xref: /linux/drivers/net/ethernet/cadence/macb_main.c (revision 71e0ad345163c150ea15434b37036b0678d5f6f4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cadence MACB/GEM Ethernet Controller driver
4  *
5  * Copyright (C) 2004-2006 Atmel Corporation
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/crc32.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/circ_buf.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/phylink.h>
28 #include <linux/of.h>
29 #include <linux/of_gpio.h>
30 #include <linux/of_mdio.h>
31 #include <linux/of_net.h>
32 #include <linux/ip.h>
33 #include <linux/udp.h>
34 #include <linux/tcp.h>
35 #include <linux/iopoll.h>
36 #include <linux/phy/phy.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/ptp_classify.h>
39 #include <linux/reset.h>
40 #include <linux/firmware/xlnx-zynqmp.h>
41 #include <linux/inetdevice.h>
42 #include "macb.h"
43 
44 /* This structure is only used for MACB on SiFive FU540 devices */
45 struct sifive_fu540_macb_mgmt {
46 	void __iomem *reg;
47 	unsigned long rate;
48 	struct clk_hw hw;
49 };
50 
51 #define MACB_RX_BUFFER_SIZE	128
52 #define RX_BUFFER_MULTIPLE	64  /* bytes */
53 
54 #define DEFAULT_RX_RING_SIZE	512 /* must be power of 2 */
55 #define MIN_RX_RING_SIZE	64
56 #define MAX_RX_RING_SIZE	8192
57 #define RX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
58 				 * (bp)->rx_ring_size)
59 
60 #define DEFAULT_TX_RING_SIZE	512 /* must be power of 2 */
61 #define MIN_TX_RING_SIZE	64
62 #define MAX_TX_RING_SIZE	4096
63 #define TX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
64 				 * (bp)->tx_ring_size)
65 
66 /* level of occupied TX descriptors under which we wake up TX process */
67 #define MACB_TX_WAKEUP_THRESH(bp)	(3 * (bp)->tx_ring_size / 4)
68 
69 #define MACB_RX_INT_FLAGS	(MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR))
70 #define MACB_TX_ERR_FLAGS	(MACB_BIT(ISR_TUND)			\
71 					| MACB_BIT(ISR_RLE)		\
72 					| MACB_BIT(TXERR))
73 #define MACB_TX_INT_FLAGS	(MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP)	\
74 					| MACB_BIT(TXUBR))
75 
76 /* Max length of transmit frame must be a multiple of 8 bytes */
77 #define MACB_TX_LEN_ALIGN	8
78 #define MACB_MAX_TX_LEN		((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
79 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a
80  * false amba_error in TX path from the DMA assuming there is not enough
81  * space in the SRAM (16KB) even when there is.
82  */
83 #define GEM_MAX_TX_LEN		(unsigned int)(0x3FC0)
84 
85 #define GEM_MTU_MIN_SIZE	ETH_MIN_MTU
86 #define MACB_NETIF_LSO		NETIF_F_TSO
87 
88 #define MACB_WOL_ENABLED		BIT(0)
89 
90 #define HS_SPEED_10000M			4
91 #define MACB_SERDES_RATE_10G		1
92 
93 /* Graceful stop timeouts in us. We should allow up to
94  * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
95  */
96 #define MACB_HALT_TIMEOUT	14000
97 #define MACB_PM_TIMEOUT  100 /* ms */
98 
99 #define MACB_MDIO_TIMEOUT	1000000 /* in usecs */
100 
101 /* DMA buffer descriptor might be different size
102  * depends on hardware configuration:
103  *
104  * 1. dma address width 32 bits:
105  *    word 1: 32 bit address of Data Buffer
106  *    word 2: control
107  *
108  * 2. dma address width 64 bits:
109  *    word 1: 32 bit address of Data Buffer
110  *    word 2: control
111  *    word 3: upper 32 bit address of Data Buffer
112  *    word 4: unused
113  *
114  * 3. dma address width 32 bits with hardware timestamping:
115  *    word 1: 32 bit address of Data Buffer
116  *    word 2: control
117  *    word 3: timestamp word 1
118  *    word 4: timestamp word 2
119  *
120  * 4. dma address width 64 bits with hardware timestamping:
121  *    word 1: 32 bit address of Data Buffer
122  *    word 2: control
123  *    word 3: upper 32 bit address of Data Buffer
124  *    word 4: unused
125  *    word 5: timestamp word 1
126  *    word 6: timestamp word 2
127  */
128 static unsigned int macb_dma_desc_get_size(struct macb *bp)
129 {
130 #ifdef MACB_EXT_DESC
131 	unsigned int desc_size;
132 
133 	switch (bp->hw_dma_cap) {
134 	case HW_DMA_CAP_64B:
135 		desc_size = sizeof(struct macb_dma_desc)
136 			+ sizeof(struct macb_dma_desc_64);
137 		break;
138 	case HW_DMA_CAP_PTP:
139 		desc_size = sizeof(struct macb_dma_desc)
140 			+ sizeof(struct macb_dma_desc_ptp);
141 		break;
142 	case HW_DMA_CAP_64B_PTP:
143 		desc_size = sizeof(struct macb_dma_desc)
144 			+ sizeof(struct macb_dma_desc_64)
145 			+ sizeof(struct macb_dma_desc_ptp);
146 		break;
147 	default:
148 		desc_size = sizeof(struct macb_dma_desc);
149 	}
150 	return desc_size;
151 #endif
152 	return sizeof(struct macb_dma_desc);
153 }
154 
155 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx)
156 {
157 #ifdef MACB_EXT_DESC
158 	switch (bp->hw_dma_cap) {
159 	case HW_DMA_CAP_64B:
160 	case HW_DMA_CAP_PTP:
161 		desc_idx <<= 1;
162 		break;
163 	case HW_DMA_CAP_64B_PTP:
164 		desc_idx *= 3;
165 		break;
166 	default:
167 		break;
168 	}
169 #endif
170 	return desc_idx;
171 }
172 
173 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
174 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc)
175 {
176 	return (struct macb_dma_desc_64 *)((void *)desc
177 		+ sizeof(struct macb_dma_desc));
178 }
179 #endif
180 
181 /* Ring buffer accessors */
182 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index)
183 {
184 	return index & (bp->tx_ring_size - 1);
185 }
186 
187 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
188 					  unsigned int index)
189 {
190 	index = macb_tx_ring_wrap(queue->bp, index);
191 	index = macb_adj_dma_desc_idx(queue->bp, index);
192 	return &queue->tx_ring[index];
193 }
194 
195 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
196 				       unsigned int index)
197 {
198 	return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)];
199 }
200 
201 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
202 {
203 	dma_addr_t offset;
204 
205 	offset = macb_tx_ring_wrap(queue->bp, index) *
206 			macb_dma_desc_get_size(queue->bp);
207 
208 	return queue->tx_ring_dma + offset;
209 }
210 
211 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index)
212 {
213 	return index & (bp->rx_ring_size - 1);
214 }
215 
216 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index)
217 {
218 	index = macb_rx_ring_wrap(queue->bp, index);
219 	index = macb_adj_dma_desc_idx(queue->bp, index);
220 	return &queue->rx_ring[index];
221 }
222 
223 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index)
224 {
225 	return queue->rx_buffers + queue->bp->rx_buffer_size *
226 	       macb_rx_ring_wrap(queue->bp, index);
227 }
228 
229 /* I/O accessors */
230 static u32 hw_readl_native(struct macb *bp, int offset)
231 {
232 	return __raw_readl(bp->regs + offset);
233 }
234 
235 static void hw_writel_native(struct macb *bp, int offset, u32 value)
236 {
237 	__raw_writel(value, bp->regs + offset);
238 }
239 
240 static u32 hw_readl(struct macb *bp, int offset)
241 {
242 	return readl_relaxed(bp->regs + offset);
243 }
244 
245 static void hw_writel(struct macb *bp, int offset, u32 value)
246 {
247 	writel_relaxed(value, bp->regs + offset);
248 }
249 
250 /* Find the CPU endianness by using the loopback bit of NCR register. When the
251  * CPU is in big endian we need to program swapped mode for management
252  * descriptor access.
253  */
254 static bool hw_is_native_io(void __iomem *addr)
255 {
256 	u32 value = MACB_BIT(LLB);
257 
258 	__raw_writel(value, addr + MACB_NCR);
259 	value = __raw_readl(addr + MACB_NCR);
260 
261 	/* Write 0 back to disable everything */
262 	__raw_writel(0, addr + MACB_NCR);
263 
264 	return value == MACB_BIT(LLB);
265 }
266 
267 static bool hw_is_gem(void __iomem *addr, bool native_io)
268 {
269 	u32 id;
270 
271 	if (native_io)
272 		id = __raw_readl(addr + MACB_MID);
273 	else
274 		id = readl_relaxed(addr + MACB_MID);
275 
276 	return MACB_BFEXT(IDNUM, id) >= 0x2;
277 }
278 
279 static void macb_set_hwaddr(struct macb *bp)
280 {
281 	u32 bottom;
282 	u16 top;
283 
284 	bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
285 	macb_or_gem_writel(bp, SA1B, bottom);
286 	top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
287 	macb_or_gem_writel(bp, SA1T, top);
288 
289 	if (gem_has_ptp(bp)) {
290 		gem_writel(bp, RXPTPUNI, bottom);
291 		gem_writel(bp, TXPTPUNI, bottom);
292 	}
293 
294 	/* Clear unused address register sets */
295 	macb_or_gem_writel(bp, SA2B, 0);
296 	macb_or_gem_writel(bp, SA2T, 0);
297 	macb_or_gem_writel(bp, SA3B, 0);
298 	macb_or_gem_writel(bp, SA3T, 0);
299 	macb_or_gem_writel(bp, SA4B, 0);
300 	macb_or_gem_writel(bp, SA4T, 0);
301 }
302 
303 static void macb_get_hwaddr(struct macb *bp)
304 {
305 	u32 bottom;
306 	u16 top;
307 	u8 addr[6];
308 	int i;
309 
310 	/* Check all 4 address register for valid address */
311 	for (i = 0; i < 4; i++) {
312 		bottom = macb_or_gem_readl(bp, SA1B + i * 8);
313 		top = macb_or_gem_readl(bp, SA1T + i * 8);
314 
315 		addr[0] = bottom & 0xff;
316 		addr[1] = (bottom >> 8) & 0xff;
317 		addr[2] = (bottom >> 16) & 0xff;
318 		addr[3] = (bottom >> 24) & 0xff;
319 		addr[4] = top & 0xff;
320 		addr[5] = (top >> 8) & 0xff;
321 
322 		if (is_valid_ether_addr(addr)) {
323 			eth_hw_addr_set(bp->dev, addr);
324 			return;
325 		}
326 	}
327 
328 	dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
329 	eth_hw_addr_random(bp->dev);
330 }
331 
332 static int macb_mdio_wait_for_idle(struct macb *bp)
333 {
334 	u32 val;
335 
336 	return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE),
337 				  1, MACB_MDIO_TIMEOUT);
338 }
339 
340 static int macb_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
341 {
342 	struct macb *bp = bus->priv;
343 	int status;
344 
345 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
346 	if (status < 0)
347 		goto mdio_pm_exit;
348 
349 	status = macb_mdio_wait_for_idle(bp);
350 	if (status < 0)
351 		goto mdio_read_exit;
352 
353 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
354 			      | MACB_BF(RW, MACB_MAN_C22_READ)
355 			      | MACB_BF(PHYA, mii_id)
356 			      | MACB_BF(REGA, regnum)
357 			      | MACB_BF(CODE, MACB_MAN_C22_CODE)));
358 
359 	status = macb_mdio_wait_for_idle(bp);
360 	if (status < 0)
361 		goto mdio_read_exit;
362 
363 	status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
364 
365 mdio_read_exit:
366 	pm_runtime_mark_last_busy(&bp->pdev->dev);
367 	pm_runtime_put_autosuspend(&bp->pdev->dev);
368 mdio_pm_exit:
369 	return status;
370 }
371 
372 static int macb_mdio_read_c45(struct mii_bus *bus, int mii_id, int devad,
373 			      int regnum)
374 {
375 	struct macb *bp = bus->priv;
376 	int status;
377 
378 	status = pm_runtime_get_sync(&bp->pdev->dev);
379 	if (status < 0) {
380 		pm_runtime_put_noidle(&bp->pdev->dev);
381 		goto mdio_pm_exit;
382 	}
383 
384 	status = macb_mdio_wait_for_idle(bp);
385 	if (status < 0)
386 		goto mdio_read_exit;
387 
388 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
389 			      | MACB_BF(RW, MACB_MAN_C45_ADDR)
390 			      | MACB_BF(PHYA, mii_id)
391 			      | MACB_BF(REGA, devad & 0x1F)
392 			      | MACB_BF(DATA, regnum & 0xFFFF)
393 			      | MACB_BF(CODE, MACB_MAN_C45_CODE)));
394 
395 	status = macb_mdio_wait_for_idle(bp);
396 	if (status < 0)
397 		goto mdio_read_exit;
398 
399 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
400 			      | MACB_BF(RW, MACB_MAN_C45_READ)
401 			      | MACB_BF(PHYA, mii_id)
402 			      | MACB_BF(REGA, devad & 0x1F)
403 			      | MACB_BF(CODE, MACB_MAN_C45_CODE)));
404 
405 	status = macb_mdio_wait_for_idle(bp);
406 	if (status < 0)
407 		goto mdio_read_exit;
408 
409 	status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
410 
411 mdio_read_exit:
412 	pm_runtime_mark_last_busy(&bp->pdev->dev);
413 	pm_runtime_put_autosuspend(&bp->pdev->dev);
414 mdio_pm_exit:
415 	return status;
416 }
417 
418 static int macb_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
419 			       u16 value)
420 {
421 	struct macb *bp = bus->priv;
422 	int status;
423 
424 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
425 	if (status < 0)
426 		goto mdio_pm_exit;
427 
428 	status = macb_mdio_wait_for_idle(bp);
429 	if (status < 0)
430 		goto mdio_write_exit;
431 
432 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
433 			      | MACB_BF(RW, MACB_MAN_C22_WRITE)
434 			      | MACB_BF(PHYA, mii_id)
435 			      | MACB_BF(REGA, regnum)
436 			      | MACB_BF(CODE, MACB_MAN_C22_CODE)
437 			      | MACB_BF(DATA, value)));
438 
439 	status = macb_mdio_wait_for_idle(bp);
440 	if (status < 0)
441 		goto mdio_write_exit;
442 
443 mdio_write_exit:
444 	pm_runtime_mark_last_busy(&bp->pdev->dev);
445 	pm_runtime_put_autosuspend(&bp->pdev->dev);
446 mdio_pm_exit:
447 	return status;
448 }
449 
450 static int macb_mdio_write_c45(struct mii_bus *bus, int mii_id,
451 			       int devad, int regnum,
452 			       u16 value)
453 {
454 	struct macb *bp = bus->priv;
455 	int status;
456 
457 	status = pm_runtime_get_sync(&bp->pdev->dev);
458 	if (status < 0) {
459 		pm_runtime_put_noidle(&bp->pdev->dev);
460 		goto mdio_pm_exit;
461 	}
462 
463 	status = macb_mdio_wait_for_idle(bp);
464 	if (status < 0)
465 		goto mdio_write_exit;
466 
467 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
468 			      | MACB_BF(RW, MACB_MAN_C45_ADDR)
469 			      | MACB_BF(PHYA, mii_id)
470 			      | MACB_BF(REGA, devad & 0x1F)
471 			      | MACB_BF(DATA, regnum & 0xFFFF)
472 			      | MACB_BF(CODE, MACB_MAN_C45_CODE)));
473 
474 	status = macb_mdio_wait_for_idle(bp);
475 	if (status < 0)
476 		goto mdio_write_exit;
477 
478 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
479 			      | MACB_BF(RW, MACB_MAN_C45_WRITE)
480 			      | MACB_BF(PHYA, mii_id)
481 			      | MACB_BF(REGA, devad & 0x1F)
482 			      | MACB_BF(CODE, MACB_MAN_C45_CODE)
483 			      | MACB_BF(DATA, value)));
484 
485 	status = macb_mdio_wait_for_idle(bp);
486 	if (status < 0)
487 		goto mdio_write_exit;
488 
489 mdio_write_exit:
490 	pm_runtime_mark_last_busy(&bp->pdev->dev);
491 	pm_runtime_put_autosuspend(&bp->pdev->dev);
492 mdio_pm_exit:
493 	return status;
494 }
495 
496 static void macb_init_buffers(struct macb *bp)
497 {
498 	struct macb_queue *queue;
499 	unsigned int q;
500 
501 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
502 		queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma));
503 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
504 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
505 			queue_writel(queue, RBQPH,
506 				     upper_32_bits(queue->rx_ring_dma));
507 #endif
508 		queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
509 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
510 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
511 			queue_writel(queue, TBQPH,
512 				     upper_32_bits(queue->tx_ring_dma));
513 #endif
514 	}
515 }
516 
517 /**
518  * macb_set_tx_clk() - Set a clock to a new frequency
519  * @bp:		pointer to struct macb
520  * @speed:	New frequency in Hz
521  */
522 static void macb_set_tx_clk(struct macb *bp, int speed)
523 {
524 	long ferr, rate, rate_rounded;
525 
526 	if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG))
527 		return;
528 
529 	/* In case of MII the PHY is the clock master */
530 	if (bp->phy_interface == PHY_INTERFACE_MODE_MII)
531 		return;
532 
533 	switch (speed) {
534 	case SPEED_10:
535 		rate = 2500000;
536 		break;
537 	case SPEED_100:
538 		rate = 25000000;
539 		break;
540 	case SPEED_1000:
541 		rate = 125000000;
542 		break;
543 	default:
544 		return;
545 	}
546 
547 	rate_rounded = clk_round_rate(bp->tx_clk, rate);
548 	if (rate_rounded < 0)
549 		return;
550 
551 	/* RGMII allows 50 ppm frequency error. Test and warn if this limit
552 	 * is not satisfied.
553 	 */
554 	ferr = abs(rate_rounded - rate);
555 	ferr = DIV_ROUND_UP(ferr, rate / 100000);
556 	if (ferr > 5)
557 		netdev_warn(bp->dev,
558 			    "unable to generate target frequency: %ld Hz\n",
559 			    rate);
560 
561 	if (clk_set_rate(bp->tx_clk, rate_rounded))
562 		netdev_err(bp->dev, "adjusting tx_clk failed.\n");
563 }
564 
565 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int neg_mode,
566 				 phy_interface_t interface, int speed,
567 				 int duplex)
568 {
569 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
570 	u32 config;
571 
572 	config = gem_readl(bp, USX_CONTROL);
573 	config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config);
574 	config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config);
575 	config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS));
576 	config |= GEM_BIT(TX_EN);
577 	gem_writel(bp, USX_CONTROL, config);
578 }
579 
580 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs,
581 				   struct phylink_link_state *state)
582 {
583 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
584 	u32 val;
585 
586 	state->speed = SPEED_10000;
587 	state->duplex = 1;
588 	state->an_complete = 1;
589 
590 	val = gem_readl(bp, USX_STATUS);
591 	state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK));
592 	val = gem_readl(bp, NCFGR);
593 	if (val & GEM_BIT(PAE))
594 		state->pause = MLO_PAUSE_RX;
595 }
596 
597 static int macb_usx_pcs_config(struct phylink_pcs *pcs,
598 			       unsigned int neg_mode,
599 			       phy_interface_t interface,
600 			       const unsigned long *advertising,
601 			       bool permit_pause_to_mac)
602 {
603 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
604 
605 	gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) |
606 		   GEM_BIT(SIGNAL_OK));
607 
608 	return 0;
609 }
610 
611 static void macb_pcs_get_state(struct phylink_pcs *pcs,
612 			       struct phylink_link_state *state)
613 {
614 	state->link = 0;
615 }
616 
617 static void macb_pcs_an_restart(struct phylink_pcs *pcs)
618 {
619 	/* Not supported */
620 }
621 
622 static int macb_pcs_config(struct phylink_pcs *pcs,
623 			   unsigned int neg_mode,
624 			   phy_interface_t interface,
625 			   const unsigned long *advertising,
626 			   bool permit_pause_to_mac)
627 {
628 	return 0;
629 }
630 
631 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = {
632 	.pcs_get_state = macb_usx_pcs_get_state,
633 	.pcs_config = macb_usx_pcs_config,
634 	.pcs_link_up = macb_usx_pcs_link_up,
635 };
636 
637 static const struct phylink_pcs_ops macb_phylink_pcs_ops = {
638 	.pcs_get_state = macb_pcs_get_state,
639 	.pcs_an_restart = macb_pcs_an_restart,
640 	.pcs_config = macb_pcs_config,
641 };
642 
643 static void macb_mac_config(struct phylink_config *config, unsigned int mode,
644 			    const struct phylink_link_state *state)
645 {
646 	struct net_device *ndev = to_net_dev(config->dev);
647 	struct macb *bp = netdev_priv(ndev);
648 	unsigned long flags;
649 	u32 old_ctrl, ctrl;
650 	u32 old_ncr, ncr;
651 
652 	spin_lock_irqsave(&bp->lock, flags);
653 
654 	old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR);
655 	old_ncr = ncr = macb_or_gem_readl(bp, NCR);
656 
657 	if (bp->caps & MACB_CAPS_MACB_IS_EMAC) {
658 		if (state->interface == PHY_INTERFACE_MODE_RMII)
659 			ctrl |= MACB_BIT(RM9200_RMII);
660 	} else if (macb_is_gem(bp)) {
661 		ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL));
662 		ncr &= ~GEM_BIT(ENABLE_HS_MAC);
663 
664 		if (state->interface == PHY_INTERFACE_MODE_SGMII) {
665 			ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
666 		} else if (state->interface == PHY_INTERFACE_MODE_10GBASER) {
667 			ctrl |= GEM_BIT(PCSSEL);
668 			ncr |= GEM_BIT(ENABLE_HS_MAC);
669 		} else if (bp->caps & MACB_CAPS_MIIONRGMII &&
670 			   bp->phy_interface == PHY_INTERFACE_MODE_MII) {
671 			ncr |= MACB_BIT(MIIONRGMII);
672 		}
673 	}
674 
675 	/* Apply the new configuration, if any */
676 	if (old_ctrl ^ ctrl)
677 		macb_or_gem_writel(bp, NCFGR, ctrl);
678 
679 	if (old_ncr ^ ncr)
680 		macb_or_gem_writel(bp, NCR, ncr);
681 
682 	/* Disable AN for SGMII fixed link configuration, enable otherwise.
683 	 * Must be written after PCSSEL is set in NCFGR,
684 	 * otherwise writes will not take effect.
685 	 */
686 	if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) {
687 		u32 pcsctrl, old_pcsctrl;
688 
689 		old_pcsctrl = gem_readl(bp, PCSCNTRL);
690 		if (mode == MLO_AN_FIXED)
691 			pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG);
692 		else
693 			pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG);
694 		if (old_pcsctrl != pcsctrl)
695 			gem_writel(bp, PCSCNTRL, pcsctrl);
696 	}
697 
698 	spin_unlock_irqrestore(&bp->lock, flags);
699 }
700 
701 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode,
702 			       phy_interface_t interface)
703 {
704 	struct net_device *ndev = to_net_dev(config->dev);
705 	struct macb *bp = netdev_priv(ndev);
706 	struct macb_queue *queue;
707 	unsigned int q;
708 	u32 ctrl;
709 
710 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
711 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
712 			queue_writel(queue, IDR,
713 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
714 
715 	/* Disable Rx and Tx */
716 	ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE));
717 	macb_writel(bp, NCR, ctrl);
718 
719 	netif_tx_stop_all_queues(ndev);
720 }
721 
722 static void macb_mac_link_up(struct phylink_config *config,
723 			     struct phy_device *phy,
724 			     unsigned int mode, phy_interface_t interface,
725 			     int speed, int duplex,
726 			     bool tx_pause, bool rx_pause)
727 {
728 	struct net_device *ndev = to_net_dev(config->dev);
729 	struct macb *bp = netdev_priv(ndev);
730 	struct macb_queue *queue;
731 	unsigned long flags;
732 	unsigned int q;
733 	u32 ctrl;
734 
735 	spin_lock_irqsave(&bp->lock, flags);
736 
737 	ctrl = macb_or_gem_readl(bp, NCFGR);
738 
739 	ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
740 
741 	if (speed == SPEED_100)
742 		ctrl |= MACB_BIT(SPD);
743 
744 	if (duplex)
745 		ctrl |= MACB_BIT(FD);
746 
747 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) {
748 		ctrl &= ~MACB_BIT(PAE);
749 		if (macb_is_gem(bp)) {
750 			ctrl &= ~GEM_BIT(GBE);
751 
752 			if (speed == SPEED_1000)
753 				ctrl |= GEM_BIT(GBE);
754 		}
755 
756 		if (rx_pause)
757 			ctrl |= MACB_BIT(PAE);
758 
759 		/* Initialize rings & buffers as clearing MACB_BIT(TE) in link down
760 		 * cleared the pipeline and control registers.
761 		 */
762 		bp->macbgem_ops.mog_init_rings(bp);
763 		macb_init_buffers(bp);
764 
765 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
766 			queue_writel(queue, IER,
767 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
768 	}
769 
770 	macb_or_gem_writel(bp, NCFGR, ctrl);
771 
772 	if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER)
773 		gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M,
774 							gem_readl(bp, HS_MAC_CONFIG)));
775 
776 	spin_unlock_irqrestore(&bp->lock, flags);
777 
778 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
779 		macb_set_tx_clk(bp, speed);
780 
781 	/* Enable Rx and Tx; Enable PTP unicast */
782 	ctrl = macb_readl(bp, NCR);
783 	if (gem_has_ptp(bp))
784 		ctrl |= MACB_BIT(PTPUNI);
785 
786 	macb_writel(bp, NCR, ctrl | MACB_BIT(RE) | MACB_BIT(TE));
787 
788 	netif_tx_wake_all_queues(ndev);
789 }
790 
791 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config,
792 					       phy_interface_t interface)
793 {
794 	struct net_device *ndev = to_net_dev(config->dev);
795 	struct macb *bp = netdev_priv(ndev);
796 
797 	if (interface == PHY_INTERFACE_MODE_10GBASER)
798 		return &bp->phylink_usx_pcs;
799 	else if (interface == PHY_INTERFACE_MODE_SGMII)
800 		return &bp->phylink_sgmii_pcs;
801 	else
802 		return NULL;
803 }
804 
805 static const struct phylink_mac_ops macb_phylink_ops = {
806 	.mac_select_pcs = macb_mac_select_pcs,
807 	.mac_config = macb_mac_config,
808 	.mac_link_down = macb_mac_link_down,
809 	.mac_link_up = macb_mac_link_up,
810 };
811 
812 static bool macb_phy_handle_exists(struct device_node *dn)
813 {
814 	dn = of_parse_phandle(dn, "phy-handle", 0);
815 	of_node_put(dn);
816 	return dn != NULL;
817 }
818 
819 static int macb_phylink_connect(struct macb *bp)
820 {
821 	struct device_node *dn = bp->pdev->dev.of_node;
822 	struct net_device *dev = bp->dev;
823 	struct phy_device *phydev;
824 	int ret;
825 
826 	if (dn)
827 		ret = phylink_of_phy_connect(bp->phylink, dn, 0);
828 
829 	if (!dn || (ret && !macb_phy_handle_exists(dn))) {
830 		phydev = phy_find_first(bp->mii_bus);
831 		if (!phydev) {
832 			netdev_err(dev, "no PHY found\n");
833 			return -ENXIO;
834 		}
835 
836 		/* attach the mac to the phy */
837 		ret = phylink_connect_phy(bp->phylink, phydev);
838 	}
839 
840 	if (ret) {
841 		netdev_err(dev, "Could not attach PHY (%d)\n", ret);
842 		return ret;
843 	}
844 
845 	phylink_start(bp->phylink);
846 
847 	return 0;
848 }
849 
850 static void macb_get_pcs_fixed_state(struct phylink_config *config,
851 				     struct phylink_link_state *state)
852 {
853 	struct net_device *ndev = to_net_dev(config->dev);
854 	struct macb *bp = netdev_priv(ndev);
855 
856 	state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0;
857 }
858 
859 /* based on au1000_eth. c*/
860 static int macb_mii_probe(struct net_device *dev)
861 {
862 	struct macb *bp = netdev_priv(dev);
863 
864 	bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops;
865 	bp->phylink_sgmii_pcs.neg_mode = true;
866 	bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops;
867 	bp->phylink_usx_pcs.neg_mode = true;
868 
869 	bp->phylink_config.dev = &dev->dev;
870 	bp->phylink_config.type = PHYLINK_NETDEV;
871 	bp->phylink_config.mac_managed_pm = true;
872 
873 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
874 		bp->phylink_config.poll_fixed_state = true;
875 		bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state;
876 	}
877 
878 	bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE |
879 		MAC_10 | MAC_100;
880 
881 	__set_bit(PHY_INTERFACE_MODE_MII,
882 		  bp->phylink_config.supported_interfaces);
883 	__set_bit(PHY_INTERFACE_MODE_RMII,
884 		  bp->phylink_config.supported_interfaces);
885 
886 	/* Determine what modes are supported */
887 	if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) {
888 		bp->phylink_config.mac_capabilities |= MAC_1000FD;
889 		if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF))
890 			bp->phylink_config.mac_capabilities |= MAC_1000HD;
891 
892 		__set_bit(PHY_INTERFACE_MODE_GMII,
893 			  bp->phylink_config.supported_interfaces);
894 		phy_interface_set_rgmii(bp->phylink_config.supported_interfaces);
895 
896 		if (bp->caps & MACB_CAPS_PCS)
897 			__set_bit(PHY_INTERFACE_MODE_SGMII,
898 				  bp->phylink_config.supported_interfaces);
899 
900 		if (bp->caps & MACB_CAPS_HIGH_SPEED) {
901 			__set_bit(PHY_INTERFACE_MODE_10GBASER,
902 				  bp->phylink_config.supported_interfaces);
903 			bp->phylink_config.mac_capabilities |= MAC_10000FD;
904 		}
905 	}
906 
907 	bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode,
908 				     bp->phy_interface, &macb_phylink_ops);
909 	if (IS_ERR(bp->phylink)) {
910 		netdev_err(dev, "Could not create a phylink instance (%ld)\n",
911 			   PTR_ERR(bp->phylink));
912 		return PTR_ERR(bp->phylink);
913 	}
914 
915 	return 0;
916 }
917 
918 static int macb_mdiobus_register(struct macb *bp)
919 {
920 	struct device_node *child, *np = bp->pdev->dev.of_node;
921 
922 	/* If we have a child named mdio, probe it instead of looking for PHYs
923 	 * directly under the MAC node
924 	 */
925 	child = of_get_child_by_name(np, "mdio");
926 	if (child) {
927 		int ret = of_mdiobus_register(bp->mii_bus, child);
928 
929 		of_node_put(child);
930 		return ret;
931 	}
932 
933 	/* Only create the PHY from the device tree if at least one PHY is
934 	 * described. Otherwise scan the entire MDIO bus. We do this to support
935 	 * old device tree that did not follow the best practices and did not
936 	 * describe their network PHYs.
937 	 */
938 	for_each_available_child_of_node(np, child)
939 		if (of_mdiobus_child_is_phy(child)) {
940 			/* The loop increments the child refcount,
941 			 * decrement it before returning.
942 			 */
943 			of_node_put(child);
944 
945 			return of_mdiobus_register(bp->mii_bus, np);
946 		}
947 
948 	return mdiobus_register(bp->mii_bus);
949 }
950 
951 static int macb_mii_init(struct macb *bp)
952 {
953 	struct device_node *child, *np = bp->pdev->dev.of_node;
954 	int err = -ENXIO;
955 
956 	/* With fixed-link, we don't need to register the MDIO bus,
957 	 * except if we have a child named "mdio" in the device tree.
958 	 * In that case, some devices may be attached to the MACB's MDIO bus.
959 	 */
960 	child = of_get_child_by_name(np, "mdio");
961 	if (child)
962 		of_node_put(child);
963 	else if (of_phy_is_fixed_link(np))
964 		return macb_mii_probe(bp->dev);
965 
966 	/* Enable management port */
967 	macb_writel(bp, NCR, MACB_BIT(MPE));
968 
969 	bp->mii_bus = mdiobus_alloc();
970 	if (!bp->mii_bus) {
971 		err = -ENOMEM;
972 		goto err_out;
973 	}
974 
975 	bp->mii_bus->name = "MACB_mii_bus";
976 	bp->mii_bus->read = &macb_mdio_read_c22;
977 	bp->mii_bus->write = &macb_mdio_write_c22;
978 	bp->mii_bus->read_c45 = &macb_mdio_read_c45;
979 	bp->mii_bus->write_c45 = &macb_mdio_write_c45;
980 	snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
981 		 bp->pdev->name, bp->pdev->id);
982 	bp->mii_bus->priv = bp;
983 	bp->mii_bus->parent = &bp->pdev->dev;
984 
985 	dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
986 
987 	err = macb_mdiobus_register(bp);
988 	if (err)
989 		goto err_out_free_mdiobus;
990 
991 	err = macb_mii_probe(bp->dev);
992 	if (err)
993 		goto err_out_unregister_bus;
994 
995 	return 0;
996 
997 err_out_unregister_bus:
998 	mdiobus_unregister(bp->mii_bus);
999 err_out_free_mdiobus:
1000 	mdiobus_free(bp->mii_bus);
1001 err_out:
1002 	return err;
1003 }
1004 
1005 static void macb_update_stats(struct macb *bp)
1006 {
1007 	u32 *p = &bp->hw_stats.macb.rx_pause_frames;
1008 	u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
1009 	int offset = MACB_PFR;
1010 
1011 	WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
1012 
1013 	for (; p < end; p++, offset += 4)
1014 		*p += bp->macb_reg_readl(bp, offset);
1015 }
1016 
1017 static int macb_halt_tx(struct macb *bp)
1018 {
1019 	unsigned long	halt_time, timeout;
1020 	u32		status;
1021 
1022 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
1023 
1024 	timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
1025 	do {
1026 		halt_time = jiffies;
1027 		status = macb_readl(bp, TSR);
1028 		if (!(status & MACB_BIT(TGO)))
1029 			return 0;
1030 
1031 		udelay(250);
1032 	} while (time_before(halt_time, timeout));
1033 
1034 	return -ETIMEDOUT;
1035 }
1036 
1037 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget)
1038 {
1039 	if (tx_skb->mapping) {
1040 		if (tx_skb->mapped_as_page)
1041 			dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
1042 				       tx_skb->size, DMA_TO_DEVICE);
1043 		else
1044 			dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
1045 					 tx_skb->size, DMA_TO_DEVICE);
1046 		tx_skb->mapping = 0;
1047 	}
1048 
1049 	if (tx_skb->skb) {
1050 		napi_consume_skb(tx_skb->skb, budget);
1051 		tx_skb->skb = NULL;
1052 	}
1053 }
1054 
1055 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr)
1056 {
1057 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1058 	struct macb_dma_desc_64 *desc_64;
1059 
1060 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1061 		desc_64 = macb_64b_desc(bp, desc);
1062 		desc_64->addrh = upper_32_bits(addr);
1063 		/* The low bits of RX address contain the RX_USED bit, clearing
1064 		 * of which allows packet RX. Make sure the high bits are also
1065 		 * visible to HW at that point.
1066 		 */
1067 		dma_wmb();
1068 	}
1069 #endif
1070 	desc->addr = lower_32_bits(addr);
1071 }
1072 
1073 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc)
1074 {
1075 	dma_addr_t addr = 0;
1076 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1077 	struct macb_dma_desc_64 *desc_64;
1078 
1079 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1080 		desc_64 = macb_64b_desc(bp, desc);
1081 		addr = ((u64)(desc_64->addrh) << 32);
1082 	}
1083 #endif
1084 	addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1085 #ifdef CONFIG_MACB_USE_HWSTAMP
1086 	if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
1087 		addr &= ~GEM_BIT(DMA_RXVALID);
1088 #endif
1089 	return addr;
1090 }
1091 
1092 static void macb_tx_error_task(struct work_struct *work)
1093 {
1094 	struct macb_queue	*queue = container_of(work, struct macb_queue,
1095 						      tx_error_task);
1096 	bool			halt_timeout = false;
1097 	struct macb		*bp = queue->bp;
1098 	struct macb_tx_skb	*tx_skb;
1099 	struct macb_dma_desc	*desc;
1100 	struct sk_buff		*skb;
1101 	unsigned int		tail;
1102 	unsigned long		flags;
1103 
1104 	netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
1105 		    (unsigned int)(queue - bp->queues),
1106 		    queue->tx_tail, queue->tx_head);
1107 
1108 	/* Prevent the queue NAPI TX poll from running, as it calls
1109 	 * macb_tx_complete(), which in turn may call netif_wake_subqueue().
1110 	 * As explained below, we have to halt the transmission before updating
1111 	 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
1112 	 * network engine about the macb/gem being halted.
1113 	 */
1114 	napi_disable(&queue->napi_tx);
1115 	spin_lock_irqsave(&bp->lock, flags);
1116 
1117 	/* Make sure nobody is trying to queue up new packets */
1118 	netif_tx_stop_all_queues(bp->dev);
1119 
1120 	/* Stop transmission now
1121 	 * (in case we have just queued new packets)
1122 	 * macb/gem must be halted to write TBQP register
1123 	 */
1124 	if (macb_halt_tx(bp)) {
1125 		netdev_err(bp->dev, "BUG: halt tx timed out\n");
1126 		macb_writel(bp, NCR, macb_readl(bp, NCR) & (~MACB_BIT(TE)));
1127 		halt_timeout = true;
1128 	}
1129 
1130 	/* Treat frames in TX queue including the ones that caused the error.
1131 	 * Free transmit buffers in upper layer.
1132 	 */
1133 	for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
1134 		u32	ctrl;
1135 
1136 		desc = macb_tx_desc(queue, tail);
1137 		ctrl = desc->ctrl;
1138 		tx_skb = macb_tx_skb(queue, tail);
1139 		skb = tx_skb->skb;
1140 
1141 		if (ctrl & MACB_BIT(TX_USED)) {
1142 			/* skb is set for the last buffer of the frame */
1143 			while (!skb) {
1144 				macb_tx_unmap(bp, tx_skb, 0);
1145 				tail++;
1146 				tx_skb = macb_tx_skb(queue, tail);
1147 				skb = tx_skb->skb;
1148 			}
1149 
1150 			/* ctrl still refers to the first buffer descriptor
1151 			 * since it's the only one written back by the hardware
1152 			 */
1153 			if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
1154 				netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
1155 					    macb_tx_ring_wrap(bp, tail),
1156 					    skb->data);
1157 				bp->dev->stats.tx_packets++;
1158 				queue->stats.tx_packets++;
1159 				bp->dev->stats.tx_bytes += skb->len;
1160 				queue->stats.tx_bytes += skb->len;
1161 			}
1162 		} else {
1163 			/* "Buffers exhausted mid-frame" errors may only happen
1164 			 * if the driver is buggy, so complain loudly about
1165 			 * those. Statistics are updated by hardware.
1166 			 */
1167 			if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
1168 				netdev_err(bp->dev,
1169 					   "BUG: TX buffers exhausted mid-frame\n");
1170 
1171 			desc->ctrl = ctrl | MACB_BIT(TX_USED);
1172 		}
1173 
1174 		macb_tx_unmap(bp, tx_skb, 0);
1175 	}
1176 
1177 	/* Set end of TX queue */
1178 	desc = macb_tx_desc(queue, 0);
1179 	macb_set_addr(bp, desc, 0);
1180 	desc->ctrl = MACB_BIT(TX_USED);
1181 
1182 	/* Make descriptor updates visible to hardware */
1183 	wmb();
1184 
1185 	/* Reinitialize the TX desc queue */
1186 	queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
1187 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1188 	if (bp->hw_dma_cap & HW_DMA_CAP_64B)
1189 		queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma));
1190 #endif
1191 	/* Make TX ring reflect state of hardware */
1192 	queue->tx_head = 0;
1193 	queue->tx_tail = 0;
1194 
1195 	/* Housework before enabling TX IRQ */
1196 	macb_writel(bp, TSR, macb_readl(bp, TSR));
1197 	queue_writel(queue, IER, MACB_TX_INT_FLAGS);
1198 
1199 	if (halt_timeout)
1200 		macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TE));
1201 
1202 	/* Now we are ready to start transmission again */
1203 	netif_tx_start_all_queues(bp->dev);
1204 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1205 
1206 	spin_unlock_irqrestore(&bp->lock, flags);
1207 	napi_enable(&queue->napi_tx);
1208 }
1209 
1210 static bool ptp_one_step_sync(struct sk_buff *skb)
1211 {
1212 	struct ptp_header *hdr;
1213 	unsigned int ptp_class;
1214 	u8 msgtype;
1215 
1216 	/* No need to parse packet if PTP TS is not involved */
1217 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1218 		goto not_oss;
1219 
1220 	/* Identify and return whether PTP one step sync is being processed */
1221 	ptp_class = ptp_classify_raw(skb);
1222 	if (ptp_class == PTP_CLASS_NONE)
1223 		goto not_oss;
1224 
1225 	hdr = ptp_parse_header(skb, ptp_class);
1226 	if (!hdr)
1227 		goto not_oss;
1228 
1229 	if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP)
1230 		goto not_oss;
1231 
1232 	msgtype = ptp_get_msgtype(hdr, ptp_class);
1233 	if (msgtype == PTP_MSGTYPE_SYNC)
1234 		return true;
1235 
1236 not_oss:
1237 	return false;
1238 }
1239 
1240 static int macb_tx_complete(struct macb_queue *queue, int budget)
1241 {
1242 	struct macb *bp = queue->bp;
1243 	u16 queue_index = queue - bp->queues;
1244 	unsigned int tail;
1245 	unsigned int head;
1246 	int packets = 0;
1247 
1248 	spin_lock(&queue->tx_ptr_lock);
1249 	head = queue->tx_head;
1250 	for (tail = queue->tx_tail; tail != head && packets < budget; tail++) {
1251 		struct macb_tx_skb	*tx_skb;
1252 		struct sk_buff		*skb;
1253 		struct macb_dma_desc	*desc;
1254 		u32			ctrl;
1255 
1256 		desc = macb_tx_desc(queue, tail);
1257 
1258 		/* Make hw descriptor updates visible to CPU */
1259 		rmb();
1260 
1261 		ctrl = desc->ctrl;
1262 
1263 		/* TX_USED bit is only set by hardware on the very first buffer
1264 		 * descriptor of the transmitted frame.
1265 		 */
1266 		if (!(ctrl & MACB_BIT(TX_USED)))
1267 			break;
1268 
1269 		/* Process all buffers of the current transmitted frame */
1270 		for (;; tail++) {
1271 			tx_skb = macb_tx_skb(queue, tail);
1272 			skb = tx_skb->skb;
1273 
1274 			/* First, update TX stats if needed */
1275 			if (skb) {
1276 				if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1277 				    !ptp_one_step_sync(skb))
1278 					gem_ptp_do_txstamp(bp, skb, desc);
1279 
1280 				netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
1281 					    macb_tx_ring_wrap(bp, tail),
1282 					    skb->data);
1283 				bp->dev->stats.tx_packets++;
1284 				queue->stats.tx_packets++;
1285 				bp->dev->stats.tx_bytes += skb->len;
1286 				queue->stats.tx_bytes += skb->len;
1287 				packets++;
1288 			}
1289 
1290 			/* Now we can safely release resources */
1291 			macb_tx_unmap(bp, tx_skb, budget);
1292 
1293 			/* skb is set only for the last buffer of the frame.
1294 			 * WARNING: at this point skb has been freed by
1295 			 * macb_tx_unmap().
1296 			 */
1297 			if (skb)
1298 				break;
1299 		}
1300 	}
1301 
1302 	queue->tx_tail = tail;
1303 	if (__netif_subqueue_stopped(bp->dev, queue_index) &&
1304 	    CIRC_CNT(queue->tx_head, queue->tx_tail,
1305 		     bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp))
1306 		netif_wake_subqueue(bp->dev, queue_index);
1307 	spin_unlock(&queue->tx_ptr_lock);
1308 
1309 	return packets;
1310 }
1311 
1312 static void gem_rx_refill(struct macb_queue *queue)
1313 {
1314 	unsigned int		entry;
1315 	struct sk_buff		*skb;
1316 	dma_addr_t		paddr;
1317 	struct macb *bp = queue->bp;
1318 	struct macb_dma_desc *desc;
1319 
1320 	while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail,
1321 			bp->rx_ring_size) > 0) {
1322 		entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head);
1323 
1324 		/* Make hw descriptor updates visible to CPU */
1325 		rmb();
1326 
1327 		desc = macb_rx_desc(queue, entry);
1328 
1329 		if (!queue->rx_skbuff[entry]) {
1330 			/* allocate sk_buff for this free entry in ring */
1331 			skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
1332 			if (unlikely(!skb)) {
1333 				netdev_err(bp->dev,
1334 					   "Unable to allocate sk_buff\n");
1335 				break;
1336 			}
1337 
1338 			/* now fill corresponding descriptor entry */
1339 			paddr = dma_map_single(&bp->pdev->dev, skb->data,
1340 					       bp->rx_buffer_size,
1341 					       DMA_FROM_DEVICE);
1342 			if (dma_mapping_error(&bp->pdev->dev, paddr)) {
1343 				dev_kfree_skb(skb);
1344 				break;
1345 			}
1346 
1347 			queue->rx_skbuff[entry] = skb;
1348 
1349 			if (entry == bp->rx_ring_size - 1)
1350 				paddr |= MACB_BIT(RX_WRAP);
1351 			desc->ctrl = 0;
1352 			/* Setting addr clears RX_USED and allows reception,
1353 			 * make sure ctrl is cleared first to avoid a race.
1354 			 */
1355 			dma_wmb();
1356 			macb_set_addr(bp, desc, paddr);
1357 
1358 			/* properly align Ethernet header */
1359 			skb_reserve(skb, NET_IP_ALIGN);
1360 		} else {
1361 			desc->ctrl = 0;
1362 			dma_wmb();
1363 			desc->addr &= ~MACB_BIT(RX_USED);
1364 		}
1365 		queue->rx_prepared_head++;
1366 	}
1367 
1368 	/* Make descriptor updates visible to hardware */
1369 	wmb();
1370 
1371 	netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n",
1372 			queue, queue->rx_prepared_head, queue->rx_tail);
1373 }
1374 
1375 /* Mark DMA descriptors from begin up to and not including end as unused */
1376 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin,
1377 				  unsigned int end)
1378 {
1379 	unsigned int frag;
1380 
1381 	for (frag = begin; frag != end; frag++) {
1382 		struct macb_dma_desc *desc = macb_rx_desc(queue, frag);
1383 
1384 		desc->addr &= ~MACB_BIT(RX_USED);
1385 	}
1386 
1387 	/* Make descriptor updates visible to hardware */
1388 	wmb();
1389 
1390 	/* When this happens, the hardware stats registers for
1391 	 * whatever caused this is updated, so we don't have to record
1392 	 * anything.
1393 	 */
1394 }
1395 
1396 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi,
1397 		  int budget)
1398 {
1399 	struct macb *bp = queue->bp;
1400 	unsigned int		len;
1401 	unsigned int		entry;
1402 	struct sk_buff		*skb;
1403 	struct macb_dma_desc	*desc;
1404 	int			count = 0;
1405 
1406 	while (count < budget) {
1407 		u32 ctrl;
1408 		dma_addr_t addr;
1409 		bool rxused;
1410 
1411 		entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1412 		desc = macb_rx_desc(queue, entry);
1413 
1414 		/* Make hw descriptor updates visible to CPU */
1415 		rmb();
1416 
1417 		rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
1418 		addr = macb_get_addr(bp, desc);
1419 
1420 		if (!rxused)
1421 			break;
1422 
1423 		/* Ensure ctrl is at least as up-to-date as rxused */
1424 		dma_rmb();
1425 
1426 		ctrl = desc->ctrl;
1427 
1428 		queue->rx_tail++;
1429 		count++;
1430 
1431 		if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
1432 			netdev_err(bp->dev,
1433 				   "not whole frame pointed by descriptor\n");
1434 			bp->dev->stats.rx_dropped++;
1435 			queue->stats.rx_dropped++;
1436 			break;
1437 		}
1438 		skb = queue->rx_skbuff[entry];
1439 		if (unlikely(!skb)) {
1440 			netdev_err(bp->dev,
1441 				   "inconsistent Rx descriptor chain\n");
1442 			bp->dev->stats.rx_dropped++;
1443 			queue->stats.rx_dropped++;
1444 			break;
1445 		}
1446 		/* now everything is ready for receiving packet */
1447 		queue->rx_skbuff[entry] = NULL;
1448 		len = ctrl & bp->rx_frm_len_mask;
1449 
1450 		netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
1451 
1452 		skb_put(skb, len);
1453 		dma_unmap_single(&bp->pdev->dev, addr,
1454 				 bp->rx_buffer_size, DMA_FROM_DEVICE);
1455 
1456 		skb->protocol = eth_type_trans(skb, bp->dev);
1457 		skb_checksum_none_assert(skb);
1458 		if (bp->dev->features & NETIF_F_RXCSUM &&
1459 		    !(bp->dev->flags & IFF_PROMISC) &&
1460 		    GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
1461 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1462 
1463 		bp->dev->stats.rx_packets++;
1464 		queue->stats.rx_packets++;
1465 		bp->dev->stats.rx_bytes += skb->len;
1466 		queue->stats.rx_bytes += skb->len;
1467 
1468 		gem_ptp_do_rxstamp(bp, skb, desc);
1469 
1470 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1471 		netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1472 			    skb->len, skb->csum);
1473 		print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
1474 			       skb_mac_header(skb), 16, true);
1475 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
1476 			       skb->data, 32, true);
1477 #endif
1478 
1479 		napi_gro_receive(napi, skb);
1480 	}
1481 
1482 	gem_rx_refill(queue);
1483 
1484 	return count;
1485 }
1486 
1487 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi,
1488 			 unsigned int first_frag, unsigned int last_frag)
1489 {
1490 	unsigned int len;
1491 	unsigned int frag;
1492 	unsigned int offset;
1493 	struct sk_buff *skb;
1494 	struct macb_dma_desc *desc;
1495 	struct macb *bp = queue->bp;
1496 
1497 	desc = macb_rx_desc(queue, last_frag);
1498 	len = desc->ctrl & bp->rx_frm_len_mask;
1499 
1500 	netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
1501 		macb_rx_ring_wrap(bp, first_frag),
1502 		macb_rx_ring_wrap(bp, last_frag), len);
1503 
1504 	/* The ethernet header starts NET_IP_ALIGN bytes into the
1505 	 * first buffer. Since the header is 14 bytes, this makes the
1506 	 * payload word-aligned.
1507 	 *
1508 	 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
1509 	 * the two padding bytes into the skb so that we avoid hitting
1510 	 * the slowpath in memcpy(), and pull them off afterwards.
1511 	 */
1512 	skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
1513 	if (!skb) {
1514 		bp->dev->stats.rx_dropped++;
1515 		for (frag = first_frag; ; frag++) {
1516 			desc = macb_rx_desc(queue, frag);
1517 			desc->addr &= ~MACB_BIT(RX_USED);
1518 			if (frag == last_frag)
1519 				break;
1520 		}
1521 
1522 		/* Make descriptor updates visible to hardware */
1523 		wmb();
1524 
1525 		return 1;
1526 	}
1527 
1528 	offset = 0;
1529 	len += NET_IP_ALIGN;
1530 	skb_checksum_none_assert(skb);
1531 	skb_put(skb, len);
1532 
1533 	for (frag = first_frag; ; frag++) {
1534 		unsigned int frag_len = bp->rx_buffer_size;
1535 
1536 		if (offset + frag_len > len) {
1537 			if (unlikely(frag != last_frag)) {
1538 				dev_kfree_skb_any(skb);
1539 				return -1;
1540 			}
1541 			frag_len = len - offset;
1542 		}
1543 		skb_copy_to_linear_data_offset(skb, offset,
1544 					       macb_rx_buffer(queue, frag),
1545 					       frag_len);
1546 		offset += bp->rx_buffer_size;
1547 		desc = macb_rx_desc(queue, frag);
1548 		desc->addr &= ~MACB_BIT(RX_USED);
1549 
1550 		if (frag == last_frag)
1551 			break;
1552 	}
1553 
1554 	/* Make descriptor updates visible to hardware */
1555 	wmb();
1556 
1557 	__skb_pull(skb, NET_IP_ALIGN);
1558 	skb->protocol = eth_type_trans(skb, bp->dev);
1559 
1560 	bp->dev->stats.rx_packets++;
1561 	bp->dev->stats.rx_bytes += skb->len;
1562 	netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1563 		    skb->len, skb->csum);
1564 	napi_gro_receive(napi, skb);
1565 
1566 	return 0;
1567 }
1568 
1569 static inline void macb_init_rx_ring(struct macb_queue *queue)
1570 {
1571 	struct macb *bp = queue->bp;
1572 	dma_addr_t addr;
1573 	struct macb_dma_desc *desc = NULL;
1574 	int i;
1575 
1576 	addr = queue->rx_buffers_dma;
1577 	for (i = 0; i < bp->rx_ring_size; i++) {
1578 		desc = macb_rx_desc(queue, i);
1579 		macb_set_addr(bp, desc, addr);
1580 		desc->ctrl = 0;
1581 		addr += bp->rx_buffer_size;
1582 	}
1583 	desc->addr |= MACB_BIT(RX_WRAP);
1584 	queue->rx_tail = 0;
1585 }
1586 
1587 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi,
1588 		   int budget)
1589 {
1590 	struct macb *bp = queue->bp;
1591 	bool reset_rx_queue = false;
1592 	int received = 0;
1593 	unsigned int tail;
1594 	int first_frag = -1;
1595 
1596 	for (tail = queue->rx_tail; budget > 0; tail++) {
1597 		struct macb_dma_desc *desc = macb_rx_desc(queue, tail);
1598 		u32 ctrl;
1599 
1600 		/* Make hw descriptor updates visible to CPU */
1601 		rmb();
1602 
1603 		if (!(desc->addr & MACB_BIT(RX_USED)))
1604 			break;
1605 
1606 		/* Ensure ctrl is at least as up-to-date as addr */
1607 		dma_rmb();
1608 
1609 		ctrl = desc->ctrl;
1610 
1611 		if (ctrl & MACB_BIT(RX_SOF)) {
1612 			if (first_frag != -1)
1613 				discard_partial_frame(queue, first_frag, tail);
1614 			first_frag = tail;
1615 		}
1616 
1617 		if (ctrl & MACB_BIT(RX_EOF)) {
1618 			int dropped;
1619 
1620 			if (unlikely(first_frag == -1)) {
1621 				reset_rx_queue = true;
1622 				continue;
1623 			}
1624 
1625 			dropped = macb_rx_frame(queue, napi, first_frag, tail);
1626 			first_frag = -1;
1627 			if (unlikely(dropped < 0)) {
1628 				reset_rx_queue = true;
1629 				continue;
1630 			}
1631 			if (!dropped) {
1632 				received++;
1633 				budget--;
1634 			}
1635 		}
1636 	}
1637 
1638 	if (unlikely(reset_rx_queue)) {
1639 		unsigned long flags;
1640 		u32 ctrl;
1641 
1642 		netdev_err(bp->dev, "RX queue corruption: reset it\n");
1643 
1644 		spin_lock_irqsave(&bp->lock, flags);
1645 
1646 		ctrl = macb_readl(bp, NCR);
1647 		macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1648 
1649 		macb_init_rx_ring(queue);
1650 		queue_writel(queue, RBQP, queue->rx_ring_dma);
1651 
1652 		macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1653 
1654 		spin_unlock_irqrestore(&bp->lock, flags);
1655 		return received;
1656 	}
1657 
1658 	if (first_frag != -1)
1659 		queue->rx_tail = first_frag;
1660 	else
1661 		queue->rx_tail = tail;
1662 
1663 	return received;
1664 }
1665 
1666 static bool macb_rx_pending(struct macb_queue *queue)
1667 {
1668 	struct macb *bp = queue->bp;
1669 	unsigned int		entry;
1670 	struct macb_dma_desc	*desc;
1671 
1672 	entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1673 	desc = macb_rx_desc(queue, entry);
1674 
1675 	/* Make hw descriptor updates visible to CPU */
1676 	rmb();
1677 
1678 	return (desc->addr & MACB_BIT(RX_USED)) != 0;
1679 }
1680 
1681 static int macb_rx_poll(struct napi_struct *napi, int budget)
1682 {
1683 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx);
1684 	struct macb *bp = queue->bp;
1685 	int work_done;
1686 
1687 	work_done = bp->macbgem_ops.mog_rx(queue, napi, budget);
1688 
1689 	netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n",
1690 		    (unsigned int)(queue - bp->queues), work_done, budget);
1691 
1692 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1693 		queue_writel(queue, IER, bp->rx_intr_mask);
1694 
1695 		/* Packet completions only seem to propagate to raise
1696 		 * interrupts when interrupts are enabled at the time, so if
1697 		 * packets were received while interrupts were disabled,
1698 		 * they will not cause another interrupt to be generated when
1699 		 * interrupts are re-enabled.
1700 		 * Check for this case here to avoid losing a wakeup. This can
1701 		 * potentially race with the interrupt handler doing the same
1702 		 * actions if an interrupt is raised just after enabling them,
1703 		 * but this should be harmless.
1704 		 */
1705 		if (macb_rx_pending(queue)) {
1706 			queue_writel(queue, IDR, bp->rx_intr_mask);
1707 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1708 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1709 			netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n");
1710 			napi_schedule(napi);
1711 		}
1712 	}
1713 
1714 	/* TODO: Handle errors */
1715 
1716 	return work_done;
1717 }
1718 
1719 static void macb_tx_restart(struct macb_queue *queue)
1720 {
1721 	struct macb *bp = queue->bp;
1722 	unsigned int head_idx, tbqp;
1723 
1724 	spin_lock(&queue->tx_ptr_lock);
1725 
1726 	if (queue->tx_head == queue->tx_tail)
1727 		goto out_tx_ptr_unlock;
1728 
1729 	tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp);
1730 	tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp));
1731 	head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head));
1732 
1733 	if (tbqp == head_idx)
1734 		goto out_tx_ptr_unlock;
1735 
1736 	spin_lock_irq(&bp->lock);
1737 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1738 	spin_unlock_irq(&bp->lock);
1739 
1740 out_tx_ptr_unlock:
1741 	spin_unlock(&queue->tx_ptr_lock);
1742 }
1743 
1744 static bool macb_tx_complete_pending(struct macb_queue *queue)
1745 {
1746 	bool retval = false;
1747 
1748 	spin_lock(&queue->tx_ptr_lock);
1749 	if (queue->tx_head != queue->tx_tail) {
1750 		/* Make hw descriptor updates visible to CPU */
1751 		rmb();
1752 
1753 		if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED))
1754 			retval = true;
1755 	}
1756 	spin_unlock(&queue->tx_ptr_lock);
1757 	return retval;
1758 }
1759 
1760 static int macb_tx_poll(struct napi_struct *napi, int budget)
1761 {
1762 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx);
1763 	struct macb *bp = queue->bp;
1764 	int work_done;
1765 
1766 	work_done = macb_tx_complete(queue, budget);
1767 
1768 	rmb(); // ensure txubr_pending is up to date
1769 	if (queue->txubr_pending) {
1770 		queue->txubr_pending = false;
1771 		netdev_vdbg(bp->dev, "poll: tx restart\n");
1772 		macb_tx_restart(queue);
1773 	}
1774 
1775 	netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n",
1776 		    (unsigned int)(queue - bp->queues), work_done, budget);
1777 
1778 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1779 		queue_writel(queue, IER, MACB_BIT(TCOMP));
1780 
1781 		/* Packet completions only seem to propagate to raise
1782 		 * interrupts when interrupts are enabled at the time, so if
1783 		 * packets were sent while interrupts were disabled,
1784 		 * they will not cause another interrupt to be generated when
1785 		 * interrupts are re-enabled.
1786 		 * Check for this case here to avoid losing a wakeup. This can
1787 		 * potentially race with the interrupt handler doing the same
1788 		 * actions if an interrupt is raised just after enabling them,
1789 		 * but this should be harmless.
1790 		 */
1791 		if (macb_tx_complete_pending(queue)) {
1792 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1793 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1794 				queue_writel(queue, ISR, MACB_BIT(TCOMP));
1795 			netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n");
1796 			napi_schedule(napi);
1797 		}
1798 	}
1799 
1800 	return work_done;
1801 }
1802 
1803 static void macb_hresp_error_task(struct work_struct *work)
1804 {
1805 	struct macb *bp = from_work(bp, work, hresp_err_bh_work);
1806 	struct net_device *dev = bp->dev;
1807 	struct macb_queue *queue;
1808 	unsigned int q;
1809 	u32 ctrl;
1810 
1811 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1812 		queue_writel(queue, IDR, bp->rx_intr_mask |
1813 					 MACB_TX_INT_FLAGS |
1814 					 MACB_BIT(HRESP));
1815 	}
1816 	ctrl = macb_readl(bp, NCR);
1817 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
1818 	macb_writel(bp, NCR, ctrl);
1819 
1820 	netif_tx_stop_all_queues(dev);
1821 	netif_carrier_off(dev);
1822 
1823 	bp->macbgem_ops.mog_init_rings(bp);
1824 
1825 	/* Initialize TX and RX buffers */
1826 	macb_init_buffers(bp);
1827 
1828 	/* Enable interrupts */
1829 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1830 		queue_writel(queue, IER,
1831 			     bp->rx_intr_mask |
1832 			     MACB_TX_INT_FLAGS |
1833 			     MACB_BIT(HRESP));
1834 
1835 	ctrl |= MACB_BIT(RE) | MACB_BIT(TE);
1836 	macb_writel(bp, NCR, ctrl);
1837 
1838 	netif_carrier_on(dev);
1839 	netif_tx_start_all_queues(dev);
1840 }
1841 
1842 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id)
1843 {
1844 	struct macb_queue *queue = dev_id;
1845 	struct macb *bp = queue->bp;
1846 	u32 status;
1847 
1848 	status = queue_readl(queue, ISR);
1849 
1850 	if (unlikely(!status))
1851 		return IRQ_NONE;
1852 
1853 	spin_lock(&bp->lock);
1854 
1855 	if (status & MACB_BIT(WOL)) {
1856 		queue_writel(queue, IDR, MACB_BIT(WOL));
1857 		macb_writel(bp, WOL, 0);
1858 		netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n",
1859 			    (unsigned int)(queue - bp->queues),
1860 			    (unsigned long)status);
1861 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1862 			queue_writel(queue, ISR, MACB_BIT(WOL));
1863 		pm_wakeup_event(&bp->pdev->dev, 0);
1864 	}
1865 
1866 	spin_unlock(&bp->lock);
1867 
1868 	return IRQ_HANDLED;
1869 }
1870 
1871 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id)
1872 {
1873 	struct macb_queue *queue = dev_id;
1874 	struct macb *bp = queue->bp;
1875 	u32 status;
1876 
1877 	status = queue_readl(queue, ISR);
1878 
1879 	if (unlikely(!status))
1880 		return IRQ_NONE;
1881 
1882 	spin_lock(&bp->lock);
1883 
1884 	if (status & GEM_BIT(WOL)) {
1885 		queue_writel(queue, IDR, GEM_BIT(WOL));
1886 		gem_writel(bp, WOL, 0);
1887 		netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n",
1888 			    (unsigned int)(queue - bp->queues),
1889 			    (unsigned long)status);
1890 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1891 			queue_writel(queue, ISR, GEM_BIT(WOL));
1892 		pm_wakeup_event(&bp->pdev->dev, 0);
1893 	}
1894 
1895 	spin_unlock(&bp->lock);
1896 
1897 	return IRQ_HANDLED;
1898 }
1899 
1900 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1901 {
1902 	struct macb_queue *queue = dev_id;
1903 	struct macb *bp = queue->bp;
1904 	struct net_device *dev = bp->dev;
1905 	u32 status, ctrl;
1906 
1907 	status = queue_readl(queue, ISR);
1908 
1909 	if (unlikely(!status))
1910 		return IRQ_NONE;
1911 
1912 	spin_lock(&bp->lock);
1913 
1914 	while (status) {
1915 		/* close possible race with dev_close */
1916 		if (unlikely(!netif_running(dev))) {
1917 			queue_writel(queue, IDR, -1);
1918 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1919 				queue_writel(queue, ISR, -1);
1920 			break;
1921 		}
1922 
1923 		netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1924 			    (unsigned int)(queue - bp->queues),
1925 			    (unsigned long)status);
1926 
1927 		if (status & bp->rx_intr_mask) {
1928 			/* There's no point taking any more interrupts
1929 			 * until we have processed the buffers. The
1930 			 * scheduling call may fail if the poll routine
1931 			 * is already scheduled, so disable interrupts
1932 			 * now.
1933 			 */
1934 			queue_writel(queue, IDR, bp->rx_intr_mask);
1935 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1936 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1937 
1938 			if (napi_schedule_prep(&queue->napi_rx)) {
1939 				netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1940 				__napi_schedule(&queue->napi_rx);
1941 			}
1942 		}
1943 
1944 		if (status & (MACB_BIT(TCOMP) |
1945 			      MACB_BIT(TXUBR))) {
1946 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1947 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1948 				queue_writel(queue, ISR, MACB_BIT(TCOMP) |
1949 							 MACB_BIT(TXUBR));
1950 
1951 			if (status & MACB_BIT(TXUBR)) {
1952 				queue->txubr_pending = true;
1953 				wmb(); // ensure softirq can see update
1954 			}
1955 
1956 			if (napi_schedule_prep(&queue->napi_tx)) {
1957 				netdev_vdbg(bp->dev, "scheduling TX softirq\n");
1958 				__napi_schedule(&queue->napi_tx);
1959 			}
1960 		}
1961 
1962 		if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1963 			queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1964 			schedule_work(&queue->tx_error_task);
1965 
1966 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1967 				queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1968 
1969 			break;
1970 		}
1971 
1972 		/* Link change detection isn't possible with RMII, so we'll
1973 		 * add that if/when we get our hands on a full-blown MII PHY.
1974 		 */
1975 
1976 		/* There is a hardware issue under heavy load where DMA can
1977 		 * stop, this causes endless "used buffer descriptor read"
1978 		 * interrupts but it can be cleared by re-enabling RX. See
1979 		 * the at91rm9200 manual, section 41.3.1 or the Zynq manual
1980 		 * section 16.7.4 for details. RXUBR is only enabled for
1981 		 * these two versions.
1982 		 */
1983 		if (status & MACB_BIT(RXUBR)) {
1984 			ctrl = macb_readl(bp, NCR);
1985 			macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1986 			wmb();
1987 			macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1988 
1989 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1990 				queue_writel(queue, ISR, MACB_BIT(RXUBR));
1991 		}
1992 
1993 		if (status & MACB_BIT(ISR_ROVR)) {
1994 			/* We missed at least one packet */
1995 			if (macb_is_gem(bp))
1996 				bp->hw_stats.gem.rx_overruns++;
1997 			else
1998 				bp->hw_stats.macb.rx_overruns++;
1999 
2000 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2001 				queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
2002 		}
2003 
2004 		if (status & MACB_BIT(HRESP)) {
2005 			queue_work(system_bh_wq, &bp->hresp_err_bh_work);
2006 			netdev_err(dev, "DMA bus error: HRESP not OK\n");
2007 
2008 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2009 				queue_writel(queue, ISR, MACB_BIT(HRESP));
2010 		}
2011 		status = queue_readl(queue, ISR);
2012 	}
2013 
2014 	spin_unlock(&bp->lock);
2015 
2016 	return IRQ_HANDLED;
2017 }
2018 
2019 #ifdef CONFIG_NET_POLL_CONTROLLER
2020 /* Polling receive - used by netconsole and other diagnostic tools
2021  * to allow network i/o with interrupts disabled.
2022  */
2023 static void macb_poll_controller(struct net_device *dev)
2024 {
2025 	struct macb *bp = netdev_priv(dev);
2026 	struct macb_queue *queue;
2027 	unsigned long flags;
2028 	unsigned int q;
2029 
2030 	local_irq_save(flags);
2031 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
2032 		macb_interrupt(dev->irq, queue);
2033 	local_irq_restore(flags);
2034 }
2035 #endif
2036 
2037 static unsigned int macb_tx_map(struct macb *bp,
2038 				struct macb_queue *queue,
2039 				struct sk_buff *skb,
2040 				unsigned int hdrlen)
2041 {
2042 	dma_addr_t mapping;
2043 	unsigned int len, entry, i, tx_head = queue->tx_head;
2044 	struct macb_tx_skb *tx_skb = NULL;
2045 	struct macb_dma_desc *desc;
2046 	unsigned int offset, size, count = 0;
2047 	unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
2048 	unsigned int eof = 1, mss_mfs = 0;
2049 	u32 ctrl, lso_ctrl = 0, seq_ctrl = 0;
2050 
2051 	/* LSO */
2052 	if (skb_shinfo(skb)->gso_size != 0) {
2053 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2054 			/* UDP - UFO */
2055 			lso_ctrl = MACB_LSO_UFO_ENABLE;
2056 		else
2057 			/* TCP - TSO */
2058 			lso_ctrl = MACB_LSO_TSO_ENABLE;
2059 	}
2060 
2061 	/* First, map non-paged data */
2062 	len = skb_headlen(skb);
2063 
2064 	/* first buffer length */
2065 	size = hdrlen;
2066 
2067 	offset = 0;
2068 	while (len) {
2069 		entry = macb_tx_ring_wrap(bp, tx_head);
2070 		tx_skb = &queue->tx_skb[entry];
2071 
2072 		mapping = dma_map_single(&bp->pdev->dev,
2073 					 skb->data + offset,
2074 					 size, DMA_TO_DEVICE);
2075 		if (dma_mapping_error(&bp->pdev->dev, mapping))
2076 			goto dma_error;
2077 
2078 		/* Save info to properly release resources */
2079 		tx_skb->skb = NULL;
2080 		tx_skb->mapping = mapping;
2081 		tx_skb->size = size;
2082 		tx_skb->mapped_as_page = false;
2083 
2084 		len -= size;
2085 		offset += size;
2086 		count++;
2087 		tx_head++;
2088 
2089 		size = min(len, bp->max_tx_length);
2090 	}
2091 
2092 	/* Then, map paged data from fragments */
2093 	for (f = 0; f < nr_frags; f++) {
2094 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2095 
2096 		len = skb_frag_size(frag);
2097 		offset = 0;
2098 		while (len) {
2099 			size = min(len, bp->max_tx_length);
2100 			entry = macb_tx_ring_wrap(bp, tx_head);
2101 			tx_skb = &queue->tx_skb[entry];
2102 
2103 			mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
2104 						   offset, size, DMA_TO_DEVICE);
2105 			if (dma_mapping_error(&bp->pdev->dev, mapping))
2106 				goto dma_error;
2107 
2108 			/* Save info to properly release resources */
2109 			tx_skb->skb = NULL;
2110 			tx_skb->mapping = mapping;
2111 			tx_skb->size = size;
2112 			tx_skb->mapped_as_page = true;
2113 
2114 			len -= size;
2115 			offset += size;
2116 			count++;
2117 			tx_head++;
2118 		}
2119 	}
2120 
2121 	/* Should never happen */
2122 	if (unlikely(!tx_skb)) {
2123 		netdev_err(bp->dev, "BUG! empty skb!\n");
2124 		return 0;
2125 	}
2126 
2127 	/* This is the last buffer of the frame: save socket buffer */
2128 	tx_skb->skb = skb;
2129 
2130 	/* Update TX ring: update buffer descriptors in reverse order
2131 	 * to avoid race condition
2132 	 */
2133 
2134 	/* Set 'TX_USED' bit in buffer descriptor at tx_head position
2135 	 * to set the end of TX queue
2136 	 */
2137 	i = tx_head;
2138 	entry = macb_tx_ring_wrap(bp, i);
2139 	ctrl = MACB_BIT(TX_USED);
2140 	desc = macb_tx_desc(queue, entry);
2141 	desc->ctrl = ctrl;
2142 
2143 	if (lso_ctrl) {
2144 		if (lso_ctrl == MACB_LSO_UFO_ENABLE)
2145 			/* include header and FCS in value given to h/w */
2146 			mss_mfs = skb_shinfo(skb)->gso_size +
2147 					skb_transport_offset(skb) +
2148 					ETH_FCS_LEN;
2149 		else /* TSO */ {
2150 			mss_mfs = skb_shinfo(skb)->gso_size;
2151 			/* TCP Sequence Number Source Select
2152 			 * can be set only for TSO
2153 			 */
2154 			seq_ctrl = 0;
2155 		}
2156 	}
2157 
2158 	do {
2159 		i--;
2160 		entry = macb_tx_ring_wrap(bp, i);
2161 		tx_skb = &queue->tx_skb[entry];
2162 		desc = macb_tx_desc(queue, entry);
2163 
2164 		ctrl = (u32)tx_skb->size;
2165 		if (eof) {
2166 			ctrl |= MACB_BIT(TX_LAST);
2167 			eof = 0;
2168 		}
2169 		if (unlikely(entry == (bp->tx_ring_size - 1)))
2170 			ctrl |= MACB_BIT(TX_WRAP);
2171 
2172 		/* First descriptor is header descriptor */
2173 		if (i == queue->tx_head) {
2174 			ctrl |= MACB_BF(TX_LSO, lso_ctrl);
2175 			ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl);
2176 			if ((bp->dev->features & NETIF_F_HW_CSUM) &&
2177 			    skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl &&
2178 			    !ptp_one_step_sync(skb))
2179 				ctrl |= MACB_BIT(TX_NOCRC);
2180 		} else
2181 			/* Only set MSS/MFS on payload descriptors
2182 			 * (second or later descriptor)
2183 			 */
2184 			ctrl |= MACB_BF(MSS_MFS, mss_mfs);
2185 
2186 		/* Set TX buffer descriptor */
2187 		macb_set_addr(bp, desc, tx_skb->mapping);
2188 		/* desc->addr must be visible to hardware before clearing
2189 		 * 'TX_USED' bit in desc->ctrl.
2190 		 */
2191 		wmb();
2192 		desc->ctrl = ctrl;
2193 	} while (i != queue->tx_head);
2194 
2195 	queue->tx_head = tx_head;
2196 
2197 	return count;
2198 
2199 dma_error:
2200 	netdev_err(bp->dev, "TX DMA map failed\n");
2201 
2202 	for (i = queue->tx_head; i != tx_head; i++) {
2203 		tx_skb = macb_tx_skb(queue, i);
2204 
2205 		macb_tx_unmap(bp, tx_skb, 0);
2206 	}
2207 
2208 	return 0;
2209 }
2210 
2211 static netdev_features_t macb_features_check(struct sk_buff *skb,
2212 					     struct net_device *dev,
2213 					     netdev_features_t features)
2214 {
2215 	unsigned int nr_frags, f;
2216 	unsigned int hdrlen;
2217 
2218 	/* Validate LSO compatibility */
2219 
2220 	/* there is only one buffer or protocol is not UDP */
2221 	if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP))
2222 		return features;
2223 
2224 	/* length of header */
2225 	hdrlen = skb_transport_offset(skb);
2226 
2227 	/* For UFO only:
2228 	 * When software supplies two or more payload buffers all payload buffers
2229 	 * apart from the last must be a multiple of 8 bytes in size.
2230 	 */
2231 	if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN))
2232 		return features & ~MACB_NETIF_LSO;
2233 
2234 	nr_frags = skb_shinfo(skb)->nr_frags;
2235 	/* No need to check last fragment */
2236 	nr_frags--;
2237 	for (f = 0; f < nr_frags; f++) {
2238 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2239 
2240 		if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN))
2241 			return features & ~MACB_NETIF_LSO;
2242 	}
2243 	return features;
2244 }
2245 
2246 static inline int macb_clear_csum(struct sk_buff *skb)
2247 {
2248 	/* no change for packets without checksum offloading */
2249 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2250 		return 0;
2251 
2252 	/* make sure we can modify the header */
2253 	if (unlikely(skb_cow_head(skb, 0)))
2254 		return -1;
2255 
2256 	/* initialize checksum field
2257 	 * This is required - at least for Zynq, which otherwise calculates
2258 	 * wrong UDP header checksums for UDP packets with UDP data len <=2
2259 	 */
2260 	*(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
2261 	return 0;
2262 }
2263 
2264 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev)
2265 {
2266 	bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) ||
2267 		      skb_is_nonlinear(*skb);
2268 	int padlen = ETH_ZLEN - (*skb)->len;
2269 	int tailroom = skb_tailroom(*skb);
2270 	struct sk_buff *nskb;
2271 	u32 fcs;
2272 
2273 	if (!(ndev->features & NETIF_F_HW_CSUM) ||
2274 	    !((*skb)->ip_summed != CHECKSUM_PARTIAL) ||
2275 	    skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb))
2276 		return 0;
2277 
2278 	if (padlen <= 0) {
2279 		/* FCS could be appeded to tailroom. */
2280 		if (tailroom >= ETH_FCS_LEN)
2281 			goto add_fcs;
2282 		/* No room for FCS, need to reallocate skb. */
2283 		else
2284 			padlen = ETH_FCS_LEN;
2285 	} else {
2286 		/* Add room for FCS. */
2287 		padlen += ETH_FCS_LEN;
2288 	}
2289 
2290 	if (cloned || tailroom < padlen) {
2291 		nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC);
2292 		if (!nskb)
2293 			return -ENOMEM;
2294 
2295 		dev_consume_skb_any(*skb);
2296 		*skb = nskb;
2297 	}
2298 
2299 	if (padlen > ETH_FCS_LEN)
2300 		skb_put_zero(*skb, padlen - ETH_FCS_LEN);
2301 
2302 add_fcs:
2303 	/* set FCS to packet */
2304 	fcs = crc32_le(~0, (*skb)->data, (*skb)->len);
2305 	fcs = ~fcs;
2306 
2307 	skb_put_u8(*skb, fcs		& 0xff);
2308 	skb_put_u8(*skb, (fcs >> 8)	& 0xff);
2309 	skb_put_u8(*skb, (fcs >> 16)	& 0xff);
2310 	skb_put_u8(*skb, (fcs >> 24)	& 0xff);
2311 
2312 	return 0;
2313 }
2314 
2315 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
2316 {
2317 	u16 queue_index = skb_get_queue_mapping(skb);
2318 	struct macb *bp = netdev_priv(dev);
2319 	struct macb_queue *queue = &bp->queues[queue_index];
2320 	unsigned int desc_cnt, nr_frags, frag_size, f;
2321 	unsigned int hdrlen;
2322 	bool is_lso;
2323 	netdev_tx_t ret = NETDEV_TX_OK;
2324 
2325 	if (macb_clear_csum(skb)) {
2326 		dev_kfree_skb_any(skb);
2327 		return ret;
2328 	}
2329 
2330 	if (macb_pad_and_fcs(&skb, dev)) {
2331 		dev_kfree_skb_any(skb);
2332 		return ret;
2333 	}
2334 
2335 #ifdef CONFIG_MACB_USE_HWSTAMP
2336 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2337 	    (bp->hw_dma_cap & HW_DMA_CAP_PTP))
2338 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2339 #endif
2340 
2341 	is_lso = (skb_shinfo(skb)->gso_size != 0);
2342 
2343 	if (is_lso) {
2344 		/* length of headers */
2345 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2346 			/* only queue eth + ip headers separately for UDP */
2347 			hdrlen = skb_transport_offset(skb);
2348 		else
2349 			hdrlen = skb_tcp_all_headers(skb);
2350 		if (skb_headlen(skb) < hdrlen) {
2351 			netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n");
2352 			/* if this is required, would need to copy to single buffer */
2353 			return NETDEV_TX_BUSY;
2354 		}
2355 	} else
2356 		hdrlen = min(skb_headlen(skb), bp->max_tx_length);
2357 
2358 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
2359 	netdev_vdbg(bp->dev,
2360 		    "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
2361 		    queue_index, skb->len, skb->head, skb->data,
2362 		    skb_tail_pointer(skb), skb_end_pointer(skb));
2363 	print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
2364 		       skb->data, 16, true);
2365 #endif
2366 
2367 	/* Count how many TX buffer descriptors are needed to send this
2368 	 * socket buffer: skb fragments of jumbo frames may need to be
2369 	 * split into many buffer descriptors.
2370 	 */
2371 	if (is_lso && (skb_headlen(skb) > hdrlen))
2372 		/* extra header descriptor if also payload in first buffer */
2373 		desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1;
2374 	else
2375 		desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
2376 	nr_frags = skb_shinfo(skb)->nr_frags;
2377 	for (f = 0; f < nr_frags; f++) {
2378 		frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2379 		desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length);
2380 	}
2381 
2382 	spin_lock_bh(&queue->tx_ptr_lock);
2383 
2384 	/* This is a hard error, log it. */
2385 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail,
2386 		       bp->tx_ring_size) < desc_cnt) {
2387 		netif_stop_subqueue(dev, queue_index);
2388 		netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
2389 			   queue->tx_head, queue->tx_tail);
2390 		ret = NETDEV_TX_BUSY;
2391 		goto unlock;
2392 	}
2393 
2394 	/* Map socket buffer for DMA transfer */
2395 	if (!macb_tx_map(bp, queue, skb, hdrlen)) {
2396 		dev_kfree_skb_any(skb);
2397 		goto unlock;
2398 	}
2399 
2400 	/* Make newly initialized descriptor visible to hardware */
2401 	wmb();
2402 	skb_tx_timestamp(skb);
2403 
2404 	spin_lock_irq(&bp->lock);
2405 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
2406 	spin_unlock_irq(&bp->lock);
2407 
2408 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1)
2409 		netif_stop_subqueue(dev, queue_index);
2410 
2411 unlock:
2412 	spin_unlock_bh(&queue->tx_ptr_lock);
2413 
2414 	return ret;
2415 }
2416 
2417 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
2418 {
2419 	if (!macb_is_gem(bp)) {
2420 		bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
2421 	} else {
2422 		bp->rx_buffer_size = size;
2423 
2424 		if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
2425 			netdev_dbg(bp->dev,
2426 				   "RX buffer must be multiple of %d bytes, expanding\n",
2427 				   RX_BUFFER_MULTIPLE);
2428 			bp->rx_buffer_size =
2429 				roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
2430 		}
2431 	}
2432 
2433 	netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n",
2434 		   bp->dev->mtu, bp->rx_buffer_size);
2435 }
2436 
2437 static void gem_free_rx_buffers(struct macb *bp)
2438 {
2439 	struct sk_buff		*skb;
2440 	struct macb_dma_desc	*desc;
2441 	struct macb_queue *queue;
2442 	dma_addr_t		addr;
2443 	unsigned int q;
2444 	int i;
2445 
2446 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2447 		if (!queue->rx_skbuff)
2448 			continue;
2449 
2450 		for (i = 0; i < bp->rx_ring_size; i++) {
2451 			skb = queue->rx_skbuff[i];
2452 
2453 			if (!skb)
2454 				continue;
2455 
2456 			desc = macb_rx_desc(queue, i);
2457 			addr = macb_get_addr(bp, desc);
2458 
2459 			dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
2460 					DMA_FROM_DEVICE);
2461 			dev_kfree_skb_any(skb);
2462 			skb = NULL;
2463 		}
2464 
2465 		kfree(queue->rx_skbuff);
2466 		queue->rx_skbuff = NULL;
2467 	}
2468 }
2469 
2470 static void macb_free_rx_buffers(struct macb *bp)
2471 {
2472 	struct macb_queue *queue = &bp->queues[0];
2473 
2474 	if (queue->rx_buffers) {
2475 		dma_free_coherent(&bp->pdev->dev,
2476 				  bp->rx_ring_size * bp->rx_buffer_size,
2477 				  queue->rx_buffers, queue->rx_buffers_dma);
2478 		queue->rx_buffers = NULL;
2479 	}
2480 }
2481 
2482 static void macb_free_consistent(struct macb *bp)
2483 {
2484 	struct macb_queue *queue;
2485 	unsigned int q;
2486 	int size;
2487 
2488 	if (bp->rx_ring_tieoff) {
2489 		dma_free_coherent(&bp->pdev->dev, macb_dma_desc_get_size(bp),
2490 				  bp->rx_ring_tieoff, bp->rx_ring_tieoff_dma);
2491 		bp->rx_ring_tieoff = NULL;
2492 	}
2493 
2494 	bp->macbgem_ops.mog_free_rx_buffers(bp);
2495 
2496 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2497 		kfree(queue->tx_skb);
2498 		queue->tx_skb = NULL;
2499 		if (queue->tx_ring) {
2500 			size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2501 			dma_free_coherent(&bp->pdev->dev, size,
2502 					  queue->tx_ring, queue->tx_ring_dma);
2503 			queue->tx_ring = NULL;
2504 		}
2505 		if (queue->rx_ring) {
2506 			size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2507 			dma_free_coherent(&bp->pdev->dev, size,
2508 					  queue->rx_ring, queue->rx_ring_dma);
2509 			queue->rx_ring = NULL;
2510 		}
2511 	}
2512 }
2513 
2514 static int gem_alloc_rx_buffers(struct macb *bp)
2515 {
2516 	struct macb_queue *queue;
2517 	unsigned int q;
2518 	int size;
2519 
2520 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2521 		size = bp->rx_ring_size * sizeof(struct sk_buff *);
2522 		queue->rx_skbuff = kzalloc(size, GFP_KERNEL);
2523 		if (!queue->rx_skbuff)
2524 			return -ENOMEM;
2525 		else
2526 			netdev_dbg(bp->dev,
2527 				   "Allocated %d RX struct sk_buff entries at %p\n",
2528 				   bp->rx_ring_size, queue->rx_skbuff);
2529 	}
2530 	return 0;
2531 }
2532 
2533 static int macb_alloc_rx_buffers(struct macb *bp)
2534 {
2535 	struct macb_queue *queue = &bp->queues[0];
2536 	int size;
2537 
2538 	size = bp->rx_ring_size * bp->rx_buffer_size;
2539 	queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
2540 					    &queue->rx_buffers_dma, GFP_KERNEL);
2541 	if (!queue->rx_buffers)
2542 		return -ENOMEM;
2543 
2544 	netdev_dbg(bp->dev,
2545 		   "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
2546 		   size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers);
2547 	return 0;
2548 }
2549 
2550 static int macb_alloc_consistent(struct macb *bp)
2551 {
2552 	struct macb_queue *queue;
2553 	unsigned int q;
2554 	int size;
2555 
2556 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2557 		size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2558 		queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2559 						    &queue->tx_ring_dma,
2560 						    GFP_KERNEL);
2561 		if (!queue->tx_ring)
2562 			goto out_err;
2563 		netdev_dbg(bp->dev,
2564 			   "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
2565 			   q, size, (unsigned long)queue->tx_ring_dma,
2566 			   queue->tx_ring);
2567 
2568 		size = bp->tx_ring_size * sizeof(struct macb_tx_skb);
2569 		queue->tx_skb = kmalloc(size, GFP_KERNEL);
2570 		if (!queue->tx_skb)
2571 			goto out_err;
2572 
2573 		size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2574 		queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2575 						 &queue->rx_ring_dma, GFP_KERNEL);
2576 		if (!queue->rx_ring)
2577 			goto out_err;
2578 		netdev_dbg(bp->dev,
2579 			   "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
2580 			   size, (unsigned long)queue->rx_ring_dma, queue->rx_ring);
2581 	}
2582 	if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
2583 		goto out_err;
2584 
2585 	/* Required for tie off descriptor for PM cases */
2586 	if (!(bp->caps & MACB_CAPS_QUEUE_DISABLE)) {
2587 		bp->rx_ring_tieoff = dma_alloc_coherent(&bp->pdev->dev,
2588 							macb_dma_desc_get_size(bp),
2589 							&bp->rx_ring_tieoff_dma,
2590 							GFP_KERNEL);
2591 		if (!bp->rx_ring_tieoff)
2592 			goto out_err;
2593 	}
2594 
2595 	return 0;
2596 
2597 out_err:
2598 	macb_free_consistent(bp);
2599 	return -ENOMEM;
2600 }
2601 
2602 static void macb_init_tieoff(struct macb *bp)
2603 {
2604 	struct macb_dma_desc *desc = bp->rx_ring_tieoff;
2605 
2606 	if (bp->caps & MACB_CAPS_QUEUE_DISABLE)
2607 		return;
2608 	/* Setup a wrapping descriptor with no free slots
2609 	 * (WRAP and USED) to tie off/disable unused RX queues.
2610 	 */
2611 	macb_set_addr(bp, desc, MACB_BIT(RX_WRAP) | MACB_BIT(RX_USED));
2612 	desc->ctrl = 0;
2613 }
2614 
2615 static void gem_init_rings(struct macb *bp)
2616 {
2617 	struct macb_queue *queue;
2618 	struct macb_dma_desc *desc = NULL;
2619 	unsigned int q;
2620 	int i;
2621 
2622 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2623 		for (i = 0; i < bp->tx_ring_size; i++) {
2624 			desc = macb_tx_desc(queue, i);
2625 			macb_set_addr(bp, desc, 0);
2626 			desc->ctrl = MACB_BIT(TX_USED);
2627 		}
2628 		desc->ctrl |= MACB_BIT(TX_WRAP);
2629 		queue->tx_head = 0;
2630 		queue->tx_tail = 0;
2631 
2632 		queue->rx_tail = 0;
2633 		queue->rx_prepared_head = 0;
2634 
2635 		gem_rx_refill(queue);
2636 	}
2637 
2638 	macb_init_tieoff(bp);
2639 }
2640 
2641 static void macb_init_rings(struct macb *bp)
2642 {
2643 	int i;
2644 	struct macb_dma_desc *desc = NULL;
2645 
2646 	macb_init_rx_ring(&bp->queues[0]);
2647 
2648 	for (i = 0; i < bp->tx_ring_size; i++) {
2649 		desc = macb_tx_desc(&bp->queues[0], i);
2650 		macb_set_addr(bp, desc, 0);
2651 		desc->ctrl = MACB_BIT(TX_USED);
2652 	}
2653 	bp->queues[0].tx_head = 0;
2654 	bp->queues[0].tx_tail = 0;
2655 	desc->ctrl |= MACB_BIT(TX_WRAP);
2656 
2657 	macb_init_tieoff(bp);
2658 }
2659 
2660 static void macb_reset_hw(struct macb *bp)
2661 {
2662 	struct macb_queue *queue;
2663 	unsigned int q;
2664 	u32 ctrl = macb_readl(bp, NCR);
2665 
2666 	/* Disable RX and TX (XXX: Should we halt the transmission
2667 	 * more gracefully?)
2668 	 */
2669 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
2670 
2671 	/* Clear the stats registers (XXX: Update stats first?) */
2672 	ctrl |= MACB_BIT(CLRSTAT);
2673 
2674 	macb_writel(bp, NCR, ctrl);
2675 
2676 	/* Clear all status flags */
2677 	macb_writel(bp, TSR, -1);
2678 	macb_writel(bp, RSR, -1);
2679 
2680 	/* Disable RX partial store and forward and reset watermark value */
2681 	gem_writel(bp, PBUFRXCUT, 0);
2682 
2683 	/* Disable all interrupts */
2684 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2685 		queue_writel(queue, IDR, -1);
2686 		queue_readl(queue, ISR);
2687 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2688 			queue_writel(queue, ISR, -1);
2689 	}
2690 }
2691 
2692 static u32 gem_mdc_clk_div(struct macb *bp)
2693 {
2694 	u32 config;
2695 	unsigned long pclk_hz = clk_get_rate(bp->pclk);
2696 
2697 	if (pclk_hz <= 20000000)
2698 		config = GEM_BF(CLK, GEM_CLK_DIV8);
2699 	else if (pclk_hz <= 40000000)
2700 		config = GEM_BF(CLK, GEM_CLK_DIV16);
2701 	else if (pclk_hz <= 80000000)
2702 		config = GEM_BF(CLK, GEM_CLK_DIV32);
2703 	else if (pclk_hz <= 120000000)
2704 		config = GEM_BF(CLK, GEM_CLK_DIV48);
2705 	else if (pclk_hz <= 160000000)
2706 		config = GEM_BF(CLK, GEM_CLK_DIV64);
2707 	else if (pclk_hz <= 240000000)
2708 		config = GEM_BF(CLK, GEM_CLK_DIV96);
2709 	else if (pclk_hz <= 320000000)
2710 		config = GEM_BF(CLK, GEM_CLK_DIV128);
2711 	else
2712 		config = GEM_BF(CLK, GEM_CLK_DIV224);
2713 
2714 	return config;
2715 }
2716 
2717 static u32 macb_mdc_clk_div(struct macb *bp)
2718 {
2719 	u32 config;
2720 	unsigned long pclk_hz;
2721 
2722 	if (macb_is_gem(bp))
2723 		return gem_mdc_clk_div(bp);
2724 
2725 	pclk_hz = clk_get_rate(bp->pclk);
2726 	if (pclk_hz <= 20000000)
2727 		config = MACB_BF(CLK, MACB_CLK_DIV8);
2728 	else if (pclk_hz <= 40000000)
2729 		config = MACB_BF(CLK, MACB_CLK_DIV16);
2730 	else if (pclk_hz <= 80000000)
2731 		config = MACB_BF(CLK, MACB_CLK_DIV32);
2732 	else
2733 		config = MACB_BF(CLK, MACB_CLK_DIV64);
2734 
2735 	return config;
2736 }
2737 
2738 /* Get the DMA bus width field of the network configuration register that we
2739  * should program.  We find the width from decoding the design configuration
2740  * register to find the maximum supported data bus width.
2741  */
2742 static u32 macb_dbw(struct macb *bp)
2743 {
2744 	if (!macb_is_gem(bp))
2745 		return 0;
2746 
2747 	switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
2748 	case 4:
2749 		return GEM_BF(DBW, GEM_DBW128);
2750 	case 2:
2751 		return GEM_BF(DBW, GEM_DBW64);
2752 	case 1:
2753 	default:
2754 		return GEM_BF(DBW, GEM_DBW32);
2755 	}
2756 }
2757 
2758 /* Configure the receive DMA engine
2759  * - use the correct receive buffer size
2760  * - set best burst length for DMA operations
2761  *   (if not supported by FIFO, it will fallback to default)
2762  * - set both rx/tx packet buffers to full memory size
2763  * These are configurable parameters for GEM.
2764  */
2765 static void macb_configure_dma(struct macb *bp)
2766 {
2767 	struct macb_queue *queue;
2768 	u32 buffer_size;
2769 	unsigned int q;
2770 	u32 dmacfg;
2771 
2772 	buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE;
2773 	if (macb_is_gem(bp)) {
2774 		dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
2775 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2776 			if (q)
2777 				queue_writel(queue, RBQS, buffer_size);
2778 			else
2779 				dmacfg |= GEM_BF(RXBS, buffer_size);
2780 		}
2781 		if (bp->dma_burst_length)
2782 			dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
2783 		dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
2784 		dmacfg &= ~GEM_BIT(ENDIA_PKT);
2785 
2786 		if (bp->native_io)
2787 			dmacfg &= ~GEM_BIT(ENDIA_DESC);
2788 		else
2789 			dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
2790 
2791 		if (bp->dev->features & NETIF_F_HW_CSUM)
2792 			dmacfg |= GEM_BIT(TXCOEN);
2793 		else
2794 			dmacfg &= ~GEM_BIT(TXCOEN);
2795 
2796 		dmacfg &= ~GEM_BIT(ADDR64);
2797 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2798 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
2799 			dmacfg |= GEM_BIT(ADDR64);
2800 #endif
2801 #ifdef CONFIG_MACB_USE_HWSTAMP
2802 		if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
2803 			dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT);
2804 #endif
2805 		netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
2806 			   dmacfg);
2807 		gem_writel(bp, DMACFG, dmacfg);
2808 	}
2809 }
2810 
2811 static void macb_init_hw(struct macb *bp)
2812 {
2813 	u32 config;
2814 
2815 	macb_reset_hw(bp);
2816 	macb_set_hwaddr(bp);
2817 
2818 	config = macb_mdc_clk_div(bp);
2819 	config |= MACB_BF(RBOF, NET_IP_ALIGN);	/* Make eth data aligned */
2820 	config |= MACB_BIT(DRFCS);		/* Discard Rx FCS */
2821 	if (bp->caps & MACB_CAPS_JUMBO)
2822 		config |= MACB_BIT(JFRAME);	/* Enable jumbo frames */
2823 	else
2824 		config |= MACB_BIT(BIG);	/* Receive oversized frames */
2825 	if (bp->dev->flags & IFF_PROMISC)
2826 		config |= MACB_BIT(CAF);	/* Copy All Frames */
2827 	else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
2828 		config |= GEM_BIT(RXCOEN);
2829 	if (!(bp->dev->flags & IFF_BROADCAST))
2830 		config |= MACB_BIT(NBC);	/* No BroadCast */
2831 	config |= macb_dbw(bp);
2832 	macb_writel(bp, NCFGR, config);
2833 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
2834 		gem_writel(bp, JML, bp->jumbo_max_len);
2835 	bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
2836 	if (bp->caps & MACB_CAPS_JUMBO)
2837 		bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
2838 
2839 	macb_configure_dma(bp);
2840 
2841 	/* Enable RX partial store and forward and set watermark */
2842 	if (bp->rx_watermark)
2843 		gem_writel(bp, PBUFRXCUT, (bp->rx_watermark | GEM_BIT(ENCUTTHRU)));
2844 }
2845 
2846 /* The hash address register is 64 bits long and takes up two
2847  * locations in the memory map.  The least significant bits are stored
2848  * in EMAC_HSL and the most significant bits in EMAC_HSH.
2849  *
2850  * The unicast hash enable and the multicast hash enable bits in the
2851  * network configuration register enable the reception of hash matched
2852  * frames. The destination address is reduced to a 6 bit index into
2853  * the 64 bit hash register using the following hash function.  The
2854  * hash function is an exclusive or of every sixth bit of the
2855  * destination address.
2856  *
2857  * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
2858  * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
2859  * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
2860  * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
2861  * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
2862  * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
2863  *
2864  * da[0] represents the least significant bit of the first byte
2865  * received, that is, the multicast/unicast indicator, and da[47]
2866  * represents the most significant bit of the last byte received.  If
2867  * the hash index, hi[n], points to a bit that is set in the hash
2868  * register then the frame will be matched according to whether the
2869  * frame is multicast or unicast.  A multicast match will be signalled
2870  * if the multicast hash enable bit is set, da[0] is 1 and the hash
2871  * index points to a bit set in the hash register.  A unicast match
2872  * will be signalled if the unicast hash enable bit is set, da[0] is 0
2873  * and the hash index points to a bit set in the hash register.  To
2874  * receive all multicast frames, the hash register should be set with
2875  * all ones and the multicast hash enable bit should be set in the
2876  * network configuration register.
2877  */
2878 
2879 static inline int hash_bit_value(int bitnr, __u8 *addr)
2880 {
2881 	if (addr[bitnr / 8] & (1 << (bitnr % 8)))
2882 		return 1;
2883 	return 0;
2884 }
2885 
2886 /* Return the hash index value for the specified address. */
2887 static int hash_get_index(__u8 *addr)
2888 {
2889 	int i, j, bitval;
2890 	int hash_index = 0;
2891 
2892 	for (j = 0; j < 6; j++) {
2893 		for (i = 0, bitval = 0; i < 8; i++)
2894 			bitval ^= hash_bit_value(i * 6 + j, addr);
2895 
2896 		hash_index |= (bitval << j);
2897 	}
2898 
2899 	return hash_index;
2900 }
2901 
2902 /* Add multicast addresses to the internal multicast-hash table. */
2903 static void macb_sethashtable(struct net_device *dev)
2904 {
2905 	struct netdev_hw_addr *ha;
2906 	unsigned long mc_filter[2];
2907 	unsigned int bitnr;
2908 	struct macb *bp = netdev_priv(dev);
2909 
2910 	mc_filter[0] = 0;
2911 	mc_filter[1] = 0;
2912 
2913 	netdev_for_each_mc_addr(ha, dev) {
2914 		bitnr = hash_get_index(ha->addr);
2915 		mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
2916 	}
2917 
2918 	macb_or_gem_writel(bp, HRB, mc_filter[0]);
2919 	macb_or_gem_writel(bp, HRT, mc_filter[1]);
2920 }
2921 
2922 /* Enable/Disable promiscuous and multicast modes. */
2923 static void macb_set_rx_mode(struct net_device *dev)
2924 {
2925 	unsigned long cfg;
2926 	struct macb *bp = netdev_priv(dev);
2927 
2928 	cfg = macb_readl(bp, NCFGR);
2929 
2930 	if (dev->flags & IFF_PROMISC) {
2931 		/* Enable promiscuous mode */
2932 		cfg |= MACB_BIT(CAF);
2933 
2934 		/* Disable RX checksum offload */
2935 		if (macb_is_gem(bp))
2936 			cfg &= ~GEM_BIT(RXCOEN);
2937 	} else {
2938 		/* Disable promiscuous mode */
2939 		cfg &= ~MACB_BIT(CAF);
2940 
2941 		/* Enable RX checksum offload only if requested */
2942 		if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
2943 			cfg |= GEM_BIT(RXCOEN);
2944 	}
2945 
2946 	if (dev->flags & IFF_ALLMULTI) {
2947 		/* Enable all multicast mode */
2948 		macb_or_gem_writel(bp, HRB, -1);
2949 		macb_or_gem_writel(bp, HRT, -1);
2950 		cfg |= MACB_BIT(NCFGR_MTI);
2951 	} else if (!netdev_mc_empty(dev)) {
2952 		/* Enable specific multicasts */
2953 		macb_sethashtable(dev);
2954 		cfg |= MACB_BIT(NCFGR_MTI);
2955 	} else if (dev->flags & (~IFF_ALLMULTI)) {
2956 		/* Disable all multicast mode */
2957 		macb_or_gem_writel(bp, HRB, 0);
2958 		macb_or_gem_writel(bp, HRT, 0);
2959 		cfg &= ~MACB_BIT(NCFGR_MTI);
2960 	}
2961 
2962 	macb_writel(bp, NCFGR, cfg);
2963 }
2964 
2965 static int macb_open(struct net_device *dev)
2966 {
2967 	size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
2968 	struct macb *bp = netdev_priv(dev);
2969 	struct macb_queue *queue;
2970 	unsigned int q;
2971 	int err;
2972 
2973 	netdev_dbg(bp->dev, "open\n");
2974 
2975 	err = pm_runtime_resume_and_get(&bp->pdev->dev);
2976 	if (err < 0)
2977 		return err;
2978 
2979 	/* RX buffers initialization */
2980 	macb_init_rx_buffer_size(bp, bufsz);
2981 
2982 	err = macb_alloc_consistent(bp);
2983 	if (err) {
2984 		netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
2985 			   err);
2986 		goto pm_exit;
2987 	}
2988 
2989 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2990 		napi_enable(&queue->napi_rx);
2991 		napi_enable(&queue->napi_tx);
2992 	}
2993 
2994 	macb_init_hw(bp);
2995 
2996 	err = phy_power_on(bp->sgmii_phy);
2997 	if (err)
2998 		goto reset_hw;
2999 
3000 	err = macb_phylink_connect(bp);
3001 	if (err)
3002 		goto phy_off;
3003 
3004 	netif_tx_start_all_queues(dev);
3005 
3006 	if (bp->ptp_info)
3007 		bp->ptp_info->ptp_init(dev);
3008 
3009 	return 0;
3010 
3011 phy_off:
3012 	phy_power_off(bp->sgmii_phy);
3013 
3014 reset_hw:
3015 	macb_reset_hw(bp);
3016 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3017 		napi_disable(&queue->napi_rx);
3018 		napi_disable(&queue->napi_tx);
3019 	}
3020 	macb_free_consistent(bp);
3021 pm_exit:
3022 	pm_runtime_put_sync(&bp->pdev->dev);
3023 	return err;
3024 }
3025 
3026 static int macb_close(struct net_device *dev)
3027 {
3028 	struct macb *bp = netdev_priv(dev);
3029 	struct macb_queue *queue;
3030 	unsigned long flags;
3031 	unsigned int q;
3032 
3033 	netif_tx_stop_all_queues(dev);
3034 
3035 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3036 		napi_disable(&queue->napi_rx);
3037 		napi_disable(&queue->napi_tx);
3038 	}
3039 
3040 	phylink_stop(bp->phylink);
3041 	phylink_disconnect_phy(bp->phylink);
3042 
3043 	phy_power_off(bp->sgmii_phy);
3044 
3045 	spin_lock_irqsave(&bp->lock, flags);
3046 	macb_reset_hw(bp);
3047 	netif_carrier_off(dev);
3048 	spin_unlock_irqrestore(&bp->lock, flags);
3049 
3050 	macb_free_consistent(bp);
3051 
3052 	if (bp->ptp_info)
3053 		bp->ptp_info->ptp_remove(dev);
3054 
3055 	pm_runtime_put(&bp->pdev->dev);
3056 
3057 	return 0;
3058 }
3059 
3060 static int macb_change_mtu(struct net_device *dev, int new_mtu)
3061 {
3062 	if (netif_running(dev))
3063 		return -EBUSY;
3064 
3065 	WRITE_ONCE(dev->mtu, new_mtu);
3066 
3067 	return 0;
3068 }
3069 
3070 static int macb_set_mac_addr(struct net_device *dev, void *addr)
3071 {
3072 	int err;
3073 
3074 	err = eth_mac_addr(dev, addr);
3075 	if (err < 0)
3076 		return err;
3077 
3078 	macb_set_hwaddr(netdev_priv(dev));
3079 	return 0;
3080 }
3081 
3082 static void gem_update_stats(struct macb *bp)
3083 {
3084 	struct macb_queue *queue;
3085 	unsigned int i, q, idx;
3086 	unsigned long *stat;
3087 
3088 	u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
3089 
3090 	for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
3091 		u32 offset = gem_statistics[i].offset;
3092 		u64 val = bp->macb_reg_readl(bp, offset);
3093 
3094 		bp->ethtool_stats[i] += val;
3095 		*p += val;
3096 
3097 		if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
3098 			/* Add GEM_OCTTXH, GEM_OCTRXH */
3099 			val = bp->macb_reg_readl(bp, offset + 4);
3100 			bp->ethtool_stats[i] += ((u64)val) << 32;
3101 			*(++p) += val;
3102 		}
3103 	}
3104 
3105 	idx = GEM_STATS_LEN;
3106 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
3107 		for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat)
3108 			bp->ethtool_stats[idx++] = *stat;
3109 }
3110 
3111 static struct net_device_stats *gem_get_stats(struct macb *bp)
3112 {
3113 	struct gem_stats *hwstat = &bp->hw_stats.gem;
3114 	struct net_device_stats *nstat = &bp->dev->stats;
3115 
3116 	if (!netif_running(bp->dev))
3117 		return nstat;
3118 
3119 	gem_update_stats(bp);
3120 
3121 	nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
3122 			    hwstat->rx_alignment_errors +
3123 			    hwstat->rx_resource_errors +
3124 			    hwstat->rx_overruns +
3125 			    hwstat->rx_oversize_frames +
3126 			    hwstat->rx_jabbers +
3127 			    hwstat->rx_undersized_frames +
3128 			    hwstat->rx_length_field_frame_errors);
3129 	nstat->tx_errors = (hwstat->tx_late_collisions +
3130 			    hwstat->tx_excessive_collisions +
3131 			    hwstat->tx_underrun +
3132 			    hwstat->tx_carrier_sense_errors);
3133 	nstat->multicast = hwstat->rx_multicast_frames;
3134 	nstat->collisions = (hwstat->tx_single_collision_frames +
3135 			     hwstat->tx_multiple_collision_frames +
3136 			     hwstat->tx_excessive_collisions);
3137 	nstat->rx_length_errors = (hwstat->rx_oversize_frames +
3138 				   hwstat->rx_jabbers +
3139 				   hwstat->rx_undersized_frames +
3140 				   hwstat->rx_length_field_frame_errors);
3141 	nstat->rx_over_errors = hwstat->rx_resource_errors;
3142 	nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
3143 	nstat->rx_frame_errors = hwstat->rx_alignment_errors;
3144 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3145 	nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
3146 	nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
3147 	nstat->tx_fifo_errors = hwstat->tx_underrun;
3148 
3149 	return nstat;
3150 }
3151 
3152 static void gem_get_ethtool_stats(struct net_device *dev,
3153 				  struct ethtool_stats *stats, u64 *data)
3154 {
3155 	struct macb *bp;
3156 
3157 	bp = netdev_priv(dev);
3158 	gem_update_stats(bp);
3159 	memcpy(data, &bp->ethtool_stats, sizeof(u64)
3160 			* (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES));
3161 }
3162 
3163 static int gem_get_sset_count(struct net_device *dev, int sset)
3164 {
3165 	struct macb *bp = netdev_priv(dev);
3166 
3167 	switch (sset) {
3168 	case ETH_SS_STATS:
3169 		return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN;
3170 	default:
3171 		return -EOPNOTSUPP;
3172 	}
3173 }
3174 
3175 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
3176 {
3177 	char stat_string[ETH_GSTRING_LEN];
3178 	struct macb *bp = netdev_priv(dev);
3179 	struct macb_queue *queue;
3180 	unsigned int i;
3181 	unsigned int q;
3182 
3183 	switch (sset) {
3184 	case ETH_SS_STATS:
3185 		for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
3186 			memcpy(p, gem_statistics[i].stat_string,
3187 			       ETH_GSTRING_LEN);
3188 
3189 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3190 			for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) {
3191 				snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s",
3192 						q, queue_statistics[i].stat_string);
3193 				memcpy(p, stat_string, ETH_GSTRING_LEN);
3194 			}
3195 		}
3196 		break;
3197 	}
3198 }
3199 
3200 static struct net_device_stats *macb_get_stats(struct net_device *dev)
3201 {
3202 	struct macb *bp = netdev_priv(dev);
3203 	struct net_device_stats *nstat = &bp->dev->stats;
3204 	struct macb_stats *hwstat = &bp->hw_stats.macb;
3205 
3206 	if (macb_is_gem(bp))
3207 		return gem_get_stats(bp);
3208 
3209 	/* read stats from hardware */
3210 	macb_update_stats(bp);
3211 
3212 	/* Convert HW stats into netdevice stats */
3213 	nstat->rx_errors = (hwstat->rx_fcs_errors +
3214 			    hwstat->rx_align_errors +
3215 			    hwstat->rx_resource_errors +
3216 			    hwstat->rx_overruns +
3217 			    hwstat->rx_oversize_pkts +
3218 			    hwstat->rx_jabbers +
3219 			    hwstat->rx_undersize_pkts +
3220 			    hwstat->rx_length_mismatch);
3221 	nstat->tx_errors = (hwstat->tx_late_cols +
3222 			    hwstat->tx_excessive_cols +
3223 			    hwstat->tx_underruns +
3224 			    hwstat->tx_carrier_errors +
3225 			    hwstat->sqe_test_errors);
3226 	nstat->collisions = (hwstat->tx_single_cols +
3227 			     hwstat->tx_multiple_cols +
3228 			     hwstat->tx_excessive_cols);
3229 	nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
3230 				   hwstat->rx_jabbers +
3231 				   hwstat->rx_undersize_pkts +
3232 				   hwstat->rx_length_mismatch);
3233 	nstat->rx_over_errors = hwstat->rx_resource_errors +
3234 				   hwstat->rx_overruns;
3235 	nstat->rx_crc_errors = hwstat->rx_fcs_errors;
3236 	nstat->rx_frame_errors = hwstat->rx_align_errors;
3237 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3238 	/* XXX: What does "missed" mean? */
3239 	nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
3240 	nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
3241 	nstat->tx_fifo_errors = hwstat->tx_underruns;
3242 	/* Don't know about heartbeat or window errors... */
3243 
3244 	return nstat;
3245 }
3246 
3247 static int macb_get_regs_len(struct net_device *netdev)
3248 {
3249 	return MACB_GREGS_NBR * sizeof(u32);
3250 }
3251 
3252 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
3253 			  void *p)
3254 {
3255 	struct macb *bp = netdev_priv(dev);
3256 	unsigned int tail, head;
3257 	u32 *regs_buff = p;
3258 
3259 	regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
3260 			| MACB_GREGS_VERSION;
3261 
3262 	tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail);
3263 	head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head);
3264 
3265 	regs_buff[0]  = macb_readl(bp, NCR);
3266 	regs_buff[1]  = macb_or_gem_readl(bp, NCFGR);
3267 	regs_buff[2]  = macb_readl(bp, NSR);
3268 	regs_buff[3]  = macb_readl(bp, TSR);
3269 	regs_buff[4]  = macb_readl(bp, RBQP);
3270 	regs_buff[5]  = macb_readl(bp, TBQP);
3271 	regs_buff[6]  = macb_readl(bp, RSR);
3272 	regs_buff[7]  = macb_readl(bp, IMR);
3273 
3274 	regs_buff[8]  = tail;
3275 	regs_buff[9]  = head;
3276 	regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
3277 	regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
3278 
3279 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
3280 		regs_buff[12] = macb_or_gem_readl(bp, USRIO);
3281 	if (macb_is_gem(bp))
3282 		regs_buff[13] = gem_readl(bp, DMACFG);
3283 }
3284 
3285 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3286 {
3287 	struct macb *bp = netdev_priv(netdev);
3288 
3289 	phylink_ethtool_get_wol(bp->phylink, wol);
3290 	wol->supported |= (WAKE_MAGIC | WAKE_ARP);
3291 
3292 	/* Add macb wolopts to phy wolopts */
3293 	wol->wolopts |= bp->wolopts;
3294 }
3295 
3296 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3297 {
3298 	struct macb *bp = netdev_priv(netdev);
3299 	int ret;
3300 
3301 	/* Pass the order to phylink layer */
3302 	ret = phylink_ethtool_set_wol(bp->phylink, wol);
3303 	/* Don't manage WoL on MAC, if PHY set_wol() fails */
3304 	if (ret && ret != -EOPNOTSUPP)
3305 		return ret;
3306 
3307 	bp->wolopts = (wol->wolopts & WAKE_MAGIC) ? WAKE_MAGIC : 0;
3308 	bp->wolopts |= (wol->wolopts & WAKE_ARP) ? WAKE_ARP : 0;
3309 	bp->wol = (wol->wolopts) ? MACB_WOL_ENABLED : 0;
3310 
3311 	device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
3312 
3313 	return 0;
3314 }
3315 
3316 static int macb_get_link_ksettings(struct net_device *netdev,
3317 				   struct ethtool_link_ksettings *kset)
3318 {
3319 	struct macb *bp = netdev_priv(netdev);
3320 
3321 	return phylink_ethtool_ksettings_get(bp->phylink, kset);
3322 }
3323 
3324 static int macb_set_link_ksettings(struct net_device *netdev,
3325 				   const struct ethtool_link_ksettings *kset)
3326 {
3327 	struct macb *bp = netdev_priv(netdev);
3328 
3329 	return phylink_ethtool_ksettings_set(bp->phylink, kset);
3330 }
3331 
3332 static void macb_get_ringparam(struct net_device *netdev,
3333 			       struct ethtool_ringparam *ring,
3334 			       struct kernel_ethtool_ringparam *kernel_ring,
3335 			       struct netlink_ext_ack *extack)
3336 {
3337 	struct macb *bp = netdev_priv(netdev);
3338 
3339 	ring->rx_max_pending = MAX_RX_RING_SIZE;
3340 	ring->tx_max_pending = MAX_TX_RING_SIZE;
3341 
3342 	ring->rx_pending = bp->rx_ring_size;
3343 	ring->tx_pending = bp->tx_ring_size;
3344 }
3345 
3346 static int macb_set_ringparam(struct net_device *netdev,
3347 			      struct ethtool_ringparam *ring,
3348 			      struct kernel_ethtool_ringparam *kernel_ring,
3349 			      struct netlink_ext_ack *extack)
3350 {
3351 	struct macb *bp = netdev_priv(netdev);
3352 	u32 new_rx_size, new_tx_size;
3353 	unsigned int reset = 0;
3354 
3355 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
3356 		return -EINVAL;
3357 
3358 	new_rx_size = clamp_t(u32, ring->rx_pending,
3359 			      MIN_RX_RING_SIZE, MAX_RX_RING_SIZE);
3360 	new_rx_size = roundup_pow_of_two(new_rx_size);
3361 
3362 	new_tx_size = clamp_t(u32, ring->tx_pending,
3363 			      MIN_TX_RING_SIZE, MAX_TX_RING_SIZE);
3364 	new_tx_size = roundup_pow_of_two(new_tx_size);
3365 
3366 	if ((new_tx_size == bp->tx_ring_size) &&
3367 	    (new_rx_size == bp->rx_ring_size)) {
3368 		/* nothing to do */
3369 		return 0;
3370 	}
3371 
3372 	if (netif_running(bp->dev)) {
3373 		reset = 1;
3374 		macb_close(bp->dev);
3375 	}
3376 
3377 	bp->rx_ring_size = new_rx_size;
3378 	bp->tx_ring_size = new_tx_size;
3379 
3380 	if (reset)
3381 		macb_open(bp->dev);
3382 
3383 	return 0;
3384 }
3385 
3386 #ifdef CONFIG_MACB_USE_HWSTAMP
3387 static unsigned int gem_get_tsu_rate(struct macb *bp)
3388 {
3389 	struct clk *tsu_clk;
3390 	unsigned int tsu_rate;
3391 
3392 	tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk");
3393 	if (!IS_ERR(tsu_clk))
3394 		tsu_rate = clk_get_rate(tsu_clk);
3395 	/* try pclk instead */
3396 	else if (!IS_ERR(bp->pclk)) {
3397 		tsu_clk = bp->pclk;
3398 		tsu_rate = clk_get_rate(tsu_clk);
3399 	} else
3400 		return -ENOTSUPP;
3401 	return tsu_rate;
3402 }
3403 
3404 static s32 gem_get_ptp_max_adj(void)
3405 {
3406 	return 64000000;
3407 }
3408 
3409 static int gem_get_ts_info(struct net_device *dev,
3410 			   struct kernel_ethtool_ts_info *info)
3411 {
3412 	struct macb *bp = netdev_priv(dev);
3413 
3414 	if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) {
3415 		ethtool_op_get_ts_info(dev, info);
3416 		return 0;
3417 	}
3418 
3419 	info->so_timestamping =
3420 		SOF_TIMESTAMPING_TX_SOFTWARE |
3421 		SOF_TIMESTAMPING_TX_HARDWARE |
3422 		SOF_TIMESTAMPING_RX_HARDWARE |
3423 		SOF_TIMESTAMPING_RAW_HARDWARE;
3424 	info->tx_types =
3425 		(1 << HWTSTAMP_TX_ONESTEP_SYNC) |
3426 		(1 << HWTSTAMP_TX_OFF) |
3427 		(1 << HWTSTAMP_TX_ON);
3428 	info->rx_filters =
3429 		(1 << HWTSTAMP_FILTER_NONE) |
3430 		(1 << HWTSTAMP_FILTER_ALL);
3431 
3432 	if (bp->ptp_clock)
3433 		info->phc_index = ptp_clock_index(bp->ptp_clock);
3434 
3435 	return 0;
3436 }
3437 
3438 static struct macb_ptp_info gem_ptp_info = {
3439 	.ptp_init	 = gem_ptp_init,
3440 	.ptp_remove	 = gem_ptp_remove,
3441 	.get_ptp_max_adj = gem_get_ptp_max_adj,
3442 	.get_tsu_rate	 = gem_get_tsu_rate,
3443 	.get_ts_info	 = gem_get_ts_info,
3444 	.get_hwtst	 = gem_get_hwtst,
3445 	.set_hwtst	 = gem_set_hwtst,
3446 };
3447 #endif
3448 
3449 static int macb_get_ts_info(struct net_device *netdev,
3450 			    struct kernel_ethtool_ts_info *info)
3451 {
3452 	struct macb *bp = netdev_priv(netdev);
3453 
3454 	if (bp->ptp_info)
3455 		return bp->ptp_info->get_ts_info(netdev, info);
3456 
3457 	return ethtool_op_get_ts_info(netdev, info);
3458 }
3459 
3460 static void gem_enable_flow_filters(struct macb *bp, bool enable)
3461 {
3462 	struct net_device *netdev = bp->dev;
3463 	struct ethtool_rx_fs_item *item;
3464 	u32 t2_scr;
3465 	int num_t2_scr;
3466 
3467 	if (!(netdev->features & NETIF_F_NTUPLE))
3468 		return;
3469 
3470 	num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8));
3471 
3472 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3473 		struct ethtool_rx_flow_spec *fs = &item->fs;
3474 		struct ethtool_tcpip4_spec *tp4sp_m;
3475 
3476 		if (fs->location >= num_t2_scr)
3477 			continue;
3478 
3479 		t2_scr = gem_readl_n(bp, SCRT2, fs->location);
3480 
3481 		/* enable/disable screener regs for the flow entry */
3482 		t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr);
3483 
3484 		/* only enable fields with no masking */
3485 		tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3486 
3487 		if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF))
3488 			t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr);
3489 		else
3490 			t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr);
3491 
3492 		if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF))
3493 			t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr);
3494 		else
3495 			t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr);
3496 
3497 		if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)))
3498 			t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr);
3499 		else
3500 			t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr);
3501 
3502 		gem_writel_n(bp, SCRT2, fs->location, t2_scr);
3503 	}
3504 }
3505 
3506 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs)
3507 {
3508 	struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m;
3509 	uint16_t index = fs->location;
3510 	u32 w0, w1, t2_scr;
3511 	bool cmp_a = false;
3512 	bool cmp_b = false;
3513 	bool cmp_c = false;
3514 
3515 	if (!macb_is_gem(bp))
3516 		return;
3517 
3518 	tp4sp_v = &(fs->h_u.tcp_ip4_spec);
3519 	tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3520 
3521 	/* ignore field if any masking set */
3522 	if (tp4sp_m->ip4src == 0xFFFFFFFF) {
3523 		/* 1st compare reg - IP source address */
3524 		w0 = 0;
3525 		w1 = 0;
3526 		w0 = tp4sp_v->ip4src;
3527 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3528 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3529 		w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1);
3530 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0);
3531 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1);
3532 		cmp_a = true;
3533 	}
3534 
3535 	/* ignore field if any masking set */
3536 	if (tp4sp_m->ip4dst == 0xFFFFFFFF) {
3537 		/* 2nd compare reg - IP destination address */
3538 		w0 = 0;
3539 		w1 = 0;
3540 		w0 = tp4sp_v->ip4dst;
3541 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3542 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3543 		w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1);
3544 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0);
3545 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1);
3546 		cmp_b = true;
3547 	}
3548 
3549 	/* ignore both port fields if masking set in both */
3550 	if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) {
3551 		/* 3rd compare reg - source port, destination port */
3552 		w0 = 0;
3553 		w1 = 0;
3554 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1);
3555 		if (tp4sp_m->psrc == tp4sp_m->pdst) {
3556 			w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0);
3557 			w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3558 			w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3559 			w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3560 		} else {
3561 			/* only one port definition */
3562 			w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */
3563 			w0 = GEM_BFINS(T2MASK, 0xFFFF, w0);
3564 			if (tp4sp_m->psrc == 0xFFFF) { /* src port */
3565 				w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0);
3566 				w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3567 			} else { /* dst port */
3568 				w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3569 				w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1);
3570 			}
3571 		}
3572 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0);
3573 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1);
3574 		cmp_c = true;
3575 	}
3576 
3577 	t2_scr = 0;
3578 	t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr);
3579 	t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr);
3580 	if (cmp_a)
3581 		t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr);
3582 	if (cmp_b)
3583 		t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr);
3584 	if (cmp_c)
3585 		t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr);
3586 	gem_writel_n(bp, SCRT2, index, t2_scr);
3587 }
3588 
3589 static int gem_add_flow_filter(struct net_device *netdev,
3590 		struct ethtool_rxnfc *cmd)
3591 {
3592 	struct macb *bp = netdev_priv(netdev);
3593 	struct ethtool_rx_flow_spec *fs = &cmd->fs;
3594 	struct ethtool_rx_fs_item *item, *newfs;
3595 	unsigned long flags;
3596 	int ret = -EINVAL;
3597 	bool added = false;
3598 
3599 	newfs = kmalloc(sizeof(*newfs), GFP_KERNEL);
3600 	if (newfs == NULL)
3601 		return -ENOMEM;
3602 	memcpy(&newfs->fs, fs, sizeof(newfs->fs));
3603 
3604 	netdev_dbg(netdev,
3605 			"Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3606 			fs->flow_type, (int)fs->ring_cookie, fs->location,
3607 			htonl(fs->h_u.tcp_ip4_spec.ip4src),
3608 			htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3609 			be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3610 			be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3611 
3612 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3613 
3614 	/* find correct place to add in list */
3615 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3616 		if (item->fs.location > newfs->fs.location) {
3617 			list_add_tail(&newfs->list, &item->list);
3618 			added = true;
3619 			break;
3620 		} else if (item->fs.location == fs->location) {
3621 			netdev_err(netdev, "Rule not added: location %d not free!\n",
3622 					fs->location);
3623 			ret = -EBUSY;
3624 			goto err;
3625 		}
3626 	}
3627 	if (!added)
3628 		list_add_tail(&newfs->list, &bp->rx_fs_list.list);
3629 
3630 	gem_prog_cmp_regs(bp, fs);
3631 	bp->rx_fs_list.count++;
3632 	/* enable filtering if NTUPLE on */
3633 	gem_enable_flow_filters(bp, 1);
3634 
3635 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3636 	return 0;
3637 
3638 err:
3639 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3640 	kfree(newfs);
3641 	return ret;
3642 }
3643 
3644 static int gem_del_flow_filter(struct net_device *netdev,
3645 		struct ethtool_rxnfc *cmd)
3646 {
3647 	struct macb *bp = netdev_priv(netdev);
3648 	struct ethtool_rx_fs_item *item;
3649 	struct ethtool_rx_flow_spec *fs;
3650 	unsigned long flags;
3651 
3652 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3653 
3654 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3655 		if (item->fs.location == cmd->fs.location) {
3656 			/* disable screener regs for the flow entry */
3657 			fs = &(item->fs);
3658 			netdev_dbg(netdev,
3659 					"Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3660 					fs->flow_type, (int)fs->ring_cookie, fs->location,
3661 					htonl(fs->h_u.tcp_ip4_spec.ip4src),
3662 					htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3663 					be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3664 					be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3665 
3666 			gem_writel_n(bp, SCRT2, fs->location, 0);
3667 
3668 			list_del(&item->list);
3669 			bp->rx_fs_list.count--;
3670 			spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3671 			kfree(item);
3672 			return 0;
3673 		}
3674 	}
3675 
3676 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3677 	return -EINVAL;
3678 }
3679 
3680 static int gem_get_flow_entry(struct net_device *netdev,
3681 		struct ethtool_rxnfc *cmd)
3682 {
3683 	struct macb *bp = netdev_priv(netdev);
3684 	struct ethtool_rx_fs_item *item;
3685 
3686 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3687 		if (item->fs.location == cmd->fs.location) {
3688 			memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs));
3689 			return 0;
3690 		}
3691 	}
3692 	return -EINVAL;
3693 }
3694 
3695 static int gem_get_all_flow_entries(struct net_device *netdev,
3696 		struct ethtool_rxnfc *cmd, u32 *rule_locs)
3697 {
3698 	struct macb *bp = netdev_priv(netdev);
3699 	struct ethtool_rx_fs_item *item;
3700 	uint32_t cnt = 0;
3701 
3702 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3703 		if (cnt == cmd->rule_cnt)
3704 			return -EMSGSIZE;
3705 		rule_locs[cnt] = item->fs.location;
3706 		cnt++;
3707 	}
3708 	cmd->data = bp->max_tuples;
3709 	cmd->rule_cnt = cnt;
3710 
3711 	return 0;
3712 }
3713 
3714 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3715 		u32 *rule_locs)
3716 {
3717 	struct macb *bp = netdev_priv(netdev);
3718 	int ret = 0;
3719 
3720 	switch (cmd->cmd) {
3721 	case ETHTOOL_GRXRINGS:
3722 		cmd->data = bp->num_queues;
3723 		break;
3724 	case ETHTOOL_GRXCLSRLCNT:
3725 		cmd->rule_cnt = bp->rx_fs_list.count;
3726 		break;
3727 	case ETHTOOL_GRXCLSRULE:
3728 		ret = gem_get_flow_entry(netdev, cmd);
3729 		break;
3730 	case ETHTOOL_GRXCLSRLALL:
3731 		ret = gem_get_all_flow_entries(netdev, cmd, rule_locs);
3732 		break;
3733 	default:
3734 		netdev_err(netdev,
3735 			  "Command parameter %d is not supported\n", cmd->cmd);
3736 		ret = -EOPNOTSUPP;
3737 	}
3738 
3739 	return ret;
3740 }
3741 
3742 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3743 {
3744 	struct macb *bp = netdev_priv(netdev);
3745 	int ret;
3746 
3747 	switch (cmd->cmd) {
3748 	case ETHTOOL_SRXCLSRLINS:
3749 		if ((cmd->fs.location >= bp->max_tuples)
3750 				|| (cmd->fs.ring_cookie >= bp->num_queues)) {
3751 			ret = -EINVAL;
3752 			break;
3753 		}
3754 		ret = gem_add_flow_filter(netdev, cmd);
3755 		break;
3756 	case ETHTOOL_SRXCLSRLDEL:
3757 		ret = gem_del_flow_filter(netdev, cmd);
3758 		break;
3759 	default:
3760 		netdev_err(netdev,
3761 			  "Command parameter %d is not supported\n", cmd->cmd);
3762 		ret = -EOPNOTSUPP;
3763 	}
3764 
3765 	return ret;
3766 }
3767 
3768 static const struct ethtool_ops macb_ethtool_ops = {
3769 	.get_regs_len		= macb_get_regs_len,
3770 	.get_regs		= macb_get_regs,
3771 	.get_link		= ethtool_op_get_link,
3772 	.get_ts_info		= ethtool_op_get_ts_info,
3773 	.get_wol		= macb_get_wol,
3774 	.set_wol		= macb_set_wol,
3775 	.get_link_ksettings     = macb_get_link_ksettings,
3776 	.set_link_ksettings     = macb_set_link_ksettings,
3777 	.get_ringparam		= macb_get_ringparam,
3778 	.set_ringparam		= macb_set_ringparam,
3779 };
3780 
3781 static const struct ethtool_ops gem_ethtool_ops = {
3782 	.get_regs_len		= macb_get_regs_len,
3783 	.get_regs		= macb_get_regs,
3784 	.get_wol		= macb_get_wol,
3785 	.set_wol		= macb_set_wol,
3786 	.get_link		= ethtool_op_get_link,
3787 	.get_ts_info		= macb_get_ts_info,
3788 	.get_ethtool_stats	= gem_get_ethtool_stats,
3789 	.get_strings		= gem_get_ethtool_strings,
3790 	.get_sset_count		= gem_get_sset_count,
3791 	.get_link_ksettings     = macb_get_link_ksettings,
3792 	.set_link_ksettings     = macb_set_link_ksettings,
3793 	.get_ringparam		= macb_get_ringparam,
3794 	.set_ringparam		= macb_set_ringparam,
3795 	.get_rxnfc			= gem_get_rxnfc,
3796 	.set_rxnfc			= gem_set_rxnfc,
3797 };
3798 
3799 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3800 {
3801 	struct macb *bp = netdev_priv(dev);
3802 
3803 	if (!netif_running(dev))
3804 		return -EINVAL;
3805 
3806 	return phylink_mii_ioctl(bp->phylink, rq, cmd);
3807 }
3808 
3809 static int macb_hwtstamp_get(struct net_device *dev,
3810 			     struct kernel_hwtstamp_config *cfg)
3811 {
3812 	struct macb *bp = netdev_priv(dev);
3813 
3814 	if (!netif_running(dev))
3815 		return -EINVAL;
3816 
3817 	if (!bp->ptp_info)
3818 		return -EOPNOTSUPP;
3819 
3820 	return bp->ptp_info->get_hwtst(dev, cfg);
3821 }
3822 
3823 static int macb_hwtstamp_set(struct net_device *dev,
3824 			     struct kernel_hwtstamp_config *cfg,
3825 			     struct netlink_ext_ack *extack)
3826 {
3827 	struct macb *bp = netdev_priv(dev);
3828 
3829 	if (!netif_running(dev))
3830 		return -EINVAL;
3831 
3832 	if (!bp->ptp_info)
3833 		return -EOPNOTSUPP;
3834 
3835 	return bp->ptp_info->set_hwtst(dev, cfg, extack);
3836 }
3837 
3838 static inline void macb_set_txcsum_feature(struct macb *bp,
3839 					   netdev_features_t features)
3840 {
3841 	u32 val;
3842 
3843 	if (!macb_is_gem(bp))
3844 		return;
3845 
3846 	val = gem_readl(bp, DMACFG);
3847 	if (features & NETIF_F_HW_CSUM)
3848 		val |= GEM_BIT(TXCOEN);
3849 	else
3850 		val &= ~GEM_BIT(TXCOEN);
3851 
3852 	gem_writel(bp, DMACFG, val);
3853 }
3854 
3855 static inline void macb_set_rxcsum_feature(struct macb *bp,
3856 					   netdev_features_t features)
3857 {
3858 	struct net_device *netdev = bp->dev;
3859 	u32 val;
3860 
3861 	if (!macb_is_gem(bp))
3862 		return;
3863 
3864 	val = gem_readl(bp, NCFGR);
3865 	if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC))
3866 		val |= GEM_BIT(RXCOEN);
3867 	else
3868 		val &= ~GEM_BIT(RXCOEN);
3869 
3870 	gem_writel(bp, NCFGR, val);
3871 }
3872 
3873 static inline void macb_set_rxflow_feature(struct macb *bp,
3874 					   netdev_features_t features)
3875 {
3876 	if (!macb_is_gem(bp))
3877 		return;
3878 
3879 	gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE));
3880 }
3881 
3882 static int macb_set_features(struct net_device *netdev,
3883 			     netdev_features_t features)
3884 {
3885 	struct macb *bp = netdev_priv(netdev);
3886 	netdev_features_t changed = features ^ netdev->features;
3887 
3888 	/* TX checksum offload */
3889 	if (changed & NETIF_F_HW_CSUM)
3890 		macb_set_txcsum_feature(bp, features);
3891 
3892 	/* RX checksum offload */
3893 	if (changed & NETIF_F_RXCSUM)
3894 		macb_set_rxcsum_feature(bp, features);
3895 
3896 	/* RX Flow Filters */
3897 	if (changed & NETIF_F_NTUPLE)
3898 		macb_set_rxflow_feature(bp, features);
3899 
3900 	return 0;
3901 }
3902 
3903 static void macb_restore_features(struct macb *bp)
3904 {
3905 	struct net_device *netdev = bp->dev;
3906 	netdev_features_t features = netdev->features;
3907 	struct ethtool_rx_fs_item *item;
3908 
3909 	/* TX checksum offload */
3910 	macb_set_txcsum_feature(bp, features);
3911 
3912 	/* RX checksum offload */
3913 	macb_set_rxcsum_feature(bp, features);
3914 
3915 	/* RX Flow Filters */
3916 	list_for_each_entry(item, &bp->rx_fs_list.list, list)
3917 		gem_prog_cmp_regs(bp, &item->fs);
3918 
3919 	macb_set_rxflow_feature(bp, features);
3920 }
3921 
3922 static const struct net_device_ops macb_netdev_ops = {
3923 	.ndo_open		= macb_open,
3924 	.ndo_stop		= macb_close,
3925 	.ndo_start_xmit		= macb_start_xmit,
3926 	.ndo_set_rx_mode	= macb_set_rx_mode,
3927 	.ndo_get_stats		= macb_get_stats,
3928 	.ndo_eth_ioctl		= macb_ioctl,
3929 	.ndo_validate_addr	= eth_validate_addr,
3930 	.ndo_change_mtu		= macb_change_mtu,
3931 	.ndo_set_mac_address	= macb_set_mac_addr,
3932 #ifdef CONFIG_NET_POLL_CONTROLLER
3933 	.ndo_poll_controller	= macb_poll_controller,
3934 #endif
3935 	.ndo_set_features	= macb_set_features,
3936 	.ndo_features_check	= macb_features_check,
3937 	.ndo_hwtstamp_set	= macb_hwtstamp_set,
3938 	.ndo_hwtstamp_get	= macb_hwtstamp_get,
3939 };
3940 
3941 /* Configure peripheral capabilities according to device tree
3942  * and integration options used
3943  */
3944 static void macb_configure_caps(struct macb *bp,
3945 				const struct macb_config *dt_conf)
3946 {
3947 	u32 dcfg;
3948 
3949 	if (dt_conf)
3950 		bp->caps = dt_conf->caps;
3951 
3952 	if (hw_is_gem(bp->regs, bp->native_io)) {
3953 		bp->caps |= MACB_CAPS_MACB_IS_GEM;
3954 
3955 		dcfg = gem_readl(bp, DCFG1);
3956 		if (GEM_BFEXT(IRQCOR, dcfg) == 0)
3957 			bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
3958 		if (GEM_BFEXT(NO_PCS, dcfg) == 0)
3959 			bp->caps |= MACB_CAPS_PCS;
3960 		dcfg = gem_readl(bp, DCFG12);
3961 		if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1)
3962 			bp->caps |= MACB_CAPS_HIGH_SPEED;
3963 		dcfg = gem_readl(bp, DCFG2);
3964 		if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
3965 			bp->caps |= MACB_CAPS_FIFO_MODE;
3966 		if (gem_has_ptp(bp)) {
3967 			if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5)))
3968 				dev_err(&bp->pdev->dev,
3969 					"GEM doesn't support hardware ptp.\n");
3970 			else {
3971 #ifdef CONFIG_MACB_USE_HWSTAMP
3972 				bp->hw_dma_cap |= HW_DMA_CAP_PTP;
3973 				bp->ptp_info = &gem_ptp_info;
3974 #endif
3975 			}
3976 		}
3977 	}
3978 
3979 	dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
3980 }
3981 
3982 static void macb_probe_queues(void __iomem *mem,
3983 			      bool native_io,
3984 			      unsigned int *queue_mask,
3985 			      unsigned int *num_queues)
3986 {
3987 	*queue_mask = 0x1;
3988 	*num_queues = 1;
3989 
3990 	/* is it macb or gem ?
3991 	 *
3992 	 * We need to read directly from the hardware here because
3993 	 * we are early in the probe process and don't have the
3994 	 * MACB_CAPS_MACB_IS_GEM flag positioned
3995 	 */
3996 	if (!hw_is_gem(mem, native_io))
3997 		return;
3998 
3999 	/* bit 0 is never set but queue 0 always exists */
4000 	*queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff;
4001 	*num_queues = hweight32(*queue_mask);
4002 }
4003 
4004 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk,
4005 			      struct clk *rx_clk, struct clk *tsu_clk)
4006 {
4007 	struct clk_bulk_data clks[] = {
4008 		{ .clk = tsu_clk, },
4009 		{ .clk = rx_clk, },
4010 		{ .clk = pclk, },
4011 		{ .clk = hclk, },
4012 		{ .clk = tx_clk },
4013 	};
4014 
4015 	clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks);
4016 }
4017 
4018 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
4019 			 struct clk **hclk, struct clk **tx_clk,
4020 			 struct clk **rx_clk, struct clk **tsu_clk)
4021 {
4022 	struct macb_platform_data *pdata;
4023 	int err;
4024 
4025 	pdata = dev_get_platdata(&pdev->dev);
4026 	if (pdata) {
4027 		*pclk = pdata->pclk;
4028 		*hclk = pdata->hclk;
4029 	} else {
4030 		*pclk = devm_clk_get(&pdev->dev, "pclk");
4031 		*hclk = devm_clk_get(&pdev->dev, "hclk");
4032 	}
4033 
4034 	if (IS_ERR_OR_NULL(*pclk))
4035 		return dev_err_probe(&pdev->dev,
4036 				     IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV,
4037 				     "failed to get pclk\n");
4038 
4039 	if (IS_ERR_OR_NULL(*hclk))
4040 		return dev_err_probe(&pdev->dev,
4041 				     IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV,
4042 				     "failed to get hclk\n");
4043 
4044 	*tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk");
4045 	if (IS_ERR(*tx_clk))
4046 		return PTR_ERR(*tx_clk);
4047 
4048 	*rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk");
4049 	if (IS_ERR(*rx_clk))
4050 		return PTR_ERR(*rx_clk);
4051 
4052 	*tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk");
4053 	if (IS_ERR(*tsu_clk))
4054 		return PTR_ERR(*tsu_clk);
4055 
4056 	err = clk_prepare_enable(*pclk);
4057 	if (err) {
4058 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4059 		return err;
4060 	}
4061 
4062 	err = clk_prepare_enable(*hclk);
4063 	if (err) {
4064 		dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err);
4065 		goto err_disable_pclk;
4066 	}
4067 
4068 	err = clk_prepare_enable(*tx_clk);
4069 	if (err) {
4070 		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
4071 		goto err_disable_hclk;
4072 	}
4073 
4074 	err = clk_prepare_enable(*rx_clk);
4075 	if (err) {
4076 		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
4077 		goto err_disable_txclk;
4078 	}
4079 
4080 	err = clk_prepare_enable(*tsu_clk);
4081 	if (err) {
4082 		dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err);
4083 		goto err_disable_rxclk;
4084 	}
4085 
4086 	return 0;
4087 
4088 err_disable_rxclk:
4089 	clk_disable_unprepare(*rx_clk);
4090 
4091 err_disable_txclk:
4092 	clk_disable_unprepare(*tx_clk);
4093 
4094 err_disable_hclk:
4095 	clk_disable_unprepare(*hclk);
4096 
4097 err_disable_pclk:
4098 	clk_disable_unprepare(*pclk);
4099 
4100 	return err;
4101 }
4102 
4103 static int macb_init(struct platform_device *pdev)
4104 {
4105 	struct net_device *dev = platform_get_drvdata(pdev);
4106 	unsigned int hw_q, q;
4107 	struct macb *bp = netdev_priv(dev);
4108 	struct macb_queue *queue;
4109 	int err;
4110 	u32 val, reg;
4111 
4112 	bp->tx_ring_size = DEFAULT_TX_RING_SIZE;
4113 	bp->rx_ring_size = DEFAULT_RX_RING_SIZE;
4114 
4115 	/* set the queue register mapping once for all: queue0 has a special
4116 	 * register mapping but we don't want to test the queue index then
4117 	 * compute the corresponding register offset at run time.
4118 	 */
4119 	for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
4120 		if (!(bp->queue_mask & (1 << hw_q)))
4121 			continue;
4122 
4123 		queue = &bp->queues[q];
4124 		queue->bp = bp;
4125 		spin_lock_init(&queue->tx_ptr_lock);
4126 		netif_napi_add(dev, &queue->napi_rx, macb_rx_poll);
4127 		netif_napi_add(dev, &queue->napi_tx, macb_tx_poll);
4128 		if (hw_q) {
4129 			queue->ISR  = GEM_ISR(hw_q - 1);
4130 			queue->IER  = GEM_IER(hw_q - 1);
4131 			queue->IDR  = GEM_IDR(hw_q - 1);
4132 			queue->IMR  = GEM_IMR(hw_q - 1);
4133 			queue->TBQP = GEM_TBQP(hw_q - 1);
4134 			queue->RBQP = GEM_RBQP(hw_q - 1);
4135 			queue->RBQS = GEM_RBQS(hw_q - 1);
4136 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4137 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
4138 				queue->TBQPH = GEM_TBQPH(hw_q - 1);
4139 				queue->RBQPH = GEM_RBQPH(hw_q - 1);
4140 			}
4141 #endif
4142 		} else {
4143 			/* queue0 uses legacy registers */
4144 			queue->ISR  = MACB_ISR;
4145 			queue->IER  = MACB_IER;
4146 			queue->IDR  = MACB_IDR;
4147 			queue->IMR  = MACB_IMR;
4148 			queue->TBQP = MACB_TBQP;
4149 			queue->RBQP = MACB_RBQP;
4150 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4151 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
4152 				queue->TBQPH = MACB_TBQPH;
4153 				queue->RBQPH = MACB_RBQPH;
4154 			}
4155 #endif
4156 		}
4157 
4158 		/* get irq: here we use the linux queue index, not the hardware
4159 		 * queue index. the queue irq definitions in the device tree
4160 		 * must remove the optional gaps that could exist in the
4161 		 * hardware queue mask.
4162 		 */
4163 		queue->irq = platform_get_irq(pdev, q);
4164 		err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
4165 				       IRQF_SHARED, dev->name, queue);
4166 		if (err) {
4167 			dev_err(&pdev->dev,
4168 				"Unable to request IRQ %d (error %d)\n",
4169 				queue->irq, err);
4170 			return err;
4171 		}
4172 
4173 		INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
4174 		q++;
4175 	}
4176 
4177 	dev->netdev_ops = &macb_netdev_ops;
4178 
4179 	/* setup appropriated routines according to adapter type */
4180 	if (macb_is_gem(bp)) {
4181 		bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
4182 		bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
4183 		bp->macbgem_ops.mog_init_rings = gem_init_rings;
4184 		bp->macbgem_ops.mog_rx = gem_rx;
4185 		dev->ethtool_ops = &gem_ethtool_ops;
4186 	} else {
4187 		bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
4188 		bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
4189 		bp->macbgem_ops.mog_init_rings = macb_init_rings;
4190 		bp->macbgem_ops.mog_rx = macb_rx;
4191 		dev->ethtool_ops = &macb_ethtool_ops;
4192 	}
4193 
4194 	netdev_sw_irq_coalesce_default_on(dev);
4195 
4196 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4197 
4198 	/* Set features */
4199 	dev->hw_features = NETIF_F_SG;
4200 
4201 	/* Check LSO capability */
4202 	if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6)))
4203 		dev->hw_features |= MACB_NETIF_LSO;
4204 
4205 	/* Checksum offload is only available on gem with packet buffer */
4206 	if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
4207 		dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
4208 	if (bp->caps & MACB_CAPS_SG_DISABLED)
4209 		dev->hw_features &= ~NETIF_F_SG;
4210 	dev->features = dev->hw_features;
4211 
4212 	/* Check RX Flow Filters support.
4213 	 * Max Rx flows set by availability of screeners & compare regs:
4214 	 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs
4215 	 */
4216 	reg = gem_readl(bp, DCFG8);
4217 	bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3),
4218 			GEM_BFEXT(T2SCR, reg));
4219 	INIT_LIST_HEAD(&bp->rx_fs_list.list);
4220 	if (bp->max_tuples > 0) {
4221 		/* also needs one ethtype match to check IPv4 */
4222 		if (GEM_BFEXT(SCR2ETH, reg) > 0) {
4223 			/* program this reg now */
4224 			reg = 0;
4225 			reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg);
4226 			gem_writel_n(bp, ETHT, SCRT2_ETHT, reg);
4227 			/* Filtering is supported in hw but don't enable it in kernel now */
4228 			dev->hw_features |= NETIF_F_NTUPLE;
4229 			/* init Rx flow definitions */
4230 			bp->rx_fs_list.count = 0;
4231 			spin_lock_init(&bp->rx_fs_lock);
4232 		} else
4233 			bp->max_tuples = 0;
4234 	}
4235 
4236 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
4237 		val = 0;
4238 		if (phy_interface_mode_is_rgmii(bp->phy_interface))
4239 			val = bp->usrio->rgmii;
4240 		else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
4241 			 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4242 			val = bp->usrio->rmii;
4243 		else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4244 			val = bp->usrio->mii;
4245 
4246 		if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
4247 			val |= bp->usrio->refclk;
4248 
4249 		macb_or_gem_writel(bp, USRIO, val);
4250 	}
4251 
4252 	/* Set MII management clock divider */
4253 	val = macb_mdc_clk_div(bp);
4254 	val |= macb_dbw(bp);
4255 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
4256 		val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
4257 	macb_writel(bp, NCFGR, val);
4258 
4259 	return 0;
4260 }
4261 
4262 static const struct macb_usrio_config macb_default_usrio = {
4263 	.mii = MACB_BIT(MII),
4264 	.rmii = MACB_BIT(RMII),
4265 	.rgmii = GEM_BIT(RGMII),
4266 	.refclk = MACB_BIT(CLKEN),
4267 };
4268 
4269 #if defined(CONFIG_OF)
4270 /* 1518 rounded up */
4271 #define AT91ETHER_MAX_RBUFF_SZ	0x600
4272 /* max number of receive buffers */
4273 #define AT91ETHER_MAX_RX_DESCR	9
4274 
4275 static struct sifive_fu540_macb_mgmt *mgmt;
4276 
4277 static int at91ether_alloc_coherent(struct macb *lp)
4278 {
4279 	struct macb_queue *q = &lp->queues[0];
4280 
4281 	q->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
4282 					 (AT91ETHER_MAX_RX_DESCR *
4283 					  macb_dma_desc_get_size(lp)),
4284 					 &q->rx_ring_dma, GFP_KERNEL);
4285 	if (!q->rx_ring)
4286 		return -ENOMEM;
4287 
4288 	q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
4289 					    AT91ETHER_MAX_RX_DESCR *
4290 					    AT91ETHER_MAX_RBUFF_SZ,
4291 					    &q->rx_buffers_dma, GFP_KERNEL);
4292 	if (!q->rx_buffers) {
4293 		dma_free_coherent(&lp->pdev->dev,
4294 				  AT91ETHER_MAX_RX_DESCR *
4295 				  macb_dma_desc_get_size(lp),
4296 				  q->rx_ring, q->rx_ring_dma);
4297 		q->rx_ring = NULL;
4298 		return -ENOMEM;
4299 	}
4300 
4301 	return 0;
4302 }
4303 
4304 static void at91ether_free_coherent(struct macb *lp)
4305 {
4306 	struct macb_queue *q = &lp->queues[0];
4307 
4308 	if (q->rx_ring) {
4309 		dma_free_coherent(&lp->pdev->dev,
4310 				  AT91ETHER_MAX_RX_DESCR *
4311 				  macb_dma_desc_get_size(lp),
4312 				  q->rx_ring, q->rx_ring_dma);
4313 		q->rx_ring = NULL;
4314 	}
4315 
4316 	if (q->rx_buffers) {
4317 		dma_free_coherent(&lp->pdev->dev,
4318 				  AT91ETHER_MAX_RX_DESCR *
4319 				  AT91ETHER_MAX_RBUFF_SZ,
4320 				  q->rx_buffers, q->rx_buffers_dma);
4321 		q->rx_buffers = NULL;
4322 	}
4323 }
4324 
4325 /* Initialize and start the Receiver and Transmit subsystems */
4326 static int at91ether_start(struct macb *lp)
4327 {
4328 	struct macb_queue *q = &lp->queues[0];
4329 	struct macb_dma_desc *desc;
4330 	dma_addr_t addr;
4331 	u32 ctl;
4332 	int i, ret;
4333 
4334 	ret = at91ether_alloc_coherent(lp);
4335 	if (ret)
4336 		return ret;
4337 
4338 	addr = q->rx_buffers_dma;
4339 	for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
4340 		desc = macb_rx_desc(q, i);
4341 		macb_set_addr(lp, desc, addr);
4342 		desc->ctrl = 0;
4343 		addr += AT91ETHER_MAX_RBUFF_SZ;
4344 	}
4345 
4346 	/* Set the Wrap bit on the last descriptor */
4347 	desc->addr |= MACB_BIT(RX_WRAP);
4348 
4349 	/* Reset buffer index */
4350 	q->rx_tail = 0;
4351 
4352 	/* Program address of descriptor list in Rx Buffer Queue register */
4353 	macb_writel(lp, RBQP, q->rx_ring_dma);
4354 
4355 	/* Enable Receive and Transmit */
4356 	ctl = macb_readl(lp, NCR);
4357 	macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
4358 
4359 	/* Enable MAC interrupts */
4360 	macb_writel(lp, IER, MACB_BIT(RCOMP)	|
4361 			     MACB_BIT(RXUBR)	|
4362 			     MACB_BIT(ISR_TUND)	|
4363 			     MACB_BIT(ISR_RLE)	|
4364 			     MACB_BIT(TCOMP)	|
4365 			     MACB_BIT(ISR_ROVR)	|
4366 			     MACB_BIT(HRESP));
4367 
4368 	return 0;
4369 }
4370 
4371 static void at91ether_stop(struct macb *lp)
4372 {
4373 	u32 ctl;
4374 
4375 	/* Disable MAC interrupts */
4376 	macb_writel(lp, IDR, MACB_BIT(RCOMP)	|
4377 			     MACB_BIT(RXUBR)	|
4378 			     MACB_BIT(ISR_TUND)	|
4379 			     MACB_BIT(ISR_RLE)	|
4380 			     MACB_BIT(TCOMP)	|
4381 			     MACB_BIT(ISR_ROVR) |
4382 			     MACB_BIT(HRESP));
4383 
4384 	/* Disable Receiver and Transmitter */
4385 	ctl = macb_readl(lp, NCR);
4386 	macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
4387 
4388 	/* Free resources. */
4389 	at91ether_free_coherent(lp);
4390 }
4391 
4392 /* Open the ethernet interface */
4393 static int at91ether_open(struct net_device *dev)
4394 {
4395 	struct macb *lp = netdev_priv(dev);
4396 	u32 ctl;
4397 	int ret;
4398 
4399 	ret = pm_runtime_resume_and_get(&lp->pdev->dev);
4400 	if (ret < 0)
4401 		return ret;
4402 
4403 	/* Clear internal statistics */
4404 	ctl = macb_readl(lp, NCR);
4405 	macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
4406 
4407 	macb_set_hwaddr(lp);
4408 
4409 	ret = at91ether_start(lp);
4410 	if (ret)
4411 		goto pm_exit;
4412 
4413 	ret = macb_phylink_connect(lp);
4414 	if (ret)
4415 		goto stop;
4416 
4417 	netif_start_queue(dev);
4418 
4419 	return 0;
4420 
4421 stop:
4422 	at91ether_stop(lp);
4423 pm_exit:
4424 	pm_runtime_put_sync(&lp->pdev->dev);
4425 	return ret;
4426 }
4427 
4428 /* Close the interface */
4429 static int at91ether_close(struct net_device *dev)
4430 {
4431 	struct macb *lp = netdev_priv(dev);
4432 
4433 	netif_stop_queue(dev);
4434 
4435 	phylink_stop(lp->phylink);
4436 	phylink_disconnect_phy(lp->phylink);
4437 
4438 	at91ether_stop(lp);
4439 
4440 	return pm_runtime_put(&lp->pdev->dev);
4441 }
4442 
4443 /* Transmit packet */
4444 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb,
4445 					struct net_device *dev)
4446 {
4447 	struct macb *lp = netdev_priv(dev);
4448 
4449 	if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
4450 		int desc = 0;
4451 
4452 		netif_stop_queue(dev);
4453 
4454 		/* Store packet information (to free when Tx completed) */
4455 		lp->rm9200_txq[desc].skb = skb;
4456 		lp->rm9200_txq[desc].size = skb->len;
4457 		lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data,
4458 							      skb->len, DMA_TO_DEVICE);
4459 		if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) {
4460 			dev_kfree_skb_any(skb);
4461 			dev->stats.tx_dropped++;
4462 			netdev_err(dev, "%s: DMA mapping error\n", __func__);
4463 			return NETDEV_TX_OK;
4464 		}
4465 
4466 		/* Set address of the data in the Transmit Address register */
4467 		macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping);
4468 		/* Set length of the packet in the Transmit Control register */
4469 		macb_writel(lp, TCR, skb->len);
4470 
4471 	} else {
4472 		netdev_err(dev, "%s called, but device is busy!\n", __func__);
4473 		return NETDEV_TX_BUSY;
4474 	}
4475 
4476 	return NETDEV_TX_OK;
4477 }
4478 
4479 /* Extract received frame from buffer descriptors and sent to upper layers.
4480  * (Called from interrupt context)
4481  */
4482 static void at91ether_rx(struct net_device *dev)
4483 {
4484 	struct macb *lp = netdev_priv(dev);
4485 	struct macb_queue *q = &lp->queues[0];
4486 	struct macb_dma_desc *desc;
4487 	unsigned char *p_recv;
4488 	struct sk_buff *skb;
4489 	unsigned int pktlen;
4490 
4491 	desc = macb_rx_desc(q, q->rx_tail);
4492 	while (desc->addr & MACB_BIT(RX_USED)) {
4493 		p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
4494 		pktlen = MACB_BF(RX_FRMLEN, desc->ctrl);
4495 		skb = netdev_alloc_skb(dev, pktlen + 2);
4496 		if (skb) {
4497 			skb_reserve(skb, 2);
4498 			skb_put_data(skb, p_recv, pktlen);
4499 
4500 			skb->protocol = eth_type_trans(skb, dev);
4501 			dev->stats.rx_packets++;
4502 			dev->stats.rx_bytes += pktlen;
4503 			netif_rx(skb);
4504 		} else {
4505 			dev->stats.rx_dropped++;
4506 		}
4507 
4508 		if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH))
4509 			dev->stats.multicast++;
4510 
4511 		/* reset ownership bit */
4512 		desc->addr &= ~MACB_BIT(RX_USED);
4513 
4514 		/* wrap after last buffer */
4515 		if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
4516 			q->rx_tail = 0;
4517 		else
4518 			q->rx_tail++;
4519 
4520 		desc = macb_rx_desc(q, q->rx_tail);
4521 	}
4522 }
4523 
4524 /* MAC interrupt handler */
4525 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
4526 {
4527 	struct net_device *dev = dev_id;
4528 	struct macb *lp = netdev_priv(dev);
4529 	u32 intstatus, ctl;
4530 	unsigned int desc;
4531 
4532 	/* MAC Interrupt Status register indicates what interrupts are pending.
4533 	 * It is automatically cleared once read.
4534 	 */
4535 	intstatus = macb_readl(lp, ISR);
4536 
4537 	/* Receive complete */
4538 	if (intstatus & MACB_BIT(RCOMP))
4539 		at91ether_rx(dev);
4540 
4541 	/* Transmit complete */
4542 	if (intstatus & MACB_BIT(TCOMP)) {
4543 		/* The TCOM bit is set even if the transmission failed */
4544 		if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
4545 			dev->stats.tx_errors++;
4546 
4547 		desc = 0;
4548 		if (lp->rm9200_txq[desc].skb) {
4549 			dev_consume_skb_irq(lp->rm9200_txq[desc].skb);
4550 			lp->rm9200_txq[desc].skb = NULL;
4551 			dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping,
4552 					 lp->rm9200_txq[desc].size, DMA_TO_DEVICE);
4553 			dev->stats.tx_packets++;
4554 			dev->stats.tx_bytes += lp->rm9200_txq[desc].size;
4555 		}
4556 		netif_wake_queue(dev);
4557 	}
4558 
4559 	/* Work-around for EMAC Errata section 41.3.1 */
4560 	if (intstatus & MACB_BIT(RXUBR)) {
4561 		ctl = macb_readl(lp, NCR);
4562 		macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
4563 		wmb();
4564 		macb_writel(lp, NCR, ctl | MACB_BIT(RE));
4565 	}
4566 
4567 	if (intstatus & MACB_BIT(ISR_ROVR))
4568 		netdev_err(dev, "ROVR error\n");
4569 
4570 	return IRQ_HANDLED;
4571 }
4572 
4573 #ifdef CONFIG_NET_POLL_CONTROLLER
4574 static void at91ether_poll_controller(struct net_device *dev)
4575 {
4576 	unsigned long flags;
4577 
4578 	local_irq_save(flags);
4579 	at91ether_interrupt(dev->irq, dev);
4580 	local_irq_restore(flags);
4581 }
4582 #endif
4583 
4584 static const struct net_device_ops at91ether_netdev_ops = {
4585 	.ndo_open		= at91ether_open,
4586 	.ndo_stop		= at91ether_close,
4587 	.ndo_start_xmit		= at91ether_start_xmit,
4588 	.ndo_get_stats		= macb_get_stats,
4589 	.ndo_set_rx_mode	= macb_set_rx_mode,
4590 	.ndo_set_mac_address	= eth_mac_addr,
4591 	.ndo_eth_ioctl		= macb_ioctl,
4592 	.ndo_validate_addr	= eth_validate_addr,
4593 #ifdef CONFIG_NET_POLL_CONTROLLER
4594 	.ndo_poll_controller	= at91ether_poll_controller,
4595 #endif
4596 	.ndo_hwtstamp_set	= macb_hwtstamp_set,
4597 	.ndo_hwtstamp_get	= macb_hwtstamp_get,
4598 };
4599 
4600 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
4601 			      struct clk **hclk, struct clk **tx_clk,
4602 			      struct clk **rx_clk, struct clk **tsu_clk)
4603 {
4604 	int err;
4605 
4606 	*hclk = NULL;
4607 	*tx_clk = NULL;
4608 	*rx_clk = NULL;
4609 	*tsu_clk = NULL;
4610 
4611 	*pclk = devm_clk_get(&pdev->dev, "ether_clk");
4612 	if (IS_ERR(*pclk))
4613 		return PTR_ERR(*pclk);
4614 
4615 	err = clk_prepare_enable(*pclk);
4616 	if (err) {
4617 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4618 		return err;
4619 	}
4620 
4621 	return 0;
4622 }
4623 
4624 static int at91ether_init(struct platform_device *pdev)
4625 {
4626 	struct net_device *dev = platform_get_drvdata(pdev);
4627 	struct macb *bp = netdev_priv(dev);
4628 	int err;
4629 
4630 	bp->queues[0].bp = bp;
4631 
4632 	dev->netdev_ops = &at91ether_netdev_ops;
4633 	dev->ethtool_ops = &macb_ethtool_ops;
4634 
4635 	err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
4636 			       0, dev->name, dev);
4637 	if (err)
4638 		return err;
4639 
4640 	macb_writel(bp, NCR, 0);
4641 
4642 	macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG));
4643 
4644 	return 0;
4645 }
4646 
4647 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw,
4648 					       unsigned long parent_rate)
4649 {
4650 	return mgmt->rate;
4651 }
4652 
4653 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate,
4654 				     unsigned long *parent_rate)
4655 {
4656 	if (WARN_ON(rate < 2500000))
4657 		return 2500000;
4658 	else if (rate == 2500000)
4659 		return 2500000;
4660 	else if (WARN_ON(rate < 13750000))
4661 		return 2500000;
4662 	else if (WARN_ON(rate < 25000000))
4663 		return 25000000;
4664 	else if (rate == 25000000)
4665 		return 25000000;
4666 	else if (WARN_ON(rate < 75000000))
4667 		return 25000000;
4668 	else if (WARN_ON(rate < 125000000))
4669 		return 125000000;
4670 	else if (rate == 125000000)
4671 		return 125000000;
4672 
4673 	WARN_ON(rate > 125000000);
4674 
4675 	return 125000000;
4676 }
4677 
4678 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate,
4679 				  unsigned long parent_rate)
4680 {
4681 	rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate);
4682 	if (rate != 125000000)
4683 		iowrite32(1, mgmt->reg);
4684 	else
4685 		iowrite32(0, mgmt->reg);
4686 	mgmt->rate = rate;
4687 
4688 	return 0;
4689 }
4690 
4691 static const struct clk_ops fu540_c000_ops = {
4692 	.recalc_rate = fu540_macb_tx_recalc_rate,
4693 	.round_rate = fu540_macb_tx_round_rate,
4694 	.set_rate = fu540_macb_tx_set_rate,
4695 };
4696 
4697 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk,
4698 			       struct clk **hclk, struct clk **tx_clk,
4699 			       struct clk **rx_clk, struct clk **tsu_clk)
4700 {
4701 	struct clk_init_data init;
4702 	int err = 0;
4703 
4704 	err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk);
4705 	if (err)
4706 		return err;
4707 
4708 	mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL);
4709 	if (!mgmt) {
4710 		err = -ENOMEM;
4711 		goto err_disable_clks;
4712 	}
4713 
4714 	init.name = "sifive-gemgxl-mgmt";
4715 	init.ops = &fu540_c000_ops;
4716 	init.flags = 0;
4717 	init.num_parents = 0;
4718 
4719 	mgmt->rate = 0;
4720 	mgmt->hw.init = &init;
4721 
4722 	*tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw);
4723 	if (IS_ERR(*tx_clk)) {
4724 		err = PTR_ERR(*tx_clk);
4725 		goto err_disable_clks;
4726 	}
4727 
4728 	err = clk_prepare_enable(*tx_clk);
4729 	if (err) {
4730 		dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
4731 		*tx_clk = NULL;
4732 		goto err_disable_clks;
4733 	} else {
4734 		dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name);
4735 	}
4736 
4737 	return 0;
4738 
4739 err_disable_clks:
4740 	macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk);
4741 
4742 	return err;
4743 }
4744 
4745 static int fu540_c000_init(struct platform_device *pdev)
4746 {
4747 	mgmt->reg = devm_platform_ioremap_resource(pdev, 1);
4748 	if (IS_ERR(mgmt->reg))
4749 		return PTR_ERR(mgmt->reg);
4750 
4751 	return macb_init(pdev);
4752 }
4753 
4754 static int init_reset_optional(struct platform_device *pdev)
4755 {
4756 	struct net_device *dev = platform_get_drvdata(pdev);
4757 	struct macb *bp = netdev_priv(dev);
4758 	int ret;
4759 
4760 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4761 		/* Ensure PHY device used in SGMII mode is ready */
4762 		bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL);
4763 
4764 		if (IS_ERR(bp->sgmii_phy))
4765 			return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy),
4766 					     "failed to get SGMII PHY\n");
4767 
4768 		ret = phy_init(bp->sgmii_phy);
4769 		if (ret)
4770 			return dev_err_probe(&pdev->dev, ret,
4771 					     "failed to init SGMII PHY\n");
4772 
4773 		ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_GEM_CONFIG);
4774 		if (!ret) {
4775 			u32 pm_info[2];
4776 
4777 			ret = of_property_read_u32_array(pdev->dev.of_node, "power-domains",
4778 							 pm_info, ARRAY_SIZE(pm_info));
4779 			if (ret) {
4780 				dev_err(&pdev->dev, "Failed to read power management information\n");
4781 				goto err_out_phy_exit;
4782 			}
4783 			ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_FIXED, 0);
4784 			if (ret)
4785 				goto err_out_phy_exit;
4786 
4787 			ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_SGMII_MODE, 1);
4788 			if (ret)
4789 				goto err_out_phy_exit;
4790 		}
4791 
4792 	}
4793 
4794 	/* Fully reset controller at hardware level if mapped in device tree */
4795 	ret = device_reset_optional(&pdev->dev);
4796 	if (ret) {
4797 		phy_exit(bp->sgmii_phy);
4798 		return dev_err_probe(&pdev->dev, ret, "failed to reset controller");
4799 	}
4800 
4801 	ret = macb_init(pdev);
4802 
4803 err_out_phy_exit:
4804 	if (ret)
4805 		phy_exit(bp->sgmii_phy);
4806 
4807 	return ret;
4808 }
4809 
4810 static const struct macb_usrio_config sama7g5_usrio = {
4811 	.mii = 0,
4812 	.rmii = 1,
4813 	.rgmii = 2,
4814 	.refclk = BIT(2),
4815 	.hdfctlen = BIT(6),
4816 };
4817 
4818 static const struct macb_config fu540_c000_config = {
4819 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4820 		MACB_CAPS_GEM_HAS_PTP,
4821 	.dma_burst_length = 16,
4822 	.clk_init = fu540_c000_clk_init,
4823 	.init = fu540_c000_init,
4824 	.jumbo_max_len = 10240,
4825 	.usrio = &macb_default_usrio,
4826 };
4827 
4828 static const struct macb_config at91sam9260_config = {
4829 	.caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4830 	.clk_init = macb_clk_init,
4831 	.init = macb_init,
4832 	.usrio = &macb_default_usrio,
4833 };
4834 
4835 static const struct macb_config sama5d3macb_config = {
4836 	.caps = MACB_CAPS_SG_DISABLED |
4837 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4838 	.clk_init = macb_clk_init,
4839 	.init = macb_init,
4840 	.usrio = &macb_default_usrio,
4841 };
4842 
4843 static const struct macb_config pc302gem_config = {
4844 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
4845 	.dma_burst_length = 16,
4846 	.clk_init = macb_clk_init,
4847 	.init = macb_init,
4848 	.usrio = &macb_default_usrio,
4849 };
4850 
4851 static const struct macb_config sama5d2_config = {
4852 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
4853 	.dma_burst_length = 16,
4854 	.clk_init = macb_clk_init,
4855 	.init = macb_init,
4856 	.jumbo_max_len = 10240,
4857 	.usrio = &macb_default_usrio,
4858 };
4859 
4860 static const struct macb_config sama5d29_config = {
4861 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP,
4862 	.dma_burst_length = 16,
4863 	.clk_init = macb_clk_init,
4864 	.init = macb_init,
4865 	.usrio = &macb_default_usrio,
4866 };
4867 
4868 static const struct macb_config sama5d3_config = {
4869 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4870 		MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
4871 	.dma_burst_length = 16,
4872 	.clk_init = macb_clk_init,
4873 	.init = macb_init,
4874 	.jumbo_max_len = 10240,
4875 	.usrio = &macb_default_usrio,
4876 };
4877 
4878 static const struct macb_config sama5d4_config = {
4879 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4880 	.dma_burst_length = 4,
4881 	.clk_init = macb_clk_init,
4882 	.init = macb_init,
4883 	.usrio = &macb_default_usrio,
4884 };
4885 
4886 static const struct macb_config emac_config = {
4887 	.caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC,
4888 	.clk_init = at91ether_clk_init,
4889 	.init = at91ether_init,
4890 	.usrio = &macb_default_usrio,
4891 };
4892 
4893 static const struct macb_config np4_config = {
4894 	.caps = MACB_CAPS_USRIO_DISABLED,
4895 	.clk_init = macb_clk_init,
4896 	.init = macb_init,
4897 	.usrio = &macb_default_usrio,
4898 };
4899 
4900 static const struct macb_config zynqmp_config = {
4901 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4902 		MACB_CAPS_JUMBO |
4903 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH,
4904 	.dma_burst_length = 16,
4905 	.clk_init = macb_clk_init,
4906 	.init = init_reset_optional,
4907 	.jumbo_max_len = 10240,
4908 	.usrio = &macb_default_usrio,
4909 };
4910 
4911 static const struct macb_config zynq_config = {
4912 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF |
4913 		MACB_CAPS_NEEDS_RSTONUBR,
4914 	.dma_burst_length = 16,
4915 	.clk_init = macb_clk_init,
4916 	.init = macb_init,
4917 	.usrio = &macb_default_usrio,
4918 };
4919 
4920 static const struct macb_config mpfs_config = {
4921 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4922 		MACB_CAPS_JUMBO |
4923 		MACB_CAPS_GEM_HAS_PTP,
4924 	.dma_burst_length = 16,
4925 	.clk_init = macb_clk_init,
4926 	.init = init_reset_optional,
4927 	.usrio = &macb_default_usrio,
4928 	.max_tx_length = 4040, /* Cadence Erratum 1686 */
4929 	.jumbo_max_len = 4040,
4930 };
4931 
4932 static const struct macb_config sama7g5_gem_config = {
4933 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG |
4934 		MACB_CAPS_MIIONRGMII | MACB_CAPS_GEM_HAS_PTP,
4935 	.dma_burst_length = 16,
4936 	.clk_init = macb_clk_init,
4937 	.init = macb_init,
4938 	.usrio = &sama7g5_usrio,
4939 };
4940 
4941 static const struct macb_config sama7g5_emac_config = {
4942 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII |
4943 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII |
4944 		MACB_CAPS_GEM_HAS_PTP,
4945 	.dma_burst_length = 16,
4946 	.clk_init = macb_clk_init,
4947 	.init = macb_init,
4948 	.usrio = &sama7g5_usrio,
4949 };
4950 
4951 static const struct macb_config versal_config = {
4952 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4953 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH | MACB_CAPS_NEED_TSUCLK |
4954 		MACB_CAPS_QUEUE_DISABLE,
4955 	.dma_burst_length = 16,
4956 	.clk_init = macb_clk_init,
4957 	.init = init_reset_optional,
4958 	.jumbo_max_len = 10240,
4959 	.usrio = &macb_default_usrio,
4960 };
4961 
4962 static const struct of_device_id macb_dt_ids[] = {
4963 	{ .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
4964 	{ .compatible = "cdns,macb" },
4965 	{ .compatible = "cdns,np4-macb", .data = &np4_config },
4966 	{ .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
4967 	{ .compatible = "cdns,gem", .data = &pc302gem_config },
4968 	{ .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config },
4969 	{ .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
4970 	{ .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config },
4971 	{ .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
4972 	{ .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config },
4973 	{ .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
4974 	{ .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
4975 	{ .compatible = "cdns,emac", .data = &emac_config },
4976 	{ .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, /* deprecated */
4977 	{ .compatible = "cdns,zynq-gem", .data = &zynq_config }, /* deprecated */
4978 	{ .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config },
4979 	{ .compatible = "microchip,mpfs-macb", .data = &mpfs_config },
4980 	{ .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config },
4981 	{ .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config },
4982 	{ .compatible = "xlnx,zynqmp-gem", .data = &zynqmp_config},
4983 	{ .compatible = "xlnx,zynq-gem", .data = &zynq_config },
4984 	{ .compatible = "xlnx,versal-gem", .data = &versal_config},
4985 	{ /* sentinel */ }
4986 };
4987 MODULE_DEVICE_TABLE(of, macb_dt_ids);
4988 #endif /* CONFIG_OF */
4989 
4990 static const struct macb_config default_gem_config = {
4991 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4992 		MACB_CAPS_JUMBO |
4993 		MACB_CAPS_GEM_HAS_PTP,
4994 	.dma_burst_length = 16,
4995 	.clk_init = macb_clk_init,
4996 	.init = macb_init,
4997 	.usrio = &macb_default_usrio,
4998 	.jumbo_max_len = 10240,
4999 };
5000 
5001 static int macb_probe(struct platform_device *pdev)
5002 {
5003 	const struct macb_config *macb_config = &default_gem_config;
5004 	int (*clk_init)(struct platform_device *, struct clk **,
5005 			struct clk **, struct clk **,  struct clk **,
5006 			struct clk **) = macb_config->clk_init;
5007 	int (*init)(struct platform_device *) = macb_config->init;
5008 	struct device_node *np = pdev->dev.of_node;
5009 	struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
5010 	struct clk *tsu_clk = NULL;
5011 	unsigned int queue_mask, num_queues;
5012 	bool native_io;
5013 	phy_interface_t interface;
5014 	struct net_device *dev;
5015 	struct resource *regs;
5016 	u32 wtrmrk_rst_val;
5017 	void __iomem *mem;
5018 	struct macb *bp;
5019 	int err, val;
5020 
5021 	mem = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
5022 	if (IS_ERR(mem))
5023 		return PTR_ERR(mem);
5024 
5025 	if (np) {
5026 		const struct of_device_id *match;
5027 
5028 		match = of_match_node(macb_dt_ids, np);
5029 		if (match && match->data) {
5030 			macb_config = match->data;
5031 			clk_init = macb_config->clk_init;
5032 			init = macb_config->init;
5033 		}
5034 	}
5035 
5036 	err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk);
5037 	if (err)
5038 		return err;
5039 
5040 	pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT);
5041 	pm_runtime_use_autosuspend(&pdev->dev);
5042 	pm_runtime_get_noresume(&pdev->dev);
5043 	pm_runtime_set_active(&pdev->dev);
5044 	pm_runtime_enable(&pdev->dev);
5045 	native_io = hw_is_native_io(mem);
5046 
5047 	macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
5048 	dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
5049 	if (!dev) {
5050 		err = -ENOMEM;
5051 		goto err_disable_clocks;
5052 	}
5053 
5054 	dev->base_addr = regs->start;
5055 
5056 	SET_NETDEV_DEV(dev, &pdev->dev);
5057 
5058 	bp = netdev_priv(dev);
5059 	bp->pdev = pdev;
5060 	bp->dev = dev;
5061 	bp->regs = mem;
5062 	bp->native_io = native_io;
5063 	if (native_io) {
5064 		bp->macb_reg_readl = hw_readl_native;
5065 		bp->macb_reg_writel = hw_writel_native;
5066 	} else {
5067 		bp->macb_reg_readl = hw_readl;
5068 		bp->macb_reg_writel = hw_writel;
5069 	}
5070 	bp->num_queues = num_queues;
5071 	bp->queue_mask = queue_mask;
5072 	if (macb_config)
5073 		bp->dma_burst_length = macb_config->dma_burst_length;
5074 	bp->pclk = pclk;
5075 	bp->hclk = hclk;
5076 	bp->tx_clk = tx_clk;
5077 	bp->rx_clk = rx_clk;
5078 	bp->tsu_clk = tsu_clk;
5079 	if (macb_config)
5080 		bp->jumbo_max_len = macb_config->jumbo_max_len;
5081 
5082 	if (!hw_is_gem(bp->regs, bp->native_io))
5083 		bp->max_tx_length = MACB_MAX_TX_LEN;
5084 	else if (macb_config->max_tx_length)
5085 		bp->max_tx_length = macb_config->max_tx_length;
5086 	else
5087 		bp->max_tx_length = GEM_MAX_TX_LEN;
5088 
5089 	bp->wol = 0;
5090 	device_set_wakeup_capable(&pdev->dev, 1);
5091 
5092 	bp->usrio = macb_config->usrio;
5093 
5094 	/* By default we set to partial store and forward mode for zynqmp.
5095 	 * Disable if not set in devicetree.
5096 	 */
5097 	if (GEM_BFEXT(PBUF_CUTTHRU, gem_readl(bp, DCFG6))) {
5098 		err = of_property_read_u32(bp->pdev->dev.of_node,
5099 					   "cdns,rx-watermark",
5100 					   &bp->rx_watermark);
5101 
5102 		if (!err) {
5103 			/* Disable partial store and forward in case of error or
5104 			 * invalid watermark value
5105 			 */
5106 			wtrmrk_rst_val = (1 << (GEM_BFEXT(RX_PBUF_ADDR, gem_readl(bp, DCFG2)))) - 1;
5107 			if (bp->rx_watermark > wtrmrk_rst_val || !bp->rx_watermark) {
5108 				dev_info(&bp->pdev->dev, "Invalid watermark value\n");
5109 				bp->rx_watermark = 0;
5110 			}
5111 		}
5112 	}
5113 	spin_lock_init(&bp->lock);
5114 
5115 	/* setup capabilities */
5116 	macb_configure_caps(bp, macb_config);
5117 
5118 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
5119 	if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) {
5120 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
5121 		bp->hw_dma_cap |= HW_DMA_CAP_64B;
5122 	}
5123 #endif
5124 	platform_set_drvdata(pdev, dev);
5125 
5126 	dev->irq = platform_get_irq(pdev, 0);
5127 	if (dev->irq < 0) {
5128 		err = dev->irq;
5129 		goto err_out_free_netdev;
5130 	}
5131 
5132 	/* MTU range: 68 - 1518 or 10240 */
5133 	dev->min_mtu = GEM_MTU_MIN_SIZE;
5134 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
5135 		dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN;
5136 	else
5137 		dev->max_mtu = 1536 - ETH_HLEN - ETH_FCS_LEN;
5138 
5139 	if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) {
5140 		val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10));
5141 		if (val)
5142 			bp->rx_bd_rd_prefetch = (2 << (val - 1)) *
5143 						macb_dma_desc_get_size(bp);
5144 
5145 		val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10));
5146 		if (val)
5147 			bp->tx_bd_rd_prefetch = (2 << (val - 1)) *
5148 						macb_dma_desc_get_size(bp);
5149 	}
5150 
5151 	bp->rx_intr_mask = MACB_RX_INT_FLAGS;
5152 	if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR)
5153 		bp->rx_intr_mask |= MACB_BIT(RXUBR);
5154 
5155 	err = of_get_ethdev_address(np, bp->dev);
5156 	if (err == -EPROBE_DEFER)
5157 		goto err_out_free_netdev;
5158 	else if (err)
5159 		macb_get_hwaddr(bp);
5160 
5161 	err = of_get_phy_mode(np, &interface);
5162 	if (err)
5163 		/* not found in DT, MII by default */
5164 		bp->phy_interface = PHY_INTERFACE_MODE_MII;
5165 	else
5166 		bp->phy_interface = interface;
5167 
5168 	/* IP specific init */
5169 	err = init(pdev);
5170 	if (err)
5171 		goto err_out_free_netdev;
5172 
5173 	err = macb_mii_init(bp);
5174 	if (err)
5175 		goto err_out_phy_exit;
5176 
5177 	netif_carrier_off(dev);
5178 
5179 	err = register_netdev(dev);
5180 	if (err) {
5181 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5182 		goto err_out_unregister_mdio;
5183 	}
5184 
5185 	INIT_WORK(&bp->hresp_err_bh_work, macb_hresp_error_task);
5186 
5187 	netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
5188 		    macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
5189 		    dev->base_addr, dev->irq, dev->dev_addr);
5190 
5191 	pm_runtime_mark_last_busy(&bp->pdev->dev);
5192 	pm_runtime_put_autosuspend(&bp->pdev->dev);
5193 
5194 	return 0;
5195 
5196 err_out_unregister_mdio:
5197 	mdiobus_unregister(bp->mii_bus);
5198 	mdiobus_free(bp->mii_bus);
5199 
5200 err_out_phy_exit:
5201 	phy_exit(bp->sgmii_phy);
5202 
5203 err_out_free_netdev:
5204 	free_netdev(dev);
5205 
5206 err_disable_clocks:
5207 	macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk);
5208 	pm_runtime_disable(&pdev->dev);
5209 	pm_runtime_set_suspended(&pdev->dev);
5210 	pm_runtime_dont_use_autosuspend(&pdev->dev);
5211 
5212 	return err;
5213 }
5214 
5215 static void macb_remove(struct platform_device *pdev)
5216 {
5217 	struct net_device *dev;
5218 	struct macb *bp;
5219 
5220 	dev = platform_get_drvdata(pdev);
5221 
5222 	if (dev) {
5223 		bp = netdev_priv(dev);
5224 		phy_exit(bp->sgmii_phy);
5225 		mdiobus_unregister(bp->mii_bus);
5226 		mdiobus_free(bp->mii_bus);
5227 
5228 		unregister_netdev(dev);
5229 		cancel_work_sync(&bp->hresp_err_bh_work);
5230 		pm_runtime_disable(&pdev->dev);
5231 		pm_runtime_dont_use_autosuspend(&pdev->dev);
5232 		if (!pm_runtime_suspended(&pdev->dev)) {
5233 			macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk,
5234 					  bp->rx_clk, bp->tsu_clk);
5235 			pm_runtime_set_suspended(&pdev->dev);
5236 		}
5237 		phylink_destroy(bp->phylink);
5238 		free_netdev(dev);
5239 	}
5240 }
5241 
5242 static int __maybe_unused macb_suspend(struct device *dev)
5243 {
5244 	struct net_device *netdev = dev_get_drvdata(dev);
5245 	struct macb *bp = netdev_priv(netdev);
5246 	struct in_ifaddr *ifa = NULL;
5247 	struct macb_queue *queue;
5248 	struct in_device *idev;
5249 	unsigned long flags;
5250 	unsigned int q;
5251 	int err;
5252 	u32 tmp;
5253 
5254 	if (!device_may_wakeup(&bp->dev->dev))
5255 		phy_exit(bp->sgmii_phy);
5256 
5257 	if (!netif_running(netdev))
5258 		return 0;
5259 
5260 	if (bp->wol & MACB_WOL_ENABLED) {
5261 		/* Check for IP address in WOL ARP mode */
5262 		idev = __in_dev_get_rcu(bp->dev);
5263 		if (idev)
5264 			ifa = rcu_dereference(idev->ifa_list);
5265 		if ((bp->wolopts & WAKE_ARP) && !ifa) {
5266 			netdev_err(netdev, "IP address not assigned as required by WoL walk ARP\n");
5267 			return -EOPNOTSUPP;
5268 		}
5269 		spin_lock_irqsave(&bp->lock, flags);
5270 
5271 		/* Disable Tx and Rx engines before  disabling the queues,
5272 		 * this is mandatory as per the IP spec sheet
5273 		 */
5274 		tmp = macb_readl(bp, NCR);
5275 		macb_writel(bp, NCR, tmp & ~(MACB_BIT(TE) | MACB_BIT(RE)));
5276 		for (q = 0, queue = bp->queues; q < bp->num_queues;
5277 		     ++q, ++queue) {
5278 			/* Disable RX queues */
5279 			if (bp->caps & MACB_CAPS_QUEUE_DISABLE) {
5280 				queue_writel(queue, RBQP, MACB_BIT(QUEUE_DISABLE));
5281 			} else {
5282 				/* Tie off RX queues */
5283 				queue_writel(queue, RBQP,
5284 					     lower_32_bits(bp->rx_ring_tieoff_dma));
5285 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
5286 				queue_writel(queue, RBQPH,
5287 					     upper_32_bits(bp->rx_ring_tieoff_dma));
5288 #endif
5289 			}
5290 			/* Disable all interrupts */
5291 			queue_writel(queue, IDR, -1);
5292 			queue_readl(queue, ISR);
5293 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5294 				queue_writel(queue, ISR, -1);
5295 		}
5296 		/* Enable Receive engine */
5297 		macb_writel(bp, NCR, tmp | MACB_BIT(RE));
5298 		/* Flush all status bits */
5299 		macb_writel(bp, TSR, -1);
5300 		macb_writel(bp, RSR, -1);
5301 
5302 		tmp = (bp->wolopts & WAKE_MAGIC) ? MACB_BIT(MAG) : 0;
5303 		if (bp->wolopts & WAKE_ARP) {
5304 			tmp |= MACB_BIT(ARP);
5305 			/* write IP address into register */
5306 			tmp |= MACB_BFEXT(IP, be32_to_cpu(ifa->ifa_local));
5307 		}
5308 
5309 		/* Change interrupt handler and
5310 		 * Enable WoL IRQ on queue 0
5311 		 */
5312 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5313 		if (macb_is_gem(bp)) {
5314 			err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt,
5315 					       IRQF_SHARED, netdev->name, bp->queues);
5316 			if (err) {
5317 				dev_err(dev,
5318 					"Unable to request IRQ %d (error %d)\n",
5319 					bp->queues[0].irq, err);
5320 				spin_unlock_irqrestore(&bp->lock, flags);
5321 				return err;
5322 			}
5323 			queue_writel(bp->queues, IER, GEM_BIT(WOL));
5324 			gem_writel(bp, WOL, tmp);
5325 		} else {
5326 			err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt,
5327 					       IRQF_SHARED, netdev->name, bp->queues);
5328 			if (err) {
5329 				dev_err(dev,
5330 					"Unable to request IRQ %d (error %d)\n",
5331 					bp->queues[0].irq, err);
5332 				spin_unlock_irqrestore(&bp->lock, flags);
5333 				return err;
5334 			}
5335 			queue_writel(bp->queues, IER, MACB_BIT(WOL));
5336 			macb_writel(bp, WOL, tmp);
5337 		}
5338 		spin_unlock_irqrestore(&bp->lock, flags);
5339 
5340 		enable_irq_wake(bp->queues[0].irq);
5341 	}
5342 
5343 	netif_device_detach(netdev);
5344 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5345 	     ++q, ++queue) {
5346 		napi_disable(&queue->napi_rx);
5347 		napi_disable(&queue->napi_tx);
5348 	}
5349 
5350 	if (!(bp->wol & MACB_WOL_ENABLED)) {
5351 		rtnl_lock();
5352 		phylink_stop(bp->phylink);
5353 		rtnl_unlock();
5354 		spin_lock_irqsave(&bp->lock, flags);
5355 		macb_reset_hw(bp);
5356 		spin_unlock_irqrestore(&bp->lock, flags);
5357 	}
5358 
5359 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5360 		bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO);
5361 
5362 	if (netdev->hw_features & NETIF_F_NTUPLE)
5363 		bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT);
5364 
5365 	if (bp->ptp_info)
5366 		bp->ptp_info->ptp_remove(netdev);
5367 	if (!device_may_wakeup(dev))
5368 		pm_runtime_force_suspend(dev);
5369 
5370 	return 0;
5371 }
5372 
5373 static int __maybe_unused macb_resume(struct device *dev)
5374 {
5375 	struct net_device *netdev = dev_get_drvdata(dev);
5376 	struct macb *bp = netdev_priv(netdev);
5377 	struct macb_queue *queue;
5378 	unsigned long flags;
5379 	unsigned int q;
5380 	int err;
5381 
5382 	if (!device_may_wakeup(&bp->dev->dev))
5383 		phy_init(bp->sgmii_phy);
5384 
5385 	if (!netif_running(netdev))
5386 		return 0;
5387 
5388 	if (!device_may_wakeup(dev))
5389 		pm_runtime_force_resume(dev);
5390 
5391 	if (bp->wol & MACB_WOL_ENABLED) {
5392 		spin_lock_irqsave(&bp->lock, flags);
5393 		/* Disable WoL */
5394 		if (macb_is_gem(bp)) {
5395 			queue_writel(bp->queues, IDR, GEM_BIT(WOL));
5396 			gem_writel(bp, WOL, 0);
5397 		} else {
5398 			queue_writel(bp->queues, IDR, MACB_BIT(WOL));
5399 			macb_writel(bp, WOL, 0);
5400 		}
5401 		/* Clear ISR on queue 0 */
5402 		queue_readl(bp->queues, ISR);
5403 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5404 			queue_writel(bp->queues, ISR, -1);
5405 		/* Replace interrupt handler on queue 0 */
5406 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5407 		err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt,
5408 				       IRQF_SHARED, netdev->name, bp->queues);
5409 		if (err) {
5410 			dev_err(dev,
5411 				"Unable to request IRQ %d (error %d)\n",
5412 				bp->queues[0].irq, err);
5413 			spin_unlock_irqrestore(&bp->lock, flags);
5414 			return err;
5415 		}
5416 		spin_unlock_irqrestore(&bp->lock, flags);
5417 
5418 		disable_irq_wake(bp->queues[0].irq);
5419 
5420 		/* Now make sure we disable phy before moving
5421 		 * to common restore path
5422 		 */
5423 		rtnl_lock();
5424 		phylink_stop(bp->phylink);
5425 		rtnl_unlock();
5426 	}
5427 
5428 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5429 	     ++q, ++queue) {
5430 		napi_enable(&queue->napi_rx);
5431 		napi_enable(&queue->napi_tx);
5432 	}
5433 
5434 	if (netdev->hw_features & NETIF_F_NTUPLE)
5435 		gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2);
5436 
5437 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5438 		macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio);
5439 
5440 	macb_writel(bp, NCR, MACB_BIT(MPE));
5441 	macb_init_hw(bp);
5442 	macb_set_rx_mode(netdev);
5443 	macb_restore_features(bp);
5444 	rtnl_lock();
5445 
5446 	phylink_start(bp->phylink);
5447 	rtnl_unlock();
5448 
5449 	netif_device_attach(netdev);
5450 	if (bp->ptp_info)
5451 		bp->ptp_info->ptp_init(netdev);
5452 
5453 	return 0;
5454 }
5455 
5456 static int __maybe_unused macb_runtime_suspend(struct device *dev)
5457 {
5458 	struct net_device *netdev = dev_get_drvdata(dev);
5459 	struct macb *bp = netdev_priv(netdev);
5460 
5461 	if (!(device_may_wakeup(dev)))
5462 		macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk);
5463 	else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK))
5464 		macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk);
5465 
5466 	return 0;
5467 }
5468 
5469 static int __maybe_unused macb_runtime_resume(struct device *dev)
5470 {
5471 	struct net_device *netdev = dev_get_drvdata(dev);
5472 	struct macb *bp = netdev_priv(netdev);
5473 
5474 	if (!(device_may_wakeup(dev))) {
5475 		clk_prepare_enable(bp->pclk);
5476 		clk_prepare_enable(bp->hclk);
5477 		clk_prepare_enable(bp->tx_clk);
5478 		clk_prepare_enable(bp->rx_clk);
5479 		clk_prepare_enable(bp->tsu_clk);
5480 	} else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) {
5481 		clk_prepare_enable(bp->tsu_clk);
5482 	}
5483 
5484 	return 0;
5485 }
5486 
5487 static const struct dev_pm_ops macb_pm_ops = {
5488 	SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume)
5489 	SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL)
5490 };
5491 
5492 static struct platform_driver macb_driver = {
5493 	.probe		= macb_probe,
5494 	.remove		= macb_remove,
5495 	.driver		= {
5496 		.name		= "macb",
5497 		.of_match_table	= of_match_ptr(macb_dt_ids),
5498 		.pm	= &macb_pm_ops,
5499 	},
5500 };
5501 
5502 module_platform_driver(macb_driver);
5503 
5504 MODULE_LICENSE("GPL");
5505 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
5506 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
5507 MODULE_ALIAS("platform:macb");
5508