1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Cadence MACB/GEM Ethernet Controller driver 4 * 5 * Copyright (C) 2004-2006 Atmel Corporation 6 */ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 #include <linux/clk.h> 10 #include <linux/clk-provider.h> 11 #include <linux/crc32.h> 12 #include <linux/module.h> 13 #include <linux/moduleparam.h> 14 #include <linux/kernel.h> 15 #include <linux/types.h> 16 #include <linux/circ_buf.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/io.h> 20 #include <linux/gpio.h> 21 #include <linux/gpio/consumer.h> 22 #include <linux/interrupt.h> 23 #include <linux/netdevice.h> 24 #include <linux/etherdevice.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/platform_device.h> 27 #include <linux/phylink.h> 28 #include <linux/of.h> 29 #include <linux/of_gpio.h> 30 #include <linux/of_mdio.h> 31 #include <linux/of_net.h> 32 #include <linux/ip.h> 33 #include <linux/udp.h> 34 #include <linux/tcp.h> 35 #include <linux/iopoll.h> 36 #include <linux/phy/phy.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/ptp_classify.h> 39 #include <linux/reset.h> 40 #include <linux/firmware/xlnx-zynqmp.h> 41 #include <linux/inetdevice.h> 42 #include "macb.h" 43 44 /* This structure is only used for MACB on SiFive FU540 devices */ 45 struct sifive_fu540_macb_mgmt { 46 void __iomem *reg; 47 unsigned long rate; 48 struct clk_hw hw; 49 }; 50 51 #define MACB_RX_BUFFER_SIZE 128 52 #define RX_BUFFER_MULTIPLE 64 /* bytes */ 53 54 #define DEFAULT_RX_RING_SIZE 512 /* must be power of 2 */ 55 #define MIN_RX_RING_SIZE 64 56 #define MAX_RX_RING_SIZE 8192 57 #define RX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \ 58 * (bp)->rx_ring_size) 59 60 #define DEFAULT_TX_RING_SIZE 512 /* must be power of 2 */ 61 #define MIN_TX_RING_SIZE 64 62 #define MAX_TX_RING_SIZE 4096 63 #define TX_RING_BYTES(bp) (macb_dma_desc_get_size(bp) \ 64 * (bp)->tx_ring_size) 65 66 /* level of occupied TX descriptors under which we wake up TX process */ 67 #define MACB_TX_WAKEUP_THRESH(bp) (3 * (bp)->tx_ring_size / 4) 68 69 #define MACB_RX_INT_FLAGS (MACB_BIT(RCOMP) | MACB_BIT(ISR_ROVR)) 70 #define MACB_TX_ERR_FLAGS (MACB_BIT(ISR_TUND) \ 71 | MACB_BIT(ISR_RLE) \ 72 | MACB_BIT(TXERR)) 73 #define MACB_TX_INT_FLAGS (MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP) \ 74 | MACB_BIT(TXUBR)) 75 76 /* Max length of transmit frame must be a multiple of 8 bytes */ 77 #define MACB_TX_LEN_ALIGN 8 78 #define MACB_MAX_TX_LEN ((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1) & ~((unsigned int)(MACB_TX_LEN_ALIGN - 1))) 79 /* Limit maximum TX length as per Cadence TSO errata. This is to avoid a 80 * false amba_error in TX path from the DMA assuming there is not enough 81 * space in the SRAM (16KB) even when there is. 82 */ 83 #define GEM_MAX_TX_LEN (unsigned int)(0x3FC0) 84 85 #define GEM_MTU_MIN_SIZE ETH_MIN_MTU 86 #define MACB_NETIF_LSO NETIF_F_TSO 87 88 #define MACB_WOL_ENABLED BIT(0) 89 90 #define HS_SPEED_10000M 4 91 #define MACB_SERDES_RATE_10G 1 92 93 /* Graceful stop timeouts in us. We should allow up to 94 * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions) 95 */ 96 #define MACB_HALT_TIMEOUT 14000 97 #define MACB_PM_TIMEOUT 100 /* ms */ 98 99 #define MACB_MDIO_TIMEOUT 1000000 /* in usecs */ 100 101 /* DMA buffer descriptor might be different size 102 * depends on hardware configuration: 103 * 104 * 1. dma address width 32 bits: 105 * word 1: 32 bit address of Data Buffer 106 * word 2: control 107 * 108 * 2. dma address width 64 bits: 109 * word 1: 32 bit address of Data Buffer 110 * word 2: control 111 * word 3: upper 32 bit address of Data Buffer 112 * word 4: unused 113 * 114 * 3. dma address width 32 bits with hardware timestamping: 115 * word 1: 32 bit address of Data Buffer 116 * word 2: control 117 * word 3: timestamp word 1 118 * word 4: timestamp word 2 119 * 120 * 4. dma address width 64 bits with hardware timestamping: 121 * word 1: 32 bit address of Data Buffer 122 * word 2: control 123 * word 3: upper 32 bit address of Data Buffer 124 * word 4: unused 125 * word 5: timestamp word 1 126 * word 6: timestamp word 2 127 */ 128 static unsigned int macb_dma_desc_get_size(struct macb *bp) 129 { 130 #ifdef MACB_EXT_DESC 131 unsigned int desc_size; 132 133 switch (bp->hw_dma_cap) { 134 case HW_DMA_CAP_64B: 135 desc_size = sizeof(struct macb_dma_desc) 136 + sizeof(struct macb_dma_desc_64); 137 break; 138 case HW_DMA_CAP_PTP: 139 desc_size = sizeof(struct macb_dma_desc) 140 + sizeof(struct macb_dma_desc_ptp); 141 break; 142 case HW_DMA_CAP_64B_PTP: 143 desc_size = sizeof(struct macb_dma_desc) 144 + sizeof(struct macb_dma_desc_64) 145 + sizeof(struct macb_dma_desc_ptp); 146 break; 147 default: 148 desc_size = sizeof(struct macb_dma_desc); 149 } 150 return desc_size; 151 #endif 152 return sizeof(struct macb_dma_desc); 153 } 154 155 static unsigned int macb_adj_dma_desc_idx(struct macb *bp, unsigned int desc_idx) 156 { 157 #ifdef MACB_EXT_DESC 158 switch (bp->hw_dma_cap) { 159 case HW_DMA_CAP_64B: 160 case HW_DMA_CAP_PTP: 161 desc_idx <<= 1; 162 break; 163 case HW_DMA_CAP_64B_PTP: 164 desc_idx *= 3; 165 break; 166 default: 167 break; 168 } 169 #endif 170 return desc_idx; 171 } 172 173 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 174 static struct macb_dma_desc_64 *macb_64b_desc(struct macb *bp, struct macb_dma_desc *desc) 175 { 176 return (struct macb_dma_desc_64 *)((void *)desc 177 + sizeof(struct macb_dma_desc)); 178 } 179 #endif 180 181 /* Ring buffer accessors */ 182 static unsigned int macb_tx_ring_wrap(struct macb *bp, unsigned int index) 183 { 184 return index & (bp->tx_ring_size - 1); 185 } 186 187 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue, 188 unsigned int index) 189 { 190 index = macb_tx_ring_wrap(queue->bp, index); 191 index = macb_adj_dma_desc_idx(queue->bp, index); 192 return &queue->tx_ring[index]; 193 } 194 195 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue, 196 unsigned int index) 197 { 198 return &queue->tx_skb[macb_tx_ring_wrap(queue->bp, index)]; 199 } 200 201 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index) 202 { 203 dma_addr_t offset; 204 205 offset = macb_tx_ring_wrap(queue->bp, index) * 206 macb_dma_desc_get_size(queue->bp); 207 208 return queue->tx_ring_dma + offset; 209 } 210 211 static unsigned int macb_rx_ring_wrap(struct macb *bp, unsigned int index) 212 { 213 return index & (bp->rx_ring_size - 1); 214 } 215 216 static struct macb_dma_desc *macb_rx_desc(struct macb_queue *queue, unsigned int index) 217 { 218 index = macb_rx_ring_wrap(queue->bp, index); 219 index = macb_adj_dma_desc_idx(queue->bp, index); 220 return &queue->rx_ring[index]; 221 } 222 223 static void *macb_rx_buffer(struct macb_queue *queue, unsigned int index) 224 { 225 return queue->rx_buffers + queue->bp->rx_buffer_size * 226 macb_rx_ring_wrap(queue->bp, index); 227 } 228 229 /* I/O accessors */ 230 static u32 hw_readl_native(struct macb *bp, int offset) 231 { 232 return __raw_readl(bp->regs + offset); 233 } 234 235 static void hw_writel_native(struct macb *bp, int offset, u32 value) 236 { 237 __raw_writel(value, bp->regs + offset); 238 } 239 240 static u32 hw_readl(struct macb *bp, int offset) 241 { 242 return readl_relaxed(bp->regs + offset); 243 } 244 245 static void hw_writel(struct macb *bp, int offset, u32 value) 246 { 247 writel_relaxed(value, bp->regs + offset); 248 } 249 250 /* Find the CPU endianness by using the loopback bit of NCR register. When the 251 * CPU is in big endian we need to program swapped mode for management 252 * descriptor access. 253 */ 254 static bool hw_is_native_io(void __iomem *addr) 255 { 256 u32 value = MACB_BIT(LLB); 257 258 __raw_writel(value, addr + MACB_NCR); 259 value = __raw_readl(addr + MACB_NCR); 260 261 /* Write 0 back to disable everything */ 262 __raw_writel(0, addr + MACB_NCR); 263 264 return value == MACB_BIT(LLB); 265 } 266 267 static bool hw_is_gem(void __iomem *addr, bool native_io) 268 { 269 u32 id; 270 271 if (native_io) 272 id = __raw_readl(addr + MACB_MID); 273 else 274 id = readl_relaxed(addr + MACB_MID); 275 276 return MACB_BFEXT(IDNUM, id) >= 0x2; 277 } 278 279 static void macb_set_hwaddr(struct macb *bp) 280 { 281 u32 bottom; 282 u16 top; 283 284 bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr)); 285 macb_or_gem_writel(bp, SA1B, bottom); 286 top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4))); 287 macb_or_gem_writel(bp, SA1T, top); 288 289 if (gem_has_ptp(bp)) { 290 gem_writel(bp, RXPTPUNI, bottom); 291 gem_writel(bp, TXPTPUNI, bottom); 292 } 293 294 /* Clear unused address register sets */ 295 macb_or_gem_writel(bp, SA2B, 0); 296 macb_or_gem_writel(bp, SA2T, 0); 297 macb_or_gem_writel(bp, SA3B, 0); 298 macb_or_gem_writel(bp, SA3T, 0); 299 macb_or_gem_writel(bp, SA4B, 0); 300 macb_or_gem_writel(bp, SA4T, 0); 301 } 302 303 static void macb_get_hwaddr(struct macb *bp) 304 { 305 u32 bottom; 306 u16 top; 307 u8 addr[6]; 308 int i; 309 310 /* Check all 4 address register for valid address */ 311 for (i = 0; i < 4; i++) { 312 bottom = macb_or_gem_readl(bp, SA1B + i * 8); 313 top = macb_or_gem_readl(bp, SA1T + i * 8); 314 315 addr[0] = bottom & 0xff; 316 addr[1] = (bottom >> 8) & 0xff; 317 addr[2] = (bottom >> 16) & 0xff; 318 addr[3] = (bottom >> 24) & 0xff; 319 addr[4] = top & 0xff; 320 addr[5] = (top >> 8) & 0xff; 321 322 if (is_valid_ether_addr(addr)) { 323 eth_hw_addr_set(bp->dev, addr); 324 return; 325 } 326 } 327 328 dev_info(&bp->pdev->dev, "invalid hw address, using random\n"); 329 eth_hw_addr_random(bp->dev); 330 } 331 332 static int macb_mdio_wait_for_idle(struct macb *bp) 333 { 334 u32 val; 335 336 return readx_poll_timeout(MACB_READ_NSR, bp, val, val & MACB_BIT(IDLE), 337 1, MACB_MDIO_TIMEOUT); 338 } 339 340 static int macb_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 341 { 342 struct macb *bp = bus->priv; 343 int status; 344 345 status = pm_runtime_resume_and_get(&bp->pdev->dev); 346 if (status < 0) 347 goto mdio_pm_exit; 348 349 status = macb_mdio_wait_for_idle(bp); 350 if (status < 0) 351 goto mdio_read_exit; 352 353 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF) 354 | MACB_BF(RW, MACB_MAN_C22_READ) 355 | MACB_BF(PHYA, mii_id) 356 | MACB_BF(REGA, regnum) 357 | MACB_BF(CODE, MACB_MAN_C22_CODE))); 358 359 status = macb_mdio_wait_for_idle(bp); 360 if (status < 0) 361 goto mdio_read_exit; 362 363 status = MACB_BFEXT(DATA, macb_readl(bp, MAN)); 364 365 mdio_read_exit: 366 pm_runtime_mark_last_busy(&bp->pdev->dev); 367 pm_runtime_put_autosuspend(&bp->pdev->dev); 368 mdio_pm_exit: 369 return status; 370 } 371 372 static int macb_mdio_read_c45(struct mii_bus *bus, int mii_id, int devad, 373 int regnum) 374 { 375 struct macb *bp = bus->priv; 376 int status; 377 378 status = pm_runtime_get_sync(&bp->pdev->dev); 379 if (status < 0) { 380 pm_runtime_put_noidle(&bp->pdev->dev); 381 goto mdio_pm_exit; 382 } 383 384 status = macb_mdio_wait_for_idle(bp); 385 if (status < 0) 386 goto mdio_read_exit; 387 388 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 389 | MACB_BF(RW, MACB_MAN_C45_ADDR) 390 | MACB_BF(PHYA, mii_id) 391 | MACB_BF(REGA, devad & 0x1F) 392 | MACB_BF(DATA, regnum & 0xFFFF) 393 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 394 395 status = macb_mdio_wait_for_idle(bp); 396 if (status < 0) 397 goto mdio_read_exit; 398 399 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 400 | MACB_BF(RW, MACB_MAN_C45_READ) 401 | MACB_BF(PHYA, mii_id) 402 | MACB_BF(REGA, devad & 0x1F) 403 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 404 405 status = macb_mdio_wait_for_idle(bp); 406 if (status < 0) 407 goto mdio_read_exit; 408 409 status = MACB_BFEXT(DATA, macb_readl(bp, MAN)); 410 411 mdio_read_exit: 412 pm_runtime_mark_last_busy(&bp->pdev->dev); 413 pm_runtime_put_autosuspend(&bp->pdev->dev); 414 mdio_pm_exit: 415 return status; 416 } 417 418 static int macb_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 419 u16 value) 420 { 421 struct macb *bp = bus->priv; 422 int status; 423 424 status = pm_runtime_resume_and_get(&bp->pdev->dev); 425 if (status < 0) 426 goto mdio_pm_exit; 427 428 status = macb_mdio_wait_for_idle(bp); 429 if (status < 0) 430 goto mdio_write_exit; 431 432 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C22_SOF) 433 | MACB_BF(RW, MACB_MAN_C22_WRITE) 434 | MACB_BF(PHYA, mii_id) 435 | MACB_BF(REGA, regnum) 436 | MACB_BF(CODE, MACB_MAN_C22_CODE) 437 | MACB_BF(DATA, value))); 438 439 status = macb_mdio_wait_for_idle(bp); 440 if (status < 0) 441 goto mdio_write_exit; 442 443 mdio_write_exit: 444 pm_runtime_mark_last_busy(&bp->pdev->dev); 445 pm_runtime_put_autosuspend(&bp->pdev->dev); 446 mdio_pm_exit: 447 return status; 448 } 449 450 static int macb_mdio_write_c45(struct mii_bus *bus, int mii_id, 451 int devad, int regnum, 452 u16 value) 453 { 454 struct macb *bp = bus->priv; 455 int status; 456 457 status = pm_runtime_get_sync(&bp->pdev->dev); 458 if (status < 0) { 459 pm_runtime_put_noidle(&bp->pdev->dev); 460 goto mdio_pm_exit; 461 } 462 463 status = macb_mdio_wait_for_idle(bp); 464 if (status < 0) 465 goto mdio_write_exit; 466 467 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 468 | MACB_BF(RW, MACB_MAN_C45_ADDR) 469 | MACB_BF(PHYA, mii_id) 470 | MACB_BF(REGA, devad & 0x1F) 471 | MACB_BF(DATA, regnum & 0xFFFF) 472 | MACB_BF(CODE, MACB_MAN_C45_CODE))); 473 474 status = macb_mdio_wait_for_idle(bp); 475 if (status < 0) 476 goto mdio_write_exit; 477 478 macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_C45_SOF) 479 | MACB_BF(RW, MACB_MAN_C45_WRITE) 480 | MACB_BF(PHYA, mii_id) 481 | MACB_BF(REGA, devad & 0x1F) 482 | MACB_BF(CODE, MACB_MAN_C45_CODE) 483 | MACB_BF(DATA, value))); 484 485 status = macb_mdio_wait_for_idle(bp); 486 if (status < 0) 487 goto mdio_write_exit; 488 489 mdio_write_exit: 490 pm_runtime_mark_last_busy(&bp->pdev->dev); 491 pm_runtime_put_autosuspend(&bp->pdev->dev); 492 mdio_pm_exit: 493 return status; 494 } 495 496 static void macb_init_buffers(struct macb *bp) 497 { 498 struct macb_queue *queue; 499 unsigned int q; 500 501 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 502 queue_writel(queue, RBQP, lower_32_bits(queue->rx_ring_dma)); 503 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 504 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 505 queue_writel(queue, RBQPH, 506 upper_32_bits(queue->rx_ring_dma)); 507 #endif 508 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma)); 509 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 510 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 511 queue_writel(queue, TBQPH, 512 upper_32_bits(queue->tx_ring_dma)); 513 #endif 514 } 515 } 516 517 /** 518 * macb_set_tx_clk() - Set a clock to a new frequency 519 * @bp: pointer to struct macb 520 * @speed: New frequency in Hz 521 */ 522 static void macb_set_tx_clk(struct macb *bp, int speed) 523 { 524 long ferr, rate, rate_rounded; 525 526 if (!bp->tx_clk || (bp->caps & MACB_CAPS_CLK_HW_CHG)) 527 return; 528 529 /* In case of MII the PHY is the clock master */ 530 if (bp->phy_interface == PHY_INTERFACE_MODE_MII) 531 return; 532 533 rate = rgmii_clock(speed); 534 if (rate < 0) 535 return; 536 537 rate_rounded = clk_round_rate(bp->tx_clk, rate); 538 if (rate_rounded < 0) 539 return; 540 541 /* RGMII allows 50 ppm frequency error. Test and warn if this limit 542 * is not satisfied. 543 */ 544 ferr = abs(rate_rounded - rate); 545 ferr = DIV_ROUND_UP(ferr, rate / 100000); 546 if (ferr > 5) 547 netdev_warn(bp->dev, 548 "unable to generate target frequency: %ld Hz\n", 549 rate); 550 551 if (clk_set_rate(bp->tx_clk, rate_rounded)) 552 netdev_err(bp->dev, "adjusting tx_clk failed.\n"); 553 } 554 555 static void macb_usx_pcs_link_up(struct phylink_pcs *pcs, unsigned int neg_mode, 556 phy_interface_t interface, int speed, 557 int duplex) 558 { 559 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 560 u32 config; 561 562 config = gem_readl(bp, USX_CONTROL); 563 config = GEM_BFINS(SERDES_RATE, MACB_SERDES_RATE_10G, config); 564 config = GEM_BFINS(USX_CTRL_SPEED, HS_SPEED_10000M, config); 565 config &= ~(GEM_BIT(TX_SCR_BYPASS) | GEM_BIT(RX_SCR_BYPASS)); 566 config |= GEM_BIT(TX_EN); 567 gem_writel(bp, USX_CONTROL, config); 568 } 569 570 static void macb_usx_pcs_get_state(struct phylink_pcs *pcs, 571 unsigned int neg_mode, 572 struct phylink_link_state *state) 573 { 574 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 575 u32 val; 576 577 state->speed = SPEED_10000; 578 state->duplex = 1; 579 state->an_complete = 1; 580 581 val = gem_readl(bp, USX_STATUS); 582 state->link = !!(val & GEM_BIT(USX_BLOCK_LOCK)); 583 val = gem_readl(bp, NCFGR); 584 if (val & GEM_BIT(PAE)) 585 state->pause = MLO_PAUSE_RX; 586 } 587 588 static int macb_usx_pcs_config(struct phylink_pcs *pcs, 589 unsigned int neg_mode, 590 phy_interface_t interface, 591 const unsigned long *advertising, 592 bool permit_pause_to_mac) 593 { 594 struct macb *bp = container_of(pcs, struct macb, phylink_usx_pcs); 595 596 gem_writel(bp, USX_CONTROL, gem_readl(bp, USX_CONTROL) | 597 GEM_BIT(SIGNAL_OK)); 598 599 return 0; 600 } 601 602 static void macb_pcs_get_state(struct phylink_pcs *pcs, unsigned int neg_mode, 603 struct phylink_link_state *state) 604 { 605 state->link = 0; 606 } 607 608 static void macb_pcs_an_restart(struct phylink_pcs *pcs) 609 { 610 /* Not supported */ 611 } 612 613 static int macb_pcs_config(struct phylink_pcs *pcs, 614 unsigned int neg_mode, 615 phy_interface_t interface, 616 const unsigned long *advertising, 617 bool permit_pause_to_mac) 618 { 619 return 0; 620 } 621 622 static const struct phylink_pcs_ops macb_phylink_usx_pcs_ops = { 623 .pcs_get_state = macb_usx_pcs_get_state, 624 .pcs_config = macb_usx_pcs_config, 625 .pcs_link_up = macb_usx_pcs_link_up, 626 }; 627 628 static const struct phylink_pcs_ops macb_phylink_pcs_ops = { 629 .pcs_get_state = macb_pcs_get_state, 630 .pcs_an_restart = macb_pcs_an_restart, 631 .pcs_config = macb_pcs_config, 632 }; 633 634 static void macb_mac_config(struct phylink_config *config, unsigned int mode, 635 const struct phylink_link_state *state) 636 { 637 struct net_device *ndev = to_net_dev(config->dev); 638 struct macb *bp = netdev_priv(ndev); 639 unsigned long flags; 640 u32 old_ctrl, ctrl; 641 u32 old_ncr, ncr; 642 643 spin_lock_irqsave(&bp->lock, flags); 644 645 old_ctrl = ctrl = macb_or_gem_readl(bp, NCFGR); 646 old_ncr = ncr = macb_or_gem_readl(bp, NCR); 647 648 if (bp->caps & MACB_CAPS_MACB_IS_EMAC) { 649 if (state->interface == PHY_INTERFACE_MODE_RMII) 650 ctrl |= MACB_BIT(RM9200_RMII); 651 } else if (macb_is_gem(bp)) { 652 ctrl &= ~(GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL)); 653 ncr &= ~GEM_BIT(ENABLE_HS_MAC); 654 655 if (state->interface == PHY_INTERFACE_MODE_SGMII) { 656 ctrl |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL); 657 } else if (state->interface == PHY_INTERFACE_MODE_10GBASER) { 658 ctrl |= GEM_BIT(PCSSEL); 659 ncr |= GEM_BIT(ENABLE_HS_MAC); 660 } else if (bp->caps & MACB_CAPS_MIIONRGMII && 661 bp->phy_interface == PHY_INTERFACE_MODE_MII) { 662 ncr |= MACB_BIT(MIIONRGMII); 663 } 664 } 665 666 /* Apply the new configuration, if any */ 667 if (old_ctrl ^ ctrl) 668 macb_or_gem_writel(bp, NCFGR, ctrl); 669 670 if (old_ncr ^ ncr) 671 macb_or_gem_writel(bp, NCR, ncr); 672 673 /* Disable AN for SGMII fixed link configuration, enable otherwise. 674 * Must be written after PCSSEL is set in NCFGR, 675 * otherwise writes will not take effect. 676 */ 677 if (macb_is_gem(bp) && state->interface == PHY_INTERFACE_MODE_SGMII) { 678 u32 pcsctrl, old_pcsctrl; 679 680 old_pcsctrl = gem_readl(bp, PCSCNTRL); 681 if (mode == MLO_AN_FIXED) 682 pcsctrl = old_pcsctrl & ~GEM_BIT(PCSAUTONEG); 683 else 684 pcsctrl = old_pcsctrl | GEM_BIT(PCSAUTONEG); 685 if (old_pcsctrl != pcsctrl) 686 gem_writel(bp, PCSCNTRL, pcsctrl); 687 } 688 689 spin_unlock_irqrestore(&bp->lock, flags); 690 } 691 692 static void macb_mac_link_down(struct phylink_config *config, unsigned int mode, 693 phy_interface_t interface) 694 { 695 struct net_device *ndev = to_net_dev(config->dev); 696 struct macb *bp = netdev_priv(ndev); 697 struct macb_queue *queue; 698 unsigned int q; 699 u32 ctrl; 700 701 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) 702 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 703 queue_writel(queue, IDR, 704 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP)); 705 706 /* Disable Rx and Tx */ 707 ctrl = macb_readl(bp, NCR) & ~(MACB_BIT(RE) | MACB_BIT(TE)); 708 macb_writel(bp, NCR, ctrl); 709 710 netif_tx_stop_all_queues(ndev); 711 } 712 713 static void macb_mac_link_up(struct phylink_config *config, 714 struct phy_device *phy, 715 unsigned int mode, phy_interface_t interface, 716 int speed, int duplex, 717 bool tx_pause, bool rx_pause) 718 { 719 struct net_device *ndev = to_net_dev(config->dev); 720 struct macb *bp = netdev_priv(ndev); 721 struct macb_queue *queue; 722 unsigned long flags; 723 unsigned int q; 724 u32 ctrl; 725 726 spin_lock_irqsave(&bp->lock, flags); 727 728 ctrl = macb_or_gem_readl(bp, NCFGR); 729 730 ctrl &= ~(MACB_BIT(SPD) | MACB_BIT(FD)); 731 732 if (speed == SPEED_100) 733 ctrl |= MACB_BIT(SPD); 734 735 if (duplex) 736 ctrl |= MACB_BIT(FD); 737 738 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) { 739 ctrl &= ~MACB_BIT(PAE); 740 if (macb_is_gem(bp)) { 741 ctrl &= ~GEM_BIT(GBE); 742 743 if (speed == SPEED_1000) 744 ctrl |= GEM_BIT(GBE); 745 } 746 747 if (rx_pause) 748 ctrl |= MACB_BIT(PAE); 749 750 /* Initialize rings & buffers as clearing MACB_BIT(TE) in link down 751 * cleared the pipeline and control registers. 752 */ 753 bp->macbgem_ops.mog_init_rings(bp); 754 macb_init_buffers(bp); 755 756 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 757 queue_writel(queue, IER, 758 bp->rx_intr_mask | MACB_TX_INT_FLAGS | MACB_BIT(HRESP)); 759 } 760 761 macb_or_gem_writel(bp, NCFGR, ctrl); 762 763 if (bp->phy_interface == PHY_INTERFACE_MODE_10GBASER) 764 gem_writel(bp, HS_MAC_CONFIG, GEM_BFINS(HS_MAC_SPEED, HS_SPEED_10000M, 765 gem_readl(bp, HS_MAC_CONFIG))); 766 767 spin_unlock_irqrestore(&bp->lock, flags); 768 769 if (!(bp->caps & MACB_CAPS_MACB_IS_EMAC)) 770 macb_set_tx_clk(bp, speed); 771 772 /* Enable Rx and Tx; Enable PTP unicast */ 773 ctrl = macb_readl(bp, NCR); 774 if (gem_has_ptp(bp)) 775 ctrl |= MACB_BIT(PTPUNI); 776 777 macb_writel(bp, NCR, ctrl | MACB_BIT(RE) | MACB_BIT(TE)); 778 779 netif_tx_wake_all_queues(ndev); 780 } 781 782 static struct phylink_pcs *macb_mac_select_pcs(struct phylink_config *config, 783 phy_interface_t interface) 784 { 785 struct net_device *ndev = to_net_dev(config->dev); 786 struct macb *bp = netdev_priv(ndev); 787 788 if (interface == PHY_INTERFACE_MODE_10GBASER) 789 return &bp->phylink_usx_pcs; 790 else if (interface == PHY_INTERFACE_MODE_SGMII) 791 return &bp->phylink_sgmii_pcs; 792 else 793 return NULL; 794 } 795 796 static const struct phylink_mac_ops macb_phylink_ops = { 797 .mac_select_pcs = macb_mac_select_pcs, 798 .mac_config = macb_mac_config, 799 .mac_link_down = macb_mac_link_down, 800 .mac_link_up = macb_mac_link_up, 801 }; 802 803 static bool macb_phy_handle_exists(struct device_node *dn) 804 { 805 dn = of_parse_phandle(dn, "phy-handle", 0); 806 of_node_put(dn); 807 return dn != NULL; 808 } 809 810 static int macb_phylink_connect(struct macb *bp) 811 { 812 struct device_node *dn = bp->pdev->dev.of_node; 813 struct net_device *dev = bp->dev; 814 struct phy_device *phydev; 815 int ret; 816 817 if (dn) 818 ret = phylink_of_phy_connect(bp->phylink, dn, 0); 819 820 if (!dn || (ret && !macb_phy_handle_exists(dn))) { 821 phydev = phy_find_first(bp->mii_bus); 822 if (!phydev) { 823 netdev_err(dev, "no PHY found\n"); 824 return -ENXIO; 825 } 826 827 /* attach the mac to the phy */ 828 ret = phylink_connect_phy(bp->phylink, phydev); 829 } 830 831 if (ret) { 832 netdev_err(dev, "Could not attach PHY (%d)\n", ret); 833 return ret; 834 } 835 836 phylink_start(bp->phylink); 837 838 return 0; 839 } 840 841 static void macb_get_pcs_fixed_state(struct phylink_config *config, 842 struct phylink_link_state *state) 843 { 844 struct net_device *ndev = to_net_dev(config->dev); 845 struct macb *bp = netdev_priv(ndev); 846 847 state->link = (macb_readl(bp, NSR) & MACB_BIT(NSR_LINK)) != 0; 848 } 849 850 /* based on au1000_eth. c*/ 851 static int macb_mii_probe(struct net_device *dev) 852 { 853 struct macb *bp = netdev_priv(dev); 854 855 bp->phylink_sgmii_pcs.ops = &macb_phylink_pcs_ops; 856 bp->phylink_sgmii_pcs.neg_mode = true; 857 bp->phylink_usx_pcs.ops = &macb_phylink_usx_pcs_ops; 858 bp->phylink_usx_pcs.neg_mode = true; 859 860 bp->phylink_config.dev = &dev->dev; 861 bp->phylink_config.type = PHYLINK_NETDEV; 862 bp->phylink_config.mac_managed_pm = true; 863 864 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) { 865 bp->phylink_config.poll_fixed_state = true; 866 bp->phylink_config.get_fixed_state = macb_get_pcs_fixed_state; 867 } 868 869 bp->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | 870 MAC_10 | MAC_100; 871 872 __set_bit(PHY_INTERFACE_MODE_MII, 873 bp->phylink_config.supported_interfaces); 874 __set_bit(PHY_INTERFACE_MODE_RMII, 875 bp->phylink_config.supported_interfaces); 876 877 /* Determine what modes are supported */ 878 if (macb_is_gem(bp) && (bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)) { 879 bp->phylink_config.mac_capabilities |= MAC_1000FD; 880 if (!(bp->caps & MACB_CAPS_NO_GIGABIT_HALF)) 881 bp->phylink_config.mac_capabilities |= MAC_1000HD; 882 883 __set_bit(PHY_INTERFACE_MODE_GMII, 884 bp->phylink_config.supported_interfaces); 885 phy_interface_set_rgmii(bp->phylink_config.supported_interfaces); 886 887 if (bp->caps & MACB_CAPS_PCS) 888 __set_bit(PHY_INTERFACE_MODE_SGMII, 889 bp->phylink_config.supported_interfaces); 890 891 if (bp->caps & MACB_CAPS_HIGH_SPEED) { 892 __set_bit(PHY_INTERFACE_MODE_10GBASER, 893 bp->phylink_config.supported_interfaces); 894 bp->phylink_config.mac_capabilities |= MAC_10000FD; 895 } 896 } 897 898 bp->phylink = phylink_create(&bp->phylink_config, bp->pdev->dev.fwnode, 899 bp->phy_interface, &macb_phylink_ops); 900 if (IS_ERR(bp->phylink)) { 901 netdev_err(dev, "Could not create a phylink instance (%ld)\n", 902 PTR_ERR(bp->phylink)); 903 return PTR_ERR(bp->phylink); 904 } 905 906 return 0; 907 } 908 909 static int macb_mdiobus_register(struct macb *bp, struct device_node *mdio_np) 910 { 911 struct device_node *child, *np = bp->pdev->dev.of_node; 912 913 /* If we have a child named mdio, probe it instead of looking for PHYs 914 * directly under the MAC node 915 */ 916 if (mdio_np) 917 return of_mdiobus_register(bp->mii_bus, mdio_np); 918 919 /* Only create the PHY from the device tree if at least one PHY is 920 * described. Otherwise scan the entire MDIO bus. We do this to support 921 * old device tree that did not follow the best practices and did not 922 * describe their network PHYs. 923 */ 924 for_each_available_child_of_node(np, child) 925 if (of_mdiobus_child_is_phy(child)) { 926 /* The loop increments the child refcount, 927 * decrement it before returning. 928 */ 929 of_node_put(child); 930 931 return of_mdiobus_register(bp->mii_bus, np); 932 } 933 934 return mdiobus_register(bp->mii_bus); 935 } 936 937 static int macb_mii_init(struct macb *bp) 938 { 939 struct device_node *mdio_np, *np = bp->pdev->dev.of_node; 940 int err = -ENXIO; 941 942 /* With fixed-link, we don't need to register the MDIO bus, 943 * except if we have a child named "mdio" in the device tree. 944 * In that case, some devices may be attached to the MACB's MDIO bus. 945 */ 946 mdio_np = of_get_child_by_name(np, "mdio"); 947 if (!mdio_np && of_phy_is_fixed_link(np)) 948 return macb_mii_probe(bp->dev); 949 950 /* Enable management port */ 951 macb_writel(bp, NCR, MACB_BIT(MPE)); 952 953 bp->mii_bus = mdiobus_alloc(); 954 if (!bp->mii_bus) { 955 err = -ENOMEM; 956 goto err_out; 957 } 958 959 bp->mii_bus->name = "MACB_mii_bus"; 960 bp->mii_bus->read = &macb_mdio_read_c22; 961 bp->mii_bus->write = &macb_mdio_write_c22; 962 bp->mii_bus->read_c45 = &macb_mdio_read_c45; 963 bp->mii_bus->write_c45 = &macb_mdio_write_c45; 964 snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 965 bp->pdev->name, bp->pdev->id); 966 bp->mii_bus->priv = bp; 967 bp->mii_bus->parent = &bp->pdev->dev; 968 969 dev_set_drvdata(&bp->dev->dev, bp->mii_bus); 970 971 err = macb_mdiobus_register(bp, mdio_np); 972 if (err) 973 goto err_out_free_mdiobus; 974 975 err = macb_mii_probe(bp->dev); 976 if (err) 977 goto err_out_unregister_bus; 978 979 return 0; 980 981 err_out_unregister_bus: 982 mdiobus_unregister(bp->mii_bus); 983 err_out_free_mdiobus: 984 mdiobus_free(bp->mii_bus); 985 err_out: 986 of_node_put(mdio_np); 987 988 return err; 989 } 990 991 static void macb_update_stats(struct macb *bp) 992 { 993 u32 *p = &bp->hw_stats.macb.rx_pause_frames; 994 u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1; 995 int offset = MACB_PFR; 996 997 WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4); 998 999 for (; p < end; p++, offset += 4) 1000 *p += bp->macb_reg_readl(bp, offset); 1001 } 1002 1003 static int macb_halt_tx(struct macb *bp) 1004 { 1005 unsigned long halt_time, timeout; 1006 u32 status; 1007 1008 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT)); 1009 1010 timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT); 1011 do { 1012 halt_time = jiffies; 1013 status = macb_readl(bp, TSR); 1014 if (!(status & MACB_BIT(TGO))) 1015 return 0; 1016 1017 udelay(250); 1018 } while (time_before(halt_time, timeout)); 1019 1020 return -ETIMEDOUT; 1021 } 1022 1023 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb, int budget) 1024 { 1025 if (tx_skb->mapping) { 1026 if (tx_skb->mapped_as_page) 1027 dma_unmap_page(&bp->pdev->dev, tx_skb->mapping, 1028 tx_skb->size, DMA_TO_DEVICE); 1029 else 1030 dma_unmap_single(&bp->pdev->dev, tx_skb->mapping, 1031 tx_skb->size, DMA_TO_DEVICE); 1032 tx_skb->mapping = 0; 1033 } 1034 1035 if (tx_skb->skb) { 1036 napi_consume_skb(tx_skb->skb, budget); 1037 tx_skb->skb = NULL; 1038 } 1039 } 1040 1041 static void macb_set_addr(struct macb *bp, struct macb_dma_desc *desc, dma_addr_t addr) 1042 { 1043 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1044 struct macb_dma_desc_64 *desc_64; 1045 1046 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 1047 desc_64 = macb_64b_desc(bp, desc); 1048 desc_64->addrh = upper_32_bits(addr); 1049 /* The low bits of RX address contain the RX_USED bit, clearing 1050 * of which allows packet RX. Make sure the high bits are also 1051 * visible to HW at that point. 1052 */ 1053 dma_wmb(); 1054 } 1055 #endif 1056 desc->addr = lower_32_bits(addr); 1057 } 1058 1059 static dma_addr_t macb_get_addr(struct macb *bp, struct macb_dma_desc *desc) 1060 { 1061 dma_addr_t addr = 0; 1062 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1063 struct macb_dma_desc_64 *desc_64; 1064 1065 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 1066 desc_64 = macb_64b_desc(bp, desc); 1067 addr = ((u64)(desc_64->addrh) << 32); 1068 } 1069 #endif 1070 addr |= MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr)); 1071 #ifdef CONFIG_MACB_USE_HWSTAMP 1072 if (bp->hw_dma_cap & HW_DMA_CAP_PTP) 1073 addr &= ~GEM_BIT(DMA_RXVALID); 1074 #endif 1075 return addr; 1076 } 1077 1078 static void macb_tx_error_task(struct work_struct *work) 1079 { 1080 struct macb_queue *queue = container_of(work, struct macb_queue, 1081 tx_error_task); 1082 bool halt_timeout = false; 1083 struct macb *bp = queue->bp; 1084 struct macb_tx_skb *tx_skb; 1085 struct macb_dma_desc *desc; 1086 struct sk_buff *skb; 1087 unsigned int tail; 1088 unsigned long flags; 1089 1090 netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n", 1091 (unsigned int)(queue - bp->queues), 1092 queue->tx_tail, queue->tx_head); 1093 1094 /* Prevent the queue NAPI TX poll from running, as it calls 1095 * macb_tx_complete(), which in turn may call netif_wake_subqueue(). 1096 * As explained below, we have to halt the transmission before updating 1097 * TBQP registers so we call netif_tx_stop_all_queues() to notify the 1098 * network engine about the macb/gem being halted. 1099 */ 1100 napi_disable(&queue->napi_tx); 1101 spin_lock_irqsave(&bp->lock, flags); 1102 1103 /* Make sure nobody is trying to queue up new packets */ 1104 netif_tx_stop_all_queues(bp->dev); 1105 1106 /* Stop transmission now 1107 * (in case we have just queued new packets) 1108 * macb/gem must be halted to write TBQP register 1109 */ 1110 if (macb_halt_tx(bp)) { 1111 netdev_err(bp->dev, "BUG: halt tx timed out\n"); 1112 macb_writel(bp, NCR, macb_readl(bp, NCR) & (~MACB_BIT(TE))); 1113 halt_timeout = true; 1114 } 1115 1116 /* Treat frames in TX queue including the ones that caused the error. 1117 * Free transmit buffers in upper layer. 1118 */ 1119 for (tail = queue->tx_tail; tail != queue->tx_head; tail++) { 1120 u32 ctrl; 1121 1122 desc = macb_tx_desc(queue, tail); 1123 ctrl = desc->ctrl; 1124 tx_skb = macb_tx_skb(queue, tail); 1125 skb = tx_skb->skb; 1126 1127 if (ctrl & MACB_BIT(TX_USED)) { 1128 /* skb is set for the last buffer of the frame */ 1129 while (!skb) { 1130 macb_tx_unmap(bp, tx_skb, 0); 1131 tail++; 1132 tx_skb = macb_tx_skb(queue, tail); 1133 skb = tx_skb->skb; 1134 } 1135 1136 /* ctrl still refers to the first buffer descriptor 1137 * since it's the only one written back by the hardware 1138 */ 1139 if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) { 1140 netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n", 1141 macb_tx_ring_wrap(bp, tail), 1142 skb->data); 1143 bp->dev->stats.tx_packets++; 1144 queue->stats.tx_packets++; 1145 bp->dev->stats.tx_bytes += skb->len; 1146 queue->stats.tx_bytes += skb->len; 1147 } 1148 } else { 1149 /* "Buffers exhausted mid-frame" errors may only happen 1150 * if the driver is buggy, so complain loudly about 1151 * those. Statistics are updated by hardware. 1152 */ 1153 if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED)) 1154 netdev_err(bp->dev, 1155 "BUG: TX buffers exhausted mid-frame\n"); 1156 1157 desc->ctrl = ctrl | MACB_BIT(TX_USED); 1158 } 1159 1160 macb_tx_unmap(bp, tx_skb, 0); 1161 } 1162 1163 /* Set end of TX queue */ 1164 desc = macb_tx_desc(queue, 0); 1165 macb_set_addr(bp, desc, 0); 1166 desc->ctrl = MACB_BIT(TX_USED); 1167 1168 /* Make descriptor updates visible to hardware */ 1169 wmb(); 1170 1171 /* Reinitialize the TX desc queue */ 1172 queue_writel(queue, TBQP, lower_32_bits(queue->tx_ring_dma)); 1173 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 1174 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 1175 queue_writel(queue, TBQPH, upper_32_bits(queue->tx_ring_dma)); 1176 #endif 1177 /* Make TX ring reflect state of hardware */ 1178 queue->tx_head = 0; 1179 queue->tx_tail = 0; 1180 1181 /* Housework before enabling TX IRQ */ 1182 macb_writel(bp, TSR, macb_readl(bp, TSR)); 1183 queue_writel(queue, IER, MACB_TX_INT_FLAGS); 1184 1185 if (halt_timeout) 1186 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TE)); 1187 1188 /* Now we are ready to start transmission again */ 1189 netif_tx_start_all_queues(bp->dev); 1190 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 1191 1192 spin_unlock_irqrestore(&bp->lock, flags); 1193 napi_enable(&queue->napi_tx); 1194 } 1195 1196 static bool ptp_one_step_sync(struct sk_buff *skb) 1197 { 1198 struct ptp_header *hdr; 1199 unsigned int ptp_class; 1200 u8 msgtype; 1201 1202 /* No need to parse packet if PTP TS is not involved */ 1203 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) 1204 goto not_oss; 1205 1206 /* Identify and return whether PTP one step sync is being processed */ 1207 ptp_class = ptp_classify_raw(skb); 1208 if (ptp_class == PTP_CLASS_NONE) 1209 goto not_oss; 1210 1211 hdr = ptp_parse_header(skb, ptp_class); 1212 if (!hdr) 1213 goto not_oss; 1214 1215 if (hdr->flag_field[0] & PTP_FLAG_TWOSTEP) 1216 goto not_oss; 1217 1218 msgtype = ptp_get_msgtype(hdr, ptp_class); 1219 if (msgtype == PTP_MSGTYPE_SYNC) 1220 return true; 1221 1222 not_oss: 1223 return false; 1224 } 1225 1226 static int macb_tx_complete(struct macb_queue *queue, int budget) 1227 { 1228 struct macb *bp = queue->bp; 1229 u16 queue_index = queue - bp->queues; 1230 unsigned int tail; 1231 unsigned int head; 1232 int packets = 0; 1233 1234 spin_lock(&queue->tx_ptr_lock); 1235 head = queue->tx_head; 1236 for (tail = queue->tx_tail; tail != head && packets < budget; tail++) { 1237 struct macb_tx_skb *tx_skb; 1238 struct sk_buff *skb; 1239 struct macb_dma_desc *desc; 1240 u32 ctrl; 1241 1242 desc = macb_tx_desc(queue, tail); 1243 1244 /* Make hw descriptor updates visible to CPU */ 1245 rmb(); 1246 1247 ctrl = desc->ctrl; 1248 1249 /* TX_USED bit is only set by hardware on the very first buffer 1250 * descriptor of the transmitted frame. 1251 */ 1252 if (!(ctrl & MACB_BIT(TX_USED))) 1253 break; 1254 1255 /* Process all buffers of the current transmitted frame */ 1256 for (;; tail++) { 1257 tx_skb = macb_tx_skb(queue, tail); 1258 skb = tx_skb->skb; 1259 1260 /* First, update TX stats if needed */ 1261 if (skb) { 1262 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1263 !ptp_one_step_sync(skb)) 1264 gem_ptp_do_txstamp(bp, skb, desc); 1265 1266 netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n", 1267 macb_tx_ring_wrap(bp, tail), 1268 skb->data); 1269 bp->dev->stats.tx_packets++; 1270 queue->stats.tx_packets++; 1271 bp->dev->stats.tx_bytes += skb->len; 1272 queue->stats.tx_bytes += skb->len; 1273 packets++; 1274 } 1275 1276 /* Now we can safely release resources */ 1277 macb_tx_unmap(bp, tx_skb, budget); 1278 1279 /* skb is set only for the last buffer of the frame. 1280 * WARNING: at this point skb has been freed by 1281 * macb_tx_unmap(). 1282 */ 1283 if (skb) 1284 break; 1285 } 1286 } 1287 1288 queue->tx_tail = tail; 1289 if (__netif_subqueue_stopped(bp->dev, queue_index) && 1290 CIRC_CNT(queue->tx_head, queue->tx_tail, 1291 bp->tx_ring_size) <= MACB_TX_WAKEUP_THRESH(bp)) 1292 netif_wake_subqueue(bp->dev, queue_index); 1293 spin_unlock(&queue->tx_ptr_lock); 1294 1295 return packets; 1296 } 1297 1298 static void gem_rx_refill(struct macb_queue *queue) 1299 { 1300 unsigned int entry; 1301 struct sk_buff *skb; 1302 dma_addr_t paddr; 1303 struct macb *bp = queue->bp; 1304 struct macb_dma_desc *desc; 1305 1306 while (CIRC_SPACE(queue->rx_prepared_head, queue->rx_tail, 1307 bp->rx_ring_size) > 0) { 1308 entry = macb_rx_ring_wrap(bp, queue->rx_prepared_head); 1309 1310 /* Make hw descriptor updates visible to CPU */ 1311 rmb(); 1312 1313 desc = macb_rx_desc(queue, entry); 1314 1315 if (!queue->rx_skbuff[entry]) { 1316 /* allocate sk_buff for this free entry in ring */ 1317 skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size); 1318 if (unlikely(!skb)) { 1319 netdev_err(bp->dev, 1320 "Unable to allocate sk_buff\n"); 1321 break; 1322 } 1323 1324 /* now fill corresponding descriptor entry */ 1325 paddr = dma_map_single(&bp->pdev->dev, skb->data, 1326 bp->rx_buffer_size, 1327 DMA_FROM_DEVICE); 1328 if (dma_mapping_error(&bp->pdev->dev, paddr)) { 1329 dev_kfree_skb(skb); 1330 break; 1331 } 1332 1333 queue->rx_skbuff[entry] = skb; 1334 1335 if (entry == bp->rx_ring_size - 1) 1336 paddr |= MACB_BIT(RX_WRAP); 1337 desc->ctrl = 0; 1338 /* Setting addr clears RX_USED and allows reception, 1339 * make sure ctrl is cleared first to avoid a race. 1340 */ 1341 dma_wmb(); 1342 macb_set_addr(bp, desc, paddr); 1343 1344 /* properly align Ethernet header */ 1345 skb_reserve(skb, NET_IP_ALIGN); 1346 } else { 1347 desc->ctrl = 0; 1348 dma_wmb(); 1349 desc->addr &= ~MACB_BIT(RX_USED); 1350 } 1351 queue->rx_prepared_head++; 1352 } 1353 1354 /* Make descriptor updates visible to hardware */ 1355 wmb(); 1356 1357 netdev_vdbg(bp->dev, "rx ring: queue: %p, prepared head %d, tail %d\n", 1358 queue, queue->rx_prepared_head, queue->rx_tail); 1359 } 1360 1361 /* Mark DMA descriptors from begin up to and not including end as unused */ 1362 static void discard_partial_frame(struct macb_queue *queue, unsigned int begin, 1363 unsigned int end) 1364 { 1365 unsigned int frag; 1366 1367 for (frag = begin; frag != end; frag++) { 1368 struct macb_dma_desc *desc = macb_rx_desc(queue, frag); 1369 1370 desc->addr &= ~MACB_BIT(RX_USED); 1371 } 1372 1373 /* Make descriptor updates visible to hardware */ 1374 wmb(); 1375 1376 /* When this happens, the hardware stats registers for 1377 * whatever caused this is updated, so we don't have to record 1378 * anything. 1379 */ 1380 } 1381 1382 static int gem_rx(struct macb_queue *queue, struct napi_struct *napi, 1383 int budget) 1384 { 1385 struct macb *bp = queue->bp; 1386 unsigned int len; 1387 unsigned int entry; 1388 struct sk_buff *skb; 1389 struct macb_dma_desc *desc; 1390 int count = 0; 1391 1392 while (count < budget) { 1393 u32 ctrl; 1394 dma_addr_t addr; 1395 bool rxused; 1396 1397 entry = macb_rx_ring_wrap(bp, queue->rx_tail); 1398 desc = macb_rx_desc(queue, entry); 1399 1400 /* Make hw descriptor updates visible to CPU */ 1401 rmb(); 1402 1403 rxused = (desc->addr & MACB_BIT(RX_USED)) ? true : false; 1404 addr = macb_get_addr(bp, desc); 1405 1406 if (!rxused) 1407 break; 1408 1409 /* Ensure ctrl is at least as up-to-date as rxused */ 1410 dma_rmb(); 1411 1412 ctrl = desc->ctrl; 1413 1414 queue->rx_tail++; 1415 count++; 1416 1417 if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) { 1418 netdev_err(bp->dev, 1419 "not whole frame pointed by descriptor\n"); 1420 bp->dev->stats.rx_dropped++; 1421 queue->stats.rx_dropped++; 1422 break; 1423 } 1424 skb = queue->rx_skbuff[entry]; 1425 if (unlikely(!skb)) { 1426 netdev_err(bp->dev, 1427 "inconsistent Rx descriptor chain\n"); 1428 bp->dev->stats.rx_dropped++; 1429 queue->stats.rx_dropped++; 1430 break; 1431 } 1432 /* now everything is ready for receiving packet */ 1433 queue->rx_skbuff[entry] = NULL; 1434 len = ctrl & bp->rx_frm_len_mask; 1435 1436 netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len); 1437 1438 skb_put(skb, len); 1439 dma_unmap_single(&bp->pdev->dev, addr, 1440 bp->rx_buffer_size, DMA_FROM_DEVICE); 1441 1442 skb->protocol = eth_type_trans(skb, bp->dev); 1443 skb_checksum_none_assert(skb); 1444 if (bp->dev->features & NETIF_F_RXCSUM && 1445 !(bp->dev->flags & IFF_PROMISC) && 1446 GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK) 1447 skb->ip_summed = CHECKSUM_UNNECESSARY; 1448 1449 bp->dev->stats.rx_packets++; 1450 queue->stats.rx_packets++; 1451 bp->dev->stats.rx_bytes += skb->len; 1452 queue->stats.rx_bytes += skb->len; 1453 1454 gem_ptp_do_rxstamp(bp, skb, desc); 1455 1456 #if defined(DEBUG) && defined(VERBOSE_DEBUG) 1457 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n", 1458 skb->len, skb->csum); 1459 print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1, 1460 skb_mac_header(skb), 16, true); 1461 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1, 1462 skb->data, 32, true); 1463 #endif 1464 1465 napi_gro_receive(napi, skb); 1466 } 1467 1468 gem_rx_refill(queue); 1469 1470 return count; 1471 } 1472 1473 static int macb_rx_frame(struct macb_queue *queue, struct napi_struct *napi, 1474 unsigned int first_frag, unsigned int last_frag) 1475 { 1476 unsigned int len; 1477 unsigned int frag; 1478 unsigned int offset; 1479 struct sk_buff *skb; 1480 struct macb_dma_desc *desc; 1481 struct macb *bp = queue->bp; 1482 1483 desc = macb_rx_desc(queue, last_frag); 1484 len = desc->ctrl & bp->rx_frm_len_mask; 1485 1486 netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n", 1487 macb_rx_ring_wrap(bp, first_frag), 1488 macb_rx_ring_wrap(bp, last_frag), len); 1489 1490 /* The ethernet header starts NET_IP_ALIGN bytes into the 1491 * first buffer. Since the header is 14 bytes, this makes the 1492 * payload word-aligned. 1493 * 1494 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy 1495 * the two padding bytes into the skb so that we avoid hitting 1496 * the slowpath in memcpy(), and pull them off afterwards. 1497 */ 1498 skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN); 1499 if (!skb) { 1500 bp->dev->stats.rx_dropped++; 1501 for (frag = first_frag; ; frag++) { 1502 desc = macb_rx_desc(queue, frag); 1503 desc->addr &= ~MACB_BIT(RX_USED); 1504 if (frag == last_frag) 1505 break; 1506 } 1507 1508 /* Make descriptor updates visible to hardware */ 1509 wmb(); 1510 1511 return 1; 1512 } 1513 1514 offset = 0; 1515 len += NET_IP_ALIGN; 1516 skb_checksum_none_assert(skb); 1517 skb_put(skb, len); 1518 1519 for (frag = first_frag; ; frag++) { 1520 unsigned int frag_len = bp->rx_buffer_size; 1521 1522 if (offset + frag_len > len) { 1523 if (unlikely(frag != last_frag)) { 1524 dev_kfree_skb_any(skb); 1525 return -1; 1526 } 1527 frag_len = len - offset; 1528 } 1529 skb_copy_to_linear_data_offset(skb, offset, 1530 macb_rx_buffer(queue, frag), 1531 frag_len); 1532 offset += bp->rx_buffer_size; 1533 desc = macb_rx_desc(queue, frag); 1534 desc->addr &= ~MACB_BIT(RX_USED); 1535 1536 if (frag == last_frag) 1537 break; 1538 } 1539 1540 /* Make descriptor updates visible to hardware */ 1541 wmb(); 1542 1543 __skb_pull(skb, NET_IP_ALIGN); 1544 skb->protocol = eth_type_trans(skb, bp->dev); 1545 1546 bp->dev->stats.rx_packets++; 1547 bp->dev->stats.rx_bytes += skb->len; 1548 netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n", 1549 skb->len, skb->csum); 1550 napi_gro_receive(napi, skb); 1551 1552 return 0; 1553 } 1554 1555 static inline void macb_init_rx_ring(struct macb_queue *queue) 1556 { 1557 struct macb *bp = queue->bp; 1558 dma_addr_t addr; 1559 struct macb_dma_desc *desc = NULL; 1560 int i; 1561 1562 addr = queue->rx_buffers_dma; 1563 for (i = 0; i < bp->rx_ring_size; i++) { 1564 desc = macb_rx_desc(queue, i); 1565 macb_set_addr(bp, desc, addr); 1566 desc->ctrl = 0; 1567 addr += bp->rx_buffer_size; 1568 } 1569 desc->addr |= MACB_BIT(RX_WRAP); 1570 queue->rx_tail = 0; 1571 } 1572 1573 static int macb_rx(struct macb_queue *queue, struct napi_struct *napi, 1574 int budget) 1575 { 1576 struct macb *bp = queue->bp; 1577 bool reset_rx_queue = false; 1578 int received = 0; 1579 unsigned int tail; 1580 int first_frag = -1; 1581 1582 for (tail = queue->rx_tail; budget > 0; tail++) { 1583 struct macb_dma_desc *desc = macb_rx_desc(queue, tail); 1584 u32 ctrl; 1585 1586 /* Make hw descriptor updates visible to CPU */ 1587 rmb(); 1588 1589 if (!(desc->addr & MACB_BIT(RX_USED))) 1590 break; 1591 1592 /* Ensure ctrl is at least as up-to-date as addr */ 1593 dma_rmb(); 1594 1595 ctrl = desc->ctrl; 1596 1597 if (ctrl & MACB_BIT(RX_SOF)) { 1598 if (first_frag != -1) 1599 discard_partial_frame(queue, first_frag, tail); 1600 first_frag = tail; 1601 } 1602 1603 if (ctrl & MACB_BIT(RX_EOF)) { 1604 int dropped; 1605 1606 if (unlikely(first_frag == -1)) { 1607 reset_rx_queue = true; 1608 continue; 1609 } 1610 1611 dropped = macb_rx_frame(queue, napi, first_frag, tail); 1612 first_frag = -1; 1613 if (unlikely(dropped < 0)) { 1614 reset_rx_queue = true; 1615 continue; 1616 } 1617 if (!dropped) { 1618 received++; 1619 budget--; 1620 } 1621 } 1622 } 1623 1624 if (unlikely(reset_rx_queue)) { 1625 unsigned long flags; 1626 u32 ctrl; 1627 1628 netdev_err(bp->dev, "RX queue corruption: reset it\n"); 1629 1630 spin_lock_irqsave(&bp->lock, flags); 1631 1632 ctrl = macb_readl(bp, NCR); 1633 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE)); 1634 1635 macb_init_rx_ring(queue); 1636 queue_writel(queue, RBQP, queue->rx_ring_dma); 1637 1638 macb_writel(bp, NCR, ctrl | MACB_BIT(RE)); 1639 1640 spin_unlock_irqrestore(&bp->lock, flags); 1641 return received; 1642 } 1643 1644 if (first_frag != -1) 1645 queue->rx_tail = first_frag; 1646 else 1647 queue->rx_tail = tail; 1648 1649 return received; 1650 } 1651 1652 static bool macb_rx_pending(struct macb_queue *queue) 1653 { 1654 struct macb *bp = queue->bp; 1655 unsigned int entry; 1656 struct macb_dma_desc *desc; 1657 1658 entry = macb_rx_ring_wrap(bp, queue->rx_tail); 1659 desc = macb_rx_desc(queue, entry); 1660 1661 /* Make hw descriptor updates visible to CPU */ 1662 rmb(); 1663 1664 return (desc->addr & MACB_BIT(RX_USED)) != 0; 1665 } 1666 1667 static int macb_rx_poll(struct napi_struct *napi, int budget) 1668 { 1669 struct macb_queue *queue = container_of(napi, struct macb_queue, napi_rx); 1670 struct macb *bp = queue->bp; 1671 int work_done; 1672 1673 work_done = bp->macbgem_ops.mog_rx(queue, napi, budget); 1674 1675 netdev_vdbg(bp->dev, "RX poll: queue = %u, work_done = %d, budget = %d\n", 1676 (unsigned int)(queue - bp->queues), work_done, budget); 1677 1678 if (work_done < budget && napi_complete_done(napi, work_done)) { 1679 queue_writel(queue, IER, bp->rx_intr_mask); 1680 1681 /* Packet completions only seem to propagate to raise 1682 * interrupts when interrupts are enabled at the time, so if 1683 * packets were received while interrupts were disabled, 1684 * they will not cause another interrupt to be generated when 1685 * interrupts are re-enabled. 1686 * Check for this case here to avoid losing a wakeup. This can 1687 * potentially race with the interrupt handler doing the same 1688 * actions if an interrupt is raised just after enabling them, 1689 * but this should be harmless. 1690 */ 1691 if (macb_rx_pending(queue)) { 1692 queue_writel(queue, IDR, bp->rx_intr_mask); 1693 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1694 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1695 netdev_vdbg(bp->dev, "poll: packets pending, reschedule\n"); 1696 napi_schedule(napi); 1697 } 1698 } 1699 1700 /* TODO: Handle errors */ 1701 1702 return work_done; 1703 } 1704 1705 static void macb_tx_restart(struct macb_queue *queue) 1706 { 1707 struct macb *bp = queue->bp; 1708 unsigned int head_idx, tbqp; 1709 1710 spin_lock(&queue->tx_ptr_lock); 1711 1712 if (queue->tx_head == queue->tx_tail) 1713 goto out_tx_ptr_unlock; 1714 1715 tbqp = queue_readl(queue, TBQP) / macb_dma_desc_get_size(bp); 1716 tbqp = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, tbqp)); 1717 head_idx = macb_adj_dma_desc_idx(bp, macb_tx_ring_wrap(bp, queue->tx_head)); 1718 1719 if (tbqp == head_idx) 1720 goto out_tx_ptr_unlock; 1721 1722 spin_lock_irq(&bp->lock); 1723 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 1724 spin_unlock_irq(&bp->lock); 1725 1726 out_tx_ptr_unlock: 1727 spin_unlock(&queue->tx_ptr_lock); 1728 } 1729 1730 static bool macb_tx_complete_pending(struct macb_queue *queue) 1731 { 1732 bool retval = false; 1733 1734 spin_lock(&queue->tx_ptr_lock); 1735 if (queue->tx_head != queue->tx_tail) { 1736 /* Make hw descriptor updates visible to CPU */ 1737 rmb(); 1738 1739 if (macb_tx_desc(queue, queue->tx_tail)->ctrl & MACB_BIT(TX_USED)) 1740 retval = true; 1741 } 1742 spin_unlock(&queue->tx_ptr_lock); 1743 return retval; 1744 } 1745 1746 static int macb_tx_poll(struct napi_struct *napi, int budget) 1747 { 1748 struct macb_queue *queue = container_of(napi, struct macb_queue, napi_tx); 1749 struct macb *bp = queue->bp; 1750 int work_done; 1751 1752 work_done = macb_tx_complete(queue, budget); 1753 1754 rmb(); // ensure txubr_pending is up to date 1755 if (queue->txubr_pending) { 1756 queue->txubr_pending = false; 1757 netdev_vdbg(bp->dev, "poll: tx restart\n"); 1758 macb_tx_restart(queue); 1759 } 1760 1761 netdev_vdbg(bp->dev, "TX poll: queue = %u, work_done = %d, budget = %d\n", 1762 (unsigned int)(queue - bp->queues), work_done, budget); 1763 1764 if (work_done < budget && napi_complete_done(napi, work_done)) { 1765 queue_writel(queue, IER, MACB_BIT(TCOMP)); 1766 1767 /* Packet completions only seem to propagate to raise 1768 * interrupts when interrupts are enabled at the time, so if 1769 * packets were sent while interrupts were disabled, 1770 * they will not cause another interrupt to be generated when 1771 * interrupts are re-enabled. 1772 * Check for this case here to avoid losing a wakeup. This can 1773 * potentially race with the interrupt handler doing the same 1774 * actions if an interrupt is raised just after enabling them, 1775 * but this should be harmless. 1776 */ 1777 if (macb_tx_complete_pending(queue)) { 1778 queue_writel(queue, IDR, MACB_BIT(TCOMP)); 1779 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1780 queue_writel(queue, ISR, MACB_BIT(TCOMP)); 1781 netdev_vdbg(bp->dev, "TX poll: packets pending, reschedule\n"); 1782 napi_schedule(napi); 1783 } 1784 } 1785 1786 return work_done; 1787 } 1788 1789 static void macb_hresp_error_task(struct work_struct *work) 1790 { 1791 struct macb *bp = from_work(bp, work, hresp_err_bh_work); 1792 struct net_device *dev = bp->dev; 1793 struct macb_queue *queue; 1794 unsigned int q; 1795 u32 ctrl; 1796 1797 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 1798 queue_writel(queue, IDR, bp->rx_intr_mask | 1799 MACB_TX_INT_FLAGS | 1800 MACB_BIT(HRESP)); 1801 } 1802 ctrl = macb_readl(bp, NCR); 1803 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE)); 1804 macb_writel(bp, NCR, ctrl); 1805 1806 netif_tx_stop_all_queues(dev); 1807 netif_carrier_off(dev); 1808 1809 bp->macbgem_ops.mog_init_rings(bp); 1810 1811 /* Initialize TX and RX buffers */ 1812 macb_init_buffers(bp); 1813 1814 /* Enable interrupts */ 1815 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 1816 queue_writel(queue, IER, 1817 bp->rx_intr_mask | 1818 MACB_TX_INT_FLAGS | 1819 MACB_BIT(HRESP)); 1820 1821 ctrl |= MACB_BIT(RE) | MACB_BIT(TE); 1822 macb_writel(bp, NCR, ctrl); 1823 1824 netif_carrier_on(dev); 1825 netif_tx_start_all_queues(dev); 1826 } 1827 1828 static irqreturn_t macb_wol_interrupt(int irq, void *dev_id) 1829 { 1830 struct macb_queue *queue = dev_id; 1831 struct macb *bp = queue->bp; 1832 u32 status; 1833 1834 status = queue_readl(queue, ISR); 1835 1836 if (unlikely(!status)) 1837 return IRQ_NONE; 1838 1839 spin_lock(&bp->lock); 1840 1841 if (status & MACB_BIT(WOL)) { 1842 queue_writel(queue, IDR, MACB_BIT(WOL)); 1843 macb_writel(bp, WOL, 0); 1844 netdev_vdbg(bp->dev, "MACB WoL: queue = %u, isr = 0x%08lx\n", 1845 (unsigned int)(queue - bp->queues), 1846 (unsigned long)status); 1847 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1848 queue_writel(queue, ISR, MACB_BIT(WOL)); 1849 pm_wakeup_event(&bp->pdev->dev, 0); 1850 } 1851 1852 spin_unlock(&bp->lock); 1853 1854 return IRQ_HANDLED; 1855 } 1856 1857 static irqreturn_t gem_wol_interrupt(int irq, void *dev_id) 1858 { 1859 struct macb_queue *queue = dev_id; 1860 struct macb *bp = queue->bp; 1861 u32 status; 1862 1863 status = queue_readl(queue, ISR); 1864 1865 if (unlikely(!status)) 1866 return IRQ_NONE; 1867 1868 spin_lock(&bp->lock); 1869 1870 if (status & GEM_BIT(WOL)) { 1871 queue_writel(queue, IDR, GEM_BIT(WOL)); 1872 gem_writel(bp, WOL, 0); 1873 netdev_vdbg(bp->dev, "GEM WoL: queue = %u, isr = 0x%08lx\n", 1874 (unsigned int)(queue - bp->queues), 1875 (unsigned long)status); 1876 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1877 queue_writel(queue, ISR, GEM_BIT(WOL)); 1878 pm_wakeup_event(&bp->pdev->dev, 0); 1879 } 1880 1881 spin_unlock(&bp->lock); 1882 1883 return IRQ_HANDLED; 1884 } 1885 1886 static irqreturn_t macb_interrupt(int irq, void *dev_id) 1887 { 1888 struct macb_queue *queue = dev_id; 1889 struct macb *bp = queue->bp; 1890 struct net_device *dev = bp->dev; 1891 u32 status, ctrl; 1892 1893 status = queue_readl(queue, ISR); 1894 1895 if (unlikely(!status)) 1896 return IRQ_NONE; 1897 1898 spin_lock(&bp->lock); 1899 1900 while (status) { 1901 /* close possible race with dev_close */ 1902 if (unlikely(!netif_running(dev))) { 1903 queue_writel(queue, IDR, -1); 1904 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1905 queue_writel(queue, ISR, -1); 1906 break; 1907 } 1908 1909 netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n", 1910 (unsigned int)(queue - bp->queues), 1911 (unsigned long)status); 1912 1913 if (status & bp->rx_intr_mask) { 1914 /* There's no point taking any more interrupts 1915 * until we have processed the buffers. The 1916 * scheduling call may fail if the poll routine 1917 * is already scheduled, so disable interrupts 1918 * now. 1919 */ 1920 queue_writel(queue, IDR, bp->rx_intr_mask); 1921 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1922 queue_writel(queue, ISR, MACB_BIT(RCOMP)); 1923 1924 if (napi_schedule_prep(&queue->napi_rx)) { 1925 netdev_vdbg(bp->dev, "scheduling RX softirq\n"); 1926 __napi_schedule(&queue->napi_rx); 1927 } 1928 } 1929 1930 if (status & (MACB_BIT(TCOMP) | 1931 MACB_BIT(TXUBR))) { 1932 queue_writel(queue, IDR, MACB_BIT(TCOMP)); 1933 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1934 queue_writel(queue, ISR, MACB_BIT(TCOMP) | 1935 MACB_BIT(TXUBR)); 1936 1937 if (status & MACB_BIT(TXUBR)) { 1938 queue->txubr_pending = true; 1939 wmb(); // ensure softirq can see update 1940 } 1941 1942 if (napi_schedule_prep(&queue->napi_tx)) { 1943 netdev_vdbg(bp->dev, "scheduling TX softirq\n"); 1944 __napi_schedule(&queue->napi_tx); 1945 } 1946 } 1947 1948 if (unlikely(status & (MACB_TX_ERR_FLAGS))) { 1949 queue_writel(queue, IDR, MACB_TX_INT_FLAGS); 1950 schedule_work(&queue->tx_error_task); 1951 1952 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1953 queue_writel(queue, ISR, MACB_TX_ERR_FLAGS); 1954 1955 break; 1956 } 1957 1958 /* Link change detection isn't possible with RMII, so we'll 1959 * add that if/when we get our hands on a full-blown MII PHY. 1960 */ 1961 1962 /* There is a hardware issue under heavy load where DMA can 1963 * stop, this causes endless "used buffer descriptor read" 1964 * interrupts but it can be cleared by re-enabling RX. See 1965 * the at91rm9200 manual, section 41.3.1 or the Zynq manual 1966 * section 16.7.4 for details. RXUBR is only enabled for 1967 * these two versions. 1968 */ 1969 if (status & MACB_BIT(RXUBR)) { 1970 ctrl = macb_readl(bp, NCR); 1971 macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE)); 1972 wmb(); 1973 macb_writel(bp, NCR, ctrl | MACB_BIT(RE)); 1974 1975 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1976 queue_writel(queue, ISR, MACB_BIT(RXUBR)); 1977 } 1978 1979 if (status & MACB_BIT(ISR_ROVR)) { 1980 /* We missed at least one packet */ 1981 spin_lock(&bp->stats_lock); 1982 if (macb_is_gem(bp)) 1983 bp->hw_stats.gem.rx_overruns++; 1984 else 1985 bp->hw_stats.macb.rx_overruns++; 1986 spin_unlock(&bp->stats_lock); 1987 1988 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1989 queue_writel(queue, ISR, MACB_BIT(ISR_ROVR)); 1990 } 1991 1992 if (status & MACB_BIT(HRESP)) { 1993 queue_work(system_bh_wq, &bp->hresp_err_bh_work); 1994 netdev_err(dev, "DMA bus error: HRESP not OK\n"); 1995 1996 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 1997 queue_writel(queue, ISR, MACB_BIT(HRESP)); 1998 } 1999 status = queue_readl(queue, ISR); 2000 } 2001 2002 spin_unlock(&bp->lock); 2003 2004 return IRQ_HANDLED; 2005 } 2006 2007 #ifdef CONFIG_NET_POLL_CONTROLLER 2008 /* Polling receive - used by netconsole and other diagnostic tools 2009 * to allow network i/o with interrupts disabled. 2010 */ 2011 static void macb_poll_controller(struct net_device *dev) 2012 { 2013 struct macb *bp = netdev_priv(dev); 2014 struct macb_queue *queue; 2015 unsigned long flags; 2016 unsigned int q; 2017 2018 local_irq_save(flags); 2019 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 2020 macb_interrupt(dev->irq, queue); 2021 local_irq_restore(flags); 2022 } 2023 #endif 2024 2025 static unsigned int macb_tx_map(struct macb *bp, 2026 struct macb_queue *queue, 2027 struct sk_buff *skb, 2028 unsigned int hdrlen) 2029 { 2030 dma_addr_t mapping; 2031 unsigned int len, entry, i, tx_head = queue->tx_head; 2032 struct macb_tx_skb *tx_skb = NULL; 2033 struct macb_dma_desc *desc; 2034 unsigned int offset, size, count = 0; 2035 unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags; 2036 unsigned int eof = 1, mss_mfs = 0; 2037 u32 ctrl, lso_ctrl = 0, seq_ctrl = 0; 2038 2039 /* LSO */ 2040 if (skb_shinfo(skb)->gso_size != 0) { 2041 if (ip_hdr(skb)->protocol == IPPROTO_UDP) 2042 /* UDP - UFO */ 2043 lso_ctrl = MACB_LSO_UFO_ENABLE; 2044 else 2045 /* TCP - TSO */ 2046 lso_ctrl = MACB_LSO_TSO_ENABLE; 2047 } 2048 2049 /* First, map non-paged data */ 2050 len = skb_headlen(skb); 2051 2052 /* first buffer length */ 2053 size = hdrlen; 2054 2055 offset = 0; 2056 while (len) { 2057 entry = macb_tx_ring_wrap(bp, tx_head); 2058 tx_skb = &queue->tx_skb[entry]; 2059 2060 mapping = dma_map_single(&bp->pdev->dev, 2061 skb->data + offset, 2062 size, DMA_TO_DEVICE); 2063 if (dma_mapping_error(&bp->pdev->dev, mapping)) 2064 goto dma_error; 2065 2066 /* Save info to properly release resources */ 2067 tx_skb->skb = NULL; 2068 tx_skb->mapping = mapping; 2069 tx_skb->size = size; 2070 tx_skb->mapped_as_page = false; 2071 2072 len -= size; 2073 offset += size; 2074 count++; 2075 tx_head++; 2076 2077 size = min(len, bp->max_tx_length); 2078 } 2079 2080 /* Then, map paged data from fragments */ 2081 for (f = 0; f < nr_frags; f++) { 2082 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2083 2084 len = skb_frag_size(frag); 2085 offset = 0; 2086 while (len) { 2087 size = min(len, bp->max_tx_length); 2088 entry = macb_tx_ring_wrap(bp, tx_head); 2089 tx_skb = &queue->tx_skb[entry]; 2090 2091 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 2092 offset, size, DMA_TO_DEVICE); 2093 if (dma_mapping_error(&bp->pdev->dev, mapping)) 2094 goto dma_error; 2095 2096 /* Save info to properly release resources */ 2097 tx_skb->skb = NULL; 2098 tx_skb->mapping = mapping; 2099 tx_skb->size = size; 2100 tx_skb->mapped_as_page = true; 2101 2102 len -= size; 2103 offset += size; 2104 count++; 2105 tx_head++; 2106 } 2107 } 2108 2109 /* Should never happen */ 2110 if (unlikely(!tx_skb)) { 2111 netdev_err(bp->dev, "BUG! empty skb!\n"); 2112 return 0; 2113 } 2114 2115 /* This is the last buffer of the frame: save socket buffer */ 2116 tx_skb->skb = skb; 2117 2118 /* Update TX ring: update buffer descriptors in reverse order 2119 * to avoid race condition 2120 */ 2121 2122 /* Set 'TX_USED' bit in buffer descriptor at tx_head position 2123 * to set the end of TX queue 2124 */ 2125 i = tx_head; 2126 entry = macb_tx_ring_wrap(bp, i); 2127 ctrl = MACB_BIT(TX_USED); 2128 desc = macb_tx_desc(queue, entry); 2129 desc->ctrl = ctrl; 2130 2131 if (lso_ctrl) { 2132 if (lso_ctrl == MACB_LSO_UFO_ENABLE) 2133 /* include header and FCS in value given to h/w */ 2134 mss_mfs = skb_shinfo(skb)->gso_size + 2135 skb_transport_offset(skb) + 2136 ETH_FCS_LEN; 2137 else /* TSO */ { 2138 mss_mfs = skb_shinfo(skb)->gso_size; 2139 /* TCP Sequence Number Source Select 2140 * can be set only for TSO 2141 */ 2142 seq_ctrl = 0; 2143 } 2144 } 2145 2146 do { 2147 i--; 2148 entry = macb_tx_ring_wrap(bp, i); 2149 tx_skb = &queue->tx_skb[entry]; 2150 desc = macb_tx_desc(queue, entry); 2151 2152 ctrl = (u32)tx_skb->size; 2153 if (eof) { 2154 ctrl |= MACB_BIT(TX_LAST); 2155 eof = 0; 2156 } 2157 if (unlikely(entry == (bp->tx_ring_size - 1))) 2158 ctrl |= MACB_BIT(TX_WRAP); 2159 2160 /* First descriptor is header descriptor */ 2161 if (i == queue->tx_head) { 2162 ctrl |= MACB_BF(TX_LSO, lso_ctrl); 2163 ctrl |= MACB_BF(TX_TCP_SEQ_SRC, seq_ctrl); 2164 if ((bp->dev->features & NETIF_F_HW_CSUM) && 2165 skb->ip_summed != CHECKSUM_PARTIAL && !lso_ctrl && 2166 !ptp_one_step_sync(skb)) 2167 ctrl |= MACB_BIT(TX_NOCRC); 2168 } else 2169 /* Only set MSS/MFS on payload descriptors 2170 * (second or later descriptor) 2171 */ 2172 ctrl |= MACB_BF(MSS_MFS, mss_mfs); 2173 2174 /* Set TX buffer descriptor */ 2175 macb_set_addr(bp, desc, tx_skb->mapping); 2176 /* desc->addr must be visible to hardware before clearing 2177 * 'TX_USED' bit in desc->ctrl. 2178 */ 2179 wmb(); 2180 desc->ctrl = ctrl; 2181 } while (i != queue->tx_head); 2182 2183 queue->tx_head = tx_head; 2184 2185 return count; 2186 2187 dma_error: 2188 netdev_err(bp->dev, "TX DMA map failed\n"); 2189 2190 for (i = queue->tx_head; i != tx_head; i++) { 2191 tx_skb = macb_tx_skb(queue, i); 2192 2193 macb_tx_unmap(bp, tx_skb, 0); 2194 } 2195 2196 return 0; 2197 } 2198 2199 static netdev_features_t macb_features_check(struct sk_buff *skb, 2200 struct net_device *dev, 2201 netdev_features_t features) 2202 { 2203 unsigned int nr_frags, f; 2204 unsigned int hdrlen; 2205 2206 /* Validate LSO compatibility */ 2207 2208 /* there is only one buffer or protocol is not UDP */ 2209 if (!skb_is_nonlinear(skb) || (ip_hdr(skb)->protocol != IPPROTO_UDP)) 2210 return features; 2211 2212 /* length of header */ 2213 hdrlen = skb_transport_offset(skb); 2214 2215 /* For UFO only: 2216 * When software supplies two or more payload buffers all payload buffers 2217 * apart from the last must be a multiple of 8 bytes in size. 2218 */ 2219 if (!IS_ALIGNED(skb_headlen(skb) - hdrlen, MACB_TX_LEN_ALIGN)) 2220 return features & ~MACB_NETIF_LSO; 2221 2222 nr_frags = skb_shinfo(skb)->nr_frags; 2223 /* No need to check last fragment */ 2224 nr_frags--; 2225 for (f = 0; f < nr_frags; f++) { 2226 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 2227 2228 if (!IS_ALIGNED(skb_frag_size(frag), MACB_TX_LEN_ALIGN)) 2229 return features & ~MACB_NETIF_LSO; 2230 } 2231 return features; 2232 } 2233 2234 static inline int macb_clear_csum(struct sk_buff *skb) 2235 { 2236 /* no change for packets without checksum offloading */ 2237 if (skb->ip_summed != CHECKSUM_PARTIAL) 2238 return 0; 2239 2240 /* make sure we can modify the header */ 2241 if (unlikely(skb_cow_head(skb, 0))) 2242 return -1; 2243 2244 /* initialize checksum field 2245 * This is required - at least for Zynq, which otherwise calculates 2246 * wrong UDP header checksums for UDP packets with UDP data len <=2 2247 */ 2248 *(__sum16 *)(skb_checksum_start(skb) + skb->csum_offset) = 0; 2249 return 0; 2250 } 2251 2252 static int macb_pad_and_fcs(struct sk_buff **skb, struct net_device *ndev) 2253 { 2254 bool cloned = skb_cloned(*skb) || skb_header_cloned(*skb) || 2255 skb_is_nonlinear(*skb); 2256 int padlen = ETH_ZLEN - (*skb)->len; 2257 int tailroom = skb_tailroom(*skb); 2258 struct sk_buff *nskb; 2259 u32 fcs; 2260 2261 if (!(ndev->features & NETIF_F_HW_CSUM) || 2262 !((*skb)->ip_summed != CHECKSUM_PARTIAL) || 2263 skb_shinfo(*skb)->gso_size || ptp_one_step_sync(*skb)) 2264 return 0; 2265 2266 if (padlen <= 0) { 2267 /* FCS could be appeded to tailroom. */ 2268 if (tailroom >= ETH_FCS_LEN) 2269 goto add_fcs; 2270 /* No room for FCS, need to reallocate skb. */ 2271 else 2272 padlen = ETH_FCS_LEN; 2273 } else { 2274 /* Add room for FCS. */ 2275 padlen += ETH_FCS_LEN; 2276 } 2277 2278 if (cloned || tailroom < padlen) { 2279 nskb = skb_copy_expand(*skb, 0, padlen, GFP_ATOMIC); 2280 if (!nskb) 2281 return -ENOMEM; 2282 2283 dev_consume_skb_any(*skb); 2284 *skb = nskb; 2285 } 2286 2287 if (padlen > ETH_FCS_LEN) 2288 skb_put_zero(*skb, padlen - ETH_FCS_LEN); 2289 2290 add_fcs: 2291 /* set FCS to packet */ 2292 fcs = crc32_le(~0, (*skb)->data, (*skb)->len); 2293 fcs = ~fcs; 2294 2295 skb_put_u8(*skb, fcs & 0xff); 2296 skb_put_u8(*skb, (fcs >> 8) & 0xff); 2297 skb_put_u8(*skb, (fcs >> 16) & 0xff); 2298 skb_put_u8(*skb, (fcs >> 24) & 0xff); 2299 2300 return 0; 2301 } 2302 2303 static netdev_tx_t macb_start_xmit(struct sk_buff *skb, struct net_device *dev) 2304 { 2305 u16 queue_index = skb_get_queue_mapping(skb); 2306 struct macb *bp = netdev_priv(dev); 2307 struct macb_queue *queue = &bp->queues[queue_index]; 2308 unsigned int desc_cnt, nr_frags, frag_size, f; 2309 unsigned int hdrlen; 2310 bool is_lso; 2311 netdev_tx_t ret = NETDEV_TX_OK; 2312 2313 if (macb_clear_csum(skb)) { 2314 dev_kfree_skb_any(skb); 2315 return ret; 2316 } 2317 2318 if (macb_pad_and_fcs(&skb, dev)) { 2319 dev_kfree_skb_any(skb); 2320 return ret; 2321 } 2322 2323 #ifdef CONFIG_MACB_USE_HWSTAMP 2324 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2325 (bp->hw_dma_cap & HW_DMA_CAP_PTP)) 2326 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2327 #endif 2328 2329 is_lso = (skb_shinfo(skb)->gso_size != 0); 2330 2331 if (is_lso) { 2332 /* length of headers */ 2333 if (ip_hdr(skb)->protocol == IPPROTO_UDP) 2334 /* only queue eth + ip headers separately for UDP */ 2335 hdrlen = skb_transport_offset(skb); 2336 else 2337 hdrlen = skb_tcp_all_headers(skb); 2338 if (skb_headlen(skb) < hdrlen) { 2339 netdev_err(bp->dev, "Error - LSO headers fragmented!!!\n"); 2340 /* if this is required, would need to copy to single buffer */ 2341 return NETDEV_TX_BUSY; 2342 } 2343 } else 2344 hdrlen = min(skb_headlen(skb), bp->max_tx_length); 2345 2346 #if defined(DEBUG) && defined(VERBOSE_DEBUG) 2347 netdev_vdbg(bp->dev, 2348 "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n", 2349 queue_index, skb->len, skb->head, skb->data, 2350 skb_tail_pointer(skb), skb_end_pointer(skb)); 2351 print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1, 2352 skb->data, 16, true); 2353 #endif 2354 2355 /* Count how many TX buffer descriptors are needed to send this 2356 * socket buffer: skb fragments of jumbo frames may need to be 2357 * split into many buffer descriptors. 2358 */ 2359 if (is_lso && (skb_headlen(skb) > hdrlen)) 2360 /* extra header descriptor if also payload in first buffer */ 2361 desc_cnt = DIV_ROUND_UP((skb_headlen(skb) - hdrlen), bp->max_tx_length) + 1; 2362 else 2363 desc_cnt = DIV_ROUND_UP(skb_headlen(skb), bp->max_tx_length); 2364 nr_frags = skb_shinfo(skb)->nr_frags; 2365 for (f = 0; f < nr_frags; f++) { 2366 frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]); 2367 desc_cnt += DIV_ROUND_UP(frag_size, bp->max_tx_length); 2368 } 2369 2370 spin_lock_bh(&queue->tx_ptr_lock); 2371 2372 /* This is a hard error, log it. */ 2373 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, 2374 bp->tx_ring_size) < desc_cnt) { 2375 netif_stop_subqueue(dev, queue_index); 2376 netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n", 2377 queue->tx_head, queue->tx_tail); 2378 ret = NETDEV_TX_BUSY; 2379 goto unlock; 2380 } 2381 2382 /* Map socket buffer for DMA transfer */ 2383 if (!macb_tx_map(bp, queue, skb, hdrlen)) { 2384 dev_kfree_skb_any(skb); 2385 goto unlock; 2386 } 2387 2388 /* Make newly initialized descriptor visible to hardware */ 2389 wmb(); 2390 skb_tx_timestamp(skb); 2391 2392 spin_lock_irq(&bp->lock); 2393 macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART)); 2394 spin_unlock_irq(&bp->lock); 2395 2396 if (CIRC_SPACE(queue->tx_head, queue->tx_tail, bp->tx_ring_size) < 1) 2397 netif_stop_subqueue(dev, queue_index); 2398 2399 unlock: 2400 spin_unlock_bh(&queue->tx_ptr_lock); 2401 2402 return ret; 2403 } 2404 2405 static void macb_init_rx_buffer_size(struct macb *bp, size_t size) 2406 { 2407 if (!macb_is_gem(bp)) { 2408 bp->rx_buffer_size = MACB_RX_BUFFER_SIZE; 2409 } else { 2410 bp->rx_buffer_size = size; 2411 2412 if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) { 2413 netdev_dbg(bp->dev, 2414 "RX buffer must be multiple of %d bytes, expanding\n", 2415 RX_BUFFER_MULTIPLE); 2416 bp->rx_buffer_size = 2417 roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE); 2418 } 2419 } 2420 2421 netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%zu]\n", 2422 bp->dev->mtu, bp->rx_buffer_size); 2423 } 2424 2425 static void gem_free_rx_buffers(struct macb *bp) 2426 { 2427 struct sk_buff *skb; 2428 struct macb_dma_desc *desc; 2429 struct macb_queue *queue; 2430 dma_addr_t addr; 2431 unsigned int q; 2432 int i; 2433 2434 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2435 if (!queue->rx_skbuff) 2436 continue; 2437 2438 for (i = 0; i < bp->rx_ring_size; i++) { 2439 skb = queue->rx_skbuff[i]; 2440 2441 if (!skb) 2442 continue; 2443 2444 desc = macb_rx_desc(queue, i); 2445 addr = macb_get_addr(bp, desc); 2446 2447 dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size, 2448 DMA_FROM_DEVICE); 2449 dev_kfree_skb_any(skb); 2450 skb = NULL; 2451 } 2452 2453 kfree(queue->rx_skbuff); 2454 queue->rx_skbuff = NULL; 2455 } 2456 } 2457 2458 static void macb_free_rx_buffers(struct macb *bp) 2459 { 2460 struct macb_queue *queue = &bp->queues[0]; 2461 2462 if (queue->rx_buffers) { 2463 dma_free_coherent(&bp->pdev->dev, 2464 bp->rx_ring_size * bp->rx_buffer_size, 2465 queue->rx_buffers, queue->rx_buffers_dma); 2466 queue->rx_buffers = NULL; 2467 } 2468 } 2469 2470 static void macb_free_consistent(struct macb *bp) 2471 { 2472 struct macb_queue *queue; 2473 unsigned int q; 2474 int size; 2475 2476 if (bp->rx_ring_tieoff) { 2477 dma_free_coherent(&bp->pdev->dev, macb_dma_desc_get_size(bp), 2478 bp->rx_ring_tieoff, bp->rx_ring_tieoff_dma); 2479 bp->rx_ring_tieoff = NULL; 2480 } 2481 2482 bp->macbgem_ops.mog_free_rx_buffers(bp); 2483 2484 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2485 kfree(queue->tx_skb); 2486 queue->tx_skb = NULL; 2487 if (queue->tx_ring) { 2488 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch; 2489 dma_free_coherent(&bp->pdev->dev, size, 2490 queue->tx_ring, queue->tx_ring_dma); 2491 queue->tx_ring = NULL; 2492 } 2493 if (queue->rx_ring) { 2494 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch; 2495 dma_free_coherent(&bp->pdev->dev, size, 2496 queue->rx_ring, queue->rx_ring_dma); 2497 queue->rx_ring = NULL; 2498 } 2499 } 2500 } 2501 2502 static int gem_alloc_rx_buffers(struct macb *bp) 2503 { 2504 struct macb_queue *queue; 2505 unsigned int q; 2506 int size; 2507 2508 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2509 size = bp->rx_ring_size * sizeof(struct sk_buff *); 2510 queue->rx_skbuff = kzalloc(size, GFP_KERNEL); 2511 if (!queue->rx_skbuff) 2512 return -ENOMEM; 2513 else 2514 netdev_dbg(bp->dev, 2515 "Allocated %d RX struct sk_buff entries at %p\n", 2516 bp->rx_ring_size, queue->rx_skbuff); 2517 } 2518 return 0; 2519 } 2520 2521 static int macb_alloc_rx_buffers(struct macb *bp) 2522 { 2523 struct macb_queue *queue = &bp->queues[0]; 2524 int size; 2525 2526 size = bp->rx_ring_size * bp->rx_buffer_size; 2527 queue->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size, 2528 &queue->rx_buffers_dma, GFP_KERNEL); 2529 if (!queue->rx_buffers) 2530 return -ENOMEM; 2531 2532 netdev_dbg(bp->dev, 2533 "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n", 2534 size, (unsigned long)queue->rx_buffers_dma, queue->rx_buffers); 2535 return 0; 2536 } 2537 2538 static int macb_alloc_consistent(struct macb *bp) 2539 { 2540 struct macb_queue *queue; 2541 unsigned int q; 2542 int size; 2543 2544 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2545 size = TX_RING_BYTES(bp) + bp->tx_bd_rd_prefetch; 2546 queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size, 2547 &queue->tx_ring_dma, 2548 GFP_KERNEL); 2549 if (!queue->tx_ring) 2550 goto out_err; 2551 netdev_dbg(bp->dev, 2552 "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n", 2553 q, size, (unsigned long)queue->tx_ring_dma, 2554 queue->tx_ring); 2555 2556 size = bp->tx_ring_size * sizeof(struct macb_tx_skb); 2557 queue->tx_skb = kmalloc(size, GFP_KERNEL); 2558 if (!queue->tx_skb) 2559 goto out_err; 2560 2561 size = RX_RING_BYTES(bp) + bp->rx_bd_rd_prefetch; 2562 queue->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size, 2563 &queue->rx_ring_dma, GFP_KERNEL); 2564 if (!queue->rx_ring) 2565 goto out_err; 2566 netdev_dbg(bp->dev, 2567 "Allocated RX ring of %d bytes at %08lx (mapped %p)\n", 2568 size, (unsigned long)queue->rx_ring_dma, queue->rx_ring); 2569 } 2570 if (bp->macbgem_ops.mog_alloc_rx_buffers(bp)) 2571 goto out_err; 2572 2573 /* Required for tie off descriptor for PM cases */ 2574 if (!(bp->caps & MACB_CAPS_QUEUE_DISABLE)) { 2575 bp->rx_ring_tieoff = dma_alloc_coherent(&bp->pdev->dev, 2576 macb_dma_desc_get_size(bp), 2577 &bp->rx_ring_tieoff_dma, 2578 GFP_KERNEL); 2579 if (!bp->rx_ring_tieoff) 2580 goto out_err; 2581 } 2582 2583 return 0; 2584 2585 out_err: 2586 macb_free_consistent(bp); 2587 return -ENOMEM; 2588 } 2589 2590 static void macb_init_tieoff(struct macb *bp) 2591 { 2592 struct macb_dma_desc *desc = bp->rx_ring_tieoff; 2593 2594 if (bp->caps & MACB_CAPS_QUEUE_DISABLE) 2595 return; 2596 /* Setup a wrapping descriptor with no free slots 2597 * (WRAP and USED) to tie off/disable unused RX queues. 2598 */ 2599 macb_set_addr(bp, desc, MACB_BIT(RX_WRAP) | MACB_BIT(RX_USED)); 2600 desc->ctrl = 0; 2601 } 2602 2603 static void gem_init_rings(struct macb *bp) 2604 { 2605 struct macb_queue *queue; 2606 struct macb_dma_desc *desc = NULL; 2607 unsigned int q; 2608 int i; 2609 2610 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2611 for (i = 0; i < bp->tx_ring_size; i++) { 2612 desc = macb_tx_desc(queue, i); 2613 macb_set_addr(bp, desc, 0); 2614 desc->ctrl = MACB_BIT(TX_USED); 2615 } 2616 desc->ctrl |= MACB_BIT(TX_WRAP); 2617 queue->tx_head = 0; 2618 queue->tx_tail = 0; 2619 2620 queue->rx_tail = 0; 2621 queue->rx_prepared_head = 0; 2622 2623 gem_rx_refill(queue); 2624 } 2625 2626 macb_init_tieoff(bp); 2627 } 2628 2629 static void macb_init_rings(struct macb *bp) 2630 { 2631 int i; 2632 struct macb_dma_desc *desc = NULL; 2633 2634 macb_init_rx_ring(&bp->queues[0]); 2635 2636 for (i = 0; i < bp->tx_ring_size; i++) { 2637 desc = macb_tx_desc(&bp->queues[0], i); 2638 macb_set_addr(bp, desc, 0); 2639 desc->ctrl = MACB_BIT(TX_USED); 2640 } 2641 bp->queues[0].tx_head = 0; 2642 bp->queues[0].tx_tail = 0; 2643 desc->ctrl |= MACB_BIT(TX_WRAP); 2644 2645 macb_init_tieoff(bp); 2646 } 2647 2648 static void macb_reset_hw(struct macb *bp) 2649 { 2650 struct macb_queue *queue; 2651 unsigned int q; 2652 u32 ctrl = macb_readl(bp, NCR); 2653 2654 /* Disable RX and TX (XXX: Should we halt the transmission 2655 * more gracefully?) 2656 */ 2657 ctrl &= ~(MACB_BIT(RE) | MACB_BIT(TE)); 2658 2659 /* Clear the stats registers (XXX: Update stats first?) */ 2660 ctrl |= MACB_BIT(CLRSTAT); 2661 2662 macb_writel(bp, NCR, ctrl); 2663 2664 /* Clear all status flags */ 2665 macb_writel(bp, TSR, -1); 2666 macb_writel(bp, RSR, -1); 2667 2668 /* Disable RX partial store and forward and reset watermark value */ 2669 gem_writel(bp, PBUFRXCUT, 0); 2670 2671 /* Disable all interrupts */ 2672 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2673 queue_writel(queue, IDR, -1); 2674 queue_readl(queue, ISR); 2675 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 2676 queue_writel(queue, ISR, -1); 2677 } 2678 } 2679 2680 static u32 gem_mdc_clk_div(struct macb *bp) 2681 { 2682 u32 config; 2683 unsigned long pclk_hz = clk_get_rate(bp->pclk); 2684 2685 if (pclk_hz <= 20000000) 2686 config = GEM_BF(CLK, GEM_CLK_DIV8); 2687 else if (pclk_hz <= 40000000) 2688 config = GEM_BF(CLK, GEM_CLK_DIV16); 2689 else if (pclk_hz <= 80000000) 2690 config = GEM_BF(CLK, GEM_CLK_DIV32); 2691 else if (pclk_hz <= 120000000) 2692 config = GEM_BF(CLK, GEM_CLK_DIV48); 2693 else if (pclk_hz <= 160000000) 2694 config = GEM_BF(CLK, GEM_CLK_DIV64); 2695 else if (pclk_hz <= 240000000) 2696 config = GEM_BF(CLK, GEM_CLK_DIV96); 2697 else if (pclk_hz <= 320000000) 2698 config = GEM_BF(CLK, GEM_CLK_DIV128); 2699 else 2700 config = GEM_BF(CLK, GEM_CLK_DIV224); 2701 2702 return config; 2703 } 2704 2705 static u32 macb_mdc_clk_div(struct macb *bp) 2706 { 2707 u32 config; 2708 unsigned long pclk_hz; 2709 2710 if (macb_is_gem(bp)) 2711 return gem_mdc_clk_div(bp); 2712 2713 pclk_hz = clk_get_rate(bp->pclk); 2714 if (pclk_hz <= 20000000) 2715 config = MACB_BF(CLK, MACB_CLK_DIV8); 2716 else if (pclk_hz <= 40000000) 2717 config = MACB_BF(CLK, MACB_CLK_DIV16); 2718 else if (pclk_hz <= 80000000) 2719 config = MACB_BF(CLK, MACB_CLK_DIV32); 2720 else 2721 config = MACB_BF(CLK, MACB_CLK_DIV64); 2722 2723 return config; 2724 } 2725 2726 /* Get the DMA bus width field of the network configuration register that we 2727 * should program. We find the width from decoding the design configuration 2728 * register to find the maximum supported data bus width. 2729 */ 2730 static u32 macb_dbw(struct macb *bp) 2731 { 2732 if (!macb_is_gem(bp)) 2733 return 0; 2734 2735 switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) { 2736 case 4: 2737 return GEM_BF(DBW, GEM_DBW128); 2738 case 2: 2739 return GEM_BF(DBW, GEM_DBW64); 2740 case 1: 2741 default: 2742 return GEM_BF(DBW, GEM_DBW32); 2743 } 2744 } 2745 2746 /* Configure the receive DMA engine 2747 * - use the correct receive buffer size 2748 * - set best burst length for DMA operations 2749 * (if not supported by FIFO, it will fallback to default) 2750 * - set both rx/tx packet buffers to full memory size 2751 * These are configurable parameters for GEM. 2752 */ 2753 static void macb_configure_dma(struct macb *bp) 2754 { 2755 struct macb_queue *queue; 2756 u32 buffer_size; 2757 unsigned int q; 2758 u32 dmacfg; 2759 2760 buffer_size = bp->rx_buffer_size / RX_BUFFER_MULTIPLE; 2761 if (macb_is_gem(bp)) { 2762 dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L); 2763 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2764 if (q) 2765 queue_writel(queue, RBQS, buffer_size); 2766 else 2767 dmacfg |= GEM_BF(RXBS, buffer_size); 2768 } 2769 if (bp->dma_burst_length) 2770 dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg); 2771 dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L); 2772 dmacfg &= ~GEM_BIT(ENDIA_PKT); 2773 2774 if (bp->native_io) 2775 dmacfg &= ~GEM_BIT(ENDIA_DESC); 2776 else 2777 dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */ 2778 2779 if (bp->dev->features & NETIF_F_HW_CSUM) 2780 dmacfg |= GEM_BIT(TXCOEN); 2781 else 2782 dmacfg &= ~GEM_BIT(TXCOEN); 2783 2784 dmacfg &= ~GEM_BIT(ADDR64); 2785 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 2786 if (bp->hw_dma_cap & HW_DMA_CAP_64B) 2787 dmacfg |= GEM_BIT(ADDR64); 2788 #endif 2789 #ifdef CONFIG_MACB_USE_HWSTAMP 2790 if (bp->hw_dma_cap & HW_DMA_CAP_PTP) 2791 dmacfg |= GEM_BIT(RXEXT) | GEM_BIT(TXEXT); 2792 #endif 2793 netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n", 2794 dmacfg); 2795 gem_writel(bp, DMACFG, dmacfg); 2796 } 2797 } 2798 2799 static void macb_init_hw(struct macb *bp) 2800 { 2801 u32 config; 2802 2803 macb_reset_hw(bp); 2804 macb_set_hwaddr(bp); 2805 2806 config = macb_mdc_clk_div(bp); 2807 config |= MACB_BF(RBOF, NET_IP_ALIGN); /* Make eth data aligned */ 2808 config |= MACB_BIT(DRFCS); /* Discard Rx FCS */ 2809 if (bp->caps & MACB_CAPS_JUMBO) 2810 config |= MACB_BIT(JFRAME); /* Enable jumbo frames */ 2811 else 2812 config |= MACB_BIT(BIG); /* Receive oversized frames */ 2813 if (bp->dev->flags & IFF_PROMISC) 2814 config |= MACB_BIT(CAF); /* Copy All Frames */ 2815 else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM) 2816 config |= GEM_BIT(RXCOEN); 2817 if (!(bp->dev->flags & IFF_BROADCAST)) 2818 config |= MACB_BIT(NBC); /* No BroadCast */ 2819 config |= macb_dbw(bp); 2820 macb_writel(bp, NCFGR, config); 2821 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len) 2822 gem_writel(bp, JML, bp->jumbo_max_len); 2823 bp->rx_frm_len_mask = MACB_RX_FRMLEN_MASK; 2824 if (bp->caps & MACB_CAPS_JUMBO) 2825 bp->rx_frm_len_mask = MACB_RX_JFRMLEN_MASK; 2826 2827 macb_configure_dma(bp); 2828 2829 /* Enable RX partial store and forward and set watermark */ 2830 if (bp->rx_watermark) 2831 gem_writel(bp, PBUFRXCUT, (bp->rx_watermark | GEM_BIT(ENCUTTHRU))); 2832 } 2833 2834 /* The hash address register is 64 bits long and takes up two 2835 * locations in the memory map. The least significant bits are stored 2836 * in EMAC_HSL and the most significant bits in EMAC_HSH. 2837 * 2838 * The unicast hash enable and the multicast hash enable bits in the 2839 * network configuration register enable the reception of hash matched 2840 * frames. The destination address is reduced to a 6 bit index into 2841 * the 64 bit hash register using the following hash function. The 2842 * hash function is an exclusive or of every sixth bit of the 2843 * destination address. 2844 * 2845 * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47] 2846 * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46] 2847 * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45] 2848 * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44] 2849 * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43] 2850 * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42] 2851 * 2852 * da[0] represents the least significant bit of the first byte 2853 * received, that is, the multicast/unicast indicator, and da[47] 2854 * represents the most significant bit of the last byte received. If 2855 * the hash index, hi[n], points to a bit that is set in the hash 2856 * register then the frame will be matched according to whether the 2857 * frame is multicast or unicast. A multicast match will be signalled 2858 * if the multicast hash enable bit is set, da[0] is 1 and the hash 2859 * index points to a bit set in the hash register. A unicast match 2860 * will be signalled if the unicast hash enable bit is set, da[0] is 0 2861 * and the hash index points to a bit set in the hash register. To 2862 * receive all multicast frames, the hash register should be set with 2863 * all ones and the multicast hash enable bit should be set in the 2864 * network configuration register. 2865 */ 2866 2867 static inline int hash_bit_value(int bitnr, __u8 *addr) 2868 { 2869 if (addr[bitnr / 8] & (1 << (bitnr % 8))) 2870 return 1; 2871 return 0; 2872 } 2873 2874 /* Return the hash index value for the specified address. */ 2875 static int hash_get_index(__u8 *addr) 2876 { 2877 int i, j, bitval; 2878 int hash_index = 0; 2879 2880 for (j = 0; j < 6; j++) { 2881 for (i = 0, bitval = 0; i < 8; i++) 2882 bitval ^= hash_bit_value(i * 6 + j, addr); 2883 2884 hash_index |= (bitval << j); 2885 } 2886 2887 return hash_index; 2888 } 2889 2890 /* Add multicast addresses to the internal multicast-hash table. */ 2891 static void macb_sethashtable(struct net_device *dev) 2892 { 2893 struct netdev_hw_addr *ha; 2894 unsigned long mc_filter[2]; 2895 unsigned int bitnr; 2896 struct macb *bp = netdev_priv(dev); 2897 2898 mc_filter[0] = 0; 2899 mc_filter[1] = 0; 2900 2901 netdev_for_each_mc_addr(ha, dev) { 2902 bitnr = hash_get_index(ha->addr); 2903 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 2904 } 2905 2906 macb_or_gem_writel(bp, HRB, mc_filter[0]); 2907 macb_or_gem_writel(bp, HRT, mc_filter[1]); 2908 } 2909 2910 /* Enable/Disable promiscuous and multicast modes. */ 2911 static void macb_set_rx_mode(struct net_device *dev) 2912 { 2913 unsigned long cfg; 2914 struct macb *bp = netdev_priv(dev); 2915 2916 cfg = macb_readl(bp, NCFGR); 2917 2918 if (dev->flags & IFF_PROMISC) { 2919 /* Enable promiscuous mode */ 2920 cfg |= MACB_BIT(CAF); 2921 2922 /* Disable RX checksum offload */ 2923 if (macb_is_gem(bp)) 2924 cfg &= ~GEM_BIT(RXCOEN); 2925 } else { 2926 /* Disable promiscuous mode */ 2927 cfg &= ~MACB_BIT(CAF); 2928 2929 /* Enable RX checksum offload only if requested */ 2930 if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM) 2931 cfg |= GEM_BIT(RXCOEN); 2932 } 2933 2934 if (dev->flags & IFF_ALLMULTI) { 2935 /* Enable all multicast mode */ 2936 macb_or_gem_writel(bp, HRB, -1); 2937 macb_or_gem_writel(bp, HRT, -1); 2938 cfg |= MACB_BIT(NCFGR_MTI); 2939 } else if (!netdev_mc_empty(dev)) { 2940 /* Enable specific multicasts */ 2941 macb_sethashtable(dev); 2942 cfg |= MACB_BIT(NCFGR_MTI); 2943 } else if (dev->flags & (~IFF_ALLMULTI)) { 2944 /* Disable all multicast mode */ 2945 macb_or_gem_writel(bp, HRB, 0); 2946 macb_or_gem_writel(bp, HRT, 0); 2947 cfg &= ~MACB_BIT(NCFGR_MTI); 2948 } 2949 2950 macb_writel(bp, NCFGR, cfg); 2951 } 2952 2953 static int macb_open(struct net_device *dev) 2954 { 2955 size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN; 2956 struct macb *bp = netdev_priv(dev); 2957 struct macb_queue *queue; 2958 unsigned int q; 2959 int err; 2960 2961 netdev_dbg(bp->dev, "open\n"); 2962 2963 err = pm_runtime_resume_and_get(&bp->pdev->dev); 2964 if (err < 0) 2965 return err; 2966 2967 /* RX buffers initialization */ 2968 macb_init_rx_buffer_size(bp, bufsz); 2969 2970 err = macb_alloc_consistent(bp); 2971 if (err) { 2972 netdev_err(dev, "Unable to allocate DMA memory (error %d)\n", 2973 err); 2974 goto pm_exit; 2975 } 2976 2977 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 2978 napi_enable(&queue->napi_rx); 2979 napi_enable(&queue->napi_tx); 2980 } 2981 2982 macb_init_hw(bp); 2983 2984 err = phy_power_on(bp->sgmii_phy); 2985 if (err) 2986 goto reset_hw; 2987 2988 err = macb_phylink_connect(bp); 2989 if (err) 2990 goto phy_off; 2991 2992 netif_tx_start_all_queues(dev); 2993 2994 if (bp->ptp_info) 2995 bp->ptp_info->ptp_init(dev); 2996 2997 return 0; 2998 2999 phy_off: 3000 phy_power_off(bp->sgmii_phy); 3001 3002 reset_hw: 3003 macb_reset_hw(bp); 3004 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 3005 napi_disable(&queue->napi_rx); 3006 napi_disable(&queue->napi_tx); 3007 } 3008 macb_free_consistent(bp); 3009 pm_exit: 3010 pm_runtime_put_sync(&bp->pdev->dev); 3011 return err; 3012 } 3013 3014 static int macb_close(struct net_device *dev) 3015 { 3016 struct macb *bp = netdev_priv(dev); 3017 struct macb_queue *queue; 3018 unsigned long flags; 3019 unsigned int q; 3020 3021 netif_tx_stop_all_queues(dev); 3022 3023 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 3024 napi_disable(&queue->napi_rx); 3025 napi_disable(&queue->napi_tx); 3026 } 3027 3028 phylink_stop(bp->phylink); 3029 phylink_disconnect_phy(bp->phylink); 3030 3031 phy_power_off(bp->sgmii_phy); 3032 3033 spin_lock_irqsave(&bp->lock, flags); 3034 macb_reset_hw(bp); 3035 netif_carrier_off(dev); 3036 spin_unlock_irqrestore(&bp->lock, flags); 3037 3038 macb_free_consistent(bp); 3039 3040 if (bp->ptp_info) 3041 bp->ptp_info->ptp_remove(dev); 3042 3043 pm_runtime_put(&bp->pdev->dev); 3044 3045 return 0; 3046 } 3047 3048 static int macb_change_mtu(struct net_device *dev, int new_mtu) 3049 { 3050 if (netif_running(dev)) 3051 return -EBUSY; 3052 3053 WRITE_ONCE(dev->mtu, new_mtu); 3054 3055 return 0; 3056 } 3057 3058 static int macb_set_mac_addr(struct net_device *dev, void *addr) 3059 { 3060 int err; 3061 3062 err = eth_mac_addr(dev, addr); 3063 if (err < 0) 3064 return err; 3065 3066 macb_set_hwaddr(netdev_priv(dev)); 3067 return 0; 3068 } 3069 3070 static void gem_update_stats(struct macb *bp) 3071 { 3072 struct macb_queue *queue; 3073 unsigned int i, q, idx; 3074 unsigned long *stat; 3075 3076 u32 *p = &bp->hw_stats.gem.tx_octets_31_0; 3077 3078 for (i = 0; i < GEM_STATS_LEN; ++i, ++p) { 3079 u32 offset = gem_statistics[i].offset; 3080 u64 val = bp->macb_reg_readl(bp, offset); 3081 3082 bp->ethtool_stats[i] += val; 3083 *p += val; 3084 3085 if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) { 3086 /* Add GEM_OCTTXH, GEM_OCTRXH */ 3087 val = bp->macb_reg_readl(bp, offset + 4); 3088 bp->ethtool_stats[i] += ((u64)val) << 32; 3089 *(++p) += val; 3090 } 3091 } 3092 3093 idx = GEM_STATS_LEN; 3094 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) 3095 for (i = 0, stat = &queue->stats.first; i < QUEUE_STATS_LEN; ++i, ++stat) 3096 bp->ethtool_stats[idx++] = *stat; 3097 } 3098 3099 static struct net_device_stats *gem_get_stats(struct macb *bp) 3100 { 3101 struct gem_stats *hwstat = &bp->hw_stats.gem; 3102 struct net_device_stats *nstat = &bp->dev->stats; 3103 3104 if (!netif_running(bp->dev)) 3105 return nstat; 3106 3107 spin_lock_irq(&bp->stats_lock); 3108 gem_update_stats(bp); 3109 3110 nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors + 3111 hwstat->rx_alignment_errors + 3112 hwstat->rx_resource_errors + 3113 hwstat->rx_overruns + 3114 hwstat->rx_oversize_frames + 3115 hwstat->rx_jabbers + 3116 hwstat->rx_undersized_frames + 3117 hwstat->rx_length_field_frame_errors); 3118 nstat->tx_errors = (hwstat->tx_late_collisions + 3119 hwstat->tx_excessive_collisions + 3120 hwstat->tx_underrun + 3121 hwstat->tx_carrier_sense_errors); 3122 nstat->multicast = hwstat->rx_multicast_frames; 3123 nstat->collisions = (hwstat->tx_single_collision_frames + 3124 hwstat->tx_multiple_collision_frames + 3125 hwstat->tx_excessive_collisions); 3126 nstat->rx_length_errors = (hwstat->rx_oversize_frames + 3127 hwstat->rx_jabbers + 3128 hwstat->rx_undersized_frames + 3129 hwstat->rx_length_field_frame_errors); 3130 nstat->rx_over_errors = hwstat->rx_resource_errors; 3131 nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors; 3132 nstat->rx_frame_errors = hwstat->rx_alignment_errors; 3133 nstat->rx_fifo_errors = hwstat->rx_overruns; 3134 nstat->tx_aborted_errors = hwstat->tx_excessive_collisions; 3135 nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors; 3136 nstat->tx_fifo_errors = hwstat->tx_underrun; 3137 spin_unlock_irq(&bp->stats_lock); 3138 3139 return nstat; 3140 } 3141 3142 static void gem_get_ethtool_stats(struct net_device *dev, 3143 struct ethtool_stats *stats, u64 *data) 3144 { 3145 struct macb *bp = netdev_priv(dev); 3146 3147 spin_lock_irq(&bp->stats_lock); 3148 gem_update_stats(bp); 3149 memcpy(data, &bp->ethtool_stats, sizeof(u64) 3150 * (GEM_STATS_LEN + QUEUE_STATS_LEN * MACB_MAX_QUEUES)); 3151 spin_unlock_irq(&bp->stats_lock); 3152 } 3153 3154 static int gem_get_sset_count(struct net_device *dev, int sset) 3155 { 3156 struct macb *bp = netdev_priv(dev); 3157 3158 switch (sset) { 3159 case ETH_SS_STATS: 3160 return GEM_STATS_LEN + bp->num_queues * QUEUE_STATS_LEN; 3161 default: 3162 return -EOPNOTSUPP; 3163 } 3164 } 3165 3166 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p) 3167 { 3168 char stat_string[ETH_GSTRING_LEN]; 3169 struct macb *bp = netdev_priv(dev); 3170 struct macb_queue *queue; 3171 unsigned int i; 3172 unsigned int q; 3173 3174 switch (sset) { 3175 case ETH_SS_STATS: 3176 for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN) 3177 memcpy(p, gem_statistics[i].stat_string, 3178 ETH_GSTRING_LEN); 3179 3180 for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) { 3181 for (i = 0; i < QUEUE_STATS_LEN; i++, p += ETH_GSTRING_LEN) { 3182 snprintf(stat_string, ETH_GSTRING_LEN, "q%d_%s", 3183 q, queue_statistics[i].stat_string); 3184 memcpy(p, stat_string, ETH_GSTRING_LEN); 3185 } 3186 } 3187 break; 3188 } 3189 } 3190 3191 static struct net_device_stats *macb_get_stats(struct net_device *dev) 3192 { 3193 struct macb *bp = netdev_priv(dev); 3194 struct net_device_stats *nstat = &bp->dev->stats; 3195 struct macb_stats *hwstat = &bp->hw_stats.macb; 3196 3197 if (macb_is_gem(bp)) 3198 return gem_get_stats(bp); 3199 3200 /* read stats from hardware */ 3201 spin_lock_irq(&bp->stats_lock); 3202 macb_update_stats(bp); 3203 3204 /* Convert HW stats into netdevice stats */ 3205 nstat->rx_errors = (hwstat->rx_fcs_errors + 3206 hwstat->rx_align_errors + 3207 hwstat->rx_resource_errors + 3208 hwstat->rx_overruns + 3209 hwstat->rx_oversize_pkts + 3210 hwstat->rx_jabbers + 3211 hwstat->rx_undersize_pkts + 3212 hwstat->rx_length_mismatch); 3213 nstat->tx_errors = (hwstat->tx_late_cols + 3214 hwstat->tx_excessive_cols + 3215 hwstat->tx_underruns + 3216 hwstat->tx_carrier_errors + 3217 hwstat->sqe_test_errors); 3218 nstat->collisions = (hwstat->tx_single_cols + 3219 hwstat->tx_multiple_cols + 3220 hwstat->tx_excessive_cols); 3221 nstat->rx_length_errors = (hwstat->rx_oversize_pkts + 3222 hwstat->rx_jabbers + 3223 hwstat->rx_undersize_pkts + 3224 hwstat->rx_length_mismatch); 3225 nstat->rx_over_errors = hwstat->rx_resource_errors + 3226 hwstat->rx_overruns; 3227 nstat->rx_crc_errors = hwstat->rx_fcs_errors; 3228 nstat->rx_frame_errors = hwstat->rx_align_errors; 3229 nstat->rx_fifo_errors = hwstat->rx_overruns; 3230 /* XXX: What does "missed" mean? */ 3231 nstat->tx_aborted_errors = hwstat->tx_excessive_cols; 3232 nstat->tx_carrier_errors = hwstat->tx_carrier_errors; 3233 nstat->tx_fifo_errors = hwstat->tx_underruns; 3234 /* Don't know about heartbeat or window errors... */ 3235 spin_unlock_irq(&bp->stats_lock); 3236 3237 return nstat; 3238 } 3239 3240 static int macb_get_regs_len(struct net_device *netdev) 3241 { 3242 return MACB_GREGS_NBR * sizeof(u32); 3243 } 3244 3245 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs, 3246 void *p) 3247 { 3248 struct macb *bp = netdev_priv(dev); 3249 unsigned int tail, head; 3250 u32 *regs_buff = p; 3251 3252 regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1)) 3253 | MACB_GREGS_VERSION; 3254 3255 tail = macb_tx_ring_wrap(bp, bp->queues[0].tx_tail); 3256 head = macb_tx_ring_wrap(bp, bp->queues[0].tx_head); 3257 3258 regs_buff[0] = macb_readl(bp, NCR); 3259 regs_buff[1] = macb_or_gem_readl(bp, NCFGR); 3260 regs_buff[2] = macb_readl(bp, NSR); 3261 regs_buff[3] = macb_readl(bp, TSR); 3262 regs_buff[4] = macb_readl(bp, RBQP); 3263 regs_buff[5] = macb_readl(bp, TBQP); 3264 regs_buff[6] = macb_readl(bp, RSR); 3265 regs_buff[7] = macb_readl(bp, IMR); 3266 3267 regs_buff[8] = tail; 3268 regs_buff[9] = head; 3269 regs_buff[10] = macb_tx_dma(&bp->queues[0], tail); 3270 regs_buff[11] = macb_tx_dma(&bp->queues[0], head); 3271 3272 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 3273 regs_buff[12] = macb_or_gem_readl(bp, USRIO); 3274 if (macb_is_gem(bp)) 3275 regs_buff[13] = gem_readl(bp, DMACFG); 3276 } 3277 3278 static void macb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3279 { 3280 struct macb *bp = netdev_priv(netdev); 3281 3282 phylink_ethtool_get_wol(bp->phylink, wol); 3283 wol->supported |= (WAKE_MAGIC | WAKE_ARP); 3284 3285 /* Add macb wolopts to phy wolopts */ 3286 wol->wolopts |= bp->wolopts; 3287 } 3288 3289 static int macb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 3290 { 3291 struct macb *bp = netdev_priv(netdev); 3292 int ret; 3293 3294 /* Pass the order to phylink layer */ 3295 ret = phylink_ethtool_set_wol(bp->phylink, wol); 3296 /* Don't manage WoL on MAC, if PHY set_wol() fails */ 3297 if (ret && ret != -EOPNOTSUPP) 3298 return ret; 3299 3300 bp->wolopts = (wol->wolopts & WAKE_MAGIC) ? WAKE_MAGIC : 0; 3301 bp->wolopts |= (wol->wolopts & WAKE_ARP) ? WAKE_ARP : 0; 3302 bp->wol = (wol->wolopts) ? MACB_WOL_ENABLED : 0; 3303 3304 device_set_wakeup_enable(&bp->pdev->dev, bp->wol); 3305 3306 return 0; 3307 } 3308 3309 static int macb_get_link_ksettings(struct net_device *netdev, 3310 struct ethtool_link_ksettings *kset) 3311 { 3312 struct macb *bp = netdev_priv(netdev); 3313 3314 return phylink_ethtool_ksettings_get(bp->phylink, kset); 3315 } 3316 3317 static int macb_set_link_ksettings(struct net_device *netdev, 3318 const struct ethtool_link_ksettings *kset) 3319 { 3320 struct macb *bp = netdev_priv(netdev); 3321 3322 return phylink_ethtool_ksettings_set(bp->phylink, kset); 3323 } 3324 3325 static void macb_get_ringparam(struct net_device *netdev, 3326 struct ethtool_ringparam *ring, 3327 struct kernel_ethtool_ringparam *kernel_ring, 3328 struct netlink_ext_ack *extack) 3329 { 3330 struct macb *bp = netdev_priv(netdev); 3331 3332 ring->rx_max_pending = MAX_RX_RING_SIZE; 3333 ring->tx_max_pending = MAX_TX_RING_SIZE; 3334 3335 ring->rx_pending = bp->rx_ring_size; 3336 ring->tx_pending = bp->tx_ring_size; 3337 } 3338 3339 static int macb_set_ringparam(struct net_device *netdev, 3340 struct ethtool_ringparam *ring, 3341 struct kernel_ethtool_ringparam *kernel_ring, 3342 struct netlink_ext_ack *extack) 3343 { 3344 struct macb *bp = netdev_priv(netdev); 3345 u32 new_rx_size, new_tx_size; 3346 unsigned int reset = 0; 3347 3348 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 3349 return -EINVAL; 3350 3351 new_rx_size = clamp_t(u32, ring->rx_pending, 3352 MIN_RX_RING_SIZE, MAX_RX_RING_SIZE); 3353 new_rx_size = roundup_pow_of_two(new_rx_size); 3354 3355 new_tx_size = clamp_t(u32, ring->tx_pending, 3356 MIN_TX_RING_SIZE, MAX_TX_RING_SIZE); 3357 new_tx_size = roundup_pow_of_two(new_tx_size); 3358 3359 if ((new_tx_size == bp->tx_ring_size) && 3360 (new_rx_size == bp->rx_ring_size)) { 3361 /* nothing to do */ 3362 return 0; 3363 } 3364 3365 if (netif_running(bp->dev)) { 3366 reset = 1; 3367 macb_close(bp->dev); 3368 } 3369 3370 bp->rx_ring_size = new_rx_size; 3371 bp->tx_ring_size = new_tx_size; 3372 3373 if (reset) 3374 macb_open(bp->dev); 3375 3376 return 0; 3377 } 3378 3379 #ifdef CONFIG_MACB_USE_HWSTAMP 3380 static unsigned int gem_get_tsu_rate(struct macb *bp) 3381 { 3382 struct clk *tsu_clk; 3383 unsigned int tsu_rate; 3384 3385 tsu_clk = devm_clk_get(&bp->pdev->dev, "tsu_clk"); 3386 if (!IS_ERR(tsu_clk)) 3387 tsu_rate = clk_get_rate(tsu_clk); 3388 /* try pclk instead */ 3389 else if (!IS_ERR(bp->pclk)) { 3390 tsu_clk = bp->pclk; 3391 tsu_rate = clk_get_rate(tsu_clk); 3392 } else 3393 return -ENOTSUPP; 3394 return tsu_rate; 3395 } 3396 3397 static s32 gem_get_ptp_max_adj(void) 3398 { 3399 return 64000000; 3400 } 3401 3402 static int gem_get_ts_info(struct net_device *dev, 3403 struct kernel_ethtool_ts_info *info) 3404 { 3405 struct macb *bp = netdev_priv(dev); 3406 3407 if ((bp->hw_dma_cap & HW_DMA_CAP_PTP) == 0) { 3408 ethtool_op_get_ts_info(dev, info); 3409 return 0; 3410 } 3411 3412 info->so_timestamping = 3413 SOF_TIMESTAMPING_TX_SOFTWARE | 3414 SOF_TIMESTAMPING_TX_HARDWARE | 3415 SOF_TIMESTAMPING_RX_HARDWARE | 3416 SOF_TIMESTAMPING_RAW_HARDWARE; 3417 info->tx_types = 3418 (1 << HWTSTAMP_TX_ONESTEP_SYNC) | 3419 (1 << HWTSTAMP_TX_OFF) | 3420 (1 << HWTSTAMP_TX_ON); 3421 info->rx_filters = 3422 (1 << HWTSTAMP_FILTER_NONE) | 3423 (1 << HWTSTAMP_FILTER_ALL); 3424 3425 if (bp->ptp_clock) 3426 info->phc_index = ptp_clock_index(bp->ptp_clock); 3427 3428 return 0; 3429 } 3430 3431 static struct macb_ptp_info gem_ptp_info = { 3432 .ptp_init = gem_ptp_init, 3433 .ptp_remove = gem_ptp_remove, 3434 .get_ptp_max_adj = gem_get_ptp_max_adj, 3435 .get_tsu_rate = gem_get_tsu_rate, 3436 .get_ts_info = gem_get_ts_info, 3437 .get_hwtst = gem_get_hwtst, 3438 .set_hwtst = gem_set_hwtst, 3439 }; 3440 #endif 3441 3442 static int macb_get_ts_info(struct net_device *netdev, 3443 struct kernel_ethtool_ts_info *info) 3444 { 3445 struct macb *bp = netdev_priv(netdev); 3446 3447 if (bp->ptp_info) 3448 return bp->ptp_info->get_ts_info(netdev, info); 3449 3450 return ethtool_op_get_ts_info(netdev, info); 3451 } 3452 3453 static void gem_enable_flow_filters(struct macb *bp, bool enable) 3454 { 3455 struct net_device *netdev = bp->dev; 3456 struct ethtool_rx_fs_item *item; 3457 u32 t2_scr; 3458 int num_t2_scr; 3459 3460 if (!(netdev->features & NETIF_F_NTUPLE)) 3461 return; 3462 3463 num_t2_scr = GEM_BFEXT(T2SCR, gem_readl(bp, DCFG8)); 3464 3465 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3466 struct ethtool_rx_flow_spec *fs = &item->fs; 3467 struct ethtool_tcpip4_spec *tp4sp_m; 3468 3469 if (fs->location >= num_t2_scr) 3470 continue; 3471 3472 t2_scr = gem_readl_n(bp, SCRT2, fs->location); 3473 3474 /* enable/disable screener regs for the flow entry */ 3475 t2_scr = GEM_BFINS(ETHTEN, enable, t2_scr); 3476 3477 /* only enable fields with no masking */ 3478 tp4sp_m = &(fs->m_u.tcp_ip4_spec); 3479 3480 if (enable && (tp4sp_m->ip4src == 0xFFFFFFFF)) 3481 t2_scr = GEM_BFINS(CMPAEN, 1, t2_scr); 3482 else 3483 t2_scr = GEM_BFINS(CMPAEN, 0, t2_scr); 3484 3485 if (enable && (tp4sp_m->ip4dst == 0xFFFFFFFF)) 3486 t2_scr = GEM_BFINS(CMPBEN, 1, t2_scr); 3487 else 3488 t2_scr = GEM_BFINS(CMPBEN, 0, t2_scr); 3489 3490 if (enable && ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF))) 3491 t2_scr = GEM_BFINS(CMPCEN, 1, t2_scr); 3492 else 3493 t2_scr = GEM_BFINS(CMPCEN, 0, t2_scr); 3494 3495 gem_writel_n(bp, SCRT2, fs->location, t2_scr); 3496 } 3497 } 3498 3499 static void gem_prog_cmp_regs(struct macb *bp, struct ethtool_rx_flow_spec *fs) 3500 { 3501 struct ethtool_tcpip4_spec *tp4sp_v, *tp4sp_m; 3502 uint16_t index = fs->location; 3503 u32 w0, w1, t2_scr; 3504 bool cmp_a = false; 3505 bool cmp_b = false; 3506 bool cmp_c = false; 3507 3508 if (!macb_is_gem(bp)) 3509 return; 3510 3511 tp4sp_v = &(fs->h_u.tcp_ip4_spec); 3512 tp4sp_m = &(fs->m_u.tcp_ip4_spec); 3513 3514 /* ignore field if any masking set */ 3515 if (tp4sp_m->ip4src == 0xFFFFFFFF) { 3516 /* 1st compare reg - IP source address */ 3517 w0 = 0; 3518 w1 = 0; 3519 w0 = tp4sp_v->ip4src; 3520 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3521 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1); 3522 w1 = GEM_BFINS(T2OFST, ETYPE_SRCIP_OFFSET, w1); 3523 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w0); 3524 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4SRC_CMP(index)), w1); 3525 cmp_a = true; 3526 } 3527 3528 /* ignore field if any masking set */ 3529 if (tp4sp_m->ip4dst == 0xFFFFFFFF) { 3530 /* 2nd compare reg - IP destination address */ 3531 w0 = 0; 3532 w1 = 0; 3533 w0 = tp4sp_v->ip4dst; 3534 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3535 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_ETYPE, w1); 3536 w1 = GEM_BFINS(T2OFST, ETYPE_DSTIP_OFFSET, w1); 3537 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_IP4DST_CMP(index)), w0); 3538 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_IP4DST_CMP(index)), w1); 3539 cmp_b = true; 3540 } 3541 3542 /* ignore both port fields if masking set in both */ 3543 if ((tp4sp_m->psrc == 0xFFFF) || (tp4sp_m->pdst == 0xFFFF)) { 3544 /* 3rd compare reg - source port, destination port */ 3545 w0 = 0; 3546 w1 = 0; 3547 w1 = GEM_BFINS(T2CMPOFST, GEM_T2COMPOFST_IPHDR, w1); 3548 if (tp4sp_m->psrc == tp4sp_m->pdst) { 3549 w0 = GEM_BFINS(T2MASK, tp4sp_v->psrc, w0); 3550 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0); 3551 w1 = GEM_BFINS(T2DISMSK, 1, w1); /* 32-bit compare */ 3552 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1); 3553 } else { 3554 /* only one port definition */ 3555 w1 = GEM_BFINS(T2DISMSK, 0, w1); /* 16-bit compare */ 3556 w0 = GEM_BFINS(T2MASK, 0xFFFF, w0); 3557 if (tp4sp_m->psrc == 0xFFFF) { /* src port */ 3558 w0 = GEM_BFINS(T2CMP, tp4sp_v->psrc, w0); 3559 w1 = GEM_BFINS(T2OFST, IPHDR_SRCPORT_OFFSET, w1); 3560 } else { /* dst port */ 3561 w0 = GEM_BFINS(T2CMP, tp4sp_v->pdst, w0); 3562 w1 = GEM_BFINS(T2OFST, IPHDR_DSTPORT_OFFSET, w1); 3563 } 3564 } 3565 gem_writel_n(bp, T2CMPW0, T2CMP_OFST(GEM_PORT_CMP(index)), w0); 3566 gem_writel_n(bp, T2CMPW1, T2CMP_OFST(GEM_PORT_CMP(index)), w1); 3567 cmp_c = true; 3568 } 3569 3570 t2_scr = 0; 3571 t2_scr = GEM_BFINS(QUEUE, (fs->ring_cookie) & 0xFF, t2_scr); 3572 t2_scr = GEM_BFINS(ETHT2IDX, SCRT2_ETHT, t2_scr); 3573 if (cmp_a) 3574 t2_scr = GEM_BFINS(CMPA, GEM_IP4SRC_CMP(index), t2_scr); 3575 if (cmp_b) 3576 t2_scr = GEM_BFINS(CMPB, GEM_IP4DST_CMP(index), t2_scr); 3577 if (cmp_c) 3578 t2_scr = GEM_BFINS(CMPC, GEM_PORT_CMP(index), t2_scr); 3579 gem_writel_n(bp, SCRT2, index, t2_scr); 3580 } 3581 3582 static int gem_add_flow_filter(struct net_device *netdev, 3583 struct ethtool_rxnfc *cmd) 3584 { 3585 struct macb *bp = netdev_priv(netdev); 3586 struct ethtool_rx_flow_spec *fs = &cmd->fs; 3587 struct ethtool_rx_fs_item *item, *newfs; 3588 unsigned long flags; 3589 int ret = -EINVAL; 3590 bool added = false; 3591 3592 newfs = kmalloc(sizeof(*newfs), GFP_KERNEL); 3593 if (newfs == NULL) 3594 return -ENOMEM; 3595 memcpy(&newfs->fs, fs, sizeof(newfs->fs)); 3596 3597 netdev_dbg(netdev, 3598 "Adding flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n", 3599 fs->flow_type, (int)fs->ring_cookie, fs->location, 3600 htonl(fs->h_u.tcp_ip4_spec.ip4src), 3601 htonl(fs->h_u.tcp_ip4_spec.ip4dst), 3602 be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc), 3603 be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst)); 3604 3605 spin_lock_irqsave(&bp->rx_fs_lock, flags); 3606 3607 /* find correct place to add in list */ 3608 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3609 if (item->fs.location > newfs->fs.location) { 3610 list_add_tail(&newfs->list, &item->list); 3611 added = true; 3612 break; 3613 } else if (item->fs.location == fs->location) { 3614 netdev_err(netdev, "Rule not added: location %d not free!\n", 3615 fs->location); 3616 ret = -EBUSY; 3617 goto err; 3618 } 3619 } 3620 if (!added) 3621 list_add_tail(&newfs->list, &bp->rx_fs_list.list); 3622 3623 gem_prog_cmp_regs(bp, fs); 3624 bp->rx_fs_list.count++; 3625 /* enable filtering if NTUPLE on */ 3626 gem_enable_flow_filters(bp, 1); 3627 3628 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3629 return 0; 3630 3631 err: 3632 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3633 kfree(newfs); 3634 return ret; 3635 } 3636 3637 static int gem_del_flow_filter(struct net_device *netdev, 3638 struct ethtool_rxnfc *cmd) 3639 { 3640 struct macb *bp = netdev_priv(netdev); 3641 struct ethtool_rx_fs_item *item; 3642 struct ethtool_rx_flow_spec *fs; 3643 unsigned long flags; 3644 3645 spin_lock_irqsave(&bp->rx_fs_lock, flags); 3646 3647 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3648 if (item->fs.location == cmd->fs.location) { 3649 /* disable screener regs for the flow entry */ 3650 fs = &(item->fs); 3651 netdev_dbg(netdev, 3652 "Deleting flow filter entry,type=%u,queue=%u,loc=%u,src=%08X,dst=%08X,ps=%u,pd=%u\n", 3653 fs->flow_type, (int)fs->ring_cookie, fs->location, 3654 htonl(fs->h_u.tcp_ip4_spec.ip4src), 3655 htonl(fs->h_u.tcp_ip4_spec.ip4dst), 3656 be16_to_cpu(fs->h_u.tcp_ip4_spec.psrc), 3657 be16_to_cpu(fs->h_u.tcp_ip4_spec.pdst)); 3658 3659 gem_writel_n(bp, SCRT2, fs->location, 0); 3660 3661 list_del(&item->list); 3662 bp->rx_fs_list.count--; 3663 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3664 kfree(item); 3665 return 0; 3666 } 3667 } 3668 3669 spin_unlock_irqrestore(&bp->rx_fs_lock, flags); 3670 return -EINVAL; 3671 } 3672 3673 static int gem_get_flow_entry(struct net_device *netdev, 3674 struct ethtool_rxnfc *cmd) 3675 { 3676 struct macb *bp = netdev_priv(netdev); 3677 struct ethtool_rx_fs_item *item; 3678 3679 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3680 if (item->fs.location == cmd->fs.location) { 3681 memcpy(&cmd->fs, &item->fs, sizeof(cmd->fs)); 3682 return 0; 3683 } 3684 } 3685 return -EINVAL; 3686 } 3687 3688 static int gem_get_all_flow_entries(struct net_device *netdev, 3689 struct ethtool_rxnfc *cmd, u32 *rule_locs) 3690 { 3691 struct macb *bp = netdev_priv(netdev); 3692 struct ethtool_rx_fs_item *item; 3693 uint32_t cnt = 0; 3694 3695 list_for_each_entry(item, &bp->rx_fs_list.list, list) { 3696 if (cnt == cmd->rule_cnt) 3697 return -EMSGSIZE; 3698 rule_locs[cnt] = item->fs.location; 3699 cnt++; 3700 } 3701 cmd->data = bp->max_tuples; 3702 cmd->rule_cnt = cnt; 3703 3704 return 0; 3705 } 3706 3707 static int gem_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd, 3708 u32 *rule_locs) 3709 { 3710 struct macb *bp = netdev_priv(netdev); 3711 int ret = 0; 3712 3713 switch (cmd->cmd) { 3714 case ETHTOOL_GRXRINGS: 3715 cmd->data = bp->num_queues; 3716 break; 3717 case ETHTOOL_GRXCLSRLCNT: 3718 cmd->rule_cnt = bp->rx_fs_list.count; 3719 break; 3720 case ETHTOOL_GRXCLSRULE: 3721 ret = gem_get_flow_entry(netdev, cmd); 3722 break; 3723 case ETHTOOL_GRXCLSRLALL: 3724 ret = gem_get_all_flow_entries(netdev, cmd, rule_locs); 3725 break; 3726 default: 3727 netdev_err(netdev, 3728 "Command parameter %d is not supported\n", cmd->cmd); 3729 ret = -EOPNOTSUPP; 3730 } 3731 3732 return ret; 3733 } 3734 3735 static int gem_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd) 3736 { 3737 struct macb *bp = netdev_priv(netdev); 3738 int ret; 3739 3740 switch (cmd->cmd) { 3741 case ETHTOOL_SRXCLSRLINS: 3742 if ((cmd->fs.location >= bp->max_tuples) 3743 || (cmd->fs.ring_cookie >= bp->num_queues)) { 3744 ret = -EINVAL; 3745 break; 3746 } 3747 ret = gem_add_flow_filter(netdev, cmd); 3748 break; 3749 case ETHTOOL_SRXCLSRLDEL: 3750 ret = gem_del_flow_filter(netdev, cmd); 3751 break; 3752 default: 3753 netdev_err(netdev, 3754 "Command parameter %d is not supported\n", cmd->cmd); 3755 ret = -EOPNOTSUPP; 3756 } 3757 3758 return ret; 3759 } 3760 3761 static const struct ethtool_ops macb_ethtool_ops = { 3762 .get_regs_len = macb_get_regs_len, 3763 .get_regs = macb_get_regs, 3764 .get_link = ethtool_op_get_link, 3765 .get_ts_info = ethtool_op_get_ts_info, 3766 .get_wol = macb_get_wol, 3767 .set_wol = macb_set_wol, 3768 .get_link_ksettings = macb_get_link_ksettings, 3769 .set_link_ksettings = macb_set_link_ksettings, 3770 .get_ringparam = macb_get_ringparam, 3771 .set_ringparam = macb_set_ringparam, 3772 }; 3773 3774 static const struct ethtool_ops gem_ethtool_ops = { 3775 .get_regs_len = macb_get_regs_len, 3776 .get_regs = macb_get_regs, 3777 .get_wol = macb_get_wol, 3778 .set_wol = macb_set_wol, 3779 .get_link = ethtool_op_get_link, 3780 .get_ts_info = macb_get_ts_info, 3781 .get_ethtool_stats = gem_get_ethtool_stats, 3782 .get_strings = gem_get_ethtool_strings, 3783 .get_sset_count = gem_get_sset_count, 3784 .get_link_ksettings = macb_get_link_ksettings, 3785 .set_link_ksettings = macb_set_link_ksettings, 3786 .get_ringparam = macb_get_ringparam, 3787 .set_ringparam = macb_set_ringparam, 3788 .get_rxnfc = gem_get_rxnfc, 3789 .set_rxnfc = gem_set_rxnfc, 3790 }; 3791 3792 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3793 { 3794 struct macb *bp = netdev_priv(dev); 3795 3796 if (!netif_running(dev)) 3797 return -EINVAL; 3798 3799 return phylink_mii_ioctl(bp->phylink, rq, cmd); 3800 } 3801 3802 static int macb_hwtstamp_get(struct net_device *dev, 3803 struct kernel_hwtstamp_config *cfg) 3804 { 3805 struct macb *bp = netdev_priv(dev); 3806 3807 if (!netif_running(dev)) 3808 return -EINVAL; 3809 3810 if (!bp->ptp_info) 3811 return -EOPNOTSUPP; 3812 3813 return bp->ptp_info->get_hwtst(dev, cfg); 3814 } 3815 3816 static int macb_hwtstamp_set(struct net_device *dev, 3817 struct kernel_hwtstamp_config *cfg, 3818 struct netlink_ext_ack *extack) 3819 { 3820 struct macb *bp = netdev_priv(dev); 3821 3822 if (!netif_running(dev)) 3823 return -EINVAL; 3824 3825 if (!bp->ptp_info) 3826 return -EOPNOTSUPP; 3827 3828 return bp->ptp_info->set_hwtst(dev, cfg, extack); 3829 } 3830 3831 static inline void macb_set_txcsum_feature(struct macb *bp, 3832 netdev_features_t features) 3833 { 3834 u32 val; 3835 3836 if (!macb_is_gem(bp)) 3837 return; 3838 3839 val = gem_readl(bp, DMACFG); 3840 if (features & NETIF_F_HW_CSUM) 3841 val |= GEM_BIT(TXCOEN); 3842 else 3843 val &= ~GEM_BIT(TXCOEN); 3844 3845 gem_writel(bp, DMACFG, val); 3846 } 3847 3848 static inline void macb_set_rxcsum_feature(struct macb *bp, 3849 netdev_features_t features) 3850 { 3851 struct net_device *netdev = bp->dev; 3852 u32 val; 3853 3854 if (!macb_is_gem(bp)) 3855 return; 3856 3857 val = gem_readl(bp, NCFGR); 3858 if ((features & NETIF_F_RXCSUM) && !(netdev->flags & IFF_PROMISC)) 3859 val |= GEM_BIT(RXCOEN); 3860 else 3861 val &= ~GEM_BIT(RXCOEN); 3862 3863 gem_writel(bp, NCFGR, val); 3864 } 3865 3866 static inline void macb_set_rxflow_feature(struct macb *bp, 3867 netdev_features_t features) 3868 { 3869 if (!macb_is_gem(bp)) 3870 return; 3871 3872 gem_enable_flow_filters(bp, !!(features & NETIF_F_NTUPLE)); 3873 } 3874 3875 static int macb_set_features(struct net_device *netdev, 3876 netdev_features_t features) 3877 { 3878 struct macb *bp = netdev_priv(netdev); 3879 netdev_features_t changed = features ^ netdev->features; 3880 3881 /* TX checksum offload */ 3882 if (changed & NETIF_F_HW_CSUM) 3883 macb_set_txcsum_feature(bp, features); 3884 3885 /* RX checksum offload */ 3886 if (changed & NETIF_F_RXCSUM) 3887 macb_set_rxcsum_feature(bp, features); 3888 3889 /* RX Flow Filters */ 3890 if (changed & NETIF_F_NTUPLE) 3891 macb_set_rxflow_feature(bp, features); 3892 3893 return 0; 3894 } 3895 3896 static void macb_restore_features(struct macb *bp) 3897 { 3898 struct net_device *netdev = bp->dev; 3899 netdev_features_t features = netdev->features; 3900 struct ethtool_rx_fs_item *item; 3901 3902 /* TX checksum offload */ 3903 macb_set_txcsum_feature(bp, features); 3904 3905 /* RX checksum offload */ 3906 macb_set_rxcsum_feature(bp, features); 3907 3908 /* RX Flow Filters */ 3909 list_for_each_entry(item, &bp->rx_fs_list.list, list) 3910 gem_prog_cmp_regs(bp, &item->fs); 3911 3912 macb_set_rxflow_feature(bp, features); 3913 } 3914 3915 static const struct net_device_ops macb_netdev_ops = { 3916 .ndo_open = macb_open, 3917 .ndo_stop = macb_close, 3918 .ndo_start_xmit = macb_start_xmit, 3919 .ndo_set_rx_mode = macb_set_rx_mode, 3920 .ndo_get_stats = macb_get_stats, 3921 .ndo_eth_ioctl = macb_ioctl, 3922 .ndo_validate_addr = eth_validate_addr, 3923 .ndo_change_mtu = macb_change_mtu, 3924 .ndo_set_mac_address = macb_set_mac_addr, 3925 #ifdef CONFIG_NET_POLL_CONTROLLER 3926 .ndo_poll_controller = macb_poll_controller, 3927 #endif 3928 .ndo_set_features = macb_set_features, 3929 .ndo_features_check = macb_features_check, 3930 .ndo_hwtstamp_set = macb_hwtstamp_set, 3931 .ndo_hwtstamp_get = macb_hwtstamp_get, 3932 }; 3933 3934 /* Configure peripheral capabilities according to device tree 3935 * and integration options used 3936 */ 3937 static void macb_configure_caps(struct macb *bp, 3938 const struct macb_config *dt_conf) 3939 { 3940 u32 dcfg; 3941 3942 if (dt_conf) 3943 bp->caps = dt_conf->caps; 3944 3945 if (hw_is_gem(bp->regs, bp->native_io)) { 3946 bp->caps |= MACB_CAPS_MACB_IS_GEM; 3947 3948 dcfg = gem_readl(bp, DCFG1); 3949 if (GEM_BFEXT(IRQCOR, dcfg) == 0) 3950 bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE; 3951 if (GEM_BFEXT(NO_PCS, dcfg) == 0) 3952 bp->caps |= MACB_CAPS_PCS; 3953 dcfg = gem_readl(bp, DCFG12); 3954 if (GEM_BFEXT(HIGH_SPEED, dcfg) == 1) 3955 bp->caps |= MACB_CAPS_HIGH_SPEED; 3956 dcfg = gem_readl(bp, DCFG2); 3957 if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0) 3958 bp->caps |= MACB_CAPS_FIFO_MODE; 3959 if (gem_has_ptp(bp)) { 3960 if (!GEM_BFEXT(TSU, gem_readl(bp, DCFG5))) 3961 dev_err(&bp->pdev->dev, 3962 "GEM doesn't support hardware ptp.\n"); 3963 else { 3964 #ifdef CONFIG_MACB_USE_HWSTAMP 3965 bp->hw_dma_cap |= HW_DMA_CAP_PTP; 3966 bp->ptp_info = &gem_ptp_info; 3967 #endif 3968 } 3969 } 3970 } 3971 3972 dev_dbg(&bp->pdev->dev, "Cadence caps 0x%08x\n", bp->caps); 3973 } 3974 3975 static void macb_probe_queues(void __iomem *mem, 3976 bool native_io, 3977 unsigned int *queue_mask, 3978 unsigned int *num_queues) 3979 { 3980 *queue_mask = 0x1; 3981 *num_queues = 1; 3982 3983 /* is it macb or gem ? 3984 * 3985 * We need to read directly from the hardware here because 3986 * we are early in the probe process and don't have the 3987 * MACB_CAPS_MACB_IS_GEM flag positioned 3988 */ 3989 if (!hw_is_gem(mem, native_io)) 3990 return; 3991 3992 /* bit 0 is never set but queue 0 always exists */ 3993 *queue_mask |= readl_relaxed(mem + GEM_DCFG6) & 0xff; 3994 *num_queues = hweight32(*queue_mask); 3995 } 3996 3997 static void macb_clks_disable(struct clk *pclk, struct clk *hclk, struct clk *tx_clk, 3998 struct clk *rx_clk, struct clk *tsu_clk) 3999 { 4000 struct clk_bulk_data clks[] = { 4001 { .clk = tsu_clk, }, 4002 { .clk = rx_clk, }, 4003 { .clk = pclk, }, 4004 { .clk = hclk, }, 4005 { .clk = tx_clk }, 4006 }; 4007 4008 clk_bulk_disable_unprepare(ARRAY_SIZE(clks), clks); 4009 } 4010 4011 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk, 4012 struct clk **hclk, struct clk **tx_clk, 4013 struct clk **rx_clk, struct clk **tsu_clk) 4014 { 4015 struct macb_platform_data *pdata; 4016 int err; 4017 4018 pdata = dev_get_platdata(&pdev->dev); 4019 if (pdata) { 4020 *pclk = pdata->pclk; 4021 *hclk = pdata->hclk; 4022 } else { 4023 *pclk = devm_clk_get(&pdev->dev, "pclk"); 4024 *hclk = devm_clk_get(&pdev->dev, "hclk"); 4025 } 4026 4027 if (IS_ERR_OR_NULL(*pclk)) 4028 return dev_err_probe(&pdev->dev, 4029 IS_ERR(*pclk) ? PTR_ERR(*pclk) : -ENODEV, 4030 "failed to get pclk\n"); 4031 4032 if (IS_ERR_OR_NULL(*hclk)) 4033 return dev_err_probe(&pdev->dev, 4034 IS_ERR(*hclk) ? PTR_ERR(*hclk) : -ENODEV, 4035 "failed to get hclk\n"); 4036 4037 *tx_clk = devm_clk_get_optional(&pdev->dev, "tx_clk"); 4038 if (IS_ERR(*tx_clk)) 4039 return PTR_ERR(*tx_clk); 4040 4041 *rx_clk = devm_clk_get_optional(&pdev->dev, "rx_clk"); 4042 if (IS_ERR(*rx_clk)) 4043 return PTR_ERR(*rx_clk); 4044 4045 *tsu_clk = devm_clk_get_optional(&pdev->dev, "tsu_clk"); 4046 if (IS_ERR(*tsu_clk)) 4047 return PTR_ERR(*tsu_clk); 4048 4049 err = clk_prepare_enable(*pclk); 4050 if (err) { 4051 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err); 4052 return err; 4053 } 4054 4055 err = clk_prepare_enable(*hclk); 4056 if (err) { 4057 dev_err(&pdev->dev, "failed to enable hclk (%d)\n", err); 4058 goto err_disable_pclk; 4059 } 4060 4061 err = clk_prepare_enable(*tx_clk); 4062 if (err) { 4063 dev_err(&pdev->dev, "failed to enable tx_clk (%d)\n", err); 4064 goto err_disable_hclk; 4065 } 4066 4067 err = clk_prepare_enable(*rx_clk); 4068 if (err) { 4069 dev_err(&pdev->dev, "failed to enable rx_clk (%d)\n", err); 4070 goto err_disable_txclk; 4071 } 4072 4073 err = clk_prepare_enable(*tsu_clk); 4074 if (err) { 4075 dev_err(&pdev->dev, "failed to enable tsu_clk (%d)\n", err); 4076 goto err_disable_rxclk; 4077 } 4078 4079 return 0; 4080 4081 err_disable_rxclk: 4082 clk_disable_unprepare(*rx_clk); 4083 4084 err_disable_txclk: 4085 clk_disable_unprepare(*tx_clk); 4086 4087 err_disable_hclk: 4088 clk_disable_unprepare(*hclk); 4089 4090 err_disable_pclk: 4091 clk_disable_unprepare(*pclk); 4092 4093 return err; 4094 } 4095 4096 static int macb_init(struct platform_device *pdev) 4097 { 4098 struct net_device *dev = platform_get_drvdata(pdev); 4099 unsigned int hw_q, q; 4100 struct macb *bp = netdev_priv(dev); 4101 struct macb_queue *queue; 4102 int err; 4103 u32 val, reg; 4104 4105 bp->tx_ring_size = DEFAULT_TX_RING_SIZE; 4106 bp->rx_ring_size = DEFAULT_RX_RING_SIZE; 4107 4108 /* set the queue register mapping once for all: queue0 has a special 4109 * register mapping but we don't want to test the queue index then 4110 * compute the corresponding register offset at run time. 4111 */ 4112 for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) { 4113 if (!(bp->queue_mask & (1 << hw_q))) 4114 continue; 4115 4116 queue = &bp->queues[q]; 4117 queue->bp = bp; 4118 spin_lock_init(&queue->tx_ptr_lock); 4119 netif_napi_add(dev, &queue->napi_rx, macb_rx_poll); 4120 netif_napi_add(dev, &queue->napi_tx, macb_tx_poll); 4121 if (hw_q) { 4122 queue->ISR = GEM_ISR(hw_q - 1); 4123 queue->IER = GEM_IER(hw_q - 1); 4124 queue->IDR = GEM_IDR(hw_q - 1); 4125 queue->IMR = GEM_IMR(hw_q - 1); 4126 queue->TBQP = GEM_TBQP(hw_q - 1); 4127 queue->RBQP = GEM_RBQP(hw_q - 1); 4128 queue->RBQS = GEM_RBQS(hw_q - 1); 4129 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 4130 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 4131 queue->TBQPH = GEM_TBQPH(hw_q - 1); 4132 queue->RBQPH = GEM_RBQPH(hw_q - 1); 4133 } 4134 #endif 4135 } else { 4136 /* queue0 uses legacy registers */ 4137 queue->ISR = MACB_ISR; 4138 queue->IER = MACB_IER; 4139 queue->IDR = MACB_IDR; 4140 queue->IMR = MACB_IMR; 4141 queue->TBQP = MACB_TBQP; 4142 queue->RBQP = MACB_RBQP; 4143 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 4144 if (bp->hw_dma_cap & HW_DMA_CAP_64B) { 4145 queue->TBQPH = MACB_TBQPH; 4146 queue->RBQPH = MACB_RBQPH; 4147 } 4148 #endif 4149 } 4150 4151 /* get irq: here we use the linux queue index, not the hardware 4152 * queue index. the queue irq definitions in the device tree 4153 * must remove the optional gaps that could exist in the 4154 * hardware queue mask. 4155 */ 4156 queue->irq = platform_get_irq(pdev, q); 4157 err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt, 4158 IRQF_SHARED, dev->name, queue); 4159 if (err) { 4160 dev_err(&pdev->dev, 4161 "Unable to request IRQ %d (error %d)\n", 4162 queue->irq, err); 4163 return err; 4164 } 4165 4166 INIT_WORK(&queue->tx_error_task, macb_tx_error_task); 4167 q++; 4168 } 4169 4170 dev->netdev_ops = &macb_netdev_ops; 4171 4172 /* setup appropriated routines according to adapter type */ 4173 if (macb_is_gem(bp)) { 4174 bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers; 4175 bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers; 4176 bp->macbgem_ops.mog_init_rings = gem_init_rings; 4177 bp->macbgem_ops.mog_rx = gem_rx; 4178 dev->ethtool_ops = &gem_ethtool_ops; 4179 } else { 4180 bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers; 4181 bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers; 4182 bp->macbgem_ops.mog_init_rings = macb_init_rings; 4183 bp->macbgem_ops.mog_rx = macb_rx; 4184 dev->ethtool_ops = &macb_ethtool_ops; 4185 } 4186 4187 netdev_sw_irq_coalesce_default_on(dev); 4188 4189 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4190 4191 /* Set features */ 4192 dev->hw_features = NETIF_F_SG; 4193 4194 /* Check LSO capability */ 4195 if (GEM_BFEXT(PBUF_LSO, gem_readl(bp, DCFG6))) 4196 dev->hw_features |= MACB_NETIF_LSO; 4197 4198 /* Checksum offload is only available on gem with packet buffer */ 4199 if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE)) 4200 dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM; 4201 if (bp->caps & MACB_CAPS_SG_DISABLED) 4202 dev->hw_features &= ~NETIF_F_SG; 4203 dev->features = dev->hw_features; 4204 4205 /* Check RX Flow Filters support. 4206 * Max Rx flows set by availability of screeners & compare regs: 4207 * each 4-tuple define requires 1 T2 screener reg + 3 compare regs 4208 */ 4209 reg = gem_readl(bp, DCFG8); 4210 bp->max_tuples = min((GEM_BFEXT(SCR2CMP, reg) / 3), 4211 GEM_BFEXT(T2SCR, reg)); 4212 INIT_LIST_HEAD(&bp->rx_fs_list.list); 4213 if (bp->max_tuples > 0) { 4214 /* also needs one ethtype match to check IPv4 */ 4215 if (GEM_BFEXT(SCR2ETH, reg) > 0) { 4216 /* program this reg now */ 4217 reg = 0; 4218 reg = GEM_BFINS(ETHTCMP, (uint16_t)ETH_P_IP, reg); 4219 gem_writel_n(bp, ETHT, SCRT2_ETHT, reg); 4220 /* Filtering is supported in hw but don't enable it in kernel now */ 4221 dev->hw_features |= NETIF_F_NTUPLE; 4222 /* init Rx flow definitions */ 4223 bp->rx_fs_list.count = 0; 4224 spin_lock_init(&bp->rx_fs_lock); 4225 } else 4226 bp->max_tuples = 0; 4227 } 4228 4229 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) { 4230 val = 0; 4231 if (phy_interface_mode_is_rgmii(bp->phy_interface)) 4232 val = bp->usrio->rgmii; 4233 else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII && 4234 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII)) 4235 val = bp->usrio->rmii; 4236 else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII)) 4237 val = bp->usrio->mii; 4238 4239 if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN) 4240 val |= bp->usrio->refclk; 4241 4242 macb_or_gem_writel(bp, USRIO, val); 4243 } 4244 4245 /* Set MII management clock divider */ 4246 val = macb_mdc_clk_div(bp); 4247 val |= macb_dbw(bp); 4248 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) 4249 val |= GEM_BIT(SGMIIEN) | GEM_BIT(PCSSEL); 4250 macb_writel(bp, NCFGR, val); 4251 4252 return 0; 4253 } 4254 4255 static const struct macb_usrio_config macb_default_usrio = { 4256 .mii = MACB_BIT(MII), 4257 .rmii = MACB_BIT(RMII), 4258 .rgmii = GEM_BIT(RGMII), 4259 .refclk = MACB_BIT(CLKEN), 4260 }; 4261 4262 #if defined(CONFIG_OF) 4263 /* 1518 rounded up */ 4264 #define AT91ETHER_MAX_RBUFF_SZ 0x600 4265 /* max number of receive buffers */ 4266 #define AT91ETHER_MAX_RX_DESCR 9 4267 4268 static struct sifive_fu540_macb_mgmt *mgmt; 4269 4270 static int at91ether_alloc_coherent(struct macb *lp) 4271 { 4272 struct macb_queue *q = &lp->queues[0]; 4273 4274 q->rx_ring = dma_alloc_coherent(&lp->pdev->dev, 4275 (AT91ETHER_MAX_RX_DESCR * 4276 macb_dma_desc_get_size(lp)), 4277 &q->rx_ring_dma, GFP_KERNEL); 4278 if (!q->rx_ring) 4279 return -ENOMEM; 4280 4281 q->rx_buffers = dma_alloc_coherent(&lp->pdev->dev, 4282 AT91ETHER_MAX_RX_DESCR * 4283 AT91ETHER_MAX_RBUFF_SZ, 4284 &q->rx_buffers_dma, GFP_KERNEL); 4285 if (!q->rx_buffers) { 4286 dma_free_coherent(&lp->pdev->dev, 4287 AT91ETHER_MAX_RX_DESCR * 4288 macb_dma_desc_get_size(lp), 4289 q->rx_ring, q->rx_ring_dma); 4290 q->rx_ring = NULL; 4291 return -ENOMEM; 4292 } 4293 4294 return 0; 4295 } 4296 4297 static void at91ether_free_coherent(struct macb *lp) 4298 { 4299 struct macb_queue *q = &lp->queues[0]; 4300 4301 if (q->rx_ring) { 4302 dma_free_coherent(&lp->pdev->dev, 4303 AT91ETHER_MAX_RX_DESCR * 4304 macb_dma_desc_get_size(lp), 4305 q->rx_ring, q->rx_ring_dma); 4306 q->rx_ring = NULL; 4307 } 4308 4309 if (q->rx_buffers) { 4310 dma_free_coherent(&lp->pdev->dev, 4311 AT91ETHER_MAX_RX_DESCR * 4312 AT91ETHER_MAX_RBUFF_SZ, 4313 q->rx_buffers, q->rx_buffers_dma); 4314 q->rx_buffers = NULL; 4315 } 4316 } 4317 4318 /* Initialize and start the Receiver and Transmit subsystems */ 4319 static int at91ether_start(struct macb *lp) 4320 { 4321 struct macb_queue *q = &lp->queues[0]; 4322 struct macb_dma_desc *desc; 4323 dma_addr_t addr; 4324 u32 ctl; 4325 int i, ret; 4326 4327 ret = at91ether_alloc_coherent(lp); 4328 if (ret) 4329 return ret; 4330 4331 addr = q->rx_buffers_dma; 4332 for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) { 4333 desc = macb_rx_desc(q, i); 4334 macb_set_addr(lp, desc, addr); 4335 desc->ctrl = 0; 4336 addr += AT91ETHER_MAX_RBUFF_SZ; 4337 } 4338 4339 /* Set the Wrap bit on the last descriptor */ 4340 desc->addr |= MACB_BIT(RX_WRAP); 4341 4342 /* Reset buffer index */ 4343 q->rx_tail = 0; 4344 4345 /* Program address of descriptor list in Rx Buffer Queue register */ 4346 macb_writel(lp, RBQP, q->rx_ring_dma); 4347 4348 /* Enable Receive and Transmit */ 4349 ctl = macb_readl(lp, NCR); 4350 macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE)); 4351 4352 /* Enable MAC interrupts */ 4353 macb_writel(lp, IER, MACB_BIT(RCOMP) | 4354 MACB_BIT(RXUBR) | 4355 MACB_BIT(ISR_TUND) | 4356 MACB_BIT(ISR_RLE) | 4357 MACB_BIT(TCOMP) | 4358 MACB_BIT(ISR_ROVR) | 4359 MACB_BIT(HRESP)); 4360 4361 return 0; 4362 } 4363 4364 static void at91ether_stop(struct macb *lp) 4365 { 4366 u32 ctl; 4367 4368 /* Disable MAC interrupts */ 4369 macb_writel(lp, IDR, MACB_BIT(RCOMP) | 4370 MACB_BIT(RXUBR) | 4371 MACB_BIT(ISR_TUND) | 4372 MACB_BIT(ISR_RLE) | 4373 MACB_BIT(TCOMP) | 4374 MACB_BIT(ISR_ROVR) | 4375 MACB_BIT(HRESP)); 4376 4377 /* Disable Receiver and Transmitter */ 4378 ctl = macb_readl(lp, NCR); 4379 macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE))); 4380 4381 /* Free resources. */ 4382 at91ether_free_coherent(lp); 4383 } 4384 4385 /* Open the ethernet interface */ 4386 static int at91ether_open(struct net_device *dev) 4387 { 4388 struct macb *lp = netdev_priv(dev); 4389 u32 ctl; 4390 int ret; 4391 4392 ret = pm_runtime_resume_and_get(&lp->pdev->dev); 4393 if (ret < 0) 4394 return ret; 4395 4396 /* Clear internal statistics */ 4397 ctl = macb_readl(lp, NCR); 4398 macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT)); 4399 4400 macb_set_hwaddr(lp); 4401 4402 ret = at91ether_start(lp); 4403 if (ret) 4404 goto pm_exit; 4405 4406 ret = macb_phylink_connect(lp); 4407 if (ret) 4408 goto stop; 4409 4410 netif_start_queue(dev); 4411 4412 return 0; 4413 4414 stop: 4415 at91ether_stop(lp); 4416 pm_exit: 4417 pm_runtime_put_sync(&lp->pdev->dev); 4418 return ret; 4419 } 4420 4421 /* Close the interface */ 4422 static int at91ether_close(struct net_device *dev) 4423 { 4424 struct macb *lp = netdev_priv(dev); 4425 4426 netif_stop_queue(dev); 4427 4428 phylink_stop(lp->phylink); 4429 phylink_disconnect_phy(lp->phylink); 4430 4431 at91ether_stop(lp); 4432 4433 return pm_runtime_put(&lp->pdev->dev); 4434 } 4435 4436 /* Transmit packet */ 4437 static netdev_tx_t at91ether_start_xmit(struct sk_buff *skb, 4438 struct net_device *dev) 4439 { 4440 struct macb *lp = netdev_priv(dev); 4441 4442 if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) { 4443 int desc = 0; 4444 4445 netif_stop_queue(dev); 4446 4447 /* Store packet information (to free when Tx completed) */ 4448 lp->rm9200_txq[desc].skb = skb; 4449 lp->rm9200_txq[desc].size = skb->len; 4450 lp->rm9200_txq[desc].mapping = dma_map_single(&lp->pdev->dev, skb->data, 4451 skb->len, DMA_TO_DEVICE); 4452 if (dma_mapping_error(&lp->pdev->dev, lp->rm9200_txq[desc].mapping)) { 4453 dev_kfree_skb_any(skb); 4454 dev->stats.tx_dropped++; 4455 netdev_err(dev, "%s: DMA mapping error\n", __func__); 4456 return NETDEV_TX_OK; 4457 } 4458 4459 /* Set address of the data in the Transmit Address register */ 4460 macb_writel(lp, TAR, lp->rm9200_txq[desc].mapping); 4461 /* Set length of the packet in the Transmit Control register */ 4462 macb_writel(lp, TCR, skb->len); 4463 4464 } else { 4465 netdev_err(dev, "%s called, but device is busy!\n", __func__); 4466 return NETDEV_TX_BUSY; 4467 } 4468 4469 return NETDEV_TX_OK; 4470 } 4471 4472 /* Extract received frame from buffer descriptors and sent to upper layers. 4473 * (Called from interrupt context) 4474 */ 4475 static void at91ether_rx(struct net_device *dev) 4476 { 4477 struct macb *lp = netdev_priv(dev); 4478 struct macb_queue *q = &lp->queues[0]; 4479 struct macb_dma_desc *desc; 4480 unsigned char *p_recv; 4481 struct sk_buff *skb; 4482 unsigned int pktlen; 4483 4484 desc = macb_rx_desc(q, q->rx_tail); 4485 while (desc->addr & MACB_BIT(RX_USED)) { 4486 p_recv = q->rx_buffers + q->rx_tail * AT91ETHER_MAX_RBUFF_SZ; 4487 pktlen = MACB_BF(RX_FRMLEN, desc->ctrl); 4488 skb = netdev_alloc_skb(dev, pktlen + 2); 4489 if (skb) { 4490 skb_reserve(skb, 2); 4491 skb_put_data(skb, p_recv, pktlen); 4492 4493 skb->protocol = eth_type_trans(skb, dev); 4494 dev->stats.rx_packets++; 4495 dev->stats.rx_bytes += pktlen; 4496 netif_rx(skb); 4497 } else { 4498 dev->stats.rx_dropped++; 4499 } 4500 4501 if (desc->ctrl & MACB_BIT(RX_MHASH_MATCH)) 4502 dev->stats.multicast++; 4503 4504 /* reset ownership bit */ 4505 desc->addr &= ~MACB_BIT(RX_USED); 4506 4507 /* wrap after last buffer */ 4508 if (q->rx_tail == AT91ETHER_MAX_RX_DESCR - 1) 4509 q->rx_tail = 0; 4510 else 4511 q->rx_tail++; 4512 4513 desc = macb_rx_desc(q, q->rx_tail); 4514 } 4515 } 4516 4517 /* MAC interrupt handler */ 4518 static irqreturn_t at91ether_interrupt(int irq, void *dev_id) 4519 { 4520 struct net_device *dev = dev_id; 4521 struct macb *lp = netdev_priv(dev); 4522 u32 intstatus, ctl; 4523 unsigned int desc; 4524 4525 /* MAC Interrupt Status register indicates what interrupts are pending. 4526 * It is automatically cleared once read. 4527 */ 4528 intstatus = macb_readl(lp, ISR); 4529 4530 /* Receive complete */ 4531 if (intstatus & MACB_BIT(RCOMP)) 4532 at91ether_rx(dev); 4533 4534 /* Transmit complete */ 4535 if (intstatus & MACB_BIT(TCOMP)) { 4536 /* The TCOM bit is set even if the transmission failed */ 4537 if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE))) 4538 dev->stats.tx_errors++; 4539 4540 desc = 0; 4541 if (lp->rm9200_txq[desc].skb) { 4542 dev_consume_skb_irq(lp->rm9200_txq[desc].skb); 4543 lp->rm9200_txq[desc].skb = NULL; 4544 dma_unmap_single(&lp->pdev->dev, lp->rm9200_txq[desc].mapping, 4545 lp->rm9200_txq[desc].size, DMA_TO_DEVICE); 4546 dev->stats.tx_packets++; 4547 dev->stats.tx_bytes += lp->rm9200_txq[desc].size; 4548 } 4549 netif_wake_queue(dev); 4550 } 4551 4552 /* Work-around for EMAC Errata section 41.3.1 */ 4553 if (intstatus & MACB_BIT(RXUBR)) { 4554 ctl = macb_readl(lp, NCR); 4555 macb_writel(lp, NCR, ctl & ~MACB_BIT(RE)); 4556 wmb(); 4557 macb_writel(lp, NCR, ctl | MACB_BIT(RE)); 4558 } 4559 4560 if (intstatus & MACB_BIT(ISR_ROVR)) 4561 netdev_err(dev, "ROVR error\n"); 4562 4563 return IRQ_HANDLED; 4564 } 4565 4566 #ifdef CONFIG_NET_POLL_CONTROLLER 4567 static void at91ether_poll_controller(struct net_device *dev) 4568 { 4569 unsigned long flags; 4570 4571 local_irq_save(flags); 4572 at91ether_interrupt(dev->irq, dev); 4573 local_irq_restore(flags); 4574 } 4575 #endif 4576 4577 static const struct net_device_ops at91ether_netdev_ops = { 4578 .ndo_open = at91ether_open, 4579 .ndo_stop = at91ether_close, 4580 .ndo_start_xmit = at91ether_start_xmit, 4581 .ndo_get_stats = macb_get_stats, 4582 .ndo_set_rx_mode = macb_set_rx_mode, 4583 .ndo_set_mac_address = eth_mac_addr, 4584 .ndo_eth_ioctl = macb_ioctl, 4585 .ndo_validate_addr = eth_validate_addr, 4586 #ifdef CONFIG_NET_POLL_CONTROLLER 4587 .ndo_poll_controller = at91ether_poll_controller, 4588 #endif 4589 .ndo_hwtstamp_set = macb_hwtstamp_set, 4590 .ndo_hwtstamp_get = macb_hwtstamp_get, 4591 }; 4592 4593 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk, 4594 struct clk **hclk, struct clk **tx_clk, 4595 struct clk **rx_clk, struct clk **tsu_clk) 4596 { 4597 int err; 4598 4599 *hclk = NULL; 4600 *tx_clk = NULL; 4601 *rx_clk = NULL; 4602 *tsu_clk = NULL; 4603 4604 *pclk = devm_clk_get(&pdev->dev, "ether_clk"); 4605 if (IS_ERR(*pclk)) 4606 return PTR_ERR(*pclk); 4607 4608 err = clk_prepare_enable(*pclk); 4609 if (err) { 4610 dev_err(&pdev->dev, "failed to enable pclk (%d)\n", err); 4611 return err; 4612 } 4613 4614 return 0; 4615 } 4616 4617 static int at91ether_init(struct platform_device *pdev) 4618 { 4619 struct net_device *dev = platform_get_drvdata(pdev); 4620 struct macb *bp = netdev_priv(dev); 4621 int err; 4622 4623 bp->queues[0].bp = bp; 4624 4625 dev->netdev_ops = &at91ether_netdev_ops; 4626 dev->ethtool_ops = &macb_ethtool_ops; 4627 4628 err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt, 4629 0, dev->name, dev); 4630 if (err) 4631 return err; 4632 4633 macb_writel(bp, NCR, 0); 4634 4635 macb_writel(bp, NCFGR, MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG)); 4636 4637 return 0; 4638 } 4639 4640 static unsigned long fu540_macb_tx_recalc_rate(struct clk_hw *hw, 4641 unsigned long parent_rate) 4642 { 4643 return mgmt->rate; 4644 } 4645 4646 static long fu540_macb_tx_round_rate(struct clk_hw *hw, unsigned long rate, 4647 unsigned long *parent_rate) 4648 { 4649 if (WARN_ON(rate < 2500000)) 4650 return 2500000; 4651 else if (rate == 2500000) 4652 return 2500000; 4653 else if (WARN_ON(rate < 13750000)) 4654 return 2500000; 4655 else if (WARN_ON(rate < 25000000)) 4656 return 25000000; 4657 else if (rate == 25000000) 4658 return 25000000; 4659 else if (WARN_ON(rate < 75000000)) 4660 return 25000000; 4661 else if (WARN_ON(rate < 125000000)) 4662 return 125000000; 4663 else if (rate == 125000000) 4664 return 125000000; 4665 4666 WARN_ON(rate > 125000000); 4667 4668 return 125000000; 4669 } 4670 4671 static int fu540_macb_tx_set_rate(struct clk_hw *hw, unsigned long rate, 4672 unsigned long parent_rate) 4673 { 4674 rate = fu540_macb_tx_round_rate(hw, rate, &parent_rate); 4675 if (rate != 125000000) 4676 iowrite32(1, mgmt->reg); 4677 else 4678 iowrite32(0, mgmt->reg); 4679 mgmt->rate = rate; 4680 4681 return 0; 4682 } 4683 4684 static const struct clk_ops fu540_c000_ops = { 4685 .recalc_rate = fu540_macb_tx_recalc_rate, 4686 .round_rate = fu540_macb_tx_round_rate, 4687 .set_rate = fu540_macb_tx_set_rate, 4688 }; 4689 4690 static int fu540_c000_clk_init(struct platform_device *pdev, struct clk **pclk, 4691 struct clk **hclk, struct clk **tx_clk, 4692 struct clk **rx_clk, struct clk **tsu_clk) 4693 { 4694 struct clk_init_data init; 4695 int err = 0; 4696 4697 err = macb_clk_init(pdev, pclk, hclk, tx_clk, rx_clk, tsu_clk); 4698 if (err) 4699 return err; 4700 4701 mgmt = devm_kzalloc(&pdev->dev, sizeof(*mgmt), GFP_KERNEL); 4702 if (!mgmt) { 4703 err = -ENOMEM; 4704 goto err_disable_clks; 4705 } 4706 4707 init.name = "sifive-gemgxl-mgmt"; 4708 init.ops = &fu540_c000_ops; 4709 init.flags = 0; 4710 init.num_parents = 0; 4711 4712 mgmt->rate = 0; 4713 mgmt->hw.init = &init; 4714 4715 *tx_clk = devm_clk_register(&pdev->dev, &mgmt->hw); 4716 if (IS_ERR(*tx_clk)) { 4717 err = PTR_ERR(*tx_clk); 4718 goto err_disable_clks; 4719 } 4720 4721 err = clk_prepare_enable(*tx_clk); 4722 if (err) { 4723 dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err); 4724 *tx_clk = NULL; 4725 goto err_disable_clks; 4726 } else { 4727 dev_info(&pdev->dev, "Registered clk switch '%s'\n", init.name); 4728 } 4729 4730 return 0; 4731 4732 err_disable_clks: 4733 macb_clks_disable(*pclk, *hclk, *tx_clk, *rx_clk, *tsu_clk); 4734 4735 return err; 4736 } 4737 4738 static int fu540_c000_init(struct platform_device *pdev) 4739 { 4740 mgmt->reg = devm_platform_ioremap_resource(pdev, 1); 4741 if (IS_ERR(mgmt->reg)) 4742 return PTR_ERR(mgmt->reg); 4743 4744 return macb_init(pdev); 4745 } 4746 4747 static int init_reset_optional(struct platform_device *pdev) 4748 { 4749 struct net_device *dev = platform_get_drvdata(pdev); 4750 struct macb *bp = netdev_priv(dev); 4751 int ret; 4752 4753 if (bp->phy_interface == PHY_INTERFACE_MODE_SGMII) { 4754 /* Ensure PHY device used in SGMII mode is ready */ 4755 bp->sgmii_phy = devm_phy_optional_get(&pdev->dev, NULL); 4756 4757 if (IS_ERR(bp->sgmii_phy)) 4758 return dev_err_probe(&pdev->dev, PTR_ERR(bp->sgmii_phy), 4759 "failed to get SGMII PHY\n"); 4760 4761 ret = phy_init(bp->sgmii_phy); 4762 if (ret) 4763 return dev_err_probe(&pdev->dev, ret, 4764 "failed to init SGMII PHY\n"); 4765 4766 ret = zynqmp_pm_is_function_supported(PM_IOCTL, IOCTL_SET_GEM_CONFIG); 4767 if (!ret) { 4768 u32 pm_info[2]; 4769 4770 ret = of_property_read_u32_array(pdev->dev.of_node, "power-domains", 4771 pm_info, ARRAY_SIZE(pm_info)); 4772 if (ret) { 4773 dev_err(&pdev->dev, "Failed to read power management information\n"); 4774 goto err_out_phy_exit; 4775 } 4776 ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_FIXED, 0); 4777 if (ret) 4778 goto err_out_phy_exit; 4779 4780 ret = zynqmp_pm_set_gem_config(pm_info[1], GEM_CONFIG_SGMII_MODE, 1); 4781 if (ret) 4782 goto err_out_phy_exit; 4783 } 4784 4785 } 4786 4787 /* Fully reset controller at hardware level if mapped in device tree */ 4788 ret = device_reset_optional(&pdev->dev); 4789 if (ret) { 4790 phy_exit(bp->sgmii_phy); 4791 return dev_err_probe(&pdev->dev, ret, "failed to reset controller"); 4792 } 4793 4794 ret = macb_init(pdev); 4795 4796 err_out_phy_exit: 4797 if (ret) 4798 phy_exit(bp->sgmii_phy); 4799 4800 return ret; 4801 } 4802 4803 static const struct macb_usrio_config sama7g5_usrio = { 4804 .mii = 0, 4805 .rmii = 1, 4806 .rgmii = 2, 4807 .refclk = BIT(2), 4808 .hdfctlen = BIT(6), 4809 }; 4810 4811 static const struct macb_config fu540_c000_config = { 4812 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO | 4813 MACB_CAPS_GEM_HAS_PTP, 4814 .dma_burst_length = 16, 4815 .clk_init = fu540_c000_clk_init, 4816 .init = fu540_c000_init, 4817 .jumbo_max_len = 10240, 4818 .usrio = &macb_default_usrio, 4819 }; 4820 4821 static const struct macb_config at91sam9260_config = { 4822 .caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4823 .clk_init = macb_clk_init, 4824 .init = macb_init, 4825 .usrio = &macb_default_usrio, 4826 }; 4827 4828 static const struct macb_config sama5d3macb_config = { 4829 .caps = MACB_CAPS_SG_DISABLED | 4830 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4831 .clk_init = macb_clk_init, 4832 .init = macb_init, 4833 .usrio = &macb_default_usrio, 4834 }; 4835 4836 static const struct macb_config pc302gem_config = { 4837 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE, 4838 .dma_burst_length = 16, 4839 .clk_init = macb_clk_init, 4840 .init = macb_init, 4841 .usrio = &macb_default_usrio, 4842 }; 4843 4844 static const struct macb_config sama5d2_config = { 4845 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO, 4846 .dma_burst_length = 16, 4847 .clk_init = macb_clk_init, 4848 .init = macb_init, 4849 .jumbo_max_len = 10240, 4850 .usrio = &macb_default_usrio, 4851 }; 4852 4853 static const struct macb_config sama5d29_config = { 4854 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_GEM_HAS_PTP, 4855 .dma_burst_length = 16, 4856 .clk_init = macb_clk_init, 4857 .init = macb_init, 4858 .usrio = &macb_default_usrio, 4859 }; 4860 4861 static const struct macb_config sama5d3_config = { 4862 .caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4863 MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | MACB_CAPS_JUMBO, 4864 .dma_burst_length = 16, 4865 .clk_init = macb_clk_init, 4866 .init = macb_init, 4867 .jumbo_max_len = 10240, 4868 .usrio = &macb_default_usrio, 4869 }; 4870 4871 static const struct macb_config sama5d4_config = { 4872 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII, 4873 .dma_burst_length = 4, 4874 .clk_init = macb_clk_init, 4875 .init = macb_init, 4876 .usrio = &macb_default_usrio, 4877 }; 4878 4879 static const struct macb_config emac_config = { 4880 .caps = MACB_CAPS_NEEDS_RSTONUBR | MACB_CAPS_MACB_IS_EMAC, 4881 .clk_init = at91ether_clk_init, 4882 .init = at91ether_init, 4883 .usrio = &macb_default_usrio, 4884 }; 4885 4886 static const struct macb_config np4_config = { 4887 .caps = MACB_CAPS_USRIO_DISABLED, 4888 .clk_init = macb_clk_init, 4889 .init = macb_init, 4890 .usrio = &macb_default_usrio, 4891 }; 4892 4893 static const struct macb_config zynqmp_config = { 4894 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4895 MACB_CAPS_JUMBO | 4896 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH, 4897 .dma_burst_length = 16, 4898 .clk_init = macb_clk_init, 4899 .init = init_reset_optional, 4900 .jumbo_max_len = 10240, 4901 .usrio = &macb_default_usrio, 4902 }; 4903 4904 static const struct macb_config zynq_config = { 4905 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_NO_GIGABIT_HALF | 4906 MACB_CAPS_NEEDS_RSTONUBR, 4907 .dma_burst_length = 16, 4908 .clk_init = macb_clk_init, 4909 .init = macb_init, 4910 .usrio = &macb_default_usrio, 4911 }; 4912 4913 static const struct macb_config mpfs_config = { 4914 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4915 MACB_CAPS_JUMBO | 4916 MACB_CAPS_GEM_HAS_PTP, 4917 .dma_burst_length = 16, 4918 .clk_init = macb_clk_init, 4919 .init = init_reset_optional, 4920 .usrio = &macb_default_usrio, 4921 .max_tx_length = 4040, /* Cadence Erratum 1686 */ 4922 .jumbo_max_len = 4040, 4923 }; 4924 4925 static const struct macb_config sama7g5_gem_config = { 4926 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_CLK_HW_CHG | 4927 MACB_CAPS_MIIONRGMII | MACB_CAPS_GEM_HAS_PTP, 4928 .dma_burst_length = 16, 4929 .clk_init = macb_clk_init, 4930 .init = macb_init, 4931 .usrio = &sama7g5_usrio, 4932 }; 4933 4934 static const struct macb_config sama7g5_emac_config = { 4935 .caps = MACB_CAPS_USRIO_DEFAULT_IS_MII_GMII | 4936 MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_MIIONRGMII | 4937 MACB_CAPS_GEM_HAS_PTP, 4938 .dma_burst_length = 16, 4939 .clk_init = macb_clk_init, 4940 .init = macb_init, 4941 .usrio = &sama7g5_usrio, 4942 }; 4943 4944 static const struct macb_config versal_config = { 4945 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | MACB_CAPS_JUMBO | 4946 MACB_CAPS_GEM_HAS_PTP | MACB_CAPS_BD_RD_PREFETCH | MACB_CAPS_NEED_TSUCLK | 4947 MACB_CAPS_QUEUE_DISABLE, 4948 .dma_burst_length = 16, 4949 .clk_init = macb_clk_init, 4950 .init = init_reset_optional, 4951 .jumbo_max_len = 10240, 4952 .usrio = &macb_default_usrio, 4953 }; 4954 4955 static const struct of_device_id macb_dt_ids[] = { 4956 { .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config }, 4957 { .compatible = "cdns,macb" }, 4958 { .compatible = "cdns,np4-macb", .data = &np4_config }, 4959 { .compatible = "cdns,pc302-gem", .data = &pc302gem_config }, 4960 { .compatible = "cdns,gem", .data = &pc302gem_config }, 4961 { .compatible = "cdns,sam9x60-macb", .data = &at91sam9260_config }, 4962 { .compatible = "atmel,sama5d2-gem", .data = &sama5d2_config }, 4963 { .compatible = "atmel,sama5d29-gem", .data = &sama5d29_config }, 4964 { .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config }, 4965 { .compatible = "atmel,sama5d3-macb", .data = &sama5d3macb_config }, 4966 { .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config }, 4967 { .compatible = "cdns,at91rm9200-emac", .data = &emac_config }, 4968 { .compatible = "cdns,emac", .data = &emac_config }, 4969 { .compatible = "cdns,zynqmp-gem", .data = &zynqmp_config}, /* deprecated */ 4970 { .compatible = "cdns,zynq-gem", .data = &zynq_config }, /* deprecated */ 4971 { .compatible = "sifive,fu540-c000-gem", .data = &fu540_c000_config }, 4972 { .compatible = "microchip,mpfs-macb", .data = &mpfs_config }, 4973 { .compatible = "microchip,sama7g5-gem", .data = &sama7g5_gem_config }, 4974 { .compatible = "microchip,sama7g5-emac", .data = &sama7g5_emac_config }, 4975 { .compatible = "xlnx,zynqmp-gem", .data = &zynqmp_config}, 4976 { .compatible = "xlnx,zynq-gem", .data = &zynq_config }, 4977 { .compatible = "xlnx,versal-gem", .data = &versal_config}, 4978 { /* sentinel */ } 4979 }; 4980 MODULE_DEVICE_TABLE(of, macb_dt_ids); 4981 #endif /* CONFIG_OF */ 4982 4983 static const struct macb_config default_gem_config = { 4984 .caps = MACB_CAPS_GIGABIT_MODE_AVAILABLE | 4985 MACB_CAPS_JUMBO | 4986 MACB_CAPS_GEM_HAS_PTP, 4987 .dma_burst_length = 16, 4988 .clk_init = macb_clk_init, 4989 .init = macb_init, 4990 .usrio = &macb_default_usrio, 4991 .jumbo_max_len = 10240, 4992 }; 4993 4994 static int macb_probe(struct platform_device *pdev) 4995 { 4996 const struct macb_config *macb_config = &default_gem_config; 4997 int (*clk_init)(struct platform_device *, struct clk **, 4998 struct clk **, struct clk **, struct clk **, 4999 struct clk **) = macb_config->clk_init; 5000 int (*init)(struct platform_device *) = macb_config->init; 5001 struct device_node *np = pdev->dev.of_node; 5002 struct clk *pclk, *hclk = NULL, *tx_clk = NULL, *rx_clk = NULL; 5003 struct clk *tsu_clk = NULL; 5004 unsigned int queue_mask, num_queues; 5005 bool native_io; 5006 phy_interface_t interface; 5007 struct net_device *dev; 5008 struct resource *regs; 5009 u32 wtrmrk_rst_val; 5010 void __iomem *mem; 5011 struct macb *bp; 5012 int err, val; 5013 5014 mem = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); 5015 if (IS_ERR(mem)) 5016 return PTR_ERR(mem); 5017 5018 if (np) { 5019 const struct of_device_id *match; 5020 5021 match = of_match_node(macb_dt_ids, np); 5022 if (match && match->data) { 5023 macb_config = match->data; 5024 clk_init = macb_config->clk_init; 5025 init = macb_config->init; 5026 } 5027 } 5028 5029 err = clk_init(pdev, &pclk, &hclk, &tx_clk, &rx_clk, &tsu_clk); 5030 if (err) 5031 return err; 5032 5033 pm_runtime_set_autosuspend_delay(&pdev->dev, MACB_PM_TIMEOUT); 5034 pm_runtime_use_autosuspend(&pdev->dev); 5035 pm_runtime_get_noresume(&pdev->dev); 5036 pm_runtime_set_active(&pdev->dev); 5037 pm_runtime_enable(&pdev->dev); 5038 native_io = hw_is_native_io(mem); 5039 5040 macb_probe_queues(mem, native_io, &queue_mask, &num_queues); 5041 dev = alloc_etherdev_mq(sizeof(*bp), num_queues); 5042 if (!dev) { 5043 err = -ENOMEM; 5044 goto err_disable_clocks; 5045 } 5046 5047 dev->base_addr = regs->start; 5048 5049 SET_NETDEV_DEV(dev, &pdev->dev); 5050 5051 bp = netdev_priv(dev); 5052 bp->pdev = pdev; 5053 bp->dev = dev; 5054 bp->regs = mem; 5055 bp->native_io = native_io; 5056 if (native_io) { 5057 bp->macb_reg_readl = hw_readl_native; 5058 bp->macb_reg_writel = hw_writel_native; 5059 } else { 5060 bp->macb_reg_readl = hw_readl; 5061 bp->macb_reg_writel = hw_writel; 5062 } 5063 bp->num_queues = num_queues; 5064 bp->queue_mask = queue_mask; 5065 if (macb_config) 5066 bp->dma_burst_length = macb_config->dma_burst_length; 5067 bp->pclk = pclk; 5068 bp->hclk = hclk; 5069 bp->tx_clk = tx_clk; 5070 bp->rx_clk = rx_clk; 5071 bp->tsu_clk = tsu_clk; 5072 if (macb_config) 5073 bp->jumbo_max_len = macb_config->jumbo_max_len; 5074 5075 if (!hw_is_gem(bp->regs, bp->native_io)) 5076 bp->max_tx_length = MACB_MAX_TX_LEN; 5077 else if (macb_config->max_tx_length) 5078 bp->max_tx_length = macb_config->max_tx_length; 5079 else 5080 bp->max_tx_length = GEM_MAX_TX_LEN; 5081 5082 bp->wol = 0; 5083 device_set_wakeup_capable(&pdev->dev, 1); 5084 5085 bp->usrio = macb_config->usrio; 5086 5087 /* By default we set to partial store and forward mode for zynqmp. 5088 * Disable if not set in devicetree. 5089 */ 5090 if (GEM_BFEXT(PBUF_CUTTHRU, gem_readl(bp, DCFG6))) { 5091 err = of_property_read_u32(bp->pdev->dev.of_node, 5092 "cdns,rx-watermark", 5093 &bp->rx_watermark); 5094 5095 if (!err) { 5096 /* Disable partial store and forward in case of error or 5097 * invalid watermark value 5098 */ 5099 wtrmrk_rst_val = (1 << (GEM_BFEXT(RX_PBUF_ADDR, gem_readl(bp, DCFG2)))) - 1; 5100 if (bp->rx_watermark > wtrmrk_rst_val || !bp->rx_watermark) { 5101 dev_info(&bp->pdev->dev, "Invalid watermark value\n"); 5102 bp->rx_watermark = 0; 5103 } 5104 } 5105 } 5106 spin_lock_init(&bp->lock); 5107 spin_lock_init(&bp->stats_lock); 5108 5109 /* setup capabilities */ 5110 macb_configure_caps(bp, macb_config); 5111 5112 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 5113 if (GEM_BFEXT(DAW64, gem_readl(bp, DCFG6))) { 5114 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44)); 5115 bp->hw_dma_cap |= HW_DMA_CAP_64B; 5116 } 5117 #endif 5118 platform_set_drvdata(pdev, dev); 5119 5120 dev->irq = platform_get_irq(pdev, 0); 5121 if (dev->irq < 0) { 5122 err = dev->irq; 5123 goto err_out_free_netdev; 5124 } 5125 5126 /* MTU range: 68 - 1518 or 10240 */ 5127 dev->min_mtu = GEM_MTU_MIN_SIZE; 5128 if ((bp->caps & MACB_CAPS_JUMBO) && bp->jumbo_max_len) 5129 dev->max_mtu = bp->jumbo_max_len - ETH_HLEN - ETH_FCS_LEN; 5130 else 5131 dev->max_mtu = 1536 - ETH_HLEN - ETH_FCS_LEN; 5132 5133 if (bp->caps & MACB_CAPS_BD_RD_PREFETCH) { 5134 val = GEM_BFEXT(RXBD_RDBUFF, gem_readl(bp, DCFG10)); 5135 if (val) 5136 bp->rx_bd_rd_prefetch = (2 << (val - 1)) * 5137 macb_dma_desc_get_size(bp); 5138 5139 val = GEM_BFEXT(TXBD_RDBUFF, gem_readl(bp, DCFG10)); 5140 if (val) 5141 bp->tx_bd_rd_prefetch = (2 << (val - 1)) * 5142 macb_dma_desc_get_size(bp); 5143 } 5144 5145 bp->rx_intr_mask = MACB_RX_INT_FLAGS; 5146 if (bp->caps & MACB_CAPS_NEEDS_RSTONUBR) 5147 bp->rx_intr_mask |= MACB_BIT(RXUBR); 5148 5149 err = of_get_ethdev_address(np, bp->dev); 5150 if (err == -EPROBE_DEFER) 5151 goto err_out_free_netdev; 5152 else if (err) 5153 macb_get_hwaddr(bp); 5154 5155 err = of_get_phy_mode(np, &interface); 5156 if (err) 5157 /* not found in DT, MII by default */ 5158 bp->phy_interface = PHY_INTERFACE_MODE_MII; 5159 else 5160 bp->phy_interface = interface; 5161 5162 /* IP specific init */ 5163 err = init(pdev); 5164 if (err) 5165 goto err_out_free_netdev; 5166 5167 err = macb_mii_init(bp); 5168 if (err) 5169 goto err_out_phy_exit; 5170 5171 netif_carrier_off(dev); 5172 5173 err = register_netdev(dev); 5174 if (err) { 5175 dev_err(&pdev->dev, "Cannot register net device, aborting.\n"); 5176 goto err_out_unregister_mdio; 5177 } 5178 5179 INIT_WORK(&bp->hresp_err_bh_work, macb_hresp_error_task); 5180 5181 netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n", 5182 macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID), 5183 dev->base_addr, dev->irq, dev->dev_addr); 5184 5185 pm_runtime_mark_last_busy(&bp->pdev->dev); 5186 pm_runtime_put_autosuspend(&bp->pdev->dev); 5187 5188 return 0; 5189 5190 err_out_unregister_mdio: 5191 mdiobus_unregister(bp->mii_bus); 5192 mdiobus_free(bp->mii_bus); 5193 5194 err_out_phy_exit: 5195 phy_exit(bp->sgmii_phy); 5196 5197 err_out_free_netdev: 5198 free_netdev(dev); 5199 5200 err_disable_clocks: 5201 macb_clks_disable(pclk, hclk, tx_clk, rx_clk, tsu_clk); 5202 pm_runtime_disable(&pdev->dev); 5203 pm_runtime_set_suspended(&pdev->dev); 5204 pm_runtime_dont_use_autosuspend(&pdev->dev); 5205 5206 return err; 5207 } 5208 5209 static void macb_remove(struct platform_device *pdev) 5210 { 5211 struct net_device *dev; 5212 struct macb *bp; 5213 5214 dev = platform_get_drvdata(pdev); 5215 5216 if (dev) { 5217 bp = netdev_priv(dev); 5218 phy_exit(bp->sgmii_phy); 5219 mdiobus_unregister(bp->mii_bus); 5220 mdiobus_free(bp->mii_bus); 5221 5222 unregister_netdev(dev); 5223 cancel_work_sync(&bp->hresp_err_bh_work); 5224 pm_runtime_disable(&pdev->dev); 5225 pm_runtime_dont_use_autosuspend(&pdev->dev); 5226 if (!pm_runtime_suspended(&pdev->dev)) { 5227 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, 5228 bp->rx_clk, bp->tsu_clk); 5229 pm_runtime_set_suspended(&pdev->dev); 5230 } 5231 phylink_destroy(bp->phylink); 5232 free_netdev(dev); 5233 } 5234 } 5235 5236 static int __maybe_unused macb_suspend(struct device *dev) 5237 { 5238 struct net_device *netdev = dev_get_drvdata(dev); 5239 struct macb *bp = netdev_priv(netdev); 5240 struct in_ifaddr *ifa = NULL; 5241 struct macb_queue *queue; 5242 struct in_device *idev; 5243 unsigned long flags; 5244 unsigned int q; 5245 int err; 5246 u32 tmp; 5247 5248 if (!device_may_wakeup(&bp->dev->dev)) 5249 phy_exit(bp->sgmii_phy); 5250 5251 if (!netif_running(netdev)) 5252 return 0; 5253 5254 if (bp->wol & MACB_WOL_ENABLED) { 5255 /* Check for IP address in WOL ARP mode */ 5256 idev = __in_dev_get_rcu(bp->dev); 5257 if (idev) 5258 ifa = rcu_dereference(idev->ifa_list); 5259 if ((bp->wolopts & WAKE_ARP) && !ifa) { 5260 netdev_err(netdev, "IP address not assigned as required by WoL walk ARP\n"); 5261 return -EOPNOTSUPP; 5262 } 5263 spin_lock_irqsave(&bp->lock, flags); 5264 5265 /* Disable Tx and Rx engines before disabling the queues, 5266 * this is mandatory as per the IP spec sheet 5267 */ 5268 tmp = macb_readl(bp, NCR); 5269 macb_writel(bp, NCR, tmp & ~(MACB_BIT(TE) | MACB_BIT(RE))); 5270 for (q = 0, queue = bp->queues; q < bp->num_queues; 5271 ++q, ++queue) { 5272 /* Disable RX queues */ 5273 if (bp->caps & MACB_CAPS_QUEUE_DISABLE) { 5274 queue_writel(queue, RBQP, MACB_BIT(QUEUE_DISABLE)); 5275 } else { 5276 /* Tie off RX queues */ 5277 queue_writel(queue, RBQP, 5278 lower_32_bits(bp->rx_ring_tieoff_dma)); 5279 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 5280 queue_writel(queue, RBQPH, 5281 upper_32_bits(bp->rx_ring_tieoff_dma)); 5282 #endif 5283 } 5284 /* Disable all interrupts */ 5285 queue_writel(queue, IDR, -1); 5286 queue_readl(queue, ISR); 5287 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 5288 queue_writel(queue, ISR, -1); 5289 } 5290 /* Enable Receive engine */ 5291 macb_writel(bp, NCR, tmp | MACB_BIT(RE)); 5292 /* Flush all status bits */ 5293 macb_writel(bp, TSR, -1); 5294 macb_writel(bp, RSR, -1); 5295 5296 tmp = (bp->wolopts & WAKE_MAGIC) ? MACB_BIT(MAG) : 0; 5297 if (bp->wolopts & WAKE_ARP) { 5298 tmp |= MACB_BIT(ARP); 5299 /* write IP address into register */ 5300 tmp |= MACB_BFEXT(IP, be32_to_cpu(ifa->ifa_local)); 5301 } 5302 5303 /* Change interrupt handler and 5304 * Enable WoL IRQ on queue 0 5305 */ 5306 devm_free_irq(dev, bp->queues[0].irq, bp->queues); 5307 if (macb_is_gem(bp)) { 5308 err = devm_request_irq(dev, bp->queues[0].irq, gem_wol_interrupt, 5309 IRQF_SHARED, netdev->name, bp->queues); 5310 if (err) { 5311 dev_err(dev, 5312 "Unable to request IRQ %d (error %d)\n", 5313 bp->queues[0].irq, err); 5314 spin_unlock_irqrestore(&bp->lock, flags); 5315 return err; 5316 } 5317 queue_writel(bp->queues, IER, GEM_BIT(WOL)); 5318 gem_writel(bp, WOL, tmp); 5319 } else { 5320 err = devm_request_irq(dev, bp->queues[0].irq, macb_wol_interrupt, 5321 IRQF_SHARED, netdev->name, bp->queues); 5322 if (err) { 5323 dev_err(dev, 5324 "Unable to request IRQ %d (error %d)\n", 5325 bp->queues[0].irq, err); 5326 spin_unlock_irqrestore(&bp->lock, flags); 5327 return err; 5328 } 5329 queue_writel(bp->queues, IER, MACB_BIT(WOL)); 5330 macb_writel(bp, WOL, tmp); 5331 } 5332 spin_unlock_irqrestore(&bp->lock, flags); 5333 5334 enable_irq_wake(bp->queues[0].irq); 5335 } 5336 5337 netif_device_detach(netdev); 5338 for (q = 0, queue = bp->queues; q < bp->num_queues; 5339 ++q, ++queue) { 5340 napi_disable(&queue->napi_rx); 5341 napi_disable(&queue->napi_tx); 5342 } 5343 5344 if (!(bp->wol & MACB_WOL_ENABLED)) { 5345 rtnl_lock(); 5346 phylink_stop(bp->phylink); 5347 rtnl_unlock(); 5348 spin_lock_irqsave(&bp->lock, flags); 5349 macb_reset_hw(bp); 5350 spin_unlock_irqrestore(&bp->lock, flags); 5351 } 5352 5353 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 5354 bp->pm_data.usrio = macb_or_gem_readl(bp, USRIO); 5355 5356 if (netdev->hw_features & NETIF_F_NTUPLE) 5357 bp->pm_data.scrt2 = gem_readl_n(bp, ETHT, SCRT2_ETHT); 5358 5359 if (bp->ptp_info) 5360 bp->ptp_info->ptp_remove(netdev); 5361 if (!device_may_wakeup(dev)) 5362 pm_runtime_force_suspend(dev); 5363 5364 return 0; 5365 } 5366 5367 static int __maybe_unused macb_resume(struct device *dev) 5368 { 5369 struct net_device *netdev = dev_get_drvdata(dev); 5370 struct macb *bp = netdev_priv(netdev); 5371 struct macb_queue *queue; 5372 unsigned long flags; 5373 unsigned int q; 5374 int err; 5375 5376 if (!device_may_wakeup(&bp->dev->dev)) 5377 phy_init(bp->sgmii_phy); 5378 5379 if (!netif_running(netdev)) 5380 return 0; 5381 5382 if (!device_may_wakeup(dev)) 5383 pm_runtime_force_resume(dev); 5384 5385 if (bp->wol & MACB_WOL_ENABLED) { 5386 spin_lock_irqsave(&bp->lock, flags); 5387 /* Disable WoL */ 5388 if (macb_is_gem(bp)) { 5389 queue_writel(bp->queues, IDR, GEM_BIT(WOL)); 5390 gem_writel(bp, WOL, 0); 5391 } else { 5392 queue_writel(bp->queues, IDR, MACB_BIT(WOL)); 5393 macb_writel(bp, WOL, 0); 5394 } 5395 /* Clear ISR on queue 0 */ 5396 queue_readl(bp->queues, ISR); 5397 if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE) 5398 queue_writel(bp->queues, ISR, -1); 5399 /* Replace interrupt handler on queue 0 */ 5400 devm_free_irq(dev, bp->queues[0].irq, bp->queues); 5401 err = devm_request_irq(dev, bp->queues[0].irq, macb_interrupt, 5402 IRQF_SHARED, netdev->name, bp->queues); 5403 if (err) { 5404 dev_err(dev, 5405 "Unable to request IRQ %d (error %d)\n", 5406 bp->queues[0].irq, err); 5407 spin_unlock_irqrestore(&bp->lock, flags); 5408 return err; 5409 } 5410 spin_unlock_irqrestore(&bp->lock, flags); 5411 5412 disable_irq_wake(bp->queues[0].irq); 5413 5414 /* Now make sure we disable phy before moving 5415 * to common restore path 5416 */ 5417 rtnl_lock(); 5418 phylink_stop(bp->phylink); 5419 rtnl_unlock(); 5420 } 5421 5422 for (q = 0, queue = bp->queues; q < bp->num_queues; 5423 ++q, ++queue) { 5424 napi_enable(&queue->napi_rx); 5425 napi_enable(&queue->napi_tx); 5426 } 5427 5428 if (netdev->hw_features & NETIF_F_NTUPLE) 5429 gem_writel_n(bp, ETHT, SCRT2_ETHT, bp->pm_data.scrt2); 5430 5431 if (!(bp->caps & MACB_CAPS_USRIO_DISABLED)) 5432 macb_or_gem_writel(bp, USRIO, bp->pm_data.usrio); 5433 5434 macb_writel(bp, NCR, MACB_BIT(MPE)); 5435 macb_init_hw(bp); 5436 macb_set_rx_mode(netdev); 5437 macb_restore_features(bp); 5438 rtnl_lock(); 5439 5440 phylink_start(bp->phylink); 5441 rtnl_unlock(); 5442 5443 netif_device_attach(netdev); 5444 if (bp->ptp_info) 5445 bp->ptp_info->ptp_init(netdev); 5446 5447 return 0; 5448 } 5449 5450 static int __maybe_unused macb_runtime_suspend(struct device *dev) 5451 { 5452 struct net_device *netdev = dev_get_drvdata(dev); 5453 struct macb *bp = netdev_priv(netdev); 5454 5455 if (!(device_may_wakeup(dev))) 5456 macb_clks_disable(bp->pclk, bp->hclk, bp->tx_clk, bp->rx_clk, bp->tsu_clk); 5457 else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) 5458 macb_clks_disable(NULL, NULL, NULL, NULL, bp->tsu_clk); 5459 5460 return 0; 5461 } 5462 5463 static int __maybe_unused macb_runtime_resume(struct device *dev) 5464 { 5465 struct net_device *netdev = dev_get_drvdata(dev); 5466 struct macb *bp = netdev_priv(netdev); 5467 5468 if (!(device_may_wakeup(dev))) { 5469 clk_prepare_enable(bp->pclk); 5470 clk_prepare_enable(bp->hclk); 5471 clk_prepare_enable(bp->tx_clk); 5472 clk_prepare_enable(bp->rx_clk); 5473 clk_prepare_enable(bp->tsu_clk); 5474 } else if (!(bp->caps & MACB_CAPS_NEED_TSUCLK)) { 5475 clk_prepare_enable(bp->tsu_clk); 5476 } 5477 5478 return 0; 5479 } 5480 5481 static const struct dev_pm_ops macb_pm_ops = { 5482 SET_SYSTEM_SLEEP_PM_OPS(macb_suspend, macb_resume) 5483 SET_RUNTIME_PM_OPS(macb_runtime_suspend, macb_runtime_resume, NULL) 5484 }; 5485 5486 static struct platform_driver macb_driver = { 5487 .probe = macb_probe, 5488 .remove = macb_remove, 5489 .driver = { 5490 .name = "macb", 5491 .of_match_table = of_match_ptr(macb_dt_ids), 5492 .pm = &macb_pm_ops, 5493 }, 5494 }; 5495 5496 module_platform_driver(macb_driver); 5497 5498 MODULE_LICENSE("GPL"); 5499 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver"); 5500 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); 5501 MODULE_ALIAS("platform:macb"); 5502