xref: /linux/drivers/net/ethernet/cadence/macb_main.c (revision 19d17ab7c68b62180e0537f92400a6f798019775)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cadence MACB/GEM Ethernet Controller driver
4  *
5  * Copyright (C) 2004-2006 Atmel Corporation
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/crc32.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/circ_buf.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/gpio.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/phylink.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 #include <linux/of_gpio.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 #include <linux/ip.h>
34 #include <linux/udp.h>
35 #include <linux/tcp.h>
36 #include <linux/iopoll.h>
37 #include <linux/phy/phy.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/ptp_classify.h>
40 #include <linux/reset.h>
41 #include <linux/firmware/xlnx-zynqmp.h>
42 #include "macb.h"
43 
44 /* This structure is only used for MACB on SiFive FU540 devices */
45 struct sifive_fu540_macb_mgmt {
46 	void __iomem *reg;
47 	unsigned long rate;
48 	struct clk_hw hw;
49 };
50 
51 #define MACB_RX_BUFFER_SIZE	128
52 #define RX_BUFFER_MULTIPLE	64  /* bytes */
53 
54 #define DEFAULT_RX_RING_SIZE	512 /* must be power of 2 */
55 #define MIN_RX_RING_SIZE	64
56 #define MAX_RX_RING_SIZE	8192
57 #define RX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
58 				 * (bp)->rx_ring_size)
59 
60 #define DEFAULT_TX_RING_SIZE	512 /* must be power of 2 */
61 #define MIN_TX_RING_SIZE	64
62 #define MAX_TX_RING_SIZE	4096
63 #define TX_RING_BYTES(bp)	(macb_dma_desc_get_size(bp)	\
64 				 * (bp)->tx_ring_size)
65 
66 /* level of occupied TX descriptors under which we wake up TX process */
67 #define MACB_TX_WAKEUP_THRESH(bp)	(3 * (bp)->tx_ring_size / 4)
68 
69 #define MACB_RX_INT_FLAGS	(MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR))
70 #define MACB_TX_ERR_FLAGS	(MACB_BIT(ISR_TUND)			\
71 					| MACB_BIT(ISR_RLE)		\
72 					| MACB_BIT(TXERR))
73 #define MACB_TX_INT_FLAGS	(MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP)	\
74 					| MACB_BIT(TXUBR))
75 
76 /* Max length of transmit frame must be a multiple of 8 bytes */
77 #define MACB_TX_LEN_ALIGN	8
78 #define MACB_MAX_TX_LEN		((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1)))
79 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a
80  * false amba_error in TX path from the DMA assuming there is not enough
81  * space in the SRAM (16KB) even when there is.
82  */
83 #define GEM_MAX_TX_LEN		(unsigned int)(0x3FC0)
84 
85 #define GEM_MTU_MIN_SIZE	ETH_MIN_MTU
86 #define MACB_NETIF_LSO		NETIF_F_TSO
87 
88 #define MACB_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
89 #define MACB_WOL_ENABLED		(0x1 << 1)
90 
91 #define HS_SPEED_10000M			4
92 #define MACB_SERDES_RATE_10G		1
93 
94 /* Graceful stop timeouts in us. We should allow up to
95  * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
96  */
97 #define MACB_HALT_TIMEOUT	1230
98 
99 #define MACB_PM_TIMEOUT  100 /* ms */
100 
101 #define MACB_MDIO_TIMEOUT	1000000 /* in usecs */
102 
103 /* DMA buffer descriptor might be different size
104  * depends on hardware configuration:
105  *
106  * 1. dma address width 32 bits:
107  *    word 1: 32 bit address of Data Buffer
108  *    word 2: control
109  *
110  * 2. dma address width 64 bits:
111  *    word 1: 32 bit address of Data Buffer
112  *    word 2: control
113  *    word 3: upper 32 bit address of Data Buffer
114  *    word 4: unused
115  *
116  * 3. dma address width 32 bits with hardware timestamping:
117  *    word 1: 32 bit address of Data Buffer
118  *    word 2: control
119  *    word 3: timestamp word 1
120  *    word 4: timestamp word 2
121  *
122  * 4. dma address width 64 bits with hardware timestamping:
123  *    word 1: 32 bit address of Data Buffer
124  *    word 2: control
125  *    word 3: upper 32 bit address of Data Buffer
126  *    word 4: unused
127  *    word 5: timestamp word 1
128  *    word 6: timestamp word 2
129  */
130 static unsigned int macb_dma_desc_get_size(struct macb *bp)
131 {
132 #ifdef MACB_EXT_DESC
133 	unsigned int desc_size;
134 
135 	switch (bp->hw_dma_cap) {
136 	case HW_DMA_CAP_64B:
137 		desc_size = sizeof(struct macb_dma_desc)
138 			+ sizeof(struct macb_dma_desc_64);
139 		break;
140 	case HW_DMA_CAP_PTP:
141 		desc_size = sizeof(struct macb_dma_desc)
142 			+ sizeof(struct macb_dma_desc_ptp);
143 		break;
144 	case HW_DMA_CAP_64B_PTP:
145 		desc_size = sizeof(struct macb_dma_desc)
146 			+ sizeof(struct macb_dma_desc_64)
147 			+ sizeof(struct macb_dma_desc_ptp);
148 		break;
149 	default:
150 		desc_size = sizeof(struct macb_dma_desc);
151 	}
152 	return desc_size;
153 #endif
154 	return sizeof(struct macb_dma_desc);
155 }
156 
157 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx)
158 {
159 #ifdef MACB_EXT_DESC
160 	switch (bp->hw_dma_cap) {
161 	case HW_DMA_CAP_64B:
162 	case HW_DMA_CAP_PTP:
163 		desc_idx <<= 1;
164 		break;
165 	case HW_DMA_CAP_64B_PTP:
166 		desc_idx *= 3;
167 		break;
168 	default:
169 		break;
170 	}
171 #endif
172 	return desc_idx;
173 }
174 
175 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
176 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc)
177 {
178 	return (struct macb_dma_desc_64 *)((void *)desc
179 		+ sizeof(struct macb_dma_desc));
180 }
181 #endif
182 
183 /* Ring buffer accessors */
184 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index)
185 {
186 	return index & (bp->tx_ring_size - 1);
187 }
188 
189 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
190 					  unsigned int index)
191 {
192 	index = macb_tx_ring_wrap(queue->bp, index);
193 	index = macb_adj_dma_desc_idx(queue->bp, index);
194 	return &queue->tx_ring[index];
195 }
196 
197 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
198 				       unsigned int index)
199 {
200 	return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)];
201 }
202 
203 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
204 {
205 	dma_addr_t offset;
206 
207 	offset = macb_tx_ring_wrap(queue->bp, index) *
208 			macb_dma_desc_get_size(queue->bp);
209 
210 	return queue->tx_ring_dma + offset;
211 }
212 
213 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index)
214 {
215 	return index & (bp->rx_ring_size - 1);
216 }
217 
218 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index)
219 {
220 	index = macb_rx_ring_wrap(queue->bp, index);
221 	index = macb_adj_dma_desc_idx(queue->bp, index);
222 	return &queue->rx_ring[index];
223 }
224 
225 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index)
226 {
227 	return queue->rx_buffers + queue->bp->rx_buffer_size *
228 	       macb_rx_ring_wrap(queue->bp, index);
229 }
230 
231 /* I/O accessors */
232 static u32 hw_readl_native(struct macb *bp, int offset)
233 {
234 	return __raw_readl(bp->regs + offset);
235 }
236 
237 static void hw_writel_native(struct macb *bp, int offset, u32 value)
238 {
239 	__raw_writel(value, bp->regs + offset);
240 }
241 
242 static u32 hw_readl(struct macb *bp, int offset)
243 {
244 	return readl_relaxed(bp->regs + offset);
245 }
246 
247 static void hw_writel(struct macb *bp, int offset, u32 value)
248 {
249 	writel_relaxed(value, bp->regs + offset);
250 }
251 
252 /* Find the CPU endianness by using the loopback bit of NCR register. When the
253  * CPU is in big endian we need to program swapped mode for management
254  * descriptor access.
255  */
256 static bool hw_is_native_io(void __iomem *addr)
257 {
258 	u32 value = MACB_BIT(LLB);
259 
260 	__raw_writel(value, addr + MACB_NCR);
261 	value = __raw_readl(addr + MACB_NCR);
262 
263 	/* Write 0 back to disable everything */
264 	__raw_writel(0, addr + MACB_NCR);
265 
266 	return value == MACB_BIT(LLB);
267 }
268 
269 static bool hw_is_gem(void __iomem *addr, bool native_io)
270 {
271 	u32 id;
272 
273 	if (native_io)
274 		id = __raw_readl(addr + MACB_MID);
275 	else
276 		id = readl_relaxed(addr + MACB_MID);
277 
278 	return MACB_BFEXT(IDNUM, id) >= 0x2;
279 }
280 
281 static void macb_set_hwaddr(struct macb *bp)
282 {
283 	u32 bottom;
284 	u16 top;
285 
286 	bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
287 	macb_or_gem_writel(bp, SA1B, bottom);
288 	top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
289 	macb_or_gem_writel(bp, SA1T, top);
290 
291 	/* Clear unused address register sets */
292 	macb_or_gem_writel(bp, SA2B, 0);
293 	macb_or_gem_writel(bp, SA2T, 0);
294 	macb_or_gem_writel(bp, SA3B, 0);
295 	macb_or_gem_writel(bp, SA3T, 0);
296 	macb_or_gem_writel(bp, SA4B, 0);
297 	macb_or_gem_writel(bp, SA4T, 0);
298 }
299 
300 static void macb_get_hwaddr(struct macb *bp)
301 {
302 	u32 bottom;
303 	u16 top;
304 	u8 addr[6];
305 	int i;
306 
307 	/* Check all 4 address register for valid address */
308 	for (i = 0; i < 4; i++) {
309 		bottom = macb_or_gem_readl(bp, SA1B + i * 8);
310 		top = macb_or_gem_readl(bp, SA1T + i * 8);
311 
312 		addr[0] = bottom & 0xff;
313 		addr[1] = (bottom >> 8) & 0xff;
314 		addr[2] = (bottom >> 16) & 0xff;
315 		addr[3] = (bottom >> 24) & 0xff;
316 		addr[4] = top & 0xff;
317 		addr[5] = (top >> 8) & 0xff;
318 
319 		if (is_valid_ether_addr(addr)) {
320 			eth_hw_addr_set(bp->dev, addr);
321 			return;
322 		}
323 	}
324 
325 	dev_info(&bp->pdev->dev, "invalid hw address, using random\n");
326 	eth_hw_addr_random(bp->dev);
327 }
328 
329 static int macb_mdio_wait_for_idle(struct macb *bp)
330 {
331 	u32 val;
332 
333 	return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE),
334 				  1, MACB_MDIO_TIMEOUT);
335 }
336 
337 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
338 {
339 	struct macb *bp = bus->priv;
340 	int status;
341 
342 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
343 	if (status < 0)
344 		goto mdio_pm_exit;
345 
346 	status = macb_mdio_wait_for_idle(bp);
347 	if (status < 0)
348 		goto mdio_read_exit;
349 
350 	if (regnum & MII_ADDR_C45) {
351 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
352 			    | MACB_BF(RW, MACB_MAN_C45_ADDR)
353 			    | MACB_BF(PHYA, mii_id)
354 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
355 			    | MACB_BF(DATA, regnum & 0xFFFF)
356 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
357 
358 		status = macb_mdio_wait_for_idle(bp);
359 		if (status < 0)
360 			goto mdio_read_exit;
361 
362 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
363 			    | MACB_BF(RW, MACB_MAN_C45_READ)
364 			    | MACB_BF(PHYA, mii_id)
365 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
366 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
367 	} else {
368 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
369 				| MACB_BF(RW, MACB_MAN_C22_READ)
370 				| MACB_BF(PHYA, mii_id)
371 				| MACB_BF(REGA, regnum)
372 				| MACB_BF(CODE, MACB_MAN_C22_CODE)));
373 	}
374 
375 	status = macb_mdio_wait_for_idle(bp);
376 	if (status < 0)
377 		goto mdio_read_exit;
378 
379 	status = MACB_BFEXT(DATA, macb_readl(bp, MAN));
380 
381 mdio_read_exit:
382 	pm_runtime_mark_last_busy(&bp->pdev->dev);
383 	pm_runtime_put_autosuspend(&bp->pdev->dev);
384 mdio_pm_exit:
385 	return status;
386 }
387 
388 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
389 			   u16 value)
390 {
391 	struct macb *bp = bus->priv;
392 	int status;
393 
394 	status = pm_runtime_resume_and_get(&bp->pdev->dev);
395 	if (status < 0)
396 		goto mdio_pm_exit;
397 
398 	status = macb_mdio_wait_for_idle(bp);
399 	if (status < 0)
400 		goto mdio_write_exit;
401 
402 	if (regnum & MII_ADDR_C45) {
403 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
404 			    | MACB_BF(RW, MACB_MAN_C45_ADDR)
405 			    | MACB_BF(PHYA, mii_id)
406 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
407 			    | MACB_BF(DATA, regnum & 0xFFFF)
408 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)));
409 
410 		status = macb_mdio_wait_for_idle(bp);
411 		if (status < 0)
412 			goto mdio_write_exit;
413 
414 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF)
415 			    | MACB_BF(RW, MACB_MAN_C45_WRITE)
416 			    | MACB_BF(PHYA, mii_id)
417 			    | MACB_BF(REGA, (regnum >> 16) & 0x1F)
418 			    | MACB_BF(CODE, MACB_MAN_C45_CODE)
419 			    | MACB_BF(DATA, value)));
420 	} else {
421 		macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF)
422 				| MACB_BF(RW, MACB_MAN_C22_WRITE)
423 				| MACB_BF(PHYA, mii_id)
424 				| MACB_BF(REGA, regnum)
425 				| MACB_BF(CODE, MACB_MAN_C22_CODE)
426 				| MACB_BF(DATA, value)));
427 	}
428 
429 	status = macb_mdio_wait_for_idle(bp);
430 	if (status < 0)
431 		goto mdio_write_exit;
432 
433 mdio_write_exit:
434 	pm_runtime_mark_last_busy(&bp->pdev->dev);
435 	pm_runtime_put_autosuspend(&bp->pdev->dev);
436 mdio_pm_exit:
437 	return status;
438 }
439 
440 static void macb_init_buffers(struct macb *bp)
441 {
442 	struct macb_queue *queue;
443 	unsigned int q;
444 
445 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
446 		queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma));
447 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
448 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
449 			queue_writel(queue, RBQPH,
450 				     upper_32_bits(queue->rx_ring_dma));
451 #endif
452 		queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
453 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
454 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
455 			queue_writel(queue, TBQPH,
456 				     upper_32_bits(queue->tx_ring_dma));
457 #endif
458 	}
459 }
460 
461 /**
462  * macb_set_tx_clk() - Set a clock to a new frequency
463  * @bp:		pointer to struct macb
464  * @speed:	New frequency in Hz
465  */
466 static void macb_set_tx_clk(struct macb *bp, int speed)
467 {
468 	long ferr, rate, rate_rounded;
469 
470 	if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG))
471 		return;
472 
473 	/* In case of MII the PHY is the clock master */
474 	if (bp->phy_interface == PHY_INTERFACE_MODE_MII)
475 		return;
476 
477 	switch (speed) {
478 	case SPEED_10:
479 		rate = 2500000;
480 		break;
481 	case SPEED_100:
482 		rate = 25000000;
483 		break;
484 	case SPEED_1000:
485 		rate = 125000000;
486 		break;
487 	default:
488 		return;
489 	}
490 
491 	rate_rounded = clk_round_rate(bp->tx_clk, rate);
492 	if (rate_rounded < 0)
493 		return;
494 
495 	/* RGMII allows 50 ppm frequency error. Test and warn if this limit
496 	 * is not satisfied.
497 	 */
498 	ferr = abs(rate_rounded - rate);
499 	ferr = DIV_ROUND_UP(ferr, rate / 100000);
500 	if (ferr > 5)
501 		netdev_warn(bp->dev,
502 			    "unable to generate target frequency: %ld Hz\n",
503 			    rate);
504 
505 	if (clk_set_rate(bp->tx_clk, rate_rounded))
506 		netdev_err(bp->dev, "adjusting tx_clk failed.\n");
507 }
508 
509 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
510 				 phy_interface_t interface, int speed,
511 				 int duplex)
512 {
513 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
514 	u32 config;
515 
516 	config = gem_readl(bp, USX_CONTROL);
517 	config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config);
518 	config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config);
519 	config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS));
520 	config |= GEM_BIT(TX_EN);
521 	gem_writel(bp, USX_CONTROL, config);
522 }
523 
524 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs,
525 				   struct phylink_link_state *state)
526 {
527 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
528 	u32 val;
529 
530 	state->speed = SPEED_10000;
531 	state->duplex = 1;
532 	state->an_complete = 1;
533 
534 	val = gem_readl(bp, USX_STATUS);
535 	state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK));
536 	val = gem_readl(bp, NCFGR);
537 	if (val & GEM_BIT(PAE))
538 		state->pause = MLO_PAUSE_RX;
539 }
540 
541 static int macb_usx_pcs_config(struct phylink_pcs *pcs,
542 			       unsigned int mode,
543 			       phy_interface_t interface,
544 			       const unsigned long *advertising,
545 			       bool permit_pause_to_mac)
546 {
547 	struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs);
548 
549 	gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) |
550 		   GEM_BIT(SIGNAL_OK));
551 
552 	return 0;
553 }
554 
555 static void macb_pcs_get_state(struct phylink_pcs *pcs,
556 			       struct phylink_link_state *state)
557 {
558 	state->link = 0;
559 }
560 
561 static void macb_pcs_an_restart(struct phylink_pcs *pcs)
562 {
563 	/* Not supported */
564 }
565 
566 static int macb_pcs_config(struct phylink_pcs *pcs,
567 			   unsigned int mode,
568 			   phy_interface_t interface,
569 			   const unsigned long *advertising,
570 			   bool permit_pause_to_mac)
571 {
572 	return 0;
573 }
574 
575 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = {
576 	.pcs_get_state = macb_usx_pcs_get_state,
577 	.pcs_config = macb_usx_pcs_config,
578 	.pcs_link_up = macb_usx_pcs_link_up,
579 };
580 
581 static const struct phylink_pcs_ops macb_phylink_pcs_ops = {
582 	.pcs_get_state = macb_pcs_get_state,
583 	.pcs_an_restart = macb_pcs_an_restart,
584 	.pcs_config = macb_pcs_config,
585 };
586 
587 static void macb_mac_config(struct phylink_config *config, unsigned int mode,
588 			    const struct phylink_link_state *state)
589 {
590 	struct net_device *ndev = to_net_dev(config->dev);
591 	struct macb *bp = netdev_priv(ndev);
592 	unsigned long flags;
593 	u32 old_ctrl, ctrl;
594 	u32 old_ncr, ncr;
595 
596 	spin_lock_irqsave(&bp->lock, flags);
597 
598 	old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR);
599 	old_ncr = ncr = macb_or_gem_readl(bp, NCR);
600 
601 	if (bp->caps & MACB_CAPS_MACB_IS_EMAC) {
602 		if (state->interface == PHY_INTERFACE_MODE_RMII)
603 			ctrl |= MACB_BIT(RM9200_RMII);
604 	} else if (macb_is_gem(bp)) {
605 		ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL));
606 		ncr &= ~GEM_BIT(ENABLE_HS_MAC);
607 
608 		if (state->interface == PHY_INTERFACE_MODE_SGMII) {
609 			ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
610 		} else if (state->interface == PHY_INTERFACE_MODE_10GBASER) {
611 			ctrl |= GEM_BIT(PCSSEL);
612 			ncr |= GEM_BIT(ENABLE_HS_MAC);
613 		} else if (bp->caps & MACB_CAPS_MIIONRGMII &&
614 			   bp->phy_interface == PHY_INTERFACE_MODE_MII) {
615 			ncr |= MACB_BIT(MIIONRGMII);
616 		}
617 	}
618 
619 	/* Apply the new configuration, if any */
620 	if (old_ctrl ^ ctrl)
621 		macb_or_gem_writel(bp, NCFGR, ctrl);
622 
623 	if (old_ncr ^ ncr)
624 		macb_or_gem_writel(bp, NCR, ncr);
625 
626 	/* Disable AN for SGMII fixed link configuration, enable otherwise.
627 	 * Must be written after PCSSEL is set in NCFGR,
628 	 * otherwise writes will not take effect.
629 	 */
630 	if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) {
631 		u32 pcsctrl, old_pcsctrl;
632 
633 		old_pcsctrl = gem_readl(bp, PCSCNTRL);
634 		if (mode == MLO_AN_FIXED)
635 			pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG);
636 		else
637 			pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG);
638 		if (old_pcsctrl != pcsctrl)
639 			gem_writel(bp, PCSCNTRL, pcsctrl);
640 	}
641 
642 	spin_unlock_irqrestore(&bp->lock, flags);
643 }
644 
645 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode,
646 			       phy_interface_t interface)
647 {
648 	struct net_device *ndev = to_net_dev(config->dev);
649 	struct macb *bp = netdev_priv(ndev);
650 	struct macb_queue *queue;
651 	unsigned int q;
652 	u32 ctrl;
653 
654 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC))
655 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
656 			queue_writel(queue, IDR,
657 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
658 
659 	/* Disable Rx and Tx */
660 	ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE));
661 	macb_writel(bp, NCR, ctrl);
662 
663 	netif_tx_stop_all_queues(ndev);
664 }
665 
666 static void macb_mac_link_up(struct phylink_config *config,
667 			     struct phy_device *phy,
668 			     unsigned int mode, phy_interface_t interface,
669 			     int speed, int duplex,
670 			     bool tx_pause, bool rx_pause)
671 {
672 	struct net_device *ndev = to_net_dev(config->dev);
673 	struct macb *bp = netdev_priv(ndev);
674 	struct macb_queue *queue;
675 	unsigned long flags;
676 	unsigned int q;
677 	u32 ctrl;
678 
679 	spin_lock_irqsave(&bp->lock, flags);
680 
681 	ctrl = macb_or_gem_readl(bp, NCFGR);
682 
683 	ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
684 
685 	if (speed == SPEED_100)
686 		ctrl |= MACB_BIT(SPD);
687 
688 	if (duplex)
689 		ctrl |= MACB_BIT(FD);
690 
691 	if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) {
692 		ctrl &= ~MACB_BIT(PAE);
693 		if (macb_is_gem(bp)) {
694 			ctrl &= ~GEM_BIT(GBE);
695 
696 			if (speed == SPEED_1000)
697 				ctrl |= GEM_BIT(GBE);
698 		}
699 
700 		if (rx_pause)
701 			ctrl |= MACB_BIT(PAE);
702 
703 		macb_set_tx_clk(bp, speed);
704 
705 		/* Initialize rings & buffers as clearing MACB_BIT(TE) in link down
706 		 * cleared the pipeline and control registers.
707 		 */
708 		bp->macbgem_ops.mog_init_rings(bp);
709 		macb_init_buffers(bp);
710 
711 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
712 			queue_writel(queue, IER,
713 				     bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP));
714 	}
715 
716 	macb_or_gem_writel(bp, NCFGR, ctrl);
717 
718 	if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER)
719 		gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M,
720 							gem_readl(bp, HS_MAC_CONFIG)));
721 
722 	spin_unlock_irqrestore(&bp->lock, flags);
723 
724 	/* Enable Rx and Tx */
725 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(RE) | MACB_BIT(TE));
726 
727 	netif_tx_wake_all_queues(ndev);
728 }
729 
730 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config,
731 					       phy_interface_t interface)
732 {
733 	struct net_device *ndev = to_net_dev(config->dev);
734 	struct macb *bp = netdev_priv(ndev);
735 
736 	if (interface == PHY_INTERFACE_MODE_10GBASER)
737 		return &bp->phylink_usx_pcs;
738 	else if (interface == PHY_INTERFACE_MODE_SGMII)
739 		return &bp->phylink_sgmii_pcs;
740 	else
741 		return NULL;
742 }
743 
744 static const struct phylink_mac_ops macb_phylink_ops = {
745 	.validate = phylink_generic_validate,
746 	.mac_select_pcs = macb_mac_select_pcs,
747 	.mac_config = macb_mac_config,
748 	.mac_link_down = macb_mac_link_down,
749 	.mac_link_up = macb_mac_link_up,
750 };
751 
752 static bool macb_phy_handle_exists(struct device_node *dn)
753 {
754 	dn = of_parse_phandle(dn, "phy-handle", 0);
755 	of_node_put(dn);
756 	return dn != NULL;
757 }
758 
759 static int macb_phylink_connect(struct macb *bp)
760 {
761 	struct device_node *dn = bp->pdev->dev.of_node;
762 	struct net_device *dev = bp->dev;
763 	struct phy_device *phydev;
764 	int ret;
765 
766 	if (dn)
767 		ret = phylink_of_phy_connect(bp->phylink, dn, 0);
768 
769 	if (!dn || (ret && !macb_phy_handle_exists(dn))) {
770 		phydev = phy_find_first(bp->mii_bus);
771 		if (!phydev) {
772 			netdev_err(dev, "no PHY found\n");
773 			return -ENXIO;
774 		}
775 
776 		/* attach the mac to the phy */
777 		ret = phylink_connect_phy(bp->phylink, phydev);
778 	}
779 
780 	if (ret) {
781 		netdev_err(dev, "Could not attach PHY (%d)\n", ret);
782 		return ret;
783 	}
784 
785 	phylink_start(bp->phylink);
786 
787 	return 0;
788 }
789 
790 static void macb_get_pcs_fixed_state(struct phylink_config *config,
791 				     struct phylink_link_state *state)
792 {
793 	struct net_device *ndev = to_net_dev(config->dev);
794 	struct macb *bp = netdev_priv(ndev);
795 
796 	state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0;
797 }
798 
799 /* based on au1000_eth. c*/
800 static int macb_mii_probe(struct net_device *dev)
801 {
802 	struct macb *bp = netdev_priv(dev);
803 
804 	bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops;
805 	bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops;
806 
807 	bp->phylink_config.dev = &dev->dev;
808 	bp->phylink_config.type = PHYLINK_NETDEV;
809 
810 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
811 		bp->phylink_config.poll_fixed_state = true;
812 		bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state;
813 	}
814 
815 	bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE |
816 		MAC_10 | MAC_100;
817 
818 	__set_bit(PHY_INTERFACE_MODE_MII,
819 		  bp->phylink_config.supported_interfaces);
820 	__set_bit(PHY_INTERFACE_MODE_RMII,
821 		  bp->phylink_config.supported_interfaces);
822 
823 	/* Determine what modes are supported */
824 	if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) {
825 		bp->phylink_config.mac_capabilities |= MAC_1000FD;
826 		if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF))
827 			bp->phylink_config.mac_capabilities |= MAC_1000HD;
828 
829 		__set_bit(PHY_INTERFACE_MODE_GMII,
830 			  bp->phylink_config.supported_interfaces);
831 		phy_interface_set_rgmii(bp->phylink_config.supported_interfaces);
832 
833 		if (bp->caps & MACB_CAPS_PCS)
834 			__set_bit(PHY_INTERFACE_MODE_SGMII,
835 				  bp->phylink_config.supported_interfaces);
836 
837 		if (bp->caps & MACB_CAPS_HIGH_SPEED) {
838 			__set_bit(PHY_INTERFACE_MODE_10GBASER,
839 				  bp->phylink_config.supported_interfaces);
840 			bp->phylink_config.mac_capabilities |= MAC_10000FD;
841 		}
842 	}
843 
844 	bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode,
845 				     bp->phy_interface, &macb_phylink_ops);
846 	if (IS_ERR(bp->phylink)) {
847 		netdev_err(dev, "Could not create a phylink instance (%ld)\n",
848 			   PTR_ERR(bp->phylink));
849 		return PTR_ERR(bp->phylink);
850 	}
851 
852 	return 0;
853 }
854 
855 static int macb_mdiobus_register(struct macb *bp)
856 {
857 	struct device_node *child, *np = bp->pdev->dev.of_node;
858 
859 	/* If we have a child named mdio, probe it instead of looking for PHYs
860 	 * directly under the MAC node
861 	 */
862 	child = of_get_child_by_name(np, "mdio");
863 	if (child) {
864 		int ret = of_mdiobus_register(bp->mii_bus, child);
865 
866 		of_node_put(child);
867 		return ret;
868 	}
869 
870 	if (of_phy_is_fixed_link(np))
871 		return mdiobus_register(bp->mii_bus);
872 
873 	/* Only create the PHY from the device tree if at least one PHY is
874 	 * described. Otherwise scan the entire MDIO bus. We do this to support
875 	 * old device tree that did not follow the best practices and did not
876 	 * describe their network PHYs.
877 	 */
878 	for_each_available_child_of_node(np, child)
879 		if (of_mdiobus_child_is_phy(child)) {
880 			/* The loop increments the child refcount,
881 			 * decrement it before returning.
882 			 */
883 			of_node_put(child);
884 
885 			return of_mdiobus_register(bp->mii_bus, np);
886 		}
887 
888 	return mdiobus_register(bp->mii_bus);
889 }
890 
891 static int macb_mii_init(struct macb *bp)
892 {
893 	int err = -ENXIO;
894 
895 	/* Enable management port */
896 	macb_writel(bp, NCR, MACB_BIT(MPE));
897 
898 	bp->mii_bus = mdiobus_alloc();
899 	if (!bp->mii_bus) {
900 		err = -ENOMEM;
901 		goto err_out;
902 	}
903 
904 	bp->mii_bus->name = "MACB_mii_bus";
905 	bp->mii_bus->read = &macb_mdio_read;
906 	bp->mii_bus->write = &macb_mdio_write;
907 	snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
908 		 bp->pdev->name, bp->pdev->id);
909 	bp->mii_bus->priv = bp;
910 	bp->mii_bus->parent = &bp->pdev->dev;
911 
912 	dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
913 
914 	err = macb_mdiobus_register(bp);
915 	if (err)
916 		goto err_out_free_mdiobus;
917 
918 	err = macb_mii_probe(bp->dev);
919 	if (err)
920 		goto err_out_unregister_bus;
921 
922 	return 0;
923 
924 err_out_unregister_bus:
925 	mdiobus_unregister(bp->mii_bus);
926 err_out_free_mdiobus:
927 	mdiobus_free(bp->mii_bus);
928 err_out:
929 	return err;
930 }
931 
932 static void macb_update_stats(struct macb *bp)
933 {
934 	u32 *p = &bp->hw_stats.macb.rx_pause_frames;
935 	u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
936 	int offset = MACB_PFR;
937 
938 	WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
939 
940 	for (; p < end; p++, offset += 4)
941 		*p += bp->macb_reg_readl(bp, offset);
942 }
943 
944 static int macb_halt_tx(struct macb *bp)
945 {
946 	unsigned long	halt_time, timeout;
947 	u32		status;
948 
949 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
950 
951 	timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
952 	do {
953 		halt_time = jiffies;
954 		status = macb_readl(bp, TSR);
955 		if (!(status & MACB_BIT(TGO)))
956 			return 0;
957 
958 		udelay(250);
959 	} while (time_before(halt_time, timeout));
960 
961 	return -ETIMEDOUT;
962 }
963 
964 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget)
965 {
966 	if (tx_skb->mapping) {
967 		if (tx_skb->mapped_as_page)
968 			dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
969 				       tx_skb->size, DMA_TO_DEVICE);
970 		else
971 			dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
972 					 tx_skb->size, DMA_TO_DEVICE);
973 		tx_skb->mapping = 0;
974 	}
975 
976 	if (tx_skb->skb) {
977 		napi_consume_skb(tx_skb->skb, budget);
978 		tx_skb->skb = NULL;
979 	}
980 }
981 
982 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr)
983 {
984 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
985 	struct macb_dma_desc_64 *desc_64;
986 
987 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
988 		desc_64 = macb_64b_desc(bp, desc);
989 		desc_64->addrh = upper_32_bits(addr);
990 		/* The low bits of RX address contain the RX_USED bit, clearing
991 		 * of which allows packet RX. Make sure the high bits are also
992 		 * visible to HW at that point.
993 		 */
994 		dma_wmb();
995 	}
996 #endif
997 	desc->addr = lower_32_bits(addr);
998 }
999 
1000 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc)
1001 {
1002 	dma_addr_t addr = 0;
1003 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1004 	struct macb_dma_desc_64 *desc_64;
1005 
1006 	if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
1007 		desc_64 = macb_64b_desc(bp, desc);
1008 		addr = ((u64)(desc_64->addrh) << 32);
1009 	}
1010 #endif
1011 	addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1012 	return addr;
1013 }
1014 
1015 static void macb_tx_error_task(struct work_struct *work)
1016 {
1017 	struct macb_queue	*queue = container_of(work, struct macb_queue,
1018 						      tx_error_task);
1019 	struct macb		*bp = queue->bp;
1020 	struct macb_tx_skb	*tx_skb;
1021 	struct macb_dma_desc	*desc;
1022 	struct sk_buff		*skb;
1023 	unsigned int		tail;
1024 	unsigned long		flags;
1025 
1026 	netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
1027 		    (unsigned int)(queue - bp->queues),
1028 		    queue->tx_tail, queue->tx_head);
1029 
1030 	/* Prevent the queue NAPI TX poll from running, as it calls
1031 	 * macb_tx_complete(), which in turn may call netif_wake_subqueue().
1032 	 * As explained below, we have to halt the transmission before updating
1033 	 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
1034 	 * network engine about the macb/gem being halted.
1035 	 */
1036 	napi_disable(&queue->napi_tx);
1037 	spin_lock_irqsave(&bp->lock, flags);
1038 
1039 	/* Make sure nobody is trying to queue up new packets */
1040 	netif_tx_stop_all_queues(bp->dev);
1041 
1042 	/* Stop transmission now
1043 	 * (in case we have just queued new packets)
1044 	 * macb/gem must be halted to write TBQP register
1045 	 */
1046 	if (macb_halt_tx(bp))
1047 		/* Just complain for now, reinitializing TX path can be good */
1048 		netdev_err(bp->dev, "BUG: halt tx timed out\n");
1049 
1050 	/* Treat frames in TX queue including the ones that caused the error.
1051 	 * Free transmit buffers in upper layer.
1052 	 */
1053 	for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
1054 		u32	ctrl;
1055 
1056 		desc = macb_tx_desc(queue, tail);
1057 		ctrl = desc->ctrl;
1058 		tx_skb = macb_tx_skb(queue, tail);
1059 		skb = tx_skb->skb;
1060 
1061 		if (ctrl & MACB_BIT(TX_USED)) {
1062 			/* skb is set for the last buffer of the frame */
1063 			while (!skb) {
1064 				macb_tx_unmap(bp, tx_skb, 0);
1065 				tail++;
1066 				tx_skb = macb_tx_skb(queue, tail);
1067 				skb = tx_skb->skb;
1068 			}
1069 
1070 			/* ctrl still refers to the first buffer descriptor
1071 			 * since it's the only one written back by the hardware
1072 			 */
1073 			if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
1074 				netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
1075 					    macb_tx_ring_wrap(bp, tail),
1076 					    skb->data);
1077 				bp->dev->stats.tx_packets++;
1078 				queue->stats.tx_packets++;
1079 				bp->dev->stats.tx_bytes += skb->len;
1080 				queue->stats.tx_bytes += skb->len;
1081 			}
1082 		} else {
1083 			/* "Buffers exhausted mid-frame" errors may only happen
1084 			 * if the driver is buggy, so complain loudly about
1085 			 * those. Statistics are updated by hardware.
1086 			 */
1087 			if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
1088 				netdev_err(bp->dev,
1089 					   "BUG: TX buffers exhausted mid-frame\n");
1090 
1091 			desc->ctrl = ctrl | MACB_BIT(TX_USED);
1092 		}
1093 
1094 		macb_tx_unmap(bp, tx_skb, 0);
1095 	}
1096 
1097 	/* Set end of TX queue */
1098 	desc = macb_tx_desc(queue, 0);
1099 	macb_set_addr(bp, desc, 0);
1100 	desc->ctrl = MACB_BIT(TX_USED);
1101 
1102 	/* Make descriptor updates visible to hardware */
1103 	wmb();
1104 
1105 	/* Reinitialize the TX desc queue */
1106 	queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma));
1107 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
1108 	if (bp->hw_dma_cap & HW_DMA_CAP_64B)
1109 		queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma));
1110 #endif
1111 	/* Make TX ring reflect state of hardware */
1112 	queue->tx_head = 0;
1113 	queue->tx_tail = 0;
1114 
1115 	/* Housework before enabling TX IRQ */
1116 	macb_writel(bp, TSR, macb_readl(bp, TSR));
1117 	queue_writel(queue, IER, MACB_TX_INT_FLAGS);
1118 
1119 	/* Now we are ready to start transmission again */
1120 	netif_tx_start_all_queues(bp->dev);
1121 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1122 
1123 	spin_unlock_irqrestore(&bp->lock, flags);
1124 	napi_enable(&queue->napi_tx);
1125 }
1126 
1127 static bool ptp_one_step_sync(struct sk_buff *skb)
1128 {
1129 	struct ptp_header *hdr;
1130 	unsigned int ptp_class;
1131 	u8 msgtype;
1132 
1133 	/* No need to parse packet if PTP TS is not involved */
1134 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
1135 		goto not_oss;
1136 
1137 	/* Identify and return whether PTP one step sync is being processed */
1138 	ptp_class = ptp_classify_raw(skb);
1139 	if (ptp_class == PTP_CLASS_NONE)
1140 		goto not_oss;
1141 
1142 	hdr = ptp_parse_header(skb, ptp_class);
1143 	if (!hdr)
1144 		goto not_oss;
1145 
1146 	if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP)
1147 		goto not_oss;
1148 
1149 	msgtype = ptp_get_msgtype(hdr, ptp_class);
1150 	if (msgtype == PTP_MSGTYPE_SYNC)
1151 		return true;
1152 
1153 not_oss:
1154 	return false;
1155 }
1156 
1157 static int macb_tx_complete(struct macb_queue *queue, int budget)
1158 {
1159 	struct macb *bp = queue->bp;
1160 	u16 queue_index = queue - bp->queues;
1161 	unsigned int tail;
1162 	unsigned int head;
1163 	int packets = 0;
1164 
1165 	spin_lock(&queue->tx_ptr_lock);
1166 	head = queue->tx_head;
1167 	for (tail = queue->tx_tail; tail != head && packets < budget; tail++) {
1168 		struct macb_tx_skb	*tx_skb;
1169 		struct sk_buff		*skb;
1170 		struct macb_dma_desc	*desc;
1171 		u32			ctrl;
1172 
1173 		desc = macb_tx_desc(queue, tail);
1174 
1175 		/* Make hw descriptor updates visible to CPU */
1176 		rmb();
1177 
1178 		ctrl = desc->ctrl;
1179 
1180 		/* TX_USED bit is only set by hardware on the very first buffer
1181 		 * descriptor of the transmitted frame.
1182 		 */
1183 		if (!(ctrl & MACB_BIT(TX_USED)))
1184 			break;
1185 
1186 		/* Process all buffers of the current transmitted frame */
1187 		for (;; tail++) {
1188 			tx_skb = macb_tx_skb(queue, tail);
1189 			skb = tx_skb->skb;
1190 
1191 			/* First, update TX stats if needed */
1192 			if (skb) {
1193 				if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1194 				    !ptp_one_step_sync(skb) &&
1195 				    gem_ptp_do_txstamp(queue, skb, desc) == 0) {
1196 					/* skb now belongs to timestamp buffer
1197 					 * and will be removed later
1198 					 */
1199 					tx_skb->skb = NULL;
1200 				}
1201 				netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
1202 					    macb_tx_ring_wrap(bp, tail),
1203 					    skb->data);
1204 				bp->dev->stats.tx_packets++;
1205 				queue->stats.tx_packets++;
1206 				bp->dev->stats.tx_bytes += skb->len;
1207 				queue->stats.tx_bytes += skb->len;
1208 				packets++;
1209 			}
1210 
1211 			/* Now we can safely release resources */
1212 			macb_tx_unmap(bp, tx_skb, budget);
1213 
1214 			/* skb is set only for the last buffer of the frame.
1215 			 * WARNING: at this point skb has been freed by
1216 			 * macb_tx_unmap().
1217 			 */
1218 			if (skb)
1219 				break;
1220 		}
1221 	}
1222 
1223 	queue->tx_tail = tail;
1224 	if (__netif_subqueue_stopped(bp->dev, queue_index) &&
1225 	    CIRC_CNT(queue->tx_head, queue->tx_tail,
1226 		     bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp))
1227 		netif_wake_subqueue(bp->dev, queue_index);
1228 	spin_unlock(&queue->tx_ptr_lock);
1229 
1230 	return packets;
1231 }
1232 
1233 static void gem_rx_refill(struct macb_queue *queue)
1234 {
1235 	unsigned int		entry;
1236 	struct sk_buff		*skb;
1237 	dma_addr_t		paddr;
1238 	struct macb *bp = queue->bp;
1239 	struct macb_dma_desc *desc;
1240 
1241 	while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail,
1242 			bp->rx_ring_size) > 0) {
1243 		entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head);
1244 
1245 		/* Make hw descriptor updates visible to CPU */
1246 		rmb();
1247 
1248 		desc = macb_rx_desc(queue, entry);
1249 
1250 		if (!queue->rx_skbuff[entry]) {
1251 			/* allocate sk_buff for this free entry in ring */
1252 			skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
1253 			if (unlikely(!skb)) {
1254 				netdev_err(bp->dev,
1255 					   "Unable to allocate sk_buff\n");
1256 				break;
1257 			}
1258 
1259 			/* now fill corresponding descriptor entry */
1260 			paddr = dma_map_single(&bp->pdev->dev, skb->data,
1261 					       bp->rx_buffer_size,
1262 					       DMA_FROM_DEVICE);
1263 			if (dma_mapping_error(&bp->pdev->dev, paddr)) {
1264 				dev_kfree_skb(skb);
1265 				break;
1266 			}
1267 
1268 			queue->rx_skbuff[entry] = skb;
1269 
1270 			if (entry == bp->rx_ring_size - 1)
1271 				paddr |= MACB_BIT(RX_WRAP);
1272 			desc->ctrl = 0;
1273 			/* Setting addr clears RX_USED and allows reception,
1274 			 * make sure ctrl is cleared first to avoid a race.
1275 			 */
1276 			dma_wmb();
1277 			macb_set_addr(bp, desc, paddr);
1278 
1279 			/* properly align Ethernet header */
1280 			skb_reserve(skb, NET_IP_ALIGN);
1281 		} else {
1282 			desc->ctrl = 0;
1283 			dma_wmb();
1284 			desc->addr &= ~MACB_BIT(RX_USED);
1285 		}
1286 		queue->rx_prepared_head++;
1287 	}
1288 
1289 	/* Make descriptor updates visible to hardware */
1290 	wmb();
1291 
1292 	netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n",
1293 			queue, queue->rx_prepared_head, queue->rx_tail);
1294 }
1295 
1296 /* Mark DMA descriptors from begin up to and not including end as unused */
1297 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin,
1298 				  unsigned int end)
1299 {
1300 	unsigned int frag;
1301 
1302 	for (frag = begin; frag != end; frag++) {
1303 		struct macb_dma_desc *desc = macb_rx_desc(queue, frag);
1304 
1305 		desc->addr &= ~MACB_BIT(RX_USED);
1306 	}
1307 
1308 	/* Make descriptor updates visible to hardware */
1309 	wmb();
1310 
1311 	/* When this happens, the hardware stats registers for
1312 	 * whatever caused this is updated, so we don't have to record
1313 	 * anything.
1314 	 */
1315 }
1316 
1317 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi,
1318 		  int budget)
1319 {
1320 	struct macb *bp = queue->bp;
1321 	unsigned int		len;
1322 	unsigned int		entry;
1323 	struct sk_buff		*skb;
1324 	struct macb_dma_desc	*desc;
1325 	int			count = 0;
1326 
1327 	while (count < budget) {
1328 		u32 ctrl;
1329 		dma_addr_t addr;
1330 		bool rxused;
1331 
1332 		entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1333 		desc = macb_rx_desc(queue, entry);
1334 
1335 		/* Make hw descriptor updates visible to CPU */
1336 		rmb();
1337 
1338 		rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false;
1339 		addr = macb_get_addr(bp, desc);
1340 
1341 		if (!rxused)
1342 			break;
1343 
1344 		/* Ensure ctrl is at least as up-to-date as rxused */
1345 		dma_rmb();
1346 
1347 		ctrl = desc->ctrl;
1348 
1349 		queue->rx_tail++;
1350 		count++;
1351 
1352 		if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
1353 			netdev_err(bp->dev,
1354 				   "not whole frame pointed by descriptor\n");
1355 			bp->dev->stats.rx_dropped++;
1356 			queue->stats.rx_dropped++;
1357 			break;
1358 		}
1359 		skb = queue->rx_skbuff[entry];
1360 		if (unlikely(!skb)) {
1361 			netdev_err(bp->dev,
1362 				   "inconsistent Rx descriptor chain\n");
1363 			bp->dev->stats.rx_dropped++;
1364 			queue->stats.rx_dropped++;
1365 			break;
1366 		}
1367 		/* now everything is ready for receiving packet */
1368 		queue->rx_skbuff[entry] = NULL;
1369 		len = ctrl & bp->rx_frm_len_mask;
1370 
1371 		netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
1372 
1373 		skb_put(skb, len);
1374 		dma_unmap_single(&bp->pdev->dev, addr,
1375 				 bp->rx_buffer_size, DMA_FROM_DEVICE);
1376 
1377 		skb->protocol = eth_type_trans(skb, bp->dev);
1378 		skb_checksum_none_assert(skb);
1379 		if (bp->dev->features & NETIF_F_RXCSUM &&
1380 		    !(bp->dev->flags & IFF_PROMISC) &&
1381 		    GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
1382 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1383 
1384 		bp->dev->stats.rx_packets++;
1385 		queue->stats.rx_packets++;
1386 		bp->dev->stats.rx_bytes += skb->len;
1387 		queue->stats.rx_bytes += skb->len;
1388 
1389 		gem_ptp_do_rxstamp(bp, skb, desc);
1390 
1391 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1392 		netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1393 			    skb->len, skb->csum);
1394 		print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
1395 			       skb_mac_header(skb), 16, true);
1396 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
1397 			       skb->data, 32, true);
1398 #endif
1399 
1400 		napi_gro_receive(napi, skb);
1401 	}
1402 
1403 	gem_rx_refill(queue);
1404 
1405 	return count;
1406 }
1407 
1408 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi,
1409 			 unsigned int first_frag, unsigned int last_frag)
1410 {
1411 	unsigned int len;
1412 	unsigned int frag;
1413 	unsigned int offset;
1414 	struct sk_buff *skb;
1415 	struct macb_dma_desc *desc;
1416 	struct macb *bp = queue->bp;
1417 
1418 	desc = macb_rx_desc(queue, last_frag);
1419 	len = desc->ctrl & bp->rx_frm_len_mask;
1420 
1421 	netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
1422 		macb_rx_ring_wrap(bp, first_frag),
1423 		macb_rx_ring_wrap(bp, last_frag), len);
1424 
1425 	/* The ethernet header starts NET_IP_ALIGN bytes into the
1426 	 * first buffer. Since the header is 14 bytes, this makes the
1427 	 * payload word-aligned.
1428 	 *
1429 	 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
1430 	 * the two padding bytes into the skb so that we avoid hitting
1431 	 * the slowpath in memcpy(), and pull them off afterwards.
1432 	 */
1433 	skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
1434 	if (!skb) {
1435 		bp->dev->stats.rx_dropped++;
1436 		for (frag = first_frag; ; frag++) {
1437 			desc = macb_rx_desc(queue, frag);
1438 			desc->addr &= ~MACB_BIT(RX_USED);
1439 			if (frag == last_frag)
1440 				break;
1441 		}
1442 
1443 		/* Make descriptor updates visible to hardware */
1444 		wmb();
1445 
1446 		return 1;
1447 	}
1448 
1449 	offset = 0;
1450 	len += NET_IP_ALIGN;
1451 	skb_checksum_none_assert(skb);
1452 	skb_put(skb, len);
1453 
1454 	for (frag = first_frag; ; frag++) {
1455 		unsigned int frag_len = bp->rx_buffer_size;
1456 
1457 		if (offset + frag_len > len) {
1458 			if (unlikely(frag != last_frag)) {
1459 				dev_kfree_skb_any(skb);
1460 				return -1;
1461 			}
1462 			frag_len = len - offset;
1463 		}
1464 		skb_copy_to_linear_data_offset(skb, offset,
1465 					       macb_rx_buffer(queue, frag),
1466 					       frag_len);
1467 		offset += bp->rx_buffer_size;
1468 		desc = macb_rx_desc(queue, frag);
1469 		desc->addr &= ~MACB_BIT(RX_USED);
1470 
1471 		if (frag == last_frag)
1472 			break;
1473 	}
1474 
1475 	/* Make descriptor updates visible to hardware */
1476 	wmb();
1477 
1478 	__skb_pull(skb, NET_IP_ALIGN);
1479 	skb->protocol = eth_type_trans(skb, bp->dev);
1480 
1481 	bp->dev->stats.rx_packets++;
1482 	bp->dev->stats.rx_bytes += skb->len;
1483 	netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
1484 		    skb->len, skb->csum);
1485 	napi_gro_receive(napi, skb);
1486 
1487 	return 0;
1488 }
1489 
1490 static inline void macb_init_rx_ring(struct macb_queue *queue)
1491 {
1492 	struct macb *bp = queue->bp;
1493 	dma_addr_t addr;
1494 	struct macb_dma_desc *desc = NULL;
1495 	int i;
1496 
1497 	addr = queue->rx_buffers_dma;
1498 	for (i = 0; i < bp->rx_ring_size; i++) {
1499 		desc = macb_rx_desc(queue, i);
1500 		macb_set_addr(bp, desc, addr);
1501 		desc->ctrl = 0;
1502 		addr += bp->rx_buffer_size;
1503 	}
1504 	desc->addr |= MACB_BIT(RX_WRAP);
1505 	queue->rx_tail = 0;
1506 }
1507 
1508 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi,
1509 		   int budget)
1510 {
1511 	struct macb *bp = queue->bp;
1512 	bool reset_rx_queue = false;
1513 	int received = 0;
1514 	unsigned int tail;
1515 	int first_frag = -1;
1516 
1517 	for (tail = queue->rx_tail; budget > 0; tail++) {
1518 		struct macb_dma_desc *desc = macb_rx_desc(queue, tail);
1519 		u32 ctrl;
1520 
1521 		/* Make hw descriptor updates visible to CPU */
1522 		rmb();
1523 
1524 		if (!(desc->addr & MACB_BIT(RX_USED)))
1525 			break;
1526 
1527 		/* Ensure ctrl is at least as up-to-date as addr */
1528 		dma_rmb();
1529 
1530 		ctrl = desc->ctrl;
1531 
1532 		if (ctrl & MACB_BIT(RX_SOF)) {
1533 			if (first_frag != -1)
1534 				discard_partial_frame(queue, first_frag, tail);
1535 			first_frag = tail;
1536 		}
1537 
1538 		if (ctrl & MACB_BIT(RX_EOF)) {
1539 			int dropped;
1540 
1541 			if (unlikely(first_frag == -1)) {
1542 				reset_rx_queue = true;
1543 				continue;
1544 			}
1545 
1546 			dropped = macb_rx_frame(queue, napi, first_frag, tail);
1547 			first_frag = -1;
1548 			if (unlikely(dropped < 0)) {
1549 				reset_rx_queue = true;
1550 				continue;
1551 			}
1552 			if (!dropped) {
1553 				received++;
1554 				budget--;
1555 			}
1556 		}
1557 	}
1558 
1559 	if (unlikely(reset_rx_queue)) {
1560 		unsigned long flags;
1561 		u32 ctrl;
1562 
1563 		netdev_err(bp->dev, "RX queue corruption: reset it\n");
1564 
1565 		spin_lock_irqsave(&bp->lock, flags);
1566 
1567 		ctrl = macb_readl(bp, NCR);
1568 		macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1569 
1570 		macb_init_rx_ring(queue);
1571 		queue_writel(queue, RBQP, queue->rx_ring_dma);
1572 
1573 		macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1574 
1575 		spin_unlock_irqrestore(&bp->lock, flags);
1576 		return received;
1577 	}
1578 
1579 	if (first_frag != -1)
1580 		queue->rx_tail = first_frag;
1581 	else
1582 		queue->rx_tail = tail;
1583 
1584 	return received;
1585 }
1586 
1587 static bool macb_rx_pending(struct macb_queue *queue)
1588 {
1589 	struct macb *bp = queue->bp;
1590 	unsigned int		entry;
1591 	struct macb_dma_desc	*desc;
1592 
1593 	entry = macb_rx_ring_wrap(bp, queue->rx_tail);
1594 	desc = macb_rx_desc(queue, entry);
1595 
1596 	/* Make hw descriptor updates visible to CPU */
1597 	rmb();
1598 
1599 	return (desc->addr & MACB_BIT(RX_USED)) != 0;
1600 }
1601 
1602 static int macb_rx_poll(struct napi_struct *napi, int budget)
1603 {
1604 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx);
1605 	struct macb *bp = queue->bp;
1606 	int work_done;
1607 
1608 	work_done = bp->macbgem_ops.mog_rx(queue, napi, budget);
1609 
1610 	netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n",
1611 		    (unsigned int)(queue - bp->queues), work_done, budget);
1612 
1613 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1614 		queue_writel(queue, IER, bp->rx_intr_mask);
1615 
1616 		/* Packet completions only seem to propagate to raise
1617 		 * interrupts when interrupts are enabled at the time, so if
1618 		 * packets were received while interrupts were disabled,
1619 		 * they will not cause another interrupt to be generated when
1620 		 * interrupts are re-enabled.
1621 		 * Check for this case here to avoid losing a wakeup. This can
1622 		 * potentially race with the interrupt handler doing the same
1623 		 * actions if an interrupt is raised just after enabling them,
1624 		 * but this should be harmless.
1625 		 */
1626 		if (macb_rx_pending(queue)) {
1627 			queue_writel(queue, IDR, bp->rx_intr_mask);
1628 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1629 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1630 			netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n");
1631 			napi_schedule(napi);
1632 		}
1633 	}
1634 
1635 	/* TODO: Handle errors */
1636 
1637 	return work_done;
1638 }
1639 
1640 static void macb_tx_restart(struct macb_queue *queue)
1641 {
1642 	struct macb *bp = queue->bp;
1643 	unsigned int head_idx, tbqp;
1644 
1645 	spin_lock(&queue->tx_ptr_lock);
1646 
1647 	if (queue->tx_head == queue->tx_tail)
1648 		goto out_tx_ptr_unlock;
1649 
1650 	tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp);
1651 	tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp));
1652 	head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head));
1653 
1654 	if (tbqp == head_idx)
1655 		goto out_tx_ptr_unlock;
1656 
1657 	spin_lock_irq(&bp->lock);
1658 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1659 	spin_unlock_irq(&bp->lock);
1660 
1661 out_tx_ptr_unlock:
1662 	spin_unlock(&queue->tx_ptr_lock);
1663 }
1664 
1665 static bool macb_tx_complete_pending(struct macb_queue *queue)
1666 {
1667 	bool retval = false;
1668 
1669 	spin_lock(&queue->tx_ptr_lock);
1670 	if (queue->tx_head != queue->tx_tail) {
1671 		/* Make hw descriptor updates visible to CPU */
1672 		rmb();
1673 
1674 		if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED))
1675 			retval = true;
1676 	}
1677 	spin_unlock(&queue->tx_ptr_lock);
1678 	return retval;
1679 }
1680 
1681 static int macb_tx_poll(struct napi_struct *napi, int budget)
1682 {
1683 	struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx);
1684 	struct macb *bp = queue->bp;
1685 	int work_done;
1686 
1687 	work_done = macb_tx_complete(queue, budget);
1688 
1689 	rmb(); // ensure txubr_pending is up to date
1690 	if (queue->txubr_pending) {
1691 		queue->txubr_pending = false;
1692 		netdev_vdbg(bp->dev, "poll: tx restart\n");
1693 		macb_tx_restart(queue);
1694 	}
1695 
1696 	netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n",
1697 		    (unsigned int)(queue - bp->queues), work_done, budget);
1698 
1699 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1700 		queue_writel(queue, IER, MACB_BIT(TCOMP));
1701 
1702 		/* Packet completions only seem to propagate to raise
1703 		 * interrupts when interrupts are enabled at the time, so if
1704 		 * packets were sent while interrupts were disabled,
1705 		 * they will not cause another interrupt to be generated when
1706 		 * interrupts are re-enabled.
1707 		 * Check for this case here to avoid losing a wakeup. This can
1708 		 * potentially race with the interrupt handler doing the same
1709 		 * actions if an interrupt is raised just after enabling them,
1710 		 * but this should be harmless.
1711 		 */
1712 		if (macb_tx_complete_pending(queue)) {
1713 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1714 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1715 				queue_writel(queue, ISR, MACB_BIT(TCOMP));
1716 			netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n");
1717 			napi_schedule(napi);
1718 		}
1719 	}
1720 
1721 	return work_done;
1722 }
1723 
1724 static void macb_hresp_error_task(struct tasklet_struct *t)
1725 {
1726 	struct macb *bp = from_tasklet(bp, t, hresp_err_tasklet);
1727 	struct net_device *dev = bp->dev;
1728 	struct macb_queue *queue;
1729 	unsigned int q;
1730 	u32 ctrl;
1731 
1732 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1733 		queue_writel(queue, IDR, bp->rx_intr_mask |
1734 					 MACB_TX_INT_FLAGS |
1735 					 MACB_BIT(HRESP));
1736 	}
1737 	ctrl = macb_readl(bp, NCR);
1738 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
1739 	macb_writel(bp, NCR, ctrl);
1740 
1741 	netif_tx_stop_all_queues(dev);
1742 	netif_carrier_off(dev);
1743 
1744 	bp->macbgem_ops.mog_init_rings(bp);
1745 
1746 	/* Initialize TX and RX buffers */
1747 	macb_init_buffers(bp);
1748 
1749 	/* Enable interrupts */
1750 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1751 		queue_writel(queue, IER,
1752 			     bp->rx_intr_mask |
1753 			     MACB_TX_INT_FLAGS |
1754 			     MACB_BIT(HRESP));
1755 
1756 	ctrl |= MACB_BIT(RE) | MACB_BIT(TE);
1757 	macb_writel(bp, NCR, ctrl);
1758 
1759 	netif_carrier_on(dev);
1760 	netif_tx_start_all_queues(dev);
1761 }
1762 
1763 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id)
1764 {
1765 	struct macb_queue *queue = dev_id;
1766 	struct macb *bp = queue->bp;
1767 	u32 status;
1768 
1769 	status = queue_readl(queue, ISR);
1770 
1771 	if (unlikely(!status))
1772 		return IRQ_NONE;
1773 
1774 	spin_lock(&bp->lock);
1775 
1776 	if (status & MACB_BIT(WOL)) {
1777 		queue_writel(queue, IDR, MACB_BIT(WOL));
1778 		macb_writel(bp, WOL, 0);
1779 		netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n",
1780 			    (unsigned int)(queue - bp->queues),
1781 			    (unsigned long)status);
1782 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1783 			queue_writel(queue, ISR, MACB_BIT(WOL));
1784 		pm_wakeup_event(&bp->pdev->dev, 0);
1785 	}
1786 
1787 	spin_unlock(&bp->lock);
1788 
1789 	return IRQ_HANDLED;
1790 }
1791 
1792 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id)
1793 {
1794 	struct macb_queue *queue = dev_id;
1795 	struct macb *bp = queue->bp;
1796 	u32 status;
1797 
1798 	status = queue_readl(queue, ISR);
1799 
1800 	if (unlikely(!status))
1801 		return IRQ_NONE;
1802 
1803 	spin_lock(&bp->lock);
1804 
1805 	if (status & GEM_BIT(WOL)) {
1806 		queue_writel(queue, IDR, GEM_BIT(WOL));
1807 		gem_writel(bp, WOL, 0);
1808 		netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n",
1809 			    (unsigned int)(queue - bp->queues),
1810 			    (unsigned long)status);
1811 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1812 			queue_writel(queue, ISR, GEM_BIT(WOL));
1813 		pm_wakeup_event(&bp->pdev->dev, 0);
1814 	}
1815 
1816 	spin_unlock(&bp->lock);
1817 
1818 	return IRQ_HANDLED;
1819 }
1820 
1821 static irqreturn_t macb_interrupt(int irq, void *dev_id)
1822 {
1823 	struct macb_queue *queue = dev_id;
1824 	struct macb *bp = queue->bp;
1825 	struct net_device *dev = bp->dev;
1826 	u32 status, ctrl;
1827 
1828 	status = queue_readl(queue, ISR);
1829 
1830 	if (unlikely(!status))
1831 		return IRQ_NONE;
1832 
1833 	spin_lock(&bp->lock);
1834 
1835 	while (status) {
1836 		/* close possible race with dev_close */
1837 		if (unlikely(!netif_running(dev))) {
1838 			queue_writel(queue, IDR, -1);
1839 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1840 				queue_writel(queue, ISR, -1);
1841 			break;
1842 		}
1843 
1844 		netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1845 			    (unsigned int)(queue - bp->queues),
1846 			    (unsigned long)status);
1847 
1848 		if (status & bp->rx_intr_mask) {
1849 			/* There's no point taking any more interrupts
1850 			 * until we have processed the buffers. The
1851 			 * scheduling call may fail if the poll routine
1852 			 * is already scheduled, so disable interrupts
1853 			 * now.
1854 			 */
1855 			queue_writel(queue, IDR, bp->rx_intr_mask);
1856 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1857 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1858 
1859 			if (napi_schedule_prep(&queue->napi_rx)) {
1860 				netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1861 				__napi_schedule(&queue->napi_rx);
1862 			}
1863 		}
1864 
1865 		if (status & (MACB_BIT(TCOMP) |
1866 			      MACB_BIT(TXUBR))) {
1867 			queue_writel(queue, IDR, MACB_BIT(TCOMP));
1868 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1869 				queue_writel(queue, ISR, MACB_BIT(TCOMP) |
1870 							 MACB_BIT(TXUBR));
1871 
1872 			if (status & MACB_BIT(TXUBR)) {
1873 				queue->txubr_pending = true;
1874 				wmb(); // ensure softirq can see update
1875 			}
1876 
1877 			if (napi_schedule_prep(&queue->napi_tx)) {
1878 				netdev_vdbg(bp->dev, "scheduling TX softirq\n");
1879 				__napi_schedule(&queue->napi_tx);
1880 			}
1881 		}
1882 
1883 		if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1884 			queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1885 			schedule_work(&queue->tx_error_task);
1886 
1887 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1888 				queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1889 
1890 			break;
1891 		}
1892 
1893 		/* Link change detection isn't possible with RMII, so we'll
1894 		 * add that if/when we get our hands on a full-blown MII PHY.
1895 		 */
1896 
1897 		/* There is a hardware issue under heavy load where DMA can
1898 		 * stop, this causes endless "used buffer descriptor read"
1899 		 * interrupts but it can be cleared by re-enabling RX. See
1900 		 * the at91rm9200 manual, section 41.3.1 or the Zynq manual
1901 		 * section 16.7.4 for details. RXUBR is only enabled for
1902 		 * these two versions.
1903 		 */
1904 		if (status & MACB_BIT(RXUBR)) {
1905 			ctrl = macb_readl(bp, NCR);
1906 			macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1907 			wmb();
1908 			macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1909 
1910 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1911 				queue_writel(queue, ISR, MACB_BIT(RXUBR));
1912 		}
1913 
1914 		if (status & MACB_BIT(ISR_ROVR)) {
1915 			/* We missed at least one packet */
1916 			if (macb_is_gem(bp))
1917 				bp->hw_stats.gem.rx_overruns++;
1918 			else
1919 				bp->hw_stats.macb.rx_overruns++;
1920 
1921 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1922 				queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1923 		}
1924 
1925 		if (status & MACB_BIT(HRESP)) {
1926 			tasklet_schedule(&bp->hresp_err_tasklet);
1927 			netdev_err(dev, "DMA bus error: HRESP not OK\n");
1928 
1929 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1930 				queue_writel(queue, ISR, MACB_BIT(HRESP));
1931 		}
1932 		status = queue_readl(queue, ISR);
1933 	}
1934 
1935 	spin_unlock(&bp->lock);
1936 
1937 	return IRQ_HANDLED;
1938 }
1939 
1940 #ifdef CONFIG_NET_POLL_CONTROLLER
1941 /* Polling receive - used by netconsole and other diagnostic tools
1942  * to allow network i/o with interrupts disabled.
1943  */
1944 static void macb_poll_controller(struct net_device *dev)
1945 {
1946 	struct macb *bp = netdev_priv(dev);
1947 	struct macb_queue *queue;
1948 	unsigned long flags;
1949 	unsigned int q;
1950 
1951 	local_irq_save(flags);
1952 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1953 		macb_interrupt(dev->irq, queue);
1954 	local_irq_restore(flags);
1955 }
1956 #endif
1957 
1958 static unsigned int macb_tx_map(struct macb *bp,
1959 				struct macb_queue *queue,
1960 				struct sk_buff *skb,
1961 				unsigned int hdrlen)
1962 {
1963 	dma_addr_t mapping;
1964 	unsigned int len, entry, i, tx_head = queue->tx_head;
1965 	struct macb_tx_skb *tx_skb = NULL;
1966 	struct macb_dma_desc *desc;
1967 	unsigned int offset, size, count = 0;
1968 	unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
1969 	unsigned int eof = 1, mss_mfs = 0;
1970 	u32 ctrl, lso_ctrl = 0, seq_ctrl = 0;
1971 
1972 	/* LSO */
1973 	if (skb_shinfo(skb)->gso_size != 0) {
1974 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
1975 			/* UDP - UFO */
1976 			lso_ctrl = MACB_LSO_UFO_ENABLE;
1977 		else
1978 			/* TCP - TSO */
1979 			lso_ctrl = MACB_LSO_TSO_ENABLE;
1980 	}
1981 
1982 	/* First, map non-paged data */
1983 	len = skb_headlen(skb);
1984 
1985 	/* first buffer length */
1986 	size = hdrlen;
1987 
1988 	offset = 0;
1989 	while (len) {
1990 		entry = macb_tx_ring_wrap(bp, tx_head);
1991 		tx_skb = &queue->tx_skb[entry];
1992 
1993 		mapping = dma_map_single(&bp->pdev->dev,
1994 					 skb->data + offset,
1995 					 size, DMA_TO_DEVICE);
1996 		if (dma_mapping_error(&bp->pdev->dev, mapping))
1997 			goto dma_error;
1998 
1999 		/* Save info to properly release resources */
2000 		tx_skb->skb = NULL;
2001 		tx_skb->mapping = mapping;
2002 		tx_skb->size = size;
2003 		tx_skb->mapped_as_page = false;
2004 
2005 		len -= size;
2006 		offset += size;
2007 		count++;
2008 		tx_head++;
2009 
2010 		size = min(len, bp->max_tx_length);
2011 	}
2012 
2013 	/* Then, map paged data from fragments */
2014 	for (f = 0; f < nr_frags; f++) {
2015 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2016 
2017 		len = skb_frag_size(frag);
2018 		offset = 0;
2019 		while (len) {
2020 			size = min(len, bp->max_tx_length);
2021 			entry = macb_tx_ring_wrap(bp, tx_head);
2022 			tx_skb = &queue->tx_skb[entry];
2023 
2024 			mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
2025 						   offset, size, DMA_TO_DEVICE);
2026 			if (dma_mapping_error(&bp->pdev->dev, mapping))
2027 				goto dma_error;
2028 
2029 			/* Save info to properly release resources */
2030 			tx_skb->skb = NULL;
2031 			tx_skb->mapping = mapping;
2032 			tx_skb->size = size;
2033 			tx_skb->mapped_as_page = true;
2034 
2035 			len -= size;
2036 			offset += size;
2037 			count++;
2038 			tx_head++;
2039 		}
2040 	}
2041 
2042 	/* Should never happen */
2043 	if (unlikely(!tx_skb)) {
2044 		netdev_err(bp->dev, "BUG! empty skb!\n");
2045 		return 0;
2046 	}
2047 
2048 	/* This is the last buffer of the frame: save socket buffer */
2049 	tx_skb->skb = skb;
2050 
2051 	/* Update TX ring: update buffer descriptors in reverse order
2052 	 * to avoid race condition
2053 	 */
2054 
2055 	/* Set 'TX_USED' bit in buffer descriptor at tx_head position
2056 	 * to set the end of TX queue
2057 	 */
2058 	i = tx_head;
2059 	entry = macb_tx_ring_wrap(bp, i);
2060 	ctrl = MACB_BIT(TX_USED);
2061 	desc = macb_tx_desc(queue, entry);
2062 	desc->ctrl = ctrl;
2063 
2064 	if (lso_ctrl) {
2065 		if (lso_ctrl == MACB_LSO_UFO_ENABLE)
2066 			/* include header and FCS in value given to h/w */
2067 			mss_mfs = skb_shinfo(skb)->gso_size +
2068 					skb_transport_offset(skb) +
2069 					ETH_FCS_LEN;
2070 		else /* TSO */ {
2071 			mss_mfs = skb_shinfo(skb)->gso_size;
2072 			/* TCP Sequence Number Source Select
2073 			 * can be set only for TSO
2074 			 */
2075 			seq_ctrl = 0;
2076 		}
2077 	}
2078 
2079 	do {
2080 		i--;
2081 		entry = macb_tx_ring_wrap(bp, i);
2082 		tx_skb = &queue->tx_skb[entry];
2083 		desc = macb_tx_desc(queue, entry);
2084 
2085 		ctrl = (u32)tx_skb->size;
2086 		if (eof) {
2087 			ctrl |= MACB_BIT(TX_LAST);
2088 			eof = 0;
2089 		}
2090 		if (unlikely(entry == (bp->tx_ring_size - 1)))
2091 			ctrl |= MACB_BIT(TX_WRAP);
2092 
2093 		/* First descriptor is header descriptor */
2094 		if (i == queue->tx_head) {
2095 			ctrl |= MACB_BF(TX_LSO, lso_ctrl);
2096 			ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl);
2097 			if ((bp->dev->features & NETIF_F_HW_CSUM) &&
2098 			    skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl &&
2099 			    !ptp_one_step_sync(skb))
2100 				ctrl |= MACB_BIT(TX_NOCRC);
2101 		} else
2102 			/* Only set MSS/MFS on payload descriptors
2103 			 * (second or later descriptor)
2104 			 */
2105 			ctrl |= MACB_BF(MSS_MFS, mss_mfs);
2106 
2107 		/* Set TX buffer descriptor */
2108 		macb_set_addr(bp, desc, tx_skb->mapping);
2109 		/* desc->addr must be visible to hardware before clearing
2110 		 * 'TX_USED' bit in desc->ctrl.
2111 		 */
2112 		wmb();
2113 		desc->ctrl = ctrl;
2114 	} while (i != queue->tx_head);
2115 
2116 	queue->tx_head = tx_head;
2117 
2118 	return count;
2119 
2120 dma_error:
2121 	netdev_err(bp->dev, "TX DMA map failed\n");
2122 
2123 	for (i = queue->tx_head; i != tx_head; i++) {
2124 		tx_skb = macb_tx_skb(queue, i);
2125 
2126 		macb_tx_unmap(bp, tx_skb, 0);
2127 	}
2128 
2129 	return 0;
2130 }
2131 
2132 static netdev_features_t macb_features_check(struct sk_buff *skb,
2133 					     struct net_device *dev,
2134 					     netdev_features_t features)
2135 {
2136 	unsigned int nr_frags, f;
2137 	unsigned int hdrlen;
2138 
2139 	/* Validate LSO compatibility */
2140 
2141 	/* there is only one buffer or protocol is not UDP */
2142 	if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP))
2143 		return features;
2144 
2145 	/* length of header */
2146 	hdrlen = skb_transport_offset(skb);
2147 
2148 	/* For UFO only:
2149 	 * When software supplies two or more payload buffers all payload buffers
2150 	 * apart from the last must be a multiple of 8 bytes in size.
2151 	 */
2152 	if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN))
2153 		return features & ~MACB_NETIF_LSO;
2154 
2155 	nr_frags = skb_shinfo(skb)->nr_frags;
2156 	/* No need to check last fragment */
2157 	nr_frags--;
2158 	for (f = 0; f < nr_frags; f++) {
2159 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2160 
2161 		if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN))
2162 			return features & ~MACB_NETIF_LSO;
2163 	}
2164 	return features;
2165 }
2166 
2167 static inline int macb_clear_csum(struct sk_buff *skb)
2168 {
2169 	/* no change for packets without checksum offloading */
2170 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2171 		return 0;
2172 
2173 	/* make sure we can modify the header */
2174 	if (unlikely(skb_cow_head(skb, 0)))
2175 		return -1;
2176 
2177 	/* initialize checksum field
2178 	 * This is required - at least for Zynq, which otherwise calculates
2179 	 * wrong UDP header checksums for UDP packets with UDP data len <=2
2180 	 */
2181 	*(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0;
2182 	return 0;
2183 }
2184 
2185 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev)
2186 {
2187 	bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) ||
2188 		      skb_is_nonlinear(*skb);
2189 	int padlen = ETH_ZLEN - (*skb)->len;
2190 	int headroom = skb_headroom(*skb);
2191 	int tailroom = skb_tailroom(*skb);
2192 	struct sk_buff *nskb;
2193 	u32 fcs;
2194 
2195 	if (!(ndev->features & NETIF_F_HW_CSUM) ||
2196 	    !((*skb)->ip_summed != CHECKSUM_PARTIAL) ||
2197 	    skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb))
2198 		return 0;
2199 
2200 	if (padlen <= 0) {
2201 		/* FCS could be appeded to tailroom. */
2202 		if (tailroom >= ETH_FCS_LEN)
2203 			goto add_fcs;
2204 		/* FCS could be appeded by moving data to headroom. */
2205 		else if (!cloned && headroom + tailroom >= ETH_FCS_LEN)
2206 			padlen = 0;
2207 		/* No room for FCS, need to reallocate skb. */
2208 		else
2209 			padlen = ETH_FCS_LEN;
2210 	} else {
2211 		/* Add room for FCS. */
2212 		padlen += ETH_FCS_LEN;
2213 	}
2214 
2215 	if (!cloned && headroom + tailroom >= padlen) {
2216 		(*skb)->data = memmove((*skb)->head, (*skb)->data, (*skb)->len);
2217 		skb_set_tail_pointer(*skb, (*skb)->len);
2218 	} else {
2219 		nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC);
2220 		if (!nskb)
2221 			return -ENOMEM;
2222 
2223 		dev_consume_skb_any(*skb);
2224 		*skb = nskb;
2225 	}
2226 
2227 	if (padlen > ETH_FCS_LEN)
2228 		skb_put_zero(*skb, padlen - ETH_FCS_LEN);
2229 
2230 add_fcs:
2231 	/* set FCS to packet */
2232 	fcs = crc32_le(~0, (*skb)->data, (*skb)->len);
2233 	fcs = ~fcs;
2234 
2235 	skb_put_u8(*skb, fcs		& 0xff);
2236 	skb_put_u8(*skb, (fcs >> 8)	& 0xff);
2237 	skb_put_u8(*skb, (fcs >> 16)	& 0xff);
2238 	skb_put_u8(*skb, (fcs >> 24)	& 0xff);
2239 
2240 	return 0;
2241 }
2242 
2243 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
2244 {
2245 	u16 queue_index = skb_get_queue_mapping(skb);
2246 	struct macb *bp = netdev_priv(dev);
2247 	struct macb_queue *queue = &bp->queues[queue_index];
2248 	unsigned int desc_cnt, nr_frags, frag_size, f;
2249 	unsigned int hdrlen;
2250 	bool is_lso;
2251 	netdev_tx_t ret = NETDEV_TX_OK;
2252 
2253 	if (macb_clear_csum(skb)) {
2254 		dev_kfree_skb_any(skb);
2255 		return ret;
2256 	}
2257 
2258 	if (macb_pad_and_fcs(&skb, dev)) {
2259 		dev_kfree_skb_any(skb);
2260 		return ret;
2261 	}
2262 
2263 	is_lso = (skb_shinfo(skb)->gso_size != 0);
2264 
2265 	if (is_lso) {
2266 		/* length of headers */
2267 		if (ip_hdr(skb)->protocol == IPPROTO_UDP)
2268 			/* only queue eth + ip headers separately for UDP */
2269 			hdrlen = skb_transport_offset(skb);
2270 		else
2271 			hdrlen = skb_tcp_all_headers(skb);
2272 		if (skb_headlen(skb) < hdrlen) {
2273 			netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n");
2274 			/* if this is required, would need to copy to single buffer */
2275 			return NETDEV_TX_BUSY;
2276 		}
2277 	} else
2278 		hdrlen = min(skb_headlen(skb), bp->max_tx_length);
2279 
2280 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
2281 	netdev_vdbg(bp->dev,
2282 		    "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
2283 		    queue_index, skb->len, skb->head, skb->data,
2284 		    skb_tail_pointer(skb), skb_end_pointer(skb));
2285 	print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
2286 		       skb->data, 16, true);
2287 #endif
2288 
2289 	/* Count how many TX buffer descriptors are needed to send this
2290 	 * socket buffer: skb fragments of jumbo frames may need to be
2291 	 * split into many buffer descriptors.
2292 	 */
2293 	if (is_lso && (skb_headlen(skb) > hdrlen))
2294 		/* extra header descriptor if also payload in first buffer */
2295 		desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1;
2296 	else
2297 		desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length);
2298 	nr_frags = skb_shinfo(skb)->nr_frags;
2299 	for (f = 0; f < nr_frags; f++) {
2300 		frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2301 		desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length);
2302 	}
2303 
2304 	spin_lock_bh(&queue->tx_ptr_lock);
2305 
2306 	/* This is a hard error, log it. */
2307 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail,
2308 		       bp->tx_ring_size) < desc_cnt) {
2309 		netif_stop_subqueue(dev, queue_index);
2310 		netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
2311 			   queue->tx_head, queue->tx_tail);
2312 		ret = NETDEV_TX_BUSY;
2313 		goto unlock;
2314 	}
2315 
2316 	/* Map socket buffer for DMA transfer */
2317 	if (!macb_tx_map(bp, queue, skb, hdrlen)) {
2318 		dev_kfree_skb_any(skb);
2319 		goto unlock;
2320 	}
2321 
2322 	/* Make newly initialized descriptor visible to hardware */
2323 	wmb();
2324 	skb_tx_timestamp(skb);
2325 
2326 	spin_lock_irq(&bp->lock);
2327 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
2328 	spin_unlock_irq(&bp->lock);
2329 
2330 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1)
2331 		netif_stop_subqueue(dev, queue_index);
2332 
2333 unlock:
2334 	spin_unlock_bh(&queue->tx_ptr_lock);
2335 
2336 	return ret;
2337 }
2338 
2339 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
2340 {
2341 	if (!macb_is_gem(bp)) {
2342 		bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
2343 	} else {
2344 		bp->rx_buffer_size = size;
2345 
2346 		if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
2347 			netdev_dbg(bp->dev,
2348 				   "RX buffer must be multiple of %d bytes, expanding\n",
2349 				   RX_BUFFER_MULTIPLE);
2350 			bp->rx_buffer_size =
2351 				roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
2352 		}
2353 	}
2354 
2355 	netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n",
2356 		   bp->dev->mtu, bp->rx_buffer_size);
2357 }
2358 
2359 static void gem_free_rx_buffers(struct macb *bp)
2360 {
2361 	struct sk_buff		*skb;
2362 	struct macb_dma_desc	*desc;
2363 	struct macb_queue *queue;
2364 	dma_addr_t		addr;
2365 	unsigned int q;
2366 	int i;
2367 
2368 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2369 		if (!queue->rx_skbuff)
2370 			continue;
2371 
2372 		for (i = 0; i < bp->rx_ring_size; i++) {
2373 			skb = queue->rx_skbuff[i];
2374 
2375 			if (!skb)
2376 				continue;
2377 
2378 			desc = macb_rx_desc(queue, i);
2379 			addr = macb_get_addr(bp, desc);
2380 
2381 			dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
2382 					DMA_FROM_DEVICE);
2383 			dev_kfree_skb_any(skb);
2384 			skb = NULL;
2385 		}
2386 
2387 		kfree(queue->rx_skbuff);
2388 		queue->rx_skbuff = NULL;
2389 	}
2390 }
2391 
2392 static void macb_free_rx_buffers(struct macb *bp)
2393 {
2394 	struct macb_queue *queue = &bp->queues[0];
2395 
2396 	if (queue->rx_buffers) {
2397 		dma_free_coherent(&bp->pdev->dev,
2398 				  bp->rx_ring_size * bp->rx_buffer_size,
2399 				  queue->rx_buffers, queue->rx_buffers_dma);
2400 		queue->rx_buffers = NULL;
2401 	}
2402 }
2403 
2404 static void macb_free_consistent(struct macb *bp)
2405 {
2406 	struct macb_queue *queue;
2407 	unsigned int q;
2408 	int size;
2409 
2410 	bp->macbgem_ops.mog_free_rx_buffers(bp);
2411 
2412 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2413 		kfree(queue->tx_skb);
2414 		queue->tx_skb = NULL;
2415 		if (queue->tx_ring) {
2416 			size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2417 			dma_free_coherent(&bp->pdev->dev, size,
2418 					  queue->tx_ring, queue->tx_ring_dma);
2419 			queue->tx_ring = NULL;
2420 		}
2421 		if (queue->rx_ring) {
2422 			size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2423 			dma_free_coherent(&bp->pdev->dev, size,
2424 					  queue->rx_ring, queue->rx_ring_dma);
2425 			queue->rx_ring = NULL;
2426 		}
2427 	}
2428 }
2429 
2430 static int gem_alloc_rx_buffers(struct macb *bp)
2431 {
2432 	struct macb_queue *queue;
2433 	unsigned int q;
2434 	int size;
2435 
2436 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2437 		size = bp->rx_ring_size * sizeof(struct sk_buff *);
2438 		queue->rx_skbuff = kzalloc(size, GFP_KERNEL);
2439 		if (!queue->rx_skbuff)
2440 			return -ENOMEM;
2441 		else
2442 			netdev_dbg(bp->dev,
2443 				   "Allocated %d RX struct sk_buff entries at %p\n",
2444 				   bp->rx_ring_size, queue->rx_skbuff);
2445 	}
2446 	return 0;
2447 }
2448 
2449 static int macb_alloc_rx_buffers(struct macb *bp)
2450 {
2451 	struct macb_queue *queue = &bp->queues[0];
2452 	int size;
2453 
2454 	size = bp->rx_ring_size * bp->rx_buffer_size;
2455 	queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
2456 					    &queue->rx_buffers_dma, GFP_KERNEL);
2457 	if (!queue->rx_buffers)
2458 		return -ENOMEM;
2459 
2460 	netdev_dbg(bp->dev,
2461 		   "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
2462 		   size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers);
2463 	return 0;
2464 }
2465 
2466 static int macb_alloc_consistent(struct macb *bp)
2467 {
2468 	struct macb_queue *queue;
2469 	unsigned int q;
2470 	int size;
2471 
2472 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2473 		size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch;
2474 		queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2475 						    &queue->tx_ring_dma,
2476 						    GFP_KERNEL);
2477 		if (!queue->tx_ring)
2478 			goto out_err;
2479 		netdev_dbg(bp->dev,
2480 			   "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
2481 			   q, size, (unsigned long)queue->tx_ring_dma,
2482 			   queue->tx_ring);
2483 
2484 		size = bp->tx_ring_size * sizeof(struct macb_tx_skb);
2485 		queue->tx_skb = kmalloc(size, GFP_KERNEL);
2486 		if (!queue->tx_skb)
2487 			goto out_err;
2488 
2489 		size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch;
2490 		queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
2491 						 &queue->rx_ring_dma, GFP_KERNEL);
2492 		if (!queue->rx_ring)
2493 			goto out_err;
2494 		netdev_dbg(bp->dev,
2495 			   "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
2496 			   size, (unsigned long)queue->rx_ring_dma, queue->rx_ring);
2497 	}
2498 	if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
2499 		goto out_err;
2500 
2501 	return 0;
2502 
2503 out_err:
2504 	macb_free_consistent(bp);
2505 	return -ENOMEM;
2506 }
2507 
2508 static void gem_init_rings(struct macb *bp)
2509 {
2510 	struct macb_queue *queue;
2511 	struct macb_dma_desc *desc = NULL;
2512 	unsigned int q;
2513 	int i;
2514 
2515 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2516 		for (i = 0; i < bp->tx_ring_size; i++) {
2517 			desc = macb_tx_desc(queue, i);
2518 			macb_set_addr(bp, desc, 0);
2519 			desc->ctrl = MACB_BIT(TX_USED);
2520 		}
2521 		desc->ctrl |= MACB_BIT(TX_WRAP);
2522 		queue->tx_head = 0;
2523 		queue->tx_tail = 0;
2524 
2525 		queue->rx_tail = 0;
2526 		queue->rx_prepared_head = 0;
2527 
2528 		gem_rx_refill(queue);
2529 	}
2530 
2531 }
2532 
2533 static void macb_init_rings(struct macb *bp)
2534 {
2535 	int i;
2536 	struct macb_dma_desc *desc = NULL;
2537 
2538 	macb_init_rx_ring(&bp->queues[0]);
2539 
2540 	for (i = 0; i < bp->tx_ring_size; i++) {
2541 		desc = macb_tx_desc(&bp->queues[0], i);
2542 		macb_set_addr(bp, desc, 0);
2543 		desc->ctrl = MACB_BIT(TX_USED);
2544 	}
2545 	bp->queues[0].tx_head = 0;
2546 	bp->queues[0].tx_tail = 0;
2547 	desc->ctrl |= MACB_BIT(TX_WRAP);
2548 }
2549 
2550 static void macb_reset_hw(struct macb *bp)
2551 {
2552 	struct macb_queue *queue;
2553 	unsigned int q;
2554 	u32 ctrl = macb_readl(bp, NCR);
2555 
2556 	/* Disable RX and TX (XXX: Should we halt the transmission
2557 	 * more gracefully?)
2558 	 */
2559 	ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE));
2560 
2561 	/* Clear the stats registers (XXX: Update stats first?) */
2562 	ctrl |= MACB_BIT(CLRSTAT);
2563 
2564 	macb_writel(bp, NCR, ctrl);
2565 
2566 	/* Clear all status flags */
2567 	macb_writel(bp, TSR, -1);
2568 	macb_writel(bp, RSR, -1);
2569 
2570 	/* Disable all interrupts */
2571 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2572 		queue_writel(queue, IDR, -1);
2573 		queue_readl(queue, ISR);
2574 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
2575 			queue_writel(queue, ISR, -1);
2576 	}
2577 }
2578 
2579 static u32 gem_mdc_clk_div(struct macb *bp)
2580 {
2581 	u32 config;
2582 	unsigned long pclk_hz = clk_get_rate(bp->pclk);
2583 
2584 	if (pclk_hz <= 20000000)
2585 		config = GEM_BF(CLK, GEM_CLK_DIV8);
2586 	else if (pclk_hz <= 40000000)
2587 		config = GEM_BF(CLK, GEM_CLK_DIV16);
2588 	else if (pclk_hz <= 80000000)
2589 		config = GEM_BF(CLK, GEM_CLK_DIV32);
2590 	else if (pclk_hz <= 120000000)
2591 		config = GEM_BF(CLK, GEM_CLK_DIV48);
2592 	else if (pclk_hz <= 160000000)
2593 		config = GEM_BF(CLK, GEM_CLK_DIV64);
2594 	else
2595 		config = GEM_BF(CLK, GEM_CLK_DIV96);
2596 
2597 	return config;
2598 }
2599 
2600 static u32 macb_mdc_clk_div(struct macb *bp)
2601 {
2602 	u32 config;
2603 	unsigned long pclk_hz;
2604 
2605 	if (macb_is_gem(bp))
2606 		return gem_mdc_clk_div(bp);
2607 
2608 	pclk_hz = clk_get_rate(bp->pclk);
2609 	if (pclk_hz <= 20000000)
2610 		config = MACB_BF(CLK, MACB_CLK_DIV8);
2611 	else if (pclk_hz <= 40000000)
2612 		config = MACB_BF(CLK, MACB_CLK_DIV16);
2613 	else if (pclk_hz <= 80000000)
2614 		config = MACB_BF(CLK, MACB_CLK_DIV32);
2615 	else
2616 		config = MACB_BF(CLK, MACB_CLK_DIV64);
2617 
2618 	return config;
2619 }
2620 
2621 /* Get the DMA bus width field of the network configuration register that we
2622  * should program.  We find the width from decoding the design configuration
2623  * register to find the maximum supported data bus width.
2624  */
2625 static u32 macb_dbw(struct macb *bp)
2626 {
2627 	if (!macb_is_gem(bp))
2628 		return 0;
2629 
2630 	switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
2631 	case 4:
2632 		return GEM_BF(DBW, GEM_DBW128);
2633 	case 2:
2634 		return GEM_BF(DBW, GEM_DBW64);
2635 	case 1:
2636 	default:
2637 		return GEM_BF(DBW, GEM_DBW32);
2638 	}
2639 }
2640 
2641 /* Configure the receive DMA engine
2642  * - use the correct receive buffer size
2643  * - set best burst length for DMA operations
2644  *   (if not supported by FIFO, it will fallback to default)
2645  * - set both rx/tx packet buffers to full memory size
2646  * These are configurable parameters for GEM.
2647  */
2648 static void macb_configure_dma(struct macb *bp)
2649 {
2650 	struct macb_queue *queue;
2651 	u32 buffer_size;
2652 	unsigned int q;
2653 	u32 dmacfg;
2654 
2655 	buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE;
2656 	if (macb_is_gem(bp)) {
2657 		dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
2658 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2659 			if (q)
2660 				queue_writel(queue, RBQS, buffer_size);
2661 			else
2662 				dmacfg |= GEM_BF(RXBS, buffer_size);
2663 		}
2664 		if (bp->dma_burst_length)
2665 			dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
2666 		dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
2667 		dmacfg &= ~GEM_BIT(ENDIA_PKT);
2668 
2669 		if (bp->native_io)
2670 			dmacfg &= ~GEM_BIT(ENDIA_DESC);
2671 		else
2672 			dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
2673 
2674 		if (bp->dev->features & NETIF_F_HW_CSUM)
2675 			dmacfg |= GEM_BIT(TXCOEN);
2676 		else
2677 			dmacfg &= ~GEM_BIT(TXCOEN);
2678 
2679 		dmacfg &= ~GEM_BIT(ADDR64);
2680 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
2681 		if (bp->hw_dma_cap & HW_DMA_CAP_64B)
2682 			dmacfg |= GEM_BIT(ADDR64);
2683 #endif
2684 #ifdef CONFIG_MACB_USE_HWSTAMP
2685 		if (bp->hw_dma_cap & HW_DMA_CAP_PTP)
2686 			dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT);
2687 #endif
2688 		netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
2689 			   dmacfg);
2690 		gem_writel(bp, DMACFG, dmacfg);
2691 	}
2692 }
2693 
2694 static void macb_init_hw(struct macb *bp)
2695 {
2696 	u32 config;
2697 
2698 	macb_reset_hw(bp);
2699 	macb_set_hwaddr(bp);
2700 
2701 	config = macb_mdc_clk_div(bp);
2702 	config |= MACB_BF(RBOF, NET_IP_ALIGN);	/* Make eth data aligned */
2703 	config |= MACB_BIT(DRFCS);		/* Discard Rx FCS */
2704 	if (bp->caps & MACB_CAPS_JUMBO)
2705 		config |= MACB_BIT(JFRAME);	/* Enable jumbo frames */
2706 	else
2707 		config |= MACB_BIT(BIG);	/* Receive oversized frames */
2708 	if (bp->dev->flags & IFF_PROMISC)
2709 		config |= MACB_BIT(CAF);	/* Copy All Frames */
2710 	else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
2711 		config |= GEM_BIT(RXCOEN);
2712 	if (!(bp->dev->flags & IFF_BROADCAST))
2713 		config |= MACB_BIT(NBC);	/* No BroadCast */
2714 	config |= macb_dbw(bp);
2715 	macb_writel(bp, NCFGR, config);
2716 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
2717 		gem_writel(bp, JML, bp->jumbo_max_len);
2718 	bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK;
2719 	if (bp->caps & MACB_CAPS_JUMBO)
2720 		bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK;
2721 
2722 	macb_configure_dma(bp);
2723 }
2724 
2725 /* The hash address register is 64 bits long and takes up two
2726  * locations in the memory map.  The least significant bits are stored
2727  * in EMAC_HSL and the most significant bits in EMAC_HSH.
2728  *
2729  * The unicast hash enable and the multicast hash enable bits in the
2730  * network configuration register enable the reception of hash matched
2731  * frames. The destination address is reduced to a 6 bit index into
2732  * the 64 bit hash register using the following hash function.  The
2733  * hash function is an exclusive or of every sixth bit of the
2734  * destination address.
2735  *
2736  * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
2737  * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
2738  * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
2739  * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
2740  * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
2741  * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
2742  *
2743  * da[0] represents the least significant bit of the first byte
2744  * received, that is, the multicast/unicast indicator, and da[47]
2745  * represents the most significant bit of the last byte received.  If
2746  * the hash index, hi[n], points to a bit that is set in the hash
2747  * register then the frame will be matched according to whether the
2748  * frame is multicast or unicast.  A multicast match will be signalled
2749  * if the multicast hash enable bit is set, da[0] is 1 and the hash
2750  * index points to a bit set in the hash register.  A unicast match
2751  * will be signalled if the unicast hash enable bit is set, da[0] is 0
2752  * and the hash index points to a bit set in the hash register.  To
2753  * receive all multicast frames, the hash register should be set with
2754  * all ones and the multicast hash enable bit should be set in the
2755  * network configuration register.
2756  */
2757 
2758 static inline int hash_bit_value(int bitnr, __u8 *addr)
2759 {
2760 	if (addr[bitnr / 8] & (1 << (bitnr % 8)))
2761 		return 1;
2762 	return 0;
2763 }
2764 
2765 /* Return the hash index value for the specified address. */
2766 static int hash_get_index(__u8 *addr)
2767 {
2768 	int i, j, bitval;
2769 	int hash_index = 0;
2770 
2771 	for (j = 0; j < 6; j++) {
2772 		for (i = 0, bitval = 0; i < 8; i++)
2773 			bitval ^= hash_bit_value(i * 6 + j, addr);
2774 
2775 		hash_index |= (bitval << j);
2776 	}
2777 
2778 	return hash_index;
2779 }
2780 
2781 /* Add multicast addresses to the internal multicast-hash table. */
2782 static void macb_sethashtable(struct net_device *dev)
2783 {
2784 	struct netdev_hw_addr *ha;
2785 	unsigned long mc_filter[2];
2786 	unsigned int bitnr;
2787 	struct macb *bp = netdev_priv(dev);
2788 
2789 	mc_filter[0] = 0;
2790 	mc_filter[1] = 0;
2791 
2792 	netdev_for_each_mc_addr(ha, dev) {
2793 		bitnr = hash_get_index(ha->addr);
2794 		mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
2795 	}
2796 
2797 	macb_or_gem_writel(bp, HRB, mc_filter[0]);
2798 	macb_or_gem_writel(bp, HRT, mc_filter[1]);
2799 }
2800 
2801 /* Enable/Disable promiscuous and multicast modes. */
2802 static void macb_set_rx_mode(struct net_device *dev)
2803 {
2804 	unsigned long cfg;
2805 	struct macb *bp = netdev_priv(dev);
2806 
2807 	cfg = macb_readl(bp, NCFGR);
2808 
2809 	if (dev->flags & IFF_PROMISC) {
2810 		/* Enable promiscuous mode */
2811 		cfg |= MACB_BIT(CAF);
2812 
2813 		/* Disable RX checksum offload */
2814 		if (macb_is_gem(bp))
2815 			cfg &= ~GEM_BIT(RXCOEN);
2816 	} else {
2817 		/* Disable promiscuous mode */
2818 		cfg &= ~MACB_BIT(CAF);
2819 
2820 		/* Enable RX checksum offload only if requested */
2821 		if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
2822 			cfg |= GEM_BIT(RXCOEN);
2823 	}
2824 
2825 	if (dev->flags & IFF_ALLMULTI) {
2826 		/* Enable all multicast mode */
2827 		macb_or_gem_writel(bp, HRB, -1);
2828 		macb_or_gem_writel(bp, HRT, -1);
2829 		cfg |= MACB_BIT(NCFGR_MTI);
2830 	} else if (!netdev_mc_empty(dev)) {
2831 		/* Enable specific multicasts */
2832 		macb_sethashtable(dev);
2833 		cfg |= MACB_BIT(NCFGR_MTI);
2834 	} else if (dev->flags & (~IFF_ALLMULTI)) {
2835 		/* Disable all multicast mode */
2836 		macb_or_gem_writel(bp, HRB, 0);
2837 		macb_or_gem_writel(bp, HRT, 0);
2838 		cfg &= ~MACB_BIT(NCFGR_MTI);
2839 	}
2840 
2841 	macb_writel(bp, NCFGR, cfg);
2842 }
2843 
2844 static int macb_open(struct net_device *dev)
2845 {
2846 	size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
2847 	struct macb *bp = netdev_priv(dev);
2848 	struct macb_queue *queue;
2849 	unsigned int q;
2850 	int err;
2851 
2852 	netdev_dbg(bp->dev, "open\n");
2853 
2854 	err = pm_runtime_resume_and_get(&bp->pdev->dev);
2855 	if (err < 0)
2856 		return err;
2857 
2858 	/* RX buffers initialization */
2859 	macb_init_rx_buffer_size(bp, bufsz);
2860 
2861 	err = macb_alloc_consistent(bp);
2862 	if (err) {
2863 		netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
2864 			   err);
2865 		goto pm_exit;
2866 	}
2867 
2868 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2869 		napi_enable(&queue->napi_rx);
2870 		napi_enable(&queue->napi_tx);
2871 	}
2872 
2873 	macb_init_hw(bp);
2874 
2875 	err = phy_power_on(bp->sgmii_phy);
2876 	if (err)
2877 		goto reset_hw;
2878 
2879 	err = macb_phylink_connect(bp);
2880 	if (err)
2881 		goto phy_off;
2882 
2883 	netif_tx_start_all_queues(dev);
2884 
2885 	if (bp->ptp_info)
2886 		bp->ptp_info->ptp_init(dev);
2887 
2888 	return 0;
2889 
2890 phy_off:
2891 	phy_power_off(bp->sgmii_phy);
2892 
2893 reset_hw:
2894 	macb_reset_hw(bp);
2895 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2896 		napi_disable(&queue->napi_rx);
2897 		napi_disable(&queue->napi_tx);
2898 	}
2899 	macb_free_consistent(bp);
2900 pm_exit:
2901 	pm_runtime_put_sync(&bp->pdev->dev);
2902 	return err;
2903 }
2904 
2905 static int macb_close(struct net_device *dev)
2906 {
2907 	struct macb *bp = netdev_priv(dev);
2908 	struct macb_queue *queue;
2909 	unsigned long flags;
2910 	unsigned int q;
2911 
2912 	netif_tx_stop_all_queues(dev);
2913 
2914 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
2915 		napi_disable(&queue->napi_rx);
2916 		napi_disable(&queue->napi_tx);
2917 	}
2918 
2919 	phylink_stop(bp->phylink);
2920 	phylink_disconnect_phy(bp->phylink);
2921 
2922 	phy_power_off(bp->sgmii_phy);
2923 
2924 	spin_lock_irqsave(&bp->lock, flags);
2925 	macb_reset_hw(bp);
2926 	netif_carrier_off(dev);
2927 	spin_unlock_irqrestore(&bp->lock, flags);
2928 
2929 	macb_free_consistent(bp);
2930 
2931 	if (bp->ptp_info)
2932 		bp->ptp_info->ptp_remove(dev);
2933 
2934 	pm_runtime_put(&bp->pdev->dev);
2935 
2936 	return 0;
2937 }
2938 
2939 static int macb_change_mtu(struct net_device *dev, int new_mtu)
2940 {
2941 	if (netif_running(dev))
2942 		return -EBUSY;
2943 
2944 	dev->mtu = new_mtu;
2945 
2946 	return 0;
2947 }
2948 
2949 static void gem_update_stats(struct macb *bp)
2950 {
2951 	struct macb_queue *queue;
2952 	unsigned int i, q, idx;
2953 	unsigned long *stat;
2954 
2955 	u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
2956 
2957 	for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
2958 		u32 offset = gem_statistics[i].offset;
2959 		u64 val = bp->macb_reg_readl(bp, offset);
2960 
2961 		bp->ethtool_stats[i] += val;
2962 		*p += val;
2963 
2964 		if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
2965 			/* Add GEM_OCTTXH, GEM_OCTRXH */
2966 			val = bp->macb_reg_readl(bp, offset + 4);
2967 			bp->ethtool_stats[i] += ((u64)val) << 32;
2968 			*(++p) += val;
2969 		}
2970 	}
2971 
2972 	idx = GEM_STATS_LEN;
2973 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
2974 		for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat)
2975 			bp->ethtool_stats[idx++] = *stat;
2976 }
2977 
2978 static struct net_device_stats *gem_get_stats(struct macb *bp)
2979 {
2980 	struct gem_stats *hwstat = &bp->hw_stats.gem;
2981 	struct net_device_stats *nstat = &bp->dev->stats;
2982 
2983 	if (!netif_running(bp->dev))
2984 		return nstat;
2985 
2986 	gem_update_stats(bp);
2987 
2988 	nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
2989 			    hwstat->rx_alignment_errors +
2990 			    hwstat->rx_resource_errors +
2991 			    hwstat->rx_overruns +
2992 			    hwstat->rx_oversize_frames +
2993 			    hwstat->rx_jabbers +
2994 			    hwstat->rx_undersized_frames +
2995 			    hwstat->rx_length_field_frame_errors);
2996 	nstat->tx_errors = (hwstat->tx_late_collisions +
2997 			    hwstat->tx_excessive_collisions +
2998 			    hwstat->tx_underrun +
2999 			    hwstat->tx_carrier_sense_errors);
3000 	nstat->multicast = hwstat->rx_multicast_frames;
3001 	nstat->collisions = (hwstat->tx_single_collision_frames +
3002 			     hwstat->tx_multiple_collision_frames +
3003 			     hwstat->tx_excessive_collisions);
3004 	nstat->rx_length_errors = (hwstat->rx_oversize_frames +
3005 				   hwstat->rx_jabbers +
3006 				   hwstat->rx_undersized_frames +
3007 				   hwstat->rx_length_field_frame_errors);
3008 	nstat->rx_over_errors = hwstat->rx_resource_errors;
3009 	nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
3010 	nstat->rx_frame_errors = hwstat->rx_alignment_errors;
3011 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3012 	nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
3013 	nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
3014 	nstat->tx_fifo_errors = hwstat->tx_underrun;
3015 
3016 	return nstat;
3017 }
3018 
3019 static void gem_get_ethtool_stats(struct net_device *dev,
3020 				  struct ethtool_stats *stats, u64 *data)
3021 {
3022 	struct macb *bp;
3023 
3024 	bp = netdev_priv(dev);
3025 	gem_update_stats(bp);
3026 	memcpy(data, &bp->ethtool_stats, sizeof(u64)
3027 			* (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES));
3028 }
3029 
3030 static int gem_get_sset_count(struct net_device *dev, int sset)
3031 {
3032 	struct macb *bp = netdev_priv(dev);
3033 
3034 	switch (sset) {
3035 	case ETH_SS_STATS:
3036 		return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN;
3037 	default:
3038 		return -EOPNOTSUPP;
3039 	}
3040 }
3041 
3042 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
3043 {
3044 	char stat_string[ETH_GSTRING_LEN];
3045 	struct macb *bp = netdev_priv(dev);
3046 	struct macb_queue *queue;
3047 	unsigned int i;
3048 	unsigned int q;
3049 
3050 	switch (sset) {
3051 	case ETH_SS_STATS:
3052 		for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
3053 			memcpy(p, gem_statistics[i].stat_string,
3054 			       ETH_GSTRING_LEN);
3055 
3056 		for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
3057 			for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) {
3058 				snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s",
3059 						q, queue_statistics[i].stat_string);
3060 				memcpy(p, stat_string, ETH_GSTRING_LEN);
3061 			}
3062 		}
3063 		break;
3064 	}
3065 }
3066 
3067 static struct net_device_stats *macb_get_stats(struct net_device *dev)
3068 {
3069 	struct macb *bp = netdev_priv(dev);
3070 	struct net_device_stats *nstat = &bp->dev->stats;
3071 	struct macb_stats *hwstat = &bp->hw_stats.macb;
3072 
3073 	if (macb_is_gem(bp))
3074 		return gem_get_stats(bp);
3075 
3076 	/* read stats from hardware */
3077 	macb_update_stats(bp);
3078 
3079 	/* Convert HW stats into netdevice stats */
3080 	nstat->rx_errors = (hwstat->rx_fcs_errors +
3081 			    hwstat->rx_align_errors +
3082 			    hwstat->rx_resource_errors +
3083 			    hwstat->rx_overruns +
3084 			    hwstat->rx_oversize_pkts +
3085 			    hwstat->rx_jabbers +
3086 			    hwstat->rx_undersize_pkts +
3087 			    hwstat->rx_length_mismatch);
3088 	nstat->tx_errors = (hwstat->tx_late_cols +
3089 			    hwstat->tx_excessive_cols +
3090 			    hwstat->tx_underruns +
3091 			    hwstat->tx_carrier_errors +
3092 			    hwstat->sqe_test_errors);
3093 	nstat->collisions = (hwstat->tx_single_cols +
3094 			     hwstat->tx_multiple_cols +
3095 			     hwstat->tx_excessive_cols);
3096 	nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
3097 				   hwstat->rx_jabbers +
3098 				   hwstat->rx_undersize_pkts +
3099 				   hwstat->rx_length_mismatch);
3100 	nstat->rx_over_errors = hwstat->rx_resource_errors +
3101 				   hwstat->rx_overruns;
3102 	nstat->rx_crc_errors = hwstat->rx_fcs_errors;
3103 	nstat->rx_frame_errors = hwstat->rx_align_errors;
3104 	nstat->rx_fifo_errors = hwstat->rx_overruns;
3105 	/* XXX: What does "missed" mean? */
3106 	nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
3107 	nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
3108 	nstat->tx_fifo_errors = hwstat->tx_underruns;
3109 	/* Don't know about heartbeat or window errors... */
3110 
3111 	return nstat;
3112 }
3113 
3114 static int macb_get_regs_len(struct net_device *netdev)
3115 {
3116 	return MACB_GREGS_NBR * sizeof(u32);
3117 }
3118 
3119 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
3120 			  void *p)
3121 {
3122 	struct macb *bp = netdev_priv(dev);
3123 	unsigned int tail, head;
3124 	u32 *regs_buff = p;
3125 
3126 	regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
3127 			| MACB_GREGS_VERSION;
3128 
3129 	tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail);
3130 	head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head);
3131 
3132 	regs_buff[0]  = macb_readl(bp, NCR);
3133 	regs_buff[1]  = macb_or_gem_readl(bp, NCFGR);
3134 	regs_buff[2]  = macb_readl(bp, NSR);
3135 	regs_buff[3]  = macb_readl(bp, TSR);
3136 	regs_buff[4]  = macb_readl(bp, RBQP);
3137 	regs_buff[5]  = macb_readl(bp, TBQP);
3138 	regs_buff[6]  = macb_readl(bp, RSR);
3139 	regs_buff[7]  = macb_readl(bp, IMR);
3140 
3141 	regs_buff[8]  = tail;
3142 	regs_buff[9]  = head;
3143 	regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
3144 	regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
3145 
3146 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
3147 		regs_buff[12] = macb_or_gem_readl(bp, USRIO);
3148 	if (macb_is_gem(bp))
3149 		regs_buff[13] = gem_readl(bp, DMACFG);
3150 }
3151 
3152 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3153 {
3154 	struct macb *bp = netdev_priv(netdev);
3155 
3156 	if (bp->wol & MACB_WOL_HAS_MAGIC_PACKET) {
3157 		phylink_ethtool_get_wol(bp->phylink, wol);
3158 		wol->supported |= WAKE_MAGIC;
3159 
3160 		if (bp->wol & MACB_WOL_ENABLED)
3161 			wol->wolopts |= WAKE_MAGIC;
3162 	}
3163 }
3164 
3165 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
3166 {
3167 	struct macb *bp = netdev_priv(netdev);
3168 	int ret;
3169 
3170 	/* Pass the order to phylink layer */
3171 	ret = phylink_ethtool_set_wol(bp->phylink, wol);
3172 	/* Don't manage WoL on MAC if handled by the PHY
3173 	 * or if there's a failure in talking to the PHY
3174 	 */
3175 	if (!ret || ret != -EOPNOTSUPP)
3176 		return ret;
3177 
3178 	if (!(bp->wol & MACB_WOL_HAS_MAGIC_PACKET) ||
3179 	    (wol->wolopts & ~WAKE_MAGIC))
3180 		return -EOPNOTSUPP;
3181 
3182 	if (wol->wolopts & WAKE_MAGIC)
3183 		bp->wol |= MACB_WOL_ENABLED;
3184 	else
3185 		bp->wol &= ~MACB_WOL_ENABLED;
3186 
3187 	device_set_wakeup_enable(&bp->pdev->dev, bp->wol & MACB_WOL_ENABLED);
3188 
3189 	return 0;
3190 }
3191 
3192 static int macb_get_link_ksettings(struct net_device *netdev,
3193 				   struct ethtool_link_ksettings *kset)
3194 {
3195 	struct macb *bp = netdev_priv(netdev);
3196 
3197 	return phylink_ethtool_ksettings_get(bp->phylink, kset);
3198 }
3199 
3200 static int macb_set_link_ksettings(struct net_device *netdev,
3201 				   const struct ethtool_link_ksettings *kset)
3202 {
3203 	struct macb *bp = netdev_priv(netdev);
3204 
3205 	return phylink_ethtool_ksettings_set(bp->phylink, kset);
3206 }
3207 
3208 static void macb_get_ringparam(struct net_device *netdev,
3209 			       struct ethtool_ringparam *ring,
3210 			       struct kernel_ethtool_ringparam *kernel_ring,
3211 			       struct netlink_ext_ack *extack)
3212 {
3213 	struct macb *bp = netdev_priv(netdev);
3214 
3215 	ring->rx_max_pending = MAX_RX_RING_SIZE;
3216 	ring->tx_max_pending = MAX_TX_RING_SIZE;
3217 
3218 	ring->rx_pending = bp->rx_ring_size;
3219 	ring->tx_pending = bp->tx_ring_size;
3220 }
3221 
3222 static int macb_set_ringparam(struct net_device *netdev,
3223 			      struct ethtool_ringparam *ring,
3224 			      struct kernel_ethtool_ringparam *kernel_ring,
3225 			      struct netlink_ext_ack *extack)
3226 {
3227 	struct macb *bp = netdev_priv(netdev);
3228 	u32 new_rx_size, new_tx_size;
3229 	unsigned int reset = 0;
3230 
3231 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
3232 		return -EINVAL;
3233 
3234 	new_rx_size = clamp_t(u32, ring->rx_pending,
3235 			      MIN_RX_RING_SIZE, MAX_RX_RING_SIZE);
3236 	new_rx_size = roundup_pow_of_two(new_rx_size);
3237 
3238 	new_tx_size = clamp_t(u32, ring->tx_pending,
3239 			      MIN_TX_RING_SIZE, MAX_TX_RING_SIZE);
3240 	new_tx_size = roundup_pow_of_two(new_tx_size);
3241 
3242 	if ((new_tx_size == bp->tx_ring_size) &&
3243 	    (new_rx_size == bp->rx_ring_size)) {
3244 		/* nothing to do */
3245 		return 0;
3246 	}
3247 
3248 	if (netif_running(bp->dev)) {
3249 		reset = 1;
3250 		macb_close(bp->dev);
3251 	}
3252 
3253 	bp->rx_ring_size = new_rx_size;
3254 	bp->tx_ring_size = new_tx_size;
3255 
3256 	if (reset)
3257 		macb_open(bp->dev);
3258 
3259 	return 0;
3260 }
3261 
3262 #ifdef CONFIG_MACB_USE_HWSTAMP
3263 static unsigned int gem_get_tsu_rate(struct macb *bp)
3264 {
3265 	struct clk *tsu_clk;
3266 	unsigned int tsu_rate;
3267 
3268 	tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk");
3269 	if (!IS_ERR(tsu_clk))
3270 		tsu_rate = clk_get_rate(tsu_clk);
3271 	/* try pclk instead */
3272 	else if (!IS_ERR(bp->pclk)) {
3273 		tsu_clk = bp->pclk;
3274 		tsu_rate = clk_get_rate(tsu_clk);
3275 	} else
3276 		return -ENOTSUPP;
3277 	return tsu_rate;
3278 }
3279 
3280 static s32 gem_get_ptp_max_adj(void)
3281 {
3282 	return 64000000;
3283 }
3284 
3285 static int gem_get_ts_info(struct net_device *dev,
3286 			   struct ethtool_ts_info *info)
3287 {
3288 	struct macb *bp = netdev_priv(dev);
3289 
3290 	if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) {
3291 		ethtool_op_get_ts_info(dev, info);
3292 		return 0;
3293 	}
3294 
3295 	info->so_timestamping =
3296 		SOF_TIMESTAMPING_TX_SOFTWARE |
3297 		SOF_TIMESTAMPING_RX_SOFTWARE |
3298 		SOF_TIMESTAMPING_SOFTWARE |
3299 		SOF_TIMESTAMPING_TX_HARDWARE |
3300 		SOF_TIMESTAMPING_RX_HARDWARE |
3301 		SOF_TIMESTAMPING_RAW_HARDWARE;
3302 	info->tx_types =
3303 		(1 << HWTSTAMP_TX_ONESTEP_SYNC) |
3304 		(1 << HWTSTAMP_TX_OFF) |
3305 		(1 << HWTSTAMP_TX_ON);
3306 	info->rx_filters =
3307 		(1 << HWTSTAMP_FILTER_NONE) |
3308 		(1 << HWTSTAMP_FILTER_ALL);
3309 
3310 	info->phc_index = bp->ptp_clock ? ptp_clock_index(bp->ptp_clock) : -1;
3311 
3312 	return 0;
3313 }
3314 
3315 static struct macb_ptp_info gem_ptp_info = {
3316 	.ptp_init	 = gem_ptp_init,
3317 	.ptp_remove	 = gem_ptp_remove,
3318 	.get_ptp_max_adj = gem_get_ptp_max_adj,
3319 	.get_tsu_rate	 = gem_get_tsu_rate,
3320 	.get_ts_info	 = gem_get_ts_info,
3321 	.get_hwtst	 = gem_get_hwtst,
3322 	.set_hwtst	 = gem_set_hwtst,
3323 };
3324 #endif
3325 
3326 static int macb_get_ts_info(struct net_device *netdev,
3327 			    struct ethtool_ts_info *info)
3328 {
3329 	struct macb *bp = netdev_priv(netdev);
3330 
3331 	if (bp->ptp_info)
3332 		return bp->ptp_info->get_ts_info(netdev, info);
3333 
3334 	return ethtool_op_get_ts_info(netdev, info);
3335 }
3336 
3337 static void gem_enable_flow_filters(struct macb *bp, bool enable)
3338 {
3339 	struct net_device *netdev = bp->dev;
3340 	struct ethtool_rx_fs_item *item;
3341 	u32 t2_scr;
3342 	int num_t2_scr;
3343 
3344 	if (!(netdev->features & NETIF_F_NTUPLE))
3345 		return;
3346 
3347 	num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8));
3348 
3349 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3350 		struct ethtool_rx_flow_spec *fs = &item->fs;
3351 		struct ethtool_tcpip4_spec *tp4sp_m;
3352 
3353 		if (fs->location >= num_t2_scr)
3354 			continue;
3355 
3356 		t2_scr = gem_readl_n(bp, SCRT2, fs->location);
3357 
3358 		/* enable/disable screener regs for the flow entry */
3359 		t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr);
3360 
3361 		/* only enable fields with no masking */
3362 		tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3363 
3364 		if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF))
3365 			t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr);
3366 		else
3367 			t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr);
3368 
3369 		if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF))
3370 			t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr);
3371 		else
3372 			t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr);
3373 
3374 		if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)))
3375 			t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr);
3376 		else
3377 			t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr);
3378 
3379 		gem_writel_n(bp, SCRT2, fs->location, t2_scr);
3380 	}
3381 }
3382 
3383 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs)
3384 {
3385 	struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m;
3386 	uint16_t index = fs->location;
3387 	u32 w0, w1, t2_scr;
3388 	bool cmp_a = false;
3389 	bool cmp_b = false;
3390 	bool cmp_c = false;
3391 
3392 	if (!macb_is_gem(bp))
3393 		return;
3394 
3395 	tp4sp_v = &(fs->h_u.tcp_ip4_spec);
3396 	tp4sp_m = &(fs->m_u.tcp_ip4_spec);
3397 
3398 	/* ignore field if any masking set */
3399 	if (tp4sp_m->ip4src == 0xFFFFFFFF) {
3400 		/* 1st compare reg - IP source address */
3401 		w0 = 0;
3402 		w1 = 0;
3403 		w0 = tp4sp_v->ip4src;
3404 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3405 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3406 		w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1);
3407 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0);
3408 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1);
3409 		cmp_a = true;
3410 	}
3411 
3412 	/* ignore field if any masking set */
3413 	if (tp4sp_m->ip4dst == 0xFFFFFFFF) {
3414 		/* 2nd compare reg - IP destination address */
3415 		w0 = 0;
3416 		w1 = 0;
3417 		w0 = tp4sp_v->ip4dst;
3418 		w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3419 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1);
3420 		w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1);
3421 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0);
3422 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1);
3423 		cmp_b = true;
3424 	}
3425 
3426 	/* ignore both port fields if masking set in both */
3427 	if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) {
3428 		/* 3rd compare reg - source port, destination port */
3429 		w0 = 0;
3430 		w1 = 0;
3431 		w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1);
3432 		if (tp4sp_m->psrc == tp4sp_m->pdst) {
3433 			w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0);
3434 			w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3435 			w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */
3436 			w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3437 		} else {
3438 			/* only one port definition */
3439 			w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */
3440 			w0 = GEM_BFINS(T2MASK, 0xFFFF, w0);
3441 			if (tp4sp_m->psrc == 0xFFFF) { /* src port */
3442 				w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0);
3443 				w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1);
3444 			} else { /* dst port */
3445 				w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0);
3446 				w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1);
3447 			}
3448 		}
3449 		gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0);
3450 		gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1);
3451 		cmp_c = true;
3452 	}
3453 
3454 	t2_scr = 0;
3455 	t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr);
3456 	t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr);
3457 	if (cmp_a)
3458 		t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr);
3459 	if (cmp_b)
3460 		t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr);
3461 	if (cmp_c)
3462 		t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr);
3463 	gem_writel_n(bp, SCRT2, index, t2_scr);
3464 }
3465 
3466 static int gem_add_flow_filter(struct net_device *netdev,
3467 		struct ethtool_rxnfc *cmd)
3468 {
3469 	struct macb *bp = netdev_priv(netdev);
3470 	struct ethtool_rx_flow_spec *fs = &cmd->fs;
3471 	struct ethtool_rx_fs_item *item, *newfs;
3472 	unsigned long flags;
3473 	int ret = -EINVAL;
3474 	bool added = false;
3475 
3476 	newfs = kmalloc(sizeof(*newfs), GFP_KERNEL);
3477 	if (newfs == NULL)
3478 		return -ENOMEM;
3479 	memcpy(&newfs->fs, fs, sizeof(newfs->fs));
3480 
3481 	netdev_dbg(netdev,
3482 			"Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3483 			fs->flow_type, (int)fs->ring_cookie, fs->location,
3484 			htonl(fs->h_u.tcp_ip4_spec.ip4src),
3485 			htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3486 			be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3487 			be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3488 
3489 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3490 
3491 	/* find correct place to add in list */
3492 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3493 		if (item->fs.location > newfs->fs.location) {
3494 			list_add_tail(&newfs->list, &item->list);
3495 			added = true;
3496 			break;
3497 		} else if (item->fs.location == fs->location) {
3498 			netdev_err(netdev, "Rule not added: location %d not free!\n",
3499 					fs->location);
3500 			ret = -EBUSY;
3501 			goto err;
3502 		}
3503 	}
3504 	if (!added)
3505 		list_add_tail(&newfs->list, &bp->rx_fs_list.list);
3506 
3507 	gem_prog_cmp_regs(bp, fs);
3508 	bp->rx_fs_list.count++;
3509 	/* enable filtering if NTUPLE on */
3510 	gem_enable_flow_filters(bp, 1);
3511 
3512 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3513 	return 0;
3514 
3515 err:
3516 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3517 	kfree(newfs);
3518 	return ret;
3519 }
3520 
3521 static int gem_del_flow_filter(struct net_device *netdev,
3522 		struct ethtool_rxnfc *cmd)
3523 {
3524 	struct macb *bp = netdev_priv(netdev);
3525 	struct ethtool_rx_fs_item *item;
3526 	struct ethtool_rx_flow_spec *fs;
3527 	unsigned long flags;
3528 
3529 	spin_lock_irqsave(&bp->rx_fs_lock, flags);
3530 
3531 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3532 		if (item->fs.location == cmd->fs.location) {
3533 			/* disable screener regs for the flow entry */
3534 			fs = &(item->fs);
3535 			netdev_dbg(netdev,
3536 					"Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n",
3537 					fs->flow_type, (int)fs->ring_cookie, fs->location,
3538 					htonl(fs->h_u.tcp_ip4_spec.ip4src),
3539 					htonl(fs->h_u.tcp_ip4_spec.ip4dst),
3540 					be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc),
3541 					be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst));
3542 
3543 			gem_writel_n(bp, SCRT2, fs->location, 0);
3544 
3545 			list_del(&item->list);
3546 			bp->rx_fs_list.count--;
3547 			spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3548 			kfree(item);
3549 			return 0;
3550 		}
3551 	}
3552 
3553 	spin_unlock_irqrestore(&bp->rx_fs_lock, flags);
3554 	return -EINVAL;
3555 }
3556 
3557 static int gem_get_flow_entry(struct net_device *netdev,
3558 		struct ethtool_rxnfc *cmd)
3559 {
3560 	struct macb *bp = netdev_priv(netdev);
3561 	struct ethtool_rx_fs_item *item;
3562 
3563 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3564 		if (item->fs.location == cmd->fs.location) {
3565 			memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs));
3566 			return 0;
3567 		}
3568 	}
3569 	return -EINVAL;
3570 }
3571 
3572 static int gem_get_all_flow_entries(struct net_device *netdev,
3573 		struct ethtool_rxnfc *cmd, u32 *rule_locs)
3574 {
3575 	struct macb *bp = netdev_priv(netdev);
3576 	struct ethtool_rx_fs_item *item;
3577 	uint32_t cnt = 0;
3578 
3579 	list_for_each_entry(item, &bp->rx_fs_list.list, list) {
3580 		if (cnt == cmd->rule_cnt)
3581 			return -EMSGSIZE;
3582 		rule_locs[cnt] = item->fs.location;
3583 		cnt++;
3584 	}
3585 	cmd->data = bp->max_tuples;
3586 	cmd->rule_cnt = cnt;
3587 
3588 	return 0;
3589 }
3590 
3591 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
3592 		u32 *rule_locs)
3593 {
3594 	struct macb *bp = netdev_priv(netdev);
3595 	int ret = 0;
3596 
3597 	switch (cmd->cmd) {
3598 	case ETHTOOL_GRXRINGS:
3599 		cmd->data = bp->num_queues;
3600 		break;
3601 	case ETHTOOL_GRXCLSRLCNT:
3602 		cmd->rule_cnt = bp->rx_fs_list.count;
3603 		break;
3604 	case ETHTOOL_GRXCLSRULE:
3605 		ret = gem_get_flow_entry(netdev, cmd);
3606 		break;
3607 	case ETHTOOL_GRXCLSRLALL:
3608 		ret = gem_get_all_flow_entries(netdev, cmd, rule_locs);
3609 		break;
3610 	default:
3611 		netdev_err(netdev,
3612 			  "Command parameter %d is not supported\n", cmd->cmd);
3613 		ret = -EOPNOTSUPP;
3614 	}
3615 
3616 	return ret;
3617 }
3618 
3619 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
3620 {
3621 	struct macb *bp = netdev_priv(netdev);
3622 	int ret;
3623 
3624 	switch (cmd->cmd) {
3625 	case ETHTOOL_SRXCLSRLINS:
3626 		if ((cmd->fs.location >= bp->max_tuples)
3627 				|| (cmd->fs.ring_cookie >= bp->num_queues)) {
3628 			ret = -EINVAL;
3629 			break;
3630 		}
3631 		ret = gem_add_flow_filter(netdev, cmd);
3632 		break;
3633 	case ETHTOOL_SRXCLSRLDEL:
3634 		ret = gem_del_flow_filter(netdev, cmd);
3635 		break;
3636 	default:
3637 		netdev_err(netdev,
3638 			  "Command parameter %d is not supported\n", cmd->cmd);
3639 		ret = -EOPNOTSUPP;
3640 	}
3641 
3642 	return ret;
3643 }
3644 
3645 static const struct ethtool_ops macb_ethtool_ops = {
3646 	.get_regs_len		= macb_get_regs_len,
3647 	.get_regs		= macb_get_regs,
3648 	.get_link		= ethtool_op_get_link,
3649 	.get_ts_info		= ethtool_op_get_ts_info,
3650 	.get_wol		= macb_get_wol,
3651 	.set_wol		= macb_set_wol,
3652 	.get_link_ksettings     = macb_get_link_ksettings,
3653 	.set_link_ksettings     = macb_set_link_ksettings,
3654 	.get_ringparam		= macb_get_ringparam,
3655 	.set_ringparam		= macb_set_ringparam,
3656 };
3657 
3658 static const struct ethtool_ops gem_ethtool_ops = {
3659 	.get_regs_len		= macb_get_regs_len,
3660 	.get_regs		= macb_get_regs,
3661 	.get_wol		= macb_get_wol,
3662 	.set_wol		= macb_set_wol,
3663 	.get_link		= ethtool_op_get_link,
3664 	.get_ts_info		= macb_get_ts_info,
3665 	.get_ethtool_stats	= gem_get_ethtool_stats,
3666 	.get_strings		= gem_get_ethtool_strings,
3667 	.get_sset_count		= gem_get_sset_count,
3668 	.get_link_ksettings     = macb_get_link_ksettings,
3669 	.set_link_ksettings     = macb_set_link_ksettings,
3670 	.get_ringparam		= macb_get_ringparam,
3671 	.set_ringparam		= macb_set_ringparam,
3672 	.get_rxnfc			= gem_get_rxnfc,
3673 	.set_rxnfc			= gem_set_rxnfc,
3674 };
3675 
3676 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3677 {
3678 	struct macb *bp = netdev_priv(dev);
3679 
3680 	if (!netif_running(dev))
3681 		return -EINVAL;
3682 
3683 	if (bp->ptp_info) {
3684 		switch (cmd) {
3685 		case SIOCSHWTSTAMP:
3686 			return bp->ptp_info->set_hwtst(dev, rq, cmd);
3687 		case SIOCGHWTSTAMP:
3688 			return bp->ptp_info->get_hwtst(dev, rq);
3689 		}
3690 	}
3691 
3692 	return phylink_mii_ioctl(bp->phylink, rq, cmd);
3693 }
3694 
3695 static inline void macb_set_txcsum_feature(struct macb *bp,
3696 					   netdev_features_t features)
3697 {
3698 	u32 val;
3699 
3700 	if (!macb_is_gem(bp))
3701 		return;
3702 
3703 	val = gem_readl(bp, DMACFG);
3704 	if (features & NETIF_F_HW_CSUM)
3705 		val |= GEM_BIT(TXCOEN);
3706 	else
3707 		val &= ~GEM_BIT(TXCOEN);
3708 
3709 	gem_writel(bp, DMACFG, val);
3710 }
3711 
3712 static inline void macb_set_rxcsum_feature(struct macb *bp,
3713 					   netdev_features_t features)
3714 {
3715 	struct net_device *netdev = bp->dev;
3716 	u32 val;
3717 
3718 	if (!macb_is_gem(bp))
3719 		return;
3720 
3721 	val = gem_readl(bp, NCFGR);
3722 	if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC))
3723 		val |= GEM_BIT(RXCOEN);
3724 	else
3725 		val &= ~GEM_BIT(RXCOEN);
3726 
3727 	gem_writel(bp, NCFGR, val);
3728 }
3729 
3730 static inline void macb_set_rxflow_feature(struct macb *bp,
3731 					   netdev_features_t features)
3732 {
3733 	if (!macb_is_gem(bp))
3734 		return;
3735 
3736 	gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE));
3737 }
3738 
3739 static int macb_set_features(struct net_device *netdev,
3740 			     netdev_features_t features)
3741 {
3742 	struct macb *bp = netdev_priv(netdev);
3743 	netdev_features_t changed = features ^ netdev->features;
3744 
3745 	/* TX checksum offload */
3746 	if (changed & NETIF_F_HW_CSUM)
3747 		macb_set_txcsum_feature(bp, features);
3748 
3749 	/* RX checksum offload */
3750 	if (changed & NETIF_F_RXCSUM)
3751 		macb_set_rxcsum_feature(bp, features);
3752 
3753 	/* RX Flow Filters */
3754 	if (changed & NETIF_F_NTUPLE)
3755 		macb_set_rxflow_feature(bp, features);
3756 
3757 	return 0;
3758 }
3759 
3760 static void macb_restore_features(struct macb *bp)
3761 {
3762 	struct net_device *netdev = bp->dev;
3763 	netdev_features_t features = netdev->features;
3764 	struct ethtool_rx_fs_item *item;
3765 
3766 	/* TX checksum offload */
3767 	macb_set_txcsum_feature(bp, features);
3768 
3769 	/* RX checksum offload */
3770 	macb_set_rxcsum_feature(bp, features);
3771 
3772 	/* RX Flow Filters */
3773 	list_for_each_entry(item, &bp->rx_fs_list.list, list)
3774 		gem_prog_cmp_regs(bp, &item->fs);
3775 
3776 	macb_set_rxflow_feature(bp, features);
3777 }
3778 
3779 static const struct net_device_ops macb_netdev_ops = {
3780 	.ndo_open		= macb_open,
3781 	.ndo_stop		= macb_close,
3782 	.ndo_start_xmit		= macb_start_xmit,
3783 	.ndo_set_rx_mode	= macb_set_rx_mode,
3784 	.ndo_get_stats		= macb_get_stats,
3785 	.ndo_eth_ioctl		= macb_ioctl,
3786 	.ndo_validate_addr	= eth_validate_addr,
3787 	.ndo_change_mtu		= macb_change_mtu,
3788 	.ndo_set_mac_address	= eth_mac_addr,
3789 #ifdef CONFIG_NET_POLL_CONTROLLER
3790 	.ndo_poll_controller	= macb_poll_controller,
3791 #endif
3792 	.ndo_set_features	= macb_set_features,
3793 	.ndo_features_check	= macb_features_check,
3794 };
3795 
3796 /* Configure peripheral capabilities according to device tree
3797  * and integration options used
3798  */
3799 static void macb_configure_caps(struct macb *bp,
3800 				const struct macb_config *dt_conf)
3801 {
3802 	u32 dcfg;
3803 
3804 	if (dt_conf)
3805 		bp->caps = dt_conf->caps;
3806 
3807 	if (hw_is_gem(bp->regs, bp->native_io)) {
3808 		bp->caps |= MACB_CAPS_MACB_IS_GEM;
3809 
3810 		dcfg = gem_readl(bp, DCFG1);
3811 		if (GEM_BFEXT(IRQCOR, dcfg) == 0)
3812 			bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
3813 		if (GEM_BFEXT(NO_PCS, dcfg) == 0)
3814 			bp->caps |= MACB_CAPS_PCS;
3815 		dcfg = gem_readl(bp, DCFG12);
3816 		if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1)
3817 			bp->caps |= MACB_CAPS_HIGH_SPEED;
3818 		dcfg = gem_readl(bp, DCFG2);
3819 		if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
3820 			bp->caps |= MACB_CAPS_FIFO_MODE;
3821 #ifdef CONFIG_MACB_USE_HWSTAMP
3822 		if (gem_has_ptp(bp)) {
3823 			if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5)))
3824 				dev_err(&bp->pdev->dev,
3825 					"GEM doesn't support hardware ptp.\n");
3826 			else {
3827 				bp->hw_dma_cap |= HW_DMA_CAP_PTP;
3828 				bp->ptp_info = &gem_ptp_info;
3829 			}
3830 		}
3831 #endif
3832 	}
3833 
3834 	dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps);
3835 }
3836 
3837 static void macb_probe_queues(void __iomem *mem,
3838 			      bool native_io,
3839 			      unsigned int *queue_mask,
3840 			      unsigned int *num_queues)
3841 {
3842 	*queue_mask = 0x1;
3843 	*num_queues = 1;
3844 
3845 	/* is it macb or gem ?
3846 	 *
3847 	 * We need to read directly from the hardware here because
3848 	 * we are early in the probe process and don't have the
3849 	 * MACB_CAPS_MACB_IS_GEM flag positioned
3850 	 */
3851 	if (!hw_is_gem(mem, native_io))
3852 		return;
3853 
3854 	/* bit 0 is never set but queue 0 always exists */
3855 	*queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff;
3856 	*num_queues = hweight32(*queue_mask);
3857 }
3858 
3859 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk,
3860 			      struct clk *rx_clk, struct clk *tsu_clk)
3861 {
3862 	struct clk_bulk_data clks[] = {
3863 		{ .clk = tsu_clk, },
3864 		{ .clk = rx_clk, },
3865 		{ .clk = pclk, },
3866 		{ .clk = hclk, },
3867 		{ .clk = tx_clk },
3868 	};
3869 
3870 	clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks);
3871 }
3872 
3873 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
3874 			 struct clk **hclk, struct clk **tx_clk,
3875 			 struct clk **rx_clk, struct clk **tsu_clk)
3876 {
3877 	struct macb_platform_data *pdata;
3878 	int err;
3879 
3880 	pdata = dev_get_platdata(&pdev->dev);
3881 	if (pdata) {
3882 		*pclk = pdata->pclk;
3883 		*hclk = pdata->hclk;
3884 	} else {
3885 		*pclk = devm_clk_get(&pdev->dev, "pclk");
3886 		*hclk = devm_clk_get(&pdev->dev, "hclk");
3887 	}
3888 
3889 	if (IS_ERR_OR_NULL(*pclk))
3890 		return dev_err_probe(&pdev->dev,
3891 				     IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV,
3892 				     "failed to get pclk\n");
3893 
3894 	if (IS_ERR_OR_NULL(*hclk))
3895 		return dev_err_probe(&pdev->dev,
3896 				     IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV,
3897 				     "failed to get hclk\n");
3898 
3899 	*tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk");
3900 	if (IS_ERR(*tx_clk))
3901 		return PTR_ERR(*tx_clk);
3902 
3903 	*rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk");
3904 	if (IS_ERR(*rx_clk))
3905 		return PTR_ERR(*rx_clk);
3906 
3907 	*tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk");
3908 	if (IS_ERR(*tsu_clk))
3909 		return PTR_ERR(*tsu_clk);
3910 
3911 	err = clk_prepare_enable(*pclk);
3912 	if (err) {
3913 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
3914 		return err;
3915 	}
3916 
3917 	err = clk_prepare_enable(*hclk);
3918 	if (err) {
3919 		dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err);
3920 		goto err_disable_pclk;
3921 	}
3922 
3923 	err = clk_prepare_enable(*tx_clk);
3924 	if (err) {
3925 		dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err);
3926 		goto err_disable_hclk;
3927 	}
3928 
3929 	err = clk_prepare_enable(*rx_clk);
3930 	if (err) {
3931 		dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err);
3932 		goto err_disable_txclk;
3933 	}
3934 
3935 	err = clk_prepare_enable(*tsu_clk);
3936 	if (err) {
3937 		dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err);
3938 		goto err_disable_rxclk;
3939 	}
3940 
3941 	return 0;
3942 
3943 err_disable_rxclk:
3944 	clk_disable_unprepare(*rx_clk);
3945 
3946 err_disable_txclk:
3947 	clk_disable_unprepare(*tx_clk);
3948 
3949 err_disable_hclk:
3950 	clk_disable_unprepare(*hclk);
3951 
3952 err_disable_pclk:
3953 	clk_disable_unprepare(*pclk);
3954 
3955 	return err;
3956 }
3957 
3958 static int macb_init(struct platform_device *pdev)
3959 {
3960 	struct net_device *dev = platform_get_drvdata(pdev);
3961 	unsigned int hw_q, q;
3962 	struct macb *bp = netdev_priv(dev);
3963 	struct macb_queue *queue;
3964 	int err;
3965 	u32 val, reg;
3966 
3967 	bp->tx_ring_size = DEFAULT_TX_RING_SIZE;
3968 	bp->rx_ring_size = DEFAULT_RX_RING_SIZE;
3969 
3970 	/* set the queue register mapping once for all: queue0 has a special
3971 	 * register mapping but we don't want to test the queue index then
3972 	 * compute the corresponding register offset at run time.
3973 	 */
3974 	for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
3975 		if (!(bp->queue_mask & (1 << hw_q)))
3976 			continue;
3977 
3978 		queue = &bp->queues[q];
3979 		queue->bp = bp;
3980 		spin_lock_init(&queue->tx_ptr_lock);
3981 		netif_napi_add(dev, &queue->napi_rx, macb_rx_poll);
3982 		netif_napi_add(dev, &queue->napi_tx, macb_tx_poll);
3983 		if (hw_q) {
3984 			queue->ISR  = GEM_ISR(hw_q - 1);
3985 			queue->IER  = GEM_IER(hw_q - 1);
3986 			queue->IDR  = GEM_IDR(hw_q - 1);
3987 			queue->IMR  = GEM_IMR(hw_q - 1);
3988 			queue->TBQP = GEM_TBQP(hw_q - 1);
3989 			queue->RBQP = GEM_RBQP(hw_q - 1);
3990 			queue->RBQS = GEM_RBQS(hw_q - 1);
3991 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
3992 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
3993 				queue->TBQPH = GEM_TBQPH(hw_q - 1);
3994 				queue->RBQPH = GEM_RBQPH(hw_q - 1);
3995 			}
3996 #endif
3997 		} else {
3998 			/* queue0 uses legacy registers */
3999 			queue->ISR  = MACB_ISR;
4000 			queue->IER  = MACB_IER;
4001 			queue->IDR  = MACB_IDR;
4002 			queue->IMR  = MACB_IMR;
4003 			queue->TBQP = MACB_TBQP;
4004 			queue->RBQP = MACB_RBQP;
4005 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4006 			if (bp->hw_dma_cap & HW_DMA_CAP_64B) {
4007 				queue->TBQPH = MACB_TBQPH;
4008 				queue->RBQPH = MACB_RBQPH;
4009 			}
4010 #endif
4011 		}
4012 
4013 		/* get irq: here we use the linux queue index, not the hardware
4014 		 * queue index. the queue irq definitions in the device tree
4015 		 * must remove the optional gaps that could exist in the
4016 		 * hardware queue mask.
4017 		 */
4018 		queue->irq = platform_get_irq(pdev, q);
4019 		err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
4020 				       IRQF_SHARED, dev->name, queue);
4021 		if (err) {
4022 			dev_err(&pdev->dev,
4023 				"Unable to request IRQ %d (error %d)\n",
4024 				queue->irq, err);
4025 			return err;
4026 		}
4027 
4028 		INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
4029 		q++;
4030 	}
4031 
4032 	dev->netdev_ops = &macb_netdev_ops;
4033 
4034 	/* setup appropriated routines according to adapter type */
4035 	if (macb_is_gem(bp)) {
4036 		bp->max_tx_length = GEM_MAX_TX_LEN;
4037 		bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
4038 		bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
4039 		bp->macbgem_ops.mog_init_rings = gem_init_rings;
4040 		bp->macbgem_ops.mog_rx = gem_rx;
4041 		dev->ethtool_ops = &gem_ethtool_ops;
4042 	} else {
4043 		bp->max_tx_length = MACB_MAX_TX_LEN;
4044 		bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
4045 		bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
4046 		bp->macbgem_ops.mog_init_rings = macb_init_rings;
4047 		bp->macbgem_ops.mog_rx = macb_rx;
4048 		dev->ethtool_ops = &macb_ethtool_ops;
4049 	}
4050 
4051 	/* Set features */
4052 	dev->hw_features = NETIF_F_SG;
4053 
4054 	/* Check LSO capability */
4055 	if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6)))
4056 		dev->hw_features |= MACB_NETIF_LSO;
4057 
4058 	/* Checksum offload is only available on gem with packet buffer */
4059 	if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
4060 		dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
4061 	if (bp->caps & MACB_CAPS_SG_DISABLED)
4062 		dev->hw_features &= ~NETIF_F_SG;
4063 	dev->features = dev->hw_features;
4064 
4065 	/* Check RX Flow Filters support.
4066 	 * Max Rx flows set by availability of screeners & compare regs:
4067 	 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs
4068 	 */
4069 	reg = gem_readl(bp, DCFG8);
4070 	bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3),
4071 			GEM_BFEXT(T2SCR, reg));
4072 	INIT_LIST_HEAD(&bp->rx_fs_list.list);
4073 	if (bp->max_tuples > 0) {
4074 		/* also needs one ethtype match to check IPv4 */
4075 		if (GEM_BFEXT(SCR2ETH, reg) > 0) {
4076 			/* program this reg now */
4077 			reg = 0;
4078 			reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg);
4079 			gem_writel_n(bp, ETHT, SCRT2_ETHT, reg);
4080 			/* Filtering is supported in hw but don't enable it in kernel now */
4081 			dev->hw_features |= NETIF_F_NTUPLE;
4082 			/* init Rx flow definitions */
4083 			bp->rx_fs_list.count = 0;
4084 			spin_lock_init(&bp->rx_fs_lock);
4085 		} else
4086 			bp->max_tuples = 0;
4087 	}
4088 
4089 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) {
4090 		val = 0;
4091 		if (phy_interface_mode_is_rgmii(bp->phy_interface))
4092 			val = bp->usrio->rgmii;
4093 		else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
4094 			 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4095 			val = bp->usrio->rmii;
4096 		else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII))
4097 			val = bp->usrio->mii;
4098 
4099 		if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
4100 			val |= bp->usrio->refclk;
4101 
4102 		macb_or_gem_writel(bp, USRIO, val);
4103 	}
4104 
4105 	/* Set MII management clock divider */
4106 	val = macb_mdc_clk_div(bp);
4107 	val |= macb_dbw(bp);
4108 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII)
4109 		val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL);
4110 	macb_writel(bp, NCFGR, val);
4111 
4112 	return 0;
4113 }
4114 
4115 static const struct macb_usrio_config macb_default_usrio = {
4116 	.mii = MACB_BIT(MII),
4117 	.rmii = MACB_BIT(RMII),
4118 	.rgmii = GEM_BIT(RGMII),
4119 	.refclk = MACB_BIT(CLKEN),
4120 };
4121 
4122 #if defined(CONFIG_OF)
4123 /* 1518 rounded up */
4124 #define AT91ETHER_MAX_RBUFF_SZ	0x600
4125 /* max number of receive buffers */
4126 #define AT91ETHER_MAX_RX_DESCR	9
4127 
4128 static struct sifive_fu540_macb_mgmt *mgmt;
4129 
4130 static int at91ether_alloc_coherent(struct macb *lp)
4131 {
4132 	struct macb_queue *q = &lp->queues[0];
4133 
4134 	q->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
4135 					 (AT91ETHER_MAX_RX_DESCR *
4136 					  macb_dma_desc_get_size(lp)),
4137 					 &q->rx_ring_dma, GFP_KERNEL);
4138 	if (!q->rx_ring)
4139 		return -ENOMEM;
4140 
4141 	q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
4142 					    AT91ETHER_MAX_RX_DESCR *
4143 					    AT91ETHER_MAX_RBUFF_SZ,
4144 					    &q->rx_buffers_dma, GFP_KERNEL);
4145 	if (!q->rx_buffers) {
4146 		dma_free_coherent(&lp->pdev->dev,
4147 				  AT91ETHER_MAX_RX_DESCR *
4148 				  macb_dma_desc_get_size(lp),
4149 				  q->rx_ring, q->rx_ring_dma);
4150 		q->rx_ring = NULL;
4151 		return -ENOMEM;
4152 	}
4153 
4154 	return 0;
4155 }
4156 
4157 static void at91ether_free_coherent(struct macb *lp)
4158 {
4159 	struct macb_queue *q = &lp->queues[0];
4160 
4161 	if (q->rx_ring) {
4162 		dma_free_coherent(&lp->pdev->dev,
4163 				  AT91ETHER_MAX_RX_DESCR *
4164 				  macb_dma_desc_get_size(lp),
4165 				  q->rx_ring, q->rx_ring_dma);
4166 		q->rx_ring = NULL;
4167 	}
4168 
4169 	if (q->rx_buffers) {
4170 		dma_free_coherent(&lp->pdev->dev,
4171 				  AT91ETHER_MAX_RX_DESCR *
4172 				  AT91ETHER_MAX_RBUFF_SZ,
4173 				  q->rx_buffers, q->rx_buffers_dma);
4174 		q->rx_buffers = NULL;
4175 	}
4176 }
4177 
4178 /* Initialize and start the Receiver and Transmit subsystems */
4179 static int at91ether_start(struct macb *lp)
4180 {
4181 	struct macb_queue *q = &lp->queues[0];
4182 	struct macb_dma_desc *desc;
4183 	dma_addr_t addr;
4184 	u32 ctl;
4185 	int i, ret;
4186 
4187 	ret = at91ether_alloc_coherent(lp);
4188 	if (ret)
4189 		return ret;
4190 
4191 	addr = q->rx_buffers_dma;
4192 	for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
4193 		desc = macb_rx_desc(q, i);
4194 		macb_set_addr(lp, desc, addr);
4195 		desc->ctrl = 0;
4196 		addr += AT91ETHER_MAX_RBUFF_SZ;
4197 	}
4198 
4199 	/* Set the Wrap bit on the last descriptor */
4200 	desc->addr |= MACB_BIT(RX_WRAP);
4201 
4202 	/* Reset buffer index */
4203 	q->rx_tail = 0;
4204 
4205 	/* Program address of descriptor list in Rx Buffer Queue register */
4206 	macb_writel(lp, RBQP, q->rx_ring_dma);
4207 
4208 	/* Enable Receive and Transmit */
4209 	ctl = macb_readl(lp, NCR);
4210 	macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
4211 
4212 	/* Enable MAC interrupts */
4213 	macb_writel(lp, IER, MACB_BIT(RCOMP)	|
4214 			     MACB_BIT(RXUBR)	|
4215 			     MACB_BIT(ISR_TUND)	|
4216 			     MACB_BIT(ISR_RLE)	|
4217 			     MACB_BIT(TCOMP)	|
4218 			     MACB_BIT(ISR_ROVR)	|
4219 			     MACB_BIT(HRESP));
4220 
4221 	return 0;
4222 }
4223 
4224 static void at91ether_stop(struct macb *lp)
4225 {
4226 	u32 ctl;
4227 
4228 	/* Disable MAC interrupts */
4229 	macb_writel(lp, IDR, MACB_BIT(RCOMP)	|
4230 			     MACB_BIT(RXUBR)	|
4231 			     MACB_BIT(ISR_TUND)	|
4232 			     MACB_BIT(ISR_RLE)	|
4233 			     MACB_BIT(TCOMP)	|
4234 			     MACB_BIT(ISR_ROVR) |
4235 			     MACB_BIT(HRESP));
4236 
4237 	/* Disable Receiver and Transmitter */
4238 	ctl = macb_readl(lp, NCR);
4239 	macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
4240 
4241 	/* Free resources. */
4242 	at91ether_free_coherent(lp);
4243 }
4244 
4245 /* Open the ethernet interface */
4246 static int at91ether_open(struct net_device *dev)
4247 {
4248 	struct macb *lp = netdev_priv(dev);
4249 	u32 ctl;
4250 	int ret;
4251 
4252 	ret = pm_runtime_resume_and_get(&lp->pdev->dev);
4253 	if (ret < 0)
4254 		return ret;
4255 
4256 	/* Clear internal statistics */
4257 	ctl = macb_readl(lp, NCR);
4258 	macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
4259 
4260 	macb_set_hwaddr(lp);
4261 
4262 	ret = at91ether_start(lp);
4263 	if (ret)
4264 		goto pm_exit;
4265 
4266 	ret = macb_phylink_connect(lp);
4267 	if (ret)
4268 		goto stop;
4269 
4270 	netif_start_queue(dev);
4271 
4272 	return 0;
4273 
4274 stop:
4275 	at91ether_stop(lp);
4276 pm_exit:
4277 	pm_runtime_put_sync(&lp->pdev->dev);
4278 	return ret;
4279 }
4280 
4281 /* Close the interface */
4282 static int at91ether_close(struct net_device *dev)
4283 {
4284 	struct macb *lp = netdev_priv(dev);
4285 
4286 	netif_stop_queue(dev);
4287 
4288 	phylink_stop(lp->phylink);
4289 	phylink_disconnect_phy(lp->phylink);
4290 
4291 	at91ether_stop(lp);
4292 
4293 	return pm_runtime_put(&lp->pdev->dev);
4294 }
4295 
4296 /* Transmit packet */
4297 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb,
4298 					struct net_device *dev)
4299 {
4300 	struct macb *lp = netdev_priv(dev);
4301 
4302 	if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
4303 		int desc = 0;
4304 
4305 		netif_stop_queue(dev);
4306 
4307 		/* Store packet information (to free when Tx completed) */
4308 		lp->rm9200_txq[desc].skb = skb;
4309 		lp->rm9200_txq[desc].size = skb->len;
4310 		lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data,
4311 							      skb->len, DMA_TO_DEVICE);
4312 		if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) {
4313 			dev_kfree_skb_any(skb);
4314 			dev->stats.tx_dropped++;
4315 			netdev_err(dev, "%s: DMA mapping error\n", __func__);
4316 			return NETDEV_TX_OK;
4317 		}
4318 
4319 		/* Set address of the data in the Transmit Address register */
4320 		macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping);
4321 		/* Set length of the packet in the Transmit Control register */
4322 		macb_writel(lp, TCR, skb->len);
4323 
4324 	} else {
4325 		netdev_err(dev, "%s called, but device is busy!\n", __func__);
4326 		return NETDEV_TX_BUSY;
4327 	}
4328 
4329 	return NETDEV_TX_OK;
4330 }
4331 
4332 /* Extract received frame from buffer descriptors and sent to upper layers.
4333  * (Called from interrupt context)
4334  */
4335 static void at91ether_rx(struct net_device *dev)
4336 {
4337 	struct macb *lp = netdev_priv(dev);
4338 	struct macb_queue *q = &lp->queues[0];
4339 	struct macb_dma_desc *desc;
4340 	unsigned char *p_recv;
4341 	struct sk_buff *skb;
4342 	unsigned int pktlen;
4343 
4344 	desc = macb_rx_desc(q, q->rx_tail);
4345 	while (desc->addr & MACB_BIT(RX_USED)) {
4346 		p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
4347 		pktlen = MACB_BF(RX_FRMLEN, desc->ctrl);
4348 		skb = netdev_alloc_skb(dev, pktlen + 2);
4349 		if (skb) {
4350 			skb_reserve(skb, 2);
4351 			skb_put_data(skb, p_recv, pktlen);
4352 
4353 			skb->protocol = eth_type_trans(skb, dev);
4354 			dev->stats.rx_packets++;
4355 			dev->stats.rx_bytes += pktlen;
4356 			netif_rx(skb);
4357 		} else {
4358 			dev->stats.rx_dropped++;
4359 		}
4360 
4361 		if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH))
4362 			dev->stats.multicast++;
4363 
4364 		/* reset ownership bit */
4365 		desc->addr &= ~MACB_BIT(RX_USED);
4366 
4367 		/* wrap after last buffer */
4368 		if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
4369 			q->rx_tail = 0;
4370 		else
4371 			q->rx_tail++;
4372 
4373 		desc = macb_rx_desc(q, q->rx_tail);
4374 	}
4375 }
4376 
4377 /* MAC interrupt handler */
4378 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
4379 {
4380 	struct net_device *dev = dev_id;
4381 	struct macb *lp = netdev_priv(dev);
4382 	u32 intstatus, ctl;
4383 	unsigned int desc;
4384 
4385 	/* MAC Interrupt Status register indicates what interrupts are pending.
4386 	 * It is automatically cleared once read.
4387 	 */
4388 	intstatus = macb_readl(lp, ISR);
4389 
4390 	/* Receive complete */
4391 	if (intstatus & MACB_BIT(RCOMP))
4392 		at91ether_rx(dev);
4393 
4394 	/* Transmit complete */
4395 	if (intstatus & MACB_BIT(TCOMP)) {
4396 		/* The TCOM bit is set even if the transmission failed */
4397 		if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
4398 			dev->stats.tx_errors++;
4399 
4400 		desc = 0;
4401 		if (lp->rm9200_txq[desc].skb) {
4402 			dev_consume_skb_irq(lp->rm9200_txq[desc].skb);
4403 			lp->rm9200_txq[desc].skb = NULL;
4404 			dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping,
4405 					 lp->rm9200_txq[desc].size, DMA_TO_DEVICE);
4406 			dev->stats.tx_packets++;
4407 			dev->stats.tx_bytes += lp->rm9200_txq[desc].size;
4408 		}
4409 		netif_wake_queue(dev);
4410 	}
4411 
4412 	/* Work-around for EMAC Errata section 41.3.1 */
4413 	if (intstatus & MACB_BIT(RXUBR)) {
4414 		ctl = macb_readl(lp, NCR);
4415 		macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
4416 		wmb();
4417 		macb_writel(lp, NCR, ctl | MACB_BIT(RE));
4418 	}
4419 
4420 	if (intstatus & MACB_BIT(ISR_ROVR))
4421 		netdev_err(dev, "ROVR error\n");
4422 
4423 	return IRQ_HANDLED;
4424 }
4425 
4426 #ifdef CONFIG_NET_POLL_CONTROLLER
4427 static void at91ether_poll_controller(struct net_device *dev)
4428 {
4429 	unsigned long flags;
4430 
4431 	local_irq_save(flags);
4432 	at91ether_interrupt(dev->irq, dev);
4433 	local_irq_restore(flags);
4434 }
4435 #endif
4436 
4437 static const struct net_device_ops at91ether_netdev_ops = {
4438 	.ndo_open		= at91ether_open,
4439 	.ndo_stop		= at91ether_close,
4440 	.ndo_start_xmit		= at91ether_start_xmit,
4441 	.ndo_get_stats		= macb_get_stats,
4442 	.ndo_set_rx_mode	= macb_set_rx_mode,
4443 	.ndo_set_mac_address	= eth_mac_addr,
4444 	.ndo_eth_ioctl		= macb_ioctl,
4445 	.ndo_validate_addr	= eth_validate_addr,
4446 #ifdef CONFIG_NET_POLL_CONTROLLER
4447 	.ndo_poll_controller	= at91ether_poll_controller,
4448 #endif
4449 };
4450 
4451 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
4452 			      struct clk **hclk, struct clk **tx_clk,
4453 			      struct clk **rx_clk, struct clk **tsu_clk)
4454 {
4455 	int err;
4456 
4457 	*hclk = NULL;
4458 	*tx_clk = NULL;
4459 	*rx_clk = NULL;
4460 	*tsu_clk = NULL;
4461 
4462 	*pclk = devm_clk_get(&pdev->dev, "ether_clk");
4463 	if (IS_ERR(*pclk))
4464 		return PTR_ERR(*pclk);
4465 
4466 	err = clk_prepare_enable(*pclk);
4467 	if (err) {
4468 		dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err);
4469 		return err;
4470 	}
4471 
4472 	return 0;
4473 }
4474 
4475 static int at91ether_init(struct platform_device *pdev)
4476 {
4477 	struct net_device *dev = platform_get_drvdata(pdev);
4478 	struct macb *bp = netdev_priv(dev);
4479 	int err;
4480 
4481 	bp->queues[0].bp = bp;
4482 
4483 	dev->netdev_ops = &at91ether_netdev_ops;
4484 	dev->ethtool_ops = &macb_ethtool_ops;
4485 
4486 	err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
4487 			       0, dev->name, dev);
4488 	if (err)
4489 		return err;
4490 
4491 	macb_writel(bp, NCR, 0);
4492 
4493 	macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG));
4494 
4495 	return 0;
4496 }
4497 
4498 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw,
4499 					       unsigned long parent_rate)
4500 {
4501 	return mgmt->rate;
4502 }
4503 
4504 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate,
4505 				     unsigned long *parent_rate)
4506 {
4507 	if (WARN_ON(rate < 2500000))
4508 		return 2500000;
4509 	else if (rate == 2500000)
4510 		return 2500000;
4511 	else if (WARN_ON(rate < 13750000))
4512 		return 2500000;
4513 	else if (WARN_ON(rate < 25000000))
4514 		return 25000000;
4515 	else if (rate == 25000000)
4516 		return 25000000;
4517 	else if (WARN_ON(rate < 75000000))
4518 		return 25000000;
4519 	else if (WARN_ON(rate < 125000000))
4520 		return 125000000;
4521 	else if (rate == 125000000)
4522 		return 125000000;
4523 
4524 	WARN_ON(rate > 125000000);
4525 
4526 	return 125000000;
4527 }
4528 
4529 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate,
4530 				  unsigned long parent_rate)
4531 {
4532 	rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate);
4533 	if (rate != 125000000)
4534 		iowrite32(1, mgmt->reg);
4535 	else
4536 		iowrite32(0, mgmt->reg);
4537 	mgmt->rate = rate;
4538 
4539 	return 0;
4540 }
4541 
4542 static const struct clk_ops fu540_c000_ops = {
4543 	.recalc_rate = fu540_macb_tx_recalc_rate,
4544 	.round_rate = fu540_macb_tx_round_rate,
4545 	.set_rate = fu540_macb_tx_set_rate,
4546 };
4547 
4548 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk,
4549 			       struct clk **hclk, struct clk **tx_clk,
4550 			       struct clk **rx_clk, struct clk **tsu_clk)
4551 {
4552 	struct clk_init_data init;
4553 	int err = 0;
4554 
4555 	err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk);
4556 	if (err)
4557 		return err;
4558 
4559 	mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL);
4560 	if (!mgmt) {
4561 		err = -ENOMEM;
4562 		goto err_disable_clks;
4563 	}
4564 
4565 	init.name = "sifive-gemgxl-mgmt";
4566 	init.ops = &fu540_c000_ops;
4567 	init.flags = 0;
4568 	init.num_parents = 0;
4569 
4570 	mgmt->rate = 0;
4571 	mgmt->hw.init = &init;
4572 
4573 	*tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw);
4574 	if (IS_ERR(*tx_clk)) {
4575 		err = PTR_ERR(*tx_clk);
4576 		goto err_disable_clks;
4577 	}
4578 
4579 	err = clk_prepare_enable(*tx_clk);
4580 	if (err) {
4581 		dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
4582 		*tx_clk = NULL;
4583 		goto err_disable_clks;
4584 	} else {
4585 		dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name);
4586 	}
4587 
4588 	return 0;
4589 
4590 err_disable_clks:
4591 	macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk);
4592 
4593 	return err;
4594 }
4595 
4596 static int fu540_c000_init(struct platform_device *pdev)
4597 {
4598 	mgmt->reg = devm_platform_ioremap_resource(pdev, 1);
4599 	if (IS_ERR(mgmt->reg))
4600 		return PTR_ERR(mgmt->reg);
4601 
4602 	return macb_init(pdev);
4603 }
4604 
4605 static int init_reset_optional(struct platform_device *pdev)
4606 {
4607 	struct net_device *dev = platform_get_drvdata(pdev);
4608 	struct macb *bp = netdev_priv(dev);
4609 	int ret;
4610 
4611 	if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) {
4612 		/* Ensure PHY device used in SGMII mode is ready */
4613 		bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL);
4614 
4615 		if (IS_ERR(bp->sgmii_phy))
4616 			return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy),
4617 					     "failed to get SGMII PHY\n");
4618 
4619 		ret = phy_init(bp->sgmii_phy);
4620 		if (ret)
4621 			return dev_err_probe(&pdev->dev, ret,
4622 					     "failed to init SGMII PHY\n");
4623 	}
4624 
4625 	ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_GEM_CONFIG);
4626 	if (!ret) {
4627 		u32 pm_info[2];
4628 
4629 		ret = of_property_read_u32_array(pdev->dev.of_node, "power-domains",
4630 						 pm_info, ARRAY_SIZE(pm_info));
4631 		if (ret) {
4632 			dev_err(&pdev->dev, "Failed to read power management information\n");
4633 			goto err_out_phy_exit;
4634 		}
4635 		ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_FIXED, 0);
4636 		if (ret)
4637 			goto err_out_phy_exit;
4638 
4639 		ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_SGMII_MODE, 1);
4640 		if (ret)
4641 			goto err_out_phy_exit;
4642 	}
4643 
4644 	/* Fully reset controller at hardware level if mapped in device tree */
4645 	ret = device_reset_optional(&pdev->dev);
4646 	if (ret) {
4647 		phy_exit(bp->sgmii_phy);
4648 		return dev_err_probe(&pdev->dev, ret, "failed to reset controller");
4649 	}
4650 
4651 	ret = macb_init(pdev);
4652 
4653 err_out_phy_exit:
4654 	if (ret)
4655 		phy_exit(bp->sgmii_phy);
4656 
4657 	return ret;
4658 }
4659 
4660 static const struct macb_usrio_config sama7g5_usrio = {
4661 	.mii = 0,
4662 	.rmii = 1,
4663 	.rgmii = 2,
4664 	.refclk = BIT(2),
4665 	.hdfctlen = BIT(6),
4666 };
4667 
4668 static const struct macb_config fu540_c000_config = {
4669 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4670 		MACB_CAPS_GEM_HAS_PTP,
4671 	.dma_burst_length = 16,
4672 	.clk_init = fu540_c000_clk_init,
4673 	.init = fu540_c000_init,
4674 	.jumbo_max_len = 10240,
4675 	.usrio = &macb_default_usrio,
4676 };
4677 
4678 static const struct macb_config at91sam9260_config = {
4679 	.caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4680 	.clk_init = macb_clk_init,
4681 	.init = macb_init,
4682 	.usrio = &macb_default_usrio,
4683 };
4684 
4685 static const struct macb_config sama5d3macb_config = {
4686 	.caps = MACB_CAPS_SG_DISABLED |
4687 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4688 	.clk_init = macb_clk_init,
4689 	.init = macb_init,
4690 	.usrio = &macb_default_usrio,
4691 };
4692 
4693 static const struct macb_config pc302gem_config = {
4694 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
4695 	.dma_burst_length = 16,
4696 	.clk_init = macb_clk_init,
4697 	.init = macb_init,
4698 	.usrio = &macb_default_usrio,
4699 };
4700 
4701 static const struct macb_config sama5d2_config = {
4702 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4703 	.dma_burst_length = 16,
4704 	.clk_init = macb_clk_init,
4705 	.init = macb_init,
4706 	.usrio = &macb_default_usrio,
4707 };
4708 
4709 static const struct macb_config sama5d29_config = {
4710 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP,
4711 	.dma_burst_length = 16,
4712 	.clk_init = macb_clk_init,
4713 	.init = macb_init,
4714 	.usrio = &macb_default_usrio,
4715 };
4716 
4717 static const struct macb_config sama5d3_config = {
4718 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4719 		MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO,
4720 	.dma_burst_length = 16,
4721 	.clk_init = macb_clk_init,
4722 	.init = macb_init,
4723 	.jumbo_max_len = 10240,
4724 	.usrio = &macb_default_usrio,
4725 };
4726 
4727 static const struct macb_config sama5d4_config = {
4728 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII,
4729 	.dma_burst_length = 4,
4730 	.clk_init = macb_clk_init,
4731 	.init = macb_init,
4732 	.usrio = &macb_default_usrio,
4733 };
4734 
4735 static const struct macb_config emac_config = {
4736 	.caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC,
4737 	.clk_init = at91ether_clk_init,
4738 	.init = at91ether_init,
4739 	.usrio = &macb_default_usrio,
4740 };
4741 
4742 static const struct macb_config np4_config = {
4743 	.caps = MACB_CAPS_USRIO_DISABLED,
4744 	.clk_init = macb_clk_init,
4745 	.init = macb_init,
4746 	.usrio = &macb_default_usrio,
4747 };
4748 
4749 static const struct macb_config zynqmp_config = {
4750 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4751 		MACB_CAPS_JUMBO |
4752 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH,
4753 	.dma_burst_length = 16,
4754 	.clk_init = macb_clk_init,
4755 	.init = init_reset_optional,
4756 	.jumbo_max_len = 10240,
4757 	.usrio = &macb_default_usrio,
4758 };
4759 
4760 static const struct macb_config zynq_config = {
4761 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF |
4762 		MACB_CAPS_NEEDS_RSTONUBR,
4763 	.dma_burst_length = 16,
4764 	.clk_init = macb_clk_init,
4765 	.init = macb_init,
4766 	.usrio = &macb_default_usrio,
4767 };
4768 
4769 static const struct macb_config mpfs_config = {
4770 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4771 		MACB_CAPS_JUMBO |
4772 		MACB_CAPS_GEM_HAS_PTP,
4773 	.dma_burst_length = 16,
4774 	.clk_init = macb_clk_init,
4775 	.init = init_reset_optional,
4776 	.usrio = &macb_default_usrio,
4777 	.jumbo_max_len = 10240,
4778 };
4779 
4780 static const struct macb_config sama7g5_gem_config = {
4781 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG |
4782 		MACB_CAPS_MIIONRGMII,
4783 	.dma_burst_length = 16,
4784 	.clk_init = macb_clk_init,
4785 	.init = macb_init,
4786 	.usrio = &sama7g5_usrio,
4787 };
4788 
4789 static const struct macb_config sama7g5_emac_config = {
4790 	.caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII |
4791 		MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII,
4792 	.dma_burst_length = 16,
4793 	.clk_init = macb_clk_init,
4794 	.init = macb_init,
4795 	.usrio = &sama7g5_usrio,
4796 };
4797 
4798 static const struct macb_config versal_config = {
4799 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO |
4800 		MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH | MACB_CAPS_NEED_TSUCLK,
4801 	.dma_burst_length = 16,
4802 	.clk_init = macb_clk_init,
4803 	.init = init_reset_optional,
4804 	.jumbo_max_len = 10240,
4805 	.usrio = &macb_default_usrio,
4806 };
4807 
4808 static const struct of_device_id macb_dt_ids[] = {
4809 	{ .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
4810 	{ .compatible = "cdns,macb" },
4811 	{ .compatible = "cdns,np4-macb", .data = &np4_config },
4812 	{ .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
4813 	{ .compatible = "cdns,gem", .data = &pc302gem_config },
4814 	{ .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config },
4815 	{ .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config },
4816 	{ .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config },
4817 	{ .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
4818 	{ .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config },
4819 	{ .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
4820 	{ .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
4821 	{ .compatible = "cdns,emac", .data = &emac_config },
4822 	{ .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, /* deprecated */
4823 	{ .compatible = "cdns,zynq-gem", .data = &zynq_config }, /* deprecated */
4824 	{ .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config },
4825 	{ .compatible = "microchip,mpfs-macb", .data = &mpfs_config },
4826 	{ .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config },
4827 	{ .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config },
4828 	{ .compatible = "xlnx,zynqmp-gem", .data = &zynqmp_config},
4829 	{ .compatible = "xlnx,zynq-gem", .data = &zynq_config },
4830 	{ .compatible = "xlnx,versal-gem", .data = &versal_config},
4831 	{ /* sentinel */ }
4832 };
4833 MODULE_DEVICE_TABLE(of, macb_dt_ids);
4834 #endif /* CONFIG_OF */
4835 
4836 static const struct macb_config default_gem_config = {
4837 	.caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE |
4838 		MACB_CAPS_JUMBO |
4839 		MACB_CAPS_GEM_HAS_PTP,
4840 	.dma_burst_length = 16,
4841 	.clk_init = macb_clk_init,
4842 	.init = macb_init,
4843 	.usrio = &macb_default_usrio,
4844 	.jumbo_max_len = 10240,
4845 };
4846 
4847 static int macb_probe(struct platform_device *pdev)
4848 {
4849 	const struct macb_config *macb_config = &default_gem_config;
4850 	int (*clk_init)(struct platform_device *, struct clk **,
4851 			struct clk **, struct clk **,  struct clk **,
4852 			struct clk **) = macb_config->clk_init;
4853 	int (*init)(struct platform_device *) = macb_config->init;
4854 	struct device_node *np = pdev->dev.of_node;
4855 	struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL;
4856 	struct clk *tsu_clk = NULL;
4857 	unsigned int queue_mask, num_queues;
4858 	bool native_io;
4859 	phy_interface_t interface;
4860 	struct net_device *dev;
4861 	struct resource *regs;
4862 	void __iomem *mem;
4863 	struct macb *bp;
4864 	int err, val;
4865 
4866 	mem = devm_platform_get_and_ioremap_resource(pdev, 0, &regs);
4867 	if (IS_ERR(mem))
4868 		return PTR_ERR(mem);
4869 
4870 	if (np) {
4871 		const struct of_device_id *match;
4872 
4873 		match = of_match_node(macb_dt_ids, np);
4874 		if (match && match->data) {
4875 			macb_config = match->data;
4876 			clk_init = macb_config->clk_init;
4877 			init = macb_config->init;
4878 		}
4879 	}
4880 
4881 	err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk);
4882 	if (err)
4883 		return err;
4884 
4885 	pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT);
4886 	pm_runtime_use_autosuspend(&pdev->dev);
4887 	pm_runtime_get_noresume(&pdev->dev);
4888 	pm_runtime_set_active(&pdev->dev);
4889 	pm_runtime_enable(&pdev->dev);
4890 	native_io = hw_is_native_io(mem);
4891 
4892 	macb_probe_queues(mem, native_io, &queue_mask, &num_queues);
4893 	dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
4894 	if (!dev) {
4895 		err = -ENOMEM;
4896 		goto err_disable_clocks;
4897 	}
4898 
4899 	dev->base_addr = regs->start;
4900 
4901 	SET_NETDEV_DEV(dev, &pdev->dev);
4902 
4903 	bp = netdev_priv(dev);
4904 	bp->pdev = pdev;
4905 	bp->dev = dev;
4906 	bp->regs = mem;
4907 	bp->native_io = native_io;
4908 	if (native_io) {
4909 		bp->macb_reg_readl = hw_readl_native;
4910 		bp->macb_reg_writel = hw_writel_native;
4911 	} else {
4912 		bp->macb_reg_readl = hw_readl;
4913 		bp->macb_reg_writel = hw_writel;
4914 	}
4915 	bp->num_queues = num_queues;
4916 	bp->queue_mask = queue_mask;
4917 	if (macb_config)
4918 		bp->dma_burst_length = macb_config->dma_burst_length;
4919 	bp->pclk = pclk;
4920 	bp->hclk = hclk;
4921 	bp->tx_clk = tx_clk;
4922 	bp->rx_clk = rx_clk;
4923 	bp->tsu_clk = tsu_clk;
4924 	if (macb_config)
4925 		bp->jumbo_max_len = macb_config->jumbo_max_len;
4926 
4927 	bp->wol = 0;
4928 	if (of_get_property(np, "magic-packet", NULL))
4929 		bp->wol |= MACB_WOL_HAS_MAGIC_PACKET;
4930 	device_set_wakeup_capable(&pdev->dev, bp->wol & MACB_WOL_HAS_MAGIC_PACKET);
4931 
4932 	bp->usrio = macb_config->usrio;
4933 
4934 	spin_lock_init(&bp->lock);
4935 
4936 	/* setup capabilities */
4937 	macb_configure_caps(bp, macb_config);
4938 
4939 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
4940 	if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) {
4941 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
4942 		bp->hw_dma_cap |= HW_DMA_CAP_64B;
4943 	}
4944 #endif
4945 	platform_set_drvdata(pdev, dev);
4946 
4947 	dev->irq = platform_get_irq(pdev, 0);
4948 	if (dev->irq < 0) {
4949 		err = dev->irq;
4950 		goto err_out_free_netdev;
4951 	}
4952 
4953 	/* MTU range: 68 - 1500 or 10240 */
4954 	dev->min_mtu = GEM_MTU_MIN_SIZE;
4955 	if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len)
4956 		dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN;
4957 	else
4958 		dev->max_mtu = ETH_DATA_LEN;
4959 
4960 	if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) {
4961 		val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10));
4962 		if (val)
4963 			bp->rx_bd_rd_prefetch = (2 << (val - 1)) *
4964 						macb_dma_desc_get_size(bp);
4965 
4966 		val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10));
4967 		if (val)
4968 			bp->tx_bd_rd_prefetch = (2 << (val - 1)) *
4969 						macb_dma_desc_get_size(bp);
4970 	}
4971 
4972 	bp->rx_intr_mask = MACB_RX_INT_FLAGS;
4973 	if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR)
4974 		bp->rx_intr_mask |= MACB_BIT(RXUBR);
4975 
4976 	err = of_get_ethdev_address(np, bp->dev);
4977 	if (err == -EPROBE_DEFER)
4978 		goto err_out_free_netdev;
4979 	else if (err)
4980 		macb_get_hwaddr(bp);
4981 
4982 	err = of_get_phy_mode(np, &interface);
4983 	if (err)
4984 		/* not found in DT, MII by default */
4985 		bp->phy_interface = PHY_INTERFACE_MODE_MII;
4986 	else
4987 		bp->phy_interface = interface;
4988 
4989 	/* IP specific init */
4990 	err = init(pdev);
4991 	if (err)
4992 		goto err_out_free_netdev;
4993 
4994 	err = macb_mii_init(bp);
4995 	if (err)
4996 		goto err_out_phy_exit;
4997 
4998 	netif_carrier_off(dev);
4999 
5000 	err = register_netdev(dev);
5001 	if (err) {
5002 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
5003 		goto err_out_unregister_mdio;
5004 	}
5005 
5006 	tasklet_setup(&bp->hresp_err_tasklet, macb_hresp_error_task);
5007 
5008 	netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
5009 		    macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
5010 		    dev->base_addr, dev->irq, dev->dev_addr);
5011 
5012 	pm_runtime_mark_last_busy(&bp->pdev->dev);
5013 	pm_runtime_put_autosuspend(&bp->pdev->dev);
5014 
5015 	return 0;
5016 
5017 err_out_unregister_mdio:
5018 	mdiobus_unregister(bp->mii_bus);
5019 	mdiobus_free(bp->mii_bus);
5020 
5021 err_out_phy_exit:
5022 	phy_exit(bp->sgmii_phy);
5023 
5024 err_out_free_netdev:
5025 	free_netdev(dev);
5026 
5027 err_disable_clocks:
5028 	macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk);
5029 	pm_runtime_disable(&pdev->dev);
5030 	pm_runtime_set_suspended(&pdev->dev);
5031 	pm_runtime_dont_use_autosuspend(&pdev->dev);
5032 
5033 	return err;
5034 }
5035 
5036 static int macb_remove(struct platform_device *pdev)
5037 {
5038 	struct net_device *dev;
5039 	struct macb *bp;
5040 
5041 	dev = platform_get_drvdata(pdev);
5042 
5043 	if (dev) {
5044 		bp = netdev_priv(dev);
5045 		phy_exit(bp->sgmii_phy);
5046 		mdiobus_unregister(bp->mii_bus);
5047 		mdiobus_free(bp->mii_bus);
5048 
5049 		unregister_netdev(dev);
5050 		tasklet_kill(&bp->hresp_err_tasklet);
5051 		pm_runtime_disable(&pdev->dev);
5052 		pm_runtime_dont_use_autosuspend(&pdev->dev);
5053 		if (!pm_runtime_suspended(&pdev->dev)) {
5054 			macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk,
5055 					  bp->rx_clk, bp->tsu_clk);
5056 			pm_runtime_set_suspended(&pdev->dev);
5057 		}
5058 		phylink_destroy(bp->phylink);
5059 		free_netdev(dev);
5060 	}
5061 
5062 	return 0;
5063 }
5064 
5065 static int __maybe_unused macb_suspend(struct device *dev)
5066 {
5067 	struct net_device *netdev = dev_get_drvdata(dev);
5068 	struct macb *bp = netdev_priv(netdev);
5069 	struct macb_queue *queue;
5070 	unsigned long flags;
5071 	unsigned int q;
5072 	int err;
5073 
5074 	if (!netif_running(netdev))
5075 		return 0;
5076 
5077 	if (bp->wol & MACB_WOL_ENABLED) {
5078 		spin_lock_irqsave(&bp->lock, flags);
5079 		/* Flush all status bits */
5080 		macb_writel(bp, TSR, -1);
5081 		macb_writel(bp, RSR, -1);
5082 		for (q = 0, queue = bp->queues; q < bp->num_queues;
5083 		     ++q, ++queue) {
5084 			/* Disable all interrupts */
5085 			queue_writel(queue, IDR, -1);
5086 			queue_readl(queue, ISR);
5087 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5088 				queue_writel(queue, ISR, -1);
5089 		}
5090 		/* Change interrupt handler and
5091 		 * Enable WoL IRQ on queue 0
5092 		 */
5093 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5094 		if (macb_is_gem(bp)) {
5095 			err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt,
5096 					       IRQF_SHARED, netdev->name, bp->queues);
5097 			if (err) {
5098 				dev_err(dev,
5099 					"Unable to request IRQ %d (error %d)\n",
5100 					bp->queues[0].irq, err);
5101 				spin_unlock_irqrestore(&bp->lock, flags);
5102 				return err;
5103 			}
5104 			queue_writel(bp->queues, IER, GEM_BIT(WOL));
5105 			gem_writel(bp, WOL, MACB_BIT(MAG));
5106 		} else {
5107 			err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt,
5108 					       IRQF_SHARED, netdev->name, bp->queues);
5109 			if (err) {
5110 				dev_err(dev,
5111 					"Unable to request IRQ %d (error %d)\n",
5112 					bp->queues[0].irq, err);
5113 				spin_unlock_irqrestore(&bp->lock, flags);
5114 				return err;
5115 			}
5116 			queue_writel(bp->queues, IER, MACB_BIT(WOL));
5117 			macb_writel(bp, WOL, MACB_BIT(MAG));
5118 		}
5119 		spin_unlock_irqrestore(&bp->lock, flags);
5120 
5121 		enable_irq_wake(bp->queues[0].irq);
5122 	}
5123 
5124 	netif_device_detach(netdev);
5125 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5126 	     ++q, ++queue) {
5127 		napi_disable(&queue->napi_rx);
5128 		napi_disable(&queue->napi_tx);
5129 	}
5130 
5131 	if (!(bp->wol & MACB_WOL_ENABLED)) {
5132 		rtnl_lock();
5133 		phylink_stop(bp->phylink);
5134 		phy_exit(bp->sgmii_phy);
5135 		rtnl_unlock();
5136 		spin_lock_irqsave(&bp->lock, flags);
5137 		macb_reset_hw(bp);
5138 		spin_unlock_irqrestore(&bp->lock, flags);
5139 	}
5140 
5141 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5142 		bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO);
5143 
5144 	if (netdev->hw_features & NETIF_F_NTUPLE)
5145 		bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT);
5146 
5147 	if (bp->ptp_info)
5148 		bp->ptp_info->ptp_remove(netdev);
5149 	if (!device_may_wakeup(dev))
5150 		pm_runtime_force_suspend(dev);
5151 
5152 	return 0;
5153 }
5154 
5155 static int __maybe_unused macb_resume(struct device *dev)
5156 {
5157 	struct net_device *netdev = dev_get_drvdata(dev);
5158 	struct macb *bp = netdev_priv(netdev);
5159 	struct macb_queue *queue;
5160 	unsigned long flags;
5161 	unsigned int q;
5162 	int err;
5163 
5164 	if (!netif_running(netdev))
5165 		return 0;
5166 
5167 	if (!device_may_wakeup(dev))
5168 		pm_runtime_force_resume(dev);
5169 
5170 	if (bp->wol & MACB_WOL_ENABLED) {
5171 		spin_lock_irqsave(&bp->lock, flags);
5172 		/* Disable WoL */
5173 		if (macb_is_gem(bp)) {
5174 			queue_writel(bp->queues, IDR, GEM_BIT(WOL));
5175 			gem_writel(bp, WOL, 0);
5176 		} else {
5177 			queue_writel(bp->queues, IDR, MACB_BIT(WOL));
5178 			macb_writel(bp, WOL, 0);
5179 		}
5180 		/* Clear ISR on queue 0 */
5181 		queue_readl(bp->queues, ISR);
5182 		if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
5183 			queue_writel(bp->queues, ISR, -1);
5184 		/* Replace interrupt handler on queue 0 */
5185 		devm_free_irq(dev, bp->queues[0].irq, bp->queues);
5186 		err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt,
5187 				       IRQF_SHARED, netdev->name, bp->queues);
5188 		if (err) {
5189 			dev_err(dev,
5190 				"Unable to request IRQ %d (error %d)\n",
5191 				bp->queues[0].irq, err);
5192 			spin_unlock_irqrestore(&bp->lock, flags);
5193 			return err;
5194 		}
5195 		spin_unlock_irqrestore(&bp->lock, flags);
5196 
5197 		disable_irq_wake(bp->queues[0].irq);
5198 
5199 		/* Now make sure we disable phy before moving
5200 		 * to common restore path
5201 		 */
5202 		rtnl_lock();
5203 		phylink_stop(bp->phylink);
5204 		rtnl_unlock();
5205 	}
5206 
5207 	for (q = 0, queue = bp->queues; q < bp->num_queues;
5208 	     ++q, ++queue) {
5209 		napi_enable(&queue->napi_rx);
5210 		napi_enable(&queue->napi_tx);
5211 	}
5212 
5213 	if (netdev->hw_features & NETIF_F_NTUPLE)
5214 		gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2);
5215 
5216 	if (!(bp->caps & MACB_CAPS_USRIO_DISABLED))
5217 		macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio);
5218 
5219 	macb_writel(bp, NCR, MACB_BIT(MPE));
5220 	macb_init_hw(bp);
5221 	macb_set_rx_mode(netdev);
5222 	macb_restore_features(bp);
5223 	rtnl_lock();
5224 	if (!device_may_wakeup(&bp->dev->dev))
5225 		phy_init(bp->sgmii_phy);
5226 
5227 	phylink_start(bp->phylink);
5228 	rtnl_unlock();
5229 
5230 	netif_device_attach(netdev);
5231 	if (bp->ptp_info)
5232 		bp->ptp_info->ptp_init(netdev);
5233 
5234 	return 0;
5235 }
5236 
5237 static int __maybe_unused macb_runtime_suspend(struct device *dev)
5238 {
5239 	struct net_device *netdev = dev_get_drvdata(dev);
5240 	struct macb *bp = netdev_priv(netdev);
5241 
5242 	if (!(device_may_wakeup(dev)))
5243 		macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk);
5244 	else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK))
5245 		macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk);
5246 
5247 	return 0;
5248 }
5249 
5250 static int __maybe_unused macb_runtime_resume(struct device *dev)
5251 {
5252 	struct net_device *netdev = dev_get_drvdata(dev);
5253 	struct macb *bp = netdev_priv(netdev);
5254 
5255 	if (!(device_may_wakeup(dev))) {
5256 		clk_prepare_enable(bp->pclk);
5257 		clk_prepare_enable(bp->hclk);
5258 		clk_prepare_enable(bp->tx_clk);
5259 		clk_prepare_enable(bp->rx_clk);
5260 		clk_prepare_enable(bp->tsu_clk);
5261 	} else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) {
5262 		clk_prepare_enable(bp->tsu_clk);
5263 	}
5264 
5265 	return 0;
5266 }
5267 
5268 static const struct dev_pm_ops macb_pm_ops = {
5269 	SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume)
5270 	SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL)
5271 };
5272 
5273 static struct platform_driver macb_driver = {
5274 	.probe		= macb_probe,
5275 	.remove		= macb_remove,
5276 	.driver		= {
5277 		.name		= "macb",
5278 		.of_match_table	= of_match_ptr(macb_dt_ids),
5279 		.pm	= &macb_pm_ops,
5280 	},
5281 };
5282 
5283 module_platform_driver(macb_driver);
5284 
5285 MODULE_LICENSE("GPL");
5286 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
5287 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
5288 MODULE_ALIAS("platform:macb");
5289