317 		dev_kfree_skb_any(skb);
2318 		goto unlock;
2319 	}
2320 
2321 	/* Make newly initialized descriptor visible to hardware */
2322 	wmb();
2323 	skb_tx_timestamp(skb);
2324 
2325 	spin_lock_irq(&bp->lock);
2326 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
2327 	spin_unlock_irq(&bp->lock);
2328 
2329 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1)
2330 		netif_stop_subqueue(dev, queue_index);
2331 
2332 unlock:
2333 	spin_unlock_bh(&queue->tx_ptr_lock);
2334 
2335 	return ret;
2336 }
2337 
2338 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
2339 {
2340 	if (!macb_is_gem(bp)) {
2341 		bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
2342 	} else {
2343 		bp->rx_buffer_size = size;
2344 
2345 		if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
2346 			netdev_dbg(bp->dev,
2347 				   "RX buffer must be multiple of %d bytes, expanding\n",
2348 				   RX_BUFFER_MULTIPLE);
2349 			bp->rx_buffer_size =
2350 				roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
2351 		}
2352 	}
2353 
2354 	netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n",
2355 		   bp->dev->mtu, bp->rx_buffer_size);
2356 }
2357 
2358 static void gem_free_rx_buffers(struct macb *bp)
2359 {
2360 	struct sk_buff		*skb;
2361 	struct macb_dma_desc	*desc;
2362 	struct macb_queue *queue;
2363 	dma_addr_t		addr;
2364 	unsigned int q;
2365 	int i;
2366 
2367 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2368 		if (!queue->rx_skbuff)
2369 			continue;
2370 
2371 		for (i = 0; i < bp->rx_ring_size; i++) {
2372 			skb = queue->rx_skbuff[i];
2373 
2374 			if (!skb)
2375 				continue;
2376 
2377 			desc = macb_rx_desc(queue, i);
2378 			addr = macb_get_addr(bp, desc);
2379 
2380 			dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
2381 					DMA_FROM_DEVICE);
2382 			dev_kfree_skb_any(skb);
2383 			skb = NULL;
2384 		}
2385 
2386 		kfree(queue->rx_skbuff);
2387 		queue->rx_skbuff = NULL;
2388 	}
2389 }
2390 
2391 static void macb_free_rx_buffers(struct macb *bp)
2392 {
2393 	struct macb_queue *queue = &bp->queues[0];
2394 
2395 	if (queue->rx_buffers) {
2396 		dma_free_coherent(&bp->pdev->dev,
2397 				  bp->rx_ring_size * bp->rx_buffer_size,
2398 				  queue->rx_buffers, queue->rx_buffers_dma);
2399 		queue->rx_buffers = NULL;
2400 	}
2401 }
2402 
2403 static void macb_free_consistent(struct macb *bp)
2404 {
2405 	struct macb_queue *queue;
2406 	unsigned int q;
2407 	int size;
2408 
2409 	bp->macbgem_ops.mog_free_rx_buffers(bp);
2410 
2411 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2412 		kfree(queue->tx_skb);
2413 		queue->tx_skb = NULL;
2414 		if (queue->tx_ring) {
2415 			size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2416 			dma_free_coherent(&bp->pdev->dev, size,
2417 					  queue->tx_ring, queue->tx_ring_dma);
2418 			queue->tx_ring = NULL;
2419 		}
2420 		if (queue->rx_ring) {
2421 			size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2422 			dma_free_coherent(&bp->pdev->dev, size,
2423 					  queue->rx_ring, queue->rx_ring_dma);
2424 			queue->rx_ring = NULL;
2425 		}
2426 	}
2427 }
2428 
2429 static int gem_alloc_rx_buffers(struct macb *bp)
2430 {
2431 	struct macb_queue *queue;
2432 	unsigned int q;
2433 	int size;
2434 
2435 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2436 		size = bp->rx_ring_size * sizeof(struct sk_buff *);
2437 		queue->rx_skbuff = kzalloc(size, GFP_KERNEL);
2438 		if (!queue->rx_skbuff)
2439 			return -ENOMEM;
2440 		else
2441 			netdev_dbg(bp->dev,
2442 				   "Allocated %d RX struct sk_buff entries at %p\n",
2443 				   bp->rx_ring_size, queue->rx_skbuff);
2444 	}
2445 	return 0;
2446 }
2447 
2448 static int macb_alloc_rx_buffers(struct macb *bp)
2449 {
2450 	struct macb_queue *queue = &bp->queues[0];
2451 	int size;
2452 
2453 	size = bp->rx_ring_size * bp->rx_buffer_size;
2454 	queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
2455 					    &queue->rx_buffers_dma, GFP_KERNEL);
2456 	if (!queue->rx_buffers)
2457 		return -ENOMEM;
2458 
2459 	netdev_dbg(bp->dev,
2460 		   "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
2461 		   size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers);
2462 	return 0;
2463 }
2464 
2465 static int macb_alloc_consistent(struct macb *bp)
2466 {
2467 	struct macb_queue *queue;
2468 	unsigned int q;
2469 	int size;
2470 
2471 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2472 		size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2473 		queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2474 						    &queue->tx_ring_dma,
2475 						    GFP_KERNEL);
2476 		if (!queue->tx_ring)
2477 			goto out_err;
2478 		netdev_dbg(bp->dev,
2479 			   "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
2480 			   q, size, (unsigned long)queue->tx_ring_dma,
2481 			   queue->tx_ring);
2482 
2483 		size = bp->tx_ring_size * sizeof(struct macb_tx_skb);
2484 		queue->tx_skb = kmalloc(size, GFP_KERNEL);
2485 		if (!queue->tx_skb)
2486 			goto out_err;
2487 
2488 		size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2489 		queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2490 						 &queue->rx_ring_dma, GFP_KERNEL);
2491 		if (!queue->rx_ring)
2492 			goto out_err;
2493 		netdev_dbg(bp->dev,
2494 			   "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
2495 			   size, (unsigned long)queue->rx_ring_dma, queue->rx_ring);
2496 	}
2497 	if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
2498 		goto out_err;
2499 
2500 	return 0;
2501 
2502 out_err:
2503 	macb_free_consistent(bp);
2504 	return -ENOMEM;
2505 }
2506 
2507 static void gem_init_rings(struct macb *bp)
2508 {
2509 	struct macb_queue *queue;
2510 	struct macb_dma_desc *desc = NULL;
2511 	unsigned int q;
2512 	int i;
2513 
2514 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2515 		for (i = 0; i < bp->tx_ring_size; i++) {
2516 			desc = macb_tx_desc(queue, i);
2517 			macb_set_addr(bp, desc, 0);
2518 			desc->ctrl = MACB_BIT(TX_USED);
2519 		}
2520 		desc->ctrl |= MACB_BIT(TX_WRAP);
2521 		queue->tx_head = 0;
2522 		queue->tx_tail = 0;
2523 
2524 		queue->rx_tail = 0;
2525 		queue->rx_prepared_head = 0;
2526 
2527 		gem_rx_refill(queue);
2528 	}
2529 
2530 }
2531 
2532 static void macb_init_rings(struct macb *bp)
2533 {
2534 	int i;
2535 	struct macb_dma_desc *desc = NULL;
2536 
2537 	macb_init_rx_ring(&bp->queues[0]);
2538 
2539 	for (i = 0; i < bp->tx_ring_size; i++) {
2540 		desc = macb_tx_desc(&bp->queues[0], i);
2541 		macb_set_addr(bp, desc, 0);
2542 		desc->ctrl = MACB_BIT(TX_USED);
2543 	}
2544 	bp->queues[0].tx_head = 0;
2545 	bp->queues[0].tx_tail = 0;
2546 	desc->ctrl |= MACB_BIT(TX_WRAP);
2547 }
2548 
2549 static void macb_reset_hw(struct macb *bp)
2550 {
2551 	struct macb_queue *queue;
2552 	unsigned int q;
2553 	u32 ctrl = macb_readl(bp, NCR);
2554 
2555 	/* Disable RX and TX (XXX: Should we halt the transmission
2556 	 * more gracefully?)
2557 	 */
2558 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
2559 
2560 	/* Clear the stats registers (XXX: Update stats first?) */
2561 	ctrl |= MACB_BIT(CLRSTAT);
2562 
2563 	macb_writel(bp, NCR, ctrl);
2564 
2565 	/* Clear all status flags */
2566 	macb_writel(bp, TSR, -1);
2567 	macb_writel(bp, RSR, -1);
2568 
2569 	/* Disable all interrupts */
2570 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2571 		queue_writel(queue, IDR, -1);
2572 		queue_readl(queue, ISR);
2573 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2574 			queue_writel(queue, ISR, -1);
2575 	}
2576 }
2577 
2578 static u32 gem_mdc_clk_div(struct macb *bp)
2579 {
2580 	u32 config;
2581 	unsigned long pclk_hz = clk_get_rate(bp->pclk);
2582 
2583 	if (pclk_hz <= 20000000)
2584 		config = GEM_BF(CLK, GEM_CLK_DIV8);
2585 	else if (pclk_hz <= 40000000)
2586 		config = GEM_BF(CLK, GEM_CLK_DIV16);
2587 	else if (pclk_hz <= 80000000)
2588 		config = GEM_BF(CLK, GEM_CLK_DIV32);
2589 	else if (pclk_hz <= 120000000)
2590 		config = GEM_BF(CLK, GEM_CLK_DIV48);
2591 	else if (pclk_hz <= 160000000)
2592 		config = GEM_BF(CLK, GEM_CLK_DIV64);
2593 	else
2594 		config = GEM_BF(CLK, GEM_CLK_DIV96);
2595 
2596 	return config;
2597 }
2598 
2599 static u32 macb_mdc_clk_div(struct macb *bp)
2600 {
2601 	u32 config;
2602 	unsigned long pclk_hz;
2603 
2604 	if (macb_is_gem(bp))
2605 		return gem_mdc_clk_div(bp);
2606 
2607 	pclk_hz = clk_get_rate(bp->pclk);
2608 	if (pclk_hz <= 20000000)
2609 		config = MACB_BF(CLK, MACB_CLK_DIV8);
2610 	else if (pclk_hz <= 40000000)
2611 		config = MACB_BF(CLK, MACB_CLK_DIV16);
2612 	else if (pclk_hz <= 80000000)
2613 		config = MACB_BF(CLK, MACB_CLK_DIV32);
2614 	else
2615 		config = MACB_BF(CLK, MACB_CLK_DIV64);
2616 
2617 	return config;
2618 }
2619 
2620 /* Get the DMA bus width field of the network configuration register that we
2621  * should program.  We find the width from decoding the design configuration
2622  * register to find the maximum supported data bus width.
2623  */
2624 static u32 macb_dbw(struct macb *bp)
2625 {
2626 	if (!macb_is_gem(bp))
2627 		return 0;
2628 
2629 	switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
2630 	case 4:
2631 		return GEM_BF(DBW, GEM_DBW128);
2632 	case 2:
2633 		return GEM_BF(DBW, GEM_DBW64);
2634 	case 1:
2635 	default:
2636 		return GEM_BF(DBW, GEM_DBW32);
2637 	}
2638 }
2639 
2640 /* Configure the receive DMA engine
2641  * - use the correct receive buffer size
2642  * - set best burst length for DMA operations
2643  *   (if not supported by FIFO, it will fallback to default)
2644  * - set both rx/tx packet buffers to full memory size
2645  * These are configurable parameters for GEM.
2646  */
2647 static void macb_configure_dma(struct macb *bp)
2648 {
2649 	struct macb_queue *queue;
2650 	u32 buffer_size;
2651 	unsigned int q;
2652 	u32 dmacfg;
2653 
2654 	buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE;
2655 	if (macb_is_gem(bp)) {
2656 		dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
2657 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2658 			if (q)
2659 				queue_writel(queue, RBQS, buffer_size);
2660 			else
2661 				dmacfg |= GEM_BF(RXBS, buffer_size);
2662 		}
2663 		if (bp->dma_burst_length)
2664 			dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
2665 		dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
2666 		dmacfg &= ~GEM_BIT(ENDIA_PKT);
2667 
2668 		if (bp->native_io)
2669 			dmacfg &= ~GEM_BIT(ENDIA_DESC);
2670 		else
2671 			dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
2672 
2673 		if (bp->dev->features & NETIF_F_HW_CSUM)
2674 			dmacfg |= GEM_BIT(TXCOEN);
2675 		else
2676 			dmacfg &= ~GEM_BIT(TXCOEN);
2677 
2678 		dmacfg &= ~GEM_BIT(ADDR64);
2679 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2680 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
2681 			dmacfg |= GEM_BIT(ADDR64);
2682 #endif
2683 #ifdef CONFIG_MACB_USE_HWSTAMP
2684 		if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
2685 			dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT);
2686 #endif
2687 		netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
2688 			   dmacfg);
2689 		gem_writel(bp, DMACFG, dmacfg);
2690 	}
2691 }
2692 
2693 static void macb_init_hw(struct macb *bp)
2694 {
2695 	u32 config;
2696 
2697 	macb_reset_hw(bp);
2698 	macb_set_hwaddr(bp);
2699 
2700 	config = macb_mdc_clk_div(bp);
2701 	config |= MACB_BF(RBOF, NET_IP_ALIGN);	/* Make eth data aligned */
2702 	config |= MACB_BIT(DRFCS);		/* Discard Rx FCS */
2703 	if (bp->caps & MACB_CAPS_JUMBO)
2704 		config |= MACB_BIT(JFRAME);	/* Enable jumbo frames */
2705 	else
2706 		config |= MACB_BIT(BIG);	/* Receive oversized frames */
2707 	if (bp->dev->flags & IFF_PROMISC)
2708 		config |= MACB_BIT(CAF);	/* Copy All Frames */
2709 	else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
2710 		config |= GEM_BIT(RXCOEN);
2711 	if (!(bp->dev->flags & IFF_BROADCAST))
2712 		config |= MACB_BIT(NBC);	/* No BroadCast */
2713 	config |= macb_dbw(bp);
2714 	macb_writel(bp, NCFGR, config);
2715 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
2716 		gem_writel(bp, JML, bp->jumbo_max_len);
2717 	bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
2718 	if (bp->caps & MACB_CAPS_JUMBO)
2719 		bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
2720 
2721 	macb_configure_dma(bp);
2722 }
2723 
2724 /* The hash address register is 64 bits long and takes up two
2725  * locations in the memory map.  The least significant bits are stored
2726  * in EMAC_HSL and the most significant bits in EMAC_HSH.
2727  *
2728  * The unicast hash enable and the multicast hash enable bits in the
2729  * network configuration register enable the reception of hash matched
2730  * frames. The destination address is reduced to a 6 bit index into
2731  * the 64 bit hash register using the following hash function.  The
2732  * hash function is an exclusive or of every sixth bit of the
2733  * destination address.
2734  *
2735  * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
2736  * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
2737  * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
2738  * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
2739  * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
2740  * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
2741  *
2742  * da[0] represents the least significant bit of the first byte
2743  * received, that is, the multicast/unicast indicator, and da[47]
2744  * represents the most significant bit of the last byte received.  If
2745  * the hash index, hi[n], points to a bit that is set in the hash
2746  * register then the frame will be matched according to whether the
2747  * frame is multicast or unicast.  A multicast match will be signalled
2748  * if the multicast hash enable bit is set, da[0] is 1 and the hash
2749  * index points to a bit set in the hash register.  A unicast match
2750  * will be signalled if the unicast hash enable bit is set, da[0] is 0
2751  * and the hash index points to a bit set in the hash register.  To
2752  * receive all multicast frames, the hash register should be set with
2753  * all ones and the multicast hash enable bit should be set in the
2754  * network configuration register.
2755  */
2756 
2757 static inline int hash_bit_value(int bitnr, __u8 *addr)
2758 {
2759 	if (addr[bitnr / 8] & (1 << (bitnr % 8)))
2760 		return 1;
2761 	return 0;
2762 }
2763 
2764 /* Return the hash index value for the specified address. */
2765 static int hash_get_index(__u8 *addr)
2766 {
2767 	int i, j, bitval;
2768 	int hash_index = 0;
2769 
2770 	for (j = 0; j < 6; j++) {
2771 		for (i = 0, bitval = 0; i < 8; i++)
2772 			bitval ^= hash_bit_value(i * 6 + j, addr);
2773 
2774 		hash_index |= (bitval << j);
2775 	}
2776 
2777 	return hash_index;
2778 }
2779 
2780 /* Add multicast addresses to the internal multicast-hash table. */
2781 static void macb_sethashtable(struct net_device *dev)
2782 {
2783 	struct netdev_hw_addr *ha;
2784 	unsigned long mc_filter[2];
2785 	unsigned int bitnr;
2786 	struct macb *bp = netdev_priv(dev);
2787 
2788 	mc_filter[0] = 0;
2789 	mc_filter[1] = 0;
2790 
2791 	netdev_for_each_mc_addr(ha, dev) {
2792 		bitnr = hash_get_index(ha->addr);
2793 		mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
2794 	}
2795 
2796 	macb_or_gem_writel(bp, HRB, mc_filter[0]);
2797 	macb_or_gem_writel(bp, HRT, mc_filter[1]);
2798 }
2799 
2800 /* Enable/Disable promiscuous and multicast modes. */
2801 static void macb_set_rx_mode(struct net_device *dev)
2802 {
2803 	unsigned long cfg;
2804 	struct macb *bp = netdev_priv(dev);
2805 
2806 	cfg = macb_readl(bp, NCFGR);
2807 
2808 	if (dev->flags & IFF_PROMISC) {
2809 		/* Enable promiscuous mode */
2810 		cfg |= MACB_BIT(CAF);
2811 
2812 		/* Disable RX checksum offload */
2813 		if (macb_is_gem(bp))
2814 			cfg &= ~GEM_BIT(RXCOEN);
2815 	} else {
2816 		/* Disable promiscuous mode */
2817 		cfg &= ~MACB_BIT(CAF);
2818 
2819 		/* Enable RX checksum offload only if requested */
2820 		if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
2821 			cfg |= GEM_BIT(RXCOEN);
2822 	}
2823 
2824 	if (dev->flags & IFF_ALLMULTI) {
2825 		/* Enable all multicast mode */
2826 		macb_or_gem_writel(bp, HRB, -1);
2827 		macb_or_gem_writel(bp, HRT, -1);
2828 		cfg |= MACB_BIT(NCFGR_MTI);
2829 	} else if (!netdev_mc_empty(dev)) {
2830 		/* Enable specific multicasts */
2831 		macb_sethashtable(dev);
2832 		cfg |= MACB_BIT(NCFGR_MTI);
2833 	} else if (dev->flags & (~IFF_ALLMULTI)) {
2834 		/* Disable all multicast mode */
2835 		macb_or_gem_writel(bp, HRB, 0);
2836 		macb_or_gem_writel(bp, HRT, 0);
2837 		cfg &= ~MACB_BIT(NCFGR_MTI);
2838 	}
2839 
2840 	macb_writel(bp, NCFGR, cfg);
2841 }
2842 
2843 static int macb_open(struct net_device *dev)
2844 {
2845 	size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
2846 	struct macb *bp = netdev_priv(dev);
2847 	struct macb_queue *queue;
2848 	unsigned int q;
2849 	int err;
2850 
2851 	netdev_dbg(bp->dev, "open\n");
2852 
2853 	err = pm_runtime_resume_and_get(&bp->pdev->dev);
2854 	if (err < 0)
2855 		return err;
2856 
2857 	/* RX buffers initialization */
2858 	macb_init_rx_buffer_size(bp, bufsz);
2859 
2860 	err = macb_alloc_consistent(bp);
2861 	if (err) {
2862 		netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
2863 			   err);
2864 		goto pm_exit;
2865 	}
2866 
2867 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2868 		napi_enable(&queue->napi_rx);
2869 		napi_enable(&queue->napi_tx);
2870 	}
2871 
2872 	macb_init_hw(bp);
2873 
2874 	err = phy_power_on(bp->sgmii_phy);
2875 	if (err)
2876 		goto reset_hw;
2877 
2878 	err = macb_phylink_connect(bp);
2879 	if (err)
2880 		goto phy_off;
2881 
2882 	netif_tx_start_all_queues(dev);
2883 
2884 	if (bp->ptp_info)
2885 		bp->ptp_info->ptp_init(dev);
2886 
2887 	return 0;
2888 
2889 phy_off:
2890 	phy_power_off(bp->sgmii_phy);
2891 
2892 reset_hw:
2893 	macb_reset_hw(bp);
2894 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2895 		napi_disable(&queue->napi_rx);
2896 		napi_disable(&queue->napi_tx);
2897 	}
2898 	macb_free_consistent(bp);
2899 pm_exit:
2900 	pm_runtime_put_sync(&bp->pdev->dev);
2901 	return err;
2902 }
2903 
2904 static int macb_close(struct net_device *dev)
2905 {
2906 	struct macb *bp = netdev_priv(dev);
2907 	struct macb_queue *queue;
2908 	unsigned long flags;
2909 	unsigned int q;
2910 
2911 	netif_tx_stop_all_queues(dev);
2912 
2913 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2914 		napi_disable(&queue->napi_rx);
2915 		napi_disable(&queue->napi_tx);
2916 	}
2917 
2918 	phylink_stop(bp->phylink);
2919 	phylink_disconnect_phy(bp->phylink);
2920 
2921 	phy_power_off(bp->sgmii_phy);
2922 
2923 	spin_lock_irqsave(&bp->lock, flags);
2924 	macb_reset_hw(bp);
2925 	netif_carrier_off(dev);
2926 	spin_unlock_irqrestore(&bp->lock, flags);
2927 
2928 	macb_free_consistent(bp);
2929 
2930 	if (bp->ptp_info)
2931 		bp->ptp_info->ptp_remove(dev);
2932 
2933 	pm_runtime_put(&bp->pdev->dev);
2934 
2935 	return 0;
2936 }
2937 
2938 static int macb_change_mtu(struct net_device *dev, int new_mtu)
2939 {
2940 	if (netif_running(dev))
2941 		return -EBUSY;
2942 
2943 	dev->mtu = new_mtu;
2944 
2945 	return 0;
2946 }
2947 
2948 static void gem_update_stats(struct macb *bp)
2949 {
2950 	struct macb_queue *queue;
2951 	unsigned int i, q, idx;
2952 	unsigned long *stat;
2953 
2954 	u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
2955 
2956 	for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
2957 		u32 offset = gem_statistics[i].offset;
2958 		u64 val = bp->macb_reg_readl(bp, offset);
2959 
2960 		bp->ethtool_stats[i] += val;
2961 		*p += val;
2962 
2963 		if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
2964 			/* Add GEM_OCTTXH, GEM_OCTRXH */
2965 			val = bp->macb_reg_readl(bp, offset + 4);
2966 			bp->ethtool_stats[i] += ((u64)val) << 32;
2967 			*(++p) += val;
2968 		}
2969 	}
2970 
2971 	idx = GEM_STATS_LEN;
2972 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
2973 		for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat)
2974 			bp->ethtool_stats[idx++] = *stat;
2975 }
2976 
2977 static struct net_device_stats *gem_get_stats(struct macb *bp)
2978 {
2979 	struct gem_stats *hwstat = &bp->hw_stats.gem;
2980 	struct net_device_stats *nstat = &bp->dev->stats;
2981 
2982 	if (!netif_running(bp->dev))
2983 		return nstat;
2984 
2985 	gem_update_stats(bp);
2986 
2987 	nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
2988 			    hwstat->rx_alignment_errors +
2989 			    hwstat->rx_resource_errors +
2990 			    hwstat->rx_overruns +
2991 			    hwstat->rx_oversize_frames +
2992 			    hwstat->rx_jabbers +
2993 			    hwstat->rx_undersized_frames +
2994 			    hwstat->rx_length_field_frame_errors);
2995 	nstat->tx_errors = (hwstat->tx_late_collisions +
2996 			    hwstat->tx_excessive_collisions +
2997 			    hwstat->tx_underrun +
2998 			    hwstat->tx_carrier_sense_errors);
2999 	nstat->multicast = hwstat->rx_multicast_frames;
3000 	nstat->collisions = (hwstat->tx_single_collision_frames +
3001 			     hwstat->tx_multiple_collision_frames +
3002 			     hwstat->tx_excessive_collisions);
3003 	nstat->rx_length_errors = (hwstat->rx_oversize_frames +
3004 				   hwstat->rx_jabbers +
3005 				   hwstat->rx_undersized_frames +
3006 				   hwstat->rx_length_field_frame_errors);
3007 	nstat->rx_over_errors = hwstat->rx_resource_errors;
3008 	nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
3009 	nstat->rx_frame_errors = hwstat->rx_alignment_errors;
3010 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3011 	nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
3012 	nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
3013 	nstat->tx_fifo_errors = hwstat->tx_underrun;
3014 
3015 	return nstat;
3016 }
3017 
3018 static void gem_get_ethtool_stats(struct net_device *dev,
3019 				  struct ethtool_stats *stats, u64 *data)
3020 {
3021 	struct macb *bp;
3022 
3023 	bp = netdev_priv(dev);
3024 	gem_update_stats(bp);
3025 	memcpy(data, &bp->ethtool_stats, sizeof(u64)
3026 			* (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES));
3027 }
3028 
3029 static int gem_get_sset_count(struct net_device *dev, int sset)
3030 {
3031 	struct macb *bp = netdev_priv(dev);
3032 
3033 	switch (sset) {
3034 	case ETH_SS_STATS:
3035 		return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN;
3036 	default:
3037 		return -EOPNOTSUPP;
3038 	}
3039 }
3040 
3041 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
3042 {
3043 	char stat_string[ETH_GSTRING_LEN];
3044 	struct macb *bp = netdev_priv(dev);
3045 	struct macb_queue *queue;
3046 	unsigned int i;
3047 	unsigned int q;
3048 
3049 	switch (sset) {
3050 	case ETH_SS_STATS:
3051 		for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
3052 			memcpy(p, gem_statistics[i].stat_string,
3053 			       ETH_GSTRING_LEN);
3054 
3055 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3056 			for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) {
3057 				snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s",
3058 						q, queue_statistics[i].stat_string);
3059 				memcpy(p, stat_string, ETH_GSTRING_LEN);
3060 			}
3061 		}
3062 		break;
3063 	}
3064 }
3065 
3066 static struct net_device_stats *macb_get_stats(struct net_device *dev)
3067 {
3068 	struct macb *bp = netdev_priv(dev);
3069 	struct net_device_stats *nstat = &bp->dev->stats;
3070 	struct macb_stats *hwstat = &bp->hw_stats.macb;
3071 
3072 	if (macb_is_gem(bp))
3073 		return gem_get_stats(bp);
3074 
3075 	/* read stats from hardware */
3076 	macb_update_stats(bp);
3077 
3078 	/* Convert HW stats into netdevice stats */
3079 	nstat->rx_errors = (hwstat->rx_fcs_errors +
3080 			    hwstat->rx_align_errors +
3081 			    hwstat->rx_resource_errors +
3082 			    hwstat->rx_overruns +
3083 			    hwstat->rx_oversize_pkts +
3084 			    hwstat->rx_jabbers +
3085 			    hwstat->rx_undersize_pkts +
3086 			    hwstat->rx_length_mismatch);
3087 	nstat->tx_errors = (hwstat->tx_late_cols +
3088 			    hwstat->tx_excessive_cols +
3089 			    hwstat->tx_underruns +
3090 			    hwstat->tx_carrier_errors +
3091 			    hwstat->sqe_test_errors);
3092 	nstat->collisions = (hwstat->tx_single_cols +
3093 			     hwstat->tx_multiple_cols +
3094 			     hwstat->tx_excessive_cols);
3095 	nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
3096 				   hwstat->rx_jabbers +
3097 				   hwstat->rx_undersize_pkts +
3098 				   hwstat->rx_length_mismatch);
3099 	nstat->rx_over_errors = hwstat->rx_resource_errors +
3100 				   hwstat->rx_overruns;
3101 	nstat->rx_crc_errors = hwstat->rx_fcs_errors;
3102 	nstat->rx_frame_errors = hwstat->rx_align_errors;
3103 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3104 	/* XXX: What does "missed" mean? */
3105 	nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
3106 	nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
3107 	nstat->tx_fifo_errors = hwstat->tx_underruns;
3108 	/* Don't know about heartbeat or window errors... */
3109 
3110 	return nstat;
3111 }
3112 
3113 static int macb_get_regs_len(struct net_device *netdev)
3114 {
3115 	return MACB_GREGS_NBR * sizeof(u32);
3116 }
3117 
3118 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
3119 			  void *p)
3120 {
3121 	struct macb *bp = netdev_priv(dev);
3122 	unsigned int tail, head;
3123 	u32 *regs_buff = p;
3124 
3125 	regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
3126 			| MACB_GREGS_VERSION;
3127 
3128 	tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail);
3129 	head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head);
3130 
3131 	regs_buff[0]  = macb_readl(bp, NCR);
3132 	regs_buff[1]  = macb_or_gem_readl(bp, NCFGR);
3133 	regs_buff[2]  = macb_readl(bp, NSR);
3134 	regs_buff[3]  = macb_readl(bp, TSR);
3135 	regs_buff[4]  = macb_readl(bp, RBQP);
3136 	regs_buff[5]  = macb_readl(bp, TBQP);
3137 	regs_buff[6]  = macb_readl(bp, RSR);
3138 	regs_buff[7]  = macb_readl(bp, IMR);
3139 
3140 	regs_buff[8]  = tail;
3141 	regs_buff[9]  = head;
3142 	regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
3143 	regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
3144 
3145 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
3146 		regs_buff[12] = macb_or_gem_readl(bp, USRIO);
3147 	if (macb_is_gem(bp))
3148 		regs_buff[13] = gem_readl(bp, DMACFG);
3149 }
3150 
3151 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3152 {
3153 	struct macb *bp = netdev_priv(netdev);
3154 
3155 	if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) {
3156 		phylink_ethtool_get_wol(bp->phylink, wol);
3157 		wol->supported |= WAKE_MAGIC;
3158 
3159 		if (bp->wol & MACB_WOL_ENABLED)
3160 			wol->wolopts |= WAKE_MAGIC;
3161 	}
3162 }
3163 
3164 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3165 {
3166 	struct macb *bp = netdev_priv(netdev);
3167 	int ret;
3168 
3169 	/* Pass the order to phylink layer */
3170 	ret = phylink_ethtool_set_wol(bp->phylink, wol);
3171 	/* Don't manage WoL on MAC if handled by the PHY
3172 	 * or if there's a failure in talking to the PHY
3173 	 */
3174 	if (!ret || ret != -EOPNOTSUPP)
3175 		return ret;
3176 
3177 	if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) ||
3178 	    (wol->wolopts & ~WAKE_MAGIC))
3179 		return -EOPNOTSUPP;
3180 
3181 	if (wol->wolopts & WAKE_MAGIC)
3182 		bp->wol |= MACB_WOL_ENABLED;
3183 	else
3184 		bp->wol &= ~MACB_WOL_ENABLED;
3185 
3186 	device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED);
3187 
3188 	return 0;
3189 }
3190 
3191 static int macb_get_link_ksettings(struct net_device *netdev,
3192 				   struct ethtool_link_ksettings *kset)
3193 {
3194 	struct macb *bp = netdev_priv(netdev);
3195 
3196 	return phylink_ethtool_ksettings_get(bp->phylink, kset);
3197 }
3198 
3199 static int macb_set_link_ksettings(struct net_device *netdev,
3200 				   const struct ethtool_link_ksettings *kset)
3201 {
3202 	struct macb *bp = netdev_priv(netdev);
3203 
3204 	return phylink_ethtool_ksettings_set(bp->phylink, kset);
3205 }
3206 
3207 static void macb_get_ringparam(struct net_device *netdev,
3208 			       struct ethtool_ringparam *ring,
3209 			       struct kernel_ethtool_ringparam *kernel_ring,
3210 			       struct netlink_ext_ack *extack)
3211 {
3212 	struct macb *bp = netdev_priv(netdev);
3213 
3214 	ring->rx_max_pending = MAX_RX_RING_SIZE;
3215 	ring->tx_max_pending = MAX_TX_RING_SIZE;
3216 
3217 	ring->rx_pending = bp->rx_ring_size;
3218 	ring->tx_pending = bp->tx_ring_size;
3219 }
3220 
3221 static int macb_set_ringparam(struct net_device *netdev,
3222 			      struct ethtool_ringparam *ring,
3223 			      struct kernel_ethtool_ringparam *kernel_ring,
3224 			      struct netlink_ext_ack *extack)
3225 {
3226 	struct macb *bp = netdev_priv(netdev);
3227 	u32 new_rx_size, new_tx_size;
3228 	unsigned int reset = 0;
3229 
3230 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
3231 		return -EINVAL;
3232 
3233 	new_rx_size = clamp_t(u32, ring->rx_pending,
3234 			      MIN_RX_RING_SIZE, MAX_RX_RING_SIZE);
3235 	new_rx_size = roundup_pow_of_two(new_rx_size);
3236 
3237 	new_tx_size = clamp_t(u32, ring->tx_pending,
3238 			      MIN_TX_RING_SIZE, MAX_TX_RING_SIZE);
3239 	new_tx_size = roundup_pow_of_two(new_tx_size);
3240 
3241 	if ((new_tx_size == bp->tx_ring_size) &&
3242 	    (new_rx_size == bp->rx_ring_size)) {
3243 		/* nothing to do */
3244 		return 0;
3245 	}
3246 
3247 	if (netif_running(bp->dev)) {
3248 		reset = 1;
3249 		macb_close(bp->dev);
3250 	}
3251 
3252 	bp->rx_ring_size = new_rx_size;
3253 	bp->tx_ring_size = new_tx_size;
3254 
3255 	if (reset)
3256 		macb_open(bp->dev);
3257 
3258 	return 0;
3259 }
3260 
3261 #ifdef CONFIG_MACB_USE_HWSTAMP
3262 static unsigned int gem_get_tsu_rate(struct macb *bp)
3263 {
3264 	struct clk *tsu_clk;
3265 	unsigned int tsu_rate;
3266 
3267 	tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk");
3268 	if (!IS_ERR(tsu_clk))
3269 		tsu_rate = clk_get_rate(tsu_clk);
3270 	/* try pclk instead */
3271 	else if (!IS_ERR(bp->pclk)) {
3272 		tsu_clk = bp->pclk;
3273 		tsu_rate = clk_get_rate(tsu_clk);
3274 	} else
3275 		return -ENOTSUPP;
3276 	return tsu_rate;
3277 }
3278 
3279 static s32 gem_get_ptp_max_adj(void)
3280 {
3281 	return 64000000;
3282 }
3283 
3284 static int gem_get_ts_info(struct net_device *dev,
3285 			   struct ethtool_ts_info *info)
3286 {
3287 	struct macb *bp = netdev_priv(dev);
3288 
3289 	if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) {
3290 		ethtool_op_get_ts_info(dev, info);
3291 		return 0;
3292 	}
3293 
3294 	info->so_timestamping =
3295 		SOF_TIMESTAMPING_TX_SOFTWARE |
3296 		SOF_TIMESTAMPING_RX_SOFTWARE |
3297 		SOF_TIMESTAMPING_SOFTWARE |
3298 		SOF_TIMESTAMPING_TX_HARDWARE |
3299 		SOF_TIMESTAMPING_RX_HARDWARE |
3300 		SOF_TIMESTAMPING_RAW_HARDWARE;
3301 	info->tx_types =
3302 		(1 << HWTSTAMP_TX_ONESTEP_SYNC) |
3303 		(1 << HWTSTAMP_TX_OFF) |
3304 		(1 << HWTSTAMP_TX_ON);
3305 	info->rx_filters =
3306 		(1 << HWTSTAMP_FILTER_NONE) |
3307 		(1 << HWTSTAMP_FILTER_ALL);
3308 
3309 	info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1;
3310 
3311 	return 0;
3312 }
3313 
3314 static struct macb_ptp_info gem_ptp_info = {
3315 	.ptp_init	 = gem_ptp_init,
3316 	.ptp_remove	 = gem_ptp_remove,
3317 	.get_ptp_max_adj = gem_get_ptp_max_adj,
3318 	.get_tsu_rate	 = gem_get_tsu_rate,
3319 	.get_ts_info	 = gem_get_ts_info,
3320 	.get_hwtst	 = gem_get_hwtst,
3321 	.set_hwtst	 = gem_set_hwtst,
3322 };
3323 #endif
3324 
3325 static int macb_get_ts_info(struct net_device *netdev,
3326 			    struct ethtool_ts_info *info)
3327 {
3328 	struct macb *bp = netdev_priv(netdev);
3329 
3330 	if (bp->ptp_info)
3331 		return bp->ptp_info->get_ts_info(netdev, info);
3332 
3333 	return ethtool_op_get_ts_info(netdev, info);
3334 }
3335 
3336 static void gem_enable_flow_filters(struct macb *bp, bool enable)
3337 {
3338 	struct net_device *netdev = bp->dev;
3339 	struct ethtool_rx_fs_item *item;
3340 	u32 t2_scr;
3341 	int num_t2_scr;
3342 
3343 	if (!(netdev->features & NETIF_F_NTUPLE))
3344 		return;
3345 
3346 	num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8));
3347 
3348 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3349 		struct ethtool_rx_flow_spec *fs = &item->fs;
3350 		struct ethtool_tcpip4_spec *tp4sp_m;
3351 
3352 		if (fs->location >= num_t2_scr)
3353 			continue;
3354 
3355 		t2_scr = gem_readl_n(bp, SCRT2, fs->location);
3356 
3357 		/* enable/disable screener regs for the flow entry */
3358 		t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr);
3359 
3360 		/* only enable fields with no masking */
3361 		tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3362 
3363 		if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF))
3364 			t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr);
3365 		else
3366 			t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr);
3367 
3368 		if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF))
3369 			t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr);
3370 		else
3371 			t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr);
3372 
3373 		if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)))
3374 			t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr);
3375 		else
3376 			t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr);
3377 
3378 		gem_writel_n(bp, SCRT2, fs->location, t2_scr);
3379 	}
3380 }
3381 
3382 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs)
3383 {
3384 	struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m;
3385 	uint16_t index = fs->location;
3386 	u32 w0, w1, t2_scr;
3387 	bool cmp_a = false;
3388 	bool cmp_b = false;
3389 	bool cmp_c = false;
3390 
3391 	if (!macb_is_gem(bp))
3392 		return;
3393 
3394 	tp4sp_v = &(fs->h_u.tcp_ip4_spec);
3395 	tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3396 
3397 	/* ignore field if any masking set */
3398 	if (tp4sp_m->ip4src == 0xFFFFFFFF) {
3399 		/* 1st compare reg - IP source address */
3400 		w0 = 0;
3401 		w1 = 0;
3402 		w0 = tp4sp_v->ip4src;
3403 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3404 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3405 		w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1);
3406 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0);
3407 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1);
3408 		cmp_a = true;
3409 	}
3410 
3411 	/* ignore field if any masking set */
3412 	if (tp4sp_m->ip4dst == 0xFFFFFFFF) {
3413 		/* 2nd compare reg - IP destination address */
3414 		w0 = 0;
3415 		w1 = 0;
3416 		w0 = tp4sp_v->ip4dst;
3417 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3418 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3419 		w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1);
3420 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0);
3421 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1);
3422 		cmp_b = true;
3423 	}
3424 
3425 	/* ignore both port fields if masking set in both */
3426 	if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) {
3427 		/* 3rd compare reg - source port, destination port */
3428 		w0 = 0;
3429 		w1 = 0;
3430 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1);
3431 		if (tp4sp_m->psrc == tp4sp_m->pdst) {
3432 			w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0);
3433 			w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3434 			w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3435 			w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3436 		} else {
3437 			/* only one port definition */
3438 			w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */
3439 			w0 = GEM_BFINS(T2MASK, 0xFFFF, w0);
3440 			if (tp4sp_m->psrc == 0xFFFF) { /* src port */
3441 				w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0);
3442 				w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3443 			} else { /* dst port */
3444 				w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3445 				w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1);
3446 			}
3447 		}
3448 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0);
3449 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1);
3450 		cmp_c = true;
3451 	}
3452 
3453 	t2_scr = 0;
3454 	t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr);
3455 	t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr);
3456 	if (cmp_a)
3457 		t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr);
3458 	if (cmp_b)
3459 		t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr);
3460 	if (cmp_c)
3461 		t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr);
3462 	gem_writel_n(bp, SCRT2, index, t2_scr);
3463 }
3464 
3465 static int gem_add_flow_filter(struct net_device *netdev,
3466 		struct ethtool_rxnfc *cmd)
3467 {
3468 	struct macb *bp = netdev_priv(netdev);
3469 	struct ethtool_rx_flow_spec *fs = &cmd->fs;
3470 	struct ethtool_rx_fs_item *item, *newfs;
3471 	unsigned long flags;
3472 	int ret = -EINVAL;
3473 	bool added = false;
3474 
3475 	newfs = kmalloc(sizeof(*newfs), GFP_KERNEL);
3476 	if (newfs == NULL)
3477 		return -ENOMEM;
3478 	memcpy(&newfs->fs, fs, sizeof(newfs->fs));
3479 
3480 	netdev_dbg(netdev,
3481 			"Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3482 			fs->flow_type, (int)fs->ring_cookie, fs->location,
3483 			htonl(fs->h_u.tcp_ip4_spec.ip4src),
3484 			htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3485 			be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3486 			be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3487 
3488 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3489 
3490 	/* find correct place to add in list */
3491 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3492 		if (item->fs.location > newfs->fs.location) {
3493 			list_add_tail(&newfs->list, &item->list);
3494 			added = true;
3495 			break;
3496 		} else if (item->fs.location == fs->location) {
3497 			netdev_err(netdev, "Rule not added: location %d not free!\n",
3498 					fs->location);
3499 			ret = -EBUSY;
3500 			goto err;
3501 		}
3502 	}
3503 	if (!added)
3504 		list_add_tail(&newfs->list, &bp->rx_fs_list.list);
3505 
3506 	gem_prog_cmp_regs(bp, fs);
3507 	bp->rx_fs_list.count++;
3508 	/* enable filtering if NTUPLE on */
3509 	gem_enable_flow_filters(bp, 1);
3510 
3511 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3512 	return 0;
3513 
3514 err:
3515 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3516 	kfree(newfs);
3517 	return ret;
3518 }
3519 
3520 static int gem_del_flow_filter(struct net_device *netdev,
3521 		struct ethtool_rxnfc *cmd)
3522 {
3523 	struct macb *bp = netdev_priv(netdev);
3524 	struct ethtool_rx_fs_item *item;
3525 	struct ethtool_rx_flow_spec *fs;
3526 	unsigned long flags;
3527 
3528 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3529 
3530 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3531 		if (item->fs.location == cmd->fs.location) {
3532 			/* disable screener regs for the flow entry */
3533 			fs = &(item->fs);
3534 			netdev_dbg(netdev,
3535 					"Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3536 					fs->flow_type, (int)fs->ring_cookie, fs->location,
3537 					htonl(fs->h_u.tcp_ip4_spec.ip4src),
3538 					htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3539 					be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3540 					be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3541 
3542 			gem_writel_n(bp, SCRT2, fs->location, 0);
3543 
3544 			list_del(&item->list);
3545 			bp->rx_fs_list.count--;
3546 			spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3547 			kfree(item);
3548 			return 0;
3549 		}
3550 	}
3551 
3552 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3553 	return -EINVAL;
3554 }
3555 
3556 static int gem_get_flow_entry(struct net_device *netdev,
3557 		struct ethtool_rxnfc *cmd)
3558 {
3559 	struct macb *bp = netdev_priv(netdev);
3560 	struct ethtool_rx_fs_item *item;
3561 
3562 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3563 		if (item->fs.location == cmd->fs.location) {
3564 			memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs));
3565 			return 0;
3566 		}
3567 	}
3568 	return -EINVAL;
3569 }
3570 
3571 static int gem_get_all_flow_entries(struct net_device *netdev,
3572 		struct ethtool_rxnfc *cmd, u32 *rule_locs)
3573 {
3574 	struct macb *bp = netdev_priv(netdev);
3575 	struct ethtool_rx_fs_item *item;
3576 	uint32_t cnt = 0;
3577 
3578 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3579 		if (cnt == cmd->rule_cnt)
3580 			return -EMSGSIZE;
3581 		rule_locs[cnt] = item->fs.location;
3582 		cnt++;
3583 	}
3584 	cmd->data = bp->max_tuples;
3585 	cmd->rule_cnt = cnt;
3586 
3587 	return 0;
3588 }
3589 
3590 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3591 		u32 *rule_locs)
3592 {
3593 	struct macb *bp = netdev_priv(netdev);
3594 	int ret = 0;
3595 
3596 	switch (cmd->cmd) {
3597 	case ETHTOOL_GRXRINGS:
3598 		cmd->data = bp->num_queues;
3599 		break;
3600 	case ETHTOOL_GRXCLSRLCNT:
3601 		cmd->rule_cnt = bp->rx_fs_list.count;
3602 		break;
3603 	case ETHTOOL_GRXCLSRULE:
3604 		ret = gem_get_flow_entry(netdev, cmd);
3605 		break;
3606 	case ETHTOOL_GRXCLSRLALL:
3607 		ret = gem_get_all_flow_entries(netdev, cmd, rule_locs);
3608 		break;
3609 	default:
3610 		netdev_err(netdev,
3611 			  "Command parameter %d is not supported\n", cmd->cmd);
3612 		ret = -EOPNOTSUPP;
3613 	}
3614 
3615 	return ret;
3616 }
3617 
3618 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3619 {
3620 	struct macb *bp = netdev_priv(netdev);
3621 	int ret;
3622 
3623 	switch (cmd->cmd) {
3624 	case ETHTOOL_SRXCLSRLINS:
3625 		if ((cmd->fs.location >= bp->max_tuples)
3626 				|| (cmd->fs.ring_cookie >= bp->num_queues)) {
3627 			ret = -EINVAL;
3628 			break;
3629 		}
3630 		ret = gem_add_flow_filter(netdev, cmd);
3631 		break;
3632 	case ETHTOOL_SRXCLSRLDEL:
3633 		ret = gem_del_flow_filter(netdev, cmd);
3634 		break;
3635 	default:
3636 		netdev_err(netdev,
3637 			  "Command parameter %d is not supported\n", cmd->cmd);
3638 		ret = -EOPNOTSUPP;
3639 	}
3640 
3641 	return ret;
3642 }
3643 
3644 static const struct ethtool_ops macb_ethtool_ops = {
3645 	.get_regs_len		= macb_get_regs_len,
3646 	.get_regs		= macb_get_regs,
3647 	.get_link		= ethtool_op_get_link,
3648 	.get_ts_info		= ethtool_op_get_ts_info,
3649 	.get_wol		= macb_get_wol,
3650 	.set_wol		= macb_set_wol,
3651 	.get_link_ksettings     = macb_get_link_ksettings,
3652 	.set_link_ksettings     = macb_set_link_ksettings,
3653 	.get_ringparam		= macb_get_ringparam,
3654 	.set_ringparam		= macb_set_ringparam,
3655 };
3656 
3657 static const struct ethtool_ops gem_ethtool_ops = {
3658 	.get_regs_len		= macb_get_regs_len,
3659 	.get_regs		= macb_get_regs,
3660 	.get_wol		= macb_get_wol,
3661 	.set_wol		= macb_set_wol,
3662 	.get_link		= ethtool_op_get_link,
3663 	.get_ts_info		= macb_get_ts_info,
3664 	.get_ethtool_stats	= gem_get_ethtool_stats,
3665 	.get_strings		= gem_get_ethtool_strings,
3666 	.get_sset_count		= gem_get_sset_count,
3667 	.get_link_ksettings     = macb_get_link_ksettings,
3668 	.set_link_ksettings     = macb_set_link_ksettings,
3669 	.get_ringparam		= macb_get_ringparam,
3670 	.set_ringparam		= macb_set_ringparam,
3671 	.get_rxnfc			= gem_get_rxnfc,
3672 	.set_rxnfc			= gem_set_rxnfc,
3673 };
3674 
3675 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3676 {
3677 	struct macb *bp = netdev_priv(dev);
3678 
3679 	if (!netif_running(dev))
3680 		return -EINVAL;
3681 
3682 	if (bp->ptp_info) {
3683 		switch (cmd) {
3684 		case SIOCSHWTSTAMP:
3685 			return bp->ptp_info->set_hwtst(dev, rq, cmd);
3686 		case SIOCGHWTSTAMP:
3687 			return bp->ptp_info->get_hwtst(dev, rq);
3688 		}
3689 	}
3690 
3691 	return phylink_mii_ioctl(bp->phylink, rq, cmd);
3692 }
3693 
3694 static inline void macb_set_txcsum_feature(struct macb *bp,
3695 					   netdev_features_t features)
3696 {
3697 	u32 val;
3698 
3699 	if (!macb_is_gem(bp))
3700 		return;
3701 
3702 	val = gem_readl(bp, DMACFG);
3703 	if (features & NETIF_F_HW_CSUM)
3704 		val |= GEM_BIT(TXCOEN);
3705 	else
3706 		val &= ~GEM_BIT(TXCOEN);
3707 
3708 	gem_writel(bp, DMACFG, val);
3709 }
3710 
3711 static inline void macb_set_rxcsum_feature(struct macb *bp,
3712 					   netdev_features_t features)
3713 {
3714 	struct net_device *netdev = bp->dev;
3715 	u32 val;
3716 
3717 	if (!macb_is_gem(bp))
3718 		return;
3719 
3720 	val = gem_readl(bp, NCFGR);
3721 	if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC))
3722 		val |= GEM_BIT(RXCOEN);
3723 	else
3724 		val &= ~GEM_BIT(RXCOEN);
3725 
3726 	gem_writel(bp, NCFGR, val);
3727 }
3728 
3729 static inline void macb_set_rxflow_feature(struct macb *bp,
3730 					   netdev_features_t features)
3731 {
3732 	if (!macb_is_gem(bp))
3733 		return;
3734 
3735 	gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE));
3736 }
3737 
3738 static int macb_set_features(struct net_device *netdev,
3739 			     netdev_features_t features)
3740 {
3741 	struct macb *bp = netdev_priv(netdev);
3742 	netdev_features_t changed = features ^ netdev->features;
3743 
3744 	/* TX checksum offload */
3745 	if (changed & NETIF_F_HW_CSUM)
3746 		macb_set_txcsum_feature(bp, features);
3747 
3748 	/* RX checksum offload */
3749 	if (changed & NETIF_F_RXCSUM)
3750 		macb_set_rxcsum_feature(bp, features);
3751 
3752 	/* RX Flow Filters */
3753 	if (changed & NETIF_F_NTUPLE)
3754 		macb_set_rxflow_feature(bp, features);
3755 
3756 	return 0;
3757 }
3758 
3759 static void macb_restore_features(struct macb *bp)
3760 {
3761 	struct net_device *netdev = bp->dev;
3762 	netdev_features_t features = netdev->features;
3763 	struct ethtool_rx_fs_item *item;
3764 
3765 	/* TX checksum offload */
3766 	macb_set_txcsum_feature(bp, features);
3767 
3768 	/* RX checksum offload */
3769 	macb_set_rxcsum_feature(bp, features);
3770 
3771 	/* RX Flow Filters */
3772 	list_for_each_entry(item, &bp->rx_fs_list.list, list)
3773 		gem_prog_cmp_regs(bp, &item->fs);
3774 
3775 	macb_set_rxflow_feature(bp, features);
3776 }
3777 
3778 static const struct net_device_ops macb_netdev_ops = {
3779 	.ndo_open		= macb_open,
3780 	.ndo_stop		= macb_close,
3781 	.ndo_start_xmit		= macb_start_xmit,
3782 	.ndo_set_rx_mode	= macb_set_rx_mode,
3783 	.ndo_get_stats		= macb_get_stats,
3784 	.ndo_eth_ioctl		= macb_ioctl,
3785 	.ndo_validate_addr	= eth_validate_addr,
3786 	.ndo_change_mtu		= macb_change_mtu,
3787 	.ndo_set_mac_address	= eth_mac_addr,
3788 #ifdef CONFIG_NET_POLL_CONTROLLER
3789 	.ndo_poll_controller	= macb_poll_controller,
3790 #endif
3791 	.ndo_set_features	= macb_set_features,
3792 	.ndo_features_check	= macb_features_check,
3793 };
3794 
3795 /* Configure peripheral capabilities according to device tree
3796  * and integration options used
3797  */
3798 static void macb_configure_caps(struct macb *bp,
3799 				const struct macb_config *dt_conf)
3800 {
3801 	u32 dcfg;
3802 
3803 	if (dt_conf)
3804 		bp->caps = dt_conf->caps;
3805 
3806 	if (hw_is_gem(bp->regs, bp->native_io)) {
3807 		bp->caps |= MACB_CAPS_MACB_IS_GEM;
3808 
3809 		dcfg = gem_readl(bp, DCFG1);
3810 		if (GEM_BFEXT(IRQCOR, dcfg) == 0)
3811 			bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
3812 		if (GEM_BFEXT(NO_PCS, dcfg) == 0)
3813 			bp->caps |= MACB_CAPS_PCS;
3814 		dcfg = gem_readl(bp, DCFG12);
3815 		if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1)
3816 			bp->caps |= MACB_CAPS_HIGH_SPEED;
3817 		dcfg = gem_readl(bp, DCFG2);
3818 		if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
3819 			bp->caps |= MACB_CAPS_FIFO_MODE;
3820 #ifdef CONFIG_MACB_USE_HWSTAMP
3821 		if (gem_has_ptp(bp)) {
3822 			if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5)))
3823 				dev_err(&bp->pdev->dev,
3824 					"GEM doesn't support hardware ptp.\n");
3825 			else {
3826 				bp->hw_dma_cap |= HW_DMA_CAP_PTP;
3827 				bp->ptp_info = &gem_ptp_info;
3828 			}
3829 		}
3830 #endif
3831 	}
3832 
3833 	dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
3834 }
3835 
3836 static void macb_probe_queues(void __iomem *mem,
3837 			      bool native_io,
3838 			      unsigned int *queue_mask,
3839 			      unsigned int *num_queues)
3840 {
3841 	*queue_mask = 0x1;
3842 	*num_queues = 1;
3843 
3844 	/* is it macb or gem ?
3845 	 *
3846 	 * We need to read directly from the hardware here because
3847 	 * we are early in the probe process and don't have the
3848 	 * MACB_CAPS_MACB_IS_GEM flag positioned
3849 	 */
3850 	if (!hw_is_gem(mem, native_io))
3851 		return;
3852 
3853 	/* bit 0 is never set but queue 0 always exists */
3854 	*queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff;
3855 	*num_queues = hweight32(*queue_mask);
3856 }
3857 
3858 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk,
3859 			      struct clk *rx_clk, struct clk *tsu_clk)
3860 {
3861 	struct clk_bulk_data clks[] = {
3862 		{ .clk = tsu_clk, },
3863 		{ .clk = rx_clk, },
3864 		{ .clk = pclk, },
3865 		{ .clk = hclk, },
3866 		{ .clk = tx_clk },
3867 	};
3868 
3869 	clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks);
3870 }
3871 
3872 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
3873 			 struct clk **hclk, struct clk **tx_clk,
3874 			 struct clk **rx_clk, struct clk **tsu_clk)
3875 {
3876 	struct macb_platform_data *pdata;
3877 	int err;
3878 
3879 	pdata = dev_get_platdata(&pdev->dev);
3880 	if (pdata) {
3881 		*pclk = pdata->pclk;
3882 		*hclk = pdata->hclk;
3883 	} else {
3884 		*pclk = devm_clk_get(&pdev->dev, "pclk");
3885 		*hclk = devm_clk_get(&pdev->dev, "hclk");
3886 	}
3887 
3888 	if (IS_ERR_OR_NULL(*pclk))
3889 		return dev_err_probe(&pdev->dev,
3890 				     IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV,
3891 				     "failed to get pclk\n");
3892 
3893 	if (IS_ERR_OR_NULL(*hclk))
3894 		return dev_err_probe(&pdev->dev,
3895 				     IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV,
3896 				     "failed to get hclk\n");
3897 
3898 	*tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk");
3899 	if (IS_ERR(*tx_clk))
3900 		return PTR_ERR(*tx_clk);
3901 
3902 	*rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk");
3903 	if (IS_ERR(*rx_clk))
3904 		return PTR_ERR(*rx_clk);
3905 
3906 	*tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk");
3907 	if (IS_ERR(*tsu_clk))
3908 		return PTR_ERR(*tsu_clk);
3909 
3910 	err = clk_prepare_enable(*pclk);
3911 	if (err) {
3912 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
3913 		return err;
3914 	}
3915 
3916 	err = clk_prepare_enable(*hclk);
3917 	if (err) {
3918 		dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err);
3919 		goto err_disable_pclk;
3920 	}
3921 
3922 	err = clk_prepare_enable(*tx_clk);
3923 	if (err) {
3924 		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
3925 		goto err_disable_hclk;
3926 	}
3927 
3928 	err = clk_prepare_enable(*rx_clk);
3929 	if (err) {
3930 		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
3931 		goto err_disable_txclk;
3932 	}
3933 
3934 	err = clk_prepare_enable(*tsu_clk);
3935 	if (err) {
3936 		dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err);
3937 		goto err_disable_rxclk;
3938 	}
3939 
3940 	return 0;
3941 
3942 err_disable_rxclk:
3943 	clk_disable_unprepare(*rx_clk);
3944 
3945 err_disable_txclk:
3946 	clk_disable_unprepare(*tx_clk);
3947 
3948 err_disable_hclk:
3949 	clk_disable_unprepare(*hclk);
3950 
3951 err_disable_pclk:
3952 	clk_disable_unprepare(*pclk);
3953 
3954 	return err;
3955 }
3956 
3957 static int macb_init(struct platform_device *pdev)
3958 {
3959 	struct net_device *dev = platform_get_drvdata(pdev);
3960 	unsigned int hw_q, q;
3961 	struct macb *bp = netdev_priv(dev);
3962 	struct macb_queue *queue;
3963 	int err;
3964 	u32 val, reg;
3965 
3966 	bp->tx_ring_size = DEFAULT_TX_RING_SIZE;
3967 	bp->rx_ring_size = DEFAULT_RX_RING_SIZE;
3968 
3969 	/* set the queue register mapping once for all: queue0 has a special
3970 	 * register mapping but we don't want to test the queue index then
3971 	 * compute the corresponding register offset at run time.
3972 	 */
3973 	for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
3974 		if (!(bp->queue_mask & (1 << hw_q)))
3975 			continue;
3976 
3977 		queue = &bp->queues[q];
3978 		queue->bp = bp;
3979 		spin_lock_init(&queue->tx_ptr_lock);
3980 		netif_napi_add(dev, &queue->napi_rx, macb_rx_poll, NAPI_POLL_WEIGHT);
3981 		netif_napi_add(dev, &queue->napi_tx, macb_tx_poll, NAPI_POLL_WEIGHT);
3982 		if (hw_q) {
3983 			queue->ISR  = GEM_ISR(hw_q - 1);
3984 			queue->IER  = GEM_IER(hw_q - 1);
3985 			queue->IDR  = GEM_IDR(hw_q - 1);
3986 			queue->IMR  = GEM_IMR(hw_q - 1);
3987 			queue->TBQP = GEM_TBQP(hw_q - 1);
3988 			queue->RBQP = GEM_RBQP(hw_q - 1);
3989 			queue->RBQS = GEM_RBQS(hw_q - 1);
3990 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
3991 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
3992 				queue->TBQPH = GEM_TBQPH(hw_q - 1);
3993 				queue->RBQPH = GEM_RBQPH(hw_q - 1);
3994 			}
3995 #endif
3996 		} else {
3997 			/* queue0 uses legacy registers */
3998 			queue->ISR  = MACB_ISR;
3999 			queue->IER  = MACB_IER;
4000 			queue->IDR  = MACB_IDR;
4001 			queue->IMR  = MACB_IMR;
4002 			queue->TBQP = MACB_TBQP;
4003 			queue->RBQP = MACB_RBQP;
4004 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4005 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
4006 				queue->TBQPH = MACB_TBQPH;
4007 				queue->RBQPH = MACB_RBQPH;
4008 			}
4009 #endif
4010 		}
4011 
4012 		/* get irq: here we use the linux queue index, not the hardware
4013 		 * queue index. the queue irq definitions in the device tree
4014 		 * must remove the optional gaps that could exist in the
4015 		 * hardware queue mask.
4016 		 */
4017 		queue->irq = platform_get_irq(pdev, q);
4018 		err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
4019 				       IRQF_SHARED, dev->name, queue);
4020 		if (err) {
4021 			dev_err(&pdev->dev,
4022 				"Unable to request IRQ %d (error %d)\n",
4023 				queue->irq, err);
4024 			return err;
4025 		}
4026 
4027 		INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
4028 		q++;
4029 	}
4030 
4031 	dev->netdev_ops = &macb_netdev_ops;
4032 
4033 	/* setup appropriated routines according to adapter type */
4034 	if (macb_is_gem(bp)) {
4035 		bp->max_tx_length = GEM_MAX_TX_LEN;
4036 		bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
4037 		bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
4038 		bp->macbgem_ops.mog_init_rings = gem_init_rings;
4039 		bp->macbgem_ops.mog_rx = gem_rx;
4040 		dev->ethtool_ops = &gem_ethtool_ops;
4041 	} else {
4042 		bp->max_tx_length = MACB_MAX_TX_LEN;
4043 		bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
4044 		bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
4045 		bp->macbgem_ops.mog_init_rings = macb_init_rings;
4046 		bp->macbgem_ops.mog_rx = macb_rx;
4047 		dev->ethtool_ops = &macb_ethtool_ops;
4048 	}
4049 
4050 	/* Set features */
4051 	dev->hw_features = NETIF_F_SG;
4052 
4053 	/* Check LSO capability */
4054 	if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6)))
4055 		dev->hw_features |= MACB_NETIF_LSO;
4056 
4057 	/* Checksum offload is only available on gem with packet buffer */
4058 	if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
4059 		dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
4060 	if (bp->caps & MACB_CAPS_SG_DISABLED)
4061 		dev->hw_features &= ~NETIF_F_SG;
4062 	dev->features = dev->hw_features;
4063 
4064 	/* Check RX Flow Filters support.
4065 	 * Max Rx flows set by availability of screeners & compare regs:
4066 	 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs
4067 	 */
4068 	reg = gem_readl(bp, DCFG8);
4069 	bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3),
4070 			GEM_BFEXT(T2SCR, reg));
4071 	INIT_LIST_HEAD(&bp->rx_fs_list.list);
4072 	if (bp->max_tuples > 0) {
4073 		/* also needs one ethtype match to check IPv4 */
4074 		if (GEM_BFEXT(SCR2ETH, reg) > 0) {
4075 			/* program this reg now */
4076 			reg = 0;
4077 			reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg);
4078 			gem_writel_n(bp, ETHT, SCRT2_ETHT, reg);
4079 			/* Filtering is supported in hw but don't enable it in kernel now */
4080 			dev->hw_features |= NETIF_F_NTUPLE;
4081 			/* init Rx flow definitions */
4082 			bp->rx_fs_list.count = 0;
4083 			spin_lock_init(&bp->rx_fs_lock);
4084 		} else
4085 			bp->max_tuples = 0;
4086 	}
4087 
4088 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
4089 		val = 0;
4090 		if (phy_interface_mode_is_rgmii(bp->phy_interface))
4091 			val = bp->usrio->rgmii;
4092 		else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
4093 			 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4094 			val = bp->usrio->rmii;
4095 		else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4096 			val = bp->usrio->mii;
4097 
4098 		if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
4099 			val |= bp->usrio->refclk;
4100 
4101 		macb_or_gem_writel(bp, USRIO, val);
4102 	}
4103 
4104 	/* Set MII management clock divider */
4105 	val = macb_mdc_clk_div(bp);
4106 	val |= macb_dbw(bp);
4107 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
4108 		val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
4109 	macb_writel(bp, NCFGR, val);
4110 
4111 	return 0;
4112 }
4113 
4114 static const struct macb_usrio_config macb_default_usrio = {
4115 	.mii = MACB_BIT(MII),
4116 	.rmii = MACB_BIT(RMII),
4117 	.rgmii = GEM_BIT(RGMII),
4118 	.refclk = MACB_BIT(CLKEN),
4119 };
4120 
4121 #if defined(CONFIG_OF)
4122 /* 1518 rounded up */
4123 #define AT91ETHER_MAX_RBUFF_SZ	0x600
4124 /* max number of receive buffers */
4125 #define AT91ETHER_MAX_RX_DESCR	9
4126 
4127 static struct sifive_fu540_macb_mgmt *mgmt;
4128 
4129 static int at91ether_alloc_coherent(struct macb *lp)
4130 {
4131 	struct macb_queue *q = &lp->queues[0];
4132 
4133 	q->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
4134 					 (AT91ETHER_MAX_RX_DESCR *
4135 					  macb_dma_desc_get_size(lp)),
4136 					 &q->rx_ring_dma, GFP_KERNEL);
4137 	if (!q->rx_ring)
4138 		return -ENOMEM;
4139 
4140 	q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
4141 					    AT91ETHER_MAX_RX_DESCR *
4142 					    AT91ETHER_MAX_RBUFF_SZ,
4143 					    &q->rx_buffers_dma, GFP_KERNEL);
4144 	if (!q->rx_buffers) {
4145 		dma_free_coherent(&lp->pdev->dev,
4146 				  AT91ETHER_MAX_RX_DESCR *
4147 				  macb_dma_desc_get_size(lp),
4148 				  q->rx_ring, q->rx_ring_dma);
4149 		q->rx_ring = NULL;
4150 		return -ENOMEM;
4151 	}
4152 
4153 	return 0;
4154 }
4155 
4156 static void at91ether_free_coherent(struct macb *lp)
4157 {
4158 	struct macb_queue *q = &lp->queues[0];
4159 
4160 	if (q->rx_ring) {
4161 		dma_free_coherent(&lp->pdev->dev,
4162 				  AT91ETHER_MAX_RX_DESCR *
4163 				  macb_dma_desc_get_size(lp),
4164 				  q->rx_ring, q->rx_ring_dma);
4165 		q->rx_ring = NULL;
4166 	}
4167 
4168 	if (q->rx_buffers) {
4169 		dma_free_coherent(&lp->pdev->dev,
4170 				  AT91ETHER_MAX_RX_DESCR *
4171 				  AT91ETHER_MAX_RBUFF_SZ,
4172 				  q->rx_buffers, q->rx_buffers_dma);
4173 		q->rx_buffers = NULL;
4174 	}
4175 }
4176 
4177 /* Initialize and start the Receiver and Transmit subsystems */
4178 static int at91ether_start(struct macb *lp)
4179 {
4180 	struct macb_queue *q = &lp->queues[0];
4181 	struct macb_dma_desc *desc;
4182 	dma_addr_t addr;
4183 	u32 ctl;
4184 	int i, ret;
4185 
4186 	ret = at91ether_alloc_coherent(lp);
4187 	if (ret)
4188 		return ret;
4189 
4190 	addr = q->rx_buffers_dma;
4191 	for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
4192 		desc = macb_rx_desc(q, i);
4193 		macb_set_addr(lp, desc, addr);
4194 		desc->ctrl = 0;
4195 		addr += AT91ETHER_MAX_RBUFF_SZ;
4196 	}
4197 
4198 	/* Set the Wrap bit on the last descriptor */
4199 	desc->addr |= MACB_BIT(RX_WRAP);
4200 
4201 	/* Reset buffer index */
4202 	q->rx_tail = 0;
4203 
4204 	/* Program address of descriptor list in Rx Buffer Queue register */
4205 	macb_writel(lp, RBQP, q->rx_ring_dma);
4206 
4207 	/* Enable Receive and Transmit */
4208 	ctl = macb_readl(lp, NCR);
4209 	macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
4210 
4211 	/* Enable MAC interrupts */
4212 	macb_writel(lp, IER, MACB_BIT(RCOMP)	|
4213 			     MACB_BIT(RXUBR)	|
4214 			     MACB_BIT(ISR_TUND)	|
4215 			     MACB_BIT(ISR_RLE)	|
4216 			     MACB_BIT(TCOMP)	|
4217 			     MACB_BIT(ISR_ROVR)	|
4218 			     MACB_BIT(HRESP));
4219 
4220 	return 0;
4221 }
4222 
4223 static void at91ether_stop(struct macb *lp)
4224 {
4225 	u32 ctl;
4226 
4227 	/* Disable MAC interrupts */
4228 	macb_writel(lp, IDR, MACB_BIT(RCOMP)	|
4229 			     MACB_BIT(RXUBR)	|
4230 			     MACB_BIT(ISR_TUND)	|
4231 			     MACB_BIT(ISR_RLE)	|
4232 			     MACB_BIT(TCOMP)	|
4233 			     MACB_BIT(ISR_ROVR) |
4234 			     MACB_BIT(HRESP));
4235 
4236 	/* Disable Receiver and Transmitter */
4237 	ctl = macb_readl(lp, NCR);
4238 	macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
4239 
4240 	/* Free resources. */
4241 	at91ether_free_coherent(lp);
4242 }
4243 
4244 /* Open the ethernet interface */
4245 static int at91ether_open(struct net_device *dev)
4246 {
4247 	struct macb *lp = netdev_priv(dev);
4248 	u32 ctl;
4249 	int ret;
4250 
4251 	ret = pm_runtime_resume_and_get(&lp->pdev->dev);
4252 	if (ret < 0)
4253 		return ret;
4254 
4255 	/* Clear internal statistics */
4256 	ctl = macb_readl(lp, NCR);
4257 	macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
4258 
4259 	macb_set_hwaddr(lp);
4260 
4261 	ret = at91ether_start(lp);
4262 	if (ret)
4263 		goto pm_exit;
4264 
4265 	ret = macb_phylink_connect(lp);
4266 	if (ret)
4267 		goto stop;
4268 
4269 	netif_start_queue(dev);
4270 
4271 	return 0;
4272 
4273 stop:
4274 	at91ether_stop(lp);
4275 pm_exit:
4276 	pm_runtime_put_sync(&lp->pdev->dev);
4277 	return ret;
4278 }
4279 
4280 /* Close the interface */
4281 static int at91ether_close(struct net_device *dev)
4282 {
4283 	struct macb *lp = netdev_priv(dev);
4284 
4285 	netif_stop_queue(dev);
4286 
4287 	phylink_stop(lp->phylink);
4288 	phylink_disconnect_phy(lp->phylink);
4289 
4290 	at91ether_stop(lp);
4291 
4292 	return pm_runtime_put(&lp->pdev->dev);
4293 }
4294 
4295 /* Transmit packet */
4296 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb,
4297 					struct net_device *dev)
4298 {
4299 	struct macb *lp = netdev_priv(dev);
4300 
4301 	if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
4302 		int desc = 0;
4303 
4304 		netif_stop_queue(dev);
4305 
4306 		/* Store packet information (to free when Tx completed) */
4307 		lp->rm9200_txq[desc].skb = skb;
4308 		lp->rm9200_txq[desc].size = skb->len;
4309 		lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data,
4310 							      skb->len, DMA_TO_DEVICE);
4311 		if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) {
4312 			dev_kfree_skb_any(skb);
4313 			dev->stats.tx_dropped++;
4314 			netdev_err(dev, "%s: DMA mapping error\n", __func__);
4315 			return NETDEV_TX_OK;
4316 		}
4317 
4318 		/* Set address of the data in the Transmit Address register */
4319 		macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping);
4320 		/* Set length of the packet in the Transmit Control register */
4321 		macb_writel(lp, TCR, skb->len);
4322 
4323 	} else {
4324 		netdev_err(dev, "%s called, but device is busy!\n", __func__);
4325 		return NETDEV_TX_BUSY;
4326 	}
4327 
4328 	return NETDEV_TX_OK;
4329 }
4330 
4331 /* Extract received frame from buffer descriptors and sent to upper layers.
4332  * (Called from interrupt context)
4333  */
4334 static void at91ether_rx(struct net_device *dev)
4335 {
4336 	struct macb *lp = netdev_priv(dev);
4337 	struct macb_queue *q = &lp->queues[0];
4338 	struct macb_dma_desc *desc;
4339 	unsigned char *p_recv;
4340 	struct sk_buff *skb;
4341 	unsigned int pktlen;
4342 
4343 	desc = macb_rx_desc(q, q->rx_tail);
4344 	while (desc->addr & MACB_BIT(RX_USED)) {
4345 		p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
4346 		pktlen = MACB_BF(RX_FRMLEN, desc->ctrl);
4347 		skb = netdev_alloc_skb(dev, pktlen + 2);
4348 		if (skb) {
4349 			skb_reserve(skb, 2);
4350 			skb_put_data(skb, p_recv, pktlen);
4351 
4352 			skb->protocol = eth_type_trans(skb, dev);
4353 			dev->stats.rx_packets++;
4354 			dev->stats.rx_bytes += pktlen;
4355 			netif_rx(skb);
4356 		} else {
4357 			dev->stats.rx_dropped++;
4358 		}
4359 
4360 		if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH))
4361 			dev->stats.multicast++;
4362 
4363 		/* reset ownership bit */
4364 		desc->addr &= ~MACB_BIT(RX_USED);
4365 
4366 		/* wrap after last buffer */
4367 		if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
4368 			q->rx_tail = 0;
4369 		else
4370 			q->rx_tail++;
4371 
4372 		desc = macb_rx_desc(q, q->rx_tail);
4373 	}
4374 }
4375 
4376 /* MAC interrupt handler */
4377 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
4378 {
4379 	struct net_device *dev = dev_id;
4380 	struct macb *lp = netdev_priv(dev);
4381 	u32 intstatus, ctl;
4382 	unsigned int desc;
4383 
4384 	/* MAC Interrupt Status register indicates what interrupts are pending.
4385 	 * It is automatically cleared once read.
4386 	 */
4387 	intstatus = macb_readl(lp, ISR);
4388 
4389 	/* Receive complete */
4390 	if (intstatus & MACB_BIT(RCOMP))
4391 		at91ether_rx(dev);
4392 
4393 	/* Transmit complete */
4394 	if (intstatus & MACB_BIT(TCOMP)) {
4395 		/* The TCOM bit is set even if the transmission failed */
4396 		if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
4397 			dev->stats.tx_errors++;
4398 
4399 		desc = 0;
4400 		if (lp->rm9200_txq[desc].skb) {
4401 			dev_consume_skb_irq(lp->rm9200_txq[desc].skb);
4402 			lp->rm9200_txq[desc].skb = NULL;
4403 			dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping,
4404 					 lp->rm9200_txq[desc].size, DMA_TO_DEVICE);
4405 			dev->stats.tx_packets++;
4406 			dev->stats.tx_bytes += lp->rm9200_txq[desc].size;
4407 		}
4408 		netif_wake_queue(dev);
4409 	}
4410 
4411 	/* Work-around for EMAC Errata section 41.3.1 */
4412 	if (intstatus & MACB_BIT(RXUBR)) {
4413 		ctl = macb_readl(lp, NCR);
4414 		macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
4415 		wmb();
4416 		macb_writel(lp, NCR, ctl | MACB_BIT(RE));
4417 	}
4418 
4419 	if (intstatus & MACB_BIT(ISR_ROVR))
4420 		netdev_err(dev, "ROVR error\n");
4421 
4422 	return IRQ_HANDLED;
4423 }
4424 
4425 #ifdef CONFIG_NET_POLL_CONTROLLER
4426 static void at91ether_poll_controller(struct net_device *dev)
4427 {
4428 	unsigned long flags;
4429 
4430 	local_irq_save(flags);
4431 	at91ether_interrupt(dev->irq, dev);
4432 	local_irq_restore(flags);
4433 }
4434 #endif
4435 
4436 static const struct net_device_ops at91ether_netdev_ops = {
4437 	.ndo_open		= at91ether_open,
4438 	.ndo_stop		= at91ether_close,
4439 	.ndo_start_xmit		= at91ether_start_xmit,
4440 	.ndo_get_stats		= macb_get_stats,
4441 	.ndo_set_rx_mode	= macb_set_rx_mode,
4442 	.ndo_set_mac_address	= eth_mac_addr,
4443 	.ndo_eth_ioctl		= macb_ioctl,
4444 	.ndo_validate_addr	= eth_validate_addr,
4445 #ifdef CONFIG_NET_POLL_CONTROLLER
4446 	.ndo_poll_controller	= at91ether_poll_controller,
4447 #endif
4448 };
4449 
4450 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
4451 			      struct clk **hclk, struct clk **tx_clk,
4452 			      struct clk **rx_clk, struct clk **tsu_clk)
4453 {
4454 	int err;
4455 
4456 	*hclk = NULL;
4457 	*tx_clk = NULL;
4458 	*rx_clk = NULL;
4459 	*tsu_clk = NULL;
4460 
4461 	*pclk = devm_clk_get(&pdev->dev, "ether_clk");
4462 	if (IS_ERR(*pclk))
4463 		return PTR_ERR(*pclk);
4464 
4465 	err = clk_prepare_enable(*pclk);
4466 	if (err) {
4467 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4468 		return err;
4469 	}
4470 
4471 	return 0;
4472 }
4473 
4474 static int at91ether_init(struct platform_device *pdev)
4475 {
4476 	struct net_device *dev = platform_get_drvdata(pdev);
4477 	struct macb *bp = netdev_priv(dev);
4478 	int err;
4479 
4480 	bp->queues[0].bp = bp;
4481 
4482 	dev->netdev_ops = &at91ether_netdev_ops;
4483 	dev->ethtool_ops = &macb_ethtool_ops;
4484 
4485 	err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
4486 			       0, dev->name, dev);
4487 	if (err)
4488 		return err;
4489 
4490 	macb_writel(bp, NCR, 0);
4491 
4492 	macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG));
4493 
4494 	return 0;
4495 }
4496 
4497 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw,
4498 					       unsigned long parent_rate)
4499 {
4500 	return mgmt->rate;
4501 }
4502 
4503 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate,
4504 				     unsigned long *parent_rate)
4505 {
4506 	if (WARN_ON(rate < 2500000))
4507 		return 2500000;
4508 	else if (rate == 2500000)
4509 		return 2500000;
4510 	else if (WARN_ON(rate < 13750000))
4511 		return 2500000;
4512 	else if (WARN_ON(rate < 25000000))
4513 		return 25000000;
4514 	else if (rate == 25000000)
4515 		return 25000000;
4516 	else if (WARN_ON(rate < 75000000))
4517 		return 25000000;
4518 	else if (WARN_ON(rate < 125000000))
4519 		return 125000000;
4520 	else if (rate == 125000000)
4521 		return 125000000;
4522 
4523 	WARN_ON(rate > 125000000);
4524 
4525 	return 125000000;
4526 }
4527 
4528 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate,
4529 				  unsigned long parent_rate)
4530 {
4531 	rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate);
4532 	if (rate != 125000000)
4533 		iowrite32(1, mgmt->reg);
4534 	else
4535 		iowrite32(0, mgmt->reg);
4536 	mgmt->rate = rate;
4537 
4538 	return 0;
4539 }
4540 
4541 static const struct clk_ops fu540_c000_ops = {
4542 	.recalc_rate = fu540_macb_tx_recalc_rate,
4543 	.round_rate = fu540_macb_tx_round_rate,
4544 	.set_rate = fu540_macb_tx_set_rate,
4545 };
4546 
4547 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk,
4548 			       struct clk **hclk, struct clk **tx_clk,
4549 			       struct clk **rx_clk, struct clk **tsu_clk)
4550 {
4551 	struct clk_init_data init;
4552 	int err = 0;
4553 
4554 	err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk);
4555 	if (err)
4556 		return err;
4557 
4558 	mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL);
4559 	if (!mgmt) {
4560 		err = -ENOMEM;
4561 		goto err_disable_clks;
4562 	}
4563 
4564 	init.name = "sifive-gemgxl-mgmt";
4565 	init.ops = &fu540_c000_ops;
4566 	init.flags = 0;
4567 	init.num_parents = 0;
4568 
4569 	mgmt->rate = 0;
4570 	mgmt->hw.init = &init;
4571 
4572 	*tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw);
4573 	if (IS_ERR(*tx_clk)) {
4574 		err = PTR_ERR(*tx_clk);
4575 		goto err_disable_clks;
4576 	}
4577 
4578 	err = clk_prepare_enable(*tx_clk);
4579 	if (err) {
4580 		dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
4581 		*tx_clk = NULL;
4582 		goto err_disable_clks;
4583 	} else {
4584 		dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name);
4585 	}
4586 
4587 	return 0;
4588 
4589 err_disable_clks:
4590 	macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk);
4591 
4592 	return err;
4593 }
4594 
4595 static int fu540_c000_init(struct platform_device *pdev)
4596 {
4597 	mgmt->reg = devm_platform_ioremap_resource(pdev, 1);
4598 	if (IS_ERR(mgmt->reg))
4599 		return PTR_ERR(mgmt->reg);
4600 
4601 	return macb_init(pdev);
4602 }
4603 
4604 static int init_reset_optional(struct platform_device *pdev)
4605 {
4606 	struct net_device *dev = platform_get_drvdata(pdev);
4607 	struct macb *bp = netdev_priv(dev);
4608 	int ret;
4609 
4610 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4611 		/* Ensure PHY device used in SGMII mode is ready */
4612 		bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL);
4613 
4614 		if (IS_ERR(bp->sgmii_phy))
4615 			return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy),
4616 					     "failed to get SGMII PHY\n");
4617 
4618 		ret = phy_init(bp->sgmii_phy);
4619 		if (ret)
4620 			return dev_err_probe(&pdev->dev, ret,
4621 					     "failed to init SGMII PHY\n");
4622 	}
4623 
4624 	/* Fully reset controller at hardware level if mapped in device tree */
4625 	ret = device_reset_optional(&pdev->dev);
4626 	if (ret) {
4627 		phy_exit(bp->sgmii_phy);
4628 		return dev_err_probe(&pdev->dev, ret, "failed to reset controller");
4629 	}
4630 
4631 	ret = macb_init(pdev);
4632 	if (ret)
4633 		phy_exit(bp->sgmii_phy);
4634 
4635 	return ret;
4636 }
4637 
4638 static const struct macb_usrio_config sama7g5_usrio = {
4639 	.mii = 0,
4640 	.rmii = 1,
4641 	.rgmii = 2,
4642 	.refclk = BIT(2),
4643 	.hdfctlen = BIT(6),
4644 };
4645 
4646 static const struct macb_config fu540_c000_config = {
4647 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4648 		MACB_CAPS_GEM_HAS_PTP,
4649 	.dma_burst_length = 16,
4650 	.clk_init = fu540_c000_clk_init,
4651 	.init = fu540_c000_init,
4652 	.jumbo_max_len = 10240,
4653 	.usrio = &macb_default_usrio,
4654 };
4655 
4656 static const struct macb_config at91sam9260_config = {
4657 	.caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4658 	.clk_init = macb_clk_init,
4659 	.init = macb_init,
4660 	.usrio = &macb_default_usrio,
4661 };
4662 
4663 static const struct macb_config sama5d3macb_config = {
4664 	.caps = MACB_CAPS_SG_DISABLED |
4665 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4666 	.clk_init = macb_clk_init,
4667 	.init = macb_init,
4668 	.usrio = &macb_default_usrio,
4669 };
4670 
4671 static const struct macb_config pc302gem_config = {
4672 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
4673 	.dma_burst_length = 16,
4674 	.clk_init = macb_clk_init,
4675 	.init = macb_init,
4676 	.usrio = &macb_default_usrio,
4677 };
4678 
4679 static const struct macb_config sama5d2_config = {
4680 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4681 	.dma_burst_length = 16,
4682 	.clk_init = macb_clk_init,
4683 	.init = macb_init,
4684 	.usrio = &macb_default_usrio,
4685 };
4686 
4687 static const struct macb_config sama5d29_config = {
4688 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP,
4689 	.dma_burst_length = 16,
4690 	.clk_init = macb_clk_init,
4691 	.init = macb_init,
4692 	.usrio = &macb_default_usrio,
4693 };
4694 
4695 static const struct macb_config sama5d3_config = {
4696 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4697 		MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
4698 	.dma_burst_length = 16,
4699 	.clk_init = macb_clk_init,
4700 	.init = macb_init,
4701 	.jumbo_max_len = 10240,
4702 	.usrio = &macb_default_usrio,
4703 };
4704 
4705 static const struct macb_config sama5d4_config = {
4706 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4707 	.dma_burst_length = 4,
4708 	.clk_init = macb_clk_init,
4709 	.init = macb_init,
4710 	.usrio = &macb_default_usrio,
4711 };
4712 
4713 static const struct macb_config emac_config = {
4714 	.caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC,
4715 	.clk_init = at91ether_clk_init,
4716 	.init = at91ether_init,
4717 	.usrio = &macb_default_usrio,
4718 };
4719 
4720 static const struct macb_config np4_config = {
4721 	.caps = MACB_CAPS_USRIO_DISABLED,
4722 	.clk_init = macb_clk_init,
4723 	.init = macb_init,
4724 	.usrio = &macb_default_usrio,
4725 };
4726 
4727 static const struct macb_config zynqmp_config = {
4728 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4729 		MACB_CAPS_JUMBO |
4730 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH,
4731 	.dma_burst_length = 16,
4732 	.clk_init = macb_clk_init,
4733 	.init = init_reset_optional,
4734 	.jumbo_max_len = 10240,
4735 	.usrio = &macb_default_usrio,
4736 };
4737 
4738 static const struct macb_config zynq_config = {
4739 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF |
4740 		MACB_CAPS_NEEDS_RSTONUBR,
4741 	.dma_burst_length = 16,
4742 	.clk_init = macb_clk_init,
4743 	.init = macb_init,
4744 	.usrio = &macb_default_usrio,
4745 };
4746 
4747 static const struct macb_config mpfs_config = {
4748 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4749 		MACB_CAPS_JUMBO |
4750 		MACB_CAPS_GEM_HAS_PTP,
4751 	.dma_burst_length = 16,
4752 	.clk_init = macb_clk_init,
4753 	.init = init_reset_optional,
4754 	.usrio = &macb_default_usrio,
4755 	.jumbo_max_len = 10240,
4756 };
4757 
4758 static const struct macb_config sama7g5_gem_config = {
4759 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG |
4760 		MACB_CAPS_MIIONRGMII,
4761 	.dma_burst_length = 16,
4762 	.clk_init = macb_clk_init,
4763 	.init = macb_init,
4764 	.usrio = &sama7g5_usrio,
4765 };
4766 
4767 static const struct macb_config sama7g5_emac_config = {
4768 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII |
4769 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII,
4770 	.dma_burst_length = 16,
4771 	.clk_init = macb_clk_init,
4772 	.init = macb_init,
4773 	.usrio = &sama7g5_usrio,
4774 };
4775 
4776 static const struct of_device_id macb_dt_ids[] = {
4777 	{ .compatible = "cdns,at32ap7000-macb" },
4778 	{ .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
4779 	{ .compatible = "cdns,macb" },
4780 	{ .compatible = "cdns,np4-macb", .data = &np4_config },
4781 	{ .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
4782 	{ .compatible = "cdns,gem", .data = &pc302gem_config },
4783 	{ .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config },
4784 	{ .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
4785 	{ .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config },
4786 	{ .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
4787 	{ .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config },
4788 	{ .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
4789 	{ .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
4790 	{ .compatible = "cdns,emac", .data = &emac_config },
4791 	{ .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config},
4792 	{ .compatible = "cdns,zynq-gem", .data = &zynq_config },
4793 	{ .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config },
4794 	{ .compatible = "microchip,mpfs-macb", .data = &mpfs_config },
4795 	{ .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config },
4796 	{ .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config },
4797 	{ /* sentinel */ }
4798 };
4799 MODULE_DEVICE_TABLE(of, macb_dt_ids);
4800 #endif /* CONFIG_OF */
4801 
4802 static const struct macb_config default_gem_config = {
4803 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4804 		MACB_CAPS_JUMBO |
4805 		MACB_CAPS_GEM_HAS_PTP,
4806 	.dma_burst_length = 16,
4807 	.clk_init = macb_clk_init,
4808 	.init = macb_init,
4809 	.usrio = &macb_default_usrio,
4810 	.jumbo_max_len = 10240,
4811 };
4812 
4813 static int macb_probe(struct platform_device *pdev)
4814 {
4815 	const struct macb_config *macb_config = &default_gem_config;
4816 	int (*clk_init)(struct platform_device *, struct clk **,
4817 			struct clk **, struct clk **,  struct clk **,
4818 			struct clk **) = macb_config->clk_init;
4819 	int (*init)(struct platform_device *) = macb_config->init;
4820 	struct device_node *np = pdev->dev.of_node;
4821 	struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
4822 	struct clk *tsu_clk = NULL;
4823 	unsigned int queue_mask, num_queues;
4824 	bool native_io;
4825 	phy_interface_t interface;
4826 	struct net_device *dev;
4827 	struct resource *regs;
4828 	void __iomem *mem;
4829 	struct macb *bp;
4830 	int err, val;
4831 
4832 	mem = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
4833 	if (IS_ERR(mem))
4834 		return PTR_ERR(mem);
4835 
4836 	if (np) {
4837 		const struct of_device_id *match;
4838 
4839 		match = of_match_node(macb_dt_ids, np);
4840 		if (match && match->data) {
4841 			macb_config = match->data;
4842 			clk_init = macb_config->clk_init;
4843 			init = macb_config->init;
4844 		}
4845 	}
4846 
4847 	err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk);
4848 	if (err)
4849 		return err;
4850 
4851 	pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT);
4852 	pm_runtime_use_autosuspend(&pdev->dev);
4853 	pm_runtime_get_noresume(&pdev->dev);
4854 	pm_runtime_set_active(&pdev->dev);
4855 	pm_runtime_enable(&pdev->dev);
4856 	native_io = hw_is_native_io(mem);
4857 
4858 	macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
4859 	dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
4860 	if (!dev) {
4861 		err = -ENOMEM;
4862 		goto err_disable_clocks;
4863 	}
4864 
4865 	dev->base_addr = regs->start;
4866 
4867 	SET_NETDEV_DEV(dev, &pdev->dev);
4868 
4869 	bp = netdev_priv(dev);
4870 	bp->pdev = pdev;
4871 	bp->dev = dev;
4872 	bp->regs = mem;
4873 	bp->native_io = native_io;
4874 	if (native_io) {
4875 		bp->macb_reg_readl = hw_readl_native;
4876 		bp->macb_reg_writel = hw_writel_native;
4877 	} else {
4878 		bp->macb_reg_readl = hw_readl;
4879 		bp->macb_reg_writel = hw_writel;
4880 	}
4881 	bp->num_queues = num_queues;
4882 	bp->queue_mask = queue_mask;
4883 	if (macb_config)
4884 		bp->dma_burst_length = macb_config->dma_burst_length;
4885 	bp->pclk = pclk;
4886 	bp->hclk = hclk;
4887 	bp->tx_clk = tx_clk;
4888 	bp->rx_clk = rx_clk;
4889 	bp->tsu_clk = tsu_clk;
4890 	if (macb_config)
4891 		bp->jumbo_max_len = macb_config->jumbo_max_len;
4892 
4893 	bp->wol = 0;
4894 	if (of_get_property(np, "magic-packet", NULL))
4895 		bp->wol |= MACB_WOL_HAS_MAGIC_PACKET;
4896 	device_set_wakeup_capable(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET);
4897 
4898 	bp->usrio = macb_config->usrio;
4899 
4900 	spin_lock_init(&bp->lock);
4901 
4902 	/* setup capabilities */
4903 	macb_configure_caps(bp, macb_config);
4904 
4905 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4906 	if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) {
4907 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
4908 		bp->hw_dma_cap |= HW_DMA_CAP_64B;
4909 	}
4910 #endif
4911 	platform_set_drvdata(pdev, dev);
4912 
4913 	dev->irq = platform_get_irq(pdev, 0);
4914 	if (dev->irq < 0) {
4915 		err = dev->irq;
4916 		goto err_out_free_netdev;
4917 	}
4918 
4919 	/* MTU range: 68 - 1500 or 10240 */
4920 	dev->min_mtu = GEM_MTU_MIN_SIZE;
4921 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
4922 		dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN;
4923 	else
4924 		dev->max_mtu = ETH_DATA_LEN;
4925 
4926 	if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) {
4927 		val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10));
4928 		if (val)
4929 			bp->rx_bd_rd_prefetch = (2 << (val - 1)) *
4930 						macb_dma_desc_get_size(bp);
4931 
4932 		val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10));
4933 		if (val)
4934 			bp->tx_bd_rd_prefetch = (2 << (val - 1)) *
4935 						macb_dma_desc_get_size(bp);
4936 	}
4937 
4938 	bp->rx_intr_mask = MACB_RX_INT_FLAGS;
4939 	if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR)
4940 		bp->rx_intr_mask |= MACB_BIT(RXUBR);
4941 
4942 	err = of_get_ethdev_address(np, bp->dev);
4943 	if (err == -EPROBE_DEFER)
4944 		goto err_out_free_netdev;
4945 	else if (err)
4946 		macb_get_hwaddr(bp);
4947 
4948 	err = of_get_phy_mode(np, &interface);
4949 	if (err)
4950 		/* not found in DT, MII by default */
4951 		bp->phy_interface = PHY_INTERFACE_MODE_MII;
4952 	else
4953 		bp->phy_interface = interface;
4954 
4955 	/* IP specific init */
4956 	err = init(pdev);
4957 	if (err)
4958 		goto err_out_free_netdev;
4959 
4960 	err = macb_mii_init(bp);
4961 	if (err)
4962 		goto err_out_phy_exit;
4963 
4964 	netif_carrier_off(dev);
4965 
4966 	err = register_netdev(dev);
4967 	if (err) {
4968 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
4969 		goto err_out_unregister_mdio;
4970 	}
4971 
4972 	tasklet_setup(&bp->hresp_err_tasklet, macb_hresp_error_task);
4973 
4974 	netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
4975 		    macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
4976 		    dev->base_addr, dev->irq, dev->dev_addr);
4977 
4978 	pm_runtime_mark_last_busy(&bp->pdev->dev);
4979 	pm_runtime_put_autosuspend(&bp->pdev->dev);
4980 
4981 	return 0;
4982 
4983 err_out_unregister_mdio:
4984 	mdiobus_unregister(bp->mii_bus);
4985 	mdiobus_free(bp->mii_bus);
4986 
4987 err_out_phy_exit:
4988 	phy_exit(bp->sgmii_phy);
4989 
4990 err_out_free_netdev:
4991 	free_netdev(dev);
4992 
4993 err_disable_clocks:
4994 	macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk);
4995 	pm_runtime_disable(&pdev->dev);
4996 	pm_runtime_set_suspended(&pdev->dev);
4997 	pm_runtime_dont_use_autosuspend(&pdev->dev);
4998 
4999 	return err;
5000 }
5001 
5002 static int macb_remove(struct platform_device *pdev)
5003 {
5004 	struct net_device *dev;
5005 	struct macb *bp;
5006 
5007 	dev = platform_get_drvdata(pdev);
5008 
5009 	if (dev) {
5010 		bp = netdev_priv(dev);
5011 		phy_exit(bp->sgmii_phy);
5012 		mdiobus_unregister(bp->mii_bus);
5013 		mdiobus_free(bp->mii_bus);
5014 
5015 		unregister_netdev(dev);
5016 		tasklet_kill(&bp->hresp_err_tasklet);
5017 		pm_runtime_disable(&pdev->dev);
5018 		pm_runtime_dont_use_autosuspend(&pdev->dev);
5019 		if (!pm_runtime_suspended(&pdev->dev)) {
5020 			macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk,
5021 					  bp->rx_clk, bp->tsu_clk);
5022 			pm_runtime_set_suspended(&pdev->dev);
5023 		}
5024 		phylink_destroy(bp->phylink);
5025 		free_netdev(dev);
5026 	}
5027 
5028 	return 0;
5029 }
5030 
5031 static int __maybe_unused macb_suspend(struct device *dev)
5032 {
5033 	struct net_device *netdev = dev_get_drvdata(dev);
5034 	struct macb *bp = netdev_priv(netdev);
5035 	struct macb_queue *queue;
5036 	unsigned long flags;
5037 	unsigned int q;
5038 	int err;
5039 
5040 	if (!netif_running(netdev))
5041 		return 0;
5042 
5043 	if (bp->wol & MACB_WOL_ENABLED) {
5044 		spin_lock_irqsave(&bp->lock, flags);
5045 		/* Flush all status bits */
5046 		macb_writel(bp, TSR, -1);
5047 		macb_writel(bp, RSR, -1);
5048 		for (q = 0, queue = bp->queues; q < bp->num_queues;
5049 		     ++q, ++queue) {
5050 			/* Disable all interrupts */
5051 			queue_writel(queue, IDR, -1);
5052 			queue_readl(queue, ISR);
5053 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5054 				queue_writel(queue, ISR, -1);
5055 		}
5056 		/* Change interrupt handler and
5057 		 * Enable WoL IRQ on queue 0
5058 		 */
5059 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5060 		if (macb_is_gem(bp)) {
5061 			err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt,
5062 					       IRQF_SHARED, netdev->name, bp->queues);
5063 			if (err) {
5064 				dev_err(dev,
5065 					"Unable to request IRQ %d (error %d)\n",
5066 					bp->queues[0].irq, err);
5067 				spin_unlock_irqrestore(&bp->lock, flags);
5068 				return err;
5069 			}
5070 			queue_writel(bp->queues, IER, GEM_BIT(WOL));
5071 			gem_writel(bp, WOL, MACB_BIT(MAG));
5072 		} else {
5073 			err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt,
5074 					       IRQF_SHARED, netdev->name, bp->queues);
5075 			if (err) {
5076 				dev_err(dev,
5077 					"Unable to request IRQ %d (error %d)\n",
5078 					bp->queues[0].irq, err);
5079 				spin_unlock_irqrestore(&bp->lock, flags);
5080 				return err;
5081 			}
5082 			queue_writel(bp->queues, IER, MACB_BIT(WOL));
5083 			macb_writel(bp, WOL, MACB_BIT(MAG));
5084 		}
5085 		spin_unlock_irqrestore(&bp->lock, flags);
5086 
5087 		enable_irq_wake(bp->queues[0].irq);
5088 	}
5089 
5090 	netif_device_detach(netdev);
5091 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5092 	     ++q, ++queue) {
5093 		napi_disable(&queue->napi_rx);
5094 		napi_disable(&queue->napi_tx);
5095 	}
5096 
5097 	if (!(bp->wol & MACB_WOL_ENABLED)) {
5098 		rtnl_lock();
5099 		phylink_stop(bp->phylink);
5100 		rtnl_unlock();
5101 		spin_lock_irqsave(&bp->lock, flags);
5102 		macb_reset_hw(bp);
5103 		spin_unlock_irqrestore(&bp->lock, flags);
5104 	}
5105 
5106 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5107 		bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO);
5108 
5109 	if (netdev->hw_features & NETIF_F_NTUPLE)
5110 		bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT);
5111 
5112 	if (bp->ptp_info)
5113 		bp->ptp_info->ptp_remove(netdev);
5114 	if (!device_may_wakeup(dev))
5115 		pm_runtime_force_suspend(dev);
5116 
5117 	return 0;
5118 }
5119 
5120 static int __maybe_unused macb_resume(struct device *dev)
5121 {
5122 	struct net_device *netdev = dev_get_drvdata(dev);
5123 	struct macb *bp = netdev_priv(netdev);
5124 	struct macb_queue *queue;
5125 	unsigned long flags;
5126 	unsigned int q;
5127 	int err;
5128 
5129 	if (!netif_running(netdev))
5130 		return 0;
5131 
5132 	if (!device_may_wakeup(dev))
5133 		pm_runtime_force_resume(dev);
5134 
5135 	if (bp->wol & MACB_WOL_ENABLED) {
5136 		spin_lock_irqsave(&bp->lock, flags);
5137 		/* Disable WoL */
5138 		if (macb_is_gem(bp)) {
5139 			queue_writel(bp->queues, IDR, GEM_BIT(WOL));
5140 			gem_writel(bp, WOL, 0);
5141 		} else {
5142 			queue_writel(bp->queues, IDR, MACB_BIT(WOL));
5143 			macb_writel(bp, WOL, 0);
5144 		}
5145 		/* Clear ISR on queue 0 */
5146 		queue_readl(bp->queues, ISR);
5147 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5148 			queue_writel(bp->queues, ISR, -1);
5149 		/* Replace interrupt handler on queue 0 */
5150 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5151 		err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt,
5152 				       IRQF_SHARED, netdev->name, bp->queues);
5153 		if (err) {
5154 			dev_err(dev,
5155 				"Unable to request IRQ %d (error %d)\n",
5156 				bp->queues[0].irq, err);
5157 			spin_unlock_irqrestore(&bp->lock, flags);
5158 			return err;
5159 		}
5160 		spin_unlock_irqrestore(&bp->lock, flags);
5161 
5162 		disable_irq_wake(bp->queues[0].irq);
5163 
5164 		/* Now make sure we disable phy before moving
5165 		 * to common restore path
5166 		 */
5167 		rtnl_lock();
5168 		phylink_stop(bp->phylink);
5169 		rtnl_unlock();
5170 	}
5171 
5172 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5173 	     ++q, ++queue) {
5174 		napi_enable(&queue->napi_rx);
5175 		napi_enable(&queue->napi_tx);
5176 	}
5177 
5178 	if (netdev->hw_features & NETIF_F_NTUPLE)
5179 		gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2);
5180 
5181 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5182 		macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio);
5183 
5184 	macb_writel(bp, NCR, MACB_BIT(MPE));
5185 	macb_init_hw(bp);
5186 	macb_set_rx_mode(netdev);
5187 	macb_restore_features(bp);
5188 	rtnl_lock();
5189 	phylink_start(bp->phylink);
5190 	rtnl_unlock();
5191 
5192 	netif_device_attach(netdev);
5193 	if (bp->ptp_info)
5194 		bp->ptp_info->ptp_init(netdev);
5195 
5196 	return 0;
5197 }
5198 
5199 static int __maybe_unused macb_runtime_suspend(struct device *dev)
5200 {
5201 	struct net_device *netdev = dev_get_drvdata(dev);
5202 	struct macb *bp = netdev_priv(netdev);
5203 
5204 	if (!(device_may_wakeup(dev)))
5205 		macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk);
5206 	else
5207 		macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk);
5208 
5209 	return 0;
5210 }
5211 
5212 static int __maybe_unused macb_runtime_resume(struct device *dev)
5213 {
5214 	struct net_device *netdev = dev_get_drvdata(dev);
5215 	struct macb *bp = netdev_priv(netdev);
5216 
5217 	if (!(device_may_wakeup(dev))) {
5218 		clk_prepare_enable(bp->pclk);
5219 		clk_prepare_enable(bp->hclk);
5220 		clk_prepare_enable(bp->tx_clk);
5221 		clk_prepare_enable(bp->rx_clk);
5222 	}
5223 	clk_prepare_enable(bp->tsu_clk);
5224 
5225 	return 0;
5226 }
5227 
5228 static const struct dev_pm_ops macb_pm_ops = {
5229 	SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume)
5230 	SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL)
5231 };
5232 
5233 static struct platform_driver macb_driver = {
5234 	.probe		= macb_probe,
5235 	.remove		= macb_remove,
5236 	.driver		= {
5237 		.name		= "macb",
5238 		.of_match_table	= of_match_ptr(macb_dt_ids),
5239 		.pm	= &macb_pm_ops,
5240 	},
5241 };
5242 
5243 module_platform_driver(macb_driver);
5244 
5245 MODULE_LICENSE("GPL");
5246 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
5247 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
5248 MODULE_ALIAS("platform:macb");
5249