xref: /linux/drivers/net/ethernet/brocade/bna/bnad.c (revision e1e0918fcaea7b8100ed9f96f3ecd9eb9b867102)
1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
29 
30 #include "bnad.h"
31 #include "bna.h"
32 #include "cna.h"
33 
34 static DEFINE_MUTEX(bnad_fwimg_mutex);
35 
36 /*
37  * Module params
38  */
39 static uint bnad_msix_disable;
40 module_param(bnad_msix_disable, uint, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
42 
43 static uint bnad_ioc_auto_recover = 1;
44 module_param(bnad_ioc_auto_recover, uint, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
46 
47 static uint bna_debugfs_enable = 1;
48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
50 		 " Range[false:0|true:1]");
51 
52 /*
53  * Global variables
54  */
55 u32 bnad_rxqs_per_cq = 2;
56 static u32 bna_id;
57 static struct mutex bnad_list_mutex;
58 static LIST_HEAD(bnad_list);
59 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
60 
61 /*
62  * Local MACROS
63  */
64 #define BNAD_TX_UNMAPQ_DEPTH (bnad->txq_depth * 2)
65 
66 #define BNAD_RX_UNMAPQ_DEPTH (bnad->rxq_depth)
67 
68 #define BNAD_GET_MBOX_IRQ(_bnad)				\
69 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
70 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
71 	 ((_bnad)->pcidev->irq))
72 
73 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _depth)	\
74 do {								\
75 	(_res_info)->res_type = BNA_RES_T_MEM;			\
76 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
77 	(_res_info)->res_u.mem_info.num = (_num);		\
78 	(_res_info)->res_u.mem_info.len =			\
79 	sizeof(struct bnad_unmap_q) +				\
80 	(sizeof(struct bnad_skb_unmap) * ((_depth) - 1));	\
81 } while (0)
82 
83 #define BNAD_TXRX_SYNC_MDELAY	250	/* 250 msecs */
84 
85 static void
86 bnad_add_to_list(struct bnad *bnad)
87 {
88 	mutex_lock(&bnad_list_mutex);
89 	list_add_tail(&bnad->list_entry, &bnad_list);
90 	bnad->id = bna_id++;
91 	mutex_unlock(&bnad_list_mutex);
92 }
93 
94 static void
95 bnad_remove_from_list(struct bnad *bnad)
96 {
97 	mutex_lock(&bnad_list_mutex);
98 	list_del(&bnad->list_entry);
99 	mutex_unlock(&bnad_list_mutex);
100 }
101 
102 /*
103  * Reinitialize completions in CQ, once Rx is taken down
104  */
105 static void
106 bnad_cq_cmpl_init(struct bnad *bnad, struct bna_ccb *ccb)
107 {
108 	struct bna_cq_entry *cmpl, *next_cmpl;
109 	unsigned int wi_range, wis = 0, ccb_prod = 0;
110 	int i;
111 
112 	BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt, cmpl,
113 			    wi_range);
114 
115 	for (i = 0; i < ccb->q_depth; i++) {
116 		wis++;
117 		if (likely(--wi_range))
118 			next_cmpl = cmpl + 1;
119 		else {
120 			BNA_QE_INDX_ADD(ccb_prod, wis, ccb->q_depth);
121 			wis = 0;
122 			BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt,
123 						next_cmpl, wi_range);
124 		}
125 		cmpl->valid = 0;
126 		cmpl = next_cmpl;
127 	}
128 }
129 
130 static u32
131 bnad_pci_unmap_skb(struct device *pdev, struct bnad_skb_unmap *array,
132 	u32 index, u32 depth, struct sk_buff *skb, u32 frag)
133 {
134 	int j;
135 	array[index].skb = NULL;
136 
137 	dma_unmap_single(pdev, dma_unmap_addr(&array[index], dma_addr),
138 			skb_headlen(skb), DMA_TO_DEVICE);
139 	dma_unmap_addr_set(&array[index], dma_addr, 0);
140 	BNA_QE_INDX_ADD(index, 1, depth);
141 
142 	for (j = 0; j < frag; j++) {
143 		dma_unmap_page(pdev, dma_unmap_addr(&array[index], dma_addr),
144 			  skb_frag_size(&skb_shinfo(skb)->frags[j]), DMA_TO_DEVICE);
145 		dma_unmap_addr_set(&array[index], dma_addr, 0);
146 		BNA_QE_INDX_ADD(index, 1, depth);
147 	}
148 
149 	return index;
150 }
151 
152 /*
153  * Frees all pending Tx Bufs
154  * At this point no activity is expected on the Q,
155  * so DMA unmap & freeing is fine.
156  */
157 static void
158 bnad_free_all_txbufs(struct bnad *bnad,
159 		 struct bna_tcb *tcb)
160 {
161 	u32		unmap_cons;
162 	struct bnad_unmap_q *unmap_q = tcb->unmap_q;
163 	struct bnad_skb_unmap *unmap_array;
164 	struct sk_buff		*skb = NULL;
165 	int			q;
166 
167 	unmap_array = unmap_q->unmap_array;
168 
169 	for (q = 0; q < unmap_q->q_depth; q++) {
170 		skb = unmap_array[q].skb;
171 		if (!skb)
172 			continue;
173 
174 		unmap_cons = q;
175 		unmap_cons = bnad_pci_unmap_skb(&bnad->pcidev->dev, unmap_array,
176 				unmap_cons, unmap_q->q_depth, skb,
177 				skb_shinfo(skb)->nr_frags);
178 
179 		dev_kfree_skb_any(skb);
180 	}
181 }
182 
183 /* Data Path Handlers */
184 
185 /*
186  * bnad_free_txbufs : Frees the Tx bufs on Tx completion
187  * Can be called in a) Interrupt context
188  *		    b) Sending context
189  *		    c) Tasklet context
190  */
191 static u32
192 bnad_free_txbufs(struct bnad *bnad,
193 		 struct bna_tcb *tcb)
194 {
195 	u32		unmap_cons, sent_packets = 0, sent_bytes = 0;
196 	u16		wis, updated_hw_cons;
197 	struct bnad_unmap_q *unmap_q = tcb->unmap_q;
198 	struct bnad_skb_unmap *unmap_array;
199 	struct sk_buff		*skb;
200 
201 	/*
202 	 * Just return if TX is stopped. This check is useful
203 	 * when bnad_free_txbufs() runs out of a tasklet scheduled
204 	 * before bnad_cb_tx_cleanup() cleared BNAD_TXQ_TX_STARTED bit
205 	 * but this routine runs actually after the cleanup has been
206 	 * executed.
207 	 */
208 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
209 		return 0;
210 
211 	updated_hw_cons = *(tcb->hw_consumer_index);
212 
213 	wis = BNA_Q_INDEX_CHANGE(tcb->consumer_index,
214 				  updated_hw_cons, tcb->q_depth);
215 
216 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
217 
218 	unmap_array = unmap_q->unmap_array;
219 	unmap_cons = unmap_q->consumer_index;
220 
221 	prefetch(&unmap_array[unmap_cons + 1]);
222 	while (wis) {
223 		skb = unmap_array[unmap_cons].skb;
224 
225 		sent_packets++;
226 		sent_bytes += skb->len;
227 		wis -= BNA_TXQ_WI_NEEDED(1 + skb_shinfo(skb)->nr_frags);
228 
229 		unmap_cons = bnad_pci_unmap_skb(&bnad->pcidev->dev, unmap_array,
230 				unmap_cons, unmap_q->q_depth, skb,
231 				skb_shinfo(skb)->nr_frags);
232 
233 		dev_kfree_skb_any(skb);
234 	}
235 
236 	/* Update consumer pointers. */
237 	tcb->consumer_index = updated_hw_cons;
238 	unmap_q->consumer_index = unmap_cons;
239 
240 	tcb->txq->tx_packets += sent_packets;
241 	tcb->txq->tx_bytes += sent_bytes;
242 
243 	return sent_packets;
244 }
245 
246 /* Tx Free Tasklet function */
247 /* Frees for all the tcb's in all the Tx's */
248 /*
249  * Scheduled from sending context, so that
250  * the fat Tx lock is not held for too long
251  * in the sending context.
252  */
253 static void
254 bnad_tx_free_tasklet(unsigned long bnad_ptr)
255 {
256 	struct bnad *bnad = (struct bnad *)bnad_ptr;
257 	struct bna_tcb *tcb;
258 	u32		acked = 0;
259 	int			i, j;
260 
261 	for (i = 0; i < bnad->num_tx; i++) {
262 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
263 			tcb = bnad->tx_info[i].tcb[j];
264 			if (!tcb)
265 				continue;
266 			if (((u16) (*tcb->hw_consumer_index) !=
267 				tcb->consumer_index) &&
268 				(!test_and_set_bit(BNAD_TXQ_FREE_SENT,
269 						  &tcb->flags))) {
270 				acked = bnad_free_txbufs(bnad, tcb);
271 				if (likely(test_bit(BNAD_TXQ_TX_STARTED,
272 					&tcb->flags)))
273 					bna_ib_ack(tcb->i_dbell, acked);
274 				smp_mb__before_clear_bit();
275 				clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
276 			}
277 			if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED,
278 						&tcb->flags)))
279 				continue;
280 			if (netif_queue_stopped(bnad->netdev)) {
281 				if (acked && netif_carrier_ok(bnad->netdev) &&
282 					BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
283 						BNAD_NETIF_WAKE_THRESHOLD) {
284 					netif_wake_queue(bnad->netdev);
285 					/* TODO */
286 					/* Counters for individual TxQs? */
287 					BNAD_UPDATE_CTR(bnad,
288 						netif_queue_wakeup);
289 				}
290 			}
291 		}
292 	}
293 }
294 
295 static u32
296 bnad_tx(struct bnad *bnad, struct bna_tcb *tcb)
297 {
298 	struct net_device *netdev = bnad->netdev;
299 	u32 sent = 0;
300 
301 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
302 		return 0;
303 
304 	sent = bnad_free_txbufs(bnad, tcb);
305 	if (sent) {
306 		if (netif_queue_stopped(netdev) &&
307 		    netif_carrier_ok(netdev) &&
308 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
309 				    BNAD_NETIF_WAKE_THRESHOLD) {
310 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
311 				netif_wake_queue(netdev);
312 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
313 			}
314 		}
315 	}
316 
317 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
318 		bna_ib_ack(tcb->i_dbell, sent);
319 
320 	smp_mb__before_clear_bit();
321 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
322 
323 	return sent;
324 }
325 
326 /* MSIX Tx Completion Handler */
327 static irqreturn_t
328 bnad_msix_tx(int irq, void *data)
329 {
330 	struct bna_tcb *tcb = (struct bna_tcb *)data;
331 	struct bnad *bnad = tcb->bnad;
332 
333 	bnad_tx(bnad, tcb);
334 
335 	return IRQ_HANDLED;
336 }
337 
338 static void
339 bnad_reset_rcb(struct bnad *bnad, struct bna_rcb *rcb)
340 {
341 	struct bnad_unmap_q *unmap_q = rcb->unmap_q;
342 
343 	rcb->producer_index = 0;
344 	rcb->consumer_index = 0;
345 
346 	unmap_q->producer_index = 0;
347 	unmap_q->consumer_index = 0;
348 }
349 
350 static void
351 bnad_free_all_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
352 {
353 	struct bnad_unmap_q *unmap_q;
354 	struct bnad_skb_unmap *unmap_array;
355 	struct sk_buff *skb;
356 	int unmap_cons;
357 
358 	unmap_q = rcb->unmap_q;
359 	unmap_array = unmap_q->unmap_array;
360 	for (unmap_cons = 0; unmap_cons < unmap_q->q_depth; unmap_cons++) {
361 		skb = unmap_array[unmap_cons].skb;
362 		if (!skb)
363 			continue;
364 		unmap_array[unmap_cons].skb = NULL;
365 		dma_unmap_single(&bnad->pcidev->dev,
366 				 dma_unmap_addr(&unmap_array[unmap_cons],
367 						dma_addr),
368 				 rcb->rxq->buffer_size,
369 				 DMA_FROM_DEVICE);
370 		dev_kfree_skb(skb);
371 	}
372 	bnad_reset_rcb(bnad, rcb);
373 }
374 
375 static void
376 bnad_alloc_n_post_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
377 {
378 	u16 to_alloc, alloced, unmap_prod, wi_range;
379 	struct bnad_unmap_q *unmap_q = rcb->unmap_q;
380 	struct bnad_skb_unmap *unmap_array;
381 	struct bna_rxq_entry *rxent;
382 	struct sk_buff *skb;
383 	dma_addr_t dma_addr;
384 
385 	alloced = 0;
386 	to_alloc =
387 		BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth);
388 
389 	unmap_array = unmap_q->unmap_array;
390 	unmap_prod = unmap_q->producer_index;
391 
392 	BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent, wi_range);
393 
394 	while (to_alloc--) {
395 		if (!wi_range)
396 			BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent,
397 					     wi_range);
398 		skb = netdev_alloc_skb_ip_align(bnad->netdev,
399 						rcb->rxq->buffer_size);
400 		if (unlikely(!skb)) {
401 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
402 			rcb->rxq->rxbuf_alloc_failed++;
403 			goto finishing;
404 		}
405 		unmap_array[unmap_prod].skb = skb;
406 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
407 					  rcb->rxq->buffer_size,
408 					  DMA_FROM_DEVICE);
409 		dma_unmap_addr_set(&unmap_array[unmap_prod], dma_addr,
410 				   dma_addr);
411 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
412 		BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
413 
414 		rxent++;
415 		wi_range--;
416 		alloced++;
417 	}
418 
419 finishing:
420 	if (likely(alloced)) {
421 		unmap_q->producer_index = unmap_prod;
422 		rcb->producer_index = unmap_prod;
423 		smp_mb();
424 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
425 			bna_rxq_prod_indx_doorbell(rcb);
426 	}
427 }
428 
429 static inline void
430 bnad_refill_rxq(struct bnad *bnad, struct bna_rcb *rcb)
431 {
432 	struct bnad_unmap_q *unmap_q = rcb->unmap_q;
433 
434 	if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
435 		if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
436 			 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
437 			bnad_alloc_n_post_rxbufs(bnad, rcb);
438 		smp_mb__before_clear_bit();
439 		clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
440 	}
441 }
442 
443 static u32
444 bnad_poll_cq(struct bnad *bnad, struct bna_ccb *ccb, int budget)
445 {
446 	struct bna_cq_entry *cmpl, *next_cmpl;
447 	struct bna_rcb *rcb = NULL;
448 	unsigned int wi_range, packets = 0, wis = 0;
449 	struct bnad_unmap_q *unmap_q;
450 	struct bnad_skb_unmap *unmap_array;
451 	struct sk_buff *skb;
452 	u32 flags, unmap_cons;
453 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
454 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
455 
456 	set_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags);
457 
458 	if (!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)) {
459 		clear_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags);
460 		return 0;
461 	}
462 
463 	prefetch(bnad->netdev);
464 	BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt, cmpl,
465 			    wi_range);
466 	BUG_ON(!(wi_range <= ccb->q_depth));
467 	while (cmpl->valid && packets < budget) {
468 		packets++;
469 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
470 
471 		if (bna_is_small_rxq(cmpl->rxq_id))
472 			rcb = ccb->rcb[1];
473 		else
474 			rcb = ccb->rcb[0];
475 
476 		unmap_q = rcb->unmap_q;
477 		unmap_array = unmap_q->unmap_array;
478 		unmap_cons = unmap_q->consumer_index;
479 
480 		skb = unmap_array[unmap_cons].skb;
481 		BUG_ON(!(skb));
482 		unmap_array[unmap_cons].skb = NULL;
483 		dma_unmap_single(&bnad->pcidev->dev,
484 				 dma_unmap_addr(&unmap_array[unmap_cons],
485 						dma_addr),
486 				 rcb->rxq->buffer_size,
487 				 DMA_FROM_DEVICE);
488 		BNA_QE_INDX_ADD(unmap_q->consumer_index, 1, unmap_q->q_depth);
489 
490 		/* Should be more efficient ? Performance ? */
491 		BNA_QE_INDX_ADD(rcb->consumer_index, 1, rcb->q_depth);
492 
493 		wis++;
494 		if (likely(--wi_range))
495 			next_cmpl = cmpl + 1;
496 		else {
497 			BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
498 			wis = 0;
499 			BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt,
500 						next_cmpl, wi_range);
501 			BUG_ON(!(wi_range <= ccb->q_depth));
502 		}
503 		prefetch(next_cmpl);
504 
505 		flags = ntohl(cmpl->flags);
506 		if (unlikely
507 		    (flags &
508 		     (BNA_CQ_EF_MAC_ERROR | BNA_CQ_EF_FCS_ERROR |
509 		      BNA_CQ_EF_TOO_LONG))) {
510 			dev_kfree_skb_any(skb);
511 			rcb->rxq->rx_packets_with_error++;
512 			goto next;
513 		}
514 
515 		skb_put(skb, ntohs(cmpl->length));
516 		if (likely
517 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
518 		     (((flags & BNA_CQ_EF_IPV4) &&
519 		      (flags & BNA_CQ_EF_L3_CKSUM_OK)) ||
520 		      (flags & BNA_CQ_EF_IPV6)) &&
521 		      (flags & (BNA_CQ_EF_TCP | BNA_CQ_EF_UDP)) &&
522 		      (flags & BNA_CQ_EF_L4_CKSUM_OK)))
523 			skb->ip_summed = CHECKSUM_UNNECESSARY;
524 		else
525 			skb_checksum_none_assert(skb);
526 
527 		rcb->rxq->rx_packets++;
528 		rcb->rxq->rx_bytes += skb->len;
529 		skb->protocol = eth_type_trans(skb, bnad->netdev);
530 
531 		if (flags & BNA_CQ_EF_VLAN)
532 			__vlan_hwaccel_put_tag(skb, ntohs(cmpl->vlan_tag));
533 
534 		if (skb->ip_summed == CHECKSUM_UNNECESSARY)
535 			napi_gro_receive(&rx_ctrl->napi, skb);
536 		else {
537 			netif_receive_skb(skb);
538 		}
539 
540 next:
541 		cmpl->valid = 0;
542 		cmpl = next_cmpl;
543 	}
544 
545 	BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
546 
547 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
548 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
549 
550 	bnad_refill_rxq(bnad, ccb->rcb[0]);
551 	if (ccb->rcb[1])
552 		bnad_refill_rxq(bnad, ccb->rcb[1]);
553 
554 	clear_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags);
555 
556 	return packets;
557 }
558 
559 static void
560 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
561 {
562 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
563 	struct napi_struct *napi = &rx_ctrl->napi;
564 
565 	if (likely(napi_schedule_prep(napi))) {
566 		__napi_schedule(napi);
567 		rx_ctrl->rx_schedule++;
568 	}
569 }
570 
571 /* MSIX Rx Path Handler */
572 static irqreturn_t
573 bnad_msix_rx(int irq, void *data)
574 {
575 	struct bna_ccb *ccb = (struct bna_ccb *)data;
576 
577 	if (ccb) {
578 		((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
579 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
580 	}
581 
582 	return IRQ_HANDLED;
583 }
584 
585 /* Interrupt handlers */
586 
587 /* Mbox Interrupt Handlers */
588 static irqreturn_t
589 bnad_msix_mbox_handler(int irq, void *data)
590 {
591 	u32 intr_status;
592 	unsigned long flags;
593 	struct bnad *bnad = (struct bnad *)data;
594 
595 	spin_lock_irqsave(&bnad->bna_lock, flags);
596 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
597 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
598 		return IRQ_HANDLED;
599 	}
600 
601 	bna_intr_status_get(&bnad->bna, intr_status);
602 
603 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
604 		bna_mbox_handler(&bnad->bna, intr_status);
605 
606 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
607 
608 	return IRQ_HANDLED;
609 }
610 
611 static irqreturn_t
612 bnad_isr(int irq, void *data)
613 {
614 	int i, j;
615 	u32 intr_status;
616 	unsigned long flags;
617 	struct bnad *bnad = (struct bnad *)data;
618 	struct bnad_rx_info *rx_info;
619 	struct bnad_rx_ctrl *rx_ctrl;
620 	struct bna_tcb *tcb = NULL;
621 
622 	spin_lock_irqsave(&bnad->bna_lock, flags);
623 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
624 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
625 		return IRQ_NONE;
626 	}
627 
628 	bna_intr_status_get(&bnad->bna, intr_status);
629 
630 	if (unlikely(!intr_status)) {
631 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
632 		return IRQ_NONE;
633 	}
634 
635 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
636 		bna_mbox_handler(&bnad->bna, intr_status);
637 
638 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
639 
640 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
641 		return IRQ_HANDLED;
642 
643 	/* Process data interrupts */
644 	/* Tx processing */
645 	for (i = 0; i < bnad->num_tx; i++) {
646 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
647 			tcb = bnad->tx_info[i].tcb[j];
648 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
649 				bnad_tx(bnad, bnad->tx_info[i].tcb[j]);
650 		}
651 	}
652 	/* Rx processing */
653 	for (i = 0; i < bnad->num_rx; i++) {
654 		rx_info = &bnad->rx_info[i];
655 		if (!rx_info->rx)
656 			continue;
657 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
658 			rx_ctrl = &rx_info->rx_ctrl[j];
659 			if (rx_ctrl->ccb)
660 				bnad_netif_rx_schedule_poll(bnad,
661 							    rx_ctrl->ccb);
662 		}
663 	}
664 	return IRQ_HANDLED;
665 }
666 
667 /*
668  * Called in interrupt / callback context
669  * with bna_lock held, so cfg_flags access is OK
670  */
671 static void
672 bnad_enable_mbox_irq(struct bnad *bnad)
673 {
674 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
675 
676 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
677 }
678 
679 /*
680  * Called with bnad->bna_lock held b'cos of
681  * bnad->cfg_flags access.
682  */
683 static void
684 bnad_disable_mbox_irq(struct bnad *bnad)
685 {
686 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
687 
688 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
689 }
690 
691 static void
692 bnad_set_netdev_perm_addr(struct bnad *bnad)
693 {
694 	struct net_device *netdev = bnad->netdev;
695 
696 	memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
697 	if (is_zero_ether_addr(netdev->dev_addr))
698 		memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
699 }
700 
701 /* Control Path Handlers */
702 
703 /* Callbacks */
704 void
705 bnad_cb_mbox_intr_enable(struct bnad *bnad)
706 {
707 	bnad_enable_mbox_irq(bnad);
708 }
709 
710 void
711 bnad_cb_mbox_intr_disable(struct bnad *bnad)
712 {
713 	bnad_disable_mbox_irq(bnad);
714 }
715 
716 void
717 bnad_cb_ioceth_ready(struct bnad *bnad)
718 {
719 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
720 	complete(&bnad->bnad_completions.ioc_comp);
721 }
722 
723 void
724 bnad_cb_ioceth_failed(struct bnad *bnad)
725 {
726 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
727 	complete(&bnad->bnad_completions.ioc_comp);
728 }
729 
730 void
731 bnad_cb_ioceth_disabled(struct bnad *bnad)
732 {
733 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
734 	complete(&bnad->bnad_completions.ioc_comp);
735 }
736 
737 static void
738 bnad_cb_enet_disabled(void *arg)
739 {
740 	struct bnad *bnad = (struct bnad *)arg;
741 
742 	netif_carrier_off(bnad->netdev);
743 	complete(&bnad->bnad_completions.enet_comp);
744 }
745 
746 void
747 bnad_cb_ethport_link_status(struct bnad *bnad,
748 			enum bna_link_status link_status)
749 {
750 	bool link_up = false;
751 
752 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
753 
754 	if (link_status == BNA_CEE_UP) {
755 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
756 			BNAD_UPDATE_CTR(bnad, cee_toggle);
757 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
758 	} else {
759 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
760 			BNAD_UPDATE_CTR(bnad, cee_toggle);
761 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
762 	}
763 
764 	if (link_up) {
765 		if (!netif_carrier_ok(bnad->netdev)) {
766 			uint tx_id, tcb_id;
767 			printk(KERN_WARNING "bna: %s link up\n",
768 				bnad->netdev->name);
769 			netif_carrier_on(bnad->netdev);
770 			BNAD_UPDATE_CTR(bnad, link_toggle);
771 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
772 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
773 				      tcb_id++) {
774 					struct bna_tcb *tcb =
775 					bnad->tx_info[tx_id].tcb[tcb_id];
776 					u32 txq_id;
777 					if (!tcb)
778 						continue;
779 
780 					txq_id = tcb->id;
781 
782 					if (test_bit(BNAD_TXQ_TX_STARTED,
783 						     &tcb->flags)) {
784 						/*
785 						 * Force an immediate
786 						 * Transmit Schedule */
787 						printk(KERN_INFO "bna: %s %d "
788 						      "TXQ_STARTED\n",
789 						       bnad->netdev->name,
790 						       txq_id);
791 						netif_wake_subqueue(
792 								bnad->netdev,
793 								txq_id);
794 						BNAD_UPDATE_CTR(bnad,
795 							netif_queue_wakeup);
796 					} else {
797 						netif_stop_subqueue(
798 								bnad->netdev,
799 								txq_id);
800 						BNAD_UPDATE_CTR(bnad,
801 							netif_queue_stop);
802 					}
803 				}
804 			}
805 		}
806 	} else {
807 		if (netif_carrier_ok(bnad->netdev)) {
808 			printk(KERN_WARNING "bna: %s link down\n",
809 				bnad->netdev->name);
810 			netif_carrier_off(bnad->netdev);
811 			BNAD_UPDATE_CTR(bnad, link_toggle);
812 		}
813 	}
814 }
815 
816 static void
817 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
818 {
819 	struct bnad *bnad = (struct bnad *)arg;
820 
821 	complete(&bnad->bnad_completions.tx_comp);
822 }
823 
824 static void
825 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
826 {
827 	struct bnad_tx_info *tx_info =
828 			(struct bnad_tx_info *)tcb->txq->tx->priv;
829 	struct bnad_unmap_q *unmap_q = tcb->unmap_q;
830 
831 	tx_info->tcb[tcb->id] = tcb;
832 	unmap_q->producer_index = 0;
833 	unmap_q->consumer_index = 0;
834 	unmap_q->q_depth = BNAD_TX_UNMAPQ_DEPTH;
835 }
836 
837 static void
838 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
839 {
840 	struct bnad_tx_info *tx_info =
841 			(struct bnad_tx_info *)tcb->txq->tx->priv;
842 	struct bnad_unmap_q *unmap_q = tcb->unmap_q;
843 
844 	while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
845 		cpu_relax();
846 
847 	bnad_free_all_txbufs(bnad, tcb);
848 
849 	unmap_q->producer_index = 0;
850 	unmap_q->consumer_index = 0;
851 
852 	smp_mb__before_clear_bit();
853 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
854 
855 	tx_info->tcb[tcb->id] = NULL;
856 }
857 
858 static void
859 bnad_cb_rcb_setup(struct bnad *bnad, struct bna_rcb *rcb)
860 {
861 	struct bnad_unmap_q *unmap_q = rcb->unmap_q;
862 
863 	unmap_q->producer_index = 0;
864 	unmap_q->consumer_index = 0;
865 	unmap_q->q_depth = BNAD_RX_UNMAPQ_DEPTH;
866 }
867 
868 static void
869 bnad_cb_rcb_destroy(struct bnad *bnad, struct bna_rcb *rcb)
870 {
871 	bnad_free_all_rxbufs(bnad, rcb);
872 }
873 
874 static void
875 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
876 {
877 	struct bnad_rx_info *rx_info =
878 			(struct bnad_rx_info *)ccb->cq->rx->priv;
879 
880 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
881 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
882 }
883 
884 static void
885 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
886 {
887 	struct bnad_rx_info *rx_info =
888 			(struct bnad_rx_info *)ccb->cq->rx->priv;
889 
890 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
891 }
892 
893 static void
894 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
895 {
896 	struct bnad_tx_info *tx_info =
897 			(struct bnad_tx_info *)tx->priv;
898 	struct bna_tcb *tcb;
899 	u32 txq_id;
900 	int i;
901 
902 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
903 		tcb = tx_info->tcb[i];
904 		if (!tcb)
905 			continue;
906 		txq_id = tcb->id;
907 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
908 		netif_stop_subqueue(bnad->netdev, txq_id);
909 		printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
910 			bnad->netdev->name, txq_id);
911 	}
912 }
913 
914 static void
915 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
916 {
917 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
918 	struct bna_tcb *tcb;
919 	struct bnad_unmap_q *unmap_q;
920 	u32 txq_id;
921 	int i;
922 
923 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
924 		tcb = tx_info->tcb[i];
925 		if (!tcb)
926 			continue;
927 		txq_id = tcb->id;
928 
929 		unmap_q = tcb->unmap_q;
930 
931 		if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
932 			continue;
933 
934 		while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
935 			cpu_relax();
936 
937 		bnad_free_all_txbufs(bnad, tcb);
938 
939 		unmap_q->producer_index = 0;
940 		unmap_q->consumer_index = 0;
941 
942 		smp_mb__before_clear_bit();
943 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
944 
945 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
946 
947 		if (netif_carrier_ok(bnad->netdev)) {
948 			printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
949 				bnad->netdev->name, txq_id);
950 			netif_wake_subqueue(bnad->netdev, txq_id);
951 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
952 		}
953 	}
954 
955 	/*
956 	 * Workaround for first ioceth enable failure & we
957 	 * get a 0 MAC address. We try to get the MAC address
958 	 * again here.
959 	 */
960 	if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
961 		bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
962 		bnad_set_netdev_perm_addr(bnad);
963 	}
964 }
965 
966 static void
967 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
968 {
969 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
970 	struct bna_tcb *tcb;
971 	int i;
972 
973 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
974 		tcb = tx_info->tcb[i];
975 		if (!tcb)
976 			continue;
977 	}
978 
979 	mdelay(BNAD_TXRX_SYNC_MDELAY);
980 	bna_tx_cleanup_complete(tx);
981 }
982 
983 static void
984 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
985 {
986 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
987 	struct bna_ccb *ccb;
988 	struct bnad_rx_ctrl *rx_ctrl;
989 	int i;
990 
991 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
992 		rx_ctrl = &rx_info->rx_ctrl[i];
993 		ccb = rx_ctrl->ccb;
994 		if (!ccb)
995 			continue;
996 
997 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
998 
999 		if (ccb->rcb[1])
1000 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1001 	}
1002 }
1003 
1004 static void
1005 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1006 {
1007 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1008 	struct bna_ccb *ccb;
1009 	struct bnad_rx_ctrl *rx_ctrl;
1010 	int i;
1011 
1012 	mdelay(BNAD_TXRX_SYNC_MDELAY);
1013 
1014 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1015 		rx_ctrl = &rx_info->rx_ctrl[i];
1016 		ccb = rx_ctrl->ccb;
1017 		if (!ccb)
1018 			continue;
1019 
1020 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1021 
1022 		if (ccb->rcb[1])
1023 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1024 
1025 		while (test_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags))
1026 			cpu_relax();
1027 	}
1028 
1029 	bna_rx_cleanup_complete(rx);
1030 }
1031 
1032 static void
1033 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1034 {
1035 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1036 	struct bna_ccb *ccb;
1037 	struct bna_rcb *rcb;
1038 	struct bnad_rx_ctrl *rx_ctrl;
1039 	struct bnad_unmap_q *unmap_q;
1040 	int i;
1041 	int j;
1042 
1043 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1044 		rx_ctrl = &rx_info->rx_ctrl[i];
1045 		ccb = rx_ctrl->ccb;
1046 		if (!ccb)
1047 			continue;
1048 
1049 		bnad_cq_cmpl_init(bnad, ccb);
1050 
1051 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1052 			rcb = ccb->rcb[j];
1053 			if (!rcb)
1054 				continue;
1055 			bnad_free_all_rxbufs(bnad, rcb);
1056 
1057 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1058 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1059 			unmap_q = rcb->unmap_q;
1060 
1061 			/* Now allocate & post buffers for this RCB */
1062 			/* !!Allocation in callback context */
1063 			if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
1064 				if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
1065 					>> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
1066 					bnad_alloc_n_post_rxbufs(bnad, rcb);
1067 					smp_mb__before_clear_bit();
1068 				clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
1069 			}
1070 		}
1071 	}
1072 }
1073 
1074 static void
1075 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1076 {
1077 	struct bnad *bnad = (struct bnad *)arg;
1078 
1079 	complete(&bnad->bnad_completions.rx_comp);
1080 }
1081 
1082 static void
1083 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1084 {
1085 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1086 	complete(&bnad->bnad_completions.mcast_comp);
1087 }
1088 
1089 void
1090 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1091 		       struct bna_stats *stats)
1092 {
1093 	if (status == BNA_CB_SUCCESS)
1094 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1095 
1096 	if (!netif_running(bnad->netdev) ||
1097 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1098 		return;
1099 
1100 	mod_timer(&bnad->stats_timer,
1101 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1102 }
1103 
1104 static void
1105 bnad_cb_enet_mtu_set(struct bnad *bnad)
1106 {
1107 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1108 	complete(&bnad->bnad_completions.mtu_comp);
1109 }
1110 
1111 void
1112 bnad_cb_completion(void *arg, enum bfa_status status)
1113 {
1114 	struct bnad_iocmd_comp *iocmd_comp =
1115 			(struct bnad_iocmd_comp *)arg;
1116 
1117 	iocmd_comp->comp_status = (u32) status;
1118 	complete(&iocmd_comp->comp);
1119 }
1120 
1121 /* Resource allocation, free functions */
1122 
1123 static void
1124 bnad_mem_free(struct bnad *bnad,
1125 	      struct bna_mem_info *mem_info)
1126 {
1127 	int i;
1128 	dma_addr_t dma_pa;
1129 
1130 	if (mem_info->mdl == NULL)
1131 		return;
1132 
1133 	for (i = 0; i < mem_info->num; i++) {
1134 		if (mem_info->mdl[i].kva != NULL) {
1135 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1136 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1137 						dma_pa);
1138 				dma_free_coherent(&bnad->pcidev->dev,
1139 						  mem_info->mdl[i].len,
1140 						  mem_info->mdl[i].kva, dma_pa);
1141 			} else
1142 				kfree(mem_info->mdl[i].kva);
1143 		}
1144 	}
1145 	kfree(mem_info->mdl);
1146 	mem_info->mdl = NULL;
1147 }
1148 
1149 static int
1150 bnad_mem_alloc(struct bnad *bnad,
1151 	       struct bna_mem_info *mem_info)
1152 {
1153 	int i;
1154 	dma_addr_t dma_pa;
1155 
1156 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1157 		mem_info->mdl = NULL;
1158 		return 0;
1159 	}
1160 
1161 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1162 				GFP_KERNEL);
1163 	if (mem_info->mdl == NULL)
1164 		return -ENOMEM;
1165 
1166 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1167 		for (i = 0; i < mem_info->num; i++) {
1168 			mem_info->mdl[i].len = mem_info->len;
1169 			mem_info->mdl[i].kva =
1170 				dma_alloc_coherent(&bnad->pcidev->dev,
1171 						mem_info->len, &dma_pa,
1172 						GFP_KERNEL);
1173 
1174 			if (mem_info->mdl[i].kva == NULL)
1175 				goto err_return;
1176 
1177 			BNA_SET_DMA_ADDR(dma_pa,
1178 					 &(mem_info->mdl[i].dma));
1179 		}
1180 	} else {
1181 		for (i = 0; i < mem_info->num; i++) {
1182 			mem_info->mdl[i].len = mem_info->len;
1183 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1184 							GFP_KERNEL);
1185 			if (mem_info->mdl[i].kva == NULL)
1186 				goto err_return;
1187 		}
1188 	}
1189 
1190 	return 0;
1191 
1192 err_return:
1193 	bnad_mem_free(bnad, mem_info);
1194 	return -ENOMEM;
1195 }
1196 
1197 /* Free IRQ for Mailbox */
1198 static void
1199 bnad_mbox_irq_free(struct bnad *bnad)
1200 {
1201 	int irq;
1202 	unsigned long flags;
1203 
1204 	spin_lock_irqsave(&bnad->bna_lock, flags);
1205 	bnad_disable_mbox_irq(bnad);
1206 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1207 
1208 	irq = BNAD_GET_MBOX_IRQ(bnad);
1209 	free_irq(irq, bnad);
1210 }
1211 
1212 /*
1213  * Allocates IRQ for Mailbox, but keep it disabled
1214  * This will be enabled once we get the mbox enable callback
1215  * from bna
1216  */
1217 static int
1218 bnad_mbox_irq_alloc(struct bnad *bnad)
1219 {
1220 	int		err = 0;
1221 	unsigned long	irq_flags, flags;
1222 	u32	irq;
1223 	irq_handler_t	irq_handler;
1224 
1225 	spin_lock_irqsave(&bnad->bna_lock, flags);
1226 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1227 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1228 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1229 		irq_flags = 0;
1230 	} else {
1231 		irq_handler = (irq_handler_t)bnad_isr;
1232 		irq = bnad->pcidev->irq;
1233 		irq_flags = IRQF_SHARED;
1234 	}
1235 
1236 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1237 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1238 
1239 	/*
1240 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1241 	 * called from request_irq() for SHARED IRQs do not execute
1242 	 */
1243 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1244 
1245 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1246 
1247 	err = request_irq(irq, irq_handler, irq_flags,
1248 			  bnad->mbox_irq_name, bnad);
1249 
1250 	return err;
1251 }
1252 
1253 static void
1254 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1255 {
1256 	kfree(intr_info->idl);
1257 	intr_info->idl = NULL;
1258 }
1259 
1260 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1261 static int
1262 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1263 		    u32 txrx_id, struct bna_intr_info *intr_info)
1264 {
1265 	int i, vector_start = 0;
1266 	u32 cfg_flags;
1267 	unsigned long flags;
1268 
1269 	spin_lock_irqsave(&bnad->bna_lock, flags);
1270 	cfg_flags = bnad->cfg_flags;
1271 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1272 
1273 	if (cfg_flags & BNAD_CF_MSIX) {
1274 		intr_info->intr_type = BNA_INTR_T_MSIX;
1275 		intr_info->idl = kcalloc(intr_info->num,
1276 					sizeof(struct bna_intr_descr),
1277 					GFP_KERNEL);
1278 		if (!intr_info->idl)
1279 			return -ENOMEM;
1280 
1281 		switch (src) {
1282 		case BNAD_INTR_TX:
1283 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1284 			break;
1285 
1286 		case BNAD_INTR_RX:
1287 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1288 					(bnad->num_tx * bnad->num_txq_per_tx) +
1289 					txrx_id;
1290 			break;
1291 
1292 		default:
1293 			BUG();
1294 		}
1295 
1296 		for (i = 0; i < intr_info->num; i++)
1297 			intr_info->idl[i].vector = vector_start + i;
1298 	} else {
1299 		intr_info->intr_type = BNA_INTR_T_INTX;
1300 		intr_info->num = 1;
1301 		intr_info->idl = kcalloc(intr_info->num,
1302 					sizeof(struct bna_intr_descr),
1303 					GFP_KERNEL);
1304 		if (!intr_info->idl)
1305 			return -ENOMEM;
1306 
1307 		switch (src) {
1308 		case BNAD_INTR_TX:
1309 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1310 			break;
1311 
1312 		case BNAD_INTR_RX:
1313 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1314 			break;
1315 		}
1316 	}
1317 	return 0;
1318 }
1319 
1320 /**
1321  * NOTE: Should be called for MSIX only
1322  * Unregisters Tx MSIX vector(s) from the kernel
1323  */
1324 static void
1325 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1326 			int num_txqs)
1327 {
1328 	int i;
1329 	int vector_num;
1330 
1331 	for (i = 0; i < num_txqs; i++) {
1332 		if (tx_info->tcb[i] == NULL)
1333 			continue;
1334 
1335 		vector_num = tx_info->tcb[i]->intr_vector;
1336 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1337 	}
1338 }
1339 
1340 /**
1341  * NOTE: Should be called for MSIX only
1342  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1343  */
1344 static int
1345 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1346 			u32 tx_id, int num_txqs)
1347 {
1348 	int i;
1349 	int err;
1350 	int vector_num;
1351 
1352 	for (i = 0; i < num_txqs; i++) {
1353 		vector_num = tx_info->tcb[i]->intr_vector;
1354 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1355 				tx_id + tx_info->tcb[i]->id);
1356 		err = request_irq(bnad->msix_table[vector_num].vector,
1357 				  (irq_handler_t)bnad_msix_tx, 0,
1358 				  tx_info->tcb[i]->name,
1359 				  tx_info->tcb[i]);
1360 		if (err)
1361 			goto err_return;
1362 	}
1363 
1364 	return 0;
1365 
1366 err_return:
1367 	if (i > 0)
1368 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1369 	return -1;
1370 }
1371 
1372 /**
1373  * NOTE: Should be called for MSIX only
1374  * Unregisters Rx MSIX vector(s) from the kernel
1375  */
1376 static void
1377 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1378 			int num_rxps)
1379 {
1380 	int i;
1381 	int vector_num;
1382 
1383 	for (i = 0; i < num_rxps; i++) {
1384 		if (rx_info->rx_ctrl[i].ccb == NULL)
1385 			continue;
1386 
1387 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1388 		free_irq(bnad->msix_table[vector_num].vector,
1389 			 rx_info->rx_ctrl[i].ccb);
1390 	}
1391 }
1392 
1393 /**
1394  * NOTE: Should be called for MSIX only
1395  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1396  */
1397 static int
1398 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1399 			u32 rx_id, int num_rxps)
1400 {
1401 	int i;
1402 	int err;
1403 	int vector_num;
1404 
1405 	for (i = 0; i < num_rxps; i++) {
1406 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1407 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1408 			bnad->netdev->name,
1409 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1410 		err = request_irq(bnad->msix_table[vector_num].vector,
1411 				  (irq_handler_t)bnad_msix_rx, 0,
1412 				  rx_info->rx_ctrl[i].ccb->name,
1413 				  rx_info->rx_ctrl[i].ccb);
1414 		if (err)
1415 			goto err_return;
1416 	}
1417 
1418 	return 0;
1419 
1420 err_return:
1421 	if (i > 0)
1422 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1423 	return -1;
1424 }
1425 
1426 /* Free Tx object Resources */
1427 static void
1428 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1429 {
1430 	int i;
1431 
1432 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1433 		if (res_info[i].res_type == BNA_RES_T_MEM)
1434 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1435 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1436 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1437 	}
1438 }
1439 
1440 /* Allocates memory and interrupt resources for Tx object */
1441 static int
1442 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1443 		  u32 tx_id)
1444 {
1445 	int i, err = 0;
1446 
1447 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1448 		if (res_info[i].res_type == BNA_RES_T_MEM)
1449 			err = bnad_mem_alloc(bnad,
1450 					&res_info[i].res_u.mem_info);
1451 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1452 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1453 					&res_info[i].res_u.intr_info);
1454 		if (err)
1455 			goto err_return;
1456 	}
1457 	return 0;
1458 
1459 err_return:
1460 	bnad_tx_res_free(bnad, res_info);
1461 	return err;
1462 }
1463 
1464 /* Free Rx object Resources */
1465 static void
1466 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1467 {
1468 	int i;
1469 
1470 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1471 		if (res_info[i].res_type == BNA_RES_T_MEM)
1472 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1473 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1474 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1475 	}
1476 }
1477 
1478 /* Allocates memory and interrupt resources for Rx object */
1479 static int
1480 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1481 		  uint rx_id)
1482 {
1483 	int i, err = 0;
1484 
1485 	/* All memory needs to be allocated before setup_ccbs */
1486 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1487 		if (res_info[i].res_type == BNA_RES_T_MEM)
1488 			err = bnad_mem_alloc(bnad,
1489 					&res_info[i].res_u.mem_info);
1490 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1491 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1492 					&res_info[i].res_u.intr_info);
1493 		if (err)
1494 			goto err_return;
1495 	}
1496 	return 0;
1497 
1498 err_return:
1499 	bnad_rx_res_free(bnad, res_info);
1500 	return err;
1501 }
1502 
1503 /* Timer callbacks */
1504 /* a) IOC timer */
1505 static void
1506 bnad_ioc_timeout(unsigned long data)
1507 {
1508 	struct bnad *bnad = (struct bnad *)data;
1509 	unsigned long flags;
1510 
1511 	spin_lock_irqsave(&bnad->bna_lock, flags);
1512 	bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1513 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1514 }
1515 
1516 static void
1517 bnad_ioc_hb_check(unsigned long data)
1518 {
1519 	struct bnad *bnad = (struct bnad *)data;
1520 	unsigned long flags;
1521 
1522 	spin_lock_irqsave(&bnad->bna_lock, flags);
1523 	bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1524 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1525 }
1526 
1527 static void
1528 bnad_iocpf_timeout(unsigned long data)
1529 {
1530 	struct bnad *bnad = (struct bnad *)data;
1531 	unsigned long flags;
1532 
1533 	spin_lock_irqsave(&bnad->bna_lock, flags);
1534 	bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1535 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1536 }
1537 
1538 static void
1539 bnad_iocpf_sem_timeout(unsigned long data)
1540 {
1541 	struct bnad *bnad = (struct bnad *)data;
1542 	unsigned long flags;
1543 
1544 	spin_lock_irqsave(&bnad->bna_lock, flags);
1545 	bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1546 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1547 }
1548 
1549 /*
1550  * All timer routines use bnad->bna_lock to protect against
1551  * the following race, which may occur in case of no locking:
1552  *	Time	CPU m	CPU n
1553  *	0       1 = test_bit
1554  *	1			clear_bit
1555  *	2			del_timer_sync
1556  *	3	mod_timer
1557  */
1558 
1559 /* b) Dynamic Interrupt Moderation Timer */
1560 static void
1561 bnad_dim_timeout(unsigned long data)
1562 {
1563 	struct bnad *bnad = (struct bnad *)data;
1564 	struct bnad_rx_info *rx_info;
1565 	struct bnad_rx_ctrl *rx_ctrl;
1566 	int i, j;
1567 	unsigned long flags;
1568 
1569 	if (!netif_carrier_ok(bnad->netdev))
1570 		return;
1571 
1572 	spin_lock_irqsave(&bnad->bna_lock, flags);
1573 	for (i = 0; i < bnad->num_rx; i++) {
1574 		rx_info = &bnad->rx_info[i];
1575 		if (!rx_info->rx)
1576 			continue;
1577 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1578 			rx_ctrl = &rx_info->rx_ctrl[j];
1579 			if (!rx_ctrl->ccb)
1580 				continue;
1581 			bna_rx_dim_update(rx_ctrl->ccb);
1582 		}
1583 	}
1584 
1585 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1586 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1587 		mod_timer(&bnad->dim_timer,
1588 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1589 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1590 }
1591 
1592 /* c)  Statistics Timer */
1593 static void
1594 bnad_stats_timeout(unsigned long data)
1595 {
1596 	struct bnad *bnad = (struct bnad *)data;
1597 	unsigned long flags;
1598 
1599 	if (!netif_running(bnad->netdev) ||
1600 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1601 		return;
1602 
1603 	spin_lock_irqsave(&bnad->bna_lock, flags);
1604 	bna_hw_stats_get(&bnad->bna);
1605 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1606 }
1607 
1608 /*
1609  * Set up timer for DIM
1610  * Called with bnad->bna_lock held
1611  */
1612 void
1613 bnad_dim_timer_start(struct bnad *bnad)
1614 {
1615 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1616 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1617 		setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1618 			    (unsigned long)bnad);
1619 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1620 		mod_timer(&bnad->dim_timer,
1621 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1622 	}
1623 }
1624 
1625 /*
1626  * Set up timer for statistics
1627  * Called with mutex_lock(&bnad->conf_mutex) held
1628  */
1629 static void
1630 bnad_stats_timer_start(struct bnad *bnad)
1631 {
1632 	unsigned long flags;
1633 
1634 	spin_lock_irqsave(&bnad->bna_lock, flags);
1635 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1636 		setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1637 			    (unsigned long)bnad);
1638 		mod_timer(&bnad->stats_timer,
1639 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1640 	}
1641 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1642 }
1643 
1644 /*
1645  * Stops the stats timer
1646  * Called with mutex_lock(&bnad->conf_mutex) held
1647  */
1648 static void
1649 bnad_stats_timer_stop(struct bnad *bnad)
1650 {
1651 	int to_del = 0;
1652 	unsigned long flags;
1653 
1654 	spin_lock_irqsave(&bnad->bna_lock, flags);
1655 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1656 		to_del = 1;
1657 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1658 	if (to_del)
1659 		del_timer_sync(&bnad->stats_timer);
1660 }
1661 
1662 /* Utilities */
1663 
1664 static void
1665 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1666 {
1667 	int i = 1; /* Index 0 has broadcast address */
1668 	struct netdev_hw_addr *mc_addr;
1669 
1670 	netdev_for_each_mc_addr(mc_addr, netdev) {
1671 		memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1672 							ETH_ALEN);
1673 		i++;
1674 	}
1675 }
1676 
1677 static int
1678 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1679 {
1680 	struct bnad_rx_ctrl *rx_ctrl =
1681 		container_of(napi, struct bnad_rx_ctrl, napi);
1682 	struct bnad *bnad = rx_ctrl->bnad;
1683 	int rcvd = 0;
1684 
1685 	rx_ctrl->rx_poll_ctr++;
1686 
1687 	if (!netif_carrier_ok(bnad->netdev))
1688 		goto poll_exit;
1689 
1690 	rcvd = bnad_poll_cq(bnad, rx_ctrl->ccb, budget);
1691 	if (rcvd >= budget)
1692 		return rcvd;
1693 
1694 poll_exit:
1695 	napi_complete(napi);
1696 
1697 	rx_ctrl->rx_complete++;
1698 
1699 	if (rx_ctrl->ccb)
1700 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1701 
1702 	return rcvd;
1703 }
1704 
1705 #define BNAD_NAPI_POLL_QUOTA		64
1706 static void
1707 bnad_napi_init(struct bnad *bnad, u32 rx_id)
1708 {
1709 	struct bnad_rx_ctrl *rx_ctrl;
1710 	int i;
1711 
1712 	/* Initialize & enable NAPI */
1713 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1714 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1715 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1716 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1717 	}
1718 }
1719 
1720 static void
1721 bnad_napi_enable(struct bnad *bnad, u32 rx_id)
1722 {
1723 	struct bnad_rx_ctrl *rx_ctrl;
1724 	int i;
1725 
1726 	/* Initialize & enable NAPI */
1727 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1728 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1729 
1730 		napi_enable(&rx_ctrl->napi);
1731 	}
1732 }
1733 
1734 static void
1735 bnad_napi_disable(struct bnad *bnad, u32 rx_id)
1736 {
1737 	int i;
1738 
1739 	/* First disable and then clean up */
1740 	for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1741 		napi_disable(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1742 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1743 	}
1744 }
1745 
1746 /* Should be held with conf_lock held */
1747 void
1748 bnad_cleanup_tx(struct bnad *bnad, u32 tx_id)
1749 {
1750 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1751 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1752 	unsigned long flags;
1753 
1754 	if (!tx_info->tx)
1755 		return;
1756 
1757 	init_completion(&bnad->bnad_completions.tx_comp);
1758 	spin_lock_irqsave(&bnad->bna_lock, flags);
1759 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1760 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1761 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1762 
1763 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1764 		bnad_tx_msix_unregister(bnad, tx_info,
1765 			bnad->num_txq_per_tx);
1766 
1767 	if (0 == tx_id)
1768 		tasklet_kill(&bnad->tx_free_tasklet);
1769 
1770 	spin_lock_irqsave(&bnad->bna_lock, flags);
1771 	bna_tx_destroy(tx_info->tx);
1772 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1773 
1774 	tx_info->tx = NULL;
1775 	tx_info->tx_id = 0;
1776 
1777 	bnad_tx_res_free(bnad, res_info);
1778 }
1779 
1780 /* Should be held with conf_lock held */
1781 int
1782 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1783 {
1784 	int err;
1785 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1786 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1787 	struct bna_intr_info *intr_info =
1788 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1789 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1790 	static const struct bna_tx_event_cbfn tx_cbfn = {
1791 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1792 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1793 		.tx_stall_cbfn = bnad_cb_tx_stall,
1794 		.tx_resume_cbfn = bnad_cb_tx_resume,
1795 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1796 	};
1797 
1798 	struct bna_tx *tx;
1799 	unsigned long flags;
1800 
1801 	tx_info->tx_id = tx_id;
1802 
1803 	/* Initialize the Tx object configuration */
1804 	tx_config->num_txq = bnad->num_txq_per_tx;
1805 	tx_config->txq_depth = bnad->txq_depth;
1806 	tx_config->tx_type = BNA_TX_T_REGULAR;
1807 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1808 
1809 	/* Get BNA's resource requirement for one tx object */
1810 	spin_lock_irqsave(&bnad->bna_lock, flags);
1811 	bna_tx_res_req(bnad->num_txq_per_tx,
1812 		bnad->txq_depth, res_info);
1813 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1814 
1815 	/* Fill Unmap Q memory requirements */
1816 	BNAD_FILL_UNMAPQ_MEM_REQ(
1817 			&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1818 			bnad->num_txq_per_tx,
1819 			BNAD_TX_UNMAPQ_DEPTH);
1820 
1821 	/* Allocate resources */
1822 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1823 	if (err)
1824 		return err;
1825 
1826 	/* Ask BNA to create one Tx object, supplying required resources */
1827 	spin_lock_irqsave(&bnad->bna_lock, flags);
1828 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1829 			tx_info);
1830 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1831 	if (!tx)
1832 		goto err_return;
1833 	tx_info->tx = tx;
1834 
1835 	/* Register ISR for the Tx object */
1836 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1837 		err = bnad_tx_msix_register(bnad, tx_info,
1838 			tx_id, bnad->num_txq_per_tx);
1839 		if (err)
1840 			goto err_return;
1841 	}
1842 
1843 	spin_lock_irqsave(&bnad->bna_lock, flags);
1844 	bna_tx_enable(tx);
1845 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1846 
1847 	return 0;
1848 
1849 err_return:
1850 	bnad_tx_res_free(bnad, res_info);
1851 	return err;
1852 }
1853 
1854 /* Setup the rx config for bna_rx_create */
1855 /* bnad decides the configuration */
1856 static void
1857 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1858 {
1859 	rx_config->rx_type = BNA_RX_T_REGULAR;
1860 	rx_config->num_paths = bnad->num_rxp_per_rx;
1861 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
1862 
1863 	if (bnad->num_rxp_per_rx > 1) {
1864 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
1865 		rx_config->rss_config.hash_type =
1866 				(BFI_ENET_RSS_IPV6 |
1867 				 BFI_ENET_RSS_IPV6_TCP |
1868 				 BFI_ENET_RSS_IPV4 |
1869 				 BFI_ENET_RSS_IPV4_TCP);
1870 		rx_config->rss_config.hash_mask =
1871 				bnad->num_rxp_per_rx - 1;
1872 		get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1873 			sizeof(rx_config->rss_config.toeplitz_hash_key));
1874 	} else {
1875 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
1876 		memset(&rx_config->rss_config, 0,
1877 		       sizeof(rx_config->rss_config));
1878 	}
1879 	rx_config->rxp_type = BNA_RXP_SLR;
1880 	rx_config->q_depth = bnad->rxq_depth;
1881 
1882 	rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1883 
1884 	rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1885 }
1886 
1887 static void
1888 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
1889 {
1890 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1891 	int i;
1892 
1893 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1894 		rx_info->rx_ctrl[i].bnad = bnad;
1895 }
1896 
1897 /* Called with mutex_lock(&bnad->conf_mutex) held */
1898 void
1899 bnad_cleanup_rx(struct bnad *bnad, u32 rx_id)
1900 {
1901 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1902 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1903 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1904 	unsigned long flags;
1905 	int to_del = 0;
1906 
1907 	if (!rx_info->rx)
1908 		return;
1909 
1910 	if (0 == rx_id) {
1911 		spin_lock_irqsave(&bnad->bna_lock, flags);
1912 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1913 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1914 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1915 			to_del = 1;
1916 		}
1917 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
1918 		if (to_del)
1919 			del_timer_sync(&bnad->dim_timer);
1920 	}
1921 
1922 	init_completion(&bnad->bnad_completions.rx_comp);
1923 	spin_lock_irqsave(&bnad->bna_lock, flags);
1924 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1925 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1926 	wait_for_completion(&bnad->bnad_completions.rx_comp);
1927 
1928 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
1929 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
1930 
1931 	bnad_napi_disable(bnad, rx_id);
1932 
1933 	spin_lock_irqsave(&bnad->bna_lock, flags);
1934 	bna_rx_destroy(rx_info->rx);
1935 
1936 	rx_info->rx = NULL;
1937 	rx_info->rx_id = 0;
1938 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1939 
1940 	bnad_rx_res_free(bnad, res_info);
1941 }
1942 
1943 /* Called with mutex_lock(&bnad->conf_mutex) held */
1944 int
1945 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
1946 {
1947 	int err;
1948 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1949 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1950 	struct bna_intr_info *intr_info =
1951 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
1952 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1953 	static const struct bna_rx_event_cbfn rx_cbfn = {
1954 		.rcb_setup_cbfn = bnad_cb_rcb_setup,
1955 		.rcb_destroy_cbfn = bnad_cb_rcb_destroy,
1956 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
1957 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
1958 		.rx_stall_cbfn = bnad_cb_rx_stall,
1959 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
1960 		.rx_post_cbfn = bnad_cb_rx_post,
1961 	};
1962 	struct bna_rx *rx;
1963 	unsigned long flags;
1964 
1965 	rx_info->rx_id = rx_id;
1966 
1967 	/* Initialize the Rx object configuration */
1968 	bnad_init_rx_config(bnad, rx_config);
1969 
1970 	/* Get BNA's resource requirement for one Rx object */
1971 	spin_lock_irqsave(&bnad->bna_lock, flags);
1972 	bna_rx_res_req(rx_config, res_info);
1973 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1974 
1975 	/* Fill Unmap Q memory requirements */
1976 	BNAD_FILL_UNMAPQ_MEM_REQ(
1977 			&res_info[BNA_RX_RES_MEM_T_UNMAPQ],
1978 			rx_config->num_paths +
1979 			((rx_config->rxp_type == BNA_RXP_SINGLE) ? 0 :
1980 				rx_config->num_paths), BNAD_RX_UNMAPQ_DEPTH);
1981 
1982 	/* Allocate resource */
1983 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
1984 	if (err)
1985 		return err;
1986 
1987 	bnad_rx_ctrl_init(bnad, rx_id);
1988 
1989 	/* Ask BNA to create one Rx object, supplying required resources */
1990 	spin_lock_irqsave(&bnad->bna_lock, flags);
1991 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
1992 			rx_info);
1993 	if (!rx) {
1994 		err = -ENOMEM;
1995 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
1996 		goto err_return;
1997 	}
1998 	rx_info->rx = rx;
1999 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2000 
2001 	/*
2002 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2003 	 * so that IRQ handler cannot schedule NAPI at this point.
2004 	 */
2005 	bnad_napi_init(bnad, rx_id);
2006 
2007 	/* Register ISR for the Rx object */
2008 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2009 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2010 						rx_config->num_paths);
2011 		if (err)
2012 			goto err_return;
2013 	}
2014 
2015 	spin_lock_irqsave(&bnad->bna_lock, flags);
2016 	if (0 == rx_id) {
2017 		/* Set up Dynamic Interrupt Moderation Vector */
2018 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2019 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2020 
2021 		/* Enable VLAN filtering only on the default Rx */
2022 		bna_rx_vlanfilter_enable(rx);
2023 
2024 		/* Start the DIM timer */
2025 		bnad_dim_timer_start(bnad);
2026 	}
2027 
2028 	bna_rx_enable(rx);
2029 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2030 
2031 	/* Enable scheduling of NAPI */
2032 	bnad_napi_enable(bnad, rx_id);
2033 
2034 	return 0;
2035 
2036 err_return:
2037 	bnad_cleanup_rx(bnad, rx_id);
2038 	return err;
2039 }
2040 
2041 /* Called with conf_lock & bnad->bna_lock held */
2042 void
2043 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2044 {
2045 	struct bnad_tx_info *tx_info;
2046 
2047 	tx_info = &bnad->tx_info[0];
2048 	if (!tx_info->tx)
2049 		return;
2050 
2051 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2052 }
2053 
2054 /* Called with conf_lock & bnad->bna_lock held */
2055 void
2056 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2057 {
2058 	struct bnad_rx_info *rx_info;
2059 	int	i;
2060 
2061 	for (i = 0; i < bnad->num_rx; i++) {
2062 		rx_info = &bnad->rx_info[i];
2063 		if (!rx_info->rx)
2064 			continue;
2065 		bna_rx_coalescing_timeo_set(rx_info->rx,
2066 				bnad->rx_coalescing_timeo);
2067 	}
2068 }
2069 
2070 /*
2071  * Called with bnad->bna_lock held
2072  */
2073 int
2074 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2075 {
2076 	int ret;
2077 
2078 	if (!is_valid_ether_addr(mac_addr))
2079 		return -EADDRNOTAVAIL;
2080 
2081 	/* If datapath is down, pretend everything went through */
2082 	if (!bnad->rx_info[0].rx)
2083 		return 0;
2084 
2085 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2086 	if (ret != BNA_CB_SUCCESS)
2087 		return -EADDRNOTAVAIL;
2088 
2089 	return 0;
2090 }
2091 
2092 /* Should be called with conf_lock held */
2093 int
2094 bnad_enable_default_bcast(struct bnad *bnad)
2095 {
2096 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2097 	int ret;
2098 	unsigned long flags;
2099 
2100 	init_completion(&bnad->bnad_completions.mcast_comp);
2101 
2102 	spin_lock_irqsave(&bnad->bna_lock, flags);
2103 	ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2104 				bnad_cb_rx_mcast_add);
2105 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2106 
2107 	if (ret == BNA_CB_SUCCESS)
2108 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2109 	else
2110 		return -ENODEV;
2111 
2112 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2113 		return -ENODEV;
2114 
2115 	return 0;
2116 }
2117 
2118 /* Called with mutex_lock(&bnad->conf_mutex) held */
2119 void
2120 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2121 {
2122 	u16 vid;
2123 	unsigned long flags;
2124 
2125 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2126 		spin_lock_irqsave(&bnad->bna_lock, flags);
2127 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2128 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2129 	}
2130 }
2131 
2132 /* Statistics utilities */
2133 void
2134 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2135 {
2136 	int i, j;
2137 
2138 	for (i = 0; i < bnad->num_rx; i++) {
2139 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2140 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2141 				stats->rx_packets += bnad->rx_info[i].
2142 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2143 				stats->rx_bytes += bnad->rx_info[i].
2144 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2145 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2146 					bnad->rx_info[i].rx_ctrl[j].ccb->
2147 					rcb[1]->rxq) {
2148 					stats->rx_packets +=
2149 						bnad->rx_info[i].rx_ctrl[j].
2150 						ccb->rcb[1]->rxq->rx_packets;
2151 					stats->rx_bytes +=
2152 						bnad->rx_info[i].rx_ctrl[j].
2153 						ccb->rcb[1]->rxq->rx_bytes;
2154 				}
2155 			}
2156 		}
2157 	}
2158 	for (i = 0; i < bnad->num_tx; i++) {
2159 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2160 			if (bnad->tx_info[i].tcb[j]) {
2161 				stats->tx_packets +=
2162 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2163 				stats->tx_bytes +=
2164 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2165 			}
2166 		}
2167 	}
2168 }
2169 
2170 /*
2171  * Must be called with the bna_lock held.
2172  */
2173 void
2174 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2175 {
2176 	struct bfi_enet_stats_mac *mac_stats;
2177 	u32 bmap;
2178 	int i;
2179 
2180 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2181 	stats->rx_errors =
2182 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2183 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2184 		mac_stats->rx_undersize;
2185 	stats->tx_errors = mac_stats->tx_fcs_error +
2186 					mac_stats->tx_undersize;
2187 	stats->rx_dropped = mac_stats->rx_drop;
2188 	stats->tx_dropped = mac_stats->tx_drop;
2189 	stats->multicast = mac_stats->rx_multicast;
2190 	stats->collisions = mac_stats->tx_total_collision;
2191 
2192 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2193 
2194 	/* receive ring buffer overflow  ?? */
2195 
2196 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2197 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2198 	/* recv'r fifo overrun */
2199 	bmap = bna_rx_rid_mask(&bnad->bna);
2200 	for (i = 0; bmap; i++) {
2201 		if (bmap & 1) {
2202 			stats->rx_fifo_errors +=
2203 				bnad->stats.bna_stats->
2204 					hw_stats.rxf_stats[i].frame_drops;
2205 			break;
2206 		}
2207 		bmap >>= 1;
2208 	}
2209 }
2210 
2211 static void
2212 bnad_mbox_irq_sync(struct bnad *bnad)
2213 {
2214 	u32 irq;
2215 	unsigned long flags;
2216 
2217 	spin_lock_irqsave(&bnad->bna_lock, flags);
2218 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2219 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2220 	else
2221 		irq = bnad->pcidev->irq;
2222 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2223 
2224 	synchronize_irq(irq);
2225 }
2226 
2227 /* Utility used by bnad_start_xmit, for doing TSO */
2228 static int
2229 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2230 {
2231 	int err;
2232 
2233 	if (skb_header_cloned(skb)) {
2234 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2235 		if (err) {
2236 			BNAD_UPDATE_CTR(bnad, tso_err);
2237 			return err;
2238 		}
2239 	}
2240 
2241 	/*
2242 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2243 	 * excluding the length field.
2244 	 */
2245 	if (skb->protocol == htons(ETH_P_IP)) {
2246 		struct iphdr *iph = ip_hdr(skb);
2247 
2248 		/* Do we really need these? */
2249 		iph->tot_len = 0;
2250 		iph->check = 0;
2251 
2252 		tcp_hdr(skb)->check =
2253 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2254 					   IPPROTO_TCP, 0);
2255 		BNAD_UPDATE_CTR(bnad, tso4);
2256 	} else {
2257 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2258 
2259 		ipv6h->payload_len = 0;
2260 		tcp_hdr(skb)->check =
2261 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2262 					 IPPROTO_TCP, 0);
2263 		BNAD_UPDATE_CTR(bnad, tso6);
2264 	}
2265 
2266 	return 0;
2267 }
2268 
2269 /*
2270  * Initialize Q numbers depending on Rx Paths
2271  * Called with bnad->bna_lock held, because of cfg_flags
2272  * access.
2273  */
2274 static void
2275 bnad_q_num_init(struct bnad *bnad)
2276 {
2277 	int rxps;
2278 
2279 	rxps = min((uint)num_online_cpus(),
2280 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2281 
2282 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2283 		rxps = 1;	/* INTx */
2284 
2285 	bnad->num_rx = 1;
2286 	bnad->num_tx = 1;
2287 	bnad->num_rxp_per_rx = rxps;
2288 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2289 }
2290 
2291 /*
2292  * Adjusts the Q numbers, given a number of msix vectors
2293  * Give preference to RSS as opposed to Tx priority Queues,
2294  * in such a case, just use 1 Tx Q
2295  * Called with bnad->bna_lock held b'cos of cfg_flags access
2296  */
2297 static void
2298 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2299 {
2300 	bnad->num_txq_per_tx = 1;
2301 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2302 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2303 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2304 		bnad->num_rxp_per_rx = msix_vectors -
2305 			(bnad->num_tx * bnad->num_txq_per_tx) -
2306 			BNAD_MAILBOX_MSIX_VECTORS;
2307 	} else
2308 		bnad->num_rxp_per_rx = 1;
2309 }
2310 
2311 /* Enable / disable ioceth */
2312 static int
2313 bnad_ioceth_disable(struct bnad *bnad)
2314 {
2315 	unsigned long flags;
2316 	int err = 0;
2317 
2318 	spin_lock_irqsave(&bnad->bna_lock, flags);
2319 	init_completion(&bnad->bnad_completions.ioc_comp);
2320 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2321 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2322 
2323 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2324 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2325 
2326 	err = bnad->bnad_completions.ioc_comp_status;
2327 	return err;
2328 }
2329 
2330 static int
2331 bnad_ioceth_enable(struct bnad *bnad)
2332 {
2333 	int err = 0;
2334 	unsigned long flags;
2335 
2336 	spin_lock_irqsave(&bnad->bna_lock, flags);
2337 	init_completion(&bnad->bnad_completions.ioc_comp);
2338 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2339 	bna_ioceth_enable(&bnad->bna.ioceth);
2340 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2341 
2342 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2343 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2344 
2345 	err = bnad->bnad_completions.ioc_comp_status;
2346 
2347 	return err;
2348 }
2349 
2350 /* Free BNA resources */
2351 static void
2352 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2353 		u32 res_val_max)
2354 {
2355 	int i;
2356 
2357 	for (i = 0; i < res_val_max; i++)
2358 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2359 }
2360 
2361 /* Allocates memory and interrupt resources for BNA */
2362 static int
2363 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2364 		u32 res_val_max)
2365 {
2366 	int i, err;
2367 
2368 	for (i = 0; i < res_val_max; i++) {
2369 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2370 		if (err)
2371 			goto err_return;
2372 	}
2373 	return 0;
2374 
2375 err_return:
2376 	bnad_res_free(bnad, res_info, res_val_max);
2377 	return err;
2378 }
2379 
2380 /* Interrupt enable / disable */
2381 static void
2382 bnad_enable_msix(struct bnad *bnad)
2383 {
2384 	int i, ret;
2385 	unsigned long flags;
2386 
2387 	spin_lock_irqsave(&bnad->bna_lock, flags);
2388 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2389 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2390 		return;
2391 	}
2392 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2393 
2394 	if (bnad->msix_table)
2395 		return;
2396 
2397 	bnad->msix_table =
2398 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2399 
2400 	if (!bnad->msix_table)
2401 		goto intx_mode;
2402 
2403 	for (i = 0; i < bnad->msix_num; i++)
2404 		bnad->msix_table[i].entry = i;
2405 
2406 	ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2407 	if (ret > 0) {
2408 		/* Not enough MSI-X vectors. */
2409 		pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2410 			ret, bnad->msix_num);
2411 
2412 		spin_lock_irqsave(&bnad->bna_lock, flags);
2413 		/* ret = #of vectors that we got */
2414 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2415 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2416 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2417 
2418 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2419 			 BNAD_MAILBOX_MSIX_VECTORS;
2420 
2421 		if (bnad->msix_num > ret)
2422 			goto intx_mode;
2423 
2424 		/* Try once more with adjusted numbers */
2425 		/* If this fails, fall back to INTx */
2426 		ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2427 				      bnad->msix_num);
2428 		if (ret)
2429 			goto intx_mode;
2430 
2431 	} else if (ret < 0)
2432 		goto intx_mode;
2433 
2434 	pci_intx(bnad->pcidev, 0);
2435 
2436 	return;
2437 
2438 intx_mode:
2439 	pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2440 
2441 	kfree(bnad->msix_table);
2442 	bnad->msix_table = NULL;
2443 	bnad->msix_num = 0;
2444 	spin_lock_irqsave(&bnad->bna_lock, flags);
2445 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2446 	bnad_q_num_init(bnad);
2447 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2448 }
2449 
2450 static void
2451 bnad_disable_msix(struct bnad *bnad)
2452 {
2453 	u32 cfg_flags;
2454 	unsigned long flags;
2455 
2456 	spin_lock_irqsave(&bnad->bna_lock, flags);
2457 	cfg_flags = bnad->cfg_flags;
2458 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2459 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2460 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2461 
2462 	if (cfg_flags & BNAD_CF_MSIX) {
2463 		pci_disable_msix(bnad->pcidev);
2464 		kfree(bnad->msix_table);
2465 		bnad->msix_table = NULL;
2466 	}
2467 }
2468 
2469 /* Netdev entry points */
2470 static int
2471 bnad_open(struct net_device *netdev)
2472 {
2473 	int err;
2474 	struct bnad *bnad = netdev_priv(netdev);
2475 	struct bna_pause_config pause_config;
2476 	int mtu;
2477 	unsigned long flags;
2478 
2479 	mutex_lock(&bnad->conf_mutex);
2480 
2481 	/* Tx */
2482 	err = bnad_setup_tx(bnad, 0);
2483 	if (err)
2484 		goto err_return;
2485 
2486 	/* Rx */
2487 	err = bnad_setup_rx(bnad, 0);
2488 	if (err)
2489 		goto cleanup_tx;
2490 
2491 	/* Port */
2492 	pause_config.tx_pause = 0;
2493 	pause_config.rx_pause = 0;
2494 
2495 	mtu = ETH_HLEN + VLAN_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2496 
2497 	spin_lock_irqsave(&bnad->bna_lock, flags);
2498 	bna_enet_mtu_set(&bnad->bna.enet, mtu, NULL);
2499 	bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2500 	bna_enet_enable(&bnad->bna.enet);
2501 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2502 
2503 	/* Enable broadcast */
2504 	bnad_enable_default_bcast(bnad);
2505 
2506 	/* Restore VLANs, if any */
2507 	bnad_restore_vlans(bnad, 0);
2508 
2509 	/* Set the UCAST address */
2510 	spin_lock_irqsave(&bnad->bna_lock, flags);
2511 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2512 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2513 
2514 	/* Start the stats timer */
2515 	bnad_stats_timer_start(bnad);
2516 
2517 	mutex_unlock(&bnad->conf_mutex);
2518 
2519 	return 0;
2520 
2521 cleanup_tx:
2522 	bnad_cleanup_tx(bnad, 0);
2523 
2524 err_return:
2525 	mutex_unlock(&bnad->conf_mutex);
2526 	return err;
2527 }
2528 
2529 static int
2530 bnad_stop(struct net_device *netdev)
2531 {
2532 	struct bnad *bnad = netdev_priv(netdev);
2533 	unsigned long flags;
2534 
2535 	mutex_lock(&bnad->conf_mutex);
2536 
2537 	/* Stop the stats timer */
2538 	bnad_stats_timer_stop(bnad);
2539 
2540 	init_completion(&bnad->bnad_completions.enet_comp);
2541 
2542 	spin_lock_irqsave(&bnad->bna_lock, flags);
2543 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2544 			bnad_cb_enet_disabled);
2545 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2546 
2547 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2548 
2549 	bnad_cleanup_tx(bnad, 0);
2550 	bnad_cleanup_rx(bnad, 0);
2551 
2552 	/* Synchronize mailbox IRQ */
2553 	bnad_mbox_irq_sync(bnad);
2554 
2555 	mutex_unlock(&bnad->conf_mutex);
2556 
2557 	return 0;
2558 }
2559 
2560 /* TX */
2561 /*
2562  * bnad_start_xmit : Netdev entry point for Transmit
2563  *		     Called under lock held by net_device
2564  */
2565 static netdev_tx_t
2566 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2567 {
2568 	struct bnad *bnad = netdev_priv(netdev);
2569 	u32 txq_id = 0;
2570 	struct bna_tcb *tcb = bnad->tx_info[0].tcb[txq_id];
2571 
2572 	u16		txq_prod, vlan_tag = 0;
2573 	u32		unmap_prod, wis, wis_used, wi_range;
2574 	u32		vectors, vect_id, i, acked;
2575 	int			err;
2576 	unsigned int		len;
2577 	u32				gso_size;
2578 
2579 	struct bnad_unmap_q *unmap_q = tcb->unmap_q;
2580 	dma_addr_t		dma_addr;
2581 	struct bna_txq_entry *txqent;
2582 	u16	flags;
2583 
2584 	if (unlikely(skb->len <= ETH_HLEN)) {
2585 		dev_kfree_skb(skb);
2586 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2587 		return NETDEV_TX_OK;
2588 	}
2589 	if (unlikely(skb_headlen(skb) > BFI_TX_MAX_DATA_PER_VECTOR)) {
2590 		dev_kfree_skb(skb);
2591 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_too_long);
2592 		return NETDEV_TX_OK;
2593 	}
2594 	if (unlikely(skb_headlen(skb) == 0)) {
2595 		dev_kfree_skb(skb);
2596 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2597 		return NETDEV_TX_OK;
2598 	}
2599 
2600 	/*
2601 	 * Takes care of the Tx that is scheduled between clearing the flag
2602 	 * and the netif_tx_stop_all_queues() call.
2603 	 */
2604 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2605 		dev_kfree_skb(skb);
2606 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2607 		return NETDEV_TX_OK;
2608 	}
2609 
2610 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2611 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2612 		dev_kfree_skb(skb);
2613 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2614 		return NETDEV_TX_OK;
2615 	}
2616 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2617 	acked = 0;
2618 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2619 			vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2620 		if ((u16) (*tcb->hw_consumer_index) !=
2621 		    tcb->consumer_index &&
2622 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2623 			acked = bnad_free_txbufs(bnad, tcb);
2624 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2625 				bna_ib_ack(tcb->i_dbell, acked);
2626 			smp_mb__before_clear_bit();
2627 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2628 		} else {
2629 			netif_stop_queue(netdev);
2630 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2631 		}
2632 
2633 		smp_mb();
2634 		/*
2635 		 * Check again to deal with race condition between
2636 		 * netif_stop_queue here, and netif_wake_queue in
2637 		 * interrupt handler which is not inside netif tx lock.
2638 		 */
2639 		if (likely
2640 		    (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2641 		     vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2642 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2643 			return NETDEV_TX_BUSY;
2644 		} else {
2645 			netif_wake_queue(netdev);
2646 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2647 		}
2648 	}
2649 
2650 	unmap_prod = unmap_q->producer_index;
2651 	flags = 0;
2652 
2653 	txq_prod = tcb->producer_index;
2654 	BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt, txqent, wi_range);
2655 	txqent->hdr.wi.reserved = 0;
2656 	txqent->hdr.wi.num_vectors = vectors;
2657 
2658 	if (vlan_tx_tag_present(skb)) {
2659 		vlan_tag = (u16) vlan_tx_tag_get(skb);
2660 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2661 	}
2662 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2663 		vlan_tag =
2664 			(tcb->priority & 0x7) << 13 | (vlan_tag & 0x1fff);
2665 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2666 	}
2667 
2668 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2669 
2670 	if (skb_is_gso(skb)) {
2671 		gso_size = skb_shinfo(skb)->gso_size;
2672 
2673 		if (unlikely(gso_size > netdev->mtu)) {
2674 			dev_kfree_skb(skb);
2675 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2676 			return NETDEV_TX_OK;
2677 		}
2678 		if (unlikely((gso_size + skb_transport_offset(skb) +
2679 			tcp_hdrlen(skb)) >= skb->len)) {
2680 			txqent->hdr.wi.opcode =
2681 				__constant_htons(BNA_TXQ_WI_SEND);
2682 			txqent->hdr.wi.lso_mss = 0;
2683 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2684 		} else {
2685 			txqent->hdr.wi.opcode =
2686 				__constant_htons(BNA_TXQ_WI_SEND_LSO);
2687 			txqent->hdr.wi.lso_mss = htons(gso_size);
2688 		}
2689 
2690 		err = bnad_tso_prepare(bnad, skb);
2691 		if (unlikely(err)) {
2692 			dev_kfree_skb(skb);
2693 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2694 			return NETDEV_TX_OK;
2695 		}
2696 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2697 		txqent->hdr.wi.l4_hdr_size_n_offset =
2698 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2699 			      (tcp_hdrlen(skb) >> 2,
2700 			       skb_transport_offset(skb)));
2701 	} else {
2702 		txqent->hdr.wi.opcode =	__constant_htons(BNA_TXQ_WI_SEND);
2703 		txqent->hdr.wi.lso_mss = 0;
2704 
2705 		if (unlikely(skb->len > (netdev->mtu + ETH_HLEN))) {
2706 			dev_kfree_skb(skb);
2707 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2708 			return NETDEV_TX_OK;
2709 		}
2710 
2711 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2712 			u8 proto = 0;
2713 
2714 			if (skb->protocol == __constant_htons(ETH_P_IP))
2715 				proto = ip_hdr(skb)->protocol;
2716 			else if (skb->protocol ==
2717 				 __constant_htons(ETH_P_IPV6)) {
2718 				/* nexthdr may not be TCP immediately. */
2719 				proto = ipv6_hdr(skb)->nexthdr;
2720 			}
2721 			if (proto == IPPROTO_TCP) {
2722 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2723 				txqent->hdr.wi.l4_hdr_size_n_offset =
2724 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2725 					      (0, skb_transport_offset(skb)));
2726 
2727 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2728 
2729 				if (unlikely(skb_headlen(skb) <
2730 				skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2731 					dev_kfree_skb(skb);
2732 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2733 					return NETDEV_TX_OK;
2734 				}
2735 
2736 			} else if (proto == IPPROTO_UDP) {
2737 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2738 				txqent->hdr.wi.l4_hdr_size_n_offset =
2739 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2740 					      (0, skb_transport_offset(skb)));
2741 
2742 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2743 				if (unlikely(skb_headlen(skb) <
2744 				    skb_transport_offset(skb) +
2745 				    sizeof(struct udphdr))) {
2746 					dev_kfree_skb(skb);
2747 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2748 					return NETDEV_TX_OK;
2749 				}
2750 			} else {
2751 				dev_kfree_skb(skb);
2752 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2753 				return NETDEV_TX_OK;
2754 			}
2755 		} else {
2756 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2757 		}
2758 	}
2759 
2760 	txqent->hdr.wi.flags = htons(flags);
2761 
2762 	txqent->hdr.wi.frame_length = htonl(skb->len);
2763 
2764 	unmap_q->unmap_array[unmap_prod].skb = skb;
2765 	len = skb_headlen(skb);
2766 	txqent->vector[0].length = htons(len);
2767 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2768 				  skb_headlen(skb), DMA_TO_DEVICE);
2769 	dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2770 			   dma_addr);
2771 
2772 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
2773 	BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2774 
2775 	vect_id = 0;
2776 	wis_used = 1;
2777 
2778 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2780 		u16		size = skb_frag_size(frag);
2781 
2782 		if (unlikely(size == 0)) {
2783 			unmap_prod = unmap_q->producer_index;
2784 
2785 			unmap_prod = bnad_pci_unmap_skb(&bnad->pcidev->dev,
2786 					   unmap_q->unmap_array,
2787 					   unmap_prod, unmap_q->q_depth, skb,
2788 					   i);
2789 			dev_kfree_skb(skb);
2790 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
2791 			return NETDEV_TX_OK;
2792 		}
2793 
2794 		len += size;
2795 
2796 		if (++vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2797 			vect_id = 0;
2798 			if (--wi_range)
2799 				txqent++;
2800 			else {
2801 				BNA_QE_INDX_ADD(txq_prod, wis_used,
2802 						tcb->q_depth);
2803 				wis_used = 0;
2804 				BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt,
2805 						     txqent, wi_range);
2806 			}
2807 			wis_used++;
2808 			txqent->hdr.wi_ext.opcode =
2809 				__constant_htons(BNA_TXQ_WI_EXTENSION);
2810 		}
2811 
2812 		BUG_ON(!(size <= BFI_TX_MAX_DATA_PER_VECTOR));
2813 		txqent->vector[vect_id].length = htons(size);
2814 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
2815 					    0, size, DMA_TO_DEVICE);
2816 		dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2817 				   dma_addr);
2818 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2819 		BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2820 	}
2821 
2822 	if (unlikely(len != skb->len)) {
2823 		unmap_prod = unmap_q->producer_index;
2824 
2825 		unmap_prod = bnad_pci_unmap_skb(&bnad->pcidev->dev,
2826 				unmap_q->unmap_array, unmap_prod,
2827 				unmap_q->q_depth, skb,
2828 				skb_shinfo(skb)->nr_frags);
2829 		dev_kfree_skb(skb);
2830 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
2831 		return NETDEV_TX_OK;
2832 	}
2833 
2834 	unmap_q->producer_index = unmap_prod;
2835 	BNA_QE_INDX_ADD(txq_prod, wis_used, tcb->q_depth);
2836 	tcb->producer_index = txq_prod;
2837 
2838 	smp_mb();
2839 
2840 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2841 		return NETDEV_TX_OK;
2842 
2843 	bna_txq_prod_indx_doorbell(tcb);
2844 	smp_mb();
2845 
2846 	if ((u16) (*tcb->hw_consumer_index) != tcb->consumer_index)
2847 		tasklet_schedule(&bnad->tx_free_tasklet);
2848 
2849 	return NETDEV_TX_OK;
2850 }
2851 
2852 /*
2853  * Used spin_lock to synchronize reading of stats structures, which
2854  * is written by BNA under the same lock.
2855  */
2856 static struct rtnl_link_stats64 *
2857 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2858 {
2859 	struct bnad *bnad = netdev_priv(netdev);
2860 	unsigned long flags;
2861 
2862 	spin_lock_irqsave(&bnad->bna_lock, flags);
2863 
2864 	bnad_netdev_qstats_fill(bnad, stats);
2865 	bnad_netdev_hwstats_fill(bnad, stats);
2866 
2867 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2868 
2869 	return stats;
2870 }
2871 
2872 void
2873 bnad_set_rx_mode(struct net_device *netdev)
2874 {
2875 	struct bnad *bnad = netdev_priv(netdev);
2876 	u32	new_mask, valid_mask;
2877 	unsigned long flags;
2878 
2879 	spin_lock_irqsave(&bnad->bna_lock, flags);
2880 
2881 	new_mask = valid_mask = 0;
2882 
2883 	if (netdev->flags & IFF_PROMISC) {
2884 		if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2885 			new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2886 			valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2887 			bnad->cfg_flags |= BNAD_CF_PROMISC;
2888 		}
2889 	} else {
2890 		if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2891 			new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2892 			valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2893 			bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2894 		}
2895 	}
2896 
2897 	if (netdev->flags & IFF_ALLMULTI) {
2898 		if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2899 			new_mask |= BNA_RXMODE_ALLMULTI;
2900 			valid_mask |= BNA_RXMODE_ALLMULTI;
2901 			bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2902 		}
2903 	} else {
2904 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2905 			new_mask &= ~BNA_RXMODE_ALLMULTI;
2906 			valid_mask |= BNA_RXMODE_ALLMULTI;
2907 			bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2908 		}
2909 	}
2910 
2911 	if (bnad->rx_info[0].rx == NULL)
2912 		goto unlock;
2913 
2914 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2915 
2916 	if (!netdev_mc_empty(netdev)) {
2917 		u8 *mcaddr_list;
2918 		int mc_count = netdev_mc_count(netdev);
2919 
2920 		/* Index 0 holds the broadcast address */
2921 		mcaddr_list =
2922 			kzalloc((mc_count + 1) * ETH_ALEN,
2923 				GFP_ATOMIC);
2924 		if (!mcaddr_list)
2925 			goto unlock;
2926 
2927 		memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2928 
2929 		/* Copy rest of the MC addresses */
2930 		bnad_netdev_mc_list_get(netdev, mcaddr_list);
2931 
2932 		bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2933 					mcaddr_list, NULL);
2934 
2935 		/* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
2936 		kfree(mcaddr_list);
2937 	}
2938 unlock:
2939 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2940 }
2941 
2942 /*
2943  * bna_lock is used to sync writes to netdev->addr
2944  * conf_lock cannot be used since this call may be made
2945  * in a non-blocking context.
2946  */
2947 static int
2948 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
2949 {
2950 	int err;
2951 	struct bnad *bnad = netdev_priv(netdev);
2952 	struct sockaddr *sa = (struct sockaddr *)mac_addr;
2953 	unsigned long flags;
2954 
2955 	spin_lock_irqsave(&bnad->bna_lock, flags);
2956 
2957 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
2958 
2959 	if (!err)
2960 		memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
2961 
2962 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2963 
2964 	return err;
2965 }
2966 
2967 static int
2968 bnad_mtu_set(struct bnad *bnad, int mtu)
2969 {
2970 	unsigned long flags;
2971 
2972 	init_completion(&bnad->bnad_completions.mtu_comp);
2973 
2974 	spin_lock_irqsave(&bnad->bna_lock, flags);
2975 	bna_enet_mtu_set(&bnad->bna.enet, mtu, bnad_cb_enet_mtu_set);
2976 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2977 
2978 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
2979 
2980 	return bnad->bnad_completions.mtu_comp_status;
2981 }
2982 
2983 static int
2984 bnad_change_mtu(struct net_device *netdev, int new_mtu)
2985 {
2986 	int err, mtu = netdev->mtu;
2987 	struct bnad *bnad = netdev_priv(netdev);
2988 
2989 	if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
2990 		return -EINVAL;
2991 
2992 	mutex_lock(&bnad->conf_mutex);
2993 
2994 	netdev->mtu = new_mtu;
2995 
2996 	mtu = ETH_HLEN + VLAN_HLEN + new_mtu + ETH_FCS_LEN;
2997 	err = bnad_mtu_set(bnad, mtu);
2998 	if (err)
2999 		err = -EBUSY;
3000 
3001 	mutex_unlock(&bnad->conf_mutex);
3002 	return err;
3003 }
3004 
3005 static int
3006 bnad_vlan_rx_add_vid(struct net_device *netdev,
3007 				 unsigned short vid)
3008 {
3009 	struct bnad *bnad = netdev_priv(netdev);
3010 	unsigned long flags;
3011 
3012 	if (!bnad->rx_info[0].rx)
3013 		return 0;
3014 
3015 	mutex_lock(&bnad->conf_mutex);
3016 
3017 	spin_lock_irqsave(&bnad->bna_lock, flags);
3018 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3019 	set_bit(vid, bnad->active_vlans);
3020 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3021 
3022 	mutex_unlock(&bnad->conf_mutex);
3023 
3024 	return 0;
3025 }
3026 
3027 static int
3028 bnad_vlan_rx_kill_vid(struct net_device *netdev,
3029 				  unsigned short vid)
3030 {
3031 	struct bnad *bnad = netdev_priv(netdev);
3032 	unsigned long flags;
3033 
3034 	if (!bnad->rx_info[0].rx)
3035 		return 0;
3036 
3037 	mutex_lock(&bnad->conf_mutex);
3038 
3039 	spin_lock_irqsave(&bnad->bna_lock, flags);
3040 	clear_bit(vid, bnad->active_vlans);
3041 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3042 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3043 
3044 	mutex_unlock(&bnad->conf_mutex);
3045 
3046 	return 0;
3047 }
3048 
3049 #ifdef CONFIG_NET_POLL_CONTROLLER
3050 static void
3051 bnad_netpoll(struct net_device *netdev)
3052 {
3053 	struct bnad *bnad = netdev_priv(netdev);
3054 	struct bnad_rx_info *rx_info;
3055 	struct bnad_rx_ctrl *rx_ctrl;
3056 	u32 curr_mask;
3057 	int i, j;
3058 
3059 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3060 		bna_intx_disable(&bnad->bna, curr_mask);
3061 		bnad_isr(bnad->pcidev->irq, netdev);
3062 		bna_intx_enable(&bnad->bna, curr_mask);
3063 	} else {
3064 		/*
3065 		 * Tx processing may happen in sending context, so no need
3066 		 * to explicitly process completions here
3067 		 */
3068 
3069 		/* Rx processing */
3070 		for (i = 0; i < bnad->num_rx; i++) {
3071 			rx_info = &bnad->rx_info[i];
3072 			if (!rx_info->rx)
3073 				continue;
3074 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3075 				rx_ctrl = &rx_info->rx_ctrl[j];
3076 				if (rx_ctrl->ccb)
3077 					bnad_netif_rx_schedule_poll(bnad,
3078 							    rx_ctrl->ccb);
3079 			}
3080 		}
3081 	}
3082 }
3083 #endif
3084 
3085 static const struct net_device_ops bnad_netdev_ops = {
3086 	.ndo_open		= bnad_open,
3087 	.ndo_stop		= bnad_stop,
3088 	.ndo_start_xmit		= bnad_start_xmit,
3089 	.ndo_get_stats64		= bnad_get_stats64,
3090 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3091 	.ndo_validate_addr      = eth_validate_addr,
3092 	.ndo_set_mac_address    = bnad_set_mac_address,
3093 	.ndo_change_mtu		= bnad_change_mtu,
3094 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3095 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3096 #ifdef CONFIG_NET_POLL_CONTROLLER
3097 	.ndo_poll_controller    = bnad_netpoll
3098 #endif
3099 };
3100 
3101 static void
3102 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3103 {
3104 	struct net_device *netdev = bnad->netdev;
3105 
3106 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3107 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3108 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_TX;
3109 
3110 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3111 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3112 		NETIF_F_TSO | NETIF_F_TSO6;
3113 
3114 	netdev->features |= netdev->hw_features |
3115 		NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
3116 
3117 	if (using_dac)
3118 		netdev->features |= NETIF_F_HIGHDMA;
3119 
3120 	netdev->mem_start = bnad->mmio_start;
3121 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3122 
3123 	netdev->netdev_ops = &bnad_netdev_ops;
3124 	bnad_set_ethtool_ops(netdev);
3125 }
3126 
3127 /*
3128  * 1. Initialize the bnad structure
3129  * 2. Setup netdev pointer in pci_dev
3130  * 3. Initialze Tx free tasklet
3131  * 4. Initialize no. of TxQ & CQs & MSIX vectors
3132  */
3133 static int
3134 bnad_init(struct bnad *bnad,
3135 	  struct pci_dev *pdev, struct net_device *netdev)
3136 {
3137 	unsigned long flags;
3138 
3139 	SET_NETDEV_DEV(netdev, &pdev->dev);
3140 	pci_set_drvdata(pdev, netdev);
3141 
3142 	bnad->netdev = netdev;
3143 	bnad->pcidev = pdev;
3144 	bnad->mmio_start = pci_resource_start(pdev, 0);
3145 	bnad->mmio_len = pci_resource_len(pdev, 0);
3146 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3147 	if (!bnad->bar0) {
3148 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3149 		pci_set_drvdata(pdev, NULL);
3150 		return -ENOMEM;
3151 	}
3152 	pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3153 	       (unsigned long long) bnad->mmio_len);
3154 
3155 	spin_lock_irqsave(&bnad->bna_lock, flags);
3156 	if (!bnad_msix_disable)
3157 		bnad->cfg_flags = BNAD_CF_MSIX;
3158 
3159 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3160 
3161 	bnad_q_num_init(bnad);
3162 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3163 
3164 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3165 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3166 			 BNAD_MAILBOX_MSIX_VECTORS;
3167 
3168 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3169 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3170 
3171 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3172 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3173 
3174 	tasklet_init(&bnad->tx_free_tasklet, bnad_tx_free_tasklet,
3175 		     (unsigned long)bnad);
3176 
3177 	return 0;
3178 }
3179 
3180 /*
3181  * Must be called after bnad_pci_uninit()
3182  * so that iounmap() and pci_set_drvdata(NULL)
3183  * happens only after PCI uninitialization.
3184  */
3185 static void
3186 bnad_uninit(struct bnad *bnad)
3187 {
3188 	if (bnad->bar0)
3189 		iounmap(bnad->bar0);
3190 	pci_set_drvdata(bnad->pcidev, NULL);
3191 }
3192 
3193 /*
3194  * Initialize locks
3195 	a) Per ioceth mutes used for serializing configuration
3196 	   changes from OS interface
3197 	b) spin lock used to protect bna state machine
3198  */
3199 static void
3200 bnad_lock_init(struct bnad *bnad)
3201 {
3202 	spin_lock_init(&bnad->bna_lock);
3203 	mutex_init(&bnad->conf_mutex);
3204 	mutex_init(&bnad_list_mutex);
3205 }
3206 
3207 static void
3208 bnad_lock_uninit(struct bnad *bnad)
3209 {
3210 	mutex_destroy(&bnad->conf_mutex);
3211 	mutex_destroy(&bnad_list_mutex);
3212 }
3213 
3214 /* PCI Initialization */
3215 static int
3216 bnad_pci_init(struct bnad *bnad,
3217 	      struct pci_dev *pdev, bool *using_dac)
3218 {
3219 	int err;
3220 
3221 	err = pci_enable_device(pdev);
3222 	if (err)
3223 		return err;
3224 	err = pci_request_regions(pdev, BNAD_NAME);
3225 	if (err)
3226 		goto disable_device;
3227 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3228 	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3229 		*using_dac = true;
3230 	} else {
3231 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3232 		if (err) {
3233 			err = dma_set_coherent_mask(&pdev->dev,
3234 						    DMA_BIT_MASK(32));
3235 			if (err)
3236 				goto release_regions;
3237 		}
3238 		*using_dac = false;
3239 	}
3240 	pci_set_master(pdev);
3241 	return 0;
3242 
3243 release_regions:
3244 	pci_release_regions(pdev);
3245 disable_device:
3246 	pci_disable_device(pdev);
3247 
3248 	return err;
3249 }
3250 
3251 static void
3252 bnad_pci_uninit(struct pci_dev *pdev)
3253 {
3254 	pci_release_regions(pdev);
3255 	pci_disable_device(pdev);
3256 }
3257 
3258 static int __devinit
3259 bnad_pci_probe(struct pci_dev *pdev,
3260 		const struct pci_device_id *pcidev_id)
3261 {
3262 	bool	using_dac;
3263 	int	err;
3264 	struct bnad *bnad;
3265 	struct bna *bna;
3266 	struct net_device *netdev;
3267 	struct bfa_pcidev pcidev_info;
3268 	unsigned long flags;
3269 
3270 	pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3271 	       pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3272 
3273 	mutex_lock(&bnad_fwimg_mutex);
3274 	if (!cna_get_firmware_buf(pdev)) {
3275 		mutex_unlock(&bnad_fwimg_mutex);
3276 		pr_warn("Failed to load Firmware Image!\n");
3277 		return -ENODEV;
3278 	}
3279 	mutex_unlock(&bnad_fwimg_mutex);
3280 
3281 	/*
3282 	 * Allocates sizeof(struct net_device + struct bnad)
3283 	 * bnad = netdev->priv
3284 	 */
3285 	netdev = alloc_etherdev(sizeof(struct bnad));
3286 	if (!netdev) {
3287 		dev_err(&pdev->dev, "netdev allocation failed\n");
3288 		err = -ENOMEM;
3289 		return err;
3290 	}
3291 	bnad = netdev_priv(netdev);
3292 	bnad_lock_init(bnad);
3293 	bnad_add_to_list(bnad);
3294 
3295 	mutex_lock(&bnad->conf_mutex);
3296 	/*
3297 	 * PCI initialization
3298 	 *	Output : using_dac = 1 for 64 bit DMA
3299 	 *			   = 0 for 32 bit DMA
3300 	 */
3301 	err = bnad_pci_init(bnad, pdev, &using_dac);
3302 	if (err)
3303 		goto unlock_mutex;
3304 
3305 	/*
3306 	 * Initialize bnad structure
3307 	 * Setup relation between pci_dev & netdev
3308 	 * Init Tx free tasklet
3309 	 */
3310 	err = bnad_init(bnad, pdev, netdev);
3311 	if (err)
3312 		goto pci_uninit;
3313 
3314 	/* Initialize netdev structure, set up ethtool ops */
3315 	bnad_netdev_init(bnad, using_dac);
3316 
3317 	/* Set link to down state */
3318 	netif_carrier_off(netdev);
3319 
3320 	/* Setup the debugfs node for this bfad */
3321 	if (bna_debugfs_enable)
3322 		bnad_debugfs_init(bnad);
3323 
3324 	/* Get resource requirement form bna */
3325 	spin_lock_irqsave(&bnad->bna_lock, flags);
3326 	bna_res_req(&bnad->res_info[0]);
3327 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3328 
3329 	/* Allocate resources from bna */
3330 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3331 	if (err)
3332 		goto drv_uninit;
3333 
3334 	bna = &bnad->bna;
3335 
3336 	/* Setup pcidev_info for bna_init() */
3337 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3338 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3339 	pcidev_info.device_id = bnad->pcidev->device;
3340 	pcidev_info.pci_bar_kva = bnad->bar0;
3341 
3342 	spin_lock_irqsave(&bnad->bna_lock, flags);
3343 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3344 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3345 
3346 	bnad->stats.bna_stats = &bna->stats;
3347 
3348 	bnad_enable_msix(bnad);
3349 	err = bnad_mbox_irq_alloc(bnad);
3350 	if (err)
3351 		goto res_free;
3352 
3353 
3354 	/* Set up timers */
3355 	setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3356 				((unsigned long)bnad));
3357 	setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3358 				((unsigned long)bnad));
3359 	setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3360 				((unsigned long)bnad));
3361 	setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3362 				((unsigned long)bnad));
3363 
3364 	/* Now start the timer before calling IOC */
3365 	mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3366 		  jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3367 
3368 	/*
3369 	 * Start the chip
3370 	 * If the call back comes with error, we bail out.
3371 	 * This is a catastrophic error.
3372 	 */
3373 	err = bnad_ioceth_enable(bnad);
3374 	if (err) {
3375 		pr_err("BNA: Initialization failed err=%d\n",
3376 		       err);
3377 		goto probe_success;
3378 	}
3379 
3380 	spin_lock_irqsave(&bnad->bna_lock, flags);
3381 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3382 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3383 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3384 			bna_attr(bna)->num_rxp - 1);
3385 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3386 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3387 			err = -EIO;
3388 	}
3389 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3390 	if (err)
3391 		goto disable_ioceth;
3392 
3393 	spin_lock_irqsave(&bnad->bna_lock, flags);
3394 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3395 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3396 
3397 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3398 	if (err) {
3399 		err = -EIO;
3400 		goto disable_ioceth;
3401 	}
3402 
3403 	spin_lock_irqsave(&bnad->bna_lock, flags);
3404 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3405 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3406 
3407 	/* Get the burnt-in mac */
3408 	spin_lock_irqsave(&bnad->bna_lock, flags);
3409 	bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3410 	bnad_set_netdev_perm_addr(bnad);
3411 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3412 
3413 	mutex_unlock(&bnad->conf_mutex);
3414 
3415 	/* Finally, reguister with net_device layer */
3416 	err = register_netdev(netdev);
3417 	if (err) {
3418 		pr_err("BNA : Registering with netdev failed\n");
3419 		goto probe_uninit;
3420 	}
3421 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3422 
3423 	return 0;
3424 
3425 probe_success:
3426 	mutex_unlock(&bnad->conf_mutex);
3427 	return 0;
3428 
3429 probe_uninit:
3430 	mutex_lock(&bnad->conf_mutex);
3431 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3432 disable_ioceth:
3433 	bnad_ioceth_disable(bnad);
3434 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3435 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3436 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3437 	spin_lock_irqsave(&bnad->bna_lock, flags);
3438 	bna_uninit(bna);
3439 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3440 	bnad_mbox_irq_free(bnad);
3441 	bnad_disable_msix(bnad);
3442 res_free:
3443 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3444 drv_uninit:
3445 	/* Remove the debugfs node for this bnad */
3446 	kfree(bnad->regdata);
3447 	bnad_debugfs_uninit(bnad);
3448 	bnad_uninit(bnad);
3449 pci_uninit:
3450 	bnad_pci_uninit(pdev);
3451 unlock_mutex:
3452 	mutex_unlock(&bnad->conf_mutex);
3453 	bnad_remove_from_list(bnad);
3454 	bnad_lock_uninit(bnad);
3455 	free_netdev(netdev);
3456 	return err;
3457 }
3458 
3459 static void __devexit
3460 bnad_pci_remove(struct pci_dev *pdev)
3461 {
3462 	struct net_device *netdev = pci_get_drvdata(pdev);
3463 	struct bnad *bnad;
3464 	struct bna *bna;
3465 	unsigned long flags;
3466 
3467 	if (!netdev)
3468 		return;
3469 
3470 	pr_info("%s bnad_pci_remove\n", netdev->name);
3471 	bnad = netdev_priv(netdev);
3472 	bna = &bnad->bna;
3473 
3474 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3475 		unregister_netdev(netdev);
3476 
3477 	mutex_lock(&bnad->conf_mutex);
3478 	bnad_ioceth_disable(bnad);
3479 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3480 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3481 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3482 	spin_lock_irqsave(&bnad->bna_lock, flags);
3483 	bna_uninit(bna);
3484 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3485 
3486 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3487 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3488 	bnad_mbox_irq_free(bnad);
3489 	bnad_disable_msix(bnad);
3490 	bnad_pci_uninit(pdev);
3491 	mutex_unlock(&bnad->conf_mutex);
3492 	bnad_remove_from_list(bnad);
3493 	bnad_lock_uninit(bnad);
3494 	/* Remove the debugfs node for this bnad */
3495 	kfree(bnad->regdata);
3496 	bnad_debugfs_uninit(bnad);
3497 	bnad_uninit(bnad);
3498 	free_netdev(netdev);
3499 }
3500 
3501 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
3502 	{
3503 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3504 			PCI_DEVICE_ID_BROCADE_CT),
3505 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3506 		.class_mask =  0xffff00
3507 	},
3508 	{
3509 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3510 			BFA_PCI_DEVICE_ID_CT2),
3511 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3512 		.class_mask =  0xffff00
3513 	},
3514 	{0,  },
3515 };
3516 
3517 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3518 
3519 static struct pci_driver bnad_pci_driver = {
3520 	.name = BNAD_NAME,
3521 	.id_table = bnad_pci_id_table,
3522 	.probe = bnad_pci_probe,
3523 	.remove = __devexit_p(bnad_pci_remove),
3524 };
3525 
3526 static int __init
3527 bnad_module_init(void)
3528 {
3529 	int err;
3530 
3531 	pr_info("Brocade 10G Ethernet driver - version: %s\n",
3532 			BNAD_VERSION);
3533 
3534 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3535 
3536 	err = pci_register_driver(&bnad_pci_driver);
3537 	if (err < 0) {
3538 		pr_err("bna : PCI registration failed in module init "
3539 		       "(%d)\n", err);
3540 		return err;
3541 	}
3542 
3543 	return 0;
3544 }
3545 
3546 static void __exit
3547 bnad_module_exit(void)
3548 {
3549 	pci_unregister_driver(&bnad_pci_driver);
3550 
3551 	if (bfi_fw)
3552 		release_firmware(bfi_fw);
3553 }
3554 
3555 module_init(bnad_module_init);
3556 module_exit(bnad_module_exit);
3557 
3558 MODULE_AUTHOR("Brocade");
3559 MODULE_LICENSE("GPL");
3560 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3561 MODULE_VERSION(BNAD_VERSION);
3562 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3563 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3564