xref: /linux/drivers/net/ethernet/cadence/macb_main.c (revision 94737ef56b610d94a24fadfb8386fc17dbd79ddd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cadence MACB/GEM Ethernet Controller driver
4  *
5  * Copyright (C) 2004-2006 Atmel Corporation
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/crc32.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/circ_buf.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/phylink.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/of_gpio.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/ip.h>
34 #include <linux/udp.h>
35 #include <linux/tcp.h>
36 #include <linux/iopoll.h>
37 #include <linux/phy/phy.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/reset.h>
40 #include "macb.h"
41 
42 /* This structure is only used for MACB on SiFive FU540 devices */
43 struct sifive_fu540_macb_mgmt {
44 	void __iomem *reg;
45 	unsigned long rate;
46 	struct clk_hw hw;
47 };
48 
49 #define MACB_RX_BUFFER_SIZE	128
50 #define RX_BUFFER_MULTIPLE	64  /* bytes */
51 
52 #define DEFAULT_RX_RING_SIZE	512 /* must be power of 2 */
53 #define MIN_RX_RING_SIZE	64
54 #define MAX_RX_RING_SIZE	8192
55 #define RX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
56 				 * (bp)->rx_ring_size)
57 
58 #define DEFAULT_TX_RING_SIZE	512 /* must be power of 2 */
59 #define MIN_TX_RING_SIZE	64
60 #define MAX_TX_RING_SIZE	4096
61 #define TX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
62 				 * (bp)->tx_ring_size)
63 
64 /* level of occupied TX descriptors under which we wake up TX process */
65 #define MACB_TX_WAKEUP_THRESH(bp)	(3 * (bp)->tx_ring_size / 4)
66 
67 #define MACB_RX_INT_FLAGS	(MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR))
68 #define MACB_TX_ERR_FLAGS	(MACB_BIT(ISR_TUND)			\
69 					| MACB_BIT(ISR_RLE)		\
70 					| MACB_BIT(TXERR))
71 #define MACB_TX_INT_FLAGS	(MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP)	\
72 					| MACB_BIT(TXUBR))
73 
74 /* Max length of transmit frame must be a multiple of 8 bytes */
75 #define MACB_TX_LEN_ALIGN	8
76 #define MACB_MAX_TX_LEN		((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
77 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a
78  * false amba_error in TX path from the DMA assuming there is not enough
79  * space in the SRAM (16KB) even when there is.
80  */
81 #define GEM_MAX_TX_LEN		(unsigned int)(0x3FC0)
82 
83 #define GEM_MTU_MIN_SIZE	ETH_MIN_MTU
84 #define MACB_NETIF_LSO		NETIF_F_TSO
85 
86 #define MACB_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
87 #define MACB_WOL_ENABLED		(0x1 << 1)
88 
89 #define HS_SPEED_10000M			4
90 #define MACB_SERDES_RATE_10G		1
91 
92 /* Graceful stop timeouts in us. We should allow up to
93  * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
94  */
95 #define MACB_HALT_TIMEOUT	1230
96 
97 #define MACB_PM_TIMEOUT  100 /* ms */
98 
99 #define MACB_MDIO_TIMEOUT	1000000 /* in usecs */
100 
101 /* DMA buffer descriptor might be different size
102  * depends on hardware configuration:
103  *
104  * 1. dma address width 32 bits:
105  *    word 1: 32 bit address of Data Buffer
106  *    word 2: control
107  *
108  * 2. dma address width 64 bits:
109  *    word 1: 32 bit address of Data Buffer
110  *    word 2: control
111  *    word 3: upper 32 bit address of Data Buffer
112  *    word 4: unused
113  *
114  * 3. dma address width 32 bits with hardware timestamping:
115  *    word 1: 32 bit address of Data Buffer
116  *    word 2: control
117  *    word 3: timestamp word 1
118  *    word 4: timestamp word 2
119  *
120  * 4. dma address width 64 bits with hardware timestamping:
121  *    word 1: 32 bit address of Data Buffer
122  *    word 2: control
123  *    word 3: upper 32 bit address of Data Buffer
124  *    word 4: unused
125  *    word 5: timestamp word 1
126  *    word 6: timestamp word 2
127  */
128 static unsigned int macb_dma_desc_get_size(struct macb *bp)
129 {
130 #ifdef MACB_EXT_DESC
131 	unsigned int desc_size;
132 
133 	switch (bp->hw_dma_cap) {
134 	case HW_DMA_CAP_64B:
135 		desc_size = sizeof(struct macb_dma_desc)
136 			+ sizeof(struct macb_dma_desc_64);
137 		break;
138 	case HW_DMA_CAP_PTP:
139 		desc_size = sizeof(struct macb_dma_desc)
140 			+ sizeof(struct macb_dma_desc_ptp);
141 		break;
142 	case HW_DMA_CAP_64B_PTP:
143 		desc_size = sizeof(struct macb_dma_desc)
144 			+ sizeof(struct macb_dma_desc_64)
145 			+ sizeof(struct macb_dma_desc_ptp);
146 		break;
147 	default:
148 		desc_size = sizeof(struct macb_dma_desc);
149 	}
150 	return desc_size;
151 #endif
152 	return sizeof(struct macb_dma_desc);
153 }
154 
155 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx)
156 {
157 #ifdef MACB_EXT_DESC
158 	switch (bp->hw_dma_cap) {
159 	case HW_DMA_CAP_64B:
160 	case HW_DMA_CAP_PTP:
161 		desc_idx <<= 1;
162 		break;
163 	case HW_DMA_CAP_64B_PTP:
164 		desc_idx *= 3;
165 		break;
166 	default:
167 		break;
168 	}
169 #endif
170 	return desc_idx;
171 }
172 
173 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
174 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc)
175 {
176 	return (struct macb_dma_desc_64 *)((void *)desc
177 		+ sizeof(struct macb_dma_desc));
178 }
179 #endif
180 
181 /* Ring buffer accessors */
182 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index)
183 {
184 	return index & (bp->tx_ring_size - 1);
185 }
186 
187 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
188 					  unsigned int index)
189 {
190 	index = macb_tx_ring_wrap(queue->bp, index);
191 	index = macb_adj_dma_desc_idx(queue->bp, index);
192 	return &queue->tx_ring[index];
193 }
194 
195 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
196 				       unsigned int index)
197 {
198 	return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)];
199 }
200 
201 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
202 {
203 	dma_addr_t offset;
204 
205 	offset = macb_tx_ring_wrap(queue->bp, index) *
206 			macb_dma_desc_get_size(queue->bp);
207 
208 	return queue->tx_ring_dma + offset;
209 }
210 
211 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index)
212 {
213 	return index & (bp->rx_ring_size - 1);
214 }
215 
216 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index)
217 {
218 	index = macb_rx_ring_wrap(queue->bp, index);
219 	index = macb_adj_dma_desc_idx(queue->bp, index);
220 	return &queue->rx_ring[index];
221 }
222 
223 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index)
224 {
225 	return queue->rx_buffers + queue->bp->rx_buffer_size *
226 	       macb_rx_ring_wrap(queue->bp, index);
227 }
228 
229 /* I/O accessors */
230 static u32 hw_readl_native(struct macb *bp, int offset)
231 {
232 	return __raw_readl(bp->regs + offset);
233 }
234 
235 static void hw_writel_native(struct macb *bp, int offset, u32 value)
236 {
237 	__raw_writel(value, bp->regs + offset);
238 }
239 
240 static u32 hw_readl(struct macb *bp, int offset)
241 {
242 	return readl_relaxed(bp->regs + offset);
243 }
244 
245 static void hw_writel(struct macb *bp, int offset, u32 value)
246 {
247 	writel_relaxed(value, bp->regs + offset);
248 }
249 
250 /* Find the CPU endianness by using the loopback bit of NCR register. When the
251  * CPU is in big endian we need to program swapped mode for management
252  * descriptor access.
253  */
254 static bool hw_is_native_io(void __iomem *addr)
255 {
256 	u32 value = MACB_BIT(LLB);
257 
258 	__raw_writel(value, addr + MACB_NCR);
259 	value = __raw_readl(addr + MACB_NCR);
260 
261 	/* Write 0 back to disable everything */
262 	__raw_writel(0, addr + MACB_NCR);
263 
264 	return value == MACB_BIT(LLB);
265 }
266 
267 static bool hw_is_gem(void __iomem *addr, bool native_io)
268 {
269 	u32 id;
270 
271 	if (native_io)
272 		id = __raw_readl(addr + MACB_MID);
273 	else
274 		id = readl_relaxed(addr + MACB_MID);
275 
276 	return MACB_BFEXT(IDNUM, id) >= 0x2;
277 }
278 
279 static void macb_set_hwaddr(struct macb *bp)
280 {
281 	u32 bottom;
282 	u16 top;
283 
284 	bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
285 	macb_or_gem_writel(bp, SA1B, bottom);
286 	top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
287 	macb_or_gem_writel(bp, SA1T, top);
288 
289 	/* Clear unused address register sets */
290 	macb_or_gem_writel(bp, SA2B, 0);
291 	macb_or_gem_writel(bp, SA2T, 0);
292 	macb_or_gem_writel(bp, SA3B, 0);
293 	macb_or_gem_writel(bp, SA3T, 0);
294 	macb_or_gem_writel(bp, SA4B, 0);
295 	macb_or_gem_writel(bp, SA4T, 0);
296 }
297 
298 static void macb_get_hwaddr(struct macb *bp)
299 {
300 	u32 bottom;
301 	u16 top;
302 	u8 addr[6];
303 	int i;
304 
305 	/* Check all 4 address register for valid address */
306 	for (i = 0; i < 4; i++) {
307 		bottom = macb_or_gem_readl(bp, SA1B + i * 8);
308 		top = macb_or_gem_readl(bp, SA1T + i * 8);
309 
310 		addr[0] = bottom & 0xff;
311 		addr[1] = (bottom >> 8) & 0xff;
312 		addr[2] = (bottom >> 16) & 0xff;
313 		addr[3] = (bottom >> 24) & 0xff;
314 		addr[4] = top & 0xff;
315 		addr[5] = (top >> 8) & 0xff;
316 
317 		if (is_valid_ether_addr(addr)) {
318 			eth_hw_addr_set(bp->dev, addr);
319 			return;
320 		}
321 	}
322 
323 	dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
324 	eth_hw_addr_random(bp->dev);
325 }
326 
327 static int macb_mdio_wait_for_idle(struct macb *bp)
328 {
329 	u32 val;
330 
331 	return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE),
332 				  1, MACB_MDIO_TIMEOUT);
333 }
334 
335 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
336 {
337 	struct macb *bp = bus->priv;
338 	int status;
339 
340 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
341 	if (status < 0)
342 		goto mdio_pm_exit;
343 
344 	status = macb_mdio_wait_for_idle(bp);
345 	if (status < 0)
346 		goto mdio_read_exit;
347 
348 	if (regnum & MII_ADDR_C45) {
349 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
350 			    | MACB_BF(RW, MACB_MAN_C45_ADDR)
351 			    | MACB_BF(PHYA, mii_id)
352 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
353 			    | MACB_BF(DATA, regnum & 0xFFFF)
354 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
355 
356 		status = macb_mdio_wait_for_idle(bp);
357 		if (status < 0)
358 			goto mdio_read_exit;
359 
360 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
361 			    | MACB_BF(RW, MACB_MAN_C45_READ)
362 			    | MACB_BF(PHYA, mii_id)
363 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
364 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
365 	} else {
366 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
367 				| MACB_BF(RW, MACB_MAN_C22_READ)
368 				| MACB_BF(PHYA, mii_id)
369 				| MACB_BF(REGA, regnum)
370 				| MACB_BF(CODE, MACB_MAN_C22_CODE)));
371 	}
372 
373 	status = macb_mdio_wait_for_idle(bp);
374 	if (status < 0)
375 		goto mdio_read_exit;
376 
377 	status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
378 
379 mdio_read_exit:
380 	pm_runtime_mark_last_busy(&bp->pdev->dev);
381 	pm_runtime_put_autosuspend(&bp->pdev->dev);
382 mdio_pm_exit:
383 	return status;
384 }
385 
386 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
387 			   u16 value)
388 {
389 	struct macb *bp = bus->priv;
390 	int status;
391 
392 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
393 	if (status < 0)
394 		goto mdio_pm_exit;
395 
396 	status = macb_mdio_wait_for_idle(bp);
397 	if (status < 0)
398 		goto mdio_write_exit;
399 
400 	if (regnum & MII_ADDR_C45) {
401 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
402 			    | MACB_BF(RW, MACB_MAN_C45_ADDR)
403 			    | MACB_BF(PHYA, mii_id)
404 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
405 			    | MACB_BF(DATA, regnum & 0xFFFF)
406 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
407 
408 		status = macb_mdio_wait_for_idle(bp);
409 		if (status < 0)
410 			goto mdio_write_exit;
411 
412 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
413 			    | MACB_BF(RW, MACB_MAN_C45_WRITE)
414 			    | MACB_BF(PHYA, mii_id)
415 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
416 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)
417 			    | MACB_BF(DATA, value)));
418 	} else {
419 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
420 				| MACB_BF(RW, MACB_MAN_C22_WRITE)
421 				| MACB_BF(PHYA, mii_id)
422 				| MACB_BF(REGA, regnum)
423 				| MACB_BF(CODE, MACB_MAN_C22_CODE)
424 				| MACB_BF(DATA, value)));
425 	}
426 
427 	status = macb_mdio_wait_for_idle(bp);
428 	if (status < 0)
429 		goto mdio_write_exit;
430 
431 mdio_write_exit:
432 	pm_runtime_mark_last_busy(&bp->pdev->dev);
433 	pm_runtime_put_autosuspend(&bp->pdev->dev);
434 mdio_pm_exit:
435 	return status;
436 }
437 
438 static void macb_init_buffers(struct macb *bp)
439 {
440 	struct macb_queue *queue;
441 	unsigned int q;
442 
443 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
444 		queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma));
445 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
446 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
447 			queue_writel(queue, RBQPH,
448 				     upper_32_bits(queue->rx_ring_dma));
449 #endif
450 		queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
451 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
452 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
453 			queue_writel(queue, TBQPH,
454 				     upper_32_bits(queue->tx_ring_dma));
455 #endif
456 	}
457 }
458 
459 /**
460  * macb_set_tx_clk() - Set a clock to a new frequency
461  * @bp:		pointer to struct macb
462  * @speed:	New frequency in Hz
463  */
464 static void macb_set_tx_clk(struct macb *bp, int speed)
465 {
466 	long ferr, rate, rate_rounded;
467 
468 	if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG))
469 		return;
470 
471 	/* In case of MII the PHY is the clock master */
472 	if (bp->phy_interface == PHY_INTERFACE_MODE_MII)
473 		return;
474 
475 	switch (speed) {
476 	case SPEED_10:
477 		rate = 2500000;
478 		break;
479 	case SPEED_100:
480 		rate = 25000000;
481 		break;
482 	case SPEED_1000:
483 		rate = 125000000;
484 		break;
485 	default:
486 		return;
487 	}
488 
489 	rate_rounded = clk_round_rate(bp->tx_clk, rate);
490 	if (rate_rounded < 0)
491 		return;
492 
493 	/* RGMII allows 50 ppm frequency error. Test and warn if this limit
494 	 * is not satisfied.
495 	 */
496 	ferr = abs(rate_rounded - rate);
497 	ferr = DIV_ROUND_UP(ferr, rate / 100000);
498 	if (ferr > 5)
499 		netdev_warn(bp->dev,
500 			    "unable to generate target frequency: %ld Hz\n",
501 			    rate);
502 
503 	if (clk_set_rate(bp->tx_clk, rate_rounded))
504 		netdev_err(bp->dev, "adjusting tx_clk failed.\n");
505 }
506 
507 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
508 				 phy_interface_t interface, int speed,
509 				 int duplex)
510 {
511 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
512 	u32 config;
513 
514 	config = gem_readl(bp, USX_CONTROL);
515 	config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config);
516 	config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config);
517 	config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS));
518 	config |= GEM_BIT(TX_EN);
519 	gem_writel(bp, USX_CONTROL, config);
520 }
521 
522 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs,
523 				   struct phylink_link_state *state)
524 {
525 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
526 	u32 val;
527 
528 	state->speed = SPEED_10000;
529 	state->duplex = 1;
530 	state->an_complete = 1;
531 
532 	val = gem_readl(bp, USX_STATUS);
533 	state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK));
534 	val = gem_readl(bp, NCFGR);
535 	if (val & GEM_BIT(PAE))
536 		state->pause = MLO_PAUSE_RX;
537 }
538 
539 static int macb_usx_pcs_config(struct phylink_pcs *pcs,
540 			       unsigned int mode,
541 			       phy_interface_t interface,
542 			       const unsigned long *advertising,
543 			       bool permit_pause_to_mac)
544 {
545 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
546 
547 	gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) |
548 		   GEM_BIT(SIGNAL_OK));
549 
550 	return 0;
551 }
552 
553 static void macb_pcs_get_state(struct phylink_pcs *pcs,
554 			       struct phylink_link_state *state)
555 {
556 	state->link = 0;
557 }
558 
559 static void macb_pcs_an_restart(struct phylink_pcs *pcs)
560 {
561 	/* Not supported */
562 }
563 
564 static int macb_pcs_config(struct phylink_pcs *pcs,
565 			   unsigned int mode,
566 			   phy_interface_t interface,
567 			   const unsigned long *advertising,
568 			   bool permit_pause_to_mac)
569 {
570 	return 0;
571 }
572 
573 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = {
574 	.pcs_get_state = macb_usx_pcs_get_state,
575 	.pcs_config = macb_usx_pcs_config,
576 	.pcs_link_up = macb_usx_pcs_link_up,
577 };
578 
579 static const struct phylink_pcs_ops macb_phylink_pcs_ops = {
580 	.pcs_get_state = macb_pcs_get_state,
581 	.pcs_an_restart = macb_pcs_an_restart,
582 	.pcs_config = macb_pcs_config,
583 };
584 
585 static void macb_mac_config(struct phylink_config *config, unsigned int mode,
586 			    const struct phylink_link_state *state)
587 {
588 	struct net_device *ndev = to_net_dev(config->dev);
589 	struct macb *bp = netdev_priv(ndev);
590 	unsigned long flags;
591 	u32 old_ctrl, ctrl;
592 	u32 old_ncr, ncr;
593 
594 	spin_lock_irqsave(&bp->lock, flags);
595 
596 	old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR);
597 	old_ncr = ncr = macb_or_gem_readl(bp, NCR);
598 
599 	if (bp->caps & MACB_CAPS_MACB_IS_EMAC) {
600 		if (state->interface == PHY_INTERFACE_MODE_RMII)
601 			ctrl |= MACB_BIT(RM9200_RMII);
602 	} else if (macb_is_gem(bp)) {
603 		ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL));
604 		ncr &= ~GEM_BIT(ENABLE_HS_MAC);
605 
606 		if (state->interface == PHY_INTERFACE_MODE_SGMII) {
607 			ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
608 		} else if (state->interface == PHY_INTERFACE_MODE_10GBASER) {
609 			ctrl |= GEM_BIT(PCSSEL);
610 			ncr |= GEM_BIT(ENABLE_HS_MAC);
611 		} else if (bp->caps & MACB_CAPS_MIIONRGMII &&
612 			   bp->phy_interface == PHY_INTERFACE_MODE_MII) {
613 			ncr |= MACB_BIT(MIIONRGMII);
614 		}
615 	}
616 
617 	/* Apply the new configuration, if any */
618 	if (old_ctrl ^ ctrl)
619 		macb_or_gem_writel(bp, NCFGR, ctrl);
620 
621 	if (old_ncr ^ ncr)
622 		macb_or_gem_writel(bp, NCR, ncr);
623 
624 	/* Disable AN for SGMII fixed link configuration, enable otherwise.
625 	 * Must be written after PCSSEL is set in NCFGR,
626 	 * otherwise writes will not take effect.
627 	 */
628 	if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) {
629 		u32 pcsctrl, old_pcsctrl;
630 
631 		old_pcsctrl = gem_readl(bp, PCSCNTRL);
632 		if (mode == MLO_AN_FIXED)
633 			pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG);
634 		else
635 			pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG);
636 		if (old_pcsctrl != pcsctrl)
637 			gem_writel(bp, PCSCNTRL, pcsctrl);
638 	}
639 
640 	spin_unlock_irqrestore(&bp->lock, flags);
641 }
642 
643 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode,
644 			       phy_interface_t interface)
645 {
646 	struct net_device *ndev = to_net_dev(config->dev);
647 	struct macb *bp = netdev_priv(ndev);
648 	struct macb_queue *queue;
649 	unsigned int q;
650 	u32 ctrl;
651 
652 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
653 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
654 			queue_writel(queue, IDR,
655 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
656 
657 	/* Disable Rx and Tx */
658 	ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE));
659 	macb_writel(bp, NCR, ctrl);
660 
661 	netif_tx_stop_all_queues(ndev);
662 }
663 
664 static void macb_mac_link_up(struct phylink_config *config,
665 			     struct phy_device *phy,
666 			     unsigned int mode, phy_interface_t interface,
667 			     int speed, int duplex,
668 			     bool tx_pause, bool rx_pause)
669 {
670 	struct net_device *ndev = to_net_dev(config->dev);
671 	struct macb *bp = netdev_priv(ndev);
672 	struct macb_queue *queue;
673 	unsigned long flags;
674 	unsigned int q;
675 	u32 ctrl;
676 
677 	spin_lock_irqsave(&bp->lock, flags);
678 
679 	ctrl = macb_or_gem_readl(bp, NCFGR);
680 
681 	ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
682 
683 	if (speed == SPEED_100)
684 		ctrl |= MACB_BIT(SPD);
685 
686 	if (duplex)
687 		ctrl |= MACB_BIT(FD);
688 
689 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) {
690 		ctrl &= ~MACB_BIT(PAE);
691 		if (macb_is_gem(bp)) {
692 			ctrl &= ~GEM_BIT(GBE);
693 
694 			if (speed == SPEED_1000)
695 				ctrl |= GEM_BIT(GBE);
696 		}
697 
698 		if (rx_pause)
699 			ctrl |= MACB_BIT(PAE);
700 
701 		macb_set_tx_clk(bp, speed);
702 
703 		/* Initialize rings & buffers as clearing MACB_BIT(TE) in link down
704 		 * cleared the pipeline and control registers.
705 		 */
706 		bp->macbgem_ops.mog_init_rings(bp);
707 		macb_init_buffers(bp);
708 
709 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
710 			queue_writel(queue, IER,
711 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
712 	}
713 
714 	macb_or_gem_writel(bp, NCFGR, ctrl);
715 
716 	if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER)
717 		gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M,
718 							gem_readl(bp, HS_MAC_CONFIG)));
719 
720 	spin_unlock_irqrestore(&bp->lock, flags);
721 
722 	/* Enable Rx and Tx */
723 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(RE) | MACB_BIT(TE));
724 
725 	netif_tx_wake_all_queues(ndev);
726 }
727 
728 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config,
729 					       phy_interface_t interface)
730 {
731 	struct net_device *ndev = to_net_dev(config->dev);
732 	struct macb *bp = netdev_priv(ndev);
733 
734 	if (interface == PHY_INTERFACE_MODE_10GBASER)
735 		return &bp->phylink_usx_pcs;
736 	else if (interface == PHY_INTERFACE_MODE_SGMII)
737 		return &bp->phylink_sgmii_pcs;
738 	else
739 		return NULL;
740 }
741 
742 static const struct phylink_mac_ops macb_phylink_ops = {
743 	.validate = phylink_generic_validate,
744 	.mac_select_pcs = macb_mac_select_pcs,
745 	.mac_config = macb_mac_config,
746 	.mac_link_down = macb_mac_link_down,
747 	.mac_link_up = macb_mac_link_up,
748 };
749 
750 static bool macb_phy_handle_exists(struct device_node *dn)
751 {
752 	dn = of_parse_phandle(dn, "phy-handle", 0);
753 	of_node_put(dn);
754 	return dn != NULL;
755 }
756 
757 static int macb_phylink_connect(struct macb *bp)
758 {
759 	struct device_node *dn = bp->pdev->dev.of_node;
760 	struct net_device *dev = bp->dev;
761 	struct phy_device *phydev;
762 	int ret;
763 
764 	if (dn)
765 		ret = phylink_of_phy_connect(bp->phylink, dn, 0);
766 
767 	if (!dn || (ret && !macb_phy_handle_exists(dn))) {
768 		phydev = phy_find_first(bp->mii_bus);
769 		if (!phydev) {
770 			netdev_err(dev, "no PHY found\n");
771 			return -ENXIO;
772 		}
773 
774 		/* attach the mac to the phy */
775 		ret = phylink_connect_phy(bp->phylink, phydev);
776 	}
777 
778 	if (ret) {
779 		netdev_err(dev, "Could not attach PHY (%d)\n", ret);
780 		return ret;
781 	}
782 
783 	phylink_start(bp->phylink);
784 
785 	return 0;
786 }
787 
788 static void macb_get_pcs_fixed_state(struct phylink_config *config,
789 				     struct phylink_link_state *state)
790 {
791 	struct net_device *ndev = to_net_dev(config->dev);
792 	struct macb *bp = netdev_priv(ndev);
793 
794 	state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0;
795 }
796 
797 /* based on au1000_eth. c*/
798 static int macb_mii_probe(struct net_device *dev)
799 {
800 	struct macb *bp = netdev_priv(dev);
801 
802 	bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops;
803 	bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops;
804 
805 	bp->phylink_config.dev = &dev->dev;
806 	bp->phylink_config.type = PHYLINK_NETDEV;
807 
808 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
809 		bp->phylink_config.poll_fixed_state = true;
810 		bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state;
811 	}
812 
813 	bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE |
814 		MAC_10 | MAC_100;
815 
816 	__set_bit(PHY_INTERFACE_MODE_MII,
817 		  bp->phylink_config.supported_interfaces);
818 	__set_bit(PHY_INTERFACE_MODE_RMII,
819 		  bp->phylink_config.supported_interfaces);
820 
821 	/* Determine what modes are supported */
822 	if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) {
823 		bp->phylink_config.mac_capabilities |= MAC_1000FD;
824 		if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF))
825 			bp->phylink_config.mac_capabilities |= MAC_1000HD;
826 
827 		__set_bit(PHY_INTERFACE_MODE_GMII,
828 			  bp->phylink_config.supported_interfaces);
829 		phy_interface_set_rgmii(bp->phylink_config.supported_interfaces);
830 
831 		if (bp->caps & MACB_CAPS_PCS)
832 			__set_bit(PHY_INTERFACE_MODE_SGMII,
833 				  bp->phylink_config.supported_interfaces);
834 
835 		if (bp->caps & MACB_CAPS_HIGH_SPEED) {
836 			__set_bit(PHY_INTERFACE_MODE_10GBASER,
837 				  bp->phylink_config.supported_interfaces);
838 			bp->phylink_config.mac_capabilities |= MAC_10000FD;
839 		}
840 	}
841 
842 	bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode,
843 				     bp->phy_interface, &macb_phylink_ops);
844 	if (IS_ERR(bp->phylink)) {
845 		netdev_err(dev, "Could not create a phylink instance (%ld)\n",
846 			   PTR_ERR(bp->phylink));
847 		return PTR_ERR(bp->phylink);
848 	}
849 
850 	return 0;
851 }
852 
853 static int macb_mdiobus_register(struct macb *bp)
854 {
855 	struct device_node *child, *np = bp->pdev->dev.of_node;
856 
857 	/* If we have a child named mdio, probe it instead of looking for PHYs
858 	 * directly under the MAC node
859 	 */
860 	child = of_get_child_by_name(np, "mdio");
861 	if (child) {
862 		int ret = of_mdiobus_register(bp->mii_bus, child);
863 
864 		of_node_put(child);
865 		return ret;
866 	}
867 
868 	if (of_phy_is_fixed_link(np))
869 		return mdiobus_register(bp->mii_bus);
870 
871 	/* Only create the PHY from the device tree if at least one PHY is
872 	 * described. Otherwise scan the entire MDIO bus. We do this to support
873 	 * old device tree that did not follow the best practices and did not
874 	 * describe their network PHYs.
875 	 */
876 	for_each_available_child_of_node(np, child)
877 		if (of_mdiobus_child_is_phy(child)) {
878 			/* The loop increments the child refcount,
879 			 * decrement it before returning.
880 			 */
881 			of_node_put(child);
882 
883 			return of_mdiobus_register(bp->mii_bus, np);
884 		}
885 
886 	return mdiobus_register(bp->mii_bus);
887 }
888 
889 static int macb_mii_init(struct macb *bp)
890 {
891 	int err = -ENXIO;
892 
893 	/* Enable management port */
894 	macb_writel(bp, NCR, MACB_BIT(MPE));
895 
896 	bp->mii_bus = mdiobus_alloc();
897 	if (!bp->mii_bus) {
898 		err = -ENOMEM;
899 		goto err_out;
900 	}
901 
902 	bp->mii_bus->name = "MACB_mii_bus";
903 	bp->mii_bus->read = &macb_mdio_read;
904 	bp->mii_bus->write = &macb_mdio_write;
905 	snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
906 		 bp->pdev->name, bp->pdev->id);
907 	bp->mii_bus->priv = bp;
908 	bp->mii_bus->parent = &bp->pdev->dev;
909 
910 	dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
911 
912 	err = macb_mdiobus_register(bp);
913 	if (err)
914 		goto err_out_free_mdiobus;
915 
916 	err = macb_mii_probe(bp->dev);
917 	if (err)
918 		goto err_out_unregister_bus;
919 
920 	return 0;
921 
922 err_out_unregister_bus:
923 	mdiobus_unregister(bp->mii_bus);
924 err_out_free_mdiobus:
925 	mdiobus_free(bp->mii_bus);
926 err_out:
927 	return err;
928 }
929 
930 static void macb_update_stats(struct macb *bp)
931 {
932 	u32 *p = &bp->hw_stats.macb.rx_pause_frames;
933 	u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
934 	int offset = MACB_PFR;
935 
936 	WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
937 
938 	for (; p < end; p++, offset += 4)
939 		*p += bp->macb_reg_readl(bp, offset);
940 }
941 
942 static int macb_halt_tx(struct macb *bp)
943 {
944 	unsigned long	halt_time, timeout;
945 	u32		status;
946 
947 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
948 
949 	timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
950 	do {
951 		halt_time = jiffies;
952 		status = macb_readl(bp, TSR);
953 		if (!(status & MACB_BIT(TGO)))
954 			return 0;
955 
956 		udelay(250);
957 	} while (time_before(halt_time, timeout));
958 
959 	return -ETIMEDOUT;
960 }
961 
962 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget)
963 {
964 	if (tx_skb->mapping) {
965 		if (tx_skb->mapped_as_page)
966 			dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
967 				       tx_skb->size, DMA_TO_DEVICE);
968 		else
969 			dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
970 					 tx_skb->size, DMA_TO_DEVICE);
971 		tx_skb->mapping = 0;
972 	}
973 
974 	if (tx_skb->skb) {
975 		napi_consume_skb(tx_skb->skb, budget);
976 		tx_skb->skb = NULL;
977 	}
978 }
979 
980 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr)
981 {
982 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
983 	struct macb_dma_desc_64 *desc_64;
984 
985 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
986 		desc_64 = macb_64b_desc(bp, desc);
987 		desc_64->addrh = upper_32_bits(addr);
988 		/* The low bits of RX address contain the RX_USED bit, clearing
989 		 * of which allows packet RX. Make sure the high bits are also
990 		 * visible to HW at that point.
991 		 */
992 		dma_wmb();
993 	}
994 #endif
995 	desc->addr = lower_32_bits(addr);
996 }
997 
998 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc)
999 {
1000 	dma_addr_t addr = 0;
1001 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1002 	struct macb_dma_desc_64 *desc_64;
1003 
1004 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1005 		desc_64 = macb_64b_desc(bp, desc);
1006 		addr = ((u64)(desc_64->addrh) << 32);
1007 	}
1008 #endif
1009 	addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1010 	return addr;
1011 }
1012 
1013 static void macb_tx_error_task(struct work_struct *work)
1014 {
1015 	struct macb_queue	*queue = container_of(work, struct macb_queue,
1016 						      tx_error_task);
1017 	struct macb		*bp = queue->bp;
1018 	struct macb_tx_skb	*tx_skb;
1019 	struct macb_dma_desc	*desc;
1020 	struct sk_buff		*skb;
1021 	unsigned int		tail;
1022 	unsigned long		flags;
1023 
1024 	netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
1025 		    (unsigned int)(queue - bp->queues),
1026 		    queue->tx_tail, queue->tx_head);
1027 
1028 	/* Prevent the queue NAPI TX poll from running, as it calls
1029 	 * macb_tx_complete(), which in turn may call netif_wake_subqueue().
1030 	 * As explained below, we have to halt the transmission before updating
1031 	 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
1032 	 * network engine about the macb/gem being halted.
1033 	 */
1034 	napi_disable(&queue->napi_tx);
1035 	spin_lock_irqsave(&bp->lock, flags);
1036 
1037 	/* Make sure nobody is trying to queue up new packets */
1038 	netif_tx_stop_all_queues(bp->dev);
1039 
1040 	/* Stop transmission now
1041 	 * (in case we have just queued new packets)
1042 	 * macb/gem must be halted to write TBQP register
1043 	 */
1044 	if (macb_halt_tx(bp))
1045 		/* Just complain for now, reinitializing TX path can be good */
1046 		netdev_err(bp->dev, "BUG: halt tx timed out\n");
1047 
1048 	/* Treat frames in TX queue including the ones that caused the error.
1049 	 * Free transmit buffers in upper layer.
1050 	 */
1051 	for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
1052 		u32	ctrl;
1053 
1054 		desc = macb_tx_desc(queue, tail);
1055 		ctrl = desc->ctrl;
1056 		tx_skb = macb_tx_skb(queue, tail);
1057 		skb = tx_skb->skb;
1058 
1059 		if (ctrl & MACB_BIT(TX_USED)) {
1060 			/* skb is set for the last buffer of the frame */
1061 			while (!skb) {
1062 				macb_tx_unmap(bp, tx_skb, 0);
1063 				tail++;
1064 				tx_skb = macb_tx_skb(queue, tail);
1065 				skb = tx_skb->skb;
1066 			}
1067 
1068 			/* ctrl still refers to the first buffer descriptor
1069 			 * since it's the only one written back by the hardware
1070 			 */
1071 			if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
1072 				netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
1073 					    macb_tx_ring_wrap(bp, tail),
1074 					    skb->data);
1075 				bp->dev->stats.tx_packets++;
1076 				queue->stats.tx_packets++;
1077 				bp->dev->stats.tx_bytes += skb->len;
1078 				queue->stats.tx_bytes += skb->len;
1079 			}
1080 		} else {
1081 			/* "Buffers exhausted mid-frame" errors may only happen
1082 			 * if the driver is buggy, so complain loudly about
1083 			 * those. Statistics are updated by hardware.
1084 			 */
1085 			if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
1086 				netdev_err(bp->dev,
1087 					   "BUG: TX buffers exhausted mid-frame\n");
1088 
1089 			desc->ctrl = ctrl | MACB_BIT(TX_USED);
1090 		}
1091 
1092 		macb_tx_unmap(bp, tx_skb, 0);
1093 	}
1094 
1095 	/* Set end of TX queue */
1096 	desc = macb_tx_desc(queue, 0);
1097 	macb_set_addr(bp, desc, 0);
1098 	desc->ctrl = MACB_BIT(TX_USED);
1099 
1100 	/* Make descriptor updates visible to hardware */
1101 	wmb();
1102 
1103 	/* Reinitialize the TX desc queue */
1104 	queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
1105 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1106 	if (bp->hw_dma_cap & HW_DMA_CAP_64B)
1107 		queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma));
1108 #endif
1109 	/* Make TX ring reflect state of hardware */
1110 	queue->tx_head = 0;
1111 	queue->tx_tail = 0;
1112 
1113 	/* Housework before enabling TX IRQ */
1114 	macb_writel(bp, TSR, macb_readl(bp, TSR));
1115 	queue_writel(queue, IER, MACB_TX_INT_FLAGS);
1116 
1117 	/* Now we are ready to start transmission again */
1118 	netif_tx_start_all_queues(bp->dev);
1119 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1120 
1121 	spin_unlock_irqrestore(&bp->lock, flags);
1122 	napi_enable(&queue->napi_tx);
1123 }
1124 
1125 static int macb_tx_complete(struct macb_queue *queue, int budget)
1126 {
1127 	struct macb *bp = queue->bp;
1128 	u16 queue_index = queue - bp->queues;
1129 	unsigned int tail;
1130 	unsigned int head;
1131 	int packets = 0;
1132 
1133 	spin_lock(&queue->tx_ptr_lock);
1134 	head = queue->tx_head;
1135 	for (tail = queue->tx_tail; tail != head && packets < budget; tail++) {
1136 		struct macb_tx_skb	*tx_skb;
1137 		struct sk_buff		*skb;
1138 		struct macb_dma_desc	*desc;
1139 		u32			ctrl;
1140 
1141 		desc = macb_tx_desc(queue, tail);
1142 
1143 		/* Make hw descriptor updates visible to CPU */
1144 		rmb();
1145 
1146 		ctrl = desc->ctrl;
1147 
1148 		/* TX_USED bit is only set by hardware on the very first buffer
1149 		 * descriptor of the transmitted frame.
1150 		 */
1151 		if (!(ctrl & MACB_BIT(TX_USED)))
1152 			break;
1153 
1154 		/* Process all buffers of the current transmitted frame */
1155 		for (;; tail++) {
1156 			tx_skb = macb_tx_skb(queue, tail);
1157 			skb = tx_skb->skb;
1158 
1159 			/* First, update TX stats if needed */
1160 			if (skb) {
1161 				if (unlikely(skb_shinfo(skb)->tx_flags &
1162 					     SKBTX_HW_TSTAMP) &&
1163 				    gem_ptp_do_txstamp(queue, skb, desc) == 0) {
1164 					/* skb now belongs to timestamp buffer
1165 					 * and will be removed later
1166 					 */
1167 					tx_skb->skb = NULL;
1168 				}
1169 				netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
1170 					    macb_tx_ring_wrap(bp, tail),
1171 					    skb->data);
1172 				bp->dev->stats.tx_packets++;
1173 				queue->stats.tx_packets++;
1174 				bp->dev->stats.tx_bytes += skb->len;
1175 				queue->stats.tx_bytes += skb->len;
1176 				packets++;
1177 			}
1178 
1179 			/* Now we can safely release resources */
1180 			macb_tx_unmap(bp, tx_skb, budget);
1181 
1182 			/* skb is set only for the last buffer of the frame.
1183 			 * WARNING: at this point skb has been freed by
1184 			 * macb_tx_unmap().
1185 			 */
1186 			if (skb)
1187 				break;
1188 		}
1189 	}
1190 
1191 	queue->tx_tail = tail;
1192 	if (__netif_subqueue_stopped(bp->dev, queue_index) &&
1193 	    CIRC_CNT(queue->tx_head, queue->tx_tail,
1194 		     bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp))
1195 		netif_wake_subqueue(bp->dev, queue_index);
1196 	spin_unlock(&queue->tx_ptr_lock);
1197 
1198 	return packets;
1199 }
1200 
1201 static void gem_rx_refill(struct macb_queue *queue)
1202 {
1203 	unsigned int		entry;
1204 	struct sk_buff		*skb;
1205 	dma_addr_t		paddr;
1206 	struct macb *bp = queue->bp;
1207 	struct macb_dma_desc *desc;
1208 
1209 	while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail,
1210 			bp->rx_ring_size) > 0) {
1211 		entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head);
1212 
1213 		/* Make hw descriptor updates visible to CPU */
1214 		rmb();
1215 
1216 		queue->rx_prepared_head++;
1217 		desc = macb_rx_desc(queue, entry);
1218 
1219 		if (!queue->rx_skbuff[entry]) {
1220 			/* allocate sk_buff for this free entry in ring */
1221 			skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
1222 			if (unlikely(!skb)) {
1223 				netdev_err(bp->dev,
1224 					   "Unable to allocate sk_buff\n");
1225 				break;
1226 			}
1227 
1228 			/* now fill corresponding descriptor entry */
1229 			paddr = dma_map_single(&bp->pdev->dev, skb->data,
1230 					       bp->rx_buffer_size,
1231 					       DMA_FROM_DEVICE);
1232 			if (dma_mapping_error(&bp->pdev->dev, paddr)) {
1233 				dev_kfree_skb(skb);
1234 				break;
1235 			}
1236 
1237 			queue->rx_skbuff[entry] = skb;
1238 
1239 			if (entry == bp->rx_ring_size - 1)
1240 				paddr |= MACB_BIT(RX_WRAP);
1241 			desc->ctrl = 0;
1242 			/* Setting addr clears RX_USED and allows reception,
1243 			 * make sure ctrl is cleared first to avoid a race.
1244 			 */
1245 			dma_wmb();
1246 			macb_set_addr(bp, desc, paddr);
1247 
1248 			/* properly align Ethernet header */
1249 			skb_reserve(skb, NET_IP_ALIGN);
1250 		} else {
1251 			desc->ctrl = 0;
1252 			dma_wmb();
1253 			desc->addr &= ~MACB_BIT(RX_USED);
1254 		}
1255 	}
1256 
1257 	/* Make descriptor updates visible to hardware */
1258 	wmb();
1259 
1260 	netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n",
1261 			queue, queue->rx_prepared_head, queue->rx_tail);
1262 }
1263 
1264 /* Mark DMA descriptors from begin up to and not including end as unused */
1265 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin,
1266 				  unsigned int end)
1267 {
1268 	unsigned int frag;
1269 
1270 	for (frag = begin; frag != end; frag++) {
1271 		struct macb_dma_desc *desc = macb_rx_desc(queue, frag);
1272 
1273 		desc->addr &= ~MACB_BIT(RX_USED);
1274 	}
1275 
1276 	/* Make descriptor updates visible to hardware */
1277 	wmb();
1278 
1279 	/* When this happens, the hardware stats registers for
1280 	 * whatever caused this is updated, so we don't have to record
1281 	 * anything.
1282 	 */
1283 }
1284 
1285 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi,
1286 		  int budget)
1287 {
1288 	struct macb *bp = queue->bp;
1289 	unsigned int		len;
1290 	unsigned int		entry;
1291 	struct sk_buff		*skb;
1292 	struct macb_dma_desc	*desc;
1293 	int			count = 0;
1294 
1295 	while (count < budget) {
1296 		u32 ctrl;
1297 		dma_addr_t addr;
1298 		bool rxused;
1299 
1300 		entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1301 		desc = macb_rx_desc(queue, entry);
1302 
1303 		/* Make hw descriptor updates visible to CPU */
1304 		rmb();
1305 
1306 		rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
1307 		addr = macb_get_addr(bp, desc);
1308 
1309 		if (!rxused)
1310 			break;
1311 
1312 		/* Ensure ctrl is at least as up-to-date as rxused */
1313 		dma_rmb();
1314 
1315 		ctrl = desc->ctrl;
1316 
1317 		queue->rx_tail++;
1318 		count++;
1319 
1320 		if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
1321 			netdev_err(bp->dev,
1322 				   "not whole frame pointed by descriptor\n");
1323 			bp->dev->stats.rx_dropped++;
1324 			queue->stats.rx_dropped++;
1325 			break;
1326 		}
1327 		skb = queue->rx_skbuff[entry];
1328 		if (unlikely(!skb)) {
1329 			netdev_err(bp->dev,
1330 				   "inconsistent Rx descriptor chain\n");
1331 			bp->dev->stats.rx_dropped++;
1332 			queue->stats.rx_dropped++;
1333 			break;
1334 		}
1335 		/* now everything is ready for receiving packet */
1336 		queue->rx_skbuff[entry] = NULL;
1337 		len = ctrl & bp->rx_frm_len_mask;
1338 
1339 		netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
1340 
1341 		skb_put(skb, len);
1342 		dma_unmap_single(&bp->pdev->dev, addr,
1343 				 bp->rx_buffer_size, DMA_FROM_DEVICE);
1344 
1345 		skb->protocol = eth_type_trans(skb, bp->dev);
1346 		skb_checksum_none_assert(skb);
1347 		if (bp->dev->features & NETIF_F_RXCSUM &&
1348 		    !(bp->dev->flags & IFF_PROMISC) &&
1349 		    GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
1350 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1351 
1352 		bp->dev->stats.rx_packets++;
1353 		queue->stats.rx_packets++;
1354 		bp->dev->stats.rx_bytes += skb->len;
1355 		queue->stats.rx_bytes += skb->len;
1356 
1357 		gem_ptp_do_rxstamp(bp, skb, desc);
1358 
1359 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1360 		netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1361 			    skb->len, skb->csum);
1362 		print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
1363 			       skb_mac_header(skb), 16, true);
1364 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
1365 			       skb->data, 32, true);
1366 #endif
1367 
1368 		napi_gro_receive(napi, skb);
1369 	}
1370 
1371 	gem_rx_refill(queue);
1372 
1373 	return count;
1374 }
1375 
1376 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi,
1377 			 unsigned int first_frag, unsigned int last_frag)
1378 {
1379 	unsigned int len;
1380 	unsigned int frag;
1381 	unsigned int offset;
1382 	struct sk_buff *skb;
1383 	struct macb_dma_desc *desc;
1384 	struct macb *bp = queue->bp;
1385 
1386 	desc = macb_rx_desc(queue, last_frag);
1387 	len = desc->ctrl & bp->rx_frm_len_mask;
1388 
1389 	netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
1390 		macb_rx_ring_wrap(bp, first_frag),
1391 		macb_rx_ring_wrap(bp, last_frag), len);
1392 
1393 	/* The ethernet header starts NET_IP_ALIGN bytes into the
1394 	 * first buffer. Since the header is 14 bytes, this makes the
1395 	 * payload word-aligned.
1396 	 *
1397 	 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
1398 	 * the two padding bytes into the skb so that we avoid hitting
1399 	 * the slowpath in memcpy(), and pull them off afterwards.
1400 	 */
1401 	skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
1402 	if (!skb) {
1403 		bp->dev->stats.rx_dropped++;
1404 		for (frag = first_frag; ; frag++) {
1405 			desc = macb_rx_desc(queue, frag);
1406 			desc->addr &= ~MACB_BIT(RX_USED);
1407 			if (frag == last_frag)
1408 				break;
1409 		}
1410 
1411 		/* Make descriptor updates visible to hardware */
1412 		wmb();
1413 
1414 		return 1;
1415 	}
1416 
1417 	offset = 0;
1418 	len += NET_IP_ALIGN;
1419 	skb_checksum_none_assert(skb);
1420 	skb_put(skb, len);
1421 
1422 	for (frag = first_frag; ; frag++) {
1423 		unsigned int frag_len = bp->rx_buffer_size;
1424 
1425 		if (offset + frag_len > len) {
1426 			if (unlikely(frag != last_frag)) {
1427 				dev_kfree_skb_any(skb);
1428 				return -1;
1429 			}
1430 			frag_len = len - offset;
1431 		}
1432 		skb_copy_to_linear_data_offset(skb, offset,
1433 					       macb_rx_buffer(queue, frag),
1434 					       frag_len);
1435 		offset += bp->rx_buffer_size;
1436 		desc = macb_rx_desc(queue, frag);
1437 		desc->addr &= ~MACB_BIT(RX_USED);
1438 
1439 		if (frag == last_frag)
1440 			break;
1441 	}
1442 
1443 	/* Make descriptor updates visible to hardware */
1444 	wmb();
1445 
1446 	__skb_pull(skb, NET_IP_ALIGN);
1447 	skb->protocol = eth_type_trans(skb, bp->dev);
1448 
1449 	bp->dev->stats.rx_packets++;
1450 	bp->dev->stats.rx_bytes += skb->len;
1451 	netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1452 		    skb->len, skb->csum);
1453 	napi_gro_receive(napi, skb);
1454 
1455 	return 0;
1456 }
1457 
1458 static inline void macb_init_rx_ring(struct macb_queue *queue)
1459 {
1460 	struct macb *bp = queue->bp;
1461 	dma_addr_t addr;
1462 	struct macb_dma_desc *desc = NULL;
1463 	int i;
1464 
1465 	addr = queue->rx_buffers_dma;
1466 	for (i = 0; i < bp->rx_ring_size; i++) {
1467 		desc = macb_rx_desc(queue, i);
1468 		macb_set_addr(bp, desc, addr);
1469 		desc->ctrl = 0;
1470 		addr += bp->rx_buffer_size;
1471 	}
1472 	desc->addr |= MACB_BIT(RX_WRAP);
1473 	queue->rx_tail = 0;
1474 }
1475 
1476 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi,
1477 		   int budget)
1478 {
1479 	struct macb *bp = queue->bp;
1480 	bool reset_rx_queue = false;
1481 	int received = 0;
1482 	unsigned int tail;
1483 	int first_frag = -1;
1484 
1485 	for (tail = queue->rx_tail; budget > 0; tail++) {
1486 		struct macb_dma_desc *desc = macb_rx_desc(queue, tail);
1487 		u32 ctrl;
1488 
1489 		/* Make hw descriptor updates visible to CPU */
1490 		rmb();
1491 
1492 		if (!(desc->addr & MACB_BIT(RX_USED)))
1493 			break;
1494 
1495 		/* Ensure ctrl is at least as up-to-date as addr */
1496 		dma_rmb();
1497 
1498 		ctrl = desc->ctrl;
1499 
1500 		if (ctrl & MACB_BIT(RX_SOF)) {
1501 			if (first_frag != -1)
1502 				discard_partial_frame(queue, first_frag, tail);
1503 			first_frag = tail;
1504 		}
1505 
1506 		if (ctrl & MACB_BIT(RX_EOF)) {
1507 			int dropped;
1508 
1509 			if (unlikely(first_frag == -1)) {
1510 				reset_rx_queue = true;
1511 				continue;
1512 			}
1513 
1514 			dropped = macb_rx_frame(queue, napi, first_frag, tail);
1515 			first_frag = -1;
1516 			if (unlikely(dropped < 0)) {
1517 				reset_rx_queue = true;
1518 				continue;
1519 			}
1520 			if (!dropped) {
1521 				received++;
1522 				budget--;
1523 			}
1524 		}
1525 	}
1526 
1527 	if (unlikely(reset_rx_queue)) {
1528 		unsigned long flags;
1529 		u32 ctrl;
1530 
1531 		netdev_err(bp->dev, "RX queue corruption: reset it\n");
1532 
1533 		spin_lock_irqsave(&bp->lock, flags);
1534 
1535 		ctrl = macb_readl(bp, NCR);
1536 		macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1537 
1538 		macb_init_rx_ring(queue);
1539 		queue_writel(queue, RBQP, queue->rx_ring_dma);
1540 
1541 		macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1542 
1543 		spin_unlock_irqrestore(&bp->lock, flags);
1544 		return received;
1545 	}
1546 
1547 	if (first_frag != -1)
1548 		queue->rx_tail = first_frag;
1549 	else
1550 		queue->rx_tail = tail;
1551 
1552 	return received;
1553 }
1554 
1555 static bool macb_rx_pending(struct macb_queue *queue)
1556 {
1557 	struct macb *bp = queue->bp;
1558 	unsigned int		entry;
1559 	struct macb_dma_desc	*desc;
1560 
1561 	entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1562 	desc = macb_rx_desc(queue, entry);
1563 
1564 	/* Make hw descriptor updates visible to CPU */
1565 	rmb();
1566 
1567 	return (desc->addr & MACB_BIT(RX_USED)) != 0;
1568 }
1569 
1570 static int macb_rx_poll(struct napi_struct *napi, int budget)
1571 {
1572 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx);
1573 	struct macb *bp = queue->bp;
1574 	int work_done;
1575 
1576 	work_done = bp->macbgem_ops.mog_rx(queue, napi, budget);
1577 
1578 	netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n",
1579 		    (unsigned int)(queue - bp->queues), work_done, budget);
1580 
1581 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1582 		queue_writel(queue, IER, bp->rx_intr_mask);
1583 
1584 		/* Packet completions only seem to propagate to raise
1585 		 * interrupts when interrupts are enabled at the time, so if
1586 		 * packets were received while interrupts were disabled,
1587 		 * they will not cause another interrupt to be generated when
1588 		 * interrupts are re-enabled.
1589 		 * Check for this case here to avoid losing a wakeup. This can
1590 		 * potentially race with the interrupt handler doing the same
1591 		 * actions if an interrupt is raised just after enabling them,
1592 		 * but this should be harmless.
1593 		 */
1594 		if (macb_rx_pending(queue)) {
1595 			queue_writel(queue, IDR, bp->rx_intr_mask);
1596 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1597 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1598 			netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n");
1599 			napi_schedule(napi);
1600 		}
1601 	}
1602 
1603 	/* TODO: Handle errors */
1604 
1605 	return work_done;
1606 }
1607 
1608 static void macb_tx_restart(struct macb_queue *queue)
1609 {
1610 	struct macb *bp = queue->bp;
1611 	unsigned int head_idx, tbqp;
1612 
1613 	spin_lock(&queue->tx_ptr_lock);
1614 
1615 	if (queue->tx_head == queue->tx_tail)
1616 		goto out_tx_ptr_unlock;
1617 
1618 	tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp);
1619 	tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp));
1620 	head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head));
1621 
1622 	if (tbqp == head_idx)
1623 		goto out_tx_ptr_unlock;
1624 
1625 	spin_lock_irq(&bp->lock);
1626 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1627 	spin_unlock_irq(&bp->lock);
1628 
1629 out_tx_ptr_unlock:
1630 	spin_unlock(&queue->tx_ptr_lock);
1631 }
1632 
1633 static bool macb_tx_complete_pending(struct macb_queue *queue)
1634 {
1635 	bool retval = false;
1636 
1637 	spin_lock(&queue->tx_ptr_lock);
1638 	if (queue->tx_head != queue->tx_tail) {
1639 		/* Make hw descriptor updates visible to CPU */
1640 		rmb();
1641 
1642 		if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED))
1643 			retval = true;
1644 	}
1645 	spin_unlock(&queue->tx_ptr_lock);
1646 	return retval;
1647 }
1648 
1649 static int macb_tx_poll(struct napi_struct *napi, int budget)
1650 {
1651 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx);
1652 	struct macb *bp = queue->bp;
1653 	int work_done;
1654 
1655 	work_done = macb_tx_complete(queue, budget);
1656 
1657 	rmb(); // ensure txubr_pending is up to date
1658 	if (queue->txubr_pending) {
1659 		queue->txubr_pending = false;
1660 		netdev_vdbg(bp->dev, "poll: tx restart\n");
1661 		macb_tx_restart(queue);
1662 	}
1663 
1664 	netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n",
1665 		    (unsigned int)(queue - bp->queues), work_done, budget);
1666 
1667 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1668 		queue_writel(queue, IER, MACB_BIT(TCOMP));
1669 
1670 		/* Packet completions only seem to propagate to raise
1671 		 * interrupts when interrupts are enabled at the time, so if
1672 		 * packets were sent while interrupts were disabled,
1673 		 * they will not cause another interrupt to be generated when
1674 		 * interrupts are re-enabled.
1675 		 * Check for this case here to avoid losing a wakeup. This can
1676 		 * potentially race with the interrupt handler doing the same
1677 		 * actions if an interrupt is raised just after enabling them,
1678 		 * but this should be harmless.
1679 		 */
1680 		if (macb_tx_complete_pending(queue)) {
1681 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1682 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1683 				queue_writel(queue, ISR, MACB_BIT(TCOMP));
1684 			netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n");
1685 			napi_schedule(napi);
1686 		}
1687 	}
1688 
1689 	return work_done;
1690 }
1691 
1692 static void macb_hresp_error_task(struct tasklet_struct *t)
1693 {
1694 	struct macb *bp = from_tasklet(bp, t, hresp_err_tasklet);
1695 	struct net_device *dev = bp->dev;
1696 	struct macb_queue *queue;
1697 	unsigned int q;
1698 	u32 ctrl;
1699 
1700 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1701 		queue_writel(queue, IDR, bp->rx_intr_mask |
1702 					 MACB_TX_INT_FLAGS |
1703 					 MACB_BIT(HRESP));
1704 	}
1705 	ctrl = macb_readl(bp, NCR);
1706 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
1707 	macb_writel(bp, NCR, ctrl);
1708 
1709 	netif_tx_stop_all_queues(dev);
1710 	netif_carrier_off(dev);
1711 
1712 	bp->macbgem_ops.mog_init_rings(bp);
1713 
1714 	/* Initialize TX and RX buffers */
1715 	macb_init_buffers(bp);
1716 
1717 	/* Enable interrupts */
1718 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1719 		queue_writel(queue, IER,
1720 			     bp->rx_intr_mask |
1721 			     MACB_TX_INT_FLAGS |
1722 			     MACB_BIT(HRESP));
1723 
1724 	ctrl |= MACB_BIT(RE) | MACB_BIT(TE);
1725 	macb_writel(bp, NCR, ctrl);
1726 
1727 	netif_carrier_on(dev);
1728 	netif_tx_start_all_queues(dev);
1729 }
1730 
1731 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id)
1732 {
1733 	struct macb_queue *queue = dev_id;
1734 	struct macb *bp = queue->bp;
1735 	u32 status;
1736 
1737 	status = queue_readl(queue, ISR);
1738 
1739 	if (unlikely(!status))
1740 		return IRQ_NONE;
1741 
1742 	spin_lock(&bp->lock);
1743 
1744 	if (status & MACB_BIT(WOL)) {
1745 		queue_writel(queue, IDR, MACB_BIT(WOL));
1746 		macb_writel(bp, WOL, 0);
1747 		netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n",
1748 			    (unsigned int)(queue - bp->queues),
1749 			    (unsigned long)status);
1750 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1751 			queue_writel(queue, ISR, MACB_BIT(WOL));
1752 		pm_wakeup_event(&bp->pdev->dev, 0);
1753 	}
1754 
1755 	spin_unlock(&bp->lock);
1756 
1757 	return IRQ_HANDLED;
1758 }
1759 
1760 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id)
1761 {
1762 	struct macb_queue *queue = dev_id;
1763 	struct macb *bp = queue->bp;
1764 	u32 status;
1765 
1766 	status = queue_readl(queue, ISR);
1767 
1768 	if (unlikely(!status))
1769 		return IRQ_NONE;
1770 
1771 	spin_lock(&bp->lock);
1772 
1773 	if (status & GEM_BIT(WOL)) {
1774 		queue_writel(queue, IDR, GEM_BIT(WOL));
1775 		gem_writel(bp, WOL, 0);
1776 		netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n",
1777 			    (unsigned int)(queue - bp->queues),
1778 			    (unsigned long)status);
1779 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1780 			queue_writel(queue, ISR, GEM_BIT(WOL));
1781 		pm_wakeup_event(&bp->pdev->dev, 0);
1782 	}
1783 
1784 	spin_unlock(&bp->lock);
1785 
1786 	return IRQ_HANDLED;
1787 }
1788 
1789 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1790 {
1791 	struct macb_queue *queue = dev_id;
1792 	struct macb *bp = queue->bp;
1793 	struct net_device *dev = bp->dev;
1794 	u32 status, ctrl;
1795 
1796 	status = queue_readl(queue, ISR);
1797 
1798 	if (unlikely(!status))
1799 		return IRQ_NONE;
1800 
1801 	spin_lock(&bp->lock);
1802 
1803 	while (status) {
1804 		/* close possible race with dev_close */
1805 		if (unlikely(!netif_running(dev))) {
1806 			queue_writel(queue, IDR, -1);
1807 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1808 				queue_writel(queue, ISR, -1);
1809 			break;
1810 		}
1811 
1812 		netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1813 			    (unsigned int)(queue - bp->queues),
1814 			    (unsigned long)status);
1815 
1816 		if (status & bp->rx_intr_mask) {
1817 			/* There's no point taking any more interrupts
1818 			 * until we have processed the buffers. The
1819 			 * scheduling call may fail if the poll routine
1820 			 * is already scheduled, so disable interrupts
1821 			 * now.
1822 			 */
1823 			queue_writel(queue, IDR, bp->rx_intr_mask);
1824 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1825 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1826 
1827 			if (napi_schedule_prep(&queue->napi_rx)) {
1828 				netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1829 				__napi_schedule(&queue->napi_rx);
1830 			}
1831 		}
1832 
1833 		if (status & (MACB_BIT(TCOMP) |
1834 			      MACB_BIT(TXUBR))) {
1835 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1836 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1837 				queue_writel(queue, ISR, MACB_BIT(TCOMP) |
1838 							 MACB_BIT(TXUBR));
1839 
1840 			if (status & MACB_BIT(TXUBR)) {
1841 				queue->txubr_pending = true;
1842 				wmb(); // ensure softirq can see update
1843 			}
1844 
1845 			if (napi_schedule_prep(&queue->napi_tx)) {
1846 				netdev_vdbg(bp->dev, "scheduling TX softirq\n");
1847 				__napi_schedule(&queue->napi_tx);
1848 			}
1849 		}
1850 
1851 		if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1852 			queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1853 			schedule_work(&queue->tx_error_task);
1854 
1855 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1856 				queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1857 
1858 			break;
1859 		}
1860 
1861 		/* Link change detection isn't possible with RMII, so we'll
1862 		 * add that if/when we get our hands on a full-blown MII PHY.
1863 		 */
1864 
1865 		/* There is a hardware issue under heavy load where DMA can
1866 		 * stop, this causes endless "used buffer descriptor read"
1867 		 * interrupts but it can be cleared by re-enabling RX. See
1868 		 * the at91rm9200 manual, section 41.3.1 or the Zynq manual
1869 		 * section 16.7.4 for details. RXUBR is only enabled for
1870 		 * these two versions.
1871 		 */
1872 		if (status & MACB_BIT(RXUBR)) {
1873 			ctrl = macb_readl(bp, NCR);
1874 			macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1875 			wmb();
1876 			macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1877 
1878 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1879 				queue_writel(queue, ISR, MACB_BIT(RXUBR));
1880 		}
1881 
1882 		if (status & MACB_BIT(ISR_ROVR)) {
1883 			/* We missed at least one packet */
1884 			if (macb_is_gem(bp))
1885 				bp->hw_stats.gem.rx_overruns++;
1886 			else
1887 				bp->hw_stats.macb.rx_overruns++;
1888 
1889 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1890 				queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1891 		}
1892 
1893 		if (status & MACB_BIT(HRESP)) {
1894 			tasklet_schedule(&bp->hresp_err_tasklet);
1895 			netdev_err(dev, "DMA bus error: HRESP not OK\n");
1896 
1897 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1898 				queue_writel(queue, ISR, MACB_BIT(HRESP));
1899 		}
1900 		status = queue_readl(queue, ISR);
1901 	}
1902 
1903 	spin_unlock(&bp->lock);
1904 
1905 	return IRQ_HANDLED;
1906 }
1907 
1908 #ifdef CONFIG_NET_POLL_CONTROLLER
1909 /* Polling receive - used by netconsole and other diagnostic tools
1910  * to allow network i/o with interrupts disabled.
1911  */
1912 static void macb_poll_controller(struct net_device *dev)
1913 {
1914 	struct macb *bp = netdev_priv(dev);
1915 	struct macb_queue *queue;
1916 	unsigned long flags;
1917 	unsigned int q;
1918 
1919 	local_irq_save(flags);
1920 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1921 		macb_interrupt(dev->irq, queue);
1922 	local_irq_restore(flags);
1923 }
1924 #endif
1925 
1926 static unsigned int macb_tx_map(struct macb *bp,
1927 				struct macb_queue *queue,
1928 				struct sk_buff *skb,
1929 				unsigned int hdrlen)
1930 {
1931 	dma_addr_t mapping;
1932 	unsigned int len, entry, i, tx_head = queue->tx_head;
1933 	struct macb_tx_skb *tx_skb = NULL;
1934 	struct macb_dma_desc *desc;
1935 	unsigned int offset, size, count = 0;
1936 	unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
1937 	unsigned int eof = 1, mss_mfs = 0;
1938 	u32 ctrl, lso_ctrl = 0, seq_ctrl = 0;
1939 
1940 	/* LSO */
1941 	if (skb_shinfo(skb)->gso_size != 0) {
1942 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
1943 			/* UDP - UFO */
1944 			lso_ctrl = MACB_LSO_UFO_ENABLE;
1945 		else
1946 			/* TCP - TSO */
1947 			lso_ctrl = MACB_LSO_TSO_ENABLE;
1948 	}
1949 
1950 	/* First, map non-paged data */
1951 	len = skb_headlen(skb);
1952 
1953 	/* first buffer length */
1954 	size = hdrlen;
1955 
1956 	offset = 0;
1957 	while (len) {
1958 		entry = macb_tx_ring_wrap(bp, tx_head);
1959 		tx_skb = &queue->tx_skb[entry];
1960 
1961 		mapping = dma_map_single(&bp->pdev->dev,
1962 					 skb->data + offset,
1963 					 size, DMA_TO_DEVICE);
1964 		if (dma_mapping_error(&bp->pdev->dev, mapping))
1965 			goto dma_error;
1966 
1967 		/* Save info to properly release resources */
1968 		tx_skb->skb = NULL;
1969 		tx_skb->mapping = mapping;
1970 		tx_skb->size = size;
1971 		tx_skb->mapped_as_page = false;
1972 
1973 		len -= size;
1974 		offset += size;
1975 		count++;
1976 		tx_head++;
1977 
1978 		size = min(len, bp->max_tx_length);
1979 	}
1980 
1981 	/* Then, map paged data from fragments */
1982 	for (f = 0; f < nr_frags; f++) {
1983 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1984 
1985 		len = skb_frag_size(frag);
1986 		offset = 0;
1987 		while (len) {
1988 			size = min(len, bp->max_tx_length);
1989 			entry = macb_tx_ring_wrap(bp, tx_head);
1990 			tx_skb = &queue->tx_skb[entry];
1991 
1992 			mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
1993 						   offset, size, DMA_TO_DEVICE);
1994 			if (dma_mapping_error(&bp->pdev->dev, mapping))
1995 				goto dma_error;
1996 
1997 			/* Save info to properly release resources */
1998 			tx_skb->skb = NULL;
1999 			tx_skb->mapping = mapping;
2000 			tx_skb->size = size;
2001 			tx_skb->mapped_as_page = true;
2002 
2003 			len -= size;
2004 			offset += size;
2005 			count++;
2006 			tx_head++;
2007 		}
2008 	}
2009 
2010 	/* Should never happen */
2011 	if (unlikely(!tx_skb)) {
2012 		netdev_err(bp->dev, "BUG! empty skb!\n");
2013 		return 0;
2014 	}
2015 
2016 	/* This is the last buffer of the frame: save socket buffer */
2017 	tx_skb->skb = skb;
2018 
2019 	/* Update TX ring: update buffer descriptors in reverse order
2020 	 * to avoid race condition
2021 	 */
2022 
2023 	/* Set 'TX_USED' bit in buffer descriptor at tx_head position
2024 	 * to set the end of TX queue
2025 	 */
2026 	i = tx_head;
2027 	entry = macb_tx_ring_wrap(bp, i);
2028 	ctrl = MACB_BIT(TX_USED);
2029 	desc = macb_tx_desc(queue, entry);
2030 	desc->ctrl = ctrl;
2031 
2032 	if (lso_ctrl) {
2033 		if (lso_ctrl == MACB_LSO_UFO_ENABLE)
2034 			/* include header and FCS in value given to h/w */
2035 			mss_mfs = skb_shinfo(skb)->gso_size +
2036 					skb_transport_offset(skb) +
2037 					ETH_FCS_LEN;
2038 		else /* TSO */ {
2039 			mss_mfs = skb_shinfo(skb)->gso_size;
2040 			/* TCP Sequence Number Source Select
2041 			 * can be set only for TSO
2042 			 */
2043 			seq_ctrl = 0;
2044 		}
2045 	}
2046 
2047 	do {
2048 		i--;
2049 		entry = macb_tx_ring_wrap(bp, i);
2050 		tx_skb = &queue->tx_skb[entry];
2051 		desc = macb_tx_desc(queue, entry);
2052 
2053 		ctrl = (u32)tx_skb->size;
2054 		if (eof) {
2055 			ctrl |= MACB_BIT(TX_LAST);
2056 			eof = 0;
2057 		}
2058 		if (unlikely(entry == (bp->tx_ring_size - 1)))
2059 			ctrl |= MACB_BIT(TX_WRAP);
2060 
2061 		/* First descriptor is header descriptor */
2062 		if (i == queue->tx_head) {
2063 			ctrl |= MACB_BF(TX_LSO, lso_ctrl);
2064 			ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl);
2065 			if ((bp->dev->features & NETIF_F_HW_CSUM) &&
2066 			    skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl)
2067 				ctrl |= MACB_BIT(TX_NOCRC);
2068 		} else
2069 			/* Only set MSS/MFS on payload descriptors
2070 			 * (second or later descriptor)
2071 			 */
2072 			ctrl |= MACB_BF(MSS_MFS, mss_mfs);
2073 
2074 		/* Set TX buffer descriptor */
2075 		macb_set_addr(bp, desc, tx_skb->mapping);
2076 		/* desc->addr must be visible to hardware before clearing
2077 		 * 'TX_USED' bit in desc->ctrl.
2078 		 */
2079 		wmb();
2080 		desc->ctrl = ctrl;
2081 	} while (i != queue->tx_head);
2082 
2083 	queue->tx_head = tx_head;
2084 
2085 	return count;
2086 
2087 dma_error:
2088 	netdev_err(bp->dev, "TX DMA map failed\n");
2089 
2090 	for (i = queue->tx_head; i != tx_head; i++) {
2091 		tx_skb = macb_tx_skb(queue, i);
2092 
2093 		macb_tx_unmap(bp, tx_skb, 0);
2094 	}
2095 
2096 	return 0;
2097 }
2098 
2099 static netdev_features_t macb_features_check(struct sk_buff *skb,
2100 					     struct net_device *dev,
2101 					     netdev_features_t features)
2102 {
2103 	unsigned int nr_frags, f;
2104 	unsigned int hdrlen;
2105 
2106 	/* Validate LSO compatibility */
2107 
2108 	/* there is only one buffer or protocol is not UDP */
2109 	if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP))
2110 		return features;
2111 
2112 	/* length of header */
2113 	hdrlen = skb_transport_offset(skb);
2114 
2115 	/* For UFO only:
2116 	 * When software supplies two or more payload buffers all payload buffers
2117 	 * apart from the last must be a multiple of 8 bytes in size.
2118 	 */
2119 	if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN))
2120 		return features & ~MACB_NETIF_LSO;
2121 
2122 	nr_frags = skb_shinfo(skb)->nr_frags;
2123 	/* No need to check last fragment */
2124 	nr_frags--;
2125 	for (f = 0; f < nr_frags; f++) {
2126 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2127 
2128 		if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN))
2129 			return features & ~MACB_NETIF_LSO;
2130 	}
2131 	return features;
2132 }
2133 
2134 static inline int macb_clear_csum(struct sk_buff *skb)
2135 {
2136 	/* no change for packets without checksum offloading */
2137 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2138 		return 0;
2139 
2140 	/* make sure we can modify the header */
2141 	if (unlikely(skb_cow_head(skb, 0)))
2142 		return -1;
2143 
2144 	/* initialize checksum field
2145 	 * This is required - at least for Zynq, which otherwise calculates
2146 	 * wrong UDP header checksums for UDP packets with UDP data len <=2
2147 	 */
2148 	*(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
2149 	return 0;
2150 }
2151 
2152 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev)
2153 {
2154 	bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) ||
2155 		      skb_is_nonlinear(*skb);
2156 	int padlen = ETH_ZLEN - (*skb)->len;
2157 	int headroom = skb_headroom(*skb);
2158 	int tailroom = skb_tailroom(*skb);
2159 	struct sk_buff *nskb;
2160 	u32 fcs;
2161 
2162 	if (!(ndev->features & NETIF_F_HW_CSUM) ||
2163 	    !((*skb)->ip_summed != CHECKSUM_PARTIAL) ||
2164 	    skb_shinfo(*skb)->gso_size)	/* Not available for GSO */
2165 		return 0;
2166 
2167 	if (padlen <= 0) {
2168 		/* FCS could be appeded to tailroom. */
2169 		if (tailroom >= ETH_FCS_LEN)
2170 			goto add_fcs;
2171 		/* FCS could be appeded by moving data to headroom. */
2172 		else if (!cloned && headroom + tailroom >= ETH_FCS_LEN)
2173 			padlen = 0;
2174 		/* No room for FCS, need to reallocate skb. */
2175 		else
2176 			padlen = ETH_FCS_LEN;
2177 	} else {
2178 		/* Add room for FCS. */
2179 		padlen += ETH_FCS_LEN;
2180 	}
2181 
2182 	if (!cloned && headroom + tailroom >= padlen) {
2183 		(*skb)->data = memmove((*skb)->head, (*skb)->data, (*skb)->len);
2184 		skb_set_tail_pointer(*skb, (*skb)->len);
2185 	} else {
2186 		nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC);
2187 		if (!nskb)
2188 			return -ENOMEM;
2189 
2190 		dev_consume_skb_any(*skb);
2191 		*skb = nskb;
2192 	}
2193 
2194 	if (padlen > ETH_FCS_LEN)
2195 		skb_put_zero(*skb, padlen - ETH_FCS_LEN);
2196 
2197 add_fcs:
2198 	/* set FCS to packet */
2199 	fcs = crc32_le(~0, (*skb)->data, (*skb)->len);
2200 	fcs = ~fcs;
2201 
2202 	skb_put_u8(*skb, fcs		& 0xff);
2203 	skb_put_u8(*skb, (fcs >> 8)	& 0xff);
2204 	skb_put_u8(*skb, (fcs >> 16)	& 0xff);
2205 	skb_put_u8(*skb, (fcs >> 24)	& 0xff);
2206 
2207 	return 0;
2208 }
2209 
2210 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
2211 {
2212 	u16 queue_index = skb_get_queue_mapping(skb);
2213 	struct macb *bp = netdev_priv(dev);
2214 	struct macb_queue *queue = &bp->queues[queue_index];
2215 	unsigned int desc_cnt, nr_frags, frag_size, f;
2216 	unsigned int hdrlen;
2217 	bool is_lso;
2218 	netdev_tx_t ret = NETDEV_TX_OK;
2219 
2220 	if (macb_clear_csum(skb)) {
2221 		dev_kfree_skb_any(skb);
2222 		return ret;
2223 	}
2224 
2225 	if (macb_pad_and_fcs(&skb, dev)) {
2226 		dev_kfree_skb_any(skb);
2227 		return ret;
2228 	}
2229 
2230 	is_lso = (skb_shinfo(skb)->gso_size != 0);
2231 
2232 	if (is_lso) {
2233 		/* length of headers */
2234 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2235 			/* only queue eth + ip headers separately for UDP */
2236 			hdrlen = skb_transport_offset(skb);
2237 		else
2238 			hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb);
2239 		if (skb_headlen(skb) < hdrlen) {
2240 			netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n");
2241 			/* if this is required, would need to copy to single buffer */
2242 			return NETDEV_TX_BUSY;
2243 		}
2244 	} else
2245 		hdrlen = min(skb_headlen(skb), bp->max_tx_length);
2246 
2247 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
2248 	netdev_vdbg(bp->dev,
2249 		    "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
2250 		    queue_index, skb->len, skb->head, skb->data,
2251 		    skb_tail_pointer(skb), skb_end_pointer(skb));
2252 	print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
2253 		       skb->data, 16, true);
2254 #endif
2255 
2256 	/* Count how many TX buffer descriptors are needed to send this
2257 	 * socket buffer: skb fragments of jumbo frames may need to be
2258 	 * split into many buffer descriptors.
2259 	 */
2260 	if (is_lso && (skb_headlen(skb) > hdrlen))
2261 		/* extra header descriptor if also payload in first buffer */
2262 		desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1;
2263 	else
2264 		desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
2265 	nr_frags = skb_shinfo(skb)->nr_frags;
2266 	for (f = 0; f < nr_frags; f++) {
2267 		frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2268 		desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length);
2269 	}
2270 
2271 	spin_lock_bh(&queue->tx_ptr_lock);
2272 
2273 	/* This is a hard error, log it. */
2274 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail,
2275 		       bp->tx_ring_size) < desc_cnt) {
2276 		netif_stop_subqueue(dev, queue_index);
2277 		netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
2278 			   queue->tx_head, queue->tx_tail);
2279 		ret = NETDEV_TX_BUSY;
2280 		goto unlock;
2281 	}
2282 
2283 	/* Map socket buffer for DMA transfer */
2284 	if (!macb_tx_map(bp, queue, skb, hdrlen)) {
2285 		dev_kfree_skb_any(skb);
2286 		goto unlock;
2287 	}
2288 
2289 	/* Make newly initialized descriptor visible to hardware */
2290 	wmb();
2291 	skb_tx_timestamp(skb);
2292 
2293 	spin_lock_irq(&bp->lock);
2294 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
2295 	spin_unlock_irq(&bp->lock);
2296 
2297 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1)
2298 		netif_stop_subqueue(dev, queue_index);
2299 
2300 unlock:
2301 	spin_unlock_bh(&queue->tx_ptr_lock);
2302 
2303 	return ret;
2304 }
2305 
2306 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
2307 {
2308 	if (!macb_is_gem(bp)) {
2309 		bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
2310 	} else {
2311 		bp->rx_buffer_size = size;
2312 
2313 		if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
2314 			netdev_dbg(bp->dev,
2315 				   "RX buffer must be multiple of %d bytes, expanding\n",
2316 				   RX_BUFFER_MULTIPLE);
2317 			bp->rx_buffer_size =
2318 				roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
2319 		}
2320 	}
2321 
2322 	netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n",
2323 		   bp->dev->mtu, bp->rx_buffer_size);
2324 }
2325 
2326 static void gem_free_rx_buffers(struct macb *bp)
2327 {
2328 	struct sk_buff		*skb;
2329 	struct macb_dma_desc	*desc;
2330 	struct macb_queue *queue;
2331 	dma_addr_t		addr;
2332 	unsigned int q;
2333 	int i;
2334 
2335 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2336 		if (!queue->rx_skbuff)
2337 			continue;
2338 
2339 		for (i = 0; i < bp->rx_ring_size; i++) {
2340 			skb = queue->rx_skbuff[i];
2341 
2342 			if (!skb)
2343 				continue;
2344 
2345 			desc = macb_rx_desc(queue, i);
2346 			addr = macb_get_addr(bp, desc);
2347 
2348 			dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
2349 					DMA_FROM_DEVICE);
2350 			dev_kfree_skb_any(skb);
2351 			skb = NULL;
2352 		}
2353 
2354 		kfree(queue->rx_skbuff);
2355 		queue->rx_skbuff = NULL;
2356 	}
2357 }
2358 
2359 static void macb_free_rx_buffers(struct macb *bp)
2360 {
2361 	struct macb_queue *queue = &bp->queues[0];
2362 
2363 	if (queue->rx_buffers) {
2364 		dma_free_coherent(&bp->pdev->dev,
2365 				  bp->rx_ring_size * bp->rx_buffer_size,
2366 				  queue->rx_buffers, queue->rx_buffers_dma);
2367 		queue->rx_buffers = NULL;
2368 	}
2369 }
2370 
2371 static void macb_free_consistent(struct macb *bp)
2372 {
2373 	struct macb_queue *queue;
2374 	unsigned int q;
2375 	int size;
2376 
2377 	bp->macbgem_ops.mog_free_rx_buffers(bp);
2378 
2379 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2380 		kfree(queue->tx_skb);
2381 		queue->tx_skb = NULL;
2382 		if (queue->tx_ring) {
2383 			size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2384 			dma_free_coherent(&bp->pdev->dev, size,
2385 					  queue->tx_ring, queue->tx_ring_dma);
2386 			queue->tx_ring = NULL;
2387 		}
2388 		if (queue->rx_ring) {
2389 			size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2390 			dma_free_coherent(&bp->pdev->dev, size,
2391 					  queue->rx_ring, queue->rx_ring_dma);
2392 			queue->rx_ring = NULL;
2393 		}
2394 	}
2395 }
2396 
2397 static int gem_alloc_rx_buffers(struct macb *bp)
2398 {
2399 	struct macb_queue *queue;
2400 	unsigned int q;
2401 	int size;
2402 
2403 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2404 		size = bp->rx_ring_size * sizeof(struct sk_buff *);
2405 		queue->rx_skbuff = kzalloc(size, GFP_KERNEL);
2406 		if (!queue->rx_skbuff)
2407 			return -ENOMEM;
2408 		else
2409 			netdev_dbg(bp->dev,
2410 				   "Allocated %d RX struct sk_buff entries at %p\n",
2411 				   bp->rx_ring_size, queue->rx_skbuff);
2412 	}
2413 	return 0;
2414 }
2415 
2416 static int macb_alloc_rx_buffers(struct macb *bp)
2417 {
2418 	struct macb_queue *queue = &bp->queues[0];
2419 	int size;
2420 
2421 	size = bp->rx_ring_size * bp->rx_buffer_size;
2422 	queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
2423 					    &queue->rx_buffers_dma, GFP_KERNEL);
2424 	if (!queue->rx_buffers)
2425 		return -ENOMEM;
2426 
2427 	netdev_dbg(bp->dev,
2428 		   "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
2429 		   size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers);
2430 	return 0;
2431 }
2432 
2433 static int macb_alloc_consistent(struct macb *bp)
2434 {
2435 	struct macb_queue *queue;
2436 	unsigned int q;
2437 	int size;
2438 
2439 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2440 		size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2441 		queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2442 						    &queue->tx_ring_dma,
2443 						    GFP_KERNEL);
2444 		if (!queue->tx_ring)
2445 			goto out_err;
2446 		netdev_dbg(bp->dev,
2447 			   "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
2448 			   q, size, (unsigned long)queue->tx_ring_dma,
2449 			   queue->tx_ring);
2450 
2451 		size = bp->tx_ring_size * sizeof(struct macb_tx_skb);
2452 		queue->tx_skb = kmalloc(size, GFP_KERNEL);
2453 		if (!queue->tx_skb)
2454 			goto out_err;
2455 
2456 		size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2457 		queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2458 						 &queue->rx_ring_dma, GFP_KERNEL);
2459 		if (!queue->rx_ring)
2460 			goto out_err;
2461 		netdev_dbg(bp->dev,
2462 			   "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
2463 			   size, (unsigned long)queue->rx_ring_dma, queue->rx_ring);
2464 	}
2465 	if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
2466 		goto out_err;
2467 
2468 	return 0;
2469 
2470 out_err:
2471 	macb_free_consistent(bp);
2472 	return -ENOMEM;
2473 }
2474 
2475 static void gem_init_rings(struct macb *bp)
2476 {
2477 	struct macb_queue *queue;
2478 	struct macb_dma_desc *desc = NULL;
2479 	unsigned int q;
2480 	int i;
2481 
2482 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2483 		for (i = 0; i < bp->tx_ring_size; i++) {
2484 			desc = macb_tx_desc(queue, i);
2485 			macb_set_addr(bp, desc, 0);
2486 			desc->ctrl = MACB_BIT(TX_USED);
2487 		}
2488 		desc->ctrl |= MACB_BIT(TX_WRAP);
2489 		queue->tx_head = 0;
2490 		queue->tx_tail = 0;
2491 
2492 		queue->rx_tail = 0;
2493 		queue->rx_prepared_head = 0;
2494 
2495 		gem_rx_refill(queue);
2496 	}
2497 
2498 }
2499 
2500 static void macb_init_rings(struct macb *bp)
2501 {
2502 	int i;
2503 	struct macb_dma_desc *desc = NULL;
2504 
2505 	macb_init_rx_ring(&bp->queues[0]);
2506 
2507 	for (i = 0; i < bp->tx_ring_size; i++) {
2508 		desc = macb_tx_desc(&bp->queues[0], i);
2509 		macb_set_addr(bp, desc, 0);
2510 		desc->ctrl = MACB_BIT(TX_USED);
2511 	}
2512 	bp->queues[0].tx_head = 0;
2513 	bp->queues[0].tx_tail = 0;
2514 	desc->ctrl |= MACB_BIT(TX_WRAP);
2515 }
2516 
2517 static void macb_reset_hw(struct macb *bp)
2518 {
2519 	struct macb_queue *queue;
2520 	unsigned int q;
2521 	u32 ctrl = macb_readl(bp, NCR);
2522 
2523 	/* Disable RX and TX (XXX: Should we halt the transmission
2524 	 * more gracefully?)
2525 	 */
2526 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
2527 
2528 	/* Clear the stats registers (XXX: Update stats first?) */
2529 	ctrl |= MACB_BIT(CLRSTAT);
2530 
2531 	macb_writel(bp, NCR, ctrl);
2532 
2533 	/* Clear all status flags */
2534 	macb_writel(bp, TSR, -1);
2535 	macb_writel(bp, RSR, -1);
2536 
2537 	/* Disable all interrupts */
2538 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2539 		queue_writel(queue, IDR, -1);
2540 		queue_readl(queue, ISR);
2541 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2542 			queue_writel(queue, ISR, -1);
2543 	}
2544 }
2545 
2546 static u32 gem_mdc_clk_div(struct macb *bp)
2547 {
2548 	u32 config;
2549 	unsigned long pclk_hz = clk_get_rate(bp->pclk);
2550 
2551 	if (pclk_hz <= 20000000)
2552 		config = GEM_BF(CLK, GEM_CLK_DIV8);
2553 	else if (pclk_hz <= 40000000)
2554 		config = GEM_BF(CLK, GEM_CLK_DIV16);
2555 	else if (pclk_hz <= 80000000)
2556 		config = GEM_BF(CLK, GEM_CLK_DIV32);
2557 	else if (pclk_hz <= 120000000)
2558 		config = GEM_BF(CLK, GEM_CLK_DIV48);
2559 	else if (pclk_hz <= 160000000)
2560 		config = GEM_BF(CLK, GEM_CLK_DIV64);
2561 	else
2562 		config = GEM_BF(CLK, GEM_CLK_DIV96);
2563 
2564 	return config;
2565 }
2566 
2567 static u32 macb_mdc_clk_div(struct macb *bp)
2568 {
2569 	u32 config;
2570 	unsigned long pclk_hz;
2571 
2572 	if (macb_is_gem(bp))
2573 		return gem_mdc_clk_div(bp);
2574 
2575 	pclk_hz = clk_get_rate(bp->pclk);
2576 	if (pclk_hz <= 20000000)
2577 		config = MACB_BF(CLK, MACB_CLK_DIV8);
2578 	else if (pclk_hz <= 40000000)
2579 		config = MACB_BF(CLK, MACB_CLK_DIV16);
2580 	else if (pclk_hz <= 80000000)
2581 		config = MACB_BF(CLK, MACB_CLK_DIV32);
2582 	else
2583 		config = MACB_BF(CLK, MACB_CLK_DIV64);
2584 
2585 	return config;
2586 }
2587 
2588 /* Get the DMA bus width field of the network configuration register that we
2589  * should program.  We find the width from decoding the design configuration
2590  * register to find the maximum supported data bus width.
2591  */
2592 static u32 macb_dbw(struct macb *bp)
2593 {
2594 	if (!macb_is_gem(bp))
2595 		return 0;
2596 
2597 	switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
2598 	case 4:
2599 		return GEM_BF(DBW, GEM_DBW128);
2600 	case 2:
2601 		return GEM_BF(DBW, GEM_DBW64);
2602 	case 1:
2603 	default:
2604 		return GEM_BF(DBW, GEM_DBW32);
2605 	}
2606 }
2607 
2608 /* Configure the receive DMA engine
2609  * - use the correct receive buffer size
2610  * - set best burst length for DMA operations
2611  *   (if not supported by FIFO, it will fallback to default)
2612  * - set both rx/tx packet buffers to full memory size
2613  * These are configurable parameters for GEM.
2614  */
2615 static void macb_configure_dma(struct macb *bp)
2616 {
2617 	struct macb_queue *queue;
2618 	u32 buffer_size;
2619 	unsigned int q;
2620 	u32 dmacfg;
2621 
2622 	buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE;
2623 	if (macb_is_gem(bp)) {
2624 		dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
2625 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2626 			if (q)
2627 				queue_writel(queue, RBQS, buffer_size);
2628 			else
2629 				dmacfg |= GEM_BF(RXBS, buffer_size);
2630 		}
2631 		if (bp->dma_burst_length)
2632 			dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
2633 		dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
2634 		dmacfg &= ~GEM_BIT(ENDIA_PKT);
2635 
2636 		if (bp->native_io)
2637 			dmacfg &= ~GEM_BIT(ENDIA_DESC);
2638 		else
2639 			dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
2640 
2641 		if (bp->dev->features & NETIF_F_HW_CSUM)
2642 			dmacfg |= GEM_BIT(TXCOEN);
2643 		else
2644 			dmacfg &= ~GEM_BIT(TXCOEN);
2645 
2646 		dmacfg &= ~GEM_BIT(ADDR64);
2647 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2648 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
2649 			dmacfg |= GEM_BIT(ADDR64);
2650 #endif
2651 #ifdef CONFIG_MACB_USE_HWSTAMP
2652 		if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
2653 			dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT);
2654 #endif
2655 		netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
2656 			   dmacfg);
2657 		gem_writel(bp, DMACFG, dmacfg);
2658 	}
2659 }
2660 
2661 static void macb_init_hw(struct macb *bp)
2662 {
2663 	u32 config;
2664 
2665 	macb_reset_hw(bp);
2666 	macb_set_hwaddr(bp);
2667 
2668 	config = macb_mdc_clk_div(bp);
2669 	config |= MACB_BF(RBOF, NET_IP_ALIGN);	/* Make eth data aligned */
2670 	config |= MACB_BIT(DRFCS);		/* Discard Rx FCS */
2671 	if (bp->caps & MACB_CAPS_JUMBO)
2672 		config |= MACB_BIT(JFRAME);	/* Enable jumbo frames */
2673 	else
2674 		config |= MACB_BIT(BIG);	/* Receive oversized frames */
2675 	if (bp->dev->flags & IFF_PROMISC)
2676 		config |= MACB_BIT(CAF);	/* Copy All Frames */
2677 	else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
2678 		config |= GEM_BIT(RXCOEN);
2679 	if (!(bp->dev->flags & IFF_BROADCAST))
2680 		config |= MACB_BIT(NBC);	/* No BroadCast */
2681 	config |= macb_dbw(bp);
2682 	macb_writel(bp, NCFGR, config);
2683 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
2684 		gem_writel(bp, JML, bp->jumbo_max_len);
2685 	bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
2686 	if (bp->caps & MACB_CAPS_JUMBO)
2687 		bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
2688 
2689 	macb_configure_dma(bp);
2690 }
2691 
2692 /* The hash address register is 64 bits long and takes up two
2693  * locations in the memory map.  The least significant bits are stored
2694  * in EMAC_HSL and the most significant bits in EMAC_HSH.
2695  *
2696  * The unicast hash enable and the multicast hash enable bits in the
2697  * network configuration register enable the reception of hash matched
2698  * frames. The destination address is reduced to a 6 bit index into
2699  * the 64 bit hash register using the following hash function.  The
2700  * hash function is an exclusive or of every sixth bit of the
2701  * destination address.
2702  *
2703  * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
2704  * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
2705  * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
2706  * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
2707  * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
2708  * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
2709  *
2710  * da[0] represents the least significant bit of the first byte
2711  * received, that is, the multicast/unicast indicator, and da[47]
2712  * represents the most significant bit of the last byte received.  If
2713  * the hash index, hi[n], points to a bit that is set in the hash
2714  * register then the frame will be matched according to whether the
2715  * frame is multicast or unicast.  A multicast match will be signalled
2716  * if the multicast hash enable bit is set, da[0] is 1 and the hash
2717  * index points to a bit set in the hash register.  A unicast match
2718  * will be signalled if the unicast hash enable bit is set, da[0] is 0
2719  * and the hash index points to a bit set in the hash register.  To
2720  * receive all multicast frames, the hash register should be set with
2721  * all ones and the multicast hash enable bit should be set in the
2722  * network configuration register.
2723  */
2724 
2725 static inline int hash_bit_value(int bitnr, __u8 *addr)
2726 {
2727 	if (addr[bitnr / 8] & (1 << (bitnr % 8)))
2728 		return 1;
2729 	return 0;
2730 }
2731 
2732 /* Return the hash index value for the specified address. */
2733 static int hash_get_index(__u8 *addr)
2734 {
2735 	int i, j, bitval;
2736 	int hash_index = 0;
2737 
2738 	for (j = 0; j < 6; j++) {
2739 		for (i = 0, bitval = 0; i < 8; i++)
2740 			bitval ^= hash_bit_value(i * 6 + j, addr);
2741 
2742 		hash_index |= (bitval << j);
2743 	}
2744 
2745 	return hash_index;
2746 }
2747 
2748 /* Add multicast addresses to the internal multicast-hash table. */
2749 static void macb_sethashtable(struct net_device *dev)
2750 {
2751 	struct netdev_hw_addr *ha;
2752 	unsigned long mc_filter[2];
2753 	unsigned int bitnr;
2754 	struct macb *bp = netdev_priv(dev);
2755 
2756 	mc_filter[0] = 0;
2757 	mc_filter[1] = 0;
2758 
2759 	netdev_for_each_mc_addr(ha, dev) {
2760 		bitnr = hash_get_index(ha->addr);
2761 		mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
2762 	}
2763 
2764 	macb_or_gem_writel(bp, HRB, mc_filter[0]);
2765 	macb_or_gem_writel(bp, HRT, mc_filter[1]);
2766 }
2767 
2768 /* Enable/Disable promiscuous and multicast modes. */
2769 static void macb_set_rx_mode(struct net_device *dev)
2770 {
2771 	unsigned long cfg;
2772 	struct macb *bp = netdev_priv(dev);
2773 
2774 	cfg = macb_readl(bp, NCFGR);
2775 
2776 	if (dev->flags & IFF_PROMISC) {
2777 		/* Enable promiscuous mode */
2778 		cfg |= MACB_BIT(CAF);
2779 
2780 		/* Disable RX checksum offload */
2781 		if (macb_is_gem(bp))
2782 			cfg &= ~GEM_BIT(RXCOEN);
2783 	} else {
2784 		/* Disable promiscuous mode */
2785 		cfg &= ~MACB_BIT(CAF);
2786 
2787 		/* Enable RX checksum offload only if requested */
2788 		if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
2789 			cfg |= GEM_BIT(RXCOEN);
2790 	}
2791 
2792 	if (dev->flags & IFF_ALLMULTI) {
2793 		/* Enable all multicast mode */
2794 		macb_or_gem_writel(bp, HRB, -1);
2795 		macb_or_gem_writel(bp, HRT, -1);
2796 		cfg |= MACB_BIT(NCFGR_MTI);
2797 	} else if (!netdev_mc_empty(dev)) {
2798 		/* Enable specific multicasts */
2799 		macb_sethashtable(dev);
2800 		cfg |= MACB_BIT(NCFGR_MTI);
2801 	} else if (dev->flags & (~IFF_ALLMULTI)) {
2802 		/* Disable all multicast mode */
2803 		macb_or_gem_writel(bp, HRB, 0);
2804 		macb_or_gem_writel(bp, HRT, 0);
2805 		cfg &= ~MACB_BIT(NCFGR_MTI);
2806 	}
2807 
2808 	macb_writel(bp, NCFGR, cfg);
2809 }
2810 
2811 static int macb_open(struct net_device *dev)
2812 {
2813 	size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
2814 	struct macb *bp = netdev_priv(dev);
2815 	struct macb_queue *queue;
2816 	unsigned int q;
2817 	int err;
2818 
2819 	netdev_dbg(bp->dev, "open\n");
2820 
2821 	err = pm_runtime_resume_and_get(&bp->pdev->dev);
2822 	if (err < 0)
2823 		return err;
2824 
2825 	/* RX buffers initialization */
2826 	macb_init_rx_buffer_size(bp, bufsz);
2827 
2828 	err = macb_alloc_consistent(bp);
2829 	if (err) {
2830 		netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
2831 			   err);
2832 		goto pm_exit;
2833 	}
2834 
2835 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2836 		napi_enable(&queue->napi_rx);
2837 		napi_enable(&queue->napi_tx);
2838 	}
2839 
2840 	macb_init_hw(bp);
2841 
2842 	err = phy_power_on(bp->sgmii_phy);
2843 	if (err)
2844 		goto reset_hw;
2845 
2846 	err = macb_phylink_connect(bp);
2847 	if (err)
2848 		goto phy_off;
2849 
2850 	netif_tx_start_all_queues(dev);
2851 
2852 	if (bp->ptp_info)
2853 		bp->ptp_info->ptp_init(dev);
2854 
2855 	return 0;
2856 
2857 phy_off:
2858 	phy_power_off(bp->sgmii_phy);
2859 
2860 reset_hw:
2861 	macb_reset_hw(bp);
2862 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2863 		napi_disable(&queue->napi_rx);
2864 		napi_disable(&queue->napi_tx);
2865 	}
2866 	macb_free_consistent(bp);
2867 pm_exit:
2868 	pm_runtime_put_sync(&bp->pdev->dev);
2869 	return err;
2870 }
2871 
2872 static int macb_close(struct net_device *dev)
2873 {
2874 	struct macb *bp = netdev_priv(dev);
2875 	struct macb_queue *queue;
2876 	unsigned long flags;
2877 	unsigned int q;
2878 
2879 	netif_tx_stop_all_queues(dev);
2880 
2881 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2882 		napi_disable(&queue->napi_rx);
2883 		napi_disable(&queue->napi_tx);
2884 	}
2885 
2886 	phylink_stop(bp->phylink);
2887 	phylink_disconnect_phy(bp->phylink);
2888 
2889 	phy_power_off(bp->sgmii_phy);
2890 
2891 	spin_lock_irqsave(&bp->lock, flags);
2892 	macb_reset_hw(bp);
2893 	netif_carrier_off(dev);
2894 	spin_unlock_irqrestore(&bp->lock, flags);
2895 
2896 	macb_free_consistent(bp);
2897 
2898 	if (bp->ptp_info)
2899 		bp->ptp_info->ptp_remove(dev);
2900 
2901 	pm_runtime_put(&bp->pdev->dev);
2902 
2903 	return 0;
2904 }
2905 
2906 static int macb_change_mtu(struct net_device *dev, int new_mtu)
2907 {
2908 	if (netif_running(dev))
2909 		return -EBUSY;
2910 
2911 	dev->mtu = new_mtu;
2912 
2913 	return 0;
2914 }
2915 
2916 static void gem_update_stats(struct macb *bp)
2917 {
2918 	struct macb_queue *queue;
2919 	unsigned int i, q, idx;
2920 	unsigned long *stat;
2921 
2922 	u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
2923 
2924 	for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
2925 		u32 offset = gem_statistics[i].offset;
2926 		u64 val = bp->macb_reg_readl(bp, offset);
2927 
2928 		bp->ethtool_stats[i] += val;
2929 		*p += val;
2930 
2931 		if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
2932 			/* Add GEM_OCTTXH, GEM_OCTRXH */
2933 			val = bp->macb_reg_readl(bp, offset + 4);
2934 			bp->ethtool_stats[i] += ((u64)val) << 32;
2935 			*(++p) += val;
2936 		}
2937 	}
2938 
2939 	idx = GEM_STATS_LEN;
2940 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
2941 		for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat)
2942 			bp->ethtool_stats[idx++] = *stat;
2943 }
2944 
2945 static struct net_device_stats *gem_get_stats(struct macb *bp)
2946 {
2947 	struct gem_stats *hwstat = &bp->hw_stats.gem;
2948 	struct net_device_stats *nstat = &bp->dev->stats;
2949 
2950 	if (!netif_running(bp->dev))
2951 		return nstat;
2952 
2953 	gem_update_stats(bp);
2954 
2955 	nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
2956 			    hwstat->rx_alignment_errors +
2957 			    hwstat->rx_resource_errors +
2958 			    hwstat->rx_overruns +
2959 			    hwstat->rx_oversize_frames +
2960 			    hwstat->rx_jabbers +
2961 			    hwstat->rx_undersized_frames +
2962 			    hwstat->rx_length_field_frame_errors);
2963 	nstat->tx_errors = (hwstat->tx_late_collisions +
2964 			    hwstat->tx_excessive_collisions +
2965 			    hwstat->tx_underrun +
2966 			    hwstat->tx_carrier_sense_errors);
2967 	nstat->multicast = hwstat->rx_multicast_frames;
2968 	nstat->collisions = (hwstat->tx_single_collision_frames +
2969 			     hwstat->tx_multiple_collision_frames +
2970 			     hwstat->tx_excessive_collisions);
2971 	nstat->rx_length_errors = (hwstat->rx_oversize_frames +
2972 				   hwstat->rx_jabbers +
2973 				   hwstat->rx_undersized_frames +
2974 				   hwstat->rx_length_field_frame_errors);
2975 	nstat->rx_over_errors = hwstat->rx_resource_errors;
2976 	nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
2977 	nstat->rx_frame_errors = hwstat->rx_alignment_errors;
2978 	nstat->rx_fifo_errors = hwstat->rx_overruns;
2979 	nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
2980 	nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
2981 	nstat->tx_fifo_errors = hwstat->tx_underrun;
2982 
2983 	return nstat;
2984 }
2985 
2986 static void gem_get_ethtool_stats(struct net_device *dev,
2987 				  struct ethtool_stats *stats, u64 *data)
2988 {
2989 	struct macb *bp;
2990 
2991 	bp = netdev_priv(dev);
2992 	gem_update_stats(bp);
2993 	memcpy(data, &bp->ethtool_stats, sizeof(u64)
2994 			* (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES));
2995 }
2996 
2997 static int gem_get_sset_count(struct net_device *dev, int sset)
2998 {
2999 	struct macb *bp = netdev_priv(dev);
3000 
3001 	switch (sset) {
3002 	case ETH_SS_STATS:
3003 		return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN;
3004 	default:
3005 		return -EOPNOTSUPP;
3006 	}
3007 }
3008 
3009 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
3010 {
3011 	char stat_string[ETH_GSTRING_LEN];
3012 	struct macb *bp = netdev_priv(dev);
3013 	struct macb_queue *queue;
3014 	unsigned int i;
3015 	unsigned int q;
3016 
3017 	switch (sset) {
3018 	case ETH_SS_STATS:
3019 		for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
3020 			memcpy(p, gem_statistics[i].stat_string,
3021 			       ETH_GSTRING_LEN);
3022 
3023 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3024 			for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) {
3025 				snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s",
3026 						q, queue_statistics[i].stat_string);
3027 				memcpy(p, stat_string, ETH_GSTRING_LEN);
3028 			}
3029 		}
3030 		break;
3031 	}
3032 }
3033 
3034 static struct net_device_stats *macb_get_stats(struct net_device *dev)
3035 {
3036 	struct macb *bp = netdev_priv(dev);
3037 	struct net_device_stats *nstat = &bp->dev->stats;
3038 	struct macb_stats *hwstat = &bp->hw_stats.macb;
3039 
3040 	if (macb_is_gem(bp))
3041 		return gem_get_stats(bp);
3042 
3043 	/* read stats from hardware */
3044 	macb_update_stats(bp);
3045 
3046 	/* Convert HW stats into netdevice stats */
3047 	nstat->rx_errors = (hwstat->rx_fcs_errors +
3048 			    hwstat->rx_align_errors +
3049 			    hwstat->rx_resource_errors +
3050 			    hwstat->rx_overruns +
3051 			    hwstat->rx_oversize_pkts +
3052 			    hwstat->rx_jabbers +
3053 			    hwstat->rx_undersize_pkts +
3054 			    hwstat->rx_length_mismatch);
3055 	nstat->tx_errors = (hwstat->tx_late_cols +
3056 			    hwstat->tx_excessive_cols +
3057 			    hwstat->tx_underruns +
3058 			    hwstat->tx_carrier_errors +
3059 			    hwstat->sqe_test_errors);
3060 	nstat->collisions = (hwstat->tx_single_cols +
3061 			     hwstat->tx_multiple_cols +
3062 			     hwstat->tx_excessive_cols);
3063 	nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
3064 				   hwstat->rx_jabbers +
3065 				   hwstat->rx_undersize_pkts +
3066 				   hwstat->rx_length_mismatch);
3067 	nstat->rx_over_errors = hwstat->rx_resource_errors +
3068 				   hwstat->rx_overruns;
3069 	nstat->rx_crc_errors = hwstat->rx_fcs_errors;
3070 	nstat->rx_frame_errors = hwstat->rx_align_errors;
3071 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3072 	/* XXX: What does "missed" mean? */
3073 	nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
3074 	nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
3075 	nstat->tx_fifo_errors = hwstat->tx_underruns;
3076 	/* Don't know about heartbeat or window errors... */
3077 
3078 	return nstat;
3079 }
3080 
3081 static int macb_get_regs_len(struct net_device *netdev)
3082 {
3083 	return MACB_GREGS_NBR * sizeof(u32);
3084 }
3085 
3086 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
3087 			  void *p)
3088 {
3089 	struct macb *bp = netdev_priv(dev);
3090 	unsigned int tail, head;
3091 	u32 *regs_buff = p;
3092 
3093 	regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
3094 			| MACB_GREGS_VERSION;
3095 
3096 	tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail);
3097 	head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head);
3098 
3099 	regs_buff[0]  = macb_readl(bp, NCR);
3100 	regs_buff[1]  = macb_or_gem_readl(bp, NCFGR);
3101 	regs_buff[2]  = macb_readl(bp, NSR);
3102 	regs_buff[3]  = macb_readl(bp, TSR);
3103 	regs_buff[4]  = macb_readl(bp, RBQP);
3104 	regs_buff[5]  = macb_readl(bp, TBQP);
3105 	regs_buff[6]  = macb_readl(bp, RSR);
3106 	regs_buff[7]  = macb_readl(bp, IMR);
3107 
3108 	regs_buff[8]  = tail;
3109 	regs_buff[9]  = head;
3110 	regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
3111 	regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
3112 
3113 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
3114 		regs_buff[12] = macb_or_gem_readl(bp, USRIO);
3115 	if (macb_is_gem(bp))
3116 		regs_buff[13] = gem_readl(bp, DMACFG);
3117 }
3118 
3119 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3120 {
3121 	struct macb *bp = netdev_priv(netdev);
3122 
3123 	if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) {
3124 		phylink_ethtool_get_wol(bp->phylink, wol);
3125 		wol->supported |= WAKE_MAGIC;
3126 
3127 		if (bp->wol & MACB_WOL_ENABLED)
3128 			wol->wolopts |= WAKE_MAGIC;
3129 	}
3130 }
3131 
3132 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3133 {
3134 	struct macb *bp = netdev_priv(netdev);
3135 	int ret;
3136 
3137 	/* Pass the order to phylink layer */
3138 	ret = phylink_ethtool_set_wol(bp->phylink, wol);
3139 	/* Don't manage WoL on MAC if handled by the PHY
3140 	 * or if there's a failure in talking to the PHY
3141 	 */
3142 	if (!ret || ret != -EOPNOTSUPP)
3143 		return ret;
3144 
3145 	if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) ||
3146 	    (wol->wolopts & ~WAKE_MAGIC))
3147 		return -EOPNOTSUPP;
3148 
3149 	if (wol->wolopts & WAKE_MAGIC)
3150 		bp->wol |= MACB_WOL_ENABLED;
3151 	else
3152 		bp->wol &= ~MACB_WOL_ENABLED;
3153 
3154 	device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED);
3155 
3156 	return 0;
3157 }
3158 
3159 static int macb_get_link_ksettings(struct net_device *netdev,
3160 				   struct ethtool_link_ksettings *kset)
3161 {
3162 	struct macb *bp = netdev_priv(netdev);
3163 
3164 	return phylink_ethtool_ksettings_get(bp->phylink, kset);
3165 }
3166 
3167 static int macb_set_link_ksettings(struct net_device *netdev,
3168 				   const struct ethtool_link_ksettings *kset)
3169 {
3170 	struct macb *bp = netdev_priv(netdev);
3171 
3172 	return phylink_ethtool_ksettings_set(bp->phylink, kset);
3173 }
3174 
3175 static void macb_get_ringparam(struct net_device *netdev,
3176 			       struct ethtool_ringparam *ring,
3177 			       struct kernel_ethtool_ringparam *kernel_ring,
3178 			       struct netlink_ext_ack *extack)
3179 {
3180 	struct macb *bp = netdev_priv(netdev);
3181 
3182 	ring->rx_max_pending = MAX_RX_RING_SIZE;
3183 	ring->tx_max_pending = MAX_TX_RING_SIZE;
3184 
3185 	ring->rx_pending = bp->rx_ring_size;
3186 	ring->tx_pending = bp->tx_ring_size;
3187 }
3188 
3189 static int macb_set_ringparam(struct net_device *netdev,
3190 			      struct ethtool_ringparam *ring,
3191 			      struct kernel_ethtool_ringparam *kernel_ring,
3192 			      struct netlink_ext_ack *extack)
3193 {
3194 	struct macb *bp = netdev_priv(netdev);
3195 	u32 new_rx_size, new_tx_size;
3196 	unsigned int reset = 0;
3197 
3198 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
3199 		return -EINVAL;
3200 
3201 	new_rx_size = clamp_t(u32, ring->rx_pending,
3202 			      MIN_RX_RING_SIZE, MAX_RX_RING_SIZE);
3203 	new_rx_size = roundup_pow_of_two(new_rx_size);
3204 
3205 	new_tx_size = clamp_t(u32, ring->tx_pending,
3206 			      MIN_TX_RING_SIZE, MAX_TX_RING_SIZE);
3207 	new_tx_size = roundup_pow_of_two(new_tx_size);
3208 
3209 	if ((new_tx_size == bp->tx_ring_size) &&
3210 	    (new_rx_size == bp->rx_ring_size)) {
3211 		/* nothing to do */
3212 		return 0;
3213 	}
3214 
3215 	if (netif_running(bp->dev)) {
3216 		reset = 1;
3217 		macb_close(bp->dev);
3218 	}
3219 
3220 	bp->rx_ring_size = new_rx_size;
3221 	bp->tx_ring_size = new_tx_size;
3222 
3223 	if (reset)
3224 		macb_open(bp->dev);
3225 
3226 	return 0;
3227 }
3228 
3229 #ifdef CONFIG_MACB_USE_HWSTAMP
3230 static unsigned int gem_get_tsu_rate(struct macb *bp)
3231 {
3232 	struct clk *tsu_clk;
3233 	unsigned int tsu_rate;
3234 
3235 	tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk");
3236 	if (!IS_ERR(tsu_clk))
3237 		tsu_rate = clk_get_rate(tsu_clk);
3238 	/* try pclk instead */
3239 	else if (!IS_ERR(bp->pclk)) {
3240 		tsu_clk = bp->pclk;
3241 		tsu_rate = clk_get_rate(tsu_clk);
3242 	} else
3243 		return -ENOTSUPP;
3244 	return tsu_rate;
3245 }
3246 
3247 static s32 gem_get_ptp_max_adj(void)
3248 {
3249 	return 64000000;
3250 }
3251 
3252 static int gem_get_ts_info(struct net_device *dev,
3253 			   struct ethtool_ts_info *info)
3254 {
3255 	struct macb *bp = netdev_priv(dev);
3256 
3257 	if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) {
3258 		ethtool_op_get_ts_info(dev, info);
3259 		return 0;
3260 	}
3261 
3262 	info->so_timestamping =
3263 		SOF_TIMESTAMPING_TX_SOFTWARE |
3264 		SOF_TIMESTAMPING_RX_SOFTWARE |
3265 		SOF_TIMESTAMPING_SOFTWARE |
3266 		SOF_TIMESTAMPING_TX_HARDWARE |
3267 		SOF_TIMESTAMPING_RX_HARDWARE |
3268 		SOF_TIMESTAMPING_RAW_HARDWARE;
3269 	info->tx_types =
3270 		(1 << HWTSTAMP_TX_ONESTEP_SYNC) |
3271 		(1 << HWTSTAMP_TX_OFF) |
3272 		(1 << HWTSTAMP_TX_ON);
3273 	info->rx_filters =
3274 		(1 << HWTSTAMP_FILTER_NONE) |
3275 		(1 << HWTSTAMP_FILTER_ALL);
3276 
3277 	info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1;
3278 
3279 	return 0;
3280 }
3281 
3282 static struct macb_ptp_info gem_ptp_info = {
3283 	.ptp_init	 = gem_ptp_init,
3284 	.ptp_remove	 = gem_ptp_remove,
3285 	.get_ptp_max_adj = gem_get_ptp_max_adj,
3286 	.get_tsu_rate	 = gem_get_tsu_rate,
3287 	.get_ts_info	 = gem_get_ts_info,
3288 	.get_hwtst	 = gem_get_hwtst,
3289 	.set_hwtst	 = gem_set_hwtst,
3290 };
3291 #endif
3292 
3293 static int macb_get_ts_info(struct net_device *netdev,
3294 			    struct ethtool_ts_info *info)
3295 {
3296 	struct macb *bp = netdev_priv(netdev);
3297 
3298 	if (bp->ptp_info)
3299 		return bp->ptp_info->get_ts_info(netdev, info);
3300 
3301 	return ethtool_op_get_ts_info(netdev, info);
3302 }
3303 
3304 static void gem_enable_flow_filters(struct macb *bp, bool enable)
3305 {
3306 	struct net_device *netdev = bp->dev;
3307 	struct ethtool_rx_fs_item *item;
3308 	u32 t2_scr;
3309 	int num_t2_scr;
3310 
3311 	if (!(netdev->features & NETIF_F_NTUPLE))
3312 		return;
3313 
3314 	num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8));
3315 
3316 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3317 		struct ethtool_rx_flow_spec *fs = &item->fs;
3318 		struct ethtool_tcpip4_spec *tp4sp_m;
3319 
3320 		if (fs->location >= num_t2_scr)
3321 			continue;
3322 
3323 		t2_scr = gem_readl_n(bp, SCRT2, fs->location);
3324 
3325 		/* enable/disable screener regs for the flow entry */
3326 		t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr);
3327 
3328 		/* only enable fields with no masking */
3329 		tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3330 
3331 		if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF))
3332 			t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr);
3333 		else
3334 			t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr);
3335 
3336 		if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF))
3337 			t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr);
3338 		else
3339 			t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr);
3340 
3341 		if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)))
3342 			t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr);
3343 		else
3344 			t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr);
3345 
3346 		gem_writel_n(bp, SCRT2, fs->location, t2_scr);
3347 	}
3348 }
3349 
3350 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs)
3351 {
3352 	struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m;
3353 	uint16_t index = fs->location;
3354 	u32 w0, w1, t2_scr;
3355 	bool cmp_a = false;
3356 	bool cmp_b = false;
3357 	bool cmp_c = false;
3358 
3359 	if (!macb_is_gem(bp))
3360 		return;
3361 
3362 	tp4sp_v = &(fs->h_u.tcp_ip4_spec);
3363 	tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3364 
3365 	/* ignore field if any masking set */
3366 	if (tp4sp_m->ip4src == 0xFFFFFFFF) {
3367 		/* 1st compare reg - IP source address */
3368 		w0 = 0;
3369 		w1 = 0;
3370 		w0 = tp4sp_v->ip4src;
3371 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3372 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3373 		w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1);
3374 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0);
3375 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1);
3376 		cmp_a = true;
3377 	}
3378 
3379 	/* ignore field if any masking set */
3380 	if (tp4sp_m->ip4dst == 0xFFFFFFFF) {
3381 		/* 2nd compare reg - IP destination address */
3382 		w0 = 0;
3383 		w1 = 0;
3384 		w0 = tp4sp_v->ip4dst;
3385 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3386 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3387 		w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1);
3388 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0);
3389 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1);
3390 		cmp_b = true;
3391 	}
3392 
3393 	/* ignore both port fields if masking set in both */
3394 	if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) {
3395 		/* 3rd compare reg - source port, destination port */
3396 		w0 = 0;
3397 		w1 = 0;
3398 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1);
3399 		if (tp4sp_m->psrc == tp4sp_m->pdst) {
3400 			w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0);
3401 			w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3402 			w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3403 			w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3404 		} else {
3405 			/* only one port definition */
3406 			w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */
3407 			w0 = GEM_BFINS(T2MASK, 0xFFFF, w0);
3408 			if (tp4sp_m->psrc == 0xFFFF) { /* src port */
3409 				w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0);
3410 				w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3411 			} else { /* dst port */
3412 				w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3413 				w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1);
3414 			}
3415 		}
3416 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0);
3417 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1);
3418 		cmp_c = true;
3419 	}
3420 
3421 	t2_scr = 0;
3422 	t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr);
3423 	t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr);
3424 	if (cmp_a)
3425 		t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr);
3426 	if (cmp_b)
3427 		t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr);
3428 	if (cmp_c)
3429 		t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr);
3430 	gem_writel_n(bp, SCRT2, index, t2_scr);
3431 }
3432 
3433 static int gem_add_flow_filter(struct net_device *netdev,
3434 		struct ethtool_rxnfc *cmd)
3435 {
3436 	struct macb *bp = netdev_priv(netdev);
3437 	struct ethtool_rx_flow_spec *fs = &cmd->fs;
3438 	struct ethtool_rx_fs_item *item, *newfs;
3439 	unsigned long flags;
3440 	int ret = -EINVAL;
3441 	bool added = false;
3442 
3443 	newfs = kmalloc(sizeof(*newfs), GFP_KERNEL);
3444 	if (newfs == NULL)
3445 		return -ENOMEM;
3446 	memcpy(&newfs->fs, fs, sizeof(newfs->fs));
3447 
3448 	netdev_dbg(netdev,
3449 			"Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3450 			fs->flow_type, (int)fs->ring_cookie, fs->location,
3451 			htonl(fs->h_u.tcp_ip4_spec.ip4src),
3452 			htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3453 			htons(fs->h_u.tcp_ip4_spec.psrc), htons(fs->h_u.tcp_ip4_spec.pdst));
3454 
3455 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3456 
3457 	/* find correct place to add in list */
3458 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3459 		if (item->fs.location > newfs->fs.location) {
3460 			list_add_tail(&newfs->list, &item->list);
3461 			added = true;
3462 			break;
3463 		} else if (item->fs.location == fs->location) {
3464 			netdev_err(netdev, "Rule not added: location %d not free!\n",
3465 					fs->location);
3466 			ret = -EBUSY;
3467 			goto err;
3468 		}
3469 	}
3470 	if (!added)
3471 		list_add_tail(&newfs->list, &bp->rx_fs_list.list);
3472 
3473 	gem_prog_cmp_regs(bp, fs);
3474 	bp->rx_fs_list.count++;
3475 	/* enable filtering if NTUPLE on */
3476 	gem_enable_flow_filters(bp, 1);
3477 
3478 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3479 	return 0;
3480 
3481 err:
3482 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3483 	kfree(newfs);
3484 	return ret;
3485 }
3486 
3487 static int gem_del_flow_filter(struct net_device *netdev,
3488 		struct ethtool_rxnfc *cmd)
3489 {
3490 	struct macb *bp = netdev_priv(netdev);
3491 	struct ethtool_rx_fs_item *item;
3492 	struct ethtool_rx_flow_spec *fs;
3493 	unsigned long flags;
3494 
3495 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3496 
3497 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3498 		if (item->fs.location == cmd->fs.location) {
3499 			/* disable screener regs for the flow entry */
3500 			fs = &(item->fs);
3501 			netdev_dbg(netdev,
3502 					"Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3503 					fs->flow_type, (int)fs->ring_cookie, fs->location,
3504 					htonl(fs->h_u.tcp_ip4_spec.ip4src),
3505 					htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3506 					htons(fs->h_u.tcp_ip4_spec.psrc),
3507 					htons(fs->h_u.tcp_ip4_spec.pdst));
3508 
3509 			gem_writel_n(bp, SCRT2, fs->location, 0);
3510 
3511 			list_del(&item->list);
3512 			bp->rx_fs_list.count--;
3513 			spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3514 			kfree(item);
3515 			return 0;
3516 		}
3517 	}
3518 
3519 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3520 	return -EINVAL;
3521 }
3522 
3523 static int gem_get_flow_entry(struct net_device *netdev,
3524 		struct ethtool_rxnfc *cmd)
3525 {
3526 	struct macb *bp = netdev_priv(netdev);
3527 	struct ethtool_rx_fs_item *item;
3528 
3529 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3530 		if (item->fs.location == cmd->fs.location) {
3531 			memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs));
3532 			return 0;
3533 		}
3534 	}
3535 	return -EINVAL;
3536 }
3537 
3538 static int gem_get_all_flow_entries(struct net_device *netdev,
3539 		struct ethtool_rxnfc *cmd, u32 *rule_locs)
3540 {
3541 	struct macb *bp = netdev_priv(netdev);
3542 	struct ethtool_rx_fs_item *item;
3543 	uint32_t cnt = 0;
3544 
3545 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3546 		if (cnt == cmd->rule_cnt)
3547 			return -EMSGSIZE;
3548 		rule_locs[cnt] = item->fs.location;
3549 		cnt++;
3550 	}
3551 	cmd->data = bp->max_tuples;
3552 	cmd->rule_cnt = cnt;
3553 
3554 	return 0;
3555 }
3556 
3557 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3558 		u32 *rule_locs)
3559 {
3560 	struct macb *bp = netdev_priv(netdev);
3561 	int ret = 0;
3562 
3563 	switch (cmd->cmd) {
3564 	case ETHTOOL_GRXRINGS:
3565 		cmd->data = bp->num_queues;
3566 		break;
3567 	case ETHTOOL_GRXCLSRLCNT:
3568 		cmd->rule_cnt = bp->rx_fs_list.count;
3569 		break;
3570 	case ETHTOOL_GRXCLSRULE:
3571 		ret = gem_get_flow_entry(netdev, cmd);
3572 		break;
3573 	case ETHTOOL_GRXCLSRLALL:
3574 		ret = gem_get_all_flow_entries(netdev, cmd, rule_locs);
3575 		break;
3576 	default:
3577 		netdev_err(netdev,
3578 			  "Command parameter %d is not supported\n", cmd->cmd);
3579 		ret = -EOPNOTSUPP;
3580 	}
3581 
3582 	return ret;
3583 }
3584 
3585 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3586 {
3587 	struct macb *bp = netdev_priv(netdev);
3588 	int ret;
3589 
3590 	switch (cmd->cmd) {
3591 	case ETHTOOL_SRXCLSRLINS:
3592 		if ((cmd->fs.location >= bp->max_tuples)
3593 				|| (cmd->fs.ring_cookie >= bp->num_queues)) {
3594 			ret = -EINVAL;
3595 			break;
3596 		}
3597 		ret = gem_add_flow_filter(netdev, cmd);
3598 		break;
3599 	case ETHTOOL_SRXCLSRLDEL:
3600 		ret = gem_del_flow_filter(netdev, cmd);
3601 		break;
3602 	default:
3603 		netdev_err(netdev,
3604 			  "Command parameter %d is not supported\n", cmd->cmd);
3605 		ret = -EOPNOTSUPP;
3606 	}
3607 
3608 	return ret;
3609 }
3610 
3611 static const struct ethtool_ops macb_ethtool_ops = {
3612 	.get_regs_len		= macb_get_regs_len,
3613 	.get_regs		= macb_get_regs,
3614 	.get_link		= ethtool_op_get_link,
3615 	.get_ts_info		= ethtool_op_get_ts_info,
3616 	.get_wol		= macb_get_wol,
3617 	.set_wol		= macb_set_wol,
3618 	.get_link_ksettings     = macb_get_link_ksettings,
3619 	.set_link_ksettings     = macb_set_link_ksettings,
3620 	.get_ringparam		= macb_get_ringparam,
3621 	.set_ringparam		= macb_set_ringparam,
3622 };
3623 
3624 static const struct ethtool_ops gem_ethtool_ops = {
3625 	.get_regs_len		= macb_get_regs_len,
3626 	.get_regs		= macb_get_regs,
3627 	.get_wol		= macb_get_wol,
3628 	.set_wol		= macb_set_wol,
3629 	.get_link		= ethtool_op_get_link,
3630 	.get_ts_info		= macb_get_ts_info,
3631 	.get_ethtool_stats	= gem_get_ethtool_stats,
3632 	.get_strings		= gem_get_ethtool_strings,
3633 	.get_sset_count		= gem_get_sset_count,
3634 	.get_link_ksettings     = macb_get_link_ksettings,
3635 	.set_link_ksettings     = macb_set_link_ksettings,
3636 	.get_ringparam		= macb_get_ringparam,
3637 	.set_ringparam		= macb_set_ringparam,
3638 	.get_rxnfc			= gem_get_rxnfc,
3639 	.set_rxnfc			= gem_set_rxnfc,
3640 };
3641 
3642 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3643 {
3644 	struct macb *bp = netdev_priv(dev);
3645 
3646 	if (!netif_running(dev))
3647 		return -EINVAL;
3648 
3649 	if (bp->ptp_info) {
3650 		switch (cmd) {
3651 		case SIOCSHWTSTAMP:
3652 			return bp->ptp_info->set_hwtst(dev, rq, cmd);
3653 		case SIOCGHWTSTAMP:
3654 			return bp->ptp_info->get_hwtst(dev, rq);
3655 		}
3656 	}
3657 
3658 	return phylink_mii_ioctl(bp->phylink, rq, cmd);
3659 }
3660 
3661 static inline void macb_set_txcsum_feature(struct macb *bp,
3662 					   netdev_features_t features)
3663 {
3664 	u32 val;
3665 
3666 	if (!macb_is_gem(bp))
3667 		return;
3668 
3669 	val = gem_readl(bp, DMACFG);
3670 	if (features & NETIF_F_HW_CSUM)
3671 		val |= GEM_BIT(TXCOEN);
3672 	else
3673 		val &= ~GEM_BIT(TXCOEN);
3674 
3675 	gem_writel(bp, DMACFG, val);
3676 }
3677 
3678 static inline void macb_set_rxcsum_feature(struct macb *bp,
3679 					   netdev_features_t features)
3680 {
3681 	struct net_device *netdev = bp->dev;
3682 	u32 val;
3683 
3684 	if (!macb_is_gem(bp))
3685 		return;
3686 
3687 	val = gem_readl(bp, NCFGR);
3688 	if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC))
3689 		val |= GEM_BIT(RXCOEN);
3690 	else
3691 		val &= ~GEM_BIT(RXCOEN);
3692 
3693 	gem_writel(bp, NCFGR, val);
3694 }
3695 
3696 static inline void macb_set_rxflow_feature(struct macb *bp,
3697 					   netdev_features_t features)
3698 {
3699 	if (!macb_is_gem(bp))
3700 		return;
3701 
3702 	gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE));
3703 }
3704 
3705 static int macb_set_features(struct net_device *netdev,
3706 			     netdev_features_t features)
3707 {
3708 	struct macb *bp = netdev_priv(netdev);
3709 	netdev_features_t changed = features ^ netdev->features;
3710 
3711 	/* TX checksum offload */
3712 	if (changed & NETIF_F_HW_CSUM)
3713 		macb_set_txcsum_feature(bp, features);
3714 
3715 	/* RX checksum offload */
3716 	if (changed & NETIF_F_RXCSUM)
3717 		macb_set_rxcsum_feature(bp, features);
3718 
3719 	/* RX Flow Filters */
3720 	if (changed & NETIF_F_NTUPLE)
3721 		macb_set_rxflow_feature(bp, features);
3722 
3723 	return 0;
3724 }
3725 
3726 static void macb_restore_features(struct macb *bp)
3727 {
3728 	struct net_device *netdev = bp->dev;
3729 	netdev_features_t features = netdev->features;
3730 	struct ethtool_rx_fs_item *item;
3731 
3732 	/* TX checksum offload */
3733 	macb_set_txcsum_feature(bp, features);
3734 
3735 	/* RX checksum offload */
3736 	macb_set_rxcsum_feature(bp, features);
3737 
3738 	/* RX Flow Filters */
3739 	list_for_each_entry(item, &bp->rx_fs_list.list, list)
3740 		gem_prog_cmp_regs(bp, &item->fs);
3741 
3742 	macb_set_rxflow_feature(bp, features);
3743 }
3744 
3745 static const struct net_device_ops macb_netdev_ops = {
3746 	.ndo_open		= macb_open,
3747 	.ndo_stop		= macb_close,
3748 	.ndo_start_xmit		= macb_start_xmit,
3749 	.ndo_set_rx_mode	= macb_set_rx_mode,
3750 	.ndo_get_stats		= macb_get_stats,
3751 	.ndo_eth_ioctl		= macb_ioctl,
3752 	.ndo_validate_addr	= eth_validate_addr,
3753 	.ndo_change_mtu		= macb_change_mtu,
3754 	.ndo_set_mac_address	= eth_mac_addr,
3755 #ifdef CONFIG_NET_POLL_CONTROLLER
3756 	.ndo_poll_controller	= macb_poll_controller,
3757 #endif
3758 	.ndo_set_features	= macb_set_features,
3759 	.ndo_features_check	= macb_features_check,
3760 };
3761 
3762 /* Configure peripheral capabilities according to device tree
3763  * and integration options used
3764  */
3765 static void macb_configure_caps(struct macb *bp,
3766 				const struct macb_config *dt_conf)
3767 {
3768 	u32 dcfg;
3769 
3770 	if (dt_conf)
3771 		bp->caps = dt_conf->caps;
3772 
3773 	if (hw_is_gem(bp->regs, bp->native_io)) {
3774 		bp->caps |= MACB_CAPS_MACB_IS_GEM;
3775 
3776 		dcfg = gem_readl(bp, DCFG1);
3777 		if (GEM_BFEXT(IRQCOR, dcfg) == 0)
3778 			bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
3779 		if (GEM_BFEXT(NO_PCS, dcfg) == 0)
3780 			bp->caps |= MACB_CAPS_PCS;
3781 		dcfg = gem_readl(bp, DCFG12);
3782 		if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1)
3783 			bp->caps |= MACB_CAPS_HIGH_SPEED;
3784 		dcfg = gem_readl(bp, DCFG2);
3785 		if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
3786 			bp->caps |= MACB_CAPS_FIFO_MODE;
3787 #ifdef CONFIG_MACB_USE_HWSTAMP
3788 		if (gem_has_ptp(bp)) {
3789 			if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5)))
3790 				dev_err(&bp->pdev->dev,
3791 					"GEM doesn't support hardware ptp.\n");
3792 			else {
3793 				bp->hw_dma_cap |= HW_DMA_CAP_PTP;
3794 				bp->ptp_info = &gem_ptp_info;
3795 			}
3796 		}
3797 #endif
3798 	}
3799 
3800 	dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
3801 }
3802 
3803 static void macb_probe_queues(void __iomem *mem,
3804 			      bool native_io,
3805 			      unsigned int *queue_mask,
3806 			      unsigned int *num_queues)
3807 {
3808 	*queue_mask = 0x1;
3809 	*num_queues = 1;
3810 
3811 	/* is it macb or gem ?
3812 	 *
3813 	 * We need to read directly from the hardware here because
3814 	 * we are early in the probe process and don't have the
3815 	 * MACB_CAPS_MACB_IS_GEM flag positioned
3816 	 */
3817 	if (!hw_is_gem(mem, native_io))
3818 		return;
3819 
3820 	/* bit 0 is never set but queue 0 always exists */
3821 	*queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff;
3822 	*num_queues = hweight32(*queue_mask);
3823 }
3824 
3825 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk,
3826 			      struct clk *rx_clk, struct clk *tsu_clk)
3827 {
3828 	struct clk_bulk_data clks[] = {
3829 		{ .clk = tsu_clk, },
3830 		{ .clk = rx_clk, },
3831 		{ .clk = pclk, },
3832 		{ .clk = hclk, },
3833 		{ .clk = tx_clk },
3834 	};
3835 
3836 	clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks);
3837 }
3838 
3839 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
3840 			 struct clk **hclk, struct clk **tx_clk,
3841 			 struct clk **rx_clk, struct clk **tsu_clk)
3842 {
3843 	struct macb_platform_data *pdata;
3844 	int err;
3845 
3846 	pdata = dev_get_platdata(&pdev->dev);
3847 	if (pdata) {
3848 		*pclk = pdata->pclk;
3849 		*hclk = pdata->hclk;
3850 	} else {
3851 		*pclk = devm_clk_get(&pdev->dev, "pclk");
3852 		*hclk = devm_clk_get(&pdev->dev, "hclk");
3853 	}
3854 
3855 	if (IS_ERR_OR_NULL(*pclk))
3856 		return dev_err_probe(&pdev->dev,
3857 				     IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV,
3858 				     "failed to get pclk\n");
3859 
3860 	if (IS_ERR_OR_NULL(*hclk))
3861 		return dev_err_probe(&pdev->dev,
3862 				     IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV,
3863 				     "failed to get hclk\n");
3864 
3865 	*tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk");
3866 	if (IS_ERR(*tx_clk))
3867 		return PTR_ERR(*tx_clk);
3868 
3869 	*rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk");
3870 	if (IS_ERR(*rx_clk))
3871 		return PTR_ERR(*rx_clk);
3872 
3873 	*tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk");
3874 	if (IS_ERR(*tsu_clk))
3875 		return PTR_ERR(*tsu_clk);
3876 
3877 	err = clk_prepare_enable(*pclk);
3878 	if (err) {
3879 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
3880 		return err;
3881 	}
3882 
3883 	err = clk_prepare_enable(*hclk);
3884 	if (err) {
3885 		dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err);
3886 		goto err_disable_pclk;
3887 	}
3888 
3889 	err = clk_prepare_enable(*tx_clk);
3890 	if (err) {
3891 		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
3892 		goto err_disable_hclk;
3893 	}
3894 
3895 	err = clk_prepare_enable(*rx_clk);
3896 	if (err) {
3897 		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
3898 		goto err_disable_txclk;
3899 	}
3900 
3901 	err = clk_prepare_enable(*tsu_clk);
3902 	if (err) {
3903 		dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err);
3904 		goto err_disable_rxclk;
3905 	}
3906 
3907 	return 0;
3908 
3909 err_disable_rxclk:
3910 	clk_disable_unprepare(*rx_clk);
3911 
3912 err_disable_txclk:
3913 	clk_disable_unprepare(*tx_clk);
3914 
3915 err_disable_hclk:
3916 	clk_disable_unprepare(*hclk);
3917 
3918 err_disable_pclk:
3919 	clk_disable_unprepare(*pclk);
3920 
3921 	return err;
3922 }
3923 
3924 static int macb_init(struct platform_device *pdev)
3925 {
3926 	struct net_device *dev = platform_get_drvdata(pdev);
3927 	unsigned int hw_q, q;
3928 	struct macb *bp = netdev_priv(dev);
3929 	struct macb_queue *queue;
3930 	int err;
3931 	u32 val, reg;
3932 
3933 	bp->tx_ring_size = DEFAULT_TX_RING_SIZE;
3934 	bp->rx_ring_size = DEFAULT_RX_RING_SIZE;
3935 
3936 	/* set the queue register mapping once for all: queue0 has a special
3937 	 * register mapping but we don't want to test the queue index then
3938 	 * compute the corresponding register offset at run time.
3939 	 */
3940 	for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
3941 		if (!(bp->queue_mask & (1 << hw_q)))
3942 			continue;
3943 
3944 		queue = &bp->queues[q];
3945 		queue->bp = bp;
3946 		spin_lock_init(&queue->tx_ptr_lock);
3947 		netif_napi_add(dev, &queue->napi_rx, macb_rx_poll, NAPI_POLL_WEIGHT);
3948 		netif_napi_add(dev, &queue->napi_tx, macb_tx_poll, NAPI_POLL_WEIGHT);
3949 		if (hw_q) {
3950 			queue->ISR  = GEM_ISR(hw_q - 1);
3951 			queue->IER  = GEM_IER(hw_q - 1);
3952 			queue->IDR  = GEM_IDR(hw_q - 1);
3953 			queue->IMR  = GEM_IMR(hw_q - 1);
3954 			queue->TBQP = GEM_TBQP(hw_q - 1);
3955 			queue->RBQP = GEM_RBQP(hw_q - 1);
3956 			queue->RBQS = GEM_RBQS(hw_q - 1);
3957 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
3958 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
3959 				queue->TBQPH = GEM_TBQPH(hw_q - 1);
3960 				queue->RBQPH = GEM_RBQPH(hw_q - 1);
3961 			}
3962 #endif
3963 		} else {
3964 			/* queue0 uses legacy registers */
3965 			queue->ISR  = MACB_ISR;
3966 			queue->IER  = MACB_IER;
3967 			queue->IDR  = MACB_IDR;
3968 			queue->IMR  = MACB_IMR;
3969 			queue->TBQP = MACB_TBQP;
3970 			queue->RBQP = MACB_RBQP;
3971 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
3972 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
3973 				queue->TBQPH = MACB_TBQPH;
3974 				queue->RBQPH = MACB_RBQPH;
3975 			}
3976 #endif
3977 		}
3978 
3979 		/* get irq: here we use the linux queue index, not the hardware
3980 		 * queue index. the queue irq definitions in the device tree
3981 		 * must remove the optional gaps that could exist in the
3982 		 * hardware queue mask.
3983 		 */
3984 		queue->irq = platform_get_irq(pdev, q);
3985 		err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
3986 				       IRQF_SHARED, dev->name, queue);
3987 		if (err) {
3988 			dev_err(&pdev->dev,
3989 				"Unable to request IRQ %d (error %d)\n",
3990 				queue->irq, err);
3991 			return err;
3992 		}
3993 
3994 		INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
3995 		q++;
3996 	}
3997 
3998 	dev->netdev_ops = &macb_netdev_ops;
3999 
4000 	/* setup appropriated routines according to adapter type */
4001 	if (macb_is_gem(bp)) {
4002 		bp->max_tx_length = GEM_MAX_TX_LEN;
4003 		bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
4004 		bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
4005 		bp->macbgem_ops.mog_init_rings = gem_init_rings;
4006 		bp->macbgem_ops.mog_rx = gem_rx;
4007 		dev->ethtool_ops = &gem_ethtool_ops;
4008 	} else {
4009 		bp->max_tx_length = MACB_MAX_TX_LEN;
4010 		bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
4011 		bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
4012 		bp->macbgem_ops.mog_init_rings = macb_init_rings;
4013 		bp->macbgem_ops.mog_rx = macb_rx;
4014 		dev->ethtool_ops = &macb_ethtool_ops;
4015 	}
4016 
4017 	/* Set features */
4018 	dev->hw_features = NETIF_F_SG;
4019 
4020 	/* Check LSO capability */
4021 	if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6)))
4022 		dev->hw_features |= MACB_NETIF_LSO;
4023 
4024 	/* Checksum offload is only available on gem with packet buffer */
4025 	if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
4026 		dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
4027 	if (bp->caps & MACB_CAPS_SG_DISABLED)
4028 		dev->hw_features &= ~NETIF_F_SG;
4029 	dev->features = dev->hw_features;
4030 
4031 	/* Check RX Flow Filters support.
4032 	 * Max Rx flows set by availability of screeners & compare regs:
4033 	 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs
4034 	 */
4035 	reg = gem_readl(bp, DCFG8);
4036 	bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3),
4037 			GEM_BFEXT(T2SCR, reg));
4038 	INIT_LIST_HEAD(&bp->rx_fs_list.list);
4039 	if (bp->max_tuples > 0) {
4040 		/* also needs one ethtype match to check IPv4 */
4041 		if (GEM_BFEXT(SCR2ETH, reg) > 0) {
4042 			/* program this reg now */
4043 			reg = 0;
4044 			reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg);
4045 			gem_writel_n(bp, ETHT, SCRT2_ETHT, reg);
4046 			/* Filtering is supported in hw but don't enable it in kernel now */
4047 			dev->hw_features |= NETIF_F_NTUPLE;
4048 			/* init Rx flow definitions */
4049 			bp->rx_fs_list.count = 0;
4050 			spin_lock_init(&bp->rx_fs_lock);
4051 		} else
4052 			bp->max_tuples = 0;
4053 	}
4054 
4055 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
4056 		val = 0;
4057 		if (phy_interface_mode_is_rgmii(bp->phy_interface))
4058 			val = bp->usrio->rgmii;
4059 		else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
4060 			 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4061 			val = bp->usrio->rmii;
4062 		else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4063 			val = bp->usrio->mii;
4064 
4065 		if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
4066 			val |= bp->usrio->refclk;
4067 
4068 		macb_or_gem_writel(bp, USRIO, val);
4069 	}
4070 
4071 	/* Set MII management clock divider */
4072 	val = macb_mdc_clk_div(bp);
4073 	val |= macb_dbw(bp);
4074 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
4075 		val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
4076 	macb_writel(bp, NCFGR, val);
4077 
4078 	return 0;
4079 }
4080 
4081 static const struct macb_usrio_config macb_default_usrio = {
4082 	.mii = MACB_BIT(MII),
4083 	.rmii = MACB_BIT(RMII),
4084 	.rgmii = GEM_BIT(RGMII),
4085 	.refclk = MACB_BIT(CLKEN),
4086 };
4087 
4088 #if defined(CONFIG_OF)
4089 /* 1518 rounded up */
4090 #define AT91ETHER_MAX_RBUFF_SZ	0x600
4091 /* max number of receive buffers */
4092 #define AT91ETHER_MAX_RX_DESCR	9
4093 
4094 static struct sifive_fu540_macb_mgmt *mgmt;
4095 
4096 static int at91ether_alloc_coherent(struct macb *lp)
4097 {
4098 	struct macb_queue *q = &lp->queues[0];
4099 
4100 	q->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
4101 					 (AT91ETHER_MAX_RX_DESCR *
4102 					  macb_dma_desc_get_size(lp)),
4103 					 &q->rx_ring_dma, GFP_KERNEL);
4104 	if (!q->rx_ring)
4105 		return -ENOMEM;
4106 
4107 	q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
4108 					    AT91ETHER_MAX_RX_DESCR *
4109 					    AT91ETHER_MAX_RBUFF_SZ,
4110 					    &q->rx_buffers_dma, GFP_KERNEL);
4111 	if (!q->rx_buffers) {
4112 		dma_free_coherent(&lp->pdev->dev,
4113 				  AT91ETHER_MAX_RX_DESCR *
4114 				  macb_dma_desc_get_size(lp),
4115 				  q->rx_ring, q->rx_ring_dma);
4116 		q->rx_ring = NULL;
4117 		return -ENOMEM;
4118 	}
4119 
4120 	return 0;
4121 }
4122 
4123 static void at91ether_free_coherent(struct macb *lp)
4124 {
4125 	struct macb_queue *q = &lp->queues[0];
4126 
4127 	if (q->rx_ring) {
4128 		dma_free_coherent(&lp->pdev->dev,
4129 				  AT91ETHER_MAX_RX_DESCR *
4130 				  macb_dma_desc_get_size(lp),
4131 				  q->rx_ring, q->rx_ring_dma);
4132 		q->rx_ring = NULL;
4133 	}
4134 
4135 	if (q->rx_buffers) {
4136 		dma_free_coherent(&lp->pdev->dev,
4137 				  AT91ETHER_MAX_RX_DESCR *
4138 				  AT91ETHER_MAX_RBUFF_SZ,
4139 				  q->rx_buffers, q->rx_buffers_dma);
4140 		q->rx_buffers = NULL;
4141 	}
4142 }
4143 
4144 /* Initialize and start the Receiver and Transmit subsystems */
4145 static int at91ether_start(struct macb *lp)
4146 {
4147 	struct macb_queue *q = &lp->queues[0];
4148 	struct macb_dma_desc *desc;
4149 	dma_addr_t addr;
4150 	u32 ctl;
4151 	int i, ret;
4152 
4153 	ret = at91ether_alloc_coherent(lp);
4154 	if (ret)
4155 		return ret;
4156 
4157 	addr = q->rx_buffers_dma;
4158 	for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
4159 		desc = macb_rx_desc(q, i);
4160 		macb_set_addr(lp, desc, addr);
4161 		desc->ctrl = 0;
4162 		addr += AT91ETHER_MAX_RBUFF_SZ;
4163 	}
4164 
4165 	/* Set the Wrap bit on the last descriptor */
4166 	desc->addr |= MACB_BIT(RX_WRAP);
4167 
4168 	/* Reset buffer index */
4169 	q->rx_tail = 0;
4170 
4171 	/* Program address of descriptor list in Rx Buffer Queue register */
4172 	macb_writel(lp, RBQP, q->rx_ring_dma);
4173 
4174 	/* Enable Receive and Transmit */
4175 	ctl = macb_readl(lp, NCR);
4176 	macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
4177 
4178 	/* Enable MAC interrupts */
4179 	macb_writel(lp, IER, MACB_BIT(RCOMP)	|
4180 			     MACB_BIT(RXUBR)	|
4181 			     MACB_BIT(ISR_TUND)	|
4182 			     MACB_BIT(ISR_RLE)	|
4183 			     MACB_BIT(TCOMP)	|
4184 			     MACB_BIT(ISR_ROVR)	|
4185 			     MACB_BIT(HRESP));
4186 
4187 	return 0;
4188 }
4189 
4190 static void at91ether_stop(struct macb *lp)
4191 {
4192 	u32 ctl;
4193 
4194 	/* Disable MAC interrupts */
4195 	macb_writel(lp, IDR, MACB_BIT(RCOMP)	|
4196 			     MACB_BIT(RXUBR)	|
4197 			     MACB_BIT(ISR_TUND)	|
4198 			     MACB_BIT(ISR_RLE)	|
4199 			     MACB_BIT(TCOMP)	|
4200 			     MACB_BIT(ISR_ROVR) |
4201 			     MACB_BIT(HRESP));
4202 
4203 	/* Disable Receiver and Transmitter */
4204 	ctl = macb_readl(lp, NCR);
4205 	macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
4206 
4207 	/* Free resources. */
4208 	at91ether_free_coherent(lp);
4209 }
4210 
4211 /* Open the ethernet interface */
4212 static int at91ether_open(struct net_device *dev)
4213 {
4214 	struct macb *lp = netdev_priv(dev);
4215 	u32 ctl;
4216 	int ret;
4217 
4218 	ret = pm_runtime_resume_and_get(&lp->pdev->dev);
4219 	if (ret < 0)
4220 		return ret;
4221 
4222 	/* Clear internal statistics */
4223 	ctl = macb_readl(lp, NCR);
4224 	macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
4225 
4226 	macb_set_hwaddr(lp);
4227 
4228 	ret = at91ether_start(lp);
4229 	if (ret)
4230 		goto pm_exit;
4231 
4232 	ret = macb_phylink_connect(lp);
4233 	if (ret)
4234 		goto stop;
4235 
4236 	netif_start_queue(dev);
4237 
4238 	return 0;
4239 
4240 stop:
4241 	at91ether_stop(lp);
4242 pm_exit:
4243 	pm_runtime_put_sync(&lp->pdev->dev);
4244 	return ret;
4245 }
4246 
4247 /* Close the interface */
4248 static int at91ether_close(struct net_device *dev)
4249 {
4250 	struct macb *lp = netdev_priv(dev);
4251 
4252 	netif_stop_queue(dev);
4253 
4254 	phylink_stop(lp->phylink);
4255 	phylink_disconnect_phy(lp->phylink);
4256 
4257 	at91ether_stop(lp);
4258 
4259 	return pm_runtime_put(&lp->pdev->dev);
4260 }
4261 
4262 /* Transmit packet */
4263 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb,
4264 					struct net_device *dev)
4265 {
4266 	struct macb *lp = netdev_priv(dev);
4267 
4268 	if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
4269 		int desc = 0;
4270 
4271 		netif_stop_queue(dev);
4272 
4273 		/* Store packet information (to free when Tx completed) */
4274 		lp->rm9200_txq[desc].skb = skb;
4275 		lp->rm9200_txq[desc].size = skb->len;
4276 		lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data,
4277 							      skb->len, DMA_TO_DEVICE);
4278 		if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) {
4279 			dev_kfree_skb_any(skb);
4280 			dev->stats.tx_dropped++;
4281 			netdev_err(dev, "%s: DMA mapping error\n", __func__);
4282 			return NETDEV_TX_OK;
4283 		}
4284 
4285 		/* Set address of the data in the Transmit Address register */
4286 		macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping);
4287 		/* Set length of the packet in the Transmit Control register */
4288 		macb_writel(lp, TCR, skb->len);
4289 
4290 	} else {
4291 		netdev_err(dev, "%s called, but device is busy!\n", __func__);
4292 		return NETDEV_TX_BUSY;
4293 	}
4294 
4295 	return NETDEV_TX_OK;
4296 }
4297 
4298 /* Extract received frame from buffer descriptors and sent to upper layers.
4299  * (Called from interrupt context)
4300  */
4301 static void at91ether_rx(struct net_device *dev)
4302 {
4303 	struct macb *lp = netdev_priv(dev);
4304 	struct macb_queue *q = &lp->queues[0];
4305 	struct macb_dma_desc *desc;
4306 	unsigned char *p_recv;
4307 	struct sk_buff *skb;
4308 	unsigned int pktlen;
4309 
4310 	desc = macb_rx_desc(q, q->rx_tail);
4311 	while (desc->addr & MACB_BIT(RX_USED)) {
4312 		p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
4313 		pktlen = MACB_BF(RX_FRMLEN, desc->ctrl);
4314 		skb = netdev_alloc_skb(dev, pktlen + 2);
4315 		if (skb) {
4316 			skb_reserve(skb, 2);
4317 			skb_put_data(skb, p_recv, pktlen);
4318 
4319 			skb->protocol = eth_type_trans(skb, dev);
4320 			dev->stats.rx_packets++;
4321 			dev->stats.rx_bytes += pktlen;
4322 			netif_rx(skb);
4323 		} else {
4324 			dev->stats.rx_dropped++;
4325 		}
4326 
4327 		if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH))
4328 			dev->stats.multicast++;
4329 
4330 		/* reset ownership bit */
4331 		desc->addr &= ~MACB_BIT(RX_USED);
4332 
4333 		/* wrap after last buffer */
4334 		if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
4335 			q->rx_tail = 0;
4336 		else
4337 			q->rx_tail++;
4338 
4339 		desc = macb_rx_desc(q, q->rx_tail);
4340 	}
4341 }
4342 
4343 /* MAC interrupt handler */
4344 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
4345 {
4346 	struct net_device *dev = dev_id;
4347 	struct macb *lp = netdev_priv(dev);
4348 	u32 intstatus, ctl;
4349 	unsigned int desc;
4350 
4351 	/* MAC Interrupt Status register indicates what interrupts are pending.
4352 	 * It is automatically cleared once read.
4353 	 */
4354 	intstatus = macb_readl(lp, ISR);
4355 
4356 	/* Receive complete */
4357 	if (intstatus & MACB_BIT(RCOMP))
4358 		at91ether_rx(dev);
4359 
4360 	/* Transmit complete */
4361 	if (intstatus & MACB_BIT(TCOMP)) {
4362 		/* The TCOM bit is set even if the transmission failed */
4363 		if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
4364 			dev->stats.tx_errors++;
4365 
4366 		desc = 0;
4367 		if (lp->rm9200_txq[desc].skb) {
4368 			dev_consume_skb_irq(lp->rm9200_txq[desc].skb);
4369 			lp->rm9200_txq[desc].skb = NULL;
4370 			dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping,
4371 					 lp->rm9200_txq[desc].size, DMA_TO_DEVICE);
4372 			dev->stats.tx_packets++;
4373 			dev->stats.tx_bytes += lp->rm9200_txq[desc].size;
4374 		}
4375 		netif_wake_queue(dev);
4376 	}
4377 
4378 	/* Work-around for EMAC Errata section 41.3.1 */
4379 	if (intstatus & MACB_BIT(RXUBR)) {
4380 		ctl = macb_readl(lp, NCR);
4381 		macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
4382 		wmb();
4383 		macb_writel(lp, NCR, ctl | MACB_BIT(RE));
4384 	}
4385 
4386 	if (intstatus & MACB_BIT(ISR_ROVR))
4387 		netdev_err(dev, "ROVR error\n");
4388 
4389 	return IRQ_HANDLED;
4390 }
4391 
4392 #ifdef CONFIG_NET_POLL_CONTROLLER
4393 static void at91ether_poll_controller(struct net_device *dev)
4394 {
4395 	unsigned long flags;
4396 
4397 	local_irq_save(flags);
4398 	at91ether_interrupt(dev->irq, dev);
4399 	local_irq_restore(flags);
4400 }
4401 #endif
4402 
4403 static const struct net_device_ops at91ether_netdev_ops = {
4404 	.ndo_open		= at91ether_open,
4405 	.ndo_stop		= at91ether_close,
4406 	.ndo_start_xmit		= at91ether_start_xmit,
4407 	.ndo_get_stats		= macb_get_stats,
4408 	.ndo_set_rx_mode	= macb_set_rx_mode,
4409 	.ndo_set_mac_address	= eth_mac_addr,
4410 	.ndo_eth_ioctl		= macb_ioctl,
4411 	.ndo_validate_addr	= eth_validate_addr,
4412 #ifdef CONFIG_NET_POLL_CONTROLLER
4413 	.ndo_poll_controller	= at91ether_poll_controller,
4414 #endif
4415 };
4416 
4417 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
4418 			      struct clk **hclk, struct clk **tx_clk,
4419 			      struct clk **rx_clk, struct clk **tsu_clk)
4420 {
4421 	int err;
4422 
4423 	*hclk = NULL;
4424 	*tx_clk = NULL;
4425 	*rx_clk = NULL;
4426 	*tsu_clk = NULL;
4427 
4428 	*pclk = devm_clk_get(&pdev->dev, "ether_clk");
4429 	if (IS_ERR(*pclk))
4430 		return PTR_ERR(*pclk);
4431 
4432 	err = clk_prepare_enable(*pclk);
4433 	if (err) {
4434 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4435 		return err;
4436 	}
4437 
4438 	return 0;
4439 }
4440 
4441 static int at91ether_init(struct platform_device *pdev)
4442 {
4443 	struct net_device *dev = platform_get_drvdata(pdev);
4444 	struct macb *bp = netdev_priv(dev);
4445 	int err;
4446 
4447 	bp->queues[0].bp = bp;
4448 
4449 	dev->netdev_ops = &at91ether_netdev_ops;
4450 	dev->ethtool_ops = &macb_ethtool_ops;
4451 
4452 	err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
4453 			       0, dev->name, dev);
4454 	if (err)
4455 		return err;
4456 
4457 	macb_writel(bp, NCR, 0);
4458 
4459 	macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG));
4460 
4461 	return 0;
4462 }
4463 
4464 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw,
4465 					       unsigned long parent_rate)
4466 {
4467 	return mgmt->rate;
4468 }
4469 
4470 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate,
4471 				     unsigned long *parent_rate)
4472 {
4473 	if (WARN_ON(rate < 2500000))
4474 		return 2500000;
4475 	else if (rate == 2500000)
4476 		return 2500000;
4477 	else if (WARN_ON(rate < 13750000))
4478 		return 2500000;
4479 	else if (WARN_ON(rate < 25000000))
4480 		return 25000000;
4481 	else if (rate == 25000000)
4482 		return 25000000;
4483 	else if (WARN_ON(rate < 75000000))
4484 		return 25000000;
4485 	else if (WARN_ON(rate < 125000000))
4486 		return 125000000;
4487 	else if (rate == 125000000)
4488 		return 125000000;
4489 
4490 	WARN_ON(rate > 125000000);
4491 
4492 	return 125000000;
4493 }
4494 
4495 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate,
4496 				  unsigned long parent_rate)
4497 {
4498 	rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate);
4499 	if (rate != 125000000)
4500 		iowrite32(1, mgmt->reg);
4501 	else
4502 		iowrite32(0, mgmt->reg);
4503 	mgmt->rate = rate;
4504 
4505 	return 0;
4506 }
4507 
4508 static const struct clk_ops fu540_c000_ops = {
4509 	.recalc_rate = fu540_macb_tx_recalc_rate,
4510 	.round_rate = fu540_macb_tx_round_rate,
4511 	.set_rate = fu540_macb_tx_set_rate,
4512 };
4513 
4514 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk,
4515 			       struct clk **hclk, struct clk **tx_clk,
4516 			       struct clk **rx_clk, struct clk **tsu_clk)
4517 {
4518 	struct clk_init_data init;
4519 	int err = 0;
4520 
4521 	err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk);
4522 	if (err)
4523 		return err;
4524 
4525 	mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL);
4526 	if (!mgmt) {
4527 		err = -ENOMEM;
4528 		goto err_disable_clks;
4529 	}
4530 
4531 	init.name = "sifive-gemgxl-mgmt";
4532 	init.ops = &fu540_c000_ops;
4533 	init.flags = 0;
4534 	init.num_parents = 0;
4535 
4536 	mgmt->rate = 0;
4537 	mgmt->hw.init = &init;
4538 
4539 	*tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw);
4540 	if (IS_ERR(*tx_clk)) {
4541 		err = PTR_ERR(*tx_clk);
4542 		goto err_disable_clks;
4543 	}
4544 
4545 	err = clk_prepare_enable(*tx_clk);
4546 	if (err) {
4547 		dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
4548 		*tx_clk = NULL;
4549 		goto err_disable_clks;
4550 	} else {
4551 		dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name);
4552 	}
4553 
4554 	return 0;
4555 
4556 err_disable_clks:
4557 	macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk);
4558 
4559 	return err;
4560 }
4561 
4562 static int fu540_c000_init(struct platform_device *pdev)
4563 {
4564 	mgmt->reg = devm_platform_ioremap_resource(pdev, 1);
4565 	if (IS_ERR(mgmt->reg))
4566 		return PTR_ERR(mgmt->reg);
4567 
4568 	return macb_init(pdev);
4569 }
4570 
4571 static const struct macb_usrio_config sama7g5_usrio = {
4572 	.mii = 0,
4573 	.rmii = 1,
4574 	.rgmii = 2,
4575 	.refclk = BIT(2),
4576 	.hdfctlen = BIT(6),
4577 };
4578 
4579 static const struct macb_config fu540_c000_config = {
4580 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4581 		MACB_CAPS_GEM_HAS_PTP,
4582 	.dma_burst_length = 16,
4583 	.clk_init = fu540_c000_clk_init,
4584 	.init = fu540_c000_init,
4585 	.jumbo_max_len = 10240,
4586 	.usrio = &macb_default_usrio,
4587 };
4588 
4589 static const struct macb_config at91sam9260_config = {
4590 	.caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4591 	.clk_init = macb_clk_init,
4592 	.init = macb_init,
4593 	.usrio = &macb_default_usrio,
4594 };
4595 
4596 static const struct macb_config sama5d3macb_config = {
4597 	.caps = MACB_CAPS_SG_DISABLED
4598 	      | MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4599 	.clk_init = macb_clk_init,
4600 	.init = macb_init,
4601 	.usrio = &macb_default_usrio,
4602 };
4603 
4604 static const struct macb_config pc302gem_config = {
4605 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
4606 	.dma_burst_length = 16,
4607 	.clk_init = macb_clk_init,
4608 	.init = macb_init,
4609 	.usrio = &macb_default_usrio,
4610 };
4611 
4612 static const struct macb_config sama5d2_config = {
4613 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4614 	.dma_burst_length = 16,
4615 	.clk_init = macb_clk_init,
4616 	.init = macb_init,
4617 	.usrio = &macb_default_usrio,
4618 };
4619 
4620 static const struct macb_config sama5d29_config = {
4621 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP,
4622 	.dma_burst_length = 16,
4623 	.clk_init = macb_clk_init,
4624 	.init = macb_init,
4625 	.usrio = &macb_default_usrio,
4626 };
4627 
4628 static const struct macb_config sama5d3_config = {
4629 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE
4630 	      | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
4631 	.dma_burst_length = 16,
4632 	.clk_init = macb_clk_init,
4633 	.init = macb_init,
4634 	.jumbo_max_len = 10240,
4635 	.usrio = &macb_default_usrio,
4636 };
4637 
4638 static const struct macb_config sama5d4_config = {
4639 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4640 	.dma_burst_length = 4,
4641 	.clk_init = macb_clk_init,
4642 	.init = macb_init,
4643 	.usrio = &macb_default_usrio,
4644 };
4645 
4646 static const struct macb_config emac_config = {
4647 	.caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC,
4648 	.clk_init = at91ether_clk_init,
4649 	.init = at91ether_init,
4650 	.usrio = &macb_default_usrio,
4651 };
4652 
4653 static const struct macb_config np4_config = {
4654 	.caps = MACB_CAPS_USRIO_DISABLED,
4655 	.clk_init = macb_clk_init,
4656 	.init = macb_init,
4657 	.usrio = &macb_default_usrio,
4658 };
4659 
4660 static int zynqmp_init(struct platform_device *pdev)
4661 {
4662 	struct net_device *dev = platform_get_drvdata(pdev);
4663 	struct macb *bp = netdev_priv(dev);
4664 	int ret;
4665 
4666 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4667 		/* Ensure PS-GTR PHY device used in SGMII mode is ready */
4668 		bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL);
4669 
4670 		if (IS_ERR(bp->sgmii_phy)) {
4671 			ret = PTR_ERR(bp->sgmii_phy);
4672 			dev_err_probe(&pdev->dev, ret,
4673 				      "failed to get PS-GTR PHY\n");
4674 			return ret;
4675 		}
4676 
4677 		ret = phy_init(bp->sgmii_phy);
4678 		if (ret) {
4679 			dev_err(&pdev->dev, "failed to init PS-GTR PHY: %d\n",
4680 				ret);
4681 			return ret;
4682 		}
4683 	}
4684 
4685 	/* Fully reset GEM controller at hardware level using zynqmp-reset driver,
4686 	 * if mapped in device tree.
4687 	 */
4688 	ret = device_reset_optional(&pdev->dev);
4689 	if (ret) {
4690 		dev_err_probe(&pdev->dev, ret, "failed to reset controller");
4691 		phy_exit(bp->sgmii_phy);
4692 		return ret;
4693 	}
4694 
4695 	ret = macb_init(pdev);
4696 	if (ret)
4697 		phy_exit(bp->sgmii_phy);
4698 
4699 	return ret;
4700 }
4701 
4702 static const struct macb_config zynqmp_config = {
4703 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4704 			MACB_CAPS_JUMBO |
4705 			MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH,
4706 	.dma_burst_length = 16,
4707 	.clk_init = macb_clk_init,
4708 	.init = zynqmp_init,
4709 	.jumbo_max_len = 10240,
4710 	.usrio = &macb_default_usrio,
4711 };
4712 
4713 static const struct macb_config zynq_config = {
4714 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF |
4715 		MACB_CAPS_NEEDS_RSTONUBR,
4716 	.dma_burst_length = 16,
4717 	.clk_init = macb_clk_init,
4718 	.init = macb_init,
4719 	.usrio = &macb_default_usrio,
4720 };
4721 
4722 static const struct macb_config sama7g5_gem_config = {
4723 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG |
4724 		MACB_CAPS_MIIONRGMII,
4725 	.dma_burst_length = 16,
4726 	.clk_init = macb_clk_init,
4727 	.init = macb_init,
4728 	.usrio = &sama7g5_usrio,
4729 };
4730 
4731 static const struct macb_config sama7g5_emac_config = {
4732 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII |
4733 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII,
4734 	.dma_burst_length = 16,
4735 	.clk_init = macb_clk_init,
4736 	.init = macb_init,
4737 	.usrio = &sama7g5_usrio,
4738 };
4739 
4740 static const struct of_device_id macb_dt_ids[] = {
4741 	{ .compatible = "cdns,at32ap7000-macb" },
4742 	{ .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
4743 	{ .compatible = "cdns,macb" },
4744 	{ .compatible = "cdns,np4-macb", .data = &np4_config },
4745 	{ .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
4746 	{ .compatible = "cdns,gem", .data = &pc302gem_config },
4747 	{ .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config },
4748 	{ .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
4749 	{ .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config },
4750 	{ .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
4751 	{ .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config },
4752 	{ .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
4753 	{ .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
4754 	{ .compatible = "cdns,emac", .data = &emac_config },
4755 	{ .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config},
4756 	{ .compatible = "cdns,zynq-gem", .data = &zynq_config },
4757 	{ .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config },
4758 	{ .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config },
4759 	{ .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config },
4760 	{ /* sentinel */ }
4761 };
4762 MODULE_DEVICE_TABLE(of, macb_dt_ids);
4763 #endif /* CONFIG_OF */
4764 
4765 static const struct macb_config default_gem_config = {
4766 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4767 			MACB_CAPS_JUMBO |
4768 			MACB_CAPS_GEM_HAS_PTP,
4769 	.dma_burst_length = 16,
4770 	.clk_init = macb_clk_init,
4771 	.init = macb_init,
4772 	.usrio = &macb_default_usrio,
4773 	.jumbo_max_len = 10240,
4774 };
4775 
4776 static int macb_probe(struct platform_device *pdev)
4777 {
4778 	const struct macb_config *macb_config = &default_gem_config;
4779 	int (*clk_init)(struct platform_device *, struct clk **,
4780 			struct clk **, struct clk **,  struct clk **,
4781 			struct clk **) = macb_config->clk_init;
4782 	int (*init)(struct platform_device *) = macb_config->init;
4783 	struct device_node *np = pdev->dev.of_node;
4784 	struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
4785 	struct clk *tsu_clk = NULL;
4786 	unsigned int queue_mask, num_queues;
4787 	bool native_io;
4788 	phy_interface_t interface;
4789 	struct net_device *dev;
4790 	struct resource *regs;
4791 	void __iomem *mem;
4792 	struct macb *bp;
4793 	int err, val;
4794 
4795 	mem = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
4796 	if (IS_ERR(mem))
4797 		return PTR_ERR(mem);
4798 
4799 	if (np) {
4800 		const struct of_device_id *match;
4801 
4802 		match = of_match_node(macb_dt_ids, np);
4803 		if (match && match->data) {
4804 			macb_config = match->data;
4805 			clk_init = macb_config->clk_init;
4806 			init = macb_config->init;
4807 		}
4808 	}
4809 
4810 	err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk);
4811 	if (err)
4812 		return err;
4813 
4814 	pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT);
4815 	pm_runtime_use_autosuspend(&pdev->dev);
4816 	pm_runtime_get_noresume(&pdev->dev);
4817 	pm_runtime_set_active(&pdev->dev);
4818 	pm_runtime_enable(&pdev->dev);
4819 	native_io = hw_is_native_io(mem);
4820 
4821 	macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
4822 	dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
4823 	if (!dev) {
4824 		err = -ENOMEM;
4825 		goto err_disable_clocks;
4826 	}
4827 
4828 	dev->base_addr = regs->start;
4829 
4830 	SET_NETDEV_DEV(dev, &pdev->dev);
4831 
4832 	bp = netdev_priv(dev);
4833 	bp->pdev = pdev;
4834 	bp->dev = dev;
4835 	bp->regs = mem;
4836 	bp->native_io = native_io;
4837 	if (native_io) {
4838 		bp->macb_reg_readl = hw_readl_native;
4839 		bp->macb_reg_writel = hw_writel_native;
4840 	} else {
4841 		bp->macb_reg_readl = hw_readl;
4842 		bp->macb_reg_writel = hw_writel;
4843 	}
4844 	bp->num_queues = num_queues;
4845 	bp->queue_mask = queue_mask;
4846 	if (macb_config)
4847 		bp->dma_burst_length = macb_config->dma_burst_length;
4848 	bp->pclk = pclk;
4849 	bp->hclk = hclk;
4850 	bp->tx_clk = tx_clk;
4851 	bp->rx_clk = rx_clk;
4852 	bp->tsu_clk = tsu_clk;
4853 	if (macb_config)
4854 		bp->jumbo_max_len = macb_config->jumbo_max_len;
4855 
4856 	bp->wol = 0;
4857 	if (of_get_property(np, "magic-packet", NULL))
4858 		bp->wol |= MACB_WOL_HAS_MAGIC_PACKET;
4859 	device_set_wakeup_capable(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET);
4860 
4861 	bp->usrio = macb_config->usrio;
4862 
4863 	spin_lock_init(&bp->lock);
4864 
4865 	/* setup capabilities */
4866 	macb_configure_caps(bp, macb_config);
4867 
4868 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4869 	if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) {
4870 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
4871 		bp->hw_dma_cap |= HW_DMA_CAP_64B;
4872 	}
4873 #endif
4874 	platform_set_drvdata(pdev, dev);
4875 
4876 	dev->irq = platform_get_irq(pdev, 0);
4877 	if (dev->irq < 0) {
4878 		err = dev->irq;
4879 		goto err_out_free_netdev;
4880 	}
4881 
4882 	/* MTU range: 68 - 1500 or 10240 */
4883 	dev->min_mtu = GEM_MTU_MIN_SIZE;
4884 	if (bp->caps & MACB_CAPS_JUMBO)
4885 		dev->max_mtu = gem_readl(bp, JML) - ETH_HLEN - ETH_FCS_LEN;
4886 	else
4887 		dev->max_mtu = ETH_DATA_LEN;
4888 
4889 	if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) {
4890 		val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10));
4891 		if (val)
4892 			bp->rx_bd_rd_prefetch = (2 << (val - 1)) *
4893 						macb_dma_desc_get_size(bp);
4894 
4895 		val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10));
4896 		if (val)
4897 			bp->tx_bd_rd_prefetch = (2 << (val - 1)) *
4898 						macb_dma_desc_get_size(bp);
4899 	}
4900 
4901 	bp->rx_intr_mask = MACB_RX_INT_FLAGS;
4902 	if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR)
4903 		bp->rx_intr_mask |= MACB_BIT(RXUBR);
4904 
4905 	err = of_get_ethdev_address(np, bp->dev);
4906 	if (err == -EPROBE_DEFER)
4907 		goto err_out_free_netdev;
4908 	else if (err)
4909 		macb_get_hwaddr(bp);
4910 
4911 	err = of_get_phy_mode(np, &interface);
4912 	if (err)
4913 		/* not found in DT, MII by default */
4914 		bp->phy_interface = PHY_INTERFACE_MODE_MII;
4915 	else
4916 		bp->phy_interface = interface;
4917 
4918 	/* IP specific init */
4919 	err = init(pdev);
4920 	if (err)
4921 		goto err_out_free_netdev;
4922 
4923 	err = macb_mii_init(bp);
4924 	if (err)
4925 		goto err_out_phy_exit;
4926 
4927 	netif_carrier_off(dev);
4928 
4929 	err = register_netdev(dev);
4930 	if (err) {
4931 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
4932 		goto err_out_unregister_mdio;
4933 	}
4934 
4935 	tasklet_setup(&bp->hresp_err_tasklet, macb_hresp_error_task);
4936 
4937 	netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
4938 		    macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
4939 		    dev->base_addr, dev->irq, dev->dev_addr);
4940 
4941 	pm_runtime_mark_last_busy(&bp->pdev->dev);
4942 	pm_runtime_put_autosuspend(&bp->pdev->dev);
4943 
4944 	return 0;
4945 
4946 err_out_unregister_mdio:
4947 	mdiobus_unregister(bp->mii_bus);
4948 	mdiobus_free(bp->mii_bus);
4949 
4950 err_out_phy_exit:
4951 	phy_exit(bp->sgmii_phy);
4952 
4953 err_out_free_netdev:
4954 	free_netdev(dev);
4955 
4956 err_disable_clocks:
4957 	macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk);
4958 	pm_runtime_disable(&pdev->dev);
4959 	pm_runtime_set_suspended(&pdev->dev);
4960 	pm_runtime_dont_use_autosuspend(&pdev->dev);
4961 
4962 	return err;
4963 }
4964 
4965 static int macb_remove(struct platform_device *pdev)
4966 {
4967 	struct net_device *dev;
4968 	struct macb *bp;
4969 
4970 	dev = platform_get_drvdata(pdev);
4971 
4972 	if (dev) {
4973 		bp = netdev_priv(dev);
4974 		phy_exit(bp->sgmii_phy);
4975 		mdiobus_unregister(bp->mii_bus);
4976 		mdiobus_free(bp->mii_bus);
4977 
4978 		unregister_netdev(dev);
4979 		tasklet_kill(&bp->hresp_err_tasklet);
4980 		pm_runtime_disable(&pdev->dev);
4981 		pm_runtime_dont_use_autosuspend(&pdev->dev);
4982 		if (!pm_runtime_suspended(&pdev->dev)) {
4983 			macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk,
4984 					  bp->rx_clk, bp->tsu_clk);
4985 			pm_runtime_set_suspended(&pdev->dev);
4986 		}
4987 		phylink_destroy(bp->phylink);
4988 		free_netdev(dev);
4989 	}
4990 
4991 	return 0;
4992 }
4993 
4994 static int __maybe_unused macb_suspend(struct device *dev)
4995 {
4996 	struct net_device *netdev = dev_get_drvdata(dev);
4997 	struct macb *bp = netdev_priv(netdev);
4998 	struct macb_queue *queue;
4999 	unsigned long flags;
5000 	unsigned int q;
5001 	int err;
5002 
5003 	if (!netif_running(netdev))
5004 		return 0;
5005 
5006 	if (bp->wol & MACB_WOL_ENABLED) {
5007 		spin_lock_irqsave(&bp->lock, flags);
5008 		/* Flush all status bits */
5009 		macb_writel(bp, TSR, -1);
5010 		macb_writel(bp, RSR, -1);
5011 		for (q = 0, queue = bp->queues; q < bp->num_queues;
5012 		     ++q, ++queue) {
5013 			/* Disable all interrupts */
5014 			queue_writel(queue, IDR, -1);
5015 			queue_readl(queue, ISR);
5016 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5017 				queue_writel(queue, ISR, -1);
5018 		}
5019 		/* Change interrupt handler and
5020 		 * Enable WoL IRQ on queue 0
5021 		 */
5022 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5023 		if (macb_is_gem(bp)) {
5024 			err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt,
5025 					       IRQF_SHARED, netdev->name, bp->queues);
5026 			if (err) {
5027 				dev_err(dev,
5028 					"Unable to request IRQ %d (error %d)\n",
5029 					bp->queues[0].irq, err);
5030 				spin_unlock_irqrestore(&bp->lock, flags);
5031 				return err;
5032 			}
5033 			queue_writel(bp->queues, IER, GEM_BIT(WOL));
5034 			gem_writel(bp, WOL, MACB_BIT(MAG));
5035 		} else {
5036 			err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt,
5037 					       IRQF_SHARED, netdev->name, bp->queues);
5038 			if (err) {
5039 				dev_err(dev,
5040 					"Unable to request IRQ %d (error %d)\n",
5041 					bp->queues[0].irq, err);
5042 				spin_unlock_irqrestore(&bp->lock, flags);
5043 				return err;
5044 			}
5045 			queue_writel(bp->queues, IER, MACB_BIT(WOL));
5046 			macb_writel(bp, WOL, MACB_BIT(MAG));
5047 		}
5048 		spin_unlock_irqrestore(&bp->lock, flags);
5049 
5050 		enable_irq_wake(bp->queues[0].irq);
5051 	}
5052 
5053 	netif_device_detach(netdev);
5054 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5055 	     ++q, ++queue) {
5056 		napi_disable(&queue->napi_rx);
5057 		napi_disable(&queue->napi_tx);
5058 	}
5059 
5060 	if (!(bp->wol & MACB_WOL_ENABLED)) {
5061 		rtnl_lock();
5062 		phylink_stop(bp->phylink);
5063 		rtnl_unlock();
5064 		spin_lock_irqsave(&bp->lock, flags);
5065 		macb_reset_hw(bp);
5066 		spin_unlock_irqrestore(&bp->lock, flags);
5067 	}
5068 
5069 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5070 		bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO);
5071 
5072 	if (netdev->hw_features & NETIF_F_NTUPLE)
5073 		bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT);
5074 
5075 	if (bp->ptp_info)
5076 		bp->ptp_info->ptp_remove(netdev);
5077 	if (!device_may_wakeup(dev))
5078 		pm_runtime_force_suspend(dev);
5079 
5080 	return 0;
5081 }
5082 
5083 static int __maybe_unused macb_resume(struct device *dev)
5084 {
5085 	struct net_device *netdev = dev_get_drvdata(dev);
5086 	struct macb *bp = netdev_priv(netdev);
5087 	struct macb_queue *queue;
5088 	unsigned long flags;
5089 	unsigned int q;
5090 	int err;
5091 
5092 	if (!netif_running(netdev))
5093 		return 0;
5094 
5095 	if (!device_may_wakeup(dev))
5096 		pm_runtime_force_resume(dev);
5097 
5098 	if (bp->wol & MACB_WOL_ENABLED) {
5099 		spin_lock_irqsave(&bp->lock, flags);
5100 		/* Disable WoL */
5101 		if (macb_is_gem(bp)) {
5102 			queue_writel(bp->queues, IDR, GEM_BIT(WOL));
5103 			gem_writel(bp, WOL, 0);
5104 		} else {
5105 			queue_writel(bp->queues, IDR, MACB_BIT(WOL));
5106 			macb_writel(bp, WOL, 0);
5107 		}
5108 		/* Clear ISR on queue 0 */
5109 		queue_readl(bp->queues, ISR);
5110 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5111 			queue_writel(bp->queues, ISR, -1);
5112 		/* Replace interrupt handler on queue 0 */
5113 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5114 		err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt,
5115 				       IRQF_SHARED, netdev->name, bp->queues);
5116 		if (err) {
5117 			dev_err(dev,
5118 				"Unable to request IRQ %d (error %d)\n",
5119 				bp->queues[0].irq, err);
5120 			spin_unlock_irqrestore(&bp->lock, flags);
5121 			return err;
5122 		}
5123 		spin_unlock_irqrestore(&bp->lock, flags);
5124 
5125 		disable_irq_wake(bp->queues[0].irq);
5126 
5127 		/* Now make sure we disable phy before moving
5128 		 * to common restore path
5129 		 */
5130 		rtnl_lock();
5131 		phylink_stop(bp->phylink);
5132 		rtnl_unlock();
5133 	}
5134 
5135 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5136 	     ++q, ++queue) {
5137 		napi_enable(&queue->napi_rx);
5138 		napi_enable(&queue->napi_tx);
5139 	}
5140 
5141 	if (netdev->hw_features & NETIF_F_NTUPLE)
5142 		gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2);
5143 
5144 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5145 		macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio);
5146 
5147 	macb_writel(bp, NCR, MACB_BIT(MPE));
5148 	macb_init_hw(bp);
5149 	macb_set_rx_mode(netdev);
5150 	macb_restore_features(bp);
5151 	rtnl_lock();
5152 	phylink_start(bp->phylink);
5153 	rtnl_unlock();
5154 
5155 	netif_device_attach(netdev);
5156 	if (bp->ptp_info)
5157 		bp->ptp_info->ptp_init(netdev);
5158 
5159 	return 0;
5160 }
5161 
5162 static int __maybe_unused macb_runtime_suspend(struct device *dev)
5163 {
5164 	struct net_device *netdev = dev_get_drvdata(dev);
5165 	struct macb *bp = netdev_priv(netdev);
5166 
5167 	if (!(device_may_wakeup(dev)))
5168 		macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk);
5169 	else
5170 		macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk);
5171 
5172 	return 0;
5173 }
5174 
5175 static int __maybe_unused macb_runtime_resume(struct device *dev)
5176 {
5177 	struct net_device *netdev = dev_get_drvdata(dev);
5178 	struct macb *bp = netdev_priv(netdev);
5179 
5180 	if (!(device_may_wakeup(dev))) {
5181 		clk_prepare_enable(bp->pclk);
5182 		clk_prepare_enable(bp->hclk);
5183 		clk_prepare_enable(bp->tx_clk);
5184 		clk_prepare_enable(bp->rx_clk);
5185 	}
5186 	clk_prepare_enable(bp->tsu_clk);
5187 
5188 	return 0;
5189 }
5190 
5191 static const struct dev_pm_ops macb_pm_ops = {
5192 	SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume)
5193 	SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL)
5194 };
5195 
5196 static struct platform_driver macb_driver = {
5197 	.probe		= macb_probe,
5198 	.remove		= macb_remove,
5199 	.driver		= {
5200 		.name		= "macb",
5201 		.of_match_table	= of_match_ptr(macb_dt_ids),
5202 		.pm	= &macb_pm_ops,
5203 	},
5204 };
5205 
5206 module_platform_driver(macb_driver);
5207 
5208 MODULE_LICENSE("GPL");
5209 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
5210 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
5211 MODULE_ALIAS("platform:macb");
5212