xref: /linux/drivers/net/ethernet/cadence/macb_main.c (revision 876346536c1b59a5b1b5e44477b1b3ece77647fd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cadence MACB/GEM Ethernet Controller driver
4  *
5  * Copyright (C) 2004-2006 Atmel Corporation
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/crc32.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/circ_buf.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/phylink.h>
28 #include <linux/of.h>
29 #include <linux/of_gpio.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/ip.h>
33 #include <linux/udp.h>
34 #include <linux/tcp.h>
35 #include <linux/iopoll.h>
36 #include <linux/phy/phy.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/ptp_classify.h>
39 #include <linux/reset.h>
40 #include <linux/firmware/xlnx-zynqmp.h>
41 #include <linux/inetdevice.h>
42 #include "macb.h"
43 
44 /* This structure is only used for MACB on SiFive FU540 devices */
45 struct sifive_fu540_macb_mgmt {
46 	void __iomem *reg;
47 	unsigned long rate;
48 	struct clk_hw hw;
49 };
50 
51 #define MACB_RX_BUFFER_SIZE	128
52 #define RX_BUFFER_MULTIPLE	64  /* bytes */
53 
54 #define DEFAULT_RX_RING_SIZE	512 /* must be power of 2 */
55 #define MIN_RX_RING_SIZE	64
56 #define MAX_RX_RING_SIZE	8192
57 #define RX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
58 				 * (bp)->rx_ring_size)
59 
60 #define DEFAULT_TX_RING_SIZE	512 /* must be power of 2 */
61 #define MIN_TX_RING_SIZE	64
62 #define MAX_TX_RING_SIZE	4096
63 #define TX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
64 				 * (bp)->tx_ring_size)
65 
66 /* level of occupied TX descriptors under which we wake up TX process */
67 #define MACB_TX_WAKEUP_THRESH(bp)	(3 * (bp)->tx_ring_size / 4)
68 
69 #define MACB_RX_INT_FLAGS	(MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR))
70 #define MACB_TX_ERR_FLAGS	(MACB_BIT(ISR_TUND)			\
71 					| MACB_BIT(ISR_RLE)		\
72 					| MACB_BIT(TXERR))
73 #define MACB_TX_INT_FLAGS	(MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP)	\
74 					| MACB_BIT(TXUBR))
75 
76 /* Max length of transmit frame must be a multiple of 8 bytes */
77 #define MACB_TX_LEN_ALIGN	8
78 #define MACB_MAX_TX_LEN		((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
79 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a
80  * false amba_error in TX path from the DMA assuming there is not enough
81  * space in the SRAM (16KB) even when there is.
82  */
83 #define GEM_MAX_TX_LEN		(unsigned int)(0x3FC0)
84 
85 #define GEM_MTU_MIN_SIZE	ETH_MIN_MTU
86 #define MACB_NETIF_LSO		NETIF_F_TSO
87 
88 #define MACB_WOL_ENABLED		BIT(0)
89 
90 #define HS_SPEED_10000M			4
91 #define MACB_SERDES_RATE_10G		1
92 
93 /* Graceful stop timeouts in us. We should allow up to
94  * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
95  */
96 #define MACB_HALT_TIMEOUT	14000
97 #define MACB_PM_TIMEOUT  100 /* ms */
98 
99 #define MACB_MDIO_TIMEOUT	1000000 /* in usecs */
100 
101 /* DMA buffer descriptor might be different size
102  * depends on hardware configuration:
103  *
104  * 1. dma address width 32 bits:
105  *    word 1: 32 bit address of Data Buffer
106  *    word 2: control
107  *
108  * 2. dma address width 64 bits:
109  *    word 1: 32 bit address of Data Buffer
110  *    word 2: control
111  *    word 3: upper 32 bit address of Data Buffer
112  *    word 4: unused
113  *
114  * 3. dma address width 32 bits with hardware timestamping:
115  *    word 1: 32 bit address of Data Buffer
116  *    word 2: control
117  *    word 3: timestamp word 1
118  *    word 4: timestamp word 2
119  *
120  * 4. dma address width 64 bits with hardware timestamping:
121  *    word 1: 32 bit address of Data Buffer
122  *    word 2: control
123  *    word 3: upper 32 bit address of Data Buffer
124  *    word 4: unused
125  *    word 5: timestamp word 1
126  *    word 6: timestamp word 2
127  */
128 static unsigned int macb_dma_desc_get_size(struct macb *bp)
129 {
130 #ifdef MACB_EXT_DESC
131 	unsigned int desc_size;
132 
133 	switch (bp->hw_dma_cap) {
134 	case HW_DMA_CAP_64B:
135 		desc_size = sizeof(struct macb_dma_desc)
136 			+ sizeof(struct macb_dma_desc_64);
137 		break;
138 	case HW_DMA_CAP_PTP:
139 		desc_size = sizeof(struct macb_dma_desc)
140 			+ sizeof(struct macb_dma_desc_ptp);
141 		break;
142 	case HW_DMA_CAP_64B_PTP:
143 		desc_size = sizeof(struct macb_dma_desc)
144 			+ sizeof(struct macb_dma_desc_64)
145 			+ sizeof(struct macb_dma_desc_ptp);
146 		break;
147 	default:
148 		desc_size = sizeof(struct macb_dma_desc);
149 	}
150 	return desc_size;
151 #endif
152 	return sizeof(struct macb_dma_desc);
153 }
154 
155 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx)
156 {
157 #ifdef MACB_EXT_DESC
158 	switch (bp->hw_dma_cap) {
159 	case HW_DMA_CAP_64B:
160 	case HW_DMA_CAP_PTP:
161 		desc_idx <<= 1;
162 		break;
163 	case HW_DMA_CAP_64B_PTP:
164 		desc_idx *= 3;
165 		break;
166 	default:
167 		break;
168 	}
169 #endif
170 	return desc_idx;
171 }
172 
173 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
174 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc)
175 {
176 	return (struct macb_dma_desc_64 *)((void *)desc
177 		+ sizeof(struct macb_dma_desc));
178 }
179 #endif
180 
181 /* Ring buffer accessors */
182 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index)
183 {
184 	return index & (bp->tx_ring_size - 1);
185 }
186 
187 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
188 					  unsigned int index)
189 {
190 	index = macb_tx_ring_wrap(queue->bp, index);
191 	index = macb_adj_dma_desc_idx(queue->bp, index);
192 	return &queue->tx_ring[index];
193 }
194 
195 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
196 				       unsigned int index)
197 {
198 	return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)];
199 }
200 
201 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
202 {
203 	dma_addr_t offset;
204 
205 	offset = macb_tx_ring_wrap(queue->bp, index) *
206 			macb_dma_desc_get_size(queue->bp);
207 
208 	return queue->tx_ring_dma + offset;
209 }
210 
211 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index)
212 {
213 	return index & (bp->rx_ring_size - 1);
214 }
215 
216 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index)
217 {
218 	index = macb_rx_ring_wrap(queue->bp, index);
219 	index = macb_adj_dma_desc_idx(queue->bp, index);
220 	return &queue->rx_ring[index];
221 }
222 
223 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index)
224 {
225 	return queue->rx_buffers + queue->bp->rx_buffer_size *
226 	       macb_rx_ring_wrap(queue->bp, index);
227 }
228 
229 /* I/O accessors */
230 static u32 hw_readl_native(struct macb *bp, int offset)
231 {
232 	return __raw_readl(bp->regs + offset);
233 }
234 
235 static void hw_writel_native(struct macb *bp, int offset, u32 value)
236 {
237 	__raw_writel(value, bp->regs + offset);
238 }
239 
240 static u32 hw_readl(struct macb *bp, int offset)
241 {
242 	return readl_relaxed(bp->regs + offset);
243 }
244 
245 static void hw_writel(struct macb *bp, int offset, u32 value)
246 {
247 	writel_relaxed(value, bp->regs + offset);
248 }
249 
250 /* Find the CPU endianness by using the loopback bit of NCR register. When the
251  * CPU is in big endian we need to program swapped mode for management
252  * descriptor access.
253  */
254 static bool hw_is_native_io(void __iomem *addr)
255 {
256 	u32 value = MACB_BIT(LLB);
257 
258 	__raw_writel(value, addr + MACB_NCR);
259 	value = __raw_readl(addr + MACB_NCR);
260 
261 	/* Write 0 back to disable everything */
262 	__raw_writel(0, addr + MACB_NCR);
263 
264 	return value == MACB_BIT(LLB);
265 }
266 
267 static bool hw_is_gem(void __iomem *addr, bool native_io)
268 {
269 	u32 id;
270 
271 	if (native_io)
272 		id = __raw_readl(addr + MACB_MID);
273 	else
274 		id = readl_relaxed(addr + MACB_MID);
275 
276 	return MACB_BFEXT(IDNUM, id) >= 0x2;
277 }
278 
279 static void macb_set_hwaddr(struct macb *bp)
280 {
281 	u32 bottom;
282 	u16 top;
283 
284 	bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
285 	macb_or_gem_writel(bp, SA1B, bottom);
286 	top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
287 	macb_or_gem_writel(bp, SA1T, top);
288 
289 	if (gem_has_ptp(bp)) {
290 		gem_writel(bp, RXPTPUNI, bottom);
291 		gem_writel(bp, TXPTPUNI, bottom);
292 	}
293 
294 	/* Clear unused address register sets */
295 	macb_or_gem_writel(bp, SA2B, 0);
296 	macb_or_gem_writel(bp, SA2T, 0);
297 	macb_or_gem_writel(bp, SA3B, 0);
298 	macb_or_gem_writel(bp, SA3T, 0);
299 	macb_or_gem_writel(bp, SA4B, 0);
300 	macb_or_gem_writel(bp, SA4T, 0);
301 }
302 
303 static void macb_get_hwaddr(struct macb *bp)
304 {
305 	u32 bottom;
306 	u16 top;
307 	u8 addr[6];
308 	int i;
309 
310 	/* Check all 4 address register for valid address */
311 	for (i = 0; i < 4; i++) {
312 		bottom = macb_or_gem_readl(bp, SA1B + i * 8);
313 		top = macb_or_gem_readl(bp, SA1T + i * 8);
314 
315 		addr[0] = bottom & 0xff;
316 		addr[1] = (bottom >> 8) & 0xff;
317 		addr[2] = (bottom >> 16) & 0xff;
318 		addr[3] = (bottom >> 24) & 0xff;
319 		addr[4] = top & 0xff;
320 		addr[5] = (top >> 8) & 0xff;
321 
322 		if (is_valid_ether_addr(addr)) {
323 			eth_hw_addr_set(bp->dev, addr);
324 			return;
325 		}
326 	}
327 
328 	dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
329 	eth_hw_addr_random(bp->dev);
330 }
331 
332 static int macb_mdio_wait_for_idle(struct macb *bp)
333 {
334 	u32 val;
335 
336 	return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE),
337 				  1, MACB_MDIO_TIMEOUT);
338 }
339 
340 static int macb_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
341 {
342 	struct macb *bp = bus->priv;
343 	int status;
344 
345 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
346 	if (status < 0)
347 		goto mdio_pm_exit;
348 
349 	status = macb_mdio_wait_for_idle(bp);
350 	if (status < 0)
351 		goto mdio_read_exit;
352 
353 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
354 			      | MACB_BF(RW, MACB_MAN_C22_READ)
355 			      | MACB_BF(PHYA, mii_id)
356 			      | MACB_BF(REGA, regnum)
357 			      | MACB_BF(CODE, MACB_MAN_C22_CODE)));
358 
359 	status = macb_mdio_wait_for_idle(bp);
360 	if (status < 0)
361 		goto mdio_read_exit;
362 
363 	status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
364 
365 mdio_read_exit:
366 	pm_runtime_mark_last_busy(&bp->pdev->dev);
367 	pm_runtime_put_autosuspend(&bp->pdev->dev);
368 mdio_pm_exit:
369 	return status;
370 }
371 
372 static int macb_mdio_read_c45(struct mii_bus *bus, int mii_id, int devad,
373 			      int regnum)
374 {
375 	struct macb *bp = bus->priv;
376 	int status;
377 
378 	status = pm_runtime_get_sync(&bp->pdev->dev);
379 	if (status < 0) {
380 		pm_runtime_put_noidle(&bp->pdev->dev);
381 		goto mdio_pm_exit;
382 	}
383 
384 	status = macb_mdio_wait_for_idle(bp);
385 	if (status < 0)
386 		goto mdio_read_exit;
387 
388 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
389 			      | MACB_BF(RW, MACB_MAN_C45_ADDR)
390 			      | MACB_BF(PHYA, mii_id)
391 			      | MACB_BF(REGA, devad & 0x1F)
392 			      | MACB_BF(DATA, regnum & 0xFFFF)
393 			      | MACB_BF(CODE, MACB_MAN_C45_CODE)));
394 
395 	status = macb_mdio_wait_for_idle(bp);
396 	if (status < 0)
397 		goto mdio_read_exit;
398 
399 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
400 			      | MACB_BF(RW, MACB_MAN_C45_READ)
401 			      | MACB_BF(PHYA, mii_id)
402 			      | MACB_BF(REGA, devad & 0x1F)
403 			      | MACB_BF(CODE, MACB_MAN_C45_CODE)));
404 
405 	status = macb_mdio_wait_for_idle(bp);
406 	if (status < 0)
407 		goto mdio_read_exit;
408 
409 	status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
410 
411 mdio_read_exit:
412 	pm_runtime_mark_last_busy(&bp->pdev->dev);
413 	pm_runtime_put_autosuspend(&bp->pdev->dev);
414 mdio_pm_exit:
415 	return status;
416 }
417 
418 static int macb_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
419 			       u16 value)
420 {
421 	struct macb *bp = bus->priv;
422 	int status;
423 
424 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
425 	if (status < 0)
426 		goto mdio_pm_exit;
427 
428 	status = macb_mdio_wait_for_idle(bp);
429 	if (status < 0)
430 		goto mdio_write_exit;
431 
432 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
433 			      | MACB_BF(RW, MACB_MAN_C22_WRITE)
434 			      | MACB_BF(PHYA, mii_id)
435 			      | MACB_BF(REGA, regnum)
436 			      | MACB_BF(CODE, MACB_MAN_C22_CODE)
437 			      | MACB_BF(DATA, value)));
438 
439 	status = macb_mdio_wait_for_idle(bp);
440 	if (status < 0)
441 		goto mdio_write_exit;
442 
443 mdio_write_exit:
444 	pm_runtime_mark_last_busy(&bp->pdev->dev);
445 	pm_runtime_put_autosuspend(&bp->pdev->dev);
446 mdio_pm_exit:
447 	return status;
448 }
449 
450 static int macb_mdio_write_c45(struct mii_bus *bus, int mii_id,
451 			       int devad, int regnum,
452 			       u16 value)
453 {
454 	struct macb *bp = bus->priv;
455 	int status;
456 
457 	status = pm_runtime_get_sync(&bp->pdev->dev);
458 	if (status < 0) {
459 		pm_runtime_put_noidle(&bp->pdev->dev);
460 		goto mdio_pm_exit;
461 	}
462 
463 	status = macb_mdio_wait_for_idle(bp);
464 	if (status < 0)
465 		goto mdio_write_exit;
466 
467 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
468 			      | MACB_BF(RW, MACB_MAN_C45_ADDR)
469 			      | MACB_BF(PHYA, mii_id)
470 			      | MACB_BF(REGA, devad & 0x1F)
471 			      | MACB_BF(DATA, regnum & 0xFFFF)
472 			      | MACB_BF(CODE, MACB_MAN_C45_CODE)));
473 
474 	status = macb_mdio_wait_for_idle(bp);
475 	if (status < 0)
476 		goto mdio_write_exit;
477 
478 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
479 			      | MACB_BF(RW, MACB_MAN_C45_WRITE)
480 			      | MACB_BF(PHYA, mii_id)
481 			      | MACB_BF(REGA, devad & 0x1F)
482 			      | MACB_BF(CODE, MACB_MAN_C45_CODE)
483 			      | MACB_BF(DATA, value)));
484 
485 	status = macb_mdio_wait_for_idle(bp);
486 	if (status < 0)
487 		goto mdio_write_exit;
488 
489 mdio_write_exit:
490 	pm_runtime_mark_last_busy(&bp->pdev->dev);
491 	pm_runtime_put_autosuspend(&bp->pdev->dev);
492 mdio_pm_exit:
493 	return status;
494 }
495 
496 static void macb_init_buffers(struct macb *bp)
497 {
498 	struct macb_queue *queue;
499 	unsigned int q;
500 
501 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
502 		queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma));
503 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
504 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
505 			queue_writel(queue, RBQPH,
506 				     upper_32_bits(queue->rx_ring_dma));
507 #endif
508 		queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
509 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
510 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
511 			queue_writel(queue, TBQPH,
512 				     upper_32_bits(queue->tx_ring_dma));
513 #endif
514 	}
515 }
516 
517 /**
518  * macb_set_tx_clk() - Set a clock to a new frequency
519  * @bp:		pointer to struct macb
520  * @speed:	New frequency in Hz
521  */
522 static void macb_set_tx_clk(struct macb *bp, int speed)
523 {
524 	long ferr, rate, rate_rounded;
525 
526 	if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG))
527 		return;
528 
529 	/* In case of MII the PHY is the clock master */
530 	if (bp->phy_interface == PHY_INTERFACE_MODE_MII)
531 		return;
532 
533 	switch (speed) {
534 	case SPEED_10:
535 		rate = 2500000;
536 		break;
537 	case SPEED_100:
538 		rate = 25000000;
539 		break;
540 	case SPEED_1000:
541 		rate = 125000000;
542 		break;
543 	default:
544 		return;
545 	}
546 
547 	rate_rounded = clk_round_rate(bp->tx_clk, rate);
548 	if (rate_rounded < 0)
549 		return;
550 
551 	/* RGMII allows 50 ppm frequency error. Test and warn if this limit
552 	 * is not satisfied.
553 	 */
554 	ferr = abs(rate_rounded - rate);
555 	ferr = DIV_ROUND_UP(ferr, rate / 100000);
556 	if (ferr > 5)
557 		netdev_warn(bp->dev,
558 			    "unable to generate target frequency: %ld Hz\n",
559 			    rate);
560 
561 	if (clk_set_rate(bp->tx_clk, rate_rounded))
562 		netdev_err(bp->dev, "adjusting tx_clk failed.\n");
563 }
564 
565 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int neg_mode,
566 				 phy_interface_t interface, int speed,
567 				 int duplex)
568 {
569 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
570 	u32 config;
571 
572 	config = gem_readl(bp, USX_CONTROL);
573 	config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config);
574 	config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config);
575 	config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS));
576 	config |= GEM_BIT(TX_EN);
577 	gem_writel(bp, USX_CONTROL, config);
578 }
579 
580 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs,
581 				   struct phylink_link_state *state)
582 {
583 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
584 	u32 val;
585 
586 	state->speed = SPEED_10000;
587 	state->duplex = 1;
588 	state->an_complete = 1;
589 
590 	val = gem_readl(bp, USX_STATUS);
591 	state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK));
592 	val = gem_readl(bp, NCFGR);
593 	if (val & GEM_BIT(PAE))
594 		state->pause = MLO_PAUSE_RX;
595 }
596 
597 static int macb_usx_pcs_config(struct phylink_pcs *pcs,
598 			       unsigned int neg_mode,
599 			       phy_interface_t interface,
600 			       const unsigned long *advertising,
601 			       bool permit_pause_to_mac)
602 {
603 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
604 
605 	gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) |
606 		   GEM_BIT(SIGNAL_OK));
607 
608 	return 0;
609 }
610 
611 static void macb_pcs_get_state(struct phylink_pcs *pcs,
612 			       struct phylink_link_state *state)
613 {
614 	state->link = 0;
615 }
616 
617 static void macb_pcs_an_restart(struct phylink_pcs *pcs)
618 {
619 	/* Not supported */
620 }
621 
622 static int macb_pcs_config(struct phylink_pcs *pcs,
623 			   unsigned int neg_mode,
624 			   phy_interface_t interface,
625 			   const unsigned long *advertising,
626 			   bool permit_pause_to_mac)
627 {
628 	return 0;
629 }
630 
631 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = {
632 	.pcs_get_state = macb_usx_pcs_get_state,
633 	.pcs_config = macb_usx_pcs_config,
634 	.pcs_link_up = macb_usx_pcs_link_up,
635 };
636 
637 static const struct phylink_pcs_ops macb_phylink_pcs_ops = {
638 	.pcs_get_state = macb_pcs_get_state,
639 	.pcs_an_restart = macb_pcs_an_restart,
640 	.pcs_config = macb_pcs_config,
641 };
642 
643 static void macb_mac_config(struct phylink_config *config, unsigned int mode,
644 			    const struct phylink_link_state *state)
645 {
646 	struct net_device *ndev = to_net_dev(config->dev);
647 	struct macb *bp = netdev_priv(ndev);
648 	unsigned long flags;
649 	u32 old_ctrl, ctrl;
650 	u32 old_ncr, ncr;
651 
652 	spin_lock_irqsave(&bp->lock, flags);
653 
654 	old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR);
655 	old_ncr = ncr = macb_or_gem_readl(bp, NCR);
656 
657 	if (bp->caps & MACB_CAPS_MACB_IS_EMAC) {
658 		if (state->interface == PHY_INTERFACE_MODE_RMII)
659 			ctrl |= MACB_BIT(RM9200_RMII);
660 	} else if (macb_is_gem(bp)) {
661 		ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL));
662 		ncr &= ~GEM_BIT(ENABLE_HS_MAC);
663 
664 		if (state->interface == PHY_INTERFACE_MODE_SGMII) {
665 			ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
666 		} else if (state->interface == PHY_INTERFACE_MODE_10GBASER) {
667 			ctrl |= GEM_BIT(PCSSEL);
668 			ncr |= GEM_BIT(ENABLE_HS_MAC);
669 		} else if (bp->caps & MACB_CAPS_MIIONRGMII &&
670 			   bp->phy_interface == PHY_INTERFACE_MODE_MII) {
671 			ncr |= MACB_BIT(MIIONRGMII);
672 		}
673 	}
674 
675 	/* Apply the new configuration, if any */
676 	if (old_ctrl ^ ctrl)
677 		macb_or_gem_writel(bp, NCFGR, ctrl);
678 
679 	if (old_ncr ^ ncr)
680 		macb_or_gem_writel(bp, NCR, ncr);
681 
682 	/* Disable AN for SGMII fixed link configuration, enable otherwise.
683 	 * Must be written after PCSSEL is set in NCFGR,
684 	 * otherwise writes will not take effect.
685 	 */
686 	if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) {
687 		u32 pcsctrl, old_pcsctrl;
688 
689 		old_pcsctrl = gem_readl(bp, PCSCNTRL);
690 		if (mode == MLO_AN_FIXED)
691 			pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG);
692 		else
693 			pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG);
694 		if (old_pcsctrl != pcsctrl)
695 			gem_writel(bp, PCSCNTRL, pcsctrl);
696 	}
697 
698 	spin_unlock_irqrestore(&bp->lock, flags);
699 }
700 
701 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode,
702 			       phy_interface_t interface)
703 {
704 	struct net_device *ndev = to_net_dev(config->dev);
705 	struct macb *bp = netdev_priv(ndev);
706 	struct macb_queue *queue;
707 	unsigned int q;
708 	u32 ctrl;
709 
710 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
711 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
712 			queue_writel(queue, IDR,
713 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
714 
715 	/* Disable Rx and Tx */
716 	ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE));
717 	macb_writel(bp, NCR, ctrl);
718 
719 	netif_tx_stop_all_queues(ndev);
720 }
721 
722 static void macb_mac_link_up(struct phylink_config *config,
723 			     struct phy_device *phy,
724 			     unsigned int mode, phy_interface_t interface,
725 			     int speed, int duplex,
726 			     bool tx_pause, bool rx_pause)
727 {
728 	struct net_device *ndev = to_net_dev(config->dev);
729 	struct macb *bp = netdev_priv(ndev);
730 	struct macb_queue *queue;
731 	unsigned long flags;
732 	unsigned int q;
733 	u32 ctrl;
734 
735 	spin_lock_irqsave(&bp->lock, flags);
736 
737 	ctrl = macb_or_gem_readl(bp, NCFGR);
738 
739 	ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
740 
741 	if (speed == SPEED_100)
742 		ctrl |= MACB_BIT(SPD);
743 
744 	if (duplex)
745 		ctrl |= MACB_BIT(FD);
746 
747 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) {
748 		ctrl &= ~MACB_BIT(PAE);
749 		if (macb_is_gem(bp)) {
750 			ctrl &= ~GEM_BIT(GBE);
751 
752 			if (speed == SPEED_1000)
753 				ctrl |= GEM_BIT(GBE);
754 		}
755 
756 		if (rx_pause)
757 			ctrl |= MACB_BIT(PAE);
758 
759 		/* Initialize rings & buffers as clearing MACB_BIT(TE) in link down
760 		 * cleared the pipeline and control registers.
761 		 */
762 		bp->macbgem_ops.mog_init_rings(bp);
763 		macb_init_buffers(bp);
764 
765 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
766 			queue_writel(queue, IER,
767 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
768 	}
769 
770 	macb_or_gem_writel(bp, NCFGR, ctrl);
771 
772 	if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER)
773 		gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M,
774 							gem_readl(bp, HS_MAC_CONFIG)));
775 
776 	spin_unlock_irqrestore(&bp->lock, flags);
777 
778 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
779 		macb_set_tx_clk(bp, speed);
780 
781 	/* Enable Rx and Tx; Enable PTP unicast */
782 	ctrl = macb_readl(bp, NCR);
783 	if (gem_has_ptp(bp))
784 		ctrl |= MACB_BIT(PTPUNI);
785 
786 	macb_writel(bp, NCR, ctrl | MACB_BIT(RE) | MACB_BIT(TE));
787 
788 	netif_tx_wake_all_queues(ndev);
789 }
790 
791 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config,
792 					       phy_interface_t interface)
793 {
794 	struct net_device *ndev = to_net_dev(config->dev);
795 	struct macb *bp = netdev_priv(ndev);
796 
797 	if (interface == PHY_INTERFACE_MODE_10GBASER)
798 		return &bp->phylink_usx_pcs;
799 	else if (interface == PHY_INTERFACE_MODE_SGMII)
800 		return &bp->phylink_sgmii_pcs;
801 	else
802 		return NULL;
803 }
804 
805 static const struct phylink_mac_ops macb_phylink_ops = {
806 	.mac_select_pcs = macb_mac_select_pcs,
807 	.mac_config = macb_mac_config,
808 	.mac_link_down = macb_mac_link_down,
809 	.mac_link_up = macb_mac_link_up,
810 };
811 
812 static bool macb_phy_handle_exists(struct device_node *dn)
813 {
814 	dn = of_parse_phandle(dn, "phy-handle", 0);
815 	of_node_put(dn);
816 	return dn != NULL;
817 }
818 
819 static int macb_phylink_connect(struct macb *bp)
820 {
821 	struct device_node *dn = bp->pdev->dev.of_node;
822 	struct net_device *dev = bp->dev;
823 	struct phy_device *phydev;
824 	int ret;
825 
826 	if (dn)
827 		ret = phylink_of_phy_connect(bp->phylink, dn, 0);
828 
829 	if (!dn || (ret && !macb_phy_handle_exists(dn))) {
830 		phydev = phy_find_first(bp->mii_bus);
831 		if (!phydev) {
832 			netdev_err(dev, "no PHY found\n");
833 			return -ENXIO;
834 		}
835 
836 		/* attach the mac to the phy */
837 		ret = phylink_connect_phy(bp->phylink, phydev);
838 	}
839 
840 	if (ret) {
841 		netdev_err(dev, "Could not attach PHY (%d)\n", ret);
842 		return ret;
843 	}
844 
845 	phylink_start(bp->phylink);
846 
847 	return 0;
848 }
849 
850 static void macb_get_pcs_fixed_state(struct phylink_config *config,
851 				     struct phylink_link_state *state)
852 {
853 	struct net_device *ndev = to_net_dev(config->dev);
854 	struct macb *bp = netdev_priv(ndev);
855 
856 	state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0;
857 }
858 
859 /* based on au1000_eth. c*/
860 static int macb_mii_probe(struct net_device *dev)
861 {
862 	struct macb *bp = netdev_priv(dev);
863 
864 	bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops;
865 	bp->phylink_sgmii_pcs.neg_mode = true;
866 	bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops;
867 	bp->phylink_usx_pcs.neg_mode = true;
868 
869 	bp->phylink_config.dev = &dev->dev;
870 	bp->phylink_config.type = PHYLINK_NETDEV;
871 	bp->phylink_config.mac_managed_pm = true;
872 
873 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
874 		bp->phylink_config.poll_fixed_state = true;
875 		bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state;
876 	}
877 
878 	bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE |
879 		MAC_10 | MAC_100;
880 
881 	__set_bit(PHY_INTERFACE_MODE_MII,
882 		  bp->phylink_config.supported_interfaces);
883 	__set_bit(PHY_INTERFACE_MODE_RMII,
884 		  bp->phylink_config.supported_interfaces);
885 
886 	/* Determine what modes are supported */
887 	if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) {
888 		bp->phylink_config.mac_capabilities |= MAC_1000FD;
889 		if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF))
890 			bp->phylink_config.mac_capabilities |= MAC_1000HD;
891 
892 		__set_bit(PHY_INTERFACE_MODE_GMII,
893 			  bp->phylink_config.supported_interfaces);
894 		phy_interface_set_rgmii(bp->phylink_config.supported_interfaces);
895 
896 		if (bp->caps & MACB_CAPS_PCS)
897 			__set_bit(PHY_INTERFACE_MODE_SGMII,
898 				  bp->phylink_config.supported_interfaces);
899 
900 		if (bp->caps & MACB_CAPS_HIGH_SPEED) {
901 			__set_bit(PHY_INTERFACE_MODE_10GBASER,
902 				  bp->phylink_config.supported_interfaces);
903 			bp->phylink_config.mac_capabilities |= MAC_10000FD;
904 		}
905 	}
906 
907 	bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode,
908 				     bp->phy_interface, &macb_phylink_ops);
909 	if (IS_ERR(bp->phylink)) {
910 		netdev_err(dev, "Could not create a phylink instance (%ld)\n",
911 			   PTR_ERR(bp->phylink));
912 		return PTR_ERR(bp->phylink);
913 	}
914 
915 	return 0;
916 }
917 
918 static int macb_mdiobus_register(struct macb *bp)
919 {
920 	struct device_node *child, *np = bp->pdev->dev.of_node;
921 
922 	/* If we have a child named mdio, probe it instead of looking for PHYs
923 	 * directly under the MAC node
924 	 */
925 	child = of_get_child_by_name(np, "mdio");
926 	if (child) {
927 		int ret = of_mdiobus_register(bp->mii_bus, child);
928 
929 		of_node_put(child);
930 		return ret;
931 	}
932 
933 	if (of_phy_is_fixed_link(np))
934 		return mdiobus_register(bp->mii_bus);
935 
936 	/* Only create the PHY from the device tree if at least one PHY is
937 	 * described. Otherwise scan the entire MDIO bus. We do this to support
938 	 * old device tree that did not follow the best practices and did not
939 	 * describe their network PHYs.
940 	 */
941 	for_each_available_child_of_node(np, child)
942 		if (of_mdiobus_child_is_phy(child)) {
943 			/* The loop increments the child refcount,
944 			 * decrement it before returning.
945 			 */
946 			of_node_put(child);
947 
948 			return of_mdiobus_register(bp->mii_bus, np);
949 		}
950 
951 	return mdiobus_register(bp->mii_bus);
952 }
953 
954 static int macb_mii_init(struct macb *bp)
955 {
956 	int err = -ENXIO;
957 
958 	/* Enable management port */
959 	macb_writel(bp, NCR, MACB_BIT(MPE));
960 
961 	bp->mii_bus = mdiobus_alloc();
962 	if (!bp->mii_bus) {
963 		err = -ENOMEM;
964 		goto err_out;
965 	}
966 
967 	bp->mii_bus->name = "MACB_mii_bus";
968 	bp->mii_bus->read = &macb_mdio_read_c22;
969 	bp->mii_bus->write = &macb_mdio_write_c22;
970 	bp->mii_bus->read_c45 = &macb_mdio_read_c45;
971 	bp->mii_bus->write_c45 = &macb_mdio_write_c45;
972 	snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
973 		 bp->pdev->name, bp->pdev->id);
974 	bp->mii_bus->priv = bp;
975 	bp->mii_bus->parent = &bp->pdev->dev;
976 
977 	dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
978 
979 	err = macb_mdiobus_register(bp);
980 	if (err)
981 		goto err_out_free_mdiobus;
982 
983 	err = macb_mii_probe(bp->dev);
984 	if (err)
985 		goto err_out_unregister_bus;
986 
987 	return 0;
988 
989 err_out_unregister_bus:
990 	mdiobus_unregister(bp->mii_bus);
991 err_out_free_mdiobus:
992 	mdiobus_free(bp->mii_bus);
993 err_out:
994 	return err;
995 }
996 
997 static void macb_update_stats(struct macb *bp)
998 {
999 	u32 *p = &bp->hw_stats.macb.rx_pause_frames;
1000 	u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
1001 	int offset = MACB_PFR;
1002 
1003 	WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
1004 
1005 	for (; p < end; p++, offset += 4)
1006 		*p += bp->macb_reg_readl(bp, offset);
1007 }
1008 
1009 static int macb_halt_tx(struct macb *bp)
1010 {
1011 	unsigned long	halt_time, timeout;
1012 	u32		status;
1013 
1014 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
1015 
1016 	timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
1017 	do {
1018 		halt_time = jiffies;
1019 		status = macb_readl(bp, TSR);
1020 		if (!(status & MACB_BIT(TGO)))
1021 			return 0;
1022 
1023 		udelay(250);
1024 	} while (time_before(halt_time, timeout));
1025 
1026 	return -ETIMEDOUT;
1027 }
1028 
1029 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget)
1030 {
1031 	if (tx_skb->mapping) {
1032 		if (tx_skb->mapped_as_page)
1033 			dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
1034 				       tx_skb->size, DMA_TO_DEVICE);
1035 		else
1036 			dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
1037 					 tx_skb->size, DMA_TO_DEVICE);
1038 		tx_skb->mapping = 0;
1039 	}
1040 
1041 	if (tx_skb->skb) {
1042 		napi_consume_skb(tx_skb->skb, budget);
1043 		tx_skb->skb = NULL;
1044 	}
1045 }
1046 
1047 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr)
1048 {
1049 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1050 	struct macb_dma_desc_64 *desc_64;
1051 
1052 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1053 		desc_64 = macb_64b_desc(bp, desc);
1054 		desc_64->addrh = upper_32_bits(addr);
1055 		/* The low bits of RX address contain the RX_USED bit, clearing
1056 		 * of which allows packet RX. Make sure the high bits are also
1057 		 * visible to HW at that point.
1058 		 */
1059 		dma_wmb();
1060 	}
1061 #endif
1062 	desc->addr = lower_32_bits(addr);
1063 }
1064 
1065 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc)
1066 {
1067 	dma_addr_t addr = 0;
1068 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1069 	struct macb_dma_desc_64 *desc_64;
1070 
1071 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1072 		desc_64 = macb_64b_desc(bp, desc);
1073 		addr = ((u64)(desc_64->addrh) << 32);
1074 	}
1075 #endif
1076 	addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1077 #ifdef CONFIG_MACB_USE_HWSTAMP
1078 	if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
1079 		addr &= ~GEM_BIT(DMA_RXVALID);
1080 #endif
1081 	return addr;
1082 }
1083 
1084 static void macb_tx_error_task(struct work_struct *work)
1085 {
1086 	struct macb_queue	*queue = container_of(work, struct macb_queue,
1087 						      tx_error_task);
1088 	bool			halt_timeout = false;
1089 	struct macb		*bp = queue->bp;
1090 	struct macb_tx_skb	*tx_skb;
1091 	struct macb_dma_desc	*desc;
1092 	struct sk_buff		*skb;
1093 	unsigned int		tail;
1094 	unsigned long		flags;
1095 
1096 	netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
1097 		    (unsigned int)(queue - bp->queues),
1098 		    queue->tx_tail, queue->tx_head);
1099 
1100 	/* Prevent the queue NAPI TX poll from running, as it calls
1101 	 * macb_tx_complete(), which in turn may call netif_wake_subqueue().
1102 	 * As explained below, we have to halt the transmission before updating
1103 	 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
1104 	 * network engine about the macb/gem being halted.
1105 	 */
1106 	napi_disable(&queue->napi_tx);
1107 	spin_lock_irqsave(&bp->lock, flags);
1108 
1109 	/* Make sure nobody is trying to queue up new packets */
1110 	netif_tx_stop_all_queues(bp->dev);
1111 
1112 	/* Stop transmission now
1113 	 * (in case we have just queued new packets)
1114 	 * macb/gem must be halted to write TBQP register
1115 	 */
1116 	if (macb_halt_tx(bp)) {
1117 		netdev_err(bp->dev, "BUG: halt tx timed out\n");
1118 		macb_writel(bp, NCR, macb_readl(bp, NCR) & (~MACB_BIT(TE)));
1119 		halt_timeout = true;
1120 	}
1121 
1122 	/* Treat frames in TX queue including the ones that caused the error.
1123 	 * Free transmit buffers in upper layer.
1124 	 */
1125 	for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
1126 		u32	ctrl;
1127 
1128 		desc = macb_tx_desc(queue, tail);
1129 		ctrl = desc->ctrl;
1130 		tx_skb = macb_tx_skb(queue, tail);
1131 		skb = tx_skb->skb;
1132 
1133 		if (ctrl & MACB_BIT(TX_USED)) {
1134 			/* skb is set for the last buffer of the frame */
1135 			while (!skb) {
1136 				macb_tx_unmap(bp, tx_skb, 0);
1137 				tail++;
1138 				tx_skb = macb_tx_skb(queue, tail);
1139 				skb = tx_skb->skb;
1140 			}
1141 
1142 			/* ctrl still refers to the first buffer descriptor
1143 			 * since it's the only one written back by the hardware
1144 			 */
1145 			if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
1146 				netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
1147 					    macb_tx_ring_wrap(bp, tail),
1148 					    skb->data);
1149 				bp->dev->stats.tx_packets++;
1150 				queue->stats.tx_packets++;
1151 				bp->dev->stats.tx_bytes += skb->len;
1152 				queue->stats.tx_bytes += skb->len;
1153 			}
1154 		} else {
1155 			/* "Buffers exhausted mid-frame" errors may only happen
1156 			 * if the driver is buggy, so complain loudly about
1157 			 * those. Statistics are updated by hardware.
1158 			 */
1159 			if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
1160 				netdev_err(bp->dev,
1161 					   "BUG: TX buffers exhausted mid-frame\n");
1162 
1163 			desc->ctrl = ctrl | MACB_BIT(TX_USED);
1164 		}
1165 
1166 		macb_tx_unmap(bp, tx_skb, 0);
1167 	}
1168 
1169 	/* Set end of TX queue */
1170 	desc = macb_tx_desc(queue, 0);
1171 	macb_set_addr(bp, desc, 0);
1172 	desc->ctrl = MACB_BIT(TX_USED);
1173 
1174 	/* Make descriptor updates visible to hardware */
1175 	wmb();
1176 
1177 	/* Reinitialize the TX desc queue */
1178 	queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
1179 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1180 	if (bp->hw_dma_cap & HW_DMA_CAP_64B)
1181 		queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma));
1182 #endif
1183 	/* Make TX ring reflect state of hardware */
1184 	queue->tx_head = 0;
1185 	queue->tx_tail = 0;
1186 
1187 	/* Housework before enabling TX IRQ */
1188 	macb_writel(bp, TSR, macb_readl(bp, TSR));
1189 	queue_writel(queue, IER, MACB_TX_INT_FLAGS);
1190 
1191 	if (halt_timeout)
1192 		macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TE));
1193 
1194 	/* Now we are ready to start transmission again */
1195 	netif_tx_start_all_queues(bp->dev);
1196 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1197 
1198 	spin_unlock_irqrestore(&bp->lock, flags);
1199 	napi_enable(&queue->napi_tx);
1200 }
1201 
1202 static bool ptp_one_step_sync(struct sk_buff *skb)
1203 {
1204 	struct ptp_header *hdr;
1205 	unsigned int ptp_class;
1206 	u8 msgtype;
1207 
1208 	/* No need to parse packet if PTP TS is not involved */
1209 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1210 		goto not_oss;
1211 
1212 	/* Identify and return whether PTP one step sync is being processed */
1213 	ptp_class = ptp_classify_raw(skb);
1214 	if (ptp_class == PTP_CLASS_NONE)
1215 		goto not_oss;
1216 
1217 	hdr = ptp_parse_header(skb, ptp_class);
1218 	if (!hdr)
1219 		goto not_oss;
1220 
1221 	if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP)
1222 		goto not_oss;
1223 
1224 	msgtype = ptp_get_msgtype(hdr, ptp_class);
1225 	if (msgtype == PTP_MSGTYPE_SYNC)
1226 		return true;
1227 
1228 not_oss:
1229 	return false;
1230 }
1231 
1232 static int macb_tx_complete(struct macb_queue *queue, int budget)
1233 {
1234 	struct macb *bp = queue->bp;
1235 	u16 queue_index = queue - bp->queues;
1236 	unsigned int tail;
1237 	unsigned int head;
1238 	int packets = 0;
1239 
1240 	spin_lock(&queue->tx_ptr_lock);
1241 	head = queue->tx_head;
1242 	for (tail = queue->tx_tail; tail != head && packets < budget; tail++) {
1243 		struct macb_tx_skb	*tx_skb;
1244 		struct sk_buff		*skb;
1245 		struct macb_dma_desc	*desc;
1246 		u32			ctrl;
1247 
1248 		desc = macb_tx_desc(queue, tail);
1249 
1250 		/* Make hw descriptor updates visible to CPU */
1251 		rmb();
1252 
1253 		ctrl = desc->ctrl;
1254 
1255 		/* TX_USED bit is only set by hardware on the very first buffer
1256 		 * descriptor of the transmitted frame.
1257 		 */
1258 		if (!(ctrl & MACB_BIT(TX_USED)))
1259 			break;
1260 
1261 		/* Process all buffers of the current transmitted frame */
1262 		for (;; tail++) {
1263 			tx_skb = macb_tx_skb(queue, tail);
1264 			skb = tx_skb->skb;
1265 
1266 			/* First, update TX stats if needed */
1267 			if (skb) {
1268 				if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1269 				    !ptp_one_step_sync(skb))
1270 					gem_ptp_do_txstamp(bp, skb, desc);
1271 
1272 				netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
1273 					    macb_tx_ring_wrap(bp, tail),
1274 					    skb->data);
1275 				bp->dev->stats.tx_packets++;
1276 				queue->stats.tx_packets++;
1277 				bp->dev->stats.tx_bytes += skb->len;
1278 				queue->stats.tx_bytes += skb->len;
1279 				packets++;
1280 			}
1281 
1282 			/* Now we can safely release resources */
1283 			macb_tx_unmap(bp, tx_skb, budget);
1284 
1285 			/* skb is set only for the last buffer of the frame.
1286 			 * WARNING: at this point skb has been freed by
1287 			 * macb_tx_unmap().
1288 			 */
1289 			if (skb)
1290 				break;
1291 		}
1292 	}
1293 
1294 	queue->tx_tail = tail;
1295 	if (__netif_subqueue_stopped(bp->dev, queue_index) &&
1296 	    CIRC_CNT(queue->tx_head, queue->tx_tail,
1297 		     bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp))
1298 		netif_wake_subqueue(bp->dev, queue_index);
1299 	spin_unlock(&queue->tx_ptr_lock);
1300 
1301 	return packets;
1302 }
1303 
1304 static void gem_rx_refill(struct macb_queue *queue)
1305 {
1306 	unsigned int		entry;
1307 	struct sk_buff		*skb;
1308 	dma_addr_t		paddr;
1309 	struct macb *bp = queue->bp;
1310 	struct macb_dma_desc *desc;
1311 
1312 	while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail,
1313 			bp->rx_ring_size) > 0) {
1314 		entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head);
1315 
1316 		/* Make hw descriptor updates visible to CPU */
1317 		rmb();
1318 
1319 		desc = macb_rx_desc(queue, entry);
1320 
1321 		if (!queue->rx_skbuff[entry]) {
1322 			/* allocate sk_buff for this free entry in ring */
1323 			skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
1324 			if (unlikely(!skb)) {
1325 				netdev_err(bp->dev,
1326 					   "Unable to allocate sk_buff\n");
1327 				break;
1328 			}
1329 
1330 			/* now fill corresponding descriptor entry */
1331 			paddr = dma_map_single(&bp->pdev->dev, skb->data,
1332 					       bp->rx_buffer_size,
1333 					       DMA_FROM_DEVICE);
1334 			if (dma_mapping_error(&bp->pdev->dev, paddr)) {
1335 				dev_kfree_skb(skb);
1336 				break;
1337 			}
1338 
1339 			queue->rx_skbuff[entry] = skb;
1340 
1341 			if (entry == bp->rx_ring_size - 1)
1342 				paddr |= MACB_BIT(RX_WRAP);
1343 			desc->ctrl = 0;
1344 			/* Setting addr clears RX_USED and allows reception,
1345 			 * make sure ctrl is cleared first to avoid a race.
1346 			 */
1347 			dma_wmb();
1348 			macb_set_addr(bp, desc, paddr);
1349 
1350 			/* properly align Ethernet header */
1351 			skb_reserve(skb, NET_IP_ALIGN);
1352 		} else {
1353 			desc->ctrl = 0;
1354 			dma_wmb();
1355 			desc->addr &= ~MACB_BIT(RX_USED);
1356 		}
1357 		queue->rx_prepared_head++;
1358 	}
1359 
1360 	/* Make descriptor updates visible to hardware */
1361 	wmb();
1362 
1363 	netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n",
1364 			queue, queue->rx_prepared_head, queue->rx_tail);
1365 }
1366 
1367 /* Mark DMA descriptors from begin up to and not including end as unused */
1368 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin,
1369 				  unsigned int end)
1370 {
1371 	unsigned int frag;
1372 
1373 	for (frag = begin; frag != end; frag++) {
1374 		struct macb_dma_desc *desc = macb_rx_desc(queue, frag);
1375 
1376 		desc->addr &= ~MACB_BIT(RX_USED);
1377 	}
1378 
1379 	/* Make descriptor updates visible to hardware */
1380 	wmb();
1381 
1382 	/* When this happens, the hardware stats registers for
1383 	 * whatever caused this is updated, so we don't have to record
1384 	 * anything.
1385 	 */
1386 }
1387 
1388 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi,
1389 		  int budget)
1390 {
1391 	struct macb *bp = queue->bp;
1392 	unsigned int		len;
1393 	unsigned int		entry;
1394 	struct sk_buff		*skb;
1395 	struct macb_dma_desc	*desc;
1396 	int			count = 0;
1397 
1398 	while (count < budget) {
1399 		u32 ctrl;
1400 		dma_addr_t addr;
1401 		bool rxused;
1402 
1403 		entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1404 		desc = macb_rx_desc(queue, entry);
1405 
1406 		/* Make hw descriptor updates visible to CPU */
1407 		rmb();
1408 
1409 		rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
1410 		addr = macb_get_addr(bp, desc);
1411 
1412 		if (!rxused)
1413 			break;
1414 
1415 		/* Ensure ctrl is at least as up-to-date as rxused */
1416 		dma_rmb();
1417 
1418 		ctrl = desc->ctrl;
1419 
1420 		queue->rx_tail++;
1421 		count++;
1422 
1423 		if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
1424 			netdev_err(bp->dev,
1425 				   "not whole frame pointed by descriptor\n");
1426 			bp->dev->stats.rx_dropped++;
1427 			queue->stats.rx_dropped++;
1428 			break;
1429 		}
1430 		skb = queue->rx_skbuff[entry];
1431 		if (unlikely(!skb)) {
1432 			netdev_err(bp->dev,
1433 				   "inconsistent Rx descriptor chain\n");
1434 			bp->dev->stats.rx_dropped++;
1435 			queue->stats.rx_dropped++;
1436 			break;
1437 		}
1438 		/* now everything is ready for receiving packet */
1439 		queue->rx_skbuff[entry] = NULL;
1440 		len = ctrl & bp->rx_frm_len_mask;
1441 
1442 		netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
1443 
1444 		skb_put(skb, len);
1445 		dma_unmap_single(&bp->pdev->dev, addr,
1446 				 bp->rx_buffer_size, DMA_FROM_DEVICE);
1447 
1448 		skb->protocol = eth_type_trans(skb, bp->dev);
1449 		skb_checksum_none_assert(skb);
1450 		if (bp->dev->features & NETIF_F_RXCSUM &&
1451 		    !(bp->dev->flags & IFF_PROMISC) &&
1452 		    GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
1453 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1454 
1455 		bp->dev->stats.rx_packets++;
1456 		queue->stats.rx_packets++;
1457 		bp->dev->stats.rx_bytes += skb->len;
1458 		queue->stats.rx_bytes += skb->len;
1459 
1460 		gem_ptp_do_rxstamp(bp, skb, desc);
1461 
1462 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1463 		netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1464 			    skb->len, skb->csum);
1465 		print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
1466 			       skb_mac_header(skb), 16, true);
1467 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
1468 			       skb->data, 32, true);
1469 #endif
1470 
1471 		napi_gro_receive(napi, skb);
1472 	}
1473 
1474 	gem_rx_refill(queue);
1475 
1476 	return count;
1477 }
1478 
1479 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi,
1480 			 unsigned int first_frag, unsigned int last_frag)
1481 {
1482 	unsigned int len;
1483 	unsigned int frag;
1484 	unsigned int offset;
1485 	struct sk_buff *skb;
1486 	struct macb_dma_desc *desc;
1487 	struct macb *bp = queue->bp;
1488 
1489 	desc = macb_rx_desc(queue, last_frag);
1490 	len = desc->ctrl & bp->rx_frm_len_mask;
1491 
1492 	netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
1493 		macb_rx_ring_wrap(bp, first_frag),
1494 		macb_rx_ring_wrap(bp, last_frag), len);
1495 
1496 	/* The ethernet header starts NET_IP_ALIGN bytes into the
1497 	 * first buffer. Since the header is 14 bytes, this makes the
1498 	 * payload word-aligned.
1499 	 *
1500 	 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
1501 	 * the two padding bytes into the skb so that we avoid hitting
1502 	 * the slowpath in memcpy(), and pull them off afterwards.
1503 	 */
1504 	skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
1505 	if (!skb) {
1506 		bp->dev->stats.rx_dropped++;
1507 		for (frag = first_frag; ; frag++) {
1508 			desc = macb_rx_desc(queue, frag);
1509 			desc->addr &= ~MACB_BIT(RX_USED);
1510 			if (frag == last_frag)
1511 				break;
1512 		}
1513 
1514 		/* Make descriptor updates visible to hardware */
1515 		wmb();
1516 
1517 		return 1;
1518 	}
1519 
1520 	offset = 0;
1521 	len += NET_IP_ALIGN;
1522 	skb_checksum_none_assert(skb);
1523 	skb_put(skb, len);
1524 
1525 	for (frag = first_frag; ; frag++) {
1526 		unsigned int frag_len = bp->rx_buffer_size;
1527 
1528 		if (offset + frag_len > len) {
1529 			if (unlikely(frag != last_frag)) {
1530 				dev_kfree_skb_any(skb);
1531 				return -1;
1532 			}
1533 			frag_len = len - offset;
1534 		}
1535 		skb_copy_to_linear_data_offset(skb, offset,
1536 					       macb_rx_buffer(queue, frag),
1537 					       frag_len);
1538 		offset += bp->rx_buffer_size;
1539 		desc = macb_rx_desc(queue, frag);
1540 		desc->addr &= ~MACB_BIT(RX_USED);
1541 
1542 		if (frag == last_frag)
1543 			break;
1544 	}
1545 
1546 	/* Make descriptor updates visible to hardware */
1547 	wmb();
1548 
1549 	__skb_pull(skb, NET_IP_ALIGN);
1550 	skb->protocol = eth_type_trans(skb, bp->dev);
1551 
1552 	bp->dev->stats.rx_packets++;
1553 	bp->dev->stats.rx_bytes += skb->len;
1554 	netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1555 		    skb->len, skb->csum);
1556 	napi_gro_receive(napi, skb);
1557 
1558 	return 0;
1559 }
1560 
1561 static inline void macb_init_rx_ring(struct macb_queue *queue)
1562 {
1563 	struct macb *bp = queue->bp;
1564 	dma_addr_t addr;
1565 	struct macb_dma_desc *desc = NULL;
1566 	int i;
1567 
1568 	addr = queue->rx_buffers_dma;
1569 	for (i = 0; i < bp->rx_ring_size; i++) {
1570 		desc = macb_rx_desc(queue, i);
1571 		macb_set_addr(bp, desc, addr);
1572 		desc->ctrl = 0;
1573 		addr += bp->rx_buffer_size;
1574 	}
1575 	desc->addr |= MACB_BIT(RX_WRAP);
1576 	queue->rx_tail = 0;
1577 }
1578 
1579 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi,
1580 		   int budget)
1581 {
1582 	struct macb *bp = queue->bp;
1583 	bool reset_rx_queue = false;
1584 	int received = 0;
1585 	unsigned int tail;
1586 	int first_frag = -1;
1587 
1588 	for (tail = queue->rx_tail; budget > 0; tail++) {
1589 		struct macb_dma_desc *desc = macb_rx_desc(queue, tail);
1590 		u32 ctrl;
1591 
1592 		/* Make hw descriptor updates visible to CPU */
1593 		rmb();
1594 
1595 		if (!(desc->addr & MACB_BIT(RX_USED)))
1596 			break;
1597 
1598 		/* Ensure ctrl is at least as up-to-date as addr */
1599 		dma_rmb();
1600 
1601 		ctrl = desc->ctrl;
1602 
1603 		if (ctrl & MACB_BIT(RX_SOF)) {
1604 			if (first_frag != -1)
1605 				discard_partial_frame(queue, first_frag, tail);
1606 			first_frag = tail;
1607 		}
1608 
1609 		if (ctrl & MACB_BIT(RX_EOF)) {
1610 			int dropped;
1611 
1612 			if (unlikely(first_frag == -1)) {
1613 				reset_rx_queue = true;
1614 				continue;
1615 			}
1616 
1617 			dropped = macb_rx_frame(queue, napi, first_frag, tail);
1618 			first_frag = -1;
1619 			if (unlikely(dropped < 0)) {
1620 				reset_rx_queue = true;
1621 				continue;
1622 			}
1623 			if (!dropped) {
1624 				received++;
1625 				budget--;
1626 			}
1627 		}
1628 	}
1629 
1630 	if (unlikely(reset_rx_queue)) {
1631 		unsigned long flags;
1632 		u32 ctrl;
1633 
1634 		netdev_err(bp->dev, "RX queue corruption: reset it\n");
1635 
1636 		spin_lock_irqsave(&bp->lock, flags);
1637 
1638 		ctrl = macb_readl(bp, NCR);
1639 		macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1640 
1641 		macb_init_rx_ring(queue);
1642 		queue_writel(queue, RBQP, queue->rx_ring_dma);
1643 
1644 		macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1645 
1646 		spin_unlock_irqrestore(&bp->lock, flags);
1647 		return received;
1648 	}
1649 
1650 	if (first_frag != -1)
1651 		queue->rx_tail = first_frag;
1652 	else
1653 		queue->rx_tail = tail;
1654 
1655 	return received;
1656 }
1657 
1658 static bool macb_rx_pending(struct macb_queue *queue)
1659 {
1660 	struct macb *bp = queue->bp;
1661 	unsigned int		entry;
1662 	struct macb_dma_desc	*desc;
1663 
1664 	entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1665 	desc = macb_rx_desc(queue, entry);
1666 
1667 	/* Make hw descriptor updates visible to CPU */
1668 	rmb();
1669 
1670 	return (desc->addr & MACB_BIT(RX_USED)) != 0;
1671 }
1672 
1673 static int macb_rx_poll(struct napi_struct *napi, int budget)
1674 {
1675 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx);
1676 	struct macb *bp = queue->bp;
1677 	int work_done;
1678 
1679 	work_done = bp->macbgem_ops.mog_rx(queue, napi, budget);
1680 
1681 	netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n",
1682 		    (unsigned int)(queue - bp->queues), work_done, budget);
1683 
1684 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1685 		queue_writel(queue, IER, bp->rx_intr_mask);
1686 
1687 		/* Packet completions only seem to propagate to raise
1688 		 * interrupts when interrupts are enabled at the time, so if
1689 		 * packets were received while interrupts were disabled,
1690 		 * they will not cause another interrupt to be generated when
1691 		 * interrupts are re-enabled.
1692 		 * Check for this case here to avoid losing a wakeup. This can
1693 		 * potentially race with the interrupt handler doing the same
1694 		 * actions if an interrupt is raised just after enabling them,
1695 		 * but this should be harmless.
1696 		 */
1697 		if (macb_rx_pending(queue)) {
1698 			queue_writel(queue, IDR, bp->rx_intr_mask);
1699 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1700 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1701 			netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n");
1702 			napi_schedule(napi);
1703 		}
1704 	}
1705 
1706 	/* TODO: Handle errors */
1707 
1708 	return work_done;
1709 }
1710 
1711 static void macb_tx_restart(struct macb_queue *queue)
1712 {
1713 	struct macb *bp = queue->bp;
1714 	unsigned int head_idx, tbqp;
1715 
1716 	spin_lock(&queue->tx_ptr_lock);
1717 
1718 	if (queue->tx_head == queue->tx_tail)
1719 		goto out_tx_ptr_unlock;
1720 
1721 	tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp);
1722 	tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp));
1723 	head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head));
1724 
1725 	if (tbqp == head_idx)
1726 		goto out_tx_ptr_unlock;
1727 
1728 	spin_lock_irq(&bp->lock);
1729 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1730 	spin_unlock_irq(&bp->lock);
1731 
1732 out_tx_ptr_unlock:
1733 	spin_unlock(&queue->tx_ptr_lock);
1734 }
1735 
1736 static bool macb_tx_complete_pending(struct macb_queue *queue)
1737 {
1738 	bool retval = false;
1739 
1740 	spin_lock(&queue->tx_ptr_lock);
1741 	if (queue->tx_head != queue->tx_tail) {
1742 		/* Make hw descriptor updates visible to CPU */
1743 		rmb();
1744 
1745 		if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED))
1746 			retval = true;
1747 	}
1748 	spin_unlock(&queue->tx_ptr_lock);
1749 	return retval;
1750 }
1751 
1752 static int macb_tx_poll(struct napi_struct *napi, int budget)
1753 {
1754 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx);
1755 	struct macb *bp = queue->bp;
1756 	int work_done;
1757 
1758 	work_done = macb_tx_complete(queue, budget);
1759 
1760 	rmb(); // ensure txubr_pending is up to date
1761 	if (queue->txubr_pending) {
1762 		queue->txubr_pending = false;
1763 		netdev_vdbg(bp->dev, "poll: tx restart\n");
1764 		macb_tx_restart(queue);
1765 	}
1766 
1767 	netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n",
1768 		    (unsigned int)(queue - bp->queues), work_done, budget);
1769 
1770 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1771 		queue_writel(queue, IER, MACB_BIT(TCOMP));
1772 
1773 		/* Packet completions only seem to propagate to raise
1774 		 * interrupts when interrupts are enabled at the time, so if
1775 		 * packets were sent while interrupts were disabled,
1776 		 * they will not cause another interrupt to be generated when
1777 		 * interrupts are re-enabled.
1778 		 * Check for this case here to avoid losing a wakeup. This can
1779 		 * potentially race with the interrupt handler doing the same
1780 		 * actions if an interrupt is raised just after enabling them,
1781 		 * but this should be harmless.
1782 		 */
1783 		if (macb_tx_complete_pending(queue)) {
1784 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1785 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1786 				queue_writel(queue, ISR, MACB_BIT(TCOMP));
1787 			netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n");
1788 			napi_schedule(napi);
1789 		}
1790 	}
1791 
1792 	return work_done;
1793 }
1794 
1795 static void macb_hresp_error_task(struct tasklet_struct *t)
1796 {
1797 	struct macb *bp = from_tasklet(bp, t, hresp_err_tasklet);
1798 	struct net_device *dev = bp->dev;
1799 	struct macb_queue *queue;
1800 	unsigned int q;
1801 	u32 ctrl;
1802 
1803 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1804 		queue_writel(queue, IDR, bp->rx_intr_mask |
1805 					 MACB_TX_INT_FLAGS |
1806 					 MACB_BIT(HRESP));
1807 	}
1808 	ctrl = macb_readl(bp, NCR);
1809 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
1810 	macb_writel(bp, NCR, ctrl);
1811 
1812 	netif_tx_stop_all_queues(dev);
1813 	netif_carrier_off(dev);
1814 
1815 	bp->macbgem_ops.mog_init_rings(bp);
1816 
1817 	/* Initialize TX and RX buffers */
1818 	macb_init_buffers(bp);
1819 
1820 	/* Enable interrupts */
1821 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1822 		queue_writel(queue, IER,
1823 			     bp->rx_intr_mask |
1824 			     MACB_TX_INT_FLAGS |
1825 			     MACB_BIT(HRESP));
1826 
1827 	ctrl |= MACB_BIT(RE) | MACB_BIT(TE);
1828 	macb_writel(bp, NCR, ctrl);
1829 
1830 	netif_carrier_on(dev);
1831 	netif_tx_start_all_queues(dev);
1832 }
1833 
1834 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id)
1835 {
1836 	struct macb_queue *queue = dev_id;
1837 	struct macb *bp = queue->bp;
1838 	u32 status;
1839 
1840 	status = queue_readl(queue, ISR);
1841 
1842 	if (unlikely(!status))
1843 		return IRQ_NONE;
1844 
1845 	spin_lock(&bp->lock);
1846 
1847 	if (status & MACB_BIT(WOL)) {
1848 		queue_writel(queue, IDR, MACB_BIT(WOL));
1849 		macb_writel(bp, WOL, 0);
1850 		netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n",
1851 			    (unsigned int)(queue - bp->queues),
1852 			    (unsigned long)status);
1853 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1854 			queue_writel(queue, ISR, MACB_BIT(WOL));
1855 		pm_wakeup_event(&bp->pdev->dev, 0);
1856 	}
1857 
1858 	spin_unlock(&bp->lock);
1859 
1860 	return IRQ_HANDLED;
1861 }
1862 
1863 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id)
1864 {
1865 	struct macb_queue *queue = dev_id;
1866 	struct macb *bp = queue->bp;
1867 	u32 status;
1868 
1869 	status = queue_readl(queue, ISR);
1870 
1871 	if (unlikely(!status))
1872 		return IRQ_NONE;
1873 
1874 	spin_lock(&bp->lock);
1875 
1876 	if (status & GEM_BIT(WOL)) {
1877 		queue_writel(queue, IDR, GEM_BIT(WOL));
1878 		gem_writel(bp, WOL, 0);
1879 		netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n",
1880 			    (unsigned int)(queue - bp->queues),
1881 			    (unsigned long)status);
1882 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1883 			queue_writel(queue, ISR, GEM_BIT(WOL));
1884 		pm_wakeup_event(&bp->pdev->dev, 0);
1885 	}
1886 
1887 	spin_unlock(&bp->lock);
1888 
1889 	return IRQ_HANDLED;
1890 }
1891 
1892 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1893 {
1894 	struct macb_queue *queue = dev_id;
1895 	struct macb *bp = queue->bp;
1896 	struct net_device *dev = bp->dev;
1897 	u32 status, ctrl;
1898 
1899 	status = queue_readl(queue, ISR);
1900 
1901 	if (unlikely(!status))
1902 		return IRQ_NONE;
1903 
1904 	spin_lock(&bp->lock);
1905 
1906 	while (status) {
1907 		/* close possible race with dev_close */
1908 		if (unlikely(!netif_running(dev))) {
1909 			queue_writel(queue, IDR, -1);
1910 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1911 				queue_writel(queue, ISR, -1);
1912 			break;
1913 		}
1914 
1915 		netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1916 			    (unsigned int)(queue - bp->queues),
1917 			    (unsigned long)status);
1918 
1919 		if (status & bp->rx_intr_mask) {
1920 			/* There's no point taking any more interrupts
1921 			 * until we have processed the buffers. The
1922 			 * scheduling call may fail if the poll routine
1923 			 * is already scheduled, so disable interrupts
1924 			 * now.
1925 			 */
1926 			queue_writel(queue, IDR, bp->rx_intr_mask);
1927 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1928 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1929 
1930 			if (napi_schedule_prep(&queue->napi_rx)) {
1931 				netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1932 				__napi_schedule(&queue->napi_rx);
1933 			}
1934 		}
1935 
1936 		if (status & (MACB_BIT(TCOMP) |
1937 			      MACB_BIT(TXUBR))) {
1938 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1939 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1940 				queue_writel(queue, ISR, MACB_BIT(TCOMP) |
1941 							 MACB_BIT(TXUBR));
1942 
1943 			if (status & MACB_BIT(TXUBR)) {
1944 				queue->txubr_pending = true;
1945 				wmb(); // ensure softirq can see update
1946 			}
1947 
1948 			if (napi_schedule_prep(&queue->napi_tx)) {
1949 				netdev_vdbg(bp->dev, "scheduling TX softirq\n");
1950 				__napi_schedule(&queue->napi_tx);
1951 			}
1952 		}
1953 
1954 		if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1955 			queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1956 			schedule_work(&queue->tx_error_task);
1957 
1958 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1959 				queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1960 
1961 			break;
1962 		}
1963 
1964 		/* Link change detection isn't possible with RMII, so we'll
1965 		 * add that if/when we get our hands on a full-blown MII PHY.
1966 		 */
1967 
1968 		/* There is a hardware issue under heavy load where DMA can
1969 		 * stop, this causes endless "used buffer descriptor read"
1970 		 * interrupts but it can be cleared by re-enabling RX. See
1971 		 * the at91rm9200 manual, section 41.3.1 or the Zynq manual
1972 		 * section 16.7.4 for details. RXUBR is only enabled for
1973 		 * these two versions.
1974 		 */
1975 		if (status & MACB_BIT(RXUBR)) {
1976 			ctrl = macb_readl(bp, NCR);
1977 			macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1978 			wmb();
1979 			macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1980 
1981 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1982 				queue_writel(queue, ISR, MACB_BIT(RXUBR));
1983 		}
1984 
1985 		if (status & MACB_BIT(ISR_ROVR)) {
1986 			/* We missed at least one packet */
1987 			if (macb_is_gem(bp))
1988 				bp->hw_stats.gem.rx_overruns++;
1989 			else
1990 				bp->hw_stats.macb.rx_overruns++;
1991 
1992 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1993 				queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1994 		}
1995 
1996 		if (status & MACB_BIT(HRESP)) {
1997 			tasklet_schedule(&bp->hresp_err_tasklet);
1998 			netdev_err(dev, "DMA bus error: HRESP not OK\n");
1999 
2000 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2001 				queue_writel(queue, ISR, MACB_BIT(HRESP));
2002 		}
2003 		status = queue_readl(queue, ISR);
2004 	}
2005 
2006 	spin_unlock(&bp->lock);
2007 
2008 	return IRQ_HANDLED;
2009 }
2010 
2011 #ifdef CONFIG_NET_POLL_CONTROLLER
2012 /* Polling receive - used by netconsole and other diagnostic tools
2013  * to allow network i/o with interrupts disabled.
2014  */
2015 static void macb_poll_controller(struct net_device *dev)
2016 {
2017 	struct macb *bp = netdev_priv(dev);
2018 	struct macb_queue *queue;
2019 	unsigned long flags;
2020 	unsigned int q;
2021 
2022 	local_irq_save(flags);
2023 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
2024 		macb_interrupt(dev->irq, queue);
2025 	local_irq_restore(flags);
2026 }
2027 #endif
2028 
2029 static unsigned int macb_tx_map(struct macb *bp,
2030 				struct macb_queue *queue,
2031 				struct sk_buff *skb,
2032 				unsigned int hdrlen)
2033 {
2034 	dma_addr_t mapping;
2035 	unsigned int len, entry, i, tx_head = queue->tx_head;
2036 	struct macb_tx_skb *tx_skb = NULL;
2037 	struct macb_dma_desc *desc;
2038 	unsigned int offset, size, count = 0;
2039 	unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
2040 	unsigned int eof = 1, mss_mfs = 0;
2041 	u32 ctrl, lso_ctrl = 0, seq_ctrl = 0;
2042 
2043 	/* LSO */
2044 	if (skb_shinfo(skb)->gso_size != 0) {
2045 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2046 			/* UDP - UFO */
2047 			lso_ctrl = MACB_LSO_UFO_ENABLE;
2048 		else
2049 			/* TCP - TSO */
2050 			lso_ctrl = MACB_LSO_TSO_ENABLE;
2051 	}
2052 
2053 	/* First, map non-paged data */
2054 	len = skb_headlen(skb);
2055 
2056 	/* first buffer length */
2057 	size = hdrlen;
2058 
2059 	offset = 0;
2060 	while (len) {
2061 		entry = macb_tx_ring_wrap(bp, tx_head);
2062 		tx_skb = &queue->tx_skb[entry];
2063 
2064 		mapping = dma_map_single(&bp->pdev->dev,
2065 					 skb->data + offset,
2066 					 size, DMA_TO_DEVICE);
2067 		if (dma_mapping_error(&bp->pdev->dev, mapping))
2068 			goto dma_error;
2069 
2070 		/* Save info to properly release resources */
2071 		tx_skb->skb = NULL;
2072 		tx_skb->mapping = mapping;
2073 		tx_skb->size = size;
2074 		tx_skb->mapped_as_page = false;
2075 
2076 		len -= size;
2077 		offset += size;
2078 		count++;
2079 		tx_head++;
2080 
2081 		size = min(len, bp->max_tx_length);
2082 	}
2083 
2084 	/* Then, map paged data from fragments */
2085 	for (f = 0; f < nr_frags; f++) {
2086 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2087 
2088 		len = skb_frag_size(frag);
2089 		offset = 0;
2090 		while (len) {
2091 			size = min(len, bp->max_tx_length);
2092 			entry = macb_tx_ring_wrap(bp, tx_head);
2093 			tx_skb = &queue->tx_skb[entry];
2094 
2095 			mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
2096 						   offset, size, DMA_TO_DEVICE);
2097 			if (dma_mapping_error(&bp->pdev->dev, mapping))
2098 				goto dma_error;
2099 
2100 			/* Save info to properly release resources */
2101 			tx_skb->skb = NULL;
2102 			tx_skb->mapping = mapping;
2103 			tx_skb->size = size;
2104 			tx_skb->mapped_as_page = true;
2105 
2106 			len -= size;
2107 			offset += size;
2108 			count++;
2109 			tx_head++;
2110 		}
2111 	}
2112 
2113 	/* Should never happen */
2114 	if (unlikely(!tx_skb)) {
2115 		netdev_err(bp->dev, "BUG! empty skb!\n");
2116 		return 0;
2117 	}
2118 
2119 	/* This is the last buffer of the frame: save socket buffer */
2120 	tx_skb->skb = skb;
2121 
2122 	/* Update TX ring: update buffer descriptors in reverse order
2123 	 * to avoid race condition
2124 	 */
2125 
2126 	/* Set 'TX_USED' bit in buffer descriptor at tx_head position
2127 	 * to set the end of TX queue
2128 	 */
2129 	i = tx_head;
2130 	entry = macb_tx_ring_wrap(bp, i);
2131 	ctrl = MACB_BIT(TX_USED);
2132 	desc = macb_tx_desc(queue, entry);
2133 	desc->ctrl = ctrl;
2134 
2135 	if (lso_ctrl) {
2136 		if (lso_ctrl == MACB_LSO_UFO_ENABLE)
2137 			/* include header and FCS in value given to h/w */
2138 			mss_mfs = skb_shinfo(skb)->gso_size +
2139 					skb_transport_offset(skb) +
2140 					ETH_FCS_LEN;
2141 		else /* TSO */ {
2142 			mss_mfs = skb_shinfo(skb)->gso_size;
2143 			/* TCP Sequence Number Source Select
2144 			 * can be set only for TSO
2145 			 */
2146 			seq_ctrl = 0;
2147 		}
2148 	}
2149 
2150 	do {
2151 		i--;
2152 		entry = macb_tx_ring_wrap(bp, i);
2153 		tx_skb = &queue->tx_skb[entry];
2154 		desc = macb_tx_desc(queue, entry);
2155 
2156 		ctrl = (u32)tx_skb->size;
2157 		if (eof) {
2158 			ctrl |= MACB_BIT(TX_LAST);
2159 			eof = 0;
2160 		}
2161 		if (unlikely(entry == (bp->tx_ring_size - 1)))
2162 			ctrl |= MACB_BIT(TX_WRAP);
2163 
2164 		/* First descriptor is header descriptor */
2165 		if (i == queue->tx_head) {
2166 			ctrl |= MACB_BF(TX_LSO, lso_ctrl);
2167 			ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl);
2168 			if ((bp->dev->features & NETIF_F_HW_CSUM) &&
2169 			    skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl &&
2170 			    !ptp_one_step_sync(skb))
2171 				ctrl |= MACB_BIT(TX_NOCRC);
2172 		} else
2173 			/* Only set MSS/MFS on payload descriptors
2174 			 * (second or later descriptor)
2175 			 */
2176 			ctrl |= MACB_BF(MSS_MFS, mss_mfs);
2177 
2178 		/* Set TX buffer descriptor */
2179 		macb_set_addr(bp, desc, tx_skb->mapping);
2180 		/* desc->addr must be visible to hardware before clearing
2181 		 * 'TX_USED' bit in desc->ctrl.
2182 		 */
2183 		wmb();
2184 		desc->ctrl = ctrl;
2185 	} while (i != queue->tx_head);
2186 
2187 	queue->tx_head = tx_head;
2188 
2189 	return count;
2190 
2191 dma_error:
2192 	netdev_err(bp->dev, "TX DMA map failed\n");
2193 
2194 	for (i = queue->tx_head; i != tx_head; i++) {
2195 		tx_skb = macb_tx_skb(queue, i);
2196 
2197 		macb_tx_unmap(bp, tx_skb, 0);
2198 	}
2199 
2200 	return 0;
2201 }
2202 
2203 static netdev_features_t macb_features_check(struct sk_buff *skb,
2204 					     struct net_device *dev,
2205 					     netdev_features_t features)
2206 {
2207 	unsigned int nr_frags, f;
2208 	unsigned int hdrlen;
2209 
2210 	/* Validate LSO compatibility */
2211 
2212 	/* there is only one buffer or protocol is not UDP */
2213 	if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP))
2214 		return features;
2215 
2216 	/* length of header */
2217 	hdrlen = skb_transport_offset(skb);
2218 
2219 	/* For UFO only:
2220 	 * When software supplies two or more payload buffers all payload buffers
2221 	 * apart from the last must be a multiple of 8 bytes in size.
2222 	 */
2223 	if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN))
2224 		return features & ~MACB_NETIF_LSO;
2225 
2226 	nr_frags = skb_shinfo(skb)->nr_frags;
2227 	/* No need to check last fragment */
2228 	nr_frags--;
2229 	for (f = 0; f < nr_frags; f++) {
2230 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2231 
2232 		if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN))
2233 			return features & ~MACB_NETIF_LSO;
2234 	}
2235 	return features;
2236 }
2237 
2238 static inline int macb_clear_csum(struct sk_buff *skb)
2239 {
2240 	/* no change for packets without checksum offloading */
2241 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2242 		return 0;
2243 
2244 	/* make sure we can modify the header */
2245 	if (unlikely(skb_cow_head(skb, 0)))
2246 		return -1;
2247 
2248 	/* initialize checksum field
2249 	 * This is required - at least for Zynq, which otherwise calculates
2250 	 * wrong UDP header checksums for UDP packets with UDP data len <=2
2251 	 */
2252 	*(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
2253 	return 0;
2254 }
2255 
2256 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev)
2257 {
2258 	bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) ||
2259 		      skb_is_nonlinear(*skb);
2260 	int padlen = ETH_ZLEN - (*skb)->len;
2261 	int tailroom = skb_tailroom(*skb);
2262 	struct sk_buff *nskb;
2263 	u32 fcs;
2264 
2265 	if (!(ndev->features & NETIF_F_HW_CSUM) ||
2266 	    !((*skb)->ip_summed != CHECKSUM_PARTIAL) ||
2267 	    skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb))
2268 		return 0;
2269 
2270 	if (padlen <= 0) {
2271 		/* FCS could be appeded to tailroom. */
2272 		if (tailroom >= ETH_FCS_LEN)
2273 			goto add_fcs;
2274 		/* No room for FCS, need to reallocate skb. */
2275 		else
2276 			padlen = ETH_FCS_LEN;
2277 	} else {
2278 		/* Add room for FCS. */
2279 		padlen += ETH_FCS_LEN;
2280 	}
2281 
2282 	if (cloned || tailroom < padlen) {
2283 		nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC);
2284 		if (!nskb)
2285 			return -ENOMEM;
2286 
2287 		dev_consume_skb_any(*skb);
2288 		*skb = nskb;
2289 	}
2290 
2291 	if (padlen > ETH_FCS_LEN)
2292 		skb_put_zero(*skb, padlen - ETH_FCS_LEN);
2293 
2294 add_fcs:
2295 	/* set FCS to packet */
2296 	fcs = crc32_le(~0, (*skb)->data, (*skb)->len);
2297 	fcs = ~fcs;
2298 
2299 	skb_put_u8(*skb, fcs		& 0xff);
2300 	skb_put_u8(*skb, (fcs >> 8)	& 0xff);
2301 	skb_put_u8(*skb, (fcs >> 16)	& 0xff);
2302 	skb_put_u8(*skb, (fcs >> 24)	& 0xff);
2303 
2304 	return 0;
2305 }
2306 
2307 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
2308 {
2309 	u16 queue_index = skb_get_queue_mapping(skb);
2310 	struct macb *bp = netdev_priv(dev);
2311 	struct macb_queue *queue = &bp->queues[queue_index];
2312 	unsigned int desc_cnt, nr_frags, frag_size, f;
2313 	unsigned int hdrlen;
2314 	bool is_lso;
2315 	netdev_tx_t ret = NETDEV_TX_OK;
2316 
2317 	if (macb_clear_csum(skb)) {
2318 		dev_kfree_skb_any(skb);
2319 		return ret;
2320 	}
2321 
2322 	if (macb_pad_and_fcs(&skb, dev)) {
2323 		dev_kfree_skb_any(skb);
2324 		return ret;
2325 	}
2326 
2327 #ifdef CONFIG_MACB_USE_HWSTAMP
2328 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2329 	    (bp->hw_dma_cap & HW_DMA_CAP_PTP))
2330 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2331 #endif
2332 
2333 	is_lso = (skb_shinfo(skb)->gso_size != 0);
2334 
2335 	if (is_lso) {
2336 		/* length of headers */
2337 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2338 			/* only queue eth + ip headers separately for UDP */
2339 			hdrlen = skb_transport_offset(skb);
2340 		else
2341 			hdrlen = skb_tcp_all_headers(skb);
2342 		if (skb_headlen(skb) < hdrlen) {
2343 			netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n");
2344 			/* if this is required, would need to copy to single buffer */
2345 			return NETDEV_TX_BUSY;
2346 		}
2347 	} else
2348 		hdrlen = min(skb_headlen(skb), bp->max_tx_length);
2349 
2350 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
2351 	netdev_vdbg(bp->dev,
2352 		    "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
2353 		    queue_index, skb->len, skb->head, skb->data,
2354 		    skb_tail_pointer(skb), skb_end_pointer(skb));
2355 	print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
2356 		       skb->data, 16, true);
2357 #endif
2358 
2359 	/* Count how many TX buffer descriptors are needed to send this
2360 	 * socket buffer: skb fragments of jumbo frames may need to be
2361 	 * split into many buffer descriptors.
2362 	 */
2363 	if (is_lso && (skb_headlen(skb) > hdrlen))
2364 		/* extra header descriptor if also payload in first buffer */
2365 		desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1;
2366 	else
2367 		desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
2368 	nr_frags = skb_shinfo(skb)->nr_frags;
2369 	for (f = 0; f < nr_frags; f++) {
2370 		frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2371 		desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length);
2372 	}
2373 
2374 	spin_lock_bh(&queue->tx_ptr_lock);
2375 
2376 	/* This is a hard error, log it. */
2377 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail,
2378 		       bp->tx_ring_size) < desc_cnt) {
2379 		netif_stop_subqueue(dev, queue_index);
2380 		netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
2381 			   queue->tx_head, queue->tx_tail);
2382 		ret = NETDEV_TX_BUSY;
2383 		goto unlock;
2384 	}
2385 
2386 	/* Map socket buffer for DMA transfer */
2387 	if (!macb_tx_map(bp, queue, skb, hdrlen)) {
2388 		dev_kfree_skb_any(skb);
2389 		goto unlock;
2390 	}
2391 
2392 	/* Make newly initialized descriptor visible to hardware */
2393 	wmb();
2394 	skb_tx_timestamp(skb);
2395 
2396 	spin_lock_irq(&bp->lock);
2397 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
2398 	spin_unlock_irq(&bp->lock);
2399 
2400 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1)
2401 		netif_stop_subqueue(dev, queue_index);
2402 
2403 unlock:
2404 	spin_unlock_bh(&queue->tx_ptr_lock);
2405 
2406 	return ret;
2407 }
2408 
2409 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
2410 {
2411 	if (!macb_is_gem(bp)) {
2412 		bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
2413 	} else {
2414 		bp->rx_buffer_size = size;
2415 
2416 		if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
2417 			netdev_dbg(bp->dev,
2418 				   "RX buffer must be multiple of %d bytes, expanding\n",
2419 				   RX_BUFFER_MULTIPLE);
2420 			bp->rx_buffer_size =
2421 				roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
2422 		}
2423 	}
2424 
2425 	netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n",
2426 		   bp->dev->mtu, bp->rx_buffer_size);
2427 }
2428 
2429 static void gem_free_rx_buffers(struct macb *bp)
2430 {
2431 	struct sk_buff		*skb;
2432 	struct macb_dma_desc	*desc;
2433 	struct macb_queue *queue;
2434 	dma_addr_t		addr;
2435 	unsigned int q;
2436 	int i;
2437 
2438 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2439 		if (!queue->rx_skbuff)
2440 			continue;
2441 
2442 		for (i = 0; i < bp->rx_ring_size; i++) {
2443 			skb = queue->rx_skbuff[i];
2444 
2445 			if (!skb)
2446 				continue;
2447 
2448 			desc = macb_rx_desc(queue, i);
2449 			addr = macb_get_addr(bp, desc);
2450 
2451 			dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
2452 					DMA_FROM_DEVICE);
2453 			dev_kfree_skb_any(skb);
2454 			skb = NULL;
2455 		}
2456 
2457 		kfree(queue->rx_skbuff);
2458 		queue->rx_skbuff = NULL;
2459 	}
2460 }
2461 
2462 static void macb_free_rx_buffers(struct macb *bp)
2463 {
2464 	struct macb_queue *queue = &bp->queues[0];
2465 
2466 	if (queue->rx_buffers) {
2467 		dma_free_coherent(&bp->pdev->dev,
2468 				  bp->rx_ring_size * bp->rx_buffer_size,
2469 				  queue->rx_buffers, queue->rx_buffers_dma);
2470 		queue->rx_buffers = NULL;
2471 	}
2472 }
2473 
2474 static void macb_free_consistent(struct macb *bp)
2475 {
2476 	struct macb_queue *queue;
2477 	unsigned int q;
2478 	int size;
2479 
2480 	if (bp->rx_ring_tieoff) {
2481 		dma_free_coherent(&bp->pdev->dev, macb_dma_desc_get_size(bp),
2482 				  bp->rx_ring_tieoff, bp->rx_ring_tieoff_dma);
2483 		bp->rx_ring_tieoff = NULL;
2484 	}
2485 
2486 	bp->macbgem_ops.mog_free_rx_buffers(bp);
2487 
2488 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2489 		kfree(queue->tx_skb);
2490 		queue->tx_skb = NULL;
2491 		if (queue->tx_ring) {
2492 			size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2493 			dma_free_coherent(&bp->pdev->dev, size,
2494 					  queue->tx_ring, queue->tx_ring_dma);
2495 			queue->tx_ring = NULL;
2496 		}
2497 		if (queue->rx_ring) {
2498 			size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2499 			dma_free_coherent(&bp->pdev->dev, size,
2500 					  queue->rx_ring, queue->rx_ring_dma);
2501 			queue->rx_ring = NULL;
2502 		}
2503 	}
2504 }
2505 
2506 static int gem_alloc_rx_buffers(struct macb *bp)
2507 {
2508 	struct macb_queue *queue;
2509 	unsigned int q;
2510 	int size;
2511 
2512 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2513 		size = bp->rx_ring_size * sizeof(struct sk_buff *);
2514 		queue->rx_skbuff = kzalloc(size, GFP_KERNEL);
2515 		if (!queue->rx_skbuff)
2516 			return -ENOMEM;
2517 		else
2518 			netdev_dbg(bp->dev,
2519 				   "Allocated %d RX struct sk_buff entries at %p\n",
2520 				   bp->rx_ring_size, queue->rx_skbuff);
2521 	}
2522 	return 0;
2523 }
2524 
2525 static int macb_alloc_rx_buffers(struct macb *bp)
2526 {
2527 	struct macb_queue *queue = &bp->queues[0];
2528 	int size;
2529 
2530 	size = bp->rx_ring_size * bp->rx_buffer_size;
2531 	queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
2532 					    &queue->rx_buffers_dma, GFP_KERNEL);
2533 	if (!queue->rx_buffers)
2534 		return -ENOMEM;
2535 
2536 	netdev_dbg(bp->dev,
2537 		   "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
2538 		   size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers);
2539 	return 0;
2540 }
2541 
2542 static int macb_alloc_consistent(struct macb *bp)
2543 {
2544 	struct macb_queue *queue;
2545 	unsigned int q;
2546 	int size;
2547 
2548 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2549 		size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2550 		queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2551 						    &queue->tx_ring_dma,
2552 						    GFP_KERNEL);
2553 		if (!queue->tx_ring)
2554 			goto out_err;
2555 		netdev_dbg(bp->dev,
2556 			   "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
2557 			   q, size, (unsigned long)queue->tx_ring_dma,
2558 			   queue->tx_ring);
2559 
2560 		size = bp->tx_ring_size * sizeof(struct macb_tx_skb);
2561 		queue->tx_skb = kmalloc(size, GFP_KERNEL);
2562 		if (!queue->tx_skb)
2563 			goto out_err;
2564 
2565 		size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2566 		queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2567 						 &queue->rx_ring_dma, GFP_KERNEL);
2568 		if (!queue->rx_ring)
2569 			goto out_err;
2570 		netdev_dbg(bp->dev,
2571 			   "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
2572 			   size, (unsigned long)queue->rx_ring_dma, queue->rx_ring);
2573 	}
2574 	if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
2575 		goto out_err;
2576 
2577 	/* Required for tie off descriptor for PM cases */
2578 	if (!(bp->caps & MACB_CAPS_QUEUE_DISABLE)) {
2579 		bp->rx_ring_tieoff = dma_alloc_coherent(&bp->pdev->dev,
2580 							macb_dma_desc_get_size(bp),
2581 							&bp->rx_ring_tieoff_dma,
2582 							GFP_KERNEL);
2583 		if (!bp->rx_ring_tieoff)
2584 			goto out_err;
2585 	}
2586 
2587 	return 0;
2588 
2589 out_err:
2590 	macb_free_consistent(bp);
2591 	return -ENOMEM;
2592 }
2593 
2594 static void macb_init_tieoff(struct macb *bp)
2595 {
2596 	struct macb_dma_desc *desc = bp->rx_ring_tieoff;
2597 
2598 	if (bp->caps & MACB_CAPS_QUEUE_DISABLE)
2599 		return;
2600 	/* Setup a wrapping descriptor with no free slots
2601 	 * (WRAP and USED) to tie off/disable unused RX queues.
2602 	 */
2603 	macb_set_addr(bp, desc, MACB_BIT(RX_WRAP) | MACB_BIT(RX_USED));
2604 	desc->ctrl = 0;
2605 }
2606 
2607 static void gem_init_rings(struct macb *bp)
2608 {
2609 	struct macb_queue *queue;
2610 	struct macb_dma_desc *desc = NULL;
2611 	unsigned int q;
2612 	int i;
2613 
2614 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2615 		for (i = 0; i < bp->tx_ring_size; i++) {
2616 			desc = macb_tx_desc(queue, i);
2617 			macb_set_addr(bp, desc, 0);
2618 			desc->ctrl = MACB_BIT(TX_USED);
2619 		}
2620 		desc->ctrl |= MACB_BIT(TX_WRAP);
2621 		queue->tx_head = 0;
2622 		queue->tx_tail = 0;
2623 
2624 		queue->rx_tail = 0;
2625 		queue->rx_prepared_head = 0;
2626 
2627 		gem_rx_refill(queue);
2628 	}
2629 
2630 	macb_init_tieoff(bp);
2631 }
2632 
2633 static void macb_init_rings(struct macb *bp)
2634 {
2635 	int i;
2636 	struct macb_dma_desc *desc = NULL;
2637 
2638 	macb_init_rx_ring(&bp->queues[0]);
2639 
2640 	for (i = 0; i < bp->tx_ring_size; i++) {
2641 		desc = macb_tx_desc(&bp->queues[0], i);
2642 		macb_set_addr(bp, desc, 0);
2643 		desc->ctrl = MACB_BIT(TX_USED);
2644 	}
2645 	bp->queues[0].tx_head = 0;
2646 	bp->queues[0].tx_tail = 0;
2647 	desc->ctrl |= MACB_BIT(TX_WRAP);
2648 
2649 	macb_init_tieoff(bp);
2650 }
2651 
2652 static void macb_reset_hw(struct macb *bp)
2653 {
2654 	struct macb_queue *queue;
2655 	unsigned int q;
2656 	u32 ctrl = macb_readl(bp, NCR);
2657 
2658 	/* Disable RX and TX (XXX: Should we halt the transmission
2659 	 * more gracefully?)
2660 	 */
2661 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
2662 
2663 	/* Clear the stats registers (XXX: Update stats first?) */
2664 	ctrl |= MACB_BIT(CLRSTAT);
2665 
2666 	macb_writel(bp, NCR, ctrl);
2667 
2668 	/* Clear all status flags */
2669 	macb_writel(bp, TSR, -1);
2670 	macb_writel(bp, RSR, -1);
2671 
2672 	/* Disable RX partial store and forward and reset watermark value */
2673 	gem_writel(bp, PBUFRXCUT, 0);
2674 
2675 	/* Disable all interrupts */
2676 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2677 		queue_writel(queue, IDR, -1);
2678 		queue_readl(queue, ISR);
2679 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2680 			queue_writel(queue, ISR, -1);
2681 	}
2682 }
2683 
2684 static u32 gem_mdc_clk_div(struct macb *bp)
2685 {
2686 	u32 config;
2687 	unsigned long pclk_hz = clk_get_rate(bp->pclk);
2688 
2689 	if (pclk_hz <= 20000000)
2690 		config = GEM_BF(CLK, GEM_CLK_DIV8);
2691 	else if (pclk_hz <= 40000000)
2692 		config = GEM_BF(CLK, GEM_CLK_DIV16);
2693 	else if (pclk_hz <= 80000000)
2694 		config = GEM_BF(CLK, GEM_CLK_DIV32);
2695 	else if (pclk_hz <= 120000000)
2696 		config = GEM_BF(CLK, GEM_CLK_DIV48);
2697 	else if (pclk_hz <= 160000000)
2698 		config = GEM_BF(CLK, GEM_CLK_DIV64);
2699 	else if (pclk_hz <= 240000000)
2700 		config = GEM_BF(CLK, GEM_CLK_DIV96);
2701 	else if (pclk_hz <= 320000000)
2702 		config = GEM_BF(CLK, GEM_CLK_DIV128);
2703 	else
2704 		config = GEM_BF(CLK, GEM_CLK_DIV224);
2705 
2706 	return config;
2707 }
2708 
2709 static u32 macb_mdc_clk_div(struct macb *bp)
2710 {
2711 	u32 config;
2712 	unsigned long pclk_hz;
2713 
2714 	if (macb_is_gem(bp))
2715 		return gem_mdc_clk_div(bp);
2716 
2717 	pclk_hz = clk_get_rate(bp->pclk);
2718 	if (pclk_hz <= 20000000)
2719 		config = MACB_BF(CLK, MACB_CLK_DIV8);
2720 	else if (pclk_hz <= 40000000)
2721 		config = MACB_BF(CLK, MACB_CLK_DIV16);
2722 	else if (pclk_hz <= 80000000)
2723 		config = MACB_BF(CLK, MACB_CLK_DIV32);
2724 	else
2725 		config = MACB_BF(CLK, MACB_CLK_DIV64);
2726 
2727 	return config;
2728 }
2729 
2730 /* Get the DMA bus width field of the network configuration register that we
2731  * should program.  We find the width from decoding the design configuration
2732  * register to find the maximum supported data bus width.
2733  */
2734 static u32 macb_dbw(struct macb *bp)
2735 {
2736 	if (!macb_is_gem(bp))
2737 		return 0;
2738 
2739 	switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
2740 	case 4:
2741 		return GEM_BF(DBW, GEM_DBW128);
2742 	case 2:
2743 		return GEM_BF(DBW, GEM_DBW64);
2744 	case 1:
2745 	default:
2746 		return GEM_BF(DBW, GEM_DBW32);
2747 	}
2748 }
2749 
2750 /* Configure the receive DMA engine
2751  * - use the correct receive buffer size
2752  * - set best burst length for DMA operations
2753  *   (if not supported by FIFO, it will fallback to default)
2754  * - set both rx/tx packet buffers to full memory size
2755  * These are configurable parameters for GEM.
2756  */
2757 static void macb_configure_dma(struct macb *bp)
2758 {
2759 	struct macb_queue *queue;
2760 	u32 buffer_size;
2761 	unsigned int q;
2762 	u32 dmacfg;
2763 
2764 	buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE;
2765 	if (macb_is_gem(bp)) {
2766 		dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
2767 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2768 			if (q)
2769 				queue_writel(queue, RBQS, buffer_size);
2770 			else
2771 				dmacfg |= GEM_BF(RXBS, buffer_size);
2772 		}
2773 		if (bp->dma_burst_length)
2774 			dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
2775 		dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
2776 		dmacfg &= ~GEM_BIT(ENDIA_PKT);
2777 
2778 		if (bp->native_io)
2779 			dmacfg &= ~GEM_BIT(ENDIA_DESC);
2780 		else
2781 			dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
2782 
2783 		if (bp->dev->features & NETIF_F_HW_CSUM)
2784 			dmacfg |= GEM_BIT(TXCOEN);
2785 		else
2786 			dmacfg &= ~GEM_BIT(TXCOEN);
2787 
2788 		dmacfg &= ~GEM_BIT(ADDR64);
2789 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2790 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
2791 			dmacfg |= GEM_BIT(ADDR64);
2792 #endif
2793 #ifdef CONFIG_MACB_USE_HWSTAMP
2794 		if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
2795 			dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT);
2796 #endif
2797 		netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
2798 			   dmacfg);
2799 		gem_writel(bp, DMACFG, dmacfg);
2800 	}
2801 }
2802 
2803 static void macb_init_hw(struct macb *bp)
2804 {
2805 	u32 config;
2806 
2807 	macb_reset_hw(bp);
2808 	macb_set_hwaddr(bp);
2809 
2810 	config = macb_mdc_clk_div(bp);
2811 	config |= MACB_BF(RBOF, NET_IP_ALIGN);	/* Make eth data aligned */
2812 	config |= MACB_BIT(DRFCS);		/* Discard Rx FCS */
2813 	if (bp->caps & MACB_CAPS_JUMBO)
2814 		config |= MACB_BIT(JFRAME);	/* Enable jumbo frames */
2815 	else
2816 		config |= MACB_BIT(BIG);	/* Receive oversized frames */
2817 	if (bp->dev->flags & IFF_PROMISC)
2818 		config |= MACB_BIT(CAF);	/* Copy All Frames */
2819 	else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
2820 		config |= GEM_BIT(RXCOEN);
2821 	if (!(bp->dev->flags & IFF_BROADCAST))
2822 		config |= MACB_BIT(NBC);	/* No BroadCast */
2823 	config |= macb_dbw(bp);
2824 	macb_writel(bp, NCFGR, config);
2825 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
2826 		gem_writel(bp, JML, bp->jumbo_max_len);
2827 	bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
2828 	if (bp->caps & MACB_CAPS_JUMBO)
2829 		bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
2830 
2831 	macb_configure_dma(bp);
2832 
2833 	/* Enable RX partial store and forward and set watermark */
2834 	if (bp->rx_watermark)
2835 		gem_writel(bp, PBUFRXCUT, (bp->rx_watermark | GEM_BIT(ENCUTTHRU)));
2836 }
2837 
2838 /* The hash address register is 64 bits long and takes up two
2839  * locations in the memory map.  The least significant bits are stored
2840  * in EMAC_HSL and the most significant bits in EMAC_HSH.
2841  *
2842  * The unicast hash enable and the multicast hash enable bits in the
2843  * network configuration register enable the reception of hash matched
2844  * frames. The destination address is reduced to a 6 bit index into
2845  * the 64 bit hash register using the following hash function.  The
2846  * hash function is an exclusive or of every sixth bit of the
2847  * destination address.
2848  *
2849  * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
2850  * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
2851  * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
2852  * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
2853  * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
2854  * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
2855  *
2856  * da[0] represents the least significant bit of the first byte
2857  * received, that is, the multicast/unicast indicator, and da[47]
2858  * represents the most significant bit of the last byte received.  If
2859  * the hash index, hi[n], points to a bit that is set in the hash
2860  * register then the frame will be matched according to whether the
2861  * frame is multicast or unicast.  A multicast match will be signalled
2862  * if the multicast hash enable bit is set, da[0] is 1 and the hash
2863  * index points to a bit set in the hash register.  A unicast match
2864  * will be signalled if the unicast hash enable bit is set, da[0] is 0
2865  * and the hash index points to a bit set in the hash register.  To
2866  * receive all multicast frames, the hash register should be set with
2867  * all ones and the multicast hash enable bit should be set in the
2868  * network configuration register.
2869  */
2870 
2871 static inline int hash_bit_value(int bitnr, __u8 *addr)
2872 {
2873 	if (addr[bitnr / 8] & (1 << (bitnr % 8)))
2874 		return 1;
2875 	return 0;
2876 }
2877 
2878 /* Return the hash index value for the specified address. */
2879 static int hash_get_index(__u8 *addr)
2880 {
2881 	int i, j, bitval;
2882 	int hash_index = 0;
2883 
2884 	for (j = 0; j < 6; j++) {
2885 		for (i = 0, bitval = 0; i < 8; i++)
2886 			bitval ^= hash_bit_value(i * 6 + j, addr);
2887 
2888 		hash_index |= (bitval << j);
2889 	}
2890 
2891 	return hash_index;
2892 }
2893 
2894 /* Add multicast addresses to the internal multicast-hash table. */
2895 static void macb_sethashtable(struct net_device *dev)
2896 {
2897 	struct netdev_hw_addr *ha;
2898 	unsigned long mc_filter[2];
2899 	unsigned int bitnr;
2900 	struct macb *bp = netdev_priv(dev);
2901 
2902 	mc_filter[0] = 0;
2903 	mc_filter[1] = 0;
2904 
2905 	netdev_for_each_mc_addr(ha, dev) {
2906 		bitnr = hash_get_index(ha->addr);
2907 		mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
2908 	}
2909 
2910 	macb_or_gem_writel(bp, HRB, mc_filter[0]);
2911 	macb_or_gem_writel(bp, HRT, mc_filter[1]);
2912 }
2913 
2914 /* Enable/Disable promiscuous and multicast modes. */
2915 static void macb_set_rx_mode(struct net_device *dev)
2916 {
2917 	unsigned long cfg;
2918 	struct macb *bp = netdev_priv(dev);
2919 
2920 	cfg = macb_readl(bp, NCFGR);
2921 
2922 	if (dev->flags & IFF_PROMISC) {
2923 		/* Enable promiscuous mode */
2924 		cfg |= MACB_BIT(CAF);
2925 
2926 		/* Disable RX checksum offload */
2927 		if (macb_is_gem(bp))
2928 			cfg &= ~GEM_BIT(RXCOEN);
2929 	} else {
2930 		/* Disable promiscuous mode */
2931 		cfg &= ~MACB_BIT(CAF);
2932 
2933 		/* Enable RX checksum offload only if requested */
2934 		if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
2935 			cfg |= GEM_BIT(RXCOEN);
2936 	}
2937 
2938 	if (dev->flags & IFF_ALLMULTI) {
2939 		/* Enable all multicast mode */
2940 		macb_or_gem_writel(bp, HRB, -1);
2941 		macb_or_gem_writel(bp, HRT, -1);
2942 		cfg |= MACB_BIT(NCFGR_MTI);
2943 	} else if (!netdev_mc_empty(dev)) {
2944 		/* Enable specific multicasts */
2945 		macb_sethashtable(dev);
2946 		cfg |= MACB_BIT(NCFGR_MTI);
2947 	} else if (dev->flags & (~IFF_ALLMULTI)) {
2948 		/* Disable all multicast mode */
2949 		macb_or_gem_writel(bp, HRB, 0);
2950 		macb_or_gem_writel(bp, HRT, 0);
2951 		cfg &= ~MACB_BIT(NCFGR_MTI);
2952 	}
2953 
2954 	macb_writel(bp, NCFGR, cfg);
2955 }
2956 
2957 static int macb_open(struct net_device *dev)
2958 {
2959 	size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
2960 	struct macb *bp = netdev_priv(dev);
2961 	struct macb_queue *queue;
2962 	unsigned int q;
2963 	int err;
2964 
2965 	netdev_dbg(bp->dev, "open\n");
2966 
2967 	err = pm_runtime_resume_and_get(&bp->pdev->dev);
2968 	if (err < 0)
2969 		return err;
2970 
2971 	/* RX buffers initialization */
2972 	macb_init_rx_buffer_size(bp, bufsz);
2973 
2974 	err = macb_alloc_consistent(bp);
2975 	if (err) {
2976 		netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
2977 			   err);
2978 		goto pm_exit;
2979 	}
2980 
2981 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2982 		napi_enable(&queue->napi_rx);
2983 		napi_enable(&queue->napi_tx);
2984 	}
2985 
2986 	macb_init_hw(bp);
2987 
2988 	err = phy_power_on(bp->sgmii_phy);
2989 	if (err)
2990 		goto reset_hw;
2991 
2992 	err = macb_phylink_connect(bp);
2993 	if (err)
2994 		goto phy_off;
2995 
2996 	netif_tx_start_all_queues(dev);
2997 
2998 	if (bp->ptp_info)
2999 		bp->ptp_info->ptp_init(dev);
3000 
3001 	return 0;
3002 
3003 phy_off:
3004 	phy_power_off(bp->sgmii_phy);
3005 
3006 reset_hw:
3007 	macb_reset_hw(bp);
3008 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3009 		napi_disable(&queue->napi_rx);
3010 		napi_disable(&queue->napi_tx);
3011 	}
3012 	macb_free_consistent(bp);
3013 pm_exit:
3014 	pm_runtime_put_sync(&bp->pdev->dev);
3015 	return err;
3016 }
3017 
3018 static int macb_close(struct net_device *dev)
3019 {
3020 	struct macb *bp = netdev_priv(dev);
3021 	struct macb_queue *queue;
3022 	unsigned long flags;
3023 	unsigned int q;
3024 
3025 	netif_tx_stop_all_queues(dev);
3026 
3027 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3028 		napi_disable(&queue->napi_rx);
3029 		napi_disable(&queue->napi_tx);
3030 	}
3031 
3032 	phylink_stop(bp->phylink);
3033 	phylink_disconnect_phy(bp->phylink);
3034 
3035 	phy_power_off(bp->sgmii_phy);
3036 
3037 	spin_lock_irqsave(&bp->lock, flags);
3038 	macb_reset_hw(bp);
3039 	netif_carrier_off(dev);
3040 	spin_unlock_irqrestore(&bp->lock, flags);
3041 
3042 	macb_free_consistent(bp);
3043 
3044 	if (bp->ptp_info)
3045 		bp->ptp_info->ptp_remove(dev);
3046 
3047 	pm_runtime_put(&bp->pdev->dev);
3048 
3049 	return 0;
3050 }
3051 
3052 static int macb_change_mtu(struct net_device *dev, int new_mtu)
3053 {
3054 	if (netif_running(dev))
3055 		return -EBUSY;
3056 
3057 	WRITE_ONCE(dev->mtu, new_mtu);
3058 
3059 	return 0;
3060 }
3061 
3062 static int macb_set_mac_addr(struct net_device *dev, void *addr)
3063 {
3064 	int err;
3065 
3066 	err = eth_mac_addr(dev, addr);
3067 	if (err < 0)
3068 		return err;
3069 
3070 	macb_set_hwaddr(netdev_priv(dev));
3071 	return 0;
3072 }
3073 
3074 static void gem_update_stats(struct macb *bp)
3075 {
3076 	struct macb_queue *queue;
3077 	unsigned int i, q, idx;
3078 	unsigned long *stat;
3079 
3080 	u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
3081 
3082 	for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
3083 		u32 offset = gem_statistics[i].offset;
3084 		u64 val = bp->macb_reg_readl(bp, offset);
3085 
3086 		bp->ethtool_stats[i] += val;
3087 		*p += val;
3088 
3089 		if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
3090 			/* Add GEM_OCTTXH, GEM_OCTRXH */
3091 			val = bp->macb_reg_readl(bp, offset + 4);
3092 			bp->ethtool_stats[i] += ((u64)val) << 32;
3093 			*(++p) += val;
3094 		}
3095 	}
3096 
3097 	idx = GEM_STATS_LEN;
3098 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
3099 		for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat)
3100 			bp->ethtool_stats[idx++] = *stat;
3101 }
3102 
3103 static struct net_device_stats *gem_get_stats(struct macb *bp)
3104 {
3105 	struct gem_stats *hwstat = &bp->hw_stats.gem;
3106 	struct net_device_stats *nstat = &bp->dev->stats;
3107 
3108 	if (!netif_running(bp->dev))
3109 		return nstat;
3110 
3111 	gem_update_stats(bp);
3112 
3113 	nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
3114 			    hwstat->rx_alignment_errors +
3115 			    hwstat->rx_resource_errors +
3116 			    hwstat->rx_overruns +
3117 			    hwstat->rx_oversize_frames +
3118 			    hwstat->rx_jabbers +
3119 			    hwstat->rx_undersized_frames +
3120 			    hwstat->rx_length_field_frame_errors);
3121 	nstat->tx_errors = (hwstat->tx_late_collisions +
3122 			    hwstat->tx_excessive_collisions +
3123 			    hwstat->tx_underrun +
3124 			    hwstat->tx_carrier_sense_errors);
3125 	nstat->multicast = hwstat->rx_multicast_frames;
3126 	nstat->collisions = (hwstat->tx_single_collision_frames +
3127 			     hwstat->tx_multiple_collision_frames +
3128 			     hwstat->tx_excessive_collisions);
3129 	nstat->rx_length_errors = (hwstat->rx_oversize_frames +
3130 				   hwstat->rx_jabbers +
3131 				   hwstat->rx_undersized_frames +
3132 				   hwstat->rx_length_field_frame_errors);
3133 	nstat->rx_over_errors = hwstat->rx_resource_errors;
3134 	nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
3135 	nstat->rx_frame_errors = hwstat->rx_alignment_errors;
3136 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3137 	nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
3138 	nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
3139 	nstat->tx_fifo_errors = hwstat->tx_underrun;
3140 
3141 	return nstat;
3142 }
3143 
3144 static void gem_get_ethtool_stats(struct net_device *dev,
3145 				  struct ethtool_stats *stats, u64 *data)
3146 {
3147 	struct macb *bp;
3148 
3149 	bp = netdev_priv(dev);
3150 	gem_update_stats(bp);
3151 	memcpy(data, &bp->ethtool_stats, sizeof(u64)
3152 			* (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES));
3153 }
3154 
3155 static int gem_get_sset_count(struct net_device *dev, int sset)
3156 {
3157 	struct macb *bp = netdev_priv(dev);
3158 
3159 	switch (sset) {
3160 	case ETH_SS_STATS:
3161 		return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN;
3162 	default:
3163 		return -EOPNOTSUPP;
3164 	}
3165 }
3166 
3167 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
3168 {
3169 	char stat_string[ETH_GSTRING_LEN];
3170 	struct macb *bp = netdev_priv(dev);
3171 	struct macb_queue *queue;
3172 	unsigned int i;
3173 	unsigned int q;
3174 
3175 	switch (sset) {
3176 	case ETH_SS_STATS:
3177 		for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
3178 			memcpy(p, gem_statistics[i].stat_string,
3179 			       ETH_GSTRING_LEN);
3180 
3181 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3182 			for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) {
3183 				snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s",
3184 						q, queue_statistics[i].stat_string);
3185 				memcpy(p, stat_string, ETH_GSTRING_LEN);
3186 			}
3187 		}
3188 		break;
3189 	}
3190 }
3191 
3192 static struct net_device_stats *macb_get_stats(struct net_device *dev)
3193 {
3194 	struct macb *bp = netdev_priv(dev);
3195 	struct net_device_stats *nstat = &bp->dev->stats;
3196 	struct macb_stats *hwstat = &bp->hw_stats.macb;
3197 
3198 	if (macb_is_gem(bp))
3199 		return gem_get_stats(bp);
3200 
3201 	/* read stats from hardware */
3202 	macb_update_stats(bp);
3203 
3204 	/* Convert HW stats into netdevice stats */
3205 	nstat->rx_errors = (hwstat->rx_fcs_errors +
3206 			    hwstat->rx_align_errors +
3207 			    hwstat->rx_resource_errors +
3208 			    hwstat->rx_overruns +
3209 			    hwstat->rx_oversize_pkts +
3210 			    hwstat->rx_jabbers +
3211 			    hwstat->rx_undersize_pkts +
3212 			    hwstat->rx_length_mismatch);
3213 	nstat->tx_errors = (hwstat->tx_late_cols +
3214 			    hwstat->tx_excessive_cols +
3215 			    hwstat->tx_underruns +
3216 			    hwstat->tx_carrier_errors +
3217 			    hwstat->sqe_test_errors);
3218 	nstat->collisions = (hwstat->tx_single_cols +
3219 			     hwstat->tx_multiple_cols +
3220 			     hwstat->tx_excessive_cols);
3221 	nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
3222 				   hwstat->rx_jabbers +
3223 				   hwstat->rx_undersize_pkts +
3224 				   hwstat->rx_length_mismatch);
3225 	nstat->rx_over_errors = hwstat->rx_resource_errors +
3226 				   hwstat->rx_overruns;
3227 	nstat->rx_crc_errors = hwstat->rx_fcs_errors;
3228 	nstat->rx_frame_errors = hwstat->rx_align_errors;
3229 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3230 	/* XXX: What does "missed" mean? */
3231 	nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
3232 	nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
3233 	nstat->tx_fifo_errors = hwstat->tx_underruns;
3234 	/* Don't know about heartbeat or window errors... */
3235 
3236 	return nstat;
3237 }
3238 
3239 static int macb_get_regs_len(struct net_device *netdev)
3240 {
3241 	return MACB_GREGS_NBR * sizeof(u32);
3242 }
3243 
3244 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
3245 			  void *p)
3246 {
3247 	struct macb *bp = netdev_priv(dev);
3248 	unsigned int tail, head;
3249 	u32 *regs_buff = p;
3250 
3251 	regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
3252 			| MACB_GREGS_VERSION;
3253 
3254 	tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail);
3255 	head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head);
3256 
3257 	regs_buff[0]  = macb_readl(bp, NCR);
3258 	regs_buff[1]  = macb_or_gem_readl(bp, NCFGR);
3259 	regs_buff[2]  = macb_readl(bp, NSR);
3260 	regs_buff[3]  = macb_readl(bp, TSR);
3261 	regs_buff[4]  = macb_readl(bp, RBQP);
3262 	regs_buff[5]  = macb_readl(bp, TBQP);
3263 	regs_buff[6]  = macb_readl(bp, RSR);
3264 	regs_buff[7]  = macb_readl(bp, IMR);
3265 
3266 	regs_buff[8]  = tail;
3267 	regs_buff[9]  = head;
3268 	regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
3269 	regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
3270 
3271 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
3272 		regs_buff[12] = macb_or_gem_readl(bp, USRIO);
3273 	if (macb_is_gem(bp))
3274 		regs_buff[13] = gem_readl(bp, DMACFG);
3275 }
3276 
3277 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3278 {
3279 	struct macb *bp = netdev_priv(netdev);
3280 
3281 	phylink_ethtool_get_wol(bp->phylink, wol);
3282 	wol->supported |= (WAKE_MAGIC | WAKE_ARP);
3283 
3284 	/* Add macb wolopts to phy wolopts */
3285 	wol->wolopts |= bp->wolopts;
3286 }
3287 
3288 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3289 {
3290 	struct macb *bp = netdev_priv(netdev);
3291 	int ret;
3292 
3293 	/* Pass the order to phylink layer */
3294 	ret = phylink_ethtool_set_wol(bp->phylink, wol);
3295 	/* Don't manage WoL on MAC, if PHY set_wol() fails */
3296 	if (ret && ret != -EOPNOTSUPP)
3297 		return ret;
3298 
3299 	bp->wolopts = (wol->wolopts & WAKE_MAGIC) ? WAKE_MAGIC : 0;
3300 	bp->wolopts |= (wol->wolopts & WAKE_ARP) ? WAKE_ARP : 0;
3301 	bp->wol = (wol->wolopts) ? MACB_WOL_ENABLED : 0;
3302 
3303 	device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
3304 
3305 	return 0;
3306 }
3307 
3308 static int macb_get_link_ksettings(struct net_device *netdev,
3309 				   struct ethtool_link_ksettings *kset)
3310 {
3311 	struct macb *bp = netdev_priv(netdev);
3312 
3313 	return phylink_ethtool_ksettings_get(bp->phylink, kset);
3314 }
3315 
3316 static int macb_set_link_ksettings(struct net_device *netdev,
3317 				   const struct ethtool_link_ksettings *kset)
3318 {
3319 	struct macb *bp = netdev_priv(netdev);
3320 
3321 	return phylink_ethtool_ksettings_set(bp->phylink, kset);
3322 }
3323 
3324 static void macb_get_ringparam(struct net_device *netdev,
3325 			       struct ethtool_ringparam *ring,
3326 			       struct kernel_ethtool_ringparam *kernel_ring,
3327 			       struct netlink_ext_ack *extack)
3328 {
3329 	struct macb *bp = netdev_priv(netdev);
3330 
3331 	ring->rx_max_pending = MAX_RX_RING_SIZE;
3332 	ring->tx_max_pending = MAX_TX_RING_SIZE;
3333 
3334 	ring->rx_pending = bp->rx_ring_size;
3335 	ring->tx_pending = bp->tx_ring_size;
3336 }
3337 
3338 static int macb_set_ringparam(struct net_device *netdev,
3339 			      struct ethtool_ringparam *ring,
3340 			      struct kernel_ethtool_ringparam *kernel_ring,
3341 			      struct netlink_ext_ack *extack)
3342 {
3343 	struct macb *bp = netdev_priv(netdev);
3344 	u32 new_rx_size, new_tx_size;
3345 	unsigned int reset = 0;
3346 
3347 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
3348 		return -EINVAL;
3349 
3350 	new_rx_size = clamp_t(u32, ring->rx_pending,
3351 			      MIN_RX_RING_SIZE, MAX_RX_RING_SIZE);
3352 	new_rx_size = roundup_pow_of_two(new_rx_size);
3353 
3354 	new_tx_size = clamp_t(u32, ring->tx_pending,
3355 			      MIN_TX_RING_SIZE, MAX_TX_RING_SIZE);
3356 	new_tx_size = roundup_pow_of_two(new_tx_size);
3357 
3358 	if ((new_tx_size == bp->tx_ring_size) &&
3359 	    (new_rx_size == bp->rx_ring_size)) {
3360 		/* nothing to do */
3361 		return 0;
3362 	}
3363 
3364 	if (netif_running(bp->dev)) {
3365 		reset = 1;
3366 		macb_close(bp->dev);
3367 	}
3368 
3369 	bp->rx_ring_size = new_rx_size;
3370 	bp->tx_ring_size = new_tx_size;
3371 
3372 	if (reset)
3373 		macb_open(bp->dev);
3374 
3375 	return 0;
3376 }
3377 
3378 #ifdef CONFIG_MACB_USE_HWSTAMP
3379 static unsigned int gem_get_tsu_rate(struct macb *bp)
3380 {
3381 	struct clk *tsu_clk;
3382 	unsigned int tsu_rate;
3383 
3384 	tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk");
3385 	if (!IS_ERR(tsu_clk))
3386 		tsu_rate = clk_get_rate(tsu_clk);
3387 	/* try pclk instead */
3388 	else if (!IS_ERR(bp->pclk)) {
3389 		tsu_clk = bp->pclk;
3390 		tsu_rate = clk_get_rate(tsu_clk);
3391 	} else
3392 		return -ENOTSUPP;
3393 	return tsu_rate;
3394 }
3395 
3396 static s32 gem_get_ptp_max_adj(void)
3397 {
3398 	return 64000000;
3399 }
3400 
3401 static int gem_get_ts_info(struct net_device *dev,
3402 			   struct kernel_ethtool_ts_info *info)
3403 {
3404 	struct macb *bp = netdev_priv(dev);
3405 
3406 	if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) {
3407 		ethtool_op_get_ts_info(dev, info);
3408 		return 0;
3409 	}
3410 
3411 	info->so_timestamping =
3412 		SOF_TIMESTAMPING_TX_SOFTWARE |
3413 		SOF_TIMESTAMPING_RX_SOFTWARE |
3414 		SOF_TIMESTAMPING_SOFTWARE |
3415 		SOF_TIMESTAMPING_TX_HARDWARE |
3416 		SOF_TIMESTAMPING_RX_HARDWARE |
3417 		SOF_TIMESTAMPING_RAW_HARDWARE;
3418 	info->tx_types =
3419 		(1 << HWTSTAMP_TX_ONESTEP_SYNC) |
3420 		(1 << HWTSTAMP_TX_OFF) |
3421 		(1 << HWTSTAMP_TX_ON);
3422 	info->rx_filters =
3423 		(1 << HWTSTAMP_FILTER_NONE) |
3424 		(1 << HWTSTAMP_FILTER_ALL);
3425 
3426 	info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1;
3427 
3428 	return 0;
3429 }
3430 
3431 static struct macb_ptp_info gem_ptp_info = {
3432 	.ptp_init	 = gem_ptp_init,
3433 	.ptp_remove	 = gem_ptp_remove,
3434 	.get_ptp_max_adj = gem_get_ptp_max_adj,
3435 	.get_tsu_rate	 = gem_get_tsu_rate,
3436 	.get_ts_info	 = gem_get_ts_info,
3437 	.get_hwtst	 = gem_get_hwtst,
3438 	.set_hwtst	 = gem_set_hwtst,
3439 };
3440 #endif
3441 
3442 static int macb_get_ts_info(struct net_device *netdev,
3443 			    struct kernel_ethtool_ts_info *info)
3444 {
3445 	struct macb *bp = netdev_priv(netdev);
3446 
3447 	if (bp->ptp_info)
3448 		return bp->ptp_info->get_ts_info(netdev, info);
3449 
3450 	return ethtool_op_get_ts_info(netdev, info);
3451 }
3452 
3453 static void gem_enable_flow_filters(struct macb *bp, bool enable)
3454 {
3455 	struct net_device *netdev = bp->dev;
3456 	struct ethtool_rx_fs_item *item;
3457 	u32 t2_scr;
3458 	int num_t2_scr;
3459 
3460 	if (!(netdev->features & NETIF_F_NTUPLE))
3461 		return;
3462 
3463 	num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8));
3464 
3465 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3466 		struct ethtool_rx_flow_spec *fs = &item->fs;
3467 		struct ethtool_tcpip4_spec *tp4sp_m;
3468 
3469 		if (fs->location >= num_t2_scr)
3470 			continue;
3471 
3472 		t2_scr = gem_readl_n(bp, SCRT2, fs->location);
3473 
3474 		/* enable/disable screener regs for the flow entry */
3475 		t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr);
3476 
3477 		/* only enable fields with no masking */
3478 		tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3479 
3480 		if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF))
3481 			t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr);
3482 		else
3483 			t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr);
3484 
3485 		if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF))
3486 			t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr);
3487 		else
3488 			t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr);
3489 
3490 		if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)))
3491 			t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr);
3492 		else
3493 			t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr);
3494 
3495 		gem_writel_n(bp, SCRT2, fs->location, t2_scr);
3496 	}
3497 }
3498 
3499 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs)
3500 {
3501 	struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m;
3502 	uint16_t index = fs->location;
3503 	u32 w0, w1, t2_scr;
3504 	bool cmp_a = false;
3505 	bool cmp_b = false;
3506 	bool cmp_c = false;
3507 
3508 	if (!macb_is_gem(bp))
3509 		return;
3510 
3511 	tp4sp_v = &(fs->h_u.tcp_ip4_spec);
3512 	tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3513 
3514 	/* ignore field if any masking set */
3515 	if (tp4sp_m->ip4src == 0xFFFFFFFF) {
3516 		/* 1st compare reg - IP source address */
3517 		w0 = 0;
3518 		w1 = 0;
3519 		w0 = tp4sp_v->ip4src;
3520 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3521 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3522 		w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1);
3523 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0);
3524 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1);
3525 		cmp_a = true;
3526 	}
3527 
3528 	/* ignore field if any masking set */
3529 	if (tp4sp_m->ip4dst == 0xFFFFFFFF) {
3530 		/* 2nd compare reg - IP destination address */
3531 		w0 = 0;
3532 		w1 = 0;
3533 		w0 = tp4sp_v->ip4dst;
3534 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3535 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3536 		w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1);
3537 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0);
3538 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1);
3539 		cmp_b = true;
3540 	}
3541 
3542 	/* ignore both port fields if masking set in both */
3543 	if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) {
3544 		/* 3rd compare reg - source port, destination port */
3545 		w0 = 0;
3546 		w1 = 0;
3547 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1);
3548 		if (tp4sp_m->psrc == tp4sp_m->pdst) {
3549 			w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0);
3550 			w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3551 			w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3552 			w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3553 		} else {
3554 			/* only one port definition */
3555 			w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */
3556 			w0 = GEM_BFINS(T2MASK, 0xFFFF, w0);
3557 			if (tp4sp_m->psrc == 0xFFFF) { /* src port */
3558 				w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0);
3559 				w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3560 			} else { /* dst port */
3561 				w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3562 				w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1);
3563 			}
3564 		}
3565 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0);
3566 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1);
3567 		cmp_c = true;
3568 	}
3569 
3570 	t2_scr = 0;
3571 	t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr);
3572 	t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr);
3573 	if (cmp_a)
3574 		t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr);
3575 	if (cmp_b)
3576 		t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr);
3577 	if (cmp_c)
3578 		t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr);
3579 	gem_writel_n(bp, SCRT2, index, t2_scr);
3580 }
3581 
3582 static int gem_add_flow_filter(struct net_device *netdev,
3583 		struct ethtool_rxnfc *cmd)
3584 {
3585 	struct macb *bp = netdev_priv(netdev);
3586 	struct ethtool_rx_flow_spec *fs = &cmd->fs;
3587 	struct ethtool_rx_fs_item *item, *newfs;
3588 	unsigned long flags;
3589 	int ret = -EINVAL;
3590 	bool added = false;
3591 
3592 	newfs = kmalloc(sizeof(*newfs), GFP_KERNEL);
3593 	if (newfs == NULL)
3594 		return -ENOMEM;
3595 	memcpy(&newfs->fs, fs, sizeof(newfs->fs));
3596 
3597 	netdev_dbg(netdev,
3598 			"Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3599 			fs->flow_type, (int)fs->ring_cookie, fs->location,
3600 			htonl(fs->h_u.tcp_ip4_spec.ip4src),
3601 			htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3602 			be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3603 			be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3604 
3605 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3606 
3607 	/* find correct place to add in list */
3608 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3609 		if (item->fs.location > newfs->fs.location) {
3610 			list_add_tail(&newfs->list, &item->list);
3611 			added = true;
3612 			break;
3613 		} else if (item->fs.location == fs->location) {
3614 			netdev_err(netdev, "Rule not added: location %d not free!\n",
3615 					fs->location);
3616 			ret = -EBUSY;
3617 			goto err;
3618 		}
3619 	}
3620 	if (!added)
3621 		list_add_tail(&newfs->list, &bp->rx_fs_list.list);
3622 
3623 	gem_prog_cmp_regs(bp, fs);
3624 	bp->rx_fs_list.count++;
3625 	/* enable filtering if NTUPLE on */
3626 	gem_enable_flow_filters(bp, 1);
3627 
3628 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3629 	return 0;
3630 
3631 err:
3632 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3633 	kfree(newfs);
3634 	return ret;
3635 }
3636 
3637 static int gem_del_flow_filter(struct net_device *netdev,
3638 		struct ethtool_rxnfc *cmd)
3639 {
3640 	struct macb *bp = netdev_priv(netdev);
3641 	struct ethtool_rx_fs_item *item;
3642 	struct ethtool_rx_flow_spec *fs;
3643 	unsigned long flags;
3644 
3645 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3646 
3647 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3648 		if (item->fs.location == cmd->fs.location) {
3649 			/* disable screener regs for the flow entry */
3650 			fs = &(item->fs);
3651 			netdev_dbg(netdev,
3652 					"Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3653 					fs->flow_type, (int)fs->ring_cookie, fs->location,
3654 					htonl(fs->h_u.tcp_ip4_spec.ip4src),
3655 					htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3656 					be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3657 					be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3658 
3659 			gem_writel_n(bp, SCRT2, fs->location, 0);
3660 
3661 			list_del(&item->list);
3662 			bp->rx_fs_list.count--;
3663 			spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3664 			kfree(item);
3665 			return 0;
3666 		}
3667 	}
3668 
3669 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3670 	return -EINVAL;
3671 }
3672 
3673 static int gem_get_flow_entry(struct net_device *netdev,
3674 		struct ethtool_rxnfc *cmd)
3675 {
3676 	struct macb *bp = netdev_priv(netdev);
3677 	struct ethtool_rx_fs_item *item;
3678 
3679 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3680 		if (item->fs.location == cmd->fs.location) {
3681 			memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs));
3682 			return 0;
3683 		}
3684 	}
3685 	return -EINVAL;
3686 }
3687 
3688 static int gem_get_all_flow_entries(struct net_device *netdev,
3689 		struct ethtool_rxnfc *cmd, u32 *rule_locs)
3690 {
3691 	struct macb *bp = netdev_priv(netdev);
3692 	struct ethtool_rx_fs_item *item;
3693 	uint32_t cnt = 0;
3694 
3695 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3696 		if (cnt == cmd->rule_cnt)
3697 			return -EMSGSIZE;
3698 		rule_locs[cnt] = item->fs.location;
3699 		cnt++;
3700 	}
3701 	cmd->data = bp->max_tuples;
3702 	cmd->rule_cnt = cnt;
3703 
3704 	return 0;
3705 }
3706 
3707 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3708 		u32 *rule_locs)
3709 {
3710 	struct macb *bp = netdev_priv(netdev);
3711 	int ret = 0;
3712 
3713 	switch (cmd->cmd) {
3714 	case ETHTOOL_GRXRINGS:
3715 		cmd->data = bp->num_queues;
3716 		break;
3717 	case ETHTOOL_GRXCLSRLCNT:
3718 		cmd->rule_cnt = bp->rx_fs_list.count;
3719 		break;
3720 	case ETHTOOL_GRXCLSRULE:
3721 		ret = gem_get_flow_entry(netdev, cmd);
3722 		break;
3723 	case ETHTOOL_GRXCLSRLALL:
3724 		ret = gem_get_all_flow_entries(netdev, cmd, rule_locs);
3725 		break;
3726 	default:
3727 		netdev_err(netdev,
3728 			  "Command parameter %d is not supported\n", cmd->cmd);
3729 		ret = -EOPNOTSUPP;
3730 	}
3731 
3732 	return ret;
3733 }
3734 
3735 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3736 {
3737 	struct macb *bp = netdev_priv(netdev);
3738 	int ret;
3739 
3740 	switch (cmd->cmd) {
3741 	case ETHTOOL_SRXCLSRLINS:
3742 		if ((cmd->fs.location >= bp->max_tuples)
3743 				|| (cmd->fs.ring_cookie >= bp->num_queues)) {
3744 			ret = -EINVAL;
3745 			break;
3746 		}
3747 		ret = gem_add_flow_filter(netdev, cmd);
3748 		break;
3749 	case ETHTOOL_SRXCLSRLDEL:
3750 		ret = gem_del_flow_filter(netdev, cmd);
3751 		break;
3752 	default:
3753 		netdev_err(netdev,
3754 			  "Command parameter %d is not supported\n", cmd->cmd);
3755 		ret = -EOPNOTSUPP;
3756 	}
3757 
3758 	return ret;
3759 }
3760 
3761 static const struct ethtool_ops macb_ethtool_ops = {
3762 	.get_regs_len		= macb_get_regs_len,
3763 	.get_regs		= macb_get_regs,
3764 	.get_link		= ethtool_op_get_link,
3765 	.get_ts_info		= ethtool_op_get_ts_info,
3766 	.get_wol		= macb_get_wol,
3767 	.set_wol		= macb_set_wol,
3768 	.get_link_ksettings     = macb_get_link_ksettings,
3769 	.set_link_ksettings     = macb_set_link_ksettings,
3770 	.get_ringparam		= macb_get_ringparam,
3771 	.set_ringparam		= macb_set_ringparam,
3772 };
3773 
3774 static const struct ethtool_ops gem_ethtool_ops = {
3775 	.get_regs_len		= macb_get_regs_len,
3776 	.get_regs		= macb_get_regs,
3777 	.get_wol		= macb_get_wol,
3778 	.set_wol		= macb_set_wol,
3779 	.get_link		= ethtool_op_get_link,
3780 	.get_ts_info		= macb_get_ts_info,
3781 	.get_ethtool_stats	= gem_get_ethtool_stats,
3782 	.get_strings		= gem_get_ethtool_strings,
3783 	.get_sset_count		= gem_get_sset_count,
3784 	.get_link_ksettings     = macb_get_link_ksettings,
3785 	.set_link_ksettings     = macb_set_link_ksettings,
3786 	.get_ringparam		= macb_get_ringparam,
3787 	.set_ringparam		= macb_set_ringparam,
3788 	.get_rxnfc			= gem_get_rxnfc,
3789 	.set_rxnfc			= gem_set_rxnfc,
3790 };
3791 
3792 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3793 {
3794 	struct macb *bp = netdev_priv(dev);
3795 
3796 	if (!netif_running(dev))
3797 		return -EINVAL;
3798 
3799 	return phylink_mii_ioctl(bp->phylink, rq, cmd);
3800 }
3801 
3802 static int macb_hwtstamp_get(struct net_device *dev,
3803 			     struct kernel_hwtstamp_config *cfg)
3804 {
3805 	struct macb *bp = netdev_priv(dev);
3806 
3807 	if (!netif_running(dev))
3808 		return -EINVAL;
3809 
3810 	if (!bp->ptp_info)
3811 		return -EOPNOTSUPP;
3812 
3813 	return bp->ptp_info->get_hwtst(dev, cfg);
3814 }
3815 
3816 static int macb_hwtstamp_set(struct net_device *dev,
3817 			     struct kernel_hwtstamp_config *cfg,
3818 			     struct netlink_ext_ack *extack)
3819 {
3820 	struct macb *bp = netdev_priv(dev);
3821 
3822 	if (!netif_running(dev))
3823 		return -EINVAL;
3824 
3825 	if (!bp->ptp_info)
3826 		return -EOPNOTSUPP;
3827 
3828 	return bp->ptp_info->set_hwtst(dev, cfg, extack);
3829 }
3830 
3831 static inline void macb_set_txcsum_feature(struct macb *bp,
3832 					   netdev_features_t features)
3833 {
3834 	u32 val;
3835 
3836 	if (!macb_is_gem(bp))
3837 		return;
3838 
3839 	val = gem_readl(bp, DMACFG);
3840 	if (features & NETIF_F_HW_CSUM)
3841 		val |= GEM_BIT(TXCOEN);
3842 	else
3843 		val &= ~GEM_BIT(TXCOEN);
3844 
3845 	gem_writel(bp, DMACFG, val);
3846 }
3847 
3848 static inline void macb_set_rxcsum_feature(struct macb *bp,
3849 					   netdev_features_t features)
3850 {
3851 	struct net_device *netdev = bp->dev;
3852 	u32 val;
3853 
3854 	if (!macb_is_gem(bp))
3855 		return;
3856 
3857 	val = gem_readl(bp, NCFGR);
3858 	if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC))
3859 		val |= GEM_BIT(RXCOEN);
3860 	else
3861 		val &= ~GEM_BIT(RXCOEN);
3862 
3863 	gem_writel(bp, NCFGR, val);
3864 }
3865 
3866 static inline void macb_set_rxflow_feature(struct macb *bp,
3867 					   netdev_features_t features)
3868 {
3869 	if (!macb_is_gem(bp))
3870 		return;
3871 
3872 	gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE));
3873 }
3874 
3875 static int macb_set_features(struct net_device *netdev,
3876 			     netdev_features_t features)
3877 {
3878 	struct macb *bp = netdev_priv(netdev);
3879 	netdev_features_t changed = features ^ netdev->features;
3880 
3881 	/* TX checksum offload */
3882 	if (changed & NETIF_F_HW_CSUM)
3883 		macb_set_txcsum_feature(bp, features);
3884 
3885 	/* RX checksum offload */
3886 	if (changed & NETIF_F_RXCSUM)
3887 		macb_set_rxcsum_feature(bp, features);
3888 
3889 	/* RX Flow Filters */
3890 	if (changed & NETIF_F_NTUPLE)
3891 		macb_set_rxflow_feature(bp, features);
3892 
3893 	return 0;
3894 }
3895 
3896 static void macb_restore_features(struct macb *bp)
3897 {
3898 	struct net_device *netdev = bp->dev;
3899 	netdev_features_t features = netdev->features;
3900 	struct ethtool_rx_fs_item *item;
3901 
3902 	/* TX checksum offload */
3903 	macb_set_txcsum_feature(bp, features);
3904 
3905 	/* RX checksum offload */
3906 	macb_set_rxcsum_feature(bp, features);
3907 
3908 	/* RX Flow Filters */
3909 	list_for_each_entry(item, &bp->rx_fs_list.list, list)
3910 		gem_prog_cmp_regs(bp, &item->fs);
3911 
3912 	macb_set_rxflow_feature(bp, features);
3913 }
3914 
3915 static const struct net_device_ops macb_netdev_ops = {
3916 	.ndo_open		= macb_open,
3917 	.ndo_stop		= macb_close,
3918 	.ndo_start_xmit		= macb_start_xmit,
3919 	.ndo_set_rx_mode	= macb_set_rx_mode,
3920 	.ndo_get_stats		= macb_get_stats,
3921 	.ndo_eth_ioctl		= macb_ioctl,
3922 	.ndo_validate_addr	= eth_validate_addr,
3923 	.ndo_change_mtu		= macb_change_mtu,
3924 	.ndo_set_mac_address	= macb_set_mac_addr,
3925 #ifdef CONFIG_NET_POLL_CONTROLLER
3926 	.ndo_poll_controller	= macb_poll_controller,
3927 #endif
3928 	.ndo_set_features	= macb_set_features,
3929 	.ndo_features_check	= macb_features_check,
3930 	.ndo_hwtstamp_set	= macb_hwtstamp_set,
3931 	.ndo_hwtstamp_get	= macb_hwtstamp_get,
3932 };
3933 
3934 /* Configure peripheral capabilities according to device tree
3935  * and integration options used
3936  */
3937 static void macb_configure_caps(struct macb *bp,
3938 				const struct macb_config *dt_conf)
3939 {
3940 	u32 dcfg;
3941 
3942 	if (dt_conf)
3943 		bp->caps = dt_conf->caps;
3944 
3945 	if (hw_is_gem(bp->regs, bp->native_io)) {
3946 		bp->caps |= MACB_CAPS_MACB_IS_GEM;
3947 
3948 		dcfg = gem_readl(bp, DCFG1);
3949 		if (GEM_BFEXT(IRQCOR, dcfg) == 0)
3950 			bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
3951 		if (GEM_BFEXT(NO_PCS, dcfg) == 0)
3952 			bp->caps |= MACB_CAPS_PCS;
3953 		dcfg = gem_readl(bp, DCFG12);
3954 		if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1)
3955 			bp->caps |= MACB_CAPS_HIGH_SPEED;
3956 		dcfg = gem_readl(bp, DCFG2);
3957 		if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
3958 			bp->caps |= MACB_CAPS_FIFO_MODE;
3959 		if (gem_has_ptp(bp)) {
3960 			if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5)))
3961 				dev_err(&bp->pdev->dev,
3962 					"GEM doesn't support hardware ptp.\n");
3963 			else {
3964 #ifdef CONFIG_MACB_USE_HWSTAMP
3965 				bp->hw_dma_cap |= HW_DMA_CAP_PTP;
3966 				bp->ptp_info = &gem_ptp_info;
3967 #endif
3968 			}
3969 		}
3970 	}
3971 
3972 	dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
3973 }
3974 
3975 static void macb_probe_queues(void __iomem *mem,
3976 			      bool native_io,
3977 			      unsigned int *queue_mask,
3978 			      unsigned int *num_queues)
3979 {
3980 	*queue_mask = 0x1;
3981 	*num_queues = 1;
3982 
3983 	/* is it macb or gem ?
3984 	 *
3985 	 * We need to read directly from the hardware here because
3986 	 * we are early in the probe process and don't have the
3987 	 * MACB_CAPS_MACB_IS_GEM flag positioned
3988 	 */
3989 	if (!hw_is_gem(mem, native_io))
3990 		return;
3991 
3992 	/* bit 0 is never set but queue 0 always exists */
3993 	*queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff;
3994 	*num_queues = hweight32(*queue_mask);
3995 }
3996 
3997 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk,
3998 			      struct clk *rx_clk, struct clk *tsu_clk)
3999 {
4000 	struct clk_bulk_data clks[] = {
4001 		{ .clk = tsu_clk, },
4002 		{ .clk = rx_clk, },
4003 		{ .clk = pclk, },
4004 		{ .clk = hclk, },
4005 		{ .clk = tx_clk },
4006 	};
4007 
4008 	clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks);
4009 }
4010 
4011 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
4012 			 struct clk **hclk, struct clk **tx_clk,
4013 			 struct clk **rx_clk, struct clk **tsu_clk)
4014 {
4015 	struct macb_platform_data *pdata;
4016 	int err;
4017 
4018 	pdata = dev_get_platdata(&pdev->dev);
4019 	if (pdata) {
4020 		*pclk = pdata->pclk;
4021 		*hclk = pdata->hclk;
4022 	} else {
4023 		*pclk = devm_clk_get(&pdev->dev, "pclk");
4024 		*hclk = devm_clk_get(&pdev->dev, "hclk");
4025 	}
4026 
4027 	if (IS_ERR_OR_NULL(*pclk))
4028 		return dev_err_probe(&pdev->dev,
4029 				     IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV,
4030 				     "failed to get pclk\n");
4031 
4032 	if (IS_ERR_OR_NULL(*hclk))
4033 		return dev_err_probe(&pdev->dev,
4034 				     IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV,
4035 				     "failed to get hclk\n");
4036 
4037 	*tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk");
4038 	if (IS_ERR(*tx_clk))
4039 		return PTR_ERR(*tx_clk);
4040 
4041 	*rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk");
4042 	if (IS_ERR(*rx_clk))
4043 		return PTR_ERR(*rx_clk);
4044 
4045 	*tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk");
4046 	if (IS_ERR(*tsu_clk))
4047 		return PTR_ERR(*tsu_clk);
4048 
4049 	err = clk_prepare_enable(*pclk);
4050 	if (err) {
4051 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4052 		return err;
4053 	}
4054 
4055 	err = clk_prepare_enable(*hclk);
4056 	if (err) {
4057 		dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err);
4058 		goto err_disable_pclk;
4059 	}
4060 
4061 	err = clk_prepare_enable(*tx_clk);
4062 	if (err) {
4063 		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
4064 		goto err_disable_hclk;
4065 	}
4066 
4067 	err = clk_prepare_enable(*rx_clk);
4068 	if (err) {
4069 		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
4070 		goto err_disable_txclk;
4071 	}
4072 
4073 	err = clk_prepare_enable(*tsu_clk);
4074 	if (err) {
4075 		dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err);
4076 		goto err_disable_rxclk;
4077 	}
4078 
4079 	return 0;
4080 
4081 err_disable_rxclk:
4082 	clk_disable_unprepare(*rx_clk);
4083 
4084 err_disable_txclk:
4085 	clk_disable_unprepare(*tx_clk);
4086 
4087 err_disable_hclk:
4088 	clk_disable_unprepare(*hclk);
4089 
4090 err_disable_pclk:
4091 	clk_disable_unprepare(*pclk);
4092 
4093 	return err;
4094 }
4095 
4096 static int macb_init(struct platform_device *pdev)
4097 {
4098 	struct net_device *dev = platform_get_drvdata(pdev);
4099 	unsigned int hw_q, q;
4100 	struct macb *bp = netdev_priv(dev);
4101 	struct macb_queue *queue;
4102 	int err;
4103 	u32 val, reg;
4104 
4105 	bp->tx_ring_size = DEFAULT_TX_RING_SIZE;
4106 	bp->rx_ring_size = DEFAULT_RX_RING_SIZE;
4107 
4108 	/* set the queue register mapping once for all: queue0 has a special
4109 	 * register mapping but we don't want to test the queue index then
4110 	 * compute the corresponding register offset at run time.
4111 	 */
4112 	for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
4113 		if (!(bp->queue_mask & (1 << hw_q)))
4114 			continue;
4115 
4116 		queue = &bp->queues[q];
4117 		queue->bp = bp;
4118 		spin_lock_init(&queue->tx_ptr_lock);
4119 		netif_napi_add(dev, &queue->napi_rx, macb_rx_poll);
4120 		netif_napi_add(dev, &queue->napi_tx, macb_tx_poll);
4121 		if (hw_q) {
4122 			queue->ISR  = GEM_ISR(hw_q - 1);
4123 			queue->IER  = GEM_IER(hw_q - 1);
4124 			queue->IDR  = GEM_IDR(hw_q - 1);
4125 			queue->IMR  = GEM_IMR(hw_q - 1);
4126 			queue->TBQP = GEM_TBQP(hw_q - 1);
4127 			queue->RBQP = GEM_RBQP(hw_q - 1);
4128 			queue->RBQS = GEM_RBQS(hw_q - 1);
4129 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4130 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
4131 				queue->TBQPH = GEM_TBQPH(hw_q - 1);
4132 				queue->RBQPH = GEM_RBQPH(hw_q - 1);
4133 			}
4134 #endif
4135 		} else {
4136 			/* queue0 uses legacy registers */
4137 			queue->ISR  = MACB_ISR;
4138 			queue->IER  = MACB_IER;
4139 			queue->IDR  = MACB_IDR;
4140 			queue->IMR  = MACB_IMR;
4141 			queue->TBQP = MACB_TBQP;
4142 			queue->RBQP = MACB_RBQP;
4143 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4144 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
4145 				queue->TBQPH = MACB_TBQPH;
4146 				queue->RBQPH = MACB_RBQPH;
4147 			}
4148 #endif
4149 		}
4150 
4151 		/* get irq: here we use the linux queue index, not the hardware
4152 		 * queue index. the queue irq definitions in the device tree
4153 		 * must remove the optional gaps that could exist in the
4154 		 * hardware queue mask.
4155 		 */
4156 		queue->irq = platform_get_irq(pdev, q);
4157 		err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
4158 				       IRQF_SHARED, dev->name, queue);
4159 		if (err) {
4160 			dev_err(&pdev->dev,
4161 				"Unable to request IRQ %d (error %d)\n",
4162 				queue->irq, err);
4163 			return err;
4164 		}
4165 
4166 		INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
4167 		q++;
4168 	}
4169 
4170 	dev->netdev_ops = &macb_netdev_ops;
4171 
4172 	/* setup appropriated routines according to adapter type */
4173 	if (macb_is_gem(bp)) {
4174 		bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
4175 		bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
4176 		bp->macbgem_ops.mog_init_rings = gem_init_rings;
4177 		bp->macbgem_ops.mog_rx = gem_rx;
4178 		dev->ethtool_ops = &gem_ethtool_ops;
4179 	} else {
4180 		bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
4181 		bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
4182 		bp->macbgem_ops.mog_init_rings = macb_init_rings;
4183 		bp->macbgem_ops.mog_rx = macb_rx;
4184 		dev->ethtool_ops = &macb_ethtool_ops;
4185 	}
4186 
4187 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4188 
4189 	/* Set features */
4190 	dev->hw_features = NETIF_F_SG;
4191 
4192 	/* Check LSO capability */
4193 	if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6)))
4194 		dev->hw_features |= MACB_NETIF_LSO;
4195 
4196 	/* Checksum offload is only available on gem with packet buffer */
4197 	if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
4198 		dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
4199 	if (bp->caps & MACB_CAPS_SG_DISABLED)
4200 		dev->hw_features &= ~NETIF_F_SG;
4201 	dev->features = dev->hw_features;
4202 
4203 	/* Check RX Flow Filters support.
4204 	 * Max Rx flows set by availability of screeners & compare regs:
4205 	 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs
4206 	 */
4207 	reg = gem_readl(bp, DCFG8);
4208 	bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3),
4209 			GEM_BFEXT(T2SCR, reg));
4210 	INIT_LIST_HEAD(&bp->rx_fs_list.list);
4211 	if (bp->max_tuples > 0) {
4212 		/* also needs one ethtype match to check IPv4 */
4213 		if (GEM_BFEXT(SCR2ETH, reg) > 0) {
4214 			/* program this reg now */
4215 			reg = 0;
4216 			reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg);
4217 			gem_writel_n(bp, ETHT, SCRT2_ETHT, reg);
4218 			/* Filtering is supported in hw but don't enable it in kernel now */
4219 			dev->hw_features |= NETIF_F_NTUPLE;
4220 			/* init Rx flow definitions */
4221 			bp->rx_fs_list.count = 0;
4222 			spin_lock_init(&bp->rx_fs_lock);
4223 		} else
4224 			bp->max_tuples = 0;
4225 	}
4226 
4227 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
4228 		val = 0;
4229 		if (phy_interface_mode_is_rgmii(bp->phy_interface))
4230 			val = bp->usrio->rgmii;
4231 		else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
4232 			 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4233 			val = bp->usrio->rmii;
4234 		else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4235 			val = bp->usrio->mii;
4236 
4237 		if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
4238 			val |= bp->usrio->refclk;
4239 
4240 		macb_or_gem_writel(bp, USRIO, val);
4241 	}
4242 
4243 	/* Set MII management clock divider */
4244 	val = macb_mdc_clk_div(bp);
4245 	val |= macb_dbw(bp);
4246 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
4247 		val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
4248 	macb_writel(bp, NCFGR, val);
4249 
4250 	return 0;
4251 }
4252 
4253 static const struct macb_usrio_config macb_default_usrio = {
4254 	.mii = MACB_BIT(MII),
4255 	.rmii = MACB_BIT(RMII),
4256 	.rgmii = GEM_BIT(RGMII),
4257 	.refclk = MACB_BIT(CLKEN),
4258 };
4259 
4260 #if defined(CONFIG_OF)
4261 /* 1518 rounded up */
4262 #define AT91ETHER_MAX_RBUFF_SZ	0x600
4263 /* max number of receive buffers */
4264 #define AT91ETHER_MAX_RX_DESCR	9
4265 
4266 static struct sifive_fu540_macb_mgmt *mgmt;
4267 
4268 static int at91ether_alloc_coherent(struct macb *lp)
4269 {
4270 	struct macb_queue *q = &lp->queues[0];
4271 
4272 	q->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
4273 					 (AT91ETHER_MAX_RX_DESCR *
4274 					  macb_dma_desc_get_size(lp)),
4275 					 &q->rx_ring_dma, GFP_KERNEL);
4276 	if (!q->rx_ring)
4277 		return -ENOMEM;
4278 
4279 	q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
4280 					    AT91ETHER_MAX_RX_DESCR *
4281 					    AT91ETHER_MAX_RBUFF_SZ,
4282 					    &q->rx_buffers_dma, GFP_KERNEL);
4283 	if (!q->rx_buffers) {
4284 		dma_free_coherent(&lp->pdev->dev,
4285 				  AT91ETHER_MAX_RX_DESCR *
4286 				  macb_dma_desc_get_size(lp),
4287 				  q->rx_ring, q->rx_ring_dma);
4288 		q->rx_ring = NULL;
4289 		return -ENOMEM;
4290 	}
4291 
4292 	return 0;
4293 }
4294 
4295 static void at91ether_free_coherent(struct macb *lp)
4296 {
4297 	struct macb_queue *q = &lp->queues[0];
4298 
4299 	if (q->rx_ring) {
4300 		dma_free_coherent(&lp->pdev->dev,
4301 				  AT91ETHER_MAX_RX_DESCR *
4302 				  macb_dma_desc_get_size(lp),
4303 				  q->rx_ring, q->rx_ring_dma);
4304 		q->rx_ring = NULL;
4305 	}
4306 
4307 	if (q->rx_buffers) {
4308 		dma_free_coherent(&lp->pdev->dev,
4309 				  AT91ETHER_MAX_RX_DESCR *
4310 				  AT91ETHER_MAX_RBUFF_SZ,
4311 				  q->rx_buffers, q->rx_buffers_dma);
4312 		q->rx_buffers = NULL;
4313 	}
4314 }
4315 
4316 /* Initialize and start the Receiver and Transmit subsystems */
4317 static int at91ether_start(struct macb *lp)
4318 {
4319 	struct macb_queue *q = &lp->queues[0];
4320 	struct macb_dma_desc *desc;
4321 	dma_addr_t addr;
4322 	u32 ctl;
4323 	int i, ret;
4324 
4325 	ret = at91ether_alloc_coherent(lp);
4326 	if (ret)
4327 		return ret;
4328 
4329 	addr = q->rx_buffers_dma;
4330 	for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
4331 		desc = macb_rx_desc(q, i);
4332 		macb_set_addr(lp, desc, addr);
4333 		desc->ctrl = 0;
4334 		addr += AT91ETHER_MAX_RBUFF_SZ;
4335 	}
4336 
4337 	/* Set the Wrap bit on the last descriptor */
4338 	desc->addr |= MACB_BIT(RX_WRAP);
4339 
4340 	/* Reset buffer index */
4341 	q->rx_tail = 0;
4342 
4343 	/* Program address of descriptor list in Rx Buffer Queue register */
4344 	macb_writel(lp, RBQP, q->rx_ring_dma);
4345 
4346 	/* Enable Receive and Transmit */
4347 	ctl = macb_readl(lp, NCR);
4348 	macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
4349 
4350 	/* Enable MAC interrupts */
4351 	macb_writel(lp, IER, MACB_BIT(RCOMP)	|
4352 			     MACB_BIT(RXUBR)	|
4353 			     MACB_BIT(ISR_TUND)	|
4354 			     MACB_BIT(ISR_RLE)	|
4355 			     MACB_BIT(TCOMP)	|
4356 			     MACB_BIT(ISR_ROVR)	|
4357 			     MACB_BIT(HRESP));
4358 
4359 	return 0;
4360 }
4361 
4362 static void at91ether_stop(struct macb *lp)
4363 {
4364 	u32 ctl;
4365 
4366 	/* Disable MAC interrupts */
4367 	macb_writel(lp, IDR, MACB_BIT(RCOMP)	|
4368 			     MACB_BIT(RXUBR)	|
4369 			     MACB_BIT(ISR_TUND)	|
4370 			     MACB_BIT(ISR_RLE)	|
4371 			     MACB_BIT(TCOMP)	|
4372 			     MACB_BIT(ISR_ROVR) |
4373 			     MACB_BIT(HRESP));
4374 
4375 	/* Disable Receiver and Transmitter */
4376 	ctl = macb_readl(lp, NCR);
4377 	macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
4378 
4379 	/* Free resources. */
4380 	at91ether_free_coherent(lp);
4381 }
4382 
4383 /* Open the ethernet interface */
4384 static int at91ether_open(struct net_device *dev)
4385 {
4386 	struct macb *lp = netdev_priv(dev);
4387 	u32 ctl;
4388 	int ret;
4389 
4390 	ret = pm_runtime_resume_and_get(&lp->pdev->dev);
4391 	if (ret < 0)
4392 		return ret;
4393 
4394 	/* Clear internal statistics */
4395 	ctl = macb_readl(lp, NCR);
4396 	macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
4397 
4398 	macb_set_hwaddr(lp);
4399 
4400 	ret = at91ether_start(lp);
4401 	if (ret)
4402 		goto pm_exit;
4403 
4404 	ret = macb_phylink_connect(lp);
4405 	if (ret)
4406 		goto stop;
4407 
4408 	netif_start_queue(dev);
4409 
4410 	return 0;
4411 
4412 stop:
4413 	at91ether_stop(lp);
4414 pm_exit:
4415 	pm_runtime_put_sync(&lp->pdev->dev);
4416 	return ret;
4417 }
4418 
4419 /* Close the interface */
4420 static int at91ether_close(struct net_device *dev)
4421 {
4422 	struct macb *lp = netdev_priv(dev);
4423 
4424 	netif_stop_queue(dev);
4425 
4426 	phylink_stop(lp->phylink);
4427 	phylink_disconnect_phy(lp->phylink);
4428 
4429 	at91ether_stop(lp);
4430 
4431 	return pm_runtime_put(&lp->pdev->dev);
4432 }
4433 
4434 /* Transmit packet */
4435 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb,
4436 					struct net_device *dev)
4437 {
4438 	struct macb *lp = netdev_priv(dev);
4439 
4440 	if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
4441 		int desc = 0;
4442 
4443 		netif_stop_queue(dev);
4444 
4445 		/* Store packet information (to free when Tx completed) */
4446 		lp->rm9200_txq[desc].skb = skb;
4447 		lp->rm9200_txq[desc].size = skb->len;
4448 		lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data,
4449 							      skb->len, DMA_TO_DEVICE);
4450 		if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) {
4451 			dev_kfree_skb_any(skb);
4452 			dev->stats.tx_dropped++;
4453 			netdev_err(dev, "%s: DMA mapping error\n", __func__);
4454 			return NETDEV_TX_OK;
4455 		}
4456 
4457 		/* Set address of the data in the Transmit Address register */
4458 		macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping);
4459 		/* Set length of the packet in the Transmit Control register */
4460 		macb_writel(lp, TCR, skb->len);
4461 
4462 	} else {
4463 		netdev_err(dev, "%s called, but device is busy!\n", __func__);
4464 		return NETDEV_TX_BUSY;
4465 	}
4466 
4467 	return NETDEV_TX_OK;
4468 }
4469 
4470 /* Extract received frame from buffer descriptors and sent to upper layers.
4471  * (Called from interrupt context)
4472  */
4473 static void at91ether_rx(struct net_device *dev)
4474 {
4475 	struct macb *lp = netdev_priv(dev);
4476 	struct macb_queue *q = &lp->queues[0];
4477 	struct macb_dma_desc *desc;
4478 	unsigned char *p_recv;
4479 	struct sk_buff *skb;
4480 	unsigned int pktlen;
4481 
4482 	desc = macb_rx_desc(q, q->rx_tail);
4483 	while (desc->addr & MACB_BIT(RX_USED)) {
4484 		p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
4485 		pktlen = MACB_BF(RX_FRMLEN, desc->ctrl);
4486 		skb = netdev_alloc_skb(dev, pktlen + 2);
4487 		if (skb) {
4488 			skb_reserve(skb, 2);
4489 			skb_put_data(skb, p_recv, pktlen);
4490 
4491 			skb->protocol = eth_type_trans(skb, dev);
4492 			dev->stats.rx_packets++;
4493 			dev->stats.rx_bytes += pktlen;
4494 			netif_rx(skb);
4495 		} else {
4496 			dev->stats.rx_dropped++;
4497 		}
4498 
4499 		if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH))
4500 			dev->stats.multicast++;
4501 
4502 		/* reset ownership bit */
4503 		desc->addr &= ~MACB_BIT(RX_USED);
4504 
4505 		/* wrap after last buffer */
4506 		if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
4507 			q->rx_tail = 0;
4508 		else
4509 			q->rx_tail++;
4510 
4511 		desc = macb_rx_desc(q, q->rx_tail);
4512 	}
4513 }
4514 
4515 /* MAC interrupt handler */
4516 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
4517 {
4518 	struct net_device *dev = dev_id;
4519 	struct macb *lp = netdev_priv(dev);
4520 	u32 intstatus, ctl;
4521 	unsigned int desc;
4522 
4523 	/* MAC Interrupt Status register indicates what interrupts are pending.
4524 	 * It is automatically cleared once read.
4525 	 */
4526 	intstatus = macb_readl(lp, ISR);
4527 
4528 	/* Receive complete */
4529 	if (intstatus & MACB_BIT(RCOMP))
4530 		at91ether_rx(dev);
4531 
4532 	/* Transmit complete */
4533 	if (intstatus & MACB_BIT(TCOMP)) {
4534 		/* The TCOM bit is set even if the transmission failed */
4535 		if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
4536 			dev->stats.tx_errors++;
4537 
4538 		desc = 0;
4539 		if (lp->rm9200_txq[desc].skb) {
4540 			dev_consume_skb_irq(lp->rm9200_txq[desc].skb);
4541 			lp->rm9200_txq[desc].skb = NULL;
4542 			dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping,
4543 					 lp->rm9200_txq[desc].size, DMA_TO_DEVICE);
4544 			dev->stats.tx_packets++;
4545 			dev->stats.tx_bytes += lp->rm9200_txq[desc].size;
4546 		}
4547 		netif_wake_queue(dev);
4548 	}
4549 
4550 	/* Work-around for EMAC Errata section 41.3.1 */
4551 	if (intstatus & MACB_BIT(RXUBR)) {
4552 		ctl = macb_readl(lp, NCR);
4553 		macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
4554 		wmb();
4555 		macb_writel(lp, NCR, ctl | MACB_BIT(RE));
4556 	}
4557 
4558 	if (intstatus & MACB_BIT(ISR_ROVR))
4559 		netdev_err(dev, "ROVR error\n");
4560 
4561 	return IRQ_HANDLED;
4562 }
4563 
4564 #ifdef CONFIG_NET_POLL_CONTROLLER
4565 static void at91ether_poll_controller(struct net_device *dev)
4566 {
4567 	unsigned long flags;
4568 
4569 	local_irq_save(flags);
4570 	at91ether_interrupt(dev->irq, dev);
4571 	local_irq_restore(flags);
4572 }
4573 #endif
4574 
4575 static const struct net_device_ops at91ether_netdev_ops = {
4576 	.ndo_open		= at91ether_open,
4577 	.ndo_stop		= at91ether_close,
4578 	.ndo_start_xmit		= at91ether_start_xmit,
4579 	.ndo_get_stats		= macb_get_stats,
4580 	.ndo_set_rx_mode	= macb_set_rx_mode,
4581 	.ndo_set_mac_address	= eth_mac_addr,
4582 	.ndo_eth_ioctl		= macb_ioctl,
4583 	.ndo_validate_addr	= eth_validate_addr,
4584 #ifdef CONFIG_NET_POLL_CONTROLLER
4585 	.ndo_poll_controller	= at91ether_poll_controller,
4586 #endif
4587 	.ndo_hwtstamp_set	= macb_hwtstamp_set,
4588 	.ndo_hwtstamp_get	= macb_hwtstamp_get,
4589 };
4590 
4591 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
4592 			      struct clk **hclk, struct clk **tx_clk,
4593 			      struct clk **rx_clk, struct clk **tsu_clk)
4594 {
4595 	int err;
4596 
4597 	*hclk = NULL;
4598 	*tx_clk = NULL;
4599 	*rx_clk = NULL;
4600 	*tsu_clk = NULL;
4601 
4602 	*pclk = devm_clk_get(&pdev->dev, "ether_clk");
4603 	if (IS_ERR(*pclk))
4604 		return PTR_ERR(*pclk);
4605 
4606 	err = clk_prepare_enable(*pclk);
4607 	if (err) {
4608 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4609 		return err;
4610 	}
4611 
4612 	return 0;
4613 }
4614 
4615 static int at91ether_init(struct platform_device *pdev)
4616 {
4617 	struct net_device *dev = platform_get_drvdata(pdev);
4618 	struct macb *bp = netdev_priv(dev);
4619 	int err;
4620 
4621 	bp->queues[0].bp = bp;
4622 
4623 	dev->netdev_ops = &at91ether_netdev_ops;
4624 	dev->ethtool_ops = &macb_ethtool_ops;
4625 
4626 	err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
4627 			       0, dev->name, dev);
4628 	if (err)
4629 		return err;
4630 
4631 	macb_writel(bp, NCR, 0);
4632 
4633 	macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG));
4634 
4635 	return 0;
4636 }
4637 
4638 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw,
4639 					       unsigned long parent_rate)
4640 {
4641 	return mgmt->rate;
4642 }
4643 
4644 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate,
4645 				     unsigned long *parent_rate)
4646 {
4647 	if (WARN_ON(rate < 2500000))
4648 		return 2500000;
4649 	else if (rate == 2500000)
4650 		return 2500000;
4651 	else if (WARN_ON(rate < 13750000))
4652 		return 2500000;
4653 	else if (WARN_ON(rate < 25000000))
4654 		return 25000000;
4655 	else if (rate == 25000000)
4656 		return 25000000;
4657 	else if (WARN_ON(rate < 75000000))
4658 		return 25000000;
4659 	else if (WARN_ON(rate < 125000000))
4660 		return 125000000;
4661 	else if (rate == 125000000)
4662 		return 125000000;
4663 
4664 	WARN_ON(rate > 125000000);
4665 
4666 	return 125000000;
4667 }
4668 
4669 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate,
4670 				  unsigned long parent_rate)
4671 {
4672 	rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate);
4673 	if (rate != 125000000)
4674 		iowrite32(1, mgmt->reg);
4675 	else
4676 		iowrite32(0, mgmt->reg);
4677 	mgmt->rate = rate;
4678 
4679 	return 0;
4680 }
4681 
4682 static const struct clk_ops fu540_c000_ops = {
4683 	.recalc_rate = fu540_macb_tx_recalc_rate,
4684 	.round_rate = fu540_macb_tx_round_rate,
4685 	.set_rate = fu540_macb_tx_set_rate,
4686 };
4687 
4688 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk,
4689 			       struct clk **hclk, struct clk **tx_clk,
4690 			       struct clk **rx_clk, struct clk **tsu_clk)
4691 {
4692 	struct clk_init_data init;
4693 	int err = 0;
4694 
4695 	err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk);
4696 	if (err)
4697 		return err;
4698 
4699 	mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL);
4700 	if (!mgmt) {
4701 		err = -ENOMEM;
4702 		goto err_disable_clks;
4703 	}
4704 
4705 	init.name = "sifive-gemgxl-mgmt";
4706 	init.ops = &fu540_c000_ops;
4707 	init.flags = 0;
4708 	init.num_parents = 0;
4709 
4710 	mgmt->rate = 0;
4711 	mgmt->hw.init = &init;
4712 
4713 	*tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw);
4714 	if (IS_ERR(*tx_clk)) {
4715 		err = PTR_ERR(*tx_clk);
4716 		goto err_disable_clks;
4717 	}
4718 
4719 	err = clk_prepare_enable(*tx_clk);
4720 	if (err) {
4721 		dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
4722 		*tx_clk = NULL;
4723 		goto err_disable_clks;
4724 	} else {
4725 		dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name);
4726 	}
4727 
4728 	return 0;
4729 
4730 err_disable_clks:
4731 	macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk);
4732 
4733 	return err;
4734 }
4735 
4736 static int fu540_c000_init(struct platform_device *pdev)
4737 {
4738 	mgmt->reg = devm_platform_ioremap_resource(pdev, 1);
4739 	if (IS_ERR(mgmt->reg))
4740 		return PTR_ERR(mgmt->reg);
4741 
4742 	return macb_init(pdev);
4743 }
4744 
4745 static int init_reset_optional(struct platform_device *pdev)
4746 {
4747 	struct net_device *dev = platform_get_drvdata(pdev);
4748 	struct macb *bp = netdev_priv(dev);
4749 	int ret;
4750 
4751 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4752 		/* Ensure PHY device used in SGMII mode is ready */
4753 		bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL);
4754 
4755 		if (IS_ERR(bp->sgmii_phy))
4756 			return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy),
4757 					     "failed to get SGMII PHY\n");
4758 
4759 		ret = phy_init(bp->sgmii_phy);
4760 		if (ret)
4761 			return dev_err_probe(&pdev->dev, ret,
4762 					     "failed to init SGMII PHY\n");
4763 
4764 		ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_GEM_CONFIG);
4765 		if (!ret) {
4766 			u32 pm_info[2];
4767 
4768 			ret = of_property_read_u32_array(pdev->dev.of_node, "power-domains",
4769 							 pm_info, ARRAY_SIZE(pm_info));
4770 			if (ret) {
4771 				dev_err(&pdev->dev, "Failed to read power management information\n");
4772 				goto err_out_phy_exit;
4773 			}
4774 			ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_FIXED, 0);
4775 			if (ret)
4776 				goto err_out_phy_exit;
4777 
4778 			ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_SGMII_MODE, 1);
4779 			if (ret)
4780 				goto err_out_phy_exit;
4781 		}
4782 
4783 	}
4784 
4785 	/* Fully reset controller at hardware level if mapped in device tree */
4786 	ret = device_reset_optional(&pdev->dev);
4787 	if (ret) {
4788 		phy_exit(bp->sgmii_phy);
4789 		return dev_err_probe(&pdev->dev, ret, "failed to reset controller");
4790 	}
4791 
4792 	ret = macb_init(pdev);
4793 
4794 err_out_phy_exit:
4795 	if (ret)
4796 		phy_exit(bp->sgmii_phy);
4797 
4798 	return ret;
4799 }
4800 
4801 static const struct macb_usrio_config sama7g5_usrio = {
4802 	.mii = 0,
4803 	.rmii = 1,
4804 	.rgmii = 2,
4805 	.refclk = BIT(2),
4806 	.hdfctlen = BIT(6),
4807 };
4808 
4809 static const struct macb_config fu540_c000_config = {
4810 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4811 		MACB_CAPS_GEM_HAS_PTP,
4812 	.dma_burst_length = 16,
4813 	.clk_init = fu540_c000_clk_init,
4814 	.init = fu540_c000_init,
4815 	.jumbo_max_len = 10240,
4816 	.usrio = &macb_default_usrio,
4817 };
4818 
4819 static const struct macb_config at91sam9260_config = {
4820 	.caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4821 	.clk_init = macb_clk_init,
4822 	.init = macb_init,
4823 	.usrio = &macb_default_usrio,
4824 };
4825 
4826 static const struct macb_config sama5d3macb_config = {
4827 	.caps = MACB_CAPS_SG_DISABLED |
4828 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4829 	.clk_init = macb_clk_init,
4830 	.init = macb_init,
4831 	.usrio = &macb_default_usrio,
4832 };
4833 
4834 static const struct macb_config pc302gem_config = {
4835 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
4836 	.dma_burst_length = 16,
4837 	.clk_init = macb_clk_init,
4838 	.init = macb_init,
4839 	.usrio = &macb_default_usrio,
4840 };
4841 
4842 static const struct macb_config sama5d2_config = {
4843 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4844 	.dma_burst_length = 16,
4845 	.clk_init = macb_clk_init,
4846 	.init = macb_init,
4847 	.usrio = &macb_default_usrio,
4848 };
4849 
4850 static const struct macb_config sama5d29_config = {
4851 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP,
4852 	.dma_burst_length = 16,
4853 	.clk_init = macb_clk_init,
4854 	.init = macb_init,
4855 	.usrio = &macb_default_usrio,
4856 };
4857 
4858 static const struct macb_config sama5d3_config = {
4859 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4860 		MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
4861 	.dma_burst_length = 16,
4862 	.clk_init = macb_clk_init,
4863 	.init = macb_init,
4864 	.jumbo_max_len = 10240,
4865 	.usrio = &macb_default_usrio,
4866 };
4867 
4868 static const struct macb_config sama5d4_config = {
4869 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4870 	.dma_burst_length = 4,
4871 	.clk_init = macb_clk_init,
4872 	.init = macb_init,
4873 	.usrio = &macb_default_usrio,
4874 };
4875 
4876 static const struct macb_config emac_config = {
4877 	.caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC,
4878 	.clk_init = at91ether_clk_init,
4879 	.init = at91ether_init,
4880 	.usrio = &macb_default_usrio,
4881 };
4882 
4883 static const struct macb_config np4_config = {
4884 	.caps = MACB_CAPS_USRIO_DISABLED,
4885 	.clk_init = macb_clk_init,
4886 	.init = macb_init,
4887 	.usrio = &macb_default_usrio,
4888 };
4889 
4890 static const struct macb_config zynqmp_config = {
4891 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4892 		MACB_CAPS_JUMBO |
4893 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH,
4894 	.dma_burst_length = 16,
4895 	.clk_init = macb_clk_init,
4896 	.init = init_reset_optional,
4897 	.jumbo_max_len = 10240,
4898 	.usrio = &macb_default_usrio,
4899 };
4900 
4901 static const struct macb_config zynq_config = {
4902 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF |
4903 		MACB_CAPS_NEEDS_RSTONUBR,
4904 	.dma_burst_length = 16,
4905 	.clk_init = macb_clk_init,
4906 	.init = macb_init,
4907 	.usrio = &macb_default_usrio,
4908 };
4909 
4910 static const struct macb_config mpfs_config = {
4911 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4912 		MACB_CAPS_JUMBO |
4913 		MACB_CAPS_GEM_HAS_PTP,
4914 	.dma_burst_length = 16,
4915 	.clk_init = macb_clk_init,
4916 	.init = init_reset_optional,
4917 	.usrio = &macb_default_usrio,
4918 	.max_tx_length = 4040, /* Cadence Erratum 1686 */
4919 	.jumbo_max_len = 4040,
4920 };
4921 
4922 static const struct macb_config sama7g5_gem_config = {
4923 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG |
4924 		MACB_CAPS_MIIONRGMII | MACB_CAPS_GEM_HAS_PTP,
4925 	.dma_burst_length = 16,
4926 	.clk_init = macb_clk_init,
4927 	.init = macb_init,
4928 	.usrio = &sama7g5_usrio,
4929 };
4930 
4931 static const struct macb_config sama7g5_emac_config = {
4932 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII |
4933 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII |
4934 		MACB_CAPS_GEM_HAS_PTP,
4935 	.dma_burst_length = 16,
4936 	.clk_init = macb_clk_init,
4937 	.init = macb_init,
4938 	.usrio = &sama7g5_usrio,
4939 };
4940 
4941 static const struct macb_config versal_config = {
4942 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4943 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH | MACB_CAPS_NEED_TSUCLK |
4944 		MACB_CAPS_QUEUE_DISABLE,
4945 	.dma_burst_length = 16,
4946 	.clk_init = macb_clk_init,
4947 	.init = init_reset_optional,
4948 	.jumbo_max_len = 10240,
4949 	.usrio = &macb_default_usrio,
4950 };
4951 
4952 static const struct of_device_id macb_dt_ids[] = {
4953 	{ .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
4954 	{ .compatible = "cdns,macb" },
4955 	{ .compatible = "cdns,np4-macb", .data = &np4_config },
4956 	{ .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
4957 	{ .compatible = "cdns,gem", .data = &pc302gem_config },
4958 	{ .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config },
4959 	{ .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
4960 	{ .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config },
4961 	{ .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
4962 	{ .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config },
4963 	{ .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
4964 	{ .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
4965 	{ .compatible = "cdns,emac", .data = &emac_config },
4966 	{ .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, /* deprecated */
4967 	{ .compatible = "cdns,zynq-gem", .data = &zynq_config }, /* deprecated */
4968 	{ .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config },
4969 	{ .compatible = "microchip,mpfs-macb", .data = &mpfs_config },
4970 	{ .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config },
4971 	{ .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config },
4972 	{ .compatible = "xlnx,zynqmp-gem", .data = &zynqmp_config},
4973 	{ .compatible = "xlnx,zynq-gem", .data = &zynq_config },
4974 	{ .compatible = "xlnx,versal-gem", .data = &versal_config},
4975 	{ /* sentinel */ }
4976 };
4977 MODULE_DEVICE_TABLE(of, macb_dt_ids);
4978 #endif /* CONFIG_OF */
4979 
4980 static const struct macb_config default_gem_config = {
4981 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4982 		MACB_CAPS_JUMBO |
4983 		MACB_CAPS_GEM_HAS_PTP,
4984 	.dma_burst_length = 16,
4985 	.clk_init = macb_clk_init,
4986 	.init = macb_init,
4987 	.usrio = &macb_default_usrio,
4988 	.jumbo_max_len = 10240,
4989 };
4990 
4991 static int macb_probe(struct platform_device *pdev)
4992 {
4993 	const struct macb_config *macb_config = &default_gem_config;
4994 	int (*clk_init)(struct platform_device *, struct clk **,
4995 			struct clk **, struct clk **,  struct clk **,
4996 			struct clk **) = macb_config->clk_init;
4997 	int (*init)(struct platform_device *) = macb_config->init;
4998 	struct device_node *np = pdev->dev.of_node;
4999 	struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
5000 	struct clk *tsu_clk = NULL;
5001 	unsigned int queue_mask, num_queues;
5002 	bool native_io;
5003 	phy_interface_t interface;
5004 	struct net_device *dev;
5005 	struct resource *regs;
5006 	u32 wtrmrk_rst_val;
5007 	void __iomem *mem;
5008 	struct macb *bp;
5009 	int err, val;
5010 
5011 	mem = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
5012 	if (IS_ERR(mem))
5013 		return PTR_ERR(mem);
5014 
5015 	if (np) {
5016 		const struct of_device_id *match;
5017 
5018 		match = of_match_node(macb_dt_ids, np);
5019 		if (match && match->data) {
5020 			macb_config = match->data;
5021 			clk_init = macb_config->clk_init;
5022 			init = macb_config->init;
5023 		}
5024 	}
5025 
5026 	err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk);
5027 	if (err)
5028 		return err;
5029 
5030 	pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT);
5031 	pm_runtime_use_autosuspend(&pdev->dev);
5032 	pm_runtime_get_noresume(&pdev->dev);
5033 	pm_runtime_set_active(&pdev->dev);
5034 	pm_runtime_enable(&pdev->dev);
5035 	native_io = hw_is_native_io(mem);
5036 
5037 	macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
5038 	dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
5039 	if (!dev) {
5040 		err = -ENOMEM;
5041 		goto err_disable_clocks;
5042 	}
5043 
5044 	dev->base_addr = regs->start;
5045 
5046 	SET_NETDEV_DEV(dev, &pdev->dev);
5047 
5048 	bp = netdev_priv(dev);
5049 	bp->pdev = pdev;
5050 	bp->dev = dev;
5051 	bp->regs = mem;
5052 	bp->native_io = native_io;
5053 	if (native_io) {
5054 		bp->macb_reg_readl = hw_readl_native;
5055 		bp->macb_reg_writel = hw_writel_native;
5056 	} else {
5057 		bp->macb_reg_readl = hw_readl;
5058 		bp->macb_reg_writel = hw_writel;
5059 	}
5060 	bp->num_queues = num_queues;
5061 	bp->queue_mask = queue_mask;
5062 	if (macb_config)
5063 		bp->dma_burst_length = macb_config->dma_burst_length;
5064 	bp->pclk = pclk;
5065 	bp->hclk = hclk;
5066 	bp->tx_clk = tx_clk;
5067 	bp->rx_clk = rx_clk;
5068 	bp->tsu_clk = tsu_clk;
5069 	if (macb_config)
5070 		bp->jumbo_max_len = macb_config->jumbo_max_len;
5071 
5072 	if (!hw_is_gem(bp->regs, bp->native_io))
5073 		bp->max_tx_length = MACB_MAX_TX_LEN;
5074 	else if (macb_config->max_tx_length)
5075 		bp->max_tx_length = macb_config->max_tx_length;
5076 	else
5077 		bp->max_tx_length = GEM_MAX_TX_LEN;
5078 
5079 	bp->wol = 0;
5080 	device_set_wakeup_capable(&pdev->dev, 1);
5081 
5082 	bp->usrio = macb_config->usrio;
5083 
5084 	/* By default we set to partial store and forward mode for zynqmp.
5085 	 * Disable if not set in devicetree.
5086 	 */
5087 	if (GEM_BFEXT(PBUF_CUTTHRU, gem_readl(bp, DCFG6))) {
5088 		err = of_property_read_u32(bp->pdev->dev.of_node,
5089 					   "cdns,rx-watermark",
5090 					   &bp->rx_watermark);
5091 
5092 		if (!err) {
5093 			/* Disable partial store and forward in case of error or
5094 			 * invalid watermark value
5095 			 */
5096 			wtrmrk_rst_val = (1 << (GEM_BFEXT(RX_PBUF_ADDR, gem_readl(bp, DCFG2)))) - 1;
5097 			if (bp->rx_watermark > wtrmrk_rst_val || !bp->rx_watermark) {
5098 				dev_info(&bp->pdev->dev, "Invalid watermark value\n");
5099 				bp->rx_watermark = 0;
5100 			}
5101 		}
5102 	}
5103 	spin_lock_init(&bp->lock);
5104 
5105 	/* setup capabilities */
5106 	macb_configure_caps(bp, macb_config);
5107 
5108 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
5109 	if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) {
5110 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
5111 		bp->hw_dma_cap |= HW_DMA_CAP_64B;
5112 	}
5113 #endif
5114 	platform_set_drvdata(pdev, dev);
5115 
5116 	dev->irq = platform_get_irq(pdev, 0);
5117 	if (dev->irq < 0) {
5118 		err = dev->irq;
5119 		goto err_out_free_netdev;
5120 	}
5121 
5122 	/* MTU range: 68 - 1500 or 10240 */
5123 	dev->min_mtu = GEM_MTU_MIN_SIZE;
5124 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
5125 		dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN;
5126 	else
5127 		dev->max_mtu = ETH_DATA_LEN;
5128 
5129 	if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) {
5130 		val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10));
5131 		if (val)
5132 			bp->rx_bd_rd_prefetch = (2 << (val - 1)) *
5133 						macb_dma_desc_get_size(bp);
5134 
5135 		val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10));
5136 		if (val)
5137 			bp->tx_bd_rd_prefetch = (2 << (val - 1)) *
5138 						macb_dma_desc_get_size(bp);
5139 	}
5140 
5141 	bp->rx_intr_mask = MACB_RX_INT_FLAGS;
5142 	if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR)
5143 		bp->rx_intr_mask |= MACB_BIT(RXUBR);
5144 
5145 	err = of_get_ethdev_address(np, bp->dev);
5146 	if (err == -EPROBE_DEFER)
5147 		goto err_out_free_netdev;
5148 	else if (err)
5149 		macb_get_hwaddr(bp);
5150 
5151 	err = of_get_phy_mode(np, &interface);
5152 	if (err)
5153 		/* not found in DT, MII by default */
5154 		bp->phy_interface = PHY_INTERFACE_MODE_MII;
5155 	else
5156 		bp->phy_interface = interface;
5157 
5158 	/* IP specific init */
5159 	err = init(pdev);
5160 	if (err)
5161 		goto err_out_free_netdev;
5162 
5163 	err = macb_mii_init(bp);
5164 	if (err)
5165 		goto err_out_phy_exit;
5166 
5167 	netif_carrier_off(dev);
5168 
5169 	err = register_netdev(dev);
5170 	if (err) {
5171 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5172 		goto err_out_unregister_mdio;
5173 	}
5174 
5175 	tasklet_setup(&bp->hresp_err_tasklet, macb_hresp_error_task);
5176 
5177 	netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
5178 		    macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
5179 		    dev->base_addr, dev->irq, dev->dev_addr);
5180 
5181 	pm_runtime_mark_last_busy(&bp->pdev->dev);
5182 	pm_runtime_put_autosuspend(&bp->pdev->dev);
5183 
5184 	return 0;
5185 
5186 err_out_unregister_mdio:
5187 	mdiobus_unregister(bp->mii_bus);
5188 	mdiobus_free(bp->mii_bus);
5189 
5190 err_out_phy_exit:
5191 	phy_exit(bp->sgmii_phy);
5192 
5193 err_out_free_netdev:
5194 	free_netdev(dev);
5195 
5196 err_disable_clocks:
5197 	macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk);
5198 	pm_runtime_disable(&pdev->dev);
5199 	pm_runtime_set_suspended(&pdev->dev);
5200 	pm_runtime_dont_use_autosuspend(&pdev->dev);
5201 
5202 	return err;
5203 }
5204 
5205 static void macb_remove(struct platform_device *pdev)
5206 {
5207 	struct net_device *dev;
5208 	struct macb *bp;
5209 
5210 	dev = platform_get_drvdata(pdev);
5211 
5212 	if (dev) {
5213 		bp = netdev_priv(dev);
5214 		phy_exit(bp->sgmii_phy);
5215 		mdiobus_unregister(bp->mii_bus);
5216 		mdiobus_free(bp->mii_bus);
5217 
5218 		unregister_netdev(dev);
5219 		tasklet_kill(&bp->hresp_err_tasklet);
5220 		pm_runtime_disable(&pdev->dev);
5221 		pm_runtime_dont_use_autosuspend(&pdev->dev);
5222 		if (!pm_runtime_suspended(&pdev->dev)) {
5223 			macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk,
5224 					  bp->rx_clk, bp->tsu_clk);
5225 			pm_runtime_set_suspended(&pdev->dev);
5226 		}
5227 		phylink_destroy(bp->phylink);
5228 		free_netdev(dev);
5229 	}
5230 }
5231 
5232 static int __maybe_unused macb_suspend(struct device *dev)
5233 {
5234 	struct net_device *netdev = dev_get_drvdata(dev);
5235 	struct macb *bp = netdev_priv(netdev);
5236 	struct in_ifaddr *ifa = NULL;
5237 	struct macb_queue *queue;
5238 	struct in_device *idev;
5239 	unsigned long flags;
5240 	unsigned int q;
5241 	int err;
5242 	u32 tmp;
5243 
5244 	if (!device_may_wakeup(&bp->dev->dev))
5245 		phy_exit(bp->sgmii_phy);
5246 
5247 	if (!netif_running(netdev))
5248 		return 0;
5249 
5250 	if (bp->wol & MACB_WOL_ENABLED) {
5251 		/* Check for IP address in WOL ARP mode */
5252 		idev = __in_dev_get_rcu(bp->dev);
5253 		if (idev)
5254 			ifa = rcu_dereference(idev->ifa_list);
5255 		if ((bp->wolopts & WAKE_ARP) && !ifa) {
5256 			netdev_err(netdev, "IP address not assigned as required by WoL walk ARP\n");
5257 			return -EOPNOTSUPP;
5258 		}
5259 		spin_lock_irqsave(&bp->lock, flags);
5260 
5261 		/* Disable Tx and Rx engines before  disabling the queues,
5262 		 * this is mandatory as per the IP spec sheet
5263 		 */
5264 		tmp = macb_readl(bp, NCR);
5265 		macb_writel(bp, NCR, tmp & ~(MACB_BIT(TE) | MACB_BIT(RE)));
5266 		for (q = 0, queue = bp->queues; q < bp->num_queues;
5267 		     ++q, ++queue) {
5268 			/* Disable RX queues */
5269 			if (bp->caps & MACB_CAPS_QUEUE_DISABLE) {
5270 				queue_writel(queue, RBQP, MACB_BIT(QUEUE_DISABLE));
5271 			} else {
5272 				/* Tie off RX queues */
5273 				queue_writel(queue, RBQP,
5274 					     lower_32_bits(bp->rx_ring_tieoff_dma));
5275 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
5276 				queue_writel(queue, RBQPH,
5277 					     upper_32_bits(bp->rx_ring_tieoff_dma));
5278 #endif
5279 			}
5280 			/* Disable all interrupts */
5281 			queue_writel(queue, IDR, -1);
5282 			queue_readl(queue, ISR);
5283 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5284 				queue_writel(queue, ISR, -1);
5285 		}
5286 		/* Enable Receive engine */
5287 		macb_writel(bp, NCR, tmp | MACB_BIT(RE));
5288 		/* Flush all status bits */
5289 		macb_writel(bp, TSR, -1);
5290 		macb_writel(bp, RSR, -1);
5291 
5292 		tmp = (bp->wolopts & WAKE_MAGIC) ? MACB_BIT(MAG) : 0;
5293 		if (bp->wolopts & WAKE_ARP) {
5294 			tmp |= MACB_BIT(ARP);
5295 			/* write IP address into register */
5296 			tmp |= MACB_BFEXT(IP, be32_to_cpu(ifa->ifa_local));
5297 		}
5298 
5299 		/* Change interrupt handler and
5300 		 * Enable WoL IRQ on queue 0
5301 		 */
5302 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5303 		if (macb_is_gem(bp)) {
5304 			err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt,
5305 					       IRQF_SHARED, netdev->name, bp->queues);
5306 			if (err) {
5307 				dev_err(dev,
5308 					"Unable to request IRQ %d (error %d)\n",
5309 					bp->queues[0].irq, err);
5310 				spin_unlock_irqrestore(&bp->lock, flags);
5311 				return err;
5312 			}
5313 			queue_writel(bp->queues, IER, GEM_BIT(WOL));
5314 			gem_writel(bp, WOL, tmp);
5315 		} else {
5316 			err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt,
5317 					       IRQF_SHARED, netdev->name, bp->queues);
5318 			if (err) {
5319 				dev_err(dev,
5320 					"Unable to request IRQ %d (error %d)\n",
5321 					bp->queues[0].irq, err);
5322 				spin_unlock_irqrestore(&bp->lock, flags);
5323 				return err;
5324 			}
5325 			queue_writel(bp->queues, IER, MACB_BIT(WOL));
5326 			macb_writel(bp, WOL, tmp);
5327 		}
5328 		spin_unlock_irqrestore(&bp->lock, flags);
5329 
5330 		enable_irq_wake(bp->queues[0].irq);
5331 	}
5332 
5333 	netif_device_detach(netdev);
5334 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5335 	     ++q, ++queue) {
5336 		napi_disable(&queue->napi_rx);
5337 		napi_disable(&queue->napi_tx);
5338 	}
5339 
5340 	if (!(bp->wol & MACB_WOL_ENABLED)) {
5341 		rtnl_lock();
5342 		phylink_stop(bp->phylink);
5343 		rtnl_unlock();
5344 		spin_lock_irqsave(&bp->lock, flags);
5345 		macb_reset_hw(bp);
5346 		spin_unlock_irqrestore(&bp->lock, flags);
5347 	}
5348 
5349 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5350 		bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO);
5351 
5352 	if (netdev->hw_features & NETIF_F_NTUPLE)
5353 		bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT);
5354 
5355 	if (bp->ptp_info)
5356 		bp->ptp_info->ptp_remove(netdev);
5357 	if (!device_may_wakeup(dev))
5358 		pm_runtime_force_suspend(dev);
5359 
5360 	return 0;
5361 }
5362 
5363 static int __maybe_unused macb_resume(struct device *dev)
5364 {
5365 	struct net_device *netdev = dev_get_drvdata(dev);
5366 	struct macb *bp = netdev_priv(netdev);
5367 	struct macb_queue *queue;
5368 	unsigned long flags;
5369 	unsigned int q;
5370 	int err;
5371 
5372 	if (!device_may_wakeup(&bp->dev->dev))
5373 		phy_init(bp->sgmii_phy);
5374 
5375 	if (!netif_running(netdev))
5376 		return 0;
5377 
5378 	if (!device_may_wakeup(dev))
5379 		pm_runtime_force_resume(dev);
5380 
5381 	if (bp->wol & MACB_WOL_ENABLED) {
5382 		spin_lock_irqsave(&bp->lock, flags);
5383 		/* Disable WoL */
5384 		if (macb_is_gem(bp)) {
5385 			queue_writel(bp->queues, IDR, GEM_BIT(WOL));
5386 			gem_writel(bp, WOL, 0);
5387 		} else {
5388 			queue_writel(bp->queues, IDR, MACB_BIT(WOL));
5389 			macb_writel(bp, WOL, 0);
5390 		}
5391 		/* Clear ISR on queue 0 */
5392 		queue_readl(bp->queues, ISR);
5393 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5394 			queue_writel(bp->queues, ISR, -1);
5395 		/* Replace interrupt handler on queue 0 */
5396 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5397 		err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt,
5398 				       IRQF_SHARED, netdev->name, bp->queues);
5399 		if (err) {
5400 			dev_err(dev,
5401 				"Unable to request IRQ %d (error %d)\n",
5402 				bp->queues[0].irq, err);
5403 			spin_unlock_irqrestore(&bp->lock, flags);
5404 			return err;
5405 		}
5406 		spin_unlock_irqrestore(&bp->lock, flags);
5407 
5408 		disable_irq_wake(bp->queues[0].irq);
5409 
5410 		/* Now make sure we disable phy before moving
5411 		 * to common restore path
5412 		 */
5413 		rtnl_lock();
5414 		phylink_stop(bp->phylink);
5415 		rtnl_unlock();
5416 	}
5417 
5418 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5419 	     ++q, ++queue) {
5420 		napi_enable(&queue->napi_rx);
5421 		napi_enable(&queue->napi_tx);
5422 	}
5423 
5424 	if (netdev->hw_features & NETIF_F_NTUPLE)
5425 		gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2);
5426 
5427 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5428 		macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio);
5429 
5430 	macb_writel(bp, NCR, MACB_BIT(MPE));
5431 	macb_init_hw(bp);
5432 	macb_set_rx_mode(netdev);
5433 	macb_restore_features(bp);
5434 	rtnl_lock();
5435 
5436 	phylink_start(bp->phylink);
5437 	rtnl_unlock();
5438 
5439 	netif_device_attach(netdev);
5440 	if (bp->ptp_info)
5441 		bp->ptp_info->ptp_init(netdev);
5442 
5443 	return 0;
5444 }
5445 
5446 static int __maybe_unused macb_runtime_suspend(struct device *dev)
5447 {
5448 	struct net_device *netdev = dev_get_drvdata(dev);
5449 	struct macb *bp = netdev_priv(netdev);
5450 
5451 	if (!(device_may_wakeup(dev)))
5452 		macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk);
5453 	else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK))
5454 		macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk);
5455 
5456 	return 0;
5457 }
5458 
5459 static int __maybe_unused macb_runtime_resume(struct device *dev)
5460 {
5461 	struct net_device *netdev = dev_get_drvdata(dev);
5462 	struct macb *bp = netdev_priv(netdev);
5463 
5464 	if (!(device_may_wakeup(dev))) {
5465 		clk_prepare_enable(bp->pclk);
5466 		clk_prepare_enable(bp->hclk);
5467 		clk_prepare_enable(bp->tx_clk);
5468 		clk_prepare_enable(bp->rx_clk);
5469 		clk_prepare_enable(bp->tsu_clk);
5470 	} else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) {
5471 		clk_prepare_enable(bp->tsu_clk);
5472 	}
5473 
5474 	return 0;
5475 }
5476 
5477 static const struct dev_pm_ops macb_pm_ops = {
5478 	SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume)
5479 	SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL)
5480 };
5481 
5482 static struct platform_driver macb_driver = {
5483 	.probe		= macb_probe,
5484 	.remove_new	= macb_remove,
5485 	.driver		= {
5486 		.name		= "macb",
5487 		.of_match_table	= of_match_ptr(macb_dt_ids),
5488 		.pm	= &macb_pm_ops,
5489 	},
5490 };
5491 
5492 module_platform_driver(macb_driver);
5493 
5494 MODULE_LICENSE("GPL");
5495 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
5496 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
5497 MODULE_ALIAS("platform:macb");
5498