xref: /linux/drivers/net/ethernet/brocade/bna/bnad.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Linux network driver for QLogic BR-series Converged Network Adapter.
4  */
5 /*
6  * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
7  * Copyright (c) 2014-2015 QLogic Corporation
8  * All rights reserved
9  * www.qlogic.com
10  */
11 #include <linux/bitops.h>
12 #include <linux/netdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/etherdevice.h>
15 #include <linux/in.h>
16 #include <linux/ethtool.h>
17 #include <linux/if_vlan.h>
18 #include <linux/if_ether.h>
19 #include <linux/ip.h>
20 #include <linux/prefetch.h>
21 #include <linux/module.h>
22 
23 #include "bnad.h"
24 #include "bna.h"
25 #include "cna.h"
26 
27 static DEFINE_MUTEX(bnad_fwimg_mutex);
28 
29 /*
30  * Module params
31  */
32 static uint bnad_msix_disable;
33 module_param(bnad_msix_disable, uint, 0444);
34 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
35 
36 static uint bnad_ioc_auto_recover = 1;
37 module_param(bnad_ioc_auto_recover, uint, 0444);
38 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
39 
40 static uint bna_debugfs_enable = 1;
41 module_param(bna_debugfs_enable, uint, 0644);
42 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
43 		 " Range[false:0|true:1]");
44 
45 /*
46  * Global variables
47  */
48 static u32 bnad_rxqs_per_cq = 2;
49 static atomic_t bna_id;
50 static const u8 bnad_bcast_addr[] __aligned(2) =
51 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
52 
53 /*
54  * Local MACROS
55  */
56 #define BNAD_GET_MBOX_IRQ(_bnad)				\
57 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
58 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
59 	 ((_bnad)->pcidev->irq))
60 
61 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
62 do {								\
63 	(_res_info)->res_type = BNA_RES_T_MEM;			\
64 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
65 	(_res_info)->res_u.mem_info.num = (_num);		\
66 	(_res_info)->res_u.mem_info.len = (_size);		\
67 } while (0)
68 
69 /*
70  * Reinitialize completions in CQ, once Rx is taken down
71  */
72 static void
73 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
74 {
75 	struct bna_cq_entry *cmpl;
76 	int i;
77 
78 	for (i = 0; i < ccb->q_depth; i++) {
79 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
80 		cmpl->valid = 0;
81 	}
82 }
83 
84 /* Tx Datapath functions */
85 
86 
87 /* Caller should ensure that the entry at unmap_q[index] is valid */
88 static u32
89 bnad_tx_buff_unmap(struct bnad *bnad,
90 			      struct bnad_tx_unmap *unmap_q,
91 			      u32 q_depth, u32 index)
92 {
93 	struct bnad_tx_unmap *unmap;
94 	struct sk_buff *skb;
95 	int vector, nvecs;
96 
97 	unmap = &unmap_q[index];
98 	nvecs = unmap->nvecs;
99 
100 	skb = unmap->skb;
101 	unmap->skb = NULL;
102 	unmap->nvecs = 0;
103 	dma_unmap_single(&bnad->pcidev->dev,
104 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
105 		skb_headlen(skb), DMA_TO_DEVICE);
106 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
107 	nvecs--;
108 
109 	vector = 0;
110 	while (nvecs) {
111 		vector++;
112 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
113 			vector = 0;
114 			BNA_QE_INDX_INC(index, q_depth);
115 			unmap = &unmap_q[index];
116 		}
117 
118 		dma_unmap_page(&bnad->pcidev->dev,
119 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
120 			dma_unmap_len(&unmap->vectors[vector], dma_len),
121 			DMA_TO_DEVICE);
122 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
123 		nvecs--;
124 	}
125 
126 	BNA_QE_INDX_INC(index, q_depth);
127 
128 	return index;
129 }
130 
131 /*
132  * Frees all pending Tx Bufs
133  * At this point no activity is expected on the Q,
134  * so DMA unmap & freeing is fine.
135  */
136 static void
137 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
138 {
139 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
140 	struct sk_buff *skb;
141 	int i;
142 
143 	for (i = 0; i < tcb->q_depth; i++) {
144 		skb = unmap_q[i].skb;
145 		if (!skb)
146 			continue;
147 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
148 
149 		dev_kfree_skb_any(skb);
150 	}
151 }
152 
153 /*
154  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
155  * Can be called in a) Interrupt context
156  *		    b) Sending context
157  */
158 static u32
159 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
160 {
161 	u32 sent_packets = 0, sent_bytes = 0;
162 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
163 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
164 	struct bnad_tx_unmap *unmap;
165 	struct sk_buff *skb;
166 
167 	/* Just return if TX is stopped */
168 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
169 		return 0;
170 
171 	hw_cons = *(tcb->hw_consumer_index);
172 	rmb();
173 	cons = tcb->consumer_index;
174 	q_depth = tcb->q_depth;
175 
176 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
177 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
178 
179 	while (wis) {
180 		unmap = &unmap_q[cons];
181 
182 		skb = unmap->skb;
183 
184 		sent_packets++;
185 		sent_bytes += skb->len;
186 
187 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
188 		wis -= unmap_wis;
189 
190 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
191 		dev_kfree_skb_any(skb);
192 	}
193 
194 	/* Update consumer pointers. */
195 	tcb->consumer_index = hw_cons;
196 
197 	tcb->txq->tx_packets += sent_packets;
198 	tcb->txq->tx_bytes += sent_bytes;
199 
200 	return sent_packets;
201 }
202 
203 static u32
204 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
205 {
206 	struct net_device *netdev = bnad->netdev;
207 	u32 sent = 0;
208 
209 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
210 		return 0;
211 
212 	sent = bnad_txcmpl_process(bnad, tcb);
213 	if (sent) {
214 		if (netif_queue_stopped(netdev) &&
215 		    netif_carrier_ok(netdev) &&
216 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
217 				    BNAD_NETIF_WAKE_THRESHOLD) {
218 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
219 				netif_wake_queue(netdev);
220 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
221 			}
222 		}
223 	}
224 
225 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
226 		bna_ib_ack(tcb->i_dbell, sent);
227 
228 	smp_mb__before_atomic();
229 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
230 
231 	return sent;
232 }
233 
234 /* MSIX Tx Completion Handler */
235 static irqreturn_t
236 bnad_msix_tx(int irq, void *data)
237 {
238 	struct bna_tcb *tcb = (struct bna_tcb *)data;
239 	struct bnad *bnad = tcb->bnad;
240 
241 	bnad_tx_complete(bnad, tcb);
242 
243 	return IRQ_HANDLED;
244 }
245 
246 static inline void
247 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
248 {
249 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
250 
251 	unmap_q->reuse_pi = -1;
252 	unmap_q->alloc_order = -1;
253 	unmap_q->map_size = 0;
254 	unmap_q->type = BNAD_RXBUF_NONE;
255 }
256 
257 /* Default is page-based allocation. Multi-buffer support - TBD */
258 static int
259 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
260 {
261 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
262 	int order;
263 
264 	bnad_rxq_alloc_uninit(bnad, rcb);
265 
266 	order = get_order(rcb->rxq->buffer_size);
267 
268 	unmap_q->type = BNAD_RXBUF_PAGE;
269 
270 	if (bna_is_small_rxq(rcb->id)) {
271 		unmap_q->alloc_order = 0;
272 		unmap_q->map_size = rcb->rxq->buffer_size;
273 	} else {
274 		if (rcb->rxq->multi_buffer) {
275 			unmap_q->alloc_order = 0;
276 			unmap_q->map_size = rcb->rxq->buffer_size;
277 			unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
278 		} else {
279 			unmap_q->alloc_order = order;
280 			unmap_q->map_size =
281 				(rcb->rxq->buffer_size > 2048) ?
282 				PAGE_SIZE << order : 2048;
283 		}
284 	}
285 
286 	BUG_ON((PAGE_SIZE << order) % unmap_q->map_size);
287 
288 	return 0;
289 }
290 
291 static inline void
292 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
293 {
294 	if (!unmap->page)
295 		return;
296 
297 	dma_unmap_page(&bnad->pcidev->dev,
298 			dma_unmap_addr(&unmap->vector, dma_addr),
299 			unmap->vector.len, DMA_FROM_DEVICE);
300 	put_page(unmap->page);
301 	unmap->page = NULL;
302 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
303 	unmap->vector.len = 0;
304 }
305 
306 static inline void
307 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
308 {
309 	if (!unmap->skb)
310 		return;
311 
312 	dma_unmap_single(&bnad->pcidev->dev,
313 			dma_unmap_addr(&unmap->vector, dma_addr),
314 			unmap->vector.len, DMA_FROM_DEVICE);
315 	dev_kfree_skb_any(unmap->skb);
316 	unmap->skb = NULL;
317 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
318 	unmap->vector.len = 0;
319 }
320 
321 static void
322 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
323 {
324 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
325 	int i;
326 
327 	for (i = 0; i < rcb->q_depth; i++) {
328 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
329 
330 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
331 			bnad_rxq_cleanup_skb(bnad, unmap);
332 		else
333 			bnad_rxq_cleanup_page(bnad, unmap);
334 	}
335 	bnad_rxq_alloc_uninit(bnad, rcb);
336 }
337 
338 static u32
339 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
340 {
341 	u32 alloced, prod, q_depth;
342 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
343 	struct bnad_rx_unmap *unmap, *prev;
344 	struct bna_rxq_entry *rxent;
345 	struct page *page;
346 	u32 page_offset, alloc_size;
347 	dma_addr_t dma_addr;
348 
349 	prod = rcb->producer_index;
350 	q_depth = rcb->q_depth;
351 
352 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
353 	alloced = 0;
354 
355 	while (nalloc--) {
356 		unmap = &unmap_q->unmap[prod];
357 
358 		if (unmap_q->reuse_pi < 0) {
359 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
360 					unmap_q->alloc_order);
361 			page_offset = 0;
362 		} else {
363 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
364 			page = prev->page;
365 			page_offset = prev->page_offset + unmap_q->map_size;
366 			get_page(page);
367 		}
368 
369 		if (unlikely(!page)) {
370 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
371 			rcb->rxq->rxbuf_alloc_failed++;
372 			goto finishing;
373 		}
374 
375 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
376 					unmap_q->map_size, DMA_FROM_DEVICE);
377 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
378 			put_page(page);
379 			BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
380 			rcb->rxq->rxbuf_map_failed++;
381 			goto finishing;
382 		}
383 
384 		unmap->page = page;
385 		unmap->page_offset = page_offset;
386 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
387 		unmap->vector.len = unmap_q->map_size;
388 		page_offset += unmap_q->map_size;
389 
390 		if (page_offset < alloc_size)
391 			unmap_q->reuse_pi = prod;
392 		else
393 			unmap_q->reuse_pi = -1;
394 
395 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
396 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
397 		BNA_QE_INDX_INC(prod, q_depth);
398 		alloced++;
399 	}
400 
401 finishing:
402 	if (likely(alloced)) {
403 		rcb->producer_index = prod;
404 		smp_mb();
405 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
406 			bna_rxq_prod_indx_doorbell(rcb);
407 	}
408 
409 	return alloced;
410 }
411 
412 static u32
413 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
414 {
415 	u32 alloced, prod, q_depth, buff_sz;
416 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
417 	struct bnad_rx_unmap *unmap;
418 	struct bna_rxq_entry *rxent;
419 	struct sk_buff *skb;
420 	dma_addr_t dma_addr;
421 
422 	buff_sz = rcb->rxq->buffer_size;
423 	prod = rcb->producer_index;
424 	q_depth = rcb->q_depth;
425 
426 	alloced = 0;
427 	while (nalloc--) {
428 		unmap = &unmap_q->unmap[prod];
429 
430 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
431 
432 		if (unlikely(!skb)) {
433 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
434 			rcb->rxq->rxbuf_alloc_failed++;
435 			goto finishing;
436 		}
437 
438 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
439 					  buff_sz, DMA_FROM_DEVICE);
440 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
441 			dev_kfree_skb_any(skb);
442 			BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
443 			rcb->rxq->rxbuf_map_failed++;
444 			goto finishing;
445 		}
446 
447 		unmap->skb = skb;
448 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
449 		unmap->vector.len = buff_sz;
450 
451 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
452 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
453 		BNA_QE_INDX_INC(prod, q_depth);
454 		alloced++;
455 	}
456 
457 finishing:
458 	if (likely(alloced)) {
459 		rcb->producer_index = prod;
460 		smp_mb();
461 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
462 			bna_rxq_prod_indx_doorbell(rcb);
463 	}
464 
465 	return alloced;
466 }
467 
468 static inline void
469 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
470 {
471 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
472 	u32 to_alloc;
473 
474 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
475 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
476 		return;
477 
478 	if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
479 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
480 	else
481 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
482 }
483 
484 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
485 					BNA_CQ_EF_IPV6 | \
486 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
487 					BNA_CQ_EF_L4_CKSUM_OK)
488 
489 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
490 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
491 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
492 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
493 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
494 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
495 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
496 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
497 
498 static void
499 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
500 		    u32 sop_ci, u32 nvecs)
501 {
502 	struct bnad_rx_unmap_q *unmap_q;
503 	struct bnad_rx_unmap *unmap;
504 	u32 ci, vec;
505 
506 	unmap_q = rcb->unmap_q;
507 	for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
508 		unmap = &unmap_q->unmap[ci];
509 		BNA_QE_INDX_INC(ci, rcb->q_depth);
510 
511 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
512 			bnad_rxq_cleanup_skb(bnad, unmap);
513 		else
514 			bnad_rxq_cleanup_page(bnad, unmap);
515 	}
516 }
517 
518 static void
519 bnad_cq_setup_skb_frags(struct bna_ccb *ccb, struct sk_buff *skb, u32 nvecs)
520 {
521 	struct bna_rcb *rcb;
522 	struct bnad *bnad;
523 	struct bnad_rx_unmap_q *unmap_q;
524 	struct bna_cq_entry *cq, *cmpl;
525 	u32 ci, pi, totlen = 0;
526 
527 	cq = ccb->sw_q;
528 	pi = ccb->producer_index;
529 	cmpl = &cq[pi];
530 
531 	rcb = bna_is_small_rxq(cmpl->rxq_id) ? ccb->rcb[1] : ccb->rcb[0];
532 	unmap_q = rcb->unmap_q;
533 	bnad = rcb->bnad;
534 	ci = rcb->consumer_index;
535 
536 	/* prefetch header */
537 	prefetch(page_address(unmap_q->unmap[ci].page) +
538 		 unmap_q->unmap[ci].page_offset);
539 
540 	while (nvecs--) {
541 		struct bnad_rx_unmap *unmap;
542 		u32 len;
543 
544 		unmap = &unmap_q->unmap[ci];
545 		BNA_QE_INDX_INC(ci, rcb->q_depth);
546 
547 		dma_unmap_page(&bnad->pcidev->dev,
548 			       dma_unmap_addr(&unmap->vector, dma_addr),
549 			       unmap->vector.len, DMA_FROM_DEVICE);
550 
551 		len = ntohs(cmpl->length);
552 		skb->truesize += unmap->vector.len;
553 		totlen += len;
554 
555 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
556 				   unmap->page, unmap->page_offset, len);
557 
558 		unmap->page = NULL;
559 		unmap->vector.len = 0;
560 
561 		BNA_QE_INDX_INC(pi, ccb->q_depth);
562 		cmpl = &cq[pi];
563 	}
564 
565 	skb->len += totlen;
566 	skb->data_len += totlen;
567 }
568 
569 static inline void
570 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
571 		  struct bnad_rx_unmap *unmap, u32 len)
572 {
573 	prefetch(skb->data);
574 
575 	dma_unmap_single(&bnad->pcidev->dev,
576 			dma_unmap_addr(&unmap->vector, dma_addr),
577 			unmap->vector.len, DMA_FROM_DEVICE);
578 
579 	skb_put(skb, len);
580 	skb->protocol = eth_type_trans(skb, bnad->netdev);
581 
582 	unmap->skb = NULL;
583 	unmap->vector.len = 0;
584 }
585 
586 static u32
587 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
588 {
589 	struct bna_cq_entry *cq, *cmpl, *next_cmpl;
590 	struct bna_rcb *rcb = NULL;
591 	struct bnad_rx_unmap_q *unmap_q;
592 	struct bnad_rx_unmap *unmap = NULL;
593 	struct sk_buff *skb = NULL;
594 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
595 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
596 	u32 packets = 0, len = 0, totlen = 0;
597 	u32 pi, vec, sop_ci = 0, nvecs = 0;
598 	u32 flags, masked_flags;
599 
600 	prefetch(bnad->netdev);
601 
602 	cq = ccb->sw_q;
603 
604 	while (packets < budget) {
605 		cmpl = &cq[ccb->producer_index];
606 		if (!cmpl->valid)
607 			break;
608 		/* The 'valid' field is set by the adapter, only after writing
609 		 * the other fields of completion entry. Hence, do not load
610 		 * other fields of completion entry *before* the 'valid' is
611 		 * loaded. Adding the rmb() here prevents the compiler and/or
612 		 * CPU from reordering the reads which would potentially result
613 		 * in reading stale values in completion entry.
614 		 */
615 		rmb();
616 
617 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
618 
619 		if (bna_is_small_rxq(cmpl->rxq_id))
620 			rcb = ccb->rcb[1];
621 		else
622 			rcb = ccb->rcb[0];
623 
624 		unmap_q = rcb->unmap_q;
625 
626 		/* start of packet ci */
627 		sop_ci = rcb->consumer_index;
628 
629 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
630 			unmap = &unmap_q->unmap[sop_ci];
631 			skb = unmap->skb;
632 		} else {
633 			skb = napi_get_frags(&rx_ctrl->napi);
634 			if (unlikely(!skb))
635 				break;
636 		}
637 		prefetch(skb);
638 
639 		flags = ntohl(cmpl->flags);
640 		len = ntohs(cmpl->length);
641 		totlen = len;
642 		nvecs = 1;
643 
644 		/* Check all the completions for this frame.
645 		 * busy-wait doesn't help much, break here.
646 		 */
647 		if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
648 		    (flags & BNA_CQ_EF_EOP) == 0) {
649 			pi = ccb->producer_index;
650 			do {
651 				BNA_QE_INDX_INC(pi, ccb->q_depth);
652 				next_cmpl = &cq[pi];
653 
654 				if (!next_cmpl->valid)
655 					break;
656 				/* The 'valid' field is set by the adapter, only
657 				 * after writing the other fields of completion
658 				 * entry. Hence, do not load other fields of
659 				 * completion entry *before* the 'valid' is
660 				 * loaded. Adding the rmb() here prevents the
661 				 * compiler and/or CPU from reordering the reads
662 				 * which would potentially result in reading
663 				 * stale values in completion entry.
664 				 */
665 				rmb();
666 
667 				len = ntohs(next_cmpl->length);
668 				flags = ntohl(next_cmpl->flags);
669 
670 				nvecs++;
671 				totlen += len;
672 			} while ((flags & BNA_CQ_EF_EOP) == 0);
673 
674 			if (!next_cmpl->valid)
675 				break;
676 		}
677 		packets++;
678 
679 		/* TODO: BNA_CQ_EF_LOCAL ? */
680 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
681 						BNA_CQ_EF_FCS_ERROR |
682 						BNA_CQ_EF_TOO_LONG))) {
683 			bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
684 			rcb->rxq->rx_packets_with_error++;
685 
686 			goto next;
687 		}
688 
689 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
690 			bnad_cq_setup_skb(bnad, skb, unmap, len);
691 		else
692 			bnad_cq_setup_skb_frags(ccb, skb, nvecs);
693 
694 		rcb->rxq->rx_packets++;
695 		rcb->rxq->rx_bytes += totlen;
696 		ccb->bytes_per_intr += totlen;
697 
698 		masked_flags = flags & flags_cksum_prot_mask;
699 
700 		if (likely
701 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
702 		     ((masked_flags == flags_tcp4) ||
703 		      (masked_flags == flags_udp4) ||
704 		      (masked_flags == flags_tcp6) ||
705 		      (masked_flags == flags_udp6))))
706 			skb->ip_summed = CHECKSUM_UNNECESSARY;
707 		else
708 			skb_checksum_none_assert(skb);
709 
710 		if ((flags & BNA_CQ_EF_VLAN) &&
711 		    (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
712 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
713 
714 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
715 			netif_receive_skb(skb);
716 		else
717 			napi_gro_frags(&rx_ctrl->napi);
718 
719 next:
720 		BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
721 		for (vec = 0; vec < nvecs; vec++) {
722 			cmpl = &cq[ccb->producer_index];
723 			cmpl->valid = 0;
724 			BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
725 		}
726 	}
727 
728 	napi_gro_flush(&rx_ctrl->napi, false);
729 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
730 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
731 
732 	bnad_rxq_post(bnad, ccb->rcb[0]);
733 	if (ccb->rcb[1])
734 		bnad_rxq_post(bnad, ccb->rcb[1]);
735 
736 	return packets;
737 }
738 
739 static void
740 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
741 {
742 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
743 	struct napi_struct *napi = &rx_ctrl->napi;
744 
745 	if (likely(napi_schedule_prep(napi))) {
746 		__napi_schedule(napi);
747 		rx_ctrl->rx_schedule++;
748 	}
749 }
750 
751 /* MSIX Rx Path Handler */
752 static irqreturn_t
753 bnad_msix_rx(int irq, void *data)
754 {
755 	struct bna_ccb *ccb = (struct bna_ccb *)data;
756 
757 	if (ccb) {
758 		((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++;
759 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
760 	}
761 
762 	return IRQ_HANDLED;
763 }
764 
765 /* Interrupt handlers */
766 
767 /* Mbox Interrupt Handlers */
768 static irqreturn_t
769 bnad_msix_mbox_handler(int irq, void *data)
770 {
771 	u32 intr_status;
772 	unsigned long flags;
773 	struct bnad *bnad = (struct bnad *)data;
774 
775 	spin_lock_irqsave(&bnad->bna_lock, flags);
776 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
777 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
778 		return IRQ_HANDLED;
779 	}
780 
781 	bna_intr_status_get(&bnad->bna, intr_status);
782 
783 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
784 		bna_mbox_handler(&bnad->bna, intr_status);
785 
786 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
787 
788 	return IRQ_HANDLED;
789 }
790 
791 static irqreturn_t
792 bnad_isr(int irq, void *data)
793 {
794 	int i, j;
795 	u32 intr_status;
796 	unsigned long flags;
797 	struct bnad *bnad = (struct bnad *)data;
798 	struct bnad_rx_info *rx_info;
799 	struct bnad_rx_ctrl *rx_ctrl;
800 	struct bna_tcb *tcb = NULL;
801 
802 	spin_lock_irqsave(&bnad->bna_lock, flags);
803 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
804 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
805 		return IRQ_NONE;
806 	}
807 
808 	bna_intr_status_get(&bnad->bna, intr_status);
809 
810 	if (unlikely(!intr_status)) {
811 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
812 		return IRQ_NONE;
813 	}
814 
815 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
816 		bna_mbox_handler(&bnad->bna, intr_status);
817 
818 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
819 
820 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
821 		return IRQ_HANDLED;
822 
823 	/* Process data interrupts */
824 	/* Tx processing */
825 	for (i = 0; i < bnad->num_tx; i++) {
826 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
827 			tcb = bnad->tx_info[i].tcb[j];
828 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
829 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
830 		}
831 	}
832 	/* Rx processing */
833 	for (i = 0; i < bnad->num_rx; i++) {
834 		rx_info = &bnad->rx_info[i];
835 		if (!rx_info->rx)
836 			continue;
837 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
838 			rx_ctrl = &rx_info->rx_ctrl[j];
839 			if (rx_ctrl->ccb)
840 				bnad_netif_rx_schedule_poll(bnad,
841 							    rx_ctrl->ccb);
842 		}
843 	}
844 	return IRQ_HANDLED;
845 }
846 
847 /*
848  * Called in interrupt / callback context
849  * with bna_lock held, so cfg_flags access is OK
850  */
851 static void
852 bnad_enable_mbox_irq(struct bnad *bnad)
853 {
854 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
855 
856 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
857 }
858 
859 /*
860  * Called with bnad->bna_lock held b'cos of
861  * bnad->cfg_flags access.
862  */
863 static void
864 bnad_disable_mbox_irq(struct bnad *bnad)
865 {
866 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
867 
868 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
869 }
870 
871 static void
872 bnad_set_netdev_perm_addr(struct bnad *bnad)
873 {
874 	struct net_device *netdev = bnad->netdev;
875 
876 	ether_addr_copy(netdev->perm_addr, bnad->perm_addr);
877 	if (is_zero_ether_addr(netdev->dev_addr))
878 		eth_hw_addr_set(netdev, bnad->perm_addr);
879 }
880 
881 /* Control Path Handlers */
882 
883 /* Callbacks */
884 void
885 bnad_cb_mbox_intr_enable(struct bnad *bnad)
886 {
887 	bnad_enable_mbox_irq(bnad);
888 }
889 
890 void
891 bnad_cb_mbox_intr_disable(struct bnad *bnad)
892 {
893 	bnad_disable_mbox_irq(bnad);
894 }
895 
896 void
897 bnad_cb_ioceth_ready(struct bnad *bnad)
898 {
899 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
900 	complete(&bnad->bnad_completions.ioc_comp);
901 }
902 
903 void
904 bnad_cb_ioceth_failed(struct bnad *bnad)
905 {
906 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
907 	complete(&bnad->bnad_completions.ioc_comp);
908 }
909 
910 void
911 bnad_cb_ioceth_disabled(struct bnad *bnad)
912 {
913 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
914 	complete(&bnad->bnad_completions.ioc_comp);
915 }
916 
917 static void
918 bnad_cb_enet_disabled(void *arg)
919 {
920 	struct bnad *bnad = (struct bnad *)arg;
921 
922 	netif_carrier_off(bnad->netdev);
923 	complete(&bnad->bnad_completions.enet_comp);
924 }
925 
926 void
927 bnad_cb_ethport_link_status(struct bnad *bnad,
928 			enum bna_link_status link_status)
929 {
930 	bool link_up = false;
931 
932 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
933 
934 	if (link_status == BNA_CEE_UP) {
935 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
936 			BNAD_UPDATE_CTR(bnad, cee_toggle);
937 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
938 	} else {
939 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
940 			BNAD_UPDATE_CTR(bnad, cee_toggle);
941 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
942 	}
943 
944 	if (link_up) {
945 		if (!netif_carrier_ok(bnad->netdev)) {
946 			uint tx_id, tcb_id;
947 			netdev_info(bnad->netdev, "link up\n");
948 			netif_carrier_on(bnad->netdev);
949 			BNAD_UPDATE_CTR(bnad, link_toggle);
950 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
951 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
952 				      tcb_id++) {
953 					struct bna_tcb *tcb =
954 					bnad->tx_info[tx_id].tcb[tcb_id];
955 					u32 txq_id;
956 					if (!tcb)
957 						continue;
958 
959 					txq_id = tcb->id;
960 
961 					if (test_bit(BNAD_TXQ_TX_STARTED,
962 						     &tcb->flags)) {
963 						/*
964 						 * Force an immediate
965 						 * Transmit Schedule */
966 						netif_wake_subqueue(
967 								bnad->netdev,
968 								txq_id);
969 						BNAD_UPDATE_CTR(bnad,
970 							netif_queue_wakeup);
971 					} else {
972 						netif_stop_subqueue(
973 								bnad->netdev,
974 								txq_id);
975 						BNAD_UPDATE_CTR(bnad,
976 							netif_queue_stop);
977 					}
978 				}
979 			}
980 		}
981 	} else {
982 		if (netif_carrier_ok(bnad->netdev)) {
983 			netdev_info(bnad->netdev, "link down\n");
984 			netif_carrier_off(bnad->netdev);
985 			BNAD_UPDATE_CTR(bnad, link_toggle);
986 		}
987 	}
988 }
989 
990 static void
991 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
992 {
993 	struct bnad *bnad = (struct bnad *)arg;
994 
995 	complete(&bnad->bnad_completions.tx_comp);
996 }
997 
998 static void
999 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1000 {
1001 	struct bnad_tx_info *tx_info =
1002 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1003 
1004 	tcb->priv = tcb;
1005 	tx_info->tcb[tcb->id] = tcb;
1006 }
1007 
1008 static void
1009 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1010 {
1011 	struct bnad_tx_info *tx_info =
1012 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1013 
1014 	tx_info->tcb[tcb->id] = NULL;
1015 	tcb->priv = NULL;
1016 }
1017 
1018 static void
1019 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1020 {
1021 	struct bnad_rx_info *rx_info =
1022 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1023 
1024 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
1025 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1026 }
1027 
1028 static void
1029 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1030 {
1031 	struct bnad_rx_info *rx_info =
1032 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1033 
1034 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
1035 }
1036 
1037 static void
1038 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1039 {
1040 	struct bnad_tx_info *tx_info = tx->priv;
1041 	struct bna_tcb *tcb;
1042 	u32 txq_id;
1043 	int i;
1044 
1045 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1046 		tcb = tx_info->tcb[i];
1047 		if (!tcb)
1048 			continue;
1049 		txq_id = tcb->id;
1050 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1051 		netif_stop_subqueue(bnad->netdev, txq_id);
1052 	}
1053 }
1054 
1055 static void
1056 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1057 {
1058 	struct bnad_tx_info *tx_info = tx->priv;
1059 	struct bna_tcb *tcb;
1060 	u32 txq_id;
1061 	int i;
1062 
1063 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1064 		tcb = tx_info->tcb[i];
1065 		if (!tcb)
1066 			continue;
1067 		txq_id = tcb->id;
1068 
1069 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1070 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1071 		BUG_ON(*(tcb->hw_consumer_index) != 0);
1072 
1073 		if (netif_carrier_ok(bnad->netdev)) {
1074 			netif_wake_subqueue(bnad->netdev, txq_id);
1075 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * Workaround for first ioceth enable failure & we
1081 	 * get a 0 MAC address. We try to get the MAC address
1082 	 * again here.
1083 	 */
1084 	if (is_zero_ether_addr(bnad->perm_addr)) {
1085 		bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr);
1086 		bnad_set_netdev_perm_addr(bnad);
1087 	}
1088 }
1089 
1090 /*
1091  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1092  */
1093 static void
1094 bnad_tx_cleanup(struct work_struct *work)
1095 {
1096 	struct bnad_tx_info *tx_info =
1097 		container_of(work, struct bnad_tx_info, tx_cleanup_work.work);
1098 	struct bnad *bnad = NULL;
1099 	struct bna_tcb *tcb;
1100 	unsigned long flags;
1101 	u32 i, pending = 0;
1102 
1103 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1104 		tcb = tx_info->tcb[i];
1105 		if (!tcb)
1106 			continue;
1107 
1108 		bnad = tcb->bnad;
1109 
1110 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1111 			pending++;
1112 			continue;
1113 		}
1114 
1115 		bnad_txq_cleanup(bnad, tcb);
1116 
1117 		smp_mb__before_atomic();
1118 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1119 	}
1120 
1121 	if (pending) {
1122 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1123 			msecs_to_jiffies(1));
1124 		return;
1125 	}
1126 
1127 	spin_lock_irqsave(&bnad->bna_lock, flags);
1128 	bna_tx_cleanup_complete(tx_info->tx);
1129 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1130 }
1131 
1132 static void
1133 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1134 {
1135 	struct bnad_tx_info *tx_info = tx->priv;
1136 	struct bna_tcb *tcb;
1137 	int i;
1138 
1139 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1140 		tcb = tx_info->tcb[i];
1141 		if (!tcb)
1142 			continue;
1143 	}
1144 
1145 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1146 }
1147 
1148 static void
1149 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1150 {
1151 	struct bnad_rx_info *rx_info = rx->priv;
1152 	struct bna_ccb *ccb;
1153 	struct bnad_rx_ctrl *rx_ctrl;
1154 	int i;
1155 
1156 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1157 		rx_ctrl = &rx_info->rx_ctrl[i];
1158 		ccb = rx_ctrl->ccb;
1159 		if (!ccb)
1160 			continue;
1161 
1162 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1163 
1164 		if (ccb->rcb[1])
1165 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1166 	}
1167 }
1168 
1169 /*
1170  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1171  */
1172 static void
1173 bnad_rx_cleanup(struct work_struct *work)
1174 {
1175 	struct bnad_rx_info *rx_info =
1176 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1177 	struct bnad_rx_ctrl *rx_ctrl;
1178 	struct bnad *bnad = NULL;
1179 	unsigned long flags;
1180 	u32 i;
1181 
1182 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1183 		rx_ctrl = &rx_info->rx_ctrl[i];
1184 
1185 		if (!rx_ctrl->ccb)
1186 			continue;
1187 
1188 		bnad = rx_ctrl->ccb->bnad;
1189 
1190 		/*
1191 		 * Wait till the poll handler has exited
1192 		 * and nothing can be scheduled anymore
1193 		 */
1194 		napi_disable(&rx_ctrl->napi);
1195 
1196 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1197 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1198 		if (rx_ctrl->ccb->rcb[1])
1199 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1200 	}
1201 
1202 	spin_lock_irqsave(&bnad->bna_lock, flags);
1203 	bna_rx_cleanup_complete(rx_info->rx);
1204 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1205 }
1206 
1207 static void
1208 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1209 {
1210 	struct bnad_rx_info *rx_info = rx->priv;
1211 	struct bna_ccb *ccb;
1212 	struct bnad_rx_ctrl *rx_ctrl;
1213 	int i;
1214 
1215 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1216 		rx_ctrl = &rx_info->rx_ctrl[i];
1217 		ccb = rx_ctrl->ccb;
1218 		if (!ccb)
1219 			continue;
1220 
1221 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1222 
1223 		if (ccb->rcb[1])
1224 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1225 	}
1226 
1227 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1228 }
1229 
1230 static void
1231 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1232 {
1233 	struct bnad_rx_info *rx_info = rx->priv;
1234 	struct bna_ccb *ccb;
1235 	struct bna_rcb *rcb;
1236 	struct bnad_rx_ctrl *rx_ctrl;
1237 	int i, j;
1238 
1239 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1240 		rx_ctrl = &rx_info->rx_ctrl[i];
1241 		ccb = rx_ctrl->ccb;
1242 		if (!ccb)
1243 			continue;
1244 
1245 		napi_enable(&rx_ctrl->napi);
1246 
1247 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1248 			rcb = ccb->rcb[j];
1249 			if (!rcb)
1250 				continue;
1251 
1252 			bnad_rxq_alloc_init(bnad, rcb);
1253 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1254 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1255 			bnad_rxq_post(bnad, rcb);
1256 		}
1257 	}
1258 }
1259 
1260 static void
1261 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1262 {
1263 	struct bnad *bnad = (struct bnad *)arg;
1264 
1265 	complete(&bnad->bnad_completions.rx_comp);
1266 }
1267 
1268 static void
1269 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1270 {
1271 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1272 	complete(&bnad->bnad_completions.mcast_comp);
1273 }
1274 
1275 void
1276 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1277 		       struct bna_stats *stats)
1278 {
1279 	if (status == BNA_CB_SUCCESS)
1280 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1281 
1282 	if (!netif_running(bnad->netdev) ||
1283 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1284 		return;
1285 
1286 	mod_timer(&bnad->stats_timer,
1287 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1288 }
1289 
1290 static void
1291 bnad_cb_enet_mtu_set(struct bnad *bnad)
1292 {
1293 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1294 	complete(&bnad->bnad_completions.mtu_comp);
1295 }
1296 
1297 void
1298 bnad_cb_completion(void *arg, enum bfa_status status)
1299 {
1300 	struct bnad_iocmd_comp *iocmd_comp =
1301 			(struct bnad_iocmd_comp *)arg;
1302 
1303 	iocmd_comp->comp_status = (u32) status;
1304 	complete(&iocmd_comp->comp);
1305 }
1306 
1307 /* Resource allocation, free functions */
1308 
1309 static void
1310 bnad_mem_free(struct bnad *bnad,
1311 	      struct bna_mem_info *mem_info)
1312 {
1313 	int i;
1314 	dma_addr_t dma_pa;
1315 
1316 	if (mem_info->mdl == NULL)
1317 		return;
1318 
1319 	for (i = 0; i < mem_info->num; i++) {
1320 		if (mem_info->mdl[i].kva != NULL) {
1321 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1322 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1323 						dma_pa);
1324 				dma_free_coherent(&bnad->pcidev->dev,
1325 						  mem_info->mdl[i].len,
1326 						  mem_info->mdl[i].kva, dma_pa);
1327 			} else
1328 				kfree(mem_info->mdl[i].kva);
1329 		}
1330 	}
1331 	kfree(mem_info->mdl);
1332 	mem_info->mdl = NULL;
1333 }
1334 
1335 static int
1336 bnad_mem_alloc(struct bnad *bnad,
1337 	       struct bna_mem_info *mem_info)
1338 {
1339 	int i;
1340 	dma_addr_t dma_pa;
1341 
1342 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1343 		mem_info->mdl = NULL;
1344 		return 0;
1345 	}
1346 
1347 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1348 				GFP_KERNEL);
1349 	if (mem_info->mdl == NULL)
1350 		return -ENOMEM;
1351 
1352 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1353 		for (i = 0; i < mem_info->num; i++) {
1354 			mem_info->mdl[i].len = mem_info->len;
1355 			mem_info->mdl[i].kva =
1356 				dma_alloc_coherent(&bnad->pcidev->dev,
1357 						   mem_info->len, &dma_pa,
1358 						   GFP_KERNEL);
1359 			if (mem_info->mdl[i].kva == NULL)
1360 				goto err_return;
1361 
1362 			BNA_SET_DMA_ADDR(dma_pa,
1363 					 &(mem_info->mdl[i].dma));
1364 		}
1365 	} else {
1366 		for (i = 0; i < mem_info->num; i++) {
1367 			mem_info->mdl[i].len = mem_info->len;
1368 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1369 							GFP_KERNEL);
1370 			if (mem_info->mdl[i].kva == NULL)
1371 				goto err_return;
1372 		}
1373 	}
1374 
1375 	return 0;
1376 
1377 err_return:
1378 	bnad_mem_free(bnad, mem_info);
1379 	return -ENOMEM;
1380 }
1381 
1382 /* Free IRQ for Mailbox */
1383 static void
1384 bnad_mbox_irq_free(struct bnad *bnad)
1385 {
1386 	int irq;
1387 	unsigned long flags;
1388 
1389 	spin_lock_irqsave(&bnad->bna_lock, flags);
1390 	bnad_disable_mbox_irq(bnad);
1391 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1392 
1393 	irq = BNAD_GET_MBOX_IRQ(bnad);
1394 	free_irq(irq, bnad);
1395 }
1396 
1397 /*
1398  * Allocates IRQ for Mailbox, but keep it disabled
1399  * This will be enabled once we get the mbox enable callback
1400  * from bna
1401  */
1402 static int
1403 bnad_mbox_irq_alloc(struct bnad *bnad)
1404 {
1405 	int		err = 0;
1406 	unsigned long	irq_flags, flags;
1407 	u32	irq;
1408 	irq_handler_t	irq_handler;
1409 
1410 	spin_lock_irqsave(&bnad->bna_lock, flags);
1411 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1412 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1413 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1414 		irq_flags = 0;
1415 	} else {
1416 		irq_handler = (irq_handler_t)bnad_isr;
1417 		irq = bnad->pcidev->irq;
1418 		irq_flags = IRQF_SHARED;
1419 	}
1420 
1421 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1422 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1423 
1424 	/*
1425 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1426 	 * called from request_irq() for SHARED IRQs do not execute
1427 	 */
1428 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1429 
1430 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1431 
1432 	err = request_irq(irq, irq_handler, irq_flags,
1433 			  bnad->mbox_irq_name, bnad);
1434 
1435 	return err;
1436 }
1437 
1438 static void
1439 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1440 {
1441 	kfree(intr_info->idl);
1442 	intr_info->idl = NULL;
1443 }
1444 
1445 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1446 static int
1447 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1448 		    u32 txrx_id, struct bna_intr_info *intr_info)
1449 {
1450 	int i, vector_start = 0;
1451 	u32 cfg_flags;
1452 	unsigned long flags;
1453 
1454 	spin_lock_irqsave(&bnad->bna_lock, flags);
1455 	cfg_flags = bnad->cfg_flags;
1456 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1457 
1458 	if (cfg_flags & BNAD_CF_MSIX) {
1459 		intr_info->intr_type = BNA_INTR_T_MSIX;
1460 		intr_info->idl = kcalloc(intr_info->num,
1461 					sizeof(struct bna_intr_descr),
1462 					GFP_KERNEL);
1463 		if (!intr_info->idl)
1464 			return -ENOMEM;
1465 
1466 		switch (src) {
1467 		case BNAD_INTR_TX:
1468 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1469 			break;
1470 
1471 		case BNAD_INTR_RX:
1472 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1473 					(bnad->num_tx * bnad->num_txq_per_tx) +
1474 					txrx_id;
1475 			break;
1476 
1477 		default:
1478 			BUG();
1479 		}
1480 
1481 		for (i = 0; i < intr_info->num; i++)
1482 			intr_info->idl[i].vector = vector_start + i;
1483 	} else {
1484 		intr_info->intr_type = BNA_INTR_T_INTX;
1485 		intr_info->num = 1;
1486 		intr_info->idl = kcalloc(intr_info->num,
1487 					sizeof(struct bna_intr_descr),
1488 					GFP_KERNEL);
1489 		if (!intr_info->idl)
1490 			return -ENOMEM;
1491 
1492 		switch (src) {
1493 		case BNAD_INTR_TX:
1494 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1495 			break;
1496 
1497 		case BNAD_INTR_RX:
1498 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1499 			break;
1500 		}
1501 	}
1502 	return 0;
1503 }
1504 
1505 /* NOTE: Should be called for MSIX only
1506  * Unregisters Tx MSIX vector(s) from the kernel
1507  */
1508 static void
1509 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1510 			int num_txqs)
1511 {
1512 	int i;
1513 	int vector_num;
1514 
1515 	for (i = 0; i < num_txqs; i++) {
1516 		if (tx_info->tcb[i] == NULL)
1517 			continue;
1518 
1519 		vector_num = tx_info->tcb[i]->intr_vector;
1520 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1521 	}
1522 }
1523 
1524 /* NOTE: Should be called for MSIX only
1525  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1526  */
1527 static int
1528 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1529 			u32 tx_id, int num_txqs)
1530 {
1531 	int i;
1532 	int err;
1533 	int vector_num;
1534 
1535 	for (i = 0; i < num_txqs; i++) {
1536 		vector_num = tx_info->tcb[i]->intr_vector;
1537 		snprintf(tx_info->tcb[i]->name, BNA_Q_NAME_SIZE, "%s TXQ %d",
1538 			 bnad->netdev->name,
1539 			 tx_id + tx_info->tcb[i]->id);
1540 		err = request_irq(bnad->msix_table[vector_num].vector,
1541 				  (irq_handler_t)bnad_msix_tx, 0,
1542 				  tx_info->tcb[i]->name,
1543 				  tx_info->tcb[i]);
1544 		if (err)
1545 			goto err_return;
1546 	}
1547 
1548 	return 0;
1549 
1550 err_return:
1551 	if (i > 0)
1552 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1553 	return -1;
1554 }
1555 
1556 /* NOTE: Should be called for MSIX only
1557  * Unregisters Rx MSIX vector(s) from the kernel
1558  */
1559 static void
1560 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1561 			int num_rxps)
1562 {
1563 	int i;
1564 	int vector_num;
1565 
1566 	for (i = 0; i < num_rxps; i++) {
1567 		if (rx_info->rx_ctrl[i].ccb == NULL)
1568 			continue;
1569 
1570 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1571 		free_irq(bnad->msix_table[vector_num].vector,
1572 			 rx_info->rx_ctrl[i].ccb);
1573 	}
1574 }
1575 
1576 /* NOTE: Should be called for MSIX only
1577  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1578  */
1579 static int
1580 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1581 			u32 rx_id, int num_rxps)
1582 {
1583 	int i;
1584 	int err;
1585 	int vector_num;
1586 
1587 	for (i = 0; i < num_rxps; i++) {
1588 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1589 		snprintf(rx_info->rx_ctrl[i].ccb->name, BNA_Q_NAME_SIZE,
1590 			 "%s CQ %d", bnad->netdev->name,
1591 			 rx_id + rx_info->rx_ctrl[i].ccb->id);
1592 		err = request_irq(bnad->msix_table[vector_num].vector,
1593 				  (irq_handler_t)bnad_msix_rx, 0,
1594 				  rx_info->rx_ctrl[i].ccb->name,
1595 				  rx_info->rx_ctrl[i].ccb);
1596 		if (err)
1597 			goto err_return;
1598 	}
1599 
1600 	return 0;
1601 
1602 err_return:
1603 	if (i > 0)
1604 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1605 	return -1;
1606 }
1607 
1608 /* Free Tx object Resources */
1609 static void
1610 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1611 {
1612 	int i;
1613 
1614 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1615 		if (res_info[i].res_type == BNA_RES_T_MEM)
1616 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1617 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1618 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1619 	}
1620 }
1621 
1622 /* Allocates memory and interrupt resources for Tx object */
1623 static int
1624 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1625 		  u32 tx_id)
1626 {
1627 	int i, err = 0;
1628 
1629 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1630 		if (res_info[i].res_type == BNA_RES_T_MEM)
1631 			err = bnad_mem_alloc(bnad,
1632 					&res_info[i].res_u.mem_info);
1633 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1634 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1635 					&res_info[i].res_u.intr_info);
1636 		if (err)
1637 			goto err_return;
1638 	}
1639 	return 0;
1640 
1641 err_return:
1642 	bnad_tx_res_free(bnad, res_info);
1643 	return err;
1644 }
1645 
1646 /* Free Rx object Resources */
1647 static void
1648 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1649 {
1650 	int i;
1651 
1652 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1653 		if (res_info[i].res_type == BNA_RES_T_MEM)
1654 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1655 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1656 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1657 	}
1658 }
1659 
1660 /* Allocates memory and interrupt resources for Rx object */
1661 static int
1662 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1663 		  uint rx_id)
1664 {
1665 	int i, err = 0;
1666 
1667 	/* All memory needs to be allocated before setup_ccbs */
1668 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1669 		if (res_info[i].res_type == BNA_RES_T_MEM)
1670 			err = bnad_mem_alloc(bnad,
1671 					&res_info[i].res_u.mem_info);
1672 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1673 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1674 					&res_info[i].res_u.intr_info);
1675 		if (err)
1676 			goto err_return;
1677 	}
1678 	return 0;
1679 
1680 err_return:
1681 	bnad_rx_res_free(bnad, res_info);
1682 	return err;
1683 }
1684 
1685 /* Timer callbacks */
1686 /* a) IOC timer */
1687 static void
1688 bnad_ioc_timeout(struct timer_list *t)
1689 {
1690 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.ioc_timer);
1691 	unsigned long flags;
1692 
1693 	spin_lock_irqsave(&bnad->bna_lock, flags);
1694 	bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc);
1695 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1696 }
1697 
1698 static void
1699 bnad_ioc_hb_check(struct timer_list *t)
1700 {
1701 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.hb_timer);
1702 	unsigned long flags;
1703 
1704 	spin_lock_irqsave(&bnad->bna_lock, flags);
1705 	bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc);
1706 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1707 }
1708 
1709 static void
1710 bnad_iocpf_timeout(struct timer_list *t)
1711 {
1712 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.iocpf_timer);
1713 	unsigned long flags;
1714 
1715 	spin_lock_irqsave(&bnad->bna_lock, flags);
1716 	bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc);
1717 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1718 }
1719 
1720 static void
1721 bnad_iocpf_sem_timeout(struct timer_list *t)
1722 {
1723 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.sem_timer);
1724 	unsigned long flags;
1725 
1726 	spin_lock_irqsave(&bnad->bna_lock, flags);
1727 	bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc);
1728 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1729 }
1730 
1731 /*
1732  * All timer routines use bnad->bna_lock to protect against
1733  * the following race, which may occur in case of no locking:
1734  *	Time	CPU m	CPU n
1735  *	0       1 = test_bit
1736  *	1			clear_bit
1737  *	2			del_timer_sync
1738  *	3	mod_timer
1739  */
1740 
1741 /* b) Dynamic Interrupt Moderation Timer */
1742 static void
1743 bnad_dim_timeout(struct timer_list *t)
1744 {
1745 	struct bnad *bnad = from_timer(bnad, t, dim_timer);
1746 	struct bnad_rx_info *rx_info;
1747 	struct bnad_rx_ctrl *rx_ctrl;
1748 	int i, j;
1749 	unsigned long flags;
1750 
1751 	if (!netif_carrier_ok(bnad->netdev))
1752 		return;
1753 
1754 	spin_lock_irqsave(&bnad->bna_lock, flags);
1755 	for (i = 0; i < bnad->num_rx; i++) {
1756 		rx_info = &bnad->rx_info[i];
1757 		if (!rx_info->rx)
1758 			continue;
1759 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1760 			rx_ctrl = &rx_info->rx_ctrl[j];
1761 			if (!rx_ctrl->ccb)
1762 				continue;
1763 			bna_rx_dim_update(rx_ctrl->ccb);
1764 		}
1765 	}
1766 
1767 	/* Check for BNAD_CF_DIM_ENABLED, does not eliminate a race */
1768 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1769 		mod_timer(&bnad->dim_timer,
1770 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1771 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1772 }
1773 
1774 /* c)  Statistics Timer */
1775 static void
1776 bnad_stats_timeout(struct timer_list *t)
1777 {
1778 	struct bnad *bnad = from_timer(bnad, t, stats_timer);
1779 	unsigned long flags;
1780 
1781 	if (!netif_running(bnad->netdev) ||
1782 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1783 		return;
1784 
1785 	spin_lock_irqsave(&bnad->bna_lock, flags);
1786 	bna_hw_stats_get(&bnad->bna);
1787 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1788 }
1789 
1790 /*
1791  * Set up timer for DIM
1792  * Called with bnad->bna_lock held
1793  */
1794 void
1795 bnad_dim_timer_start(struct bnad *bnad)
1796 {
1797 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1798 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1799 		timer_setup(&bnad->dim_timer, bnad_dim_timeout, 0);
1800 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1801 		mod_timer(&bnad->dim_timer,
1802 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1803 	}
1804 }
1805 
1806 /*
1807  * Set up timer for statistics
1808  * Called with mutex_lock(&bnad->conf_mutex) held
1809  */
1810 static void
1811 bnad_stats_timer_start(struct bnad *bnad)
1812 {
1813 	unsigned long flags;
1814 
1815 	spin_lock_irqsave(&bnad->bna_lock, flags);
1816 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1817 		timer_setup(&bnad->stats_timer, bnad_stats_timeout, 0);
1818 		mod_timer(&bnad->stats_timer,
1819 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1820 	}
1821 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1822 }
1823 
1824 /*
1825  * Stops the stats timer
1826  * Called with mutex_lock(&bnad->conf_mutex) held
1827  */
1828 static void
1829 bnad_stats_timer_stop(struct bnad *bnad)
1830 {
1831 	int to_del = 0;
1832 	unsigned long flags;
1833 
1834 	spin_lock_irqsave(&bnad->bna_lock, flags);
1835 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1836 		to_del = 1;
1837 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1838 	if (to_del)
1839 		del_timer_sync(&bnad->stats_timer);
1840 }
1841 
1842 /* Utilities */
1843 
1844 static void
1845 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1846 {
1847 	int i = 1; /* Index 0 has broadcast address */
1848 	struct netdev_hw_addr *mc_addr;
1849 
1850 	netdev_for_each_mc_addr(mc_addr, netdev) {
1851 		ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]);
1852 		i++;
1853 	}
1854 }
1855 
1856 static int
1857 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1858 {
1859 	struct bnad_rx_ctrl *rx_ctrl =
1860 		container_of(napi, struct bnad_rx_ctrl, napi);
1861 	struct bnad *bnad = rx_ctrl->bnad;
1862 	int rcvd = 0;
1863 
1864 	rx_ctrl->rx_poll_ctr++;
1865 
1866 	if (!netif_carrier_ok(bnad->netdev))
1867 		goto poll_exit;
1868 
1869 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1870 	if (rcvd >= budget)
1871 		return rcvd;
1872 
1873 poll_exit:
1874 	napi_complete_done(napi, rcvd);
1875 
1876 	rx_ctrl->rx_complete++;
1877 
1878 	if (rx_ctrl->ccb)
1879 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1880 
1881 	return rcvd;
1882 }
1883 
1884 static void
1885 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1886 {
1887 	struct bnad_rx_ctrl *rx_ctrl;
1888 	int i;
1889 
1890 	/* Initialize & enable NAPI */
1891 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1892 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1893 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1894 			       bnad_napi_poll_rx);
1895 	}
1896 }
1897 
1898 static void
1899 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1900 {
1901 	int i;
1902 
1903 	/* First disable and then clean up */
1904 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1905 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1906 }
1907 
1908 /* Should be held with conf_lock held */
1909 void
1910 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1911 {
1912 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1913 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1914 	unsigned long flags;
1915 
1916 	if (!tx_info->tx)
1917 		return;
1918 
1919 	init_completion(&bnad->bnad_completions.tx_comp);
1920 	spin_lock_irqsave(&bnad->bna_lock, flags);
1921 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1922 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1923 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1924 
1925 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1926 		bnad_tx_msix_unregister(bnad, tx_info,
1927 			bnad->num_txq_per_tx);
1928 
1929 	spin_lock_irqsave(&bnad->bna_lock, flags);
1930 	bna_tx_destroy(tx_info->tx);
1931 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1932 
1933 	tx_info->tx = NULL;
1934 	tx_info->tx_id = 0;
1935 
1936 	bnad_tx_res_free(bnad, res_info);
1937 }
1938 
1939 /* Should be held with conf_lock held */
1940 int
1941 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1942 {
1943 	int err;
1944 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1945 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1946 	struct bna_intr_info *intr_info =
1947 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1948 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1949 	static const struct bna_tx_event_cbfn tx_cbfn = {
1950 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1951 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1952 		.tx_stall_cbfn = bnad_cb_tx_stall,
1953 		.tx_resume_cbfn = bnad_cb_tx_resume,
1954 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1955 	};
1956 
1957 	struct bna_tx *tx;
1958 	unsigned long flags;
1959 
1960 	tx_info->tx_id = tx_id;
1961 
1962 	/* Initialize the Tx object configuration */
1963 	tx_config->num_txq = bnad->num_txq_per_tx;
1964 	tx_config->txq_depth = bnad->txq_depth;
1965 	tx_config->tx_type = BNA_TX_T_REGULAR;
1966 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1967 
1968 	/* Get BNA's resource requirement for one tx object */
1969 	spin_lock_irqsave(&bnad->bna_lock, flags);
1970 	bna_tx_res_req(bnad->num_txq_per_tx,
1971 		bnad->txq_depth, res_info);
1972 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1973 
1974 	/* Fill Unmap Q memory requirements */
1975 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1976 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1977 			bnad->txq_depth));
1978 
1979 	/* Allocate resources */
1980 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1981 	if (err)
1982 		return err;
1983 
1984 	/* Ask BNA to create one Tx object, supplying required resources */
1985 	spin_lock_irqsave(&bnad->bna_lock, flags);
1986 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1987 			tx_info);
1988 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1989 	if (!tx) {
1990 		err = -ENOMEM;
1991 		goto err_return;
1992 	}
1993 	tx_info->tx = tx;
1994 
1995 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work, bnad_tx_cleanup);
1996 
1997 	/* Register ISR for the Tx object */
1998 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1999 		err = bnad_tx_msix_register(bnad, tx_info,
2000 			tx_id, bnad->num_txq_per_tx);
2001 		if (err)
2002 			goto cleanup_tx;
2003 	}
2004 
2005 	spin_lock_irqsave(&bnad->bna_lock, flags);
2006 	bna_tx_enable(tx);
2007 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2008 
2009 	return 0;
2010 
2011 cleanup_tx:
2012 	spin_lock_irqsave(&bnad->bna_lock, flags);
2013 	bna_tx_destroy(tx_info->tx);
2014 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2015 	tx_info->tx = NULL;
2016 	tx_info->tx_id = 0;
2017 err_return:
2018 	bnad_tx_res_free(bnad, res_info);
2019 	return err;
2020 }
2021 
2022 /* Setup the rx config for bna_rx_create */
2023 /* bnad decides the configuration */
2024 static void
2025 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2026 {
2027 	memset(rx_config, 0, sizeof(*rx_config));
2028 	rx_config->rx_type = BNA_RX_T_REGULAR;
2029 	rx_config->num_paths = bnad->num_rxp_per_rx;
2030 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2031 
2032 	if (bnad->num_rxp_per_rx > 1) {
2033 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
2034 		rx_config->rss_config.hash_type =
2035 				(BFI_ENET_RSS_IPV6 |
2036 				 BFI_ENET_RSS_IPV6_TCP |
2037 				 BFI_ENET_RSS_IPV4 |
2038 				 BFI_ENET_RSS_IPV4_TCP);
2039 		rx_config->rss_config.hash_mask =
2040 				bnad->num_rxp_per_rx - 1;
2041 		netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2042 			sizeof(rx_config->rss_config.toeplitz_hash_key));
2043 	} else {
2044 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
2045 		memset(&rx_config->rss_config, 0,
2046 		       sizeof(rx_config->rss_config));
2047 	}
2048 
2049 	rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2050 	rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2051 
2052 	/* BNA_RXP_SINGLE - one data-buffer queue
2053 	 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2054 	 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2055 	 */
2056 	/* TODO: configurable param for queue type */
2057 	rx_config->rxp_type = BNA_RXP_SLR;
2058 
2059 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2060 	    rx_config->frame_size > 4096) {
2061 		/* though size_routing_enable is set in SLR,
2062 		 * small packets may get routed to same rxq.
2063 		 * set buf_size to 2048 instead of PAGE_SIZE.
2064 		 */
2065 		rx_config->q0_buf_size = 2048;
2066 		/* this should be in multiples of 2 */
2067 		rx_config->q0_num_vecs = 4;
2068 		rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2069 		rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2070 	} else {
2071 		rx_config->q0_buf_size = rx_config->frame_size;
2072 		rx_config->q0_num_vecs = 1;
2073 		rx_config->q0_depth = bnad->rxq_depth;
2074 	}
2075 
2076 	/* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2077 	if (rx_config->rxp_type == BNA_RXP_SLR) {
2078 		rx_config->q1_depth = bnad->rxq_depth;
2079 		rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2080 	}
2081 
2082 	rx_config->vlan_strip_status =
2083 		(bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2084 		BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2085 }
2086 
2087 static void
2088 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2089 {
2090 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2091 	int i;
2092 
2093 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
2094 		rx_info->rx_ctrl[i].bnad = bnad;
2095 }
2096 
2097 /* Called with mutex_lock(&bnad->conf_mutex) held */
2098 static u32
2099 bnad_reinit_rx(struct bnad *bnad)
2100 {
2101 	struct net_device *netdev = bnad->netdev;
2102 	u32 err = 0, current_err = 0;
2103 	u32 rx_id = 0, count = 0;
2104 	unsigned long flags;
2105 
2106 	/* destroy and create new rx objects */
2107 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2108 		if (!bnad->rx_info[rx_id].rx)
2109 			continue;
2110 		bnad_destroy_rx(bnad, rx_id);
2111 	}
2112 
2113 	spin_lock_irqsave(&bnad->bna_lock, flags);
2114 	bna_enet_mtu_set(&bnad->bna.enet,
2115 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2116 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2117 
2118 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2119 		count++;
2120 		current_err = bnad_setup_rx(bnad, rx_id);
2121 		if (current_err && !err) {
2122 			err = current_err;
2123 			netdev_err(netdev, "RXQ:%u setup failed\n", rx_id);
2124 		}
2125 	}
2126 
2127 	/* restore rx configuration */
2128 	if (bnad->rx_info[0].rx && !err) {
2129 		bnad_restore_vlans(bnad, 0);
2130 		bnad_enable_default_bcast(bnad);
2131 		spin_lock_irqsave(&bnad->bna_lock, flags);
2132 		bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2133 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2134 		bnad_set_rx_mode(netdev);
2135 	}
2136 
2137 	return count;
2138 }
2139 
2140 /* Called with bnad_conf_lock() held */
2141 void
2142 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2143 {
2144 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2145 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2146 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2147 	unsigned long flags;
2148 	int to_del = 0;
2149 
2150 	if (!rx_info->rx)
2151 		return;
2152 
2153 	if (0 == rx_id) {
2154 		spin_lock_irqsave(&bnad->bna_lock, flags);
2155 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2156 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2157 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2158 			to_del = 1;
2159 		}
2160 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2161 		if (to_del)
2162 			del_timer_sync(&bnad->dim_timer);
2163 	}
2164 
2165 	init_completion(&bnad->bnad_completions.rx_comp);
2166 	spin_lock_irqsave(&bnad->bna_lock, flags);
2167 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2168 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2169 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2170 
2171 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2172 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2173 
2174 	bnad_napi_delete(bnad, rx_id);
2175 
2176 	spin_lock_irqsave(&bnad->bna_lock, flags);
2177 	bna_rx_destroy(rx_info->rx);
2178 
2179 	rx_info->rx = NULL;
2180 	rx_info->rx_id = 0;
2181 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2182 
2183 	bnad_rx_res_free(bnad, res_info);
2184 }
2185 
2186 /* Called with mutex_lock(&bnad->conf_mutex) held */
2187 int
2188 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2189 {
2190 	int err;
2191 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2192 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2193 	struct bna_intr_info *intr_info =
2194 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2195 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2196 	static const struct bna_rx_event_cbfn rx_cbfn = {
2197 		.rcb_setup_cbfn = NULL,
2198 		.rcb_destroy_cbfn = NULL,
2199 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2200 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2201 		.rx_stall_cbfn = bnad_cb_rx_stall,
2202 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2203 		.rx_post_cbfn = bnad_cb_rx_post,
2204 	};
2205 	struct bna_rx *rx;
2206 	unsigned long flags;
2207 
2208 	rx_info->rx_id = rx_id;
2209 
2210 	/* Initialize the Rx object configuration */
2211 	bnad_init_rx_config(bnad, rx_config);
2212 
2213 	/* Get BNA's resource requirement for one Rx object */
2214 	spin_lock_irqsave(&bnad->bna_lock, flags);
2215 	bna_rx_res_req(rx_config, res_info);
2216 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2217 
2218 	/* Fill Unmap Q memory requirements */
2219 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2220 				 rx_config->num_paths,
2221 			(rx_config->q0_depth *
2222 			 sizeof(struct bnad_rx_unmap)) +
2223 			 sizeof(struct bnad_rx_unmap_q));
2224 
2225 	if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2226 		BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2227 					 rx_config->num_paths,
2228 				(rx_config->q1_depth *
2229 				 sizeof(struct bnad_rx_unmap) +
2230 				 sizeof(struct bnad_rx_unmap_q)));
2231 	}
2232 	/* Allocate resource */
2233 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2234 	if (err)
2235 		return err;
2236 
2237 	bnad_rx_ctrl_init(bnad, rx_id);
2238 
2239 	/* Ask BNA to create one Rx object, supplying required resources */
2240 	spin_lock_irqsave(&bnad->bna_lock, flags);
2241 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2242 			rx_info);
2243 	if (!rx) {
2244 		err = -ENOMEM;
2245 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2246 		goto err_return;
2247 	}
2248 	rx_info->rx = rx;
2249 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2250 
2251 	INIT_WORK(&rx_info->rx_cleanup_work, bnad_rx_cleanup);
2252 
2253 	/*
2254 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2255 	 * so that IRQ handler cannot schedule NAPI at this point.
2256 	 */
2257 	bnad_napi_add(bnad, rx_id);
2258 
2259 	/* Register ISR for the Rx object */
2260 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2261 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2262 						rx_config->num_paths);
2263 		if (err)
2264 			goto err_return;
2265 	}
2266 
2267 	spin_lock_irqsave(&bnad->bna_lock, flags);
2268 	if (0 == rx_id) {
2269 		/* Set up Dynamic Interrupt Moderation Vector */
2270 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2271 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2272 
2273 		/* Enable VLAN filtering only on the default Rx */
2274 		bna_rx_vlanfilter_enable(rx);
2275 
2276 		/* Start the DIM timer */
2277 		bnad_dim_timer_start(bnad);
2278 	}
2279 
2280 	bna_rx_enable(rx);
2281 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2282 
2283 	return 0;
2284 
2285 err_return:
2286 	bnad_destroy_rx(bnad, rx_id);
2287 	return err;
2288 }
2289 
2290 /* Called with conf_lock & bnad->bna_lock held */
2291 void
2292 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2293 {
2294 	struct bnad_tx_info *tx_info;
2295 
2296 	tx_info = &bnad->tx_info[0];
2297 	if (!tx_info->tx)
2298 		return;
2299 
2300 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2301 }
2302 
2303 /* Called with conf_lock & bnad->bna_lock held */
2304 void
2305 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2306 {
2307 	struct bnad_rx_info *rx_info;
2308 	int	i;
2309 
2310 	for (i = 0; i < bnad->num_rx; i++) {
2311 		rx_info = &bnad->rx_info[i];
2312 		if (!rx_info->rx)
2313 			continue;
2314 		bna_rx_coalescing_timeo_set(rx_info->rx,
2315 				bnad->rx_coalescing_timeo);
2316 	}
2317 }
2318 
2319 /*
2320  * Called with bnad->bna_lock held
2321  */
2322 int
2323 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr)
2324 {
2325 	int ret;
2326 
2327 	if (!is_valid_ether_addr(mac_addr))
2328 		return -EADDRNOTAVAIL;
2329 
2330 	/* If datapath is down, pretend everything went through */
2331 	if (!bnad->rx_info[0].rx)
2332 		return 0;
2333 
2334 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr);
2335 	if (ret != BNA_CB_SUCCESS)
2336 		return -EADDRNOTAVAIL;
2337 
2338 	return 0;
2339 }
2340 
2341 /* Should be called with conf_lock held */
2342 int
2343 bnad_enable_default_bcast(struct bnad *bnad)
2344 {
2345 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2346 	int ret;
2347 	unsigned long flags;
2348 
2349 	init_completion(&bnad->bnad_completions.mcast_comp);
2350 
2351 	spin_lock_irqsave(&bnad->bna_lock, flags);
2352 	ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr,
2353 			       bnad_cb_rx_mcast_add);
2354 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2355 
2356 	if (ret == BNA_CB_SUCCESS)
2357 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2358 	else
2359 		return -ENODEV;
2360 
2361 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2362 		return -ENODEV;
2363 
2364 	return 0;
2365 }
2366 
2367 /* Called with mutex_lock(&bnad->conf_mutex) held */
2368 void
2369 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2370 {
2371 	u16 vid;
2372 	unsigned long flags;
2373 
2374 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2375 		spin_lock_irqsave(&bnad->bna_lock, flags);
2376 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2377 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2378 	}
2379 }
2380 
2381 /* Statistics utilities */
2382 void
2383 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2384 {
2385 	int i, j;
2386 
2387 	for (i = 0; i < bnad->num_rx; i++) {
2388 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2389 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2390 				stats->rx_packets += bnad->rx_info[i].
2391 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2392 				stats->rx_bytes += bnad->rx_info[i].
2393 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2394 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2395 					bnad->rx_info[i].rx_ctrl[j].ccb->
2396 					rcb[1]->rxq) {
2397 					stats->rx_packets +=
2398 						bnad->rx_info[i].rx_ctrl[j].
2399 						ccb->rcb[1]->rxq->rx_packets;
2400 					stats->rx_bytes +=
2401 						bnad->rx_info[i].rx_ctrl[j].
2402 						ccb->rcb[1]->rxq->rx_bytes;
2403 				}
2404 			}
2405 		}
2406 	}
2407 	for (i = 0; i < bnad->num_tx; i++) {
2408 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2409 			if (bnad->tx_info[i].tcb[j]) {
2410 				stats->tx_packets +=
2411 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2412 				stats->tx_bytes +=
2413 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2414 			}
2415 		}
2416 	}
2417 }
2418 
2419 /*
2420  * Must be called with the bna_lock held.
2421  */
2422 void
2423 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2424 {
2425 	struct bfi_enet_stats_mac *mac_stats;
2426 	u32 bmap;
2427 	int i;
2428 
2429 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2430 	stats->rx_errors =
2431 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2432 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2433 		mac_stats->rx_undersize;
2434 	stats->tx_errors = mac_stats->tx_fcs_error +
2435 					mac_stats->tx_undersize;
2436 	stats->rx_dropped = mac_stats->rx_drop;
2437 	stats->tx_dropped = mac_stats->tx_drop;
2438 	stats->multicast = mac_stats->rx_multicast;
2439 	stats->collisions = mac_stats->tx_total_collision;
2440 
2441 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2442 
2443 	/* receive ring buffer overflow  ?? */
2444 
2445 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2446 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2447 	/* recv'r fifo overrun */
2448 	bmap = bna_rx_rid_mask(&bnad->bna);
2449 	for (i = 0; bmap; i++) {
2450 		if (bmap & 1) {
2451 			stats->rx_fifo_errors +=
2452 				bnad->stats.bna_stats->
2453 					hw_stats.rxf_stats[i].frame_drops;
2454 			break;
2455 		}
2456 		bmap >>= 1;
2457 	}
2458 }
2459 
2460 static void
2461 bnad_mbox_irq_sync(struct bnad *bnad)
2462 {
2463 	u32 irq;
2464 	unsigned long flags;
2465 
2466 	spin_lock_irqsave(&bnad->bna_lock, flags);
2467 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2468 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2469 	else
2470 		irq = bnad->pcidev->irq;
2471 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2472 
2473 	synchronize_irq(irq);
2474 }
2475 
2476 /* Utility used by bnad_start_xmit, for doing TSO */
2477 static int
2478 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2479 {
2480 	int err;
2481 
2482 	err = skb_cow_head(skb, 0);
2483 	if (err < 0) {
2484 		BNAD_UPDATE_CTR(bnad, tso_err);
2485 		return err;
2486 	}
2487 
2488 	/*
2489 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2490 	 * excluding the length field.
2491 	 */
2492 	if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2493 		struct iphdr *iph = ip_hdr(skb);
2494 
2495 		/* Do we really need these? */
2496 		iph->tot_len = 0;
2497 		iph->check = 0;
2498 
2499 		tcp_hdr(skb)->check =
2500 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2501 					   IPPROTO_TCP, 0);
2502 		BNAD_UPDATE_CTR(bnad, tso4);
2503 	} else {
2504 		tcp_v6_gso_csum_prep(skb);
2505 		BNAD_UPDATE_CTR(bnad, tso6);
2506 	}
2507 
2508 	return 0;
2509 }
2510 
2511 /*
2512  * Initialize Q numbers depending on Rx Paths
2513  * Called with bnad->bna_lock held, because of cfg_flags
2514  * access.
2515  */
2516 static void
2517 bnad_q_num_init(struct bnad *bnad)
2518 {
2519 	int rxps;
2520 
2521 	rxps = min((uint)num_online_cpus(),
2522 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2523 
2524 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2525 		rxps = 1;	/* INTx */
2526 
2527 	bnad->num_rx = 1;
2528 	bnad->num_tx = 1;
2529 	bnad->num_rxp_per_rx = rxps;
2530 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2531 }
2532 
2533 /*
2534  * Adjusts the Q numbers, given a number of msix vectors
2535  * Give preference to RSS as opposed to Tx priority Queues,
2536  * in such a case, just use 1 Tx Q
2537  * Called with bnad->bna_lock held b'cos of cfg_flags access
2538  */
2539 static void
2540 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2541 {
2542 	bnad->num_txq_per_tx = 1;
2543 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2544 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2545 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2546 		bnad->num_rxp_per_rx = msix_vectors -
2547 			(bnad->num_tx * bnad->num_txq_per_tx) -
2548 			BNAD_MAILBOX_MSIX_VECTORS;
2549 	} else
2550 		bnad->num_rxp_per_rx = 1;
2551 }
2552 
2553 /* Enable / disable ioceth */
2554 static int
2555 bnad_ioceth_disable(struct bnad *bnad)
2556 {
2557 	unsigned long flags;
2558 	int err = 0;
2559 
2560 	spin_lock_irqsave(&bnad->bna_lock, flags);
2561 	init_completion(&bnad->bnad_completions.ioc_comp);
2562 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2563 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2564 
2565 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2566 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2567 
2568 	err = bnad->bnad_completions.ioc_comp_status;
2569 	return err;
2570 }
2571 
2572 static int
2573 bnad_ioceth_enable(struct bnad *bnad)
2574 {
2575 	int err = 0;
2576 	unsigned long flags;
2577 
2578 	spin_lock_irqsave(&bnad->bna_lock, flags);
2579 	init_completion(&bnad->bnad_completions.ioc_comp);
2580 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2581 	bna_ioceth_enable(&bnad->bna.ioceth);
2582 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2583 
2584 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2585 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2586 
2587 	err = bnad->bnad_completions.ioc_comp_status;
2588 
2589 	return err;
2590 }
2591 
2592 /* Free BNA resources */
2593 static void
2594 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2595 		u32 res_val_max)
2596 {
2597 	int i;
2598 
2599 	for (i = 0; i < res_val_max; i++)
2600 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2601 }
2602 
2603 /* Allocates memory and interrupt resources for BNA */
2604 static int
2605 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2606 		u32 res_val_max)
2607 {
2608 	int i, err;
2609 
2610 	for (i = 0; i < res_val_max; i++) {
2611 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2612 		if (err)
2613 			goto err_return;
2614 	}
2615 	return 0;
2616 
2617 err_return:
2618 	bnad_res_free(bnad, res_info, res_val_max);
2619 	return err;
2620 }
2621 
2622 /* Interrupt enable / disable */
2623 static void
2624 bnad_enable_msix(struct bnad *bnad)
2625 {
2626 	int i, ret;
2627 	unsigned long flags;
2628 
2629 	spin_lock_irqsave(&bnad->bna_lock, flags);
2630 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2631 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2632 		return;
2633 	}
2634 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2635 
2636 	if (bnad->msix_table)
2637 		return;
2638 
2639 	bnad->msix_table =
2640 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2641 
2642 	if (!bnad->msix_table)
2643 		goto intx_mode;
2644 
2645 	for (i = 0; i < bnad->msix_num; i++)
2646 		bnad->msix_table[i].entry = i;
2647 
2648 	ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2649 				    1, bnad->msix_num);
2650 	if (ret < 0) {
2651 		goto intx_mode;
2652 	} else if (ret < bnad->msix_num) {
2653 		dev_warn(&bnad->pcidev->dev,
2654 			 "%d MSI-X vectors allocated < %d requested\n",
2655 			 ret, bnad->msix_num);
2656 
2657 		spin_lock_irqsave(&bnad->bna_lock, flags);
2658 		/* ret = #of vectors that we got */
2659 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2660 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2661 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2662 
2663 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2664 			 BNAD_MAILBOX_MSIX_VECTORS;
2665 
2666 		if (bnad->msix_num > ret) {
2667 			pci_disable_msix(bnad->pcidev);
2668 			goto intx_mode;
2669 		}
2670 	}
2671 
2672 	pci_intx(bnad->pcidev, 0);
2673 
2674 	return;
2675 
2676 intx_mode:
2677 	dev_warn(&bnad->pcidev->dev,
2678 		 "MSI-X enable failed - operating in INTx mode\n");
2679 
2680 	kfree(bnad->msix_table);
2681 	bnad->msix_table = NULL;
2682 	bnad->msix_num = 0;
2683 	spin_lock_irqsave(&bnad->bna_lock, flags);
2684 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2685 	bnad_q_num_init(bnad);
2686 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2687 }
2688 
2689 static void
2690 bnad_disable_msix(struct bnad *bnad)
2691 {
2692 	u32 cfg_flags;
2693 	unsigned long flags;
2694 
2695 	spin_lock_irqsave(&bnad->bna_lock, flags);
2696 	cfg_flags = bnad->cfg_flags;
2697 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2698 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2699 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2700 
2701 	if (cfg_flags & BNAD_CF_MSIX) {
2702 		pci_disable_msix(bnad->pcidev);
2703 		kfree(bnad->msix_table);
2704 		bnad->msix_table = NULL;
2705 	}
2706 }
2707 
2708 /* Netdev entry points */
2709 static int
2710 bnad_open(struct net_device *netdev)
2711 {
2712 	int err;
2713 	struct bnad *bnad = netdev_priv(netdev);
2714 	struct bna_pause_config pause_config;
2715 	unsigned long flags;
2716 
2717 	mutex_lock(&bnad->conf_mutex);
2718 
2719 	/* Tx */
2720 	err = bnad_setup_tx(bnad, 0);
2721 	if (err)
2722 		goto err_return;
2723 
2724 	/* Rx */
2725 	err = bnad_setup_rx(bnad, 0);
2726 	if (err)
2727 		goto cleanup_tx;
2728 
2729 	/* Port */
2730 	pause_config.tx_pause = 0;
2731 	pause_config.rx_pause = 0;
2732 
2733 	spin_lock_irqsave(&bnad->bna_lock, flags);
2734 	bna_enet_mtu_set(&bnad->bna.enet,
2735 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2736 	bna_enet_pause_config(&bnad->bna.enet, &pause_config);
2737 	bna_enet_enable(&bnad->bna.enet);
2738 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2739 
2740 	/* Enable broadcast */
2741 	bnad_enable_default_bcast(bnad);
2742 
2743 	/* Restore VLANs, if any */
2744 	bnad_restore_vlans(bnad, 0);
2745 
2746 	/* Set the UCAST address */
2747 	spin_lock_irqsave(&bnad->bna_lock, flags);
2748 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2749 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2750 
2751 	/* Start the stats timer */
2752 	bnad_stats_timer_start(bnad);
2753 
2754 	mutex_unlock(&bnad->conf_mutex);
2755 
2756 	return 0;
2757 
2758 cleanup_tx:
2759 	bnad_destroy_tx(bnad, 0);
2760 
2761 err_return:
2762 	mutex_unlock(&bnad->conf_mutex);
2763 	return err;
2764 }
2765 
2766 static int
2767 bnad_stop(struct net_device *netdev)
2768 {
2769 	struct bnad *bnad = netdev_priv(netdev);
2770 	unsigned long flags;
2771 
2772 	mutex_lock(&bnad->conf_mutex);
2773 
2774 	/* Stop the stats timer */
2775 	bnad_stats_timer_stop(bnad);
2776 
2777 	init_completion(&bnad->bnad_completions.enet_comp);
2778 
2779 	spin_lock_irqsave(&bnad->bna_lock, flags);
2780 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2781 			bnad_cb_enet_disabled);
2782 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2783 
2784 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2785 
2786 	bnad_destroy_tx(bnad, 0);
2787 	bnad_destroy_rx(bnad, 0);
2788 
2789 	/* Synchronize mailbox IRQ */
2790 	bnad_mbox_irq_sync(bnad);
2791 
2792 	mutex_unlock(&bnad->conf_mutex);
2793 
2794 	return 0;
2795 }
2796 
2797 /* TX */
2798 /* Returns 0 for success */
2799 static int
2800 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2801 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2802 {
2803 	u16 flags = 0;
2804 	u32 gso_size;
2805 	u16 vlan_tag = 0;
2806 
2807 	if (skb_vlan_tag_present(skb)) {
2808 		vlan_tag = (u16)skb_vlan_tag_get(skb);
2809 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2810 	}
2811 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2812 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2813 				| (vlan_tag & 0x1fff);
2814 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2815 	}
2816 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2817 
2818 	if (skb_is_gso(skb)) {
2819 		gso_size = skb_shinfo(skb)->gso_size;
2820 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2821 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2822 			return -EINVAL;
2823 		}
2824 		if (unlikely((gso_size + skb_tcp_all_headers(skb)) >= skb->len)) {
2825 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2826 			txqent->hdr.wi.lso_mss = 0;
2827 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2828 		} else {
2829 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2830 			txqent->hdr.wi.lso_mss = htons(gso_size);
2831 		}
2832 
2833 		if (bnad_tso_prepare(bnad, skb)) {
2834 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2835 			return -EINVAL;
2836 		}
2837 
2838 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2839 		txqent->hdr.wi.l4_hdr_size_n_offset =
2840 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2841 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2842 	} else  {
2843 		txqent->hdr.wi.opcode =	htons(BNA_TXQ_WI_SEND);
2844 		txqent->hdr.wi.lso_mss = 0;
2845 
2846 		if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2847 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2848 			return -EINVAL;
2849 		}
2850 
2851 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2852 			__be16 net_proto = vlan_get_protocol(skb);
2853 			u8 proto = 0;
2854 
2855 			if (net_proto == htons(ETH_P_IP))
2856 				proto = ip_hdr(skb)->protocol;
2857 #ifdef NETIF_F_IPV6_CSUM
2858 			else if (net_proto == htons(ETH_P_IPV6)) {
2859 				/* nexthdr may not be TCP immediately. */
2860 				proto = ipv6_hdr(skb)->nexthdr;
2861 			}
2862 #endif
2863 			if (proto == IPPROTO_TCP) {
2864 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2865 				txqent->hdr.wi.l4_hdr_size_n_offset =
2866 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2867 					      (0, skb_transport_offset(skb)));
2868 
2869 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2870 
2871 				if (unlikely(skb_headlen(skb) <
2872 					    skb_tcp_all_headers(skb))) {
2873 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2874 					return -EINVAL;
2875 				}
2876 			} else if (proto == IPPROTO_UDP) {
2877 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2878 				txqent->hdr.wi.l4_hdr_size_n_offset =
2879 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2880 					      (0, skb_transport_offset(skb)));
2881 
2882 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2883 				if (unlikely(skb_headlen(skb) <
2884 					    skb_transport_offset(skb) +
2885 				    sizeof(struct udphdr))) {
2886 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2887 					return -EINVAL;
2888 				}
2889 			} else {
2890 
2891 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2892 				return -EINVAL;
2893 			}
2894 		} else
2895 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2896 	}
2897 
2898 	txqent->hdr.wi.flags = htons(flags);
2899 	txqent->hdr.wi.frame_length = htonl(skb->len);
2900 
2901 	return 0;
2902 }
2903 
2904 /*
2905  * bnad_start_xmit : Netdev entry point for Transmit
2906  *		     Called under lock held by net_device
2907  */
2908 static netdev_tx_t
2909 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2910 {
2911 	struct bnad *bnad = netdev_priv(netdev);
2912 	u32 txq_id = 0;
2913 	struct bna_tcb *tcb = NULL;
2914 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2915 	u32		prod, q_depth, vect_id;
2916 	u32		wis, vectors, len;
2917 	int		i;
2918 	dma_addr_t		dma_addr;
2919 	struct bna_txq_entry *txqent;
2920 
2921 	len = skb_headlen(skb);
2922 
2923 	/* Sanity checks for the skb */
2924 
2925 	if (unlikely(skb->len <= ETH_HLEN)) {
2926 		dev_kfree_skb_any(skb);
2927 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2928 		return NETDEV_TX_OK;
2929 	}
2930 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2931 		dev_kfree_skb_any(skb);
2932 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2933 		return NETDEV_TX_OK;
2934 	}
2935 	if (unlikely(len == 0)) {
2936 		dev_kfree_skb_any(skb);
2937 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2938 		return NETDEV_TX_OK;
2939 	}
2940 
2941 	tcb = bnad->tx_info[0].tcb[txq_id];
2942 
2943 	/*
2944 	 * Takes care of the Tx that is scheduled between clearing the flag
2945 	 * and the netif_tx_stop_all_queues() call.
2946 	 */
2947 	if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2948 		dev_kfree_skb_any(skb);
2949 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2950 		return NETDEV_TX_OK;
2951 	}
2952 
2953 	q_depth = tcb->q_depth;
2954 	prod = tcb->producer_index;
2955 	unmap_q = tcb->unmap_q;
2956 
2957 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2958 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2959 
2960 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2961 		dev_kfree_skb_any(skb);
2962 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2963 		return NETDEV_TX_OK;
2964 	}
2965 
2966 	/* Check for available TxQ resources */
2967 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2968 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2969 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2970 			u32 sent;
2971 			sent = bnad_txcmpl_process(bnad, tcb);
2972 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2973 				bna_ib_ack(tcb->i_dbell, sent);
2974 			smp_mb__before_atomic();
2975 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2976 		} else {
2977 			netif_stop_queue(netdev);
2978 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2979 		}
2980 
2981 		smp_mb();
2982 		/*
2983 		 * Check again to deal with race condition between
2984 		 * netif_stop_queue here, and netif_wake_queue in
2985 		 * interrupt handler which is not inside netif tx lock.
2986 		 */
2987 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2988 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2989 			return NETDEV_TX_BUSY;
2990 		} else {
2991 			netif_wake_queue(netdev);
2992 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2993 		}
2994 	}
2995 
2996 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2997 	head_unmap = &unmap_q[prod];
2998 
2999 	/* Program the opcode, flags, frame_len, num_vectors in WI */
3000 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3001 		dev_kfree_skb_any(skb);
3002 		return NETDEV_TX_OK;
3003 	}
3004 	txqent->hdr.wi.reserved = 0;
3005 	txqent->hdr.wi.num_vectors = vectors;
3006 
3007 	head_unmap->skb = skb;
3008 	head_unmap->nvecs = 0;
3009 
3010 	/* Program the vectors */
3011 	unmap = head_unmap;
3012 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3013 				  len, DMA_TO_DEVICE);
3014 	if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3015 		dev_kfree_skb_any(skb);
3016 		BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3017 		return NETDEV_TX_OK;
3018 	}
3019 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3020 	txqent->vector[0].length = htons(len);
3021 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3022 	head_unmap->nvecs++;
3023 
3024 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3025 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3026 		u32		size = skb_frag_size(frag);
3027 
3028 		if (unlikely(size == 0)) {
3029 			/* Undo the changes starting at tcb->producer_index */
3030 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3031 				tcb->producer_index);
3032 			dev_kfree_skb_any(skb);
3033 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3034 			return NETDEV_TX_OK;
3035 		}
3036 
3037 		len += size;
3038 
3039 		vect_id++;
3040 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3041 			vect_id = 0;
3042 			BNA_QE_INDX_INC(prod, q_depth);
3043 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3044 			txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3045 			unmap = &unmap_q[prod];
3046 		}
3047 
3048 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3049 					    0, size, DMA_TO_DEVICE);
3050 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3051 			/* Undo the changes starting at tcb->producer_index */
3052 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3053 					   tcb->producer_index);
3054 			dev_kfree_skb_any(skb);
3055 			BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3056 			return NETDEV_TX_OK;
3057 		}
3058 
3059 		dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3060 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3061 		txqent->vector[vect_id].length = htons(size);
3062 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3063 				   dma_addr);
3064 		head_unmap->nvecs++;
3065 	}
3066 
3067 	if (unlikely(len != skb->len)) {
3068 		/* Undo the changes starting at tcb->producer_index */
3069 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3070 		dev_kfree_skb_any(skb);
3071 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3072 		return NETDEV_TX_OK;
3073 	}
3074 
3075 	BNA_QE_INDX_INC(prod, q_depth);
3076 	tcb->producer_index = prod;
3077 
3078 	wmb();
3079 
3080 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3081 		return NETDEV_TX_OK;
3082 
3083 	skb_tx_timestamp(skb);
3084 
3085 	bna_txq_prod_indx_doorbell(tcb);
3086 
3087 	return NETDEV_TX_OK;
3088 }
3089 
3090 /*
3091  * Used spin_lock to synchronize reading of stats structures, which
3092  * is written by BNA under the same lock.
3093  */
3094 static void
3095 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3096 {
3097 	struct bnad *bnad = netdev_priv(netdev);
3098 	unsigned long flags;
3099 
3100 	spin_lock_irqsave(&bnad->bna_lock, flags);
3101 
3102 	bnad_netdev_qstats_fill(bnad, stats);
3103 	bnad_netdev_hwstats_fill(bnad, stats);
3104 
3105 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3106 }
3107 
3108 static void
3109 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3110 {
3111 	struct net_device *netdev = bnad->netdev;
3112 	int uc_count = netdev_uc_count(netdev);
3113 	enum bna_cb_status ret;
3114 	u8 *mac_list;
3115 	struct netdev_hw_addr *ha;
3116 	int entry;
3117 
3118 	if (netdev_uc_empty(bnad->netdev)) {
3119 		bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3120 		return;
3121 	}
3122 
3123 	if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3124 		goto mode_default;
3125 
3126 	mac_list = kcalloc(ETH_ALEN, uc_count, GFP_ATOMIC);
3127 	if (mac_list == NULL)
3128 		goto mode_default;
3129 
3130 	entry = 0;
3131 	netdev_for_each_uc_addr(ha, netdev) {
3132 		ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]);
3133 		entry++;
3134 	}
3135 
3136 	ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list);
3137 	kfree(mac_list);
3138 
3139 	if (ret != BNA_CB_SUCCESS)
3140 		goto mode_default;
3141 
3142 	return;
3143 
3144 	/* ucast packets not in UCAM are routed to default function */
3145 mode_default:
3146 	bnad->cfg_flags |= BNAD_CF_DEFAULT;
3147 	bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3148 }
3149 
3150 static void
3151 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3152 {
3153 	struct net_device *netdev = bnad->netdev;
3154 	int mc_count = netdev_mc_count(netdev);
3155 	enum bna_cb_status ret;
3156 	u8 *mac_list;
3157 
3158 	if (netdev->flags & IFF_ALLMULTI)
3159 		goto mode_allmulti;
3160 
3161 	if (netdev_mc_empty(netdev))
3162 		return;
3163 
3164 	if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3165 		goto mode_allmulti;
3166 
3167 	mac_list = kcalloc(mc_count + 1, ETH_ALEN, GFP_ATOMIC);
3168 
3169 	if (mac_list == NULL)
3170 		goto mode_allmulti;
3171 
3172 	ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]);
3173 
3174 	/* copy rest of the MCAST addresses */
3175 	bnad_netdev_mc_list_get(netdev, mac_list);
3176 	ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list);
3177 	kfree(mac_list);
3178 
3179 	if (ret != BNA_CB_SUCCESS)
3180 		goto mode_allmulti;
3181 
3182 	return;
3183 
3184 mode_allmulti:
3185 	bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3186 	bna_rx_mcast_delall(bnad->rx_info[0].rx);
3187 }
3188 
3189 void
3190 bnad_set_rx_mode(struct net_device *netdev)
3191 {
3192 	struct bnad *bnad = netdev_priv(netdev);
3193 	enum bna_rxmode new_mode, mode_mask;
3194 	unsigned long flags;
3195 
3196 	spin_lock_irqsave(&bnad->bna_lock, flags);
3197 
3198 	if (bnad->rx_info[0].rx == NULL) {
3199 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3200 		return;
3201 	}
3202 
3203 	/* clear bnad flags to update it with new settings */
3204 	bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3205 			BNAD_CF_ALLMULTI);
3206 
3207 	new_mode = 0;
3208 	if (netdev->flags & IFF_PROMISC) {
3209 		new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3210 		bnad->cfg_flags |= BNAD_CF_PROMISC;
3211 	} else {
3212 		bnad_set_rx_mcast_fltr(bnad);
3213 
3214 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3215 			new_mode |= BNA_RXMODE_ALLMULTI;
3216 
3217 		bnad_set_rx_ucast_fltr(bnad);
3218 
3219 		if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3220 			new_mode |= BNA_RXMODE_DEFAULT;
3221 	}
3222 
3223 	mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3224 			BNA_RXMODE_ALLMULTI;
3225 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask);
3226 
3227 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3228 }
3229 
3230 /*
3231  * bna_lock is used to sync writes to netdev->addr
3232  * conf_lock cannot be used since this call may be made
3233  * in a non-blocking context.
3234  */
3235 static int
3236 bnad_set_mac_address(struct net_device *netdev, void *addr)
3237 {
3238 	int err;
3239 	struct bnad *bnad = netdev_priv(netdev);
3240 	struct sockaddr *sa = (struct sockaddr *)addr;
3241 	unsigned long flags;
3242 
3243 	spin_lock_irqsave(&bnad->bna_lock, flags);
3244 
3245 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3246 	if (!err)
3247 		eth_hw_addr_set(netdev, sa->sa_data);
3248 
3249 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3250 
3251 	return err;
3252 }
3253 
3254 static int
3255 bnad_mtu_set(struct bnad *bnad, int frame_size)
3256 {
3257 	unsigned long flags;
3258 
3259 	init_completion(&bnad->bnad_completions.mtu_comp);
3260 
3261 	spin_lock_irqsave(&bnad->bna_lock, flags);
3262 	bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3263 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3264 
3265 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3266 
3267 	return bnad->bnad_completions.mtu_comp_status;
3268 }
3269 
3270 static int
3271 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3272 {
3273 	int err, mtu;
3274 	struct bnad *bnad = netdev_priv(netdev);
3275 	u32 frame, new_frame;
3276 
3277 	mutex_lock(&bnad->conf_mutex);
3278 
3279 	mtu = netdev->mtu;
3280 	WRITE_ONCE(netdev->mtu, new_mtu);
3281 
3282 	frame = BNAD_FRAME_SIZE(mtu);
3283 	new_frame = BNAD_FRAME_SIZE(new_mtu);
3284 
3285 	/* check if multi-buffer needs to be enabled */
3286 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3287 	    netif_running(bnad->netdev)) {
3288 		/* only when transition is over 4K */
3289 		if ((frame <= 4096 && new_frame > 4096) ||
3290 		    (frame > 4096 && new_frame <= 4096))
3291 			bnad_reinit_rx(bnad);
3292 	}
3293 
3294 	err = bnad_mtu_set(bnad, new_frame);
3295 	if (err)
3296 		err = -EBUSY;
3297 
3298 	mutex_unlock(&bnad->conf_mutex);
3299 	return err;
3300 }
3301 
3302 static int
3303 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3304 {
3305 	struct bnad *bnad = netdev_priv(netdev);
3306 	unsigned long flags;
3307 
3308 	if (!bnad->rx_info[0].rx)
3309 		return 0;
3310 
3311 	mutex_lock(&bnad->conf_mutex);
3312 
3313 	spin_lock_irqsave(&bnad->bna_lock, flags);
3314 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3315 	set_bit(vid, bnad->active_vlans);
3316 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3317 
3318 	mutex_unlock(&bnad->conf_mutex);
3319 
3320 	return 0;
3321 }
3322 
3323 static int
3324 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3325 {
3326 	struct bnad *bnad = netdev_priv(netdev);
3327 	unsigned long flags;
3328 
3329 	if (!bnad->rx_info[0].rx)
3330 		return 0;
3331 
3332 	mutex_lock(&bnad->conf_mutex);
3333 
3334 	spin_lock_irqsave(&bnad->bna_lock, flags);
3335 	clear_bit(vid, bnad->active_vlans);
3336 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3337 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3338 
3339 	mutex_unlock(&bnad->conf_mutex);
3340 
3341 	return 0;
3342 }
3343 
3344 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3345 {
3346 	struct bnad *bnad = netdev_priv(dev);
3347 	netdev_features_t changed = features ^ dev->features;
3348 
3349 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3350 		unsigned long flags;
3351 
3352 		spin_lock_irqsave(&bnad->bna_lock, flags);
3353 
3354 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3355 			bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3356 		else
3357 			bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3358 
3359 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3360 	}
3361 
3362 	return 0;
3363 }
3364 
3365 #ifdef CONFIG_NET_POLL_CONTROLLER
3366 static void
3367 bnad_netpoll(struct net_device *netdev)
3368 {
3369 	struct bnad *bnad = netdev_priv(netdev);
3370 	struct bnad_rx_info *rx_info;
3371 	struct bnad_rx_ctrl *rx_ctrl;
3372 	u32 curr_mask;
3373 	int i, j;
3374 
3375 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3376 		bna_intx_disable(&bnad->bna, curr_mask);
3377 		bnad_isr(bnad->pcidev->irq, netdev);
3378 		bna_intx_enable(&bnad->bna, curr_mask);
3379 	} else {
3380 		/*
3381 		 * Tx processing may happen in sending context, so no need
3382 		 * to explicitly process completions here
3383 		 */
3384 
3385 		/* Rx processing */
3386 		for (i = 0; i < bnad->num_rx; i++) {
3387 			rx_info = &bnad->rx_info[i];
3388 			if (!rx_info->rx)
3389 				continue;
3390 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3391 				rx_ctrl = &rx_info->rx_ctrl[j];
3392 				if (rx_ctrl->ccb)
3393 					bnad_netif_rx_schedule_poll(bnad,
3394 							    rx_ctrl->ccb);
3395 			}
3396 		}
3397 	}
3398 }
3399 #endif
3400 
3401 static const struct net_device_ops bnad_netdev_ops = {
3402 	.ndo_open		= bnad_open,
3403 	.ndo_stop		= bnad_stop,
3404 	.ndo_start_xmit		= bnad_start_xmit,
3405 	.ndo_get_stats64	= bnad_get_stats64,
3406 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3407 	.ndo_validate_addr      = eth_validate_addr,
3408 	.ndo_set_mac_address    = bnad_set_mac_address,
3409 	.ndo_change_mtu		= bnad_change_mtu,
3410 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3411 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3412 	.ndo_set_features	= bnad_set_features,
3413 #ifdef CONFIG_NET_POLL_CONTROLLER
3414 	.ndo_poll_controller    = bnad_netpoll
3415 #endif
3416 };
3417 
3418 static void
3419 bnad_netdev_init(struct bnad *bnad)
3420 {
3421 	struct net_device *netdev = bnad->netdev;
3422 
3423 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3424 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3425 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3426 		NETIF_F_HW_VLAN_CTAG_RX;
3427 
3428 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3429 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3430 		NETIF_F_TSO | NETIF_F_TSO6;
3431 
3432 	netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER |
3433 			    NETIF_F_HIGHDMA;
3434 
3435 	netdev->mem_start = bnad->mmio_start;
3436 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3437 
3438 	/* MTU range: 46 - 9000 */
3439 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
3440 	netdev->max_mtu = BNAD_JUMBO_MTU;
3441 
3442 	netdev->netdev_ops = &bnad_netdev_ops;
3443 	bnad_set_ethtool_ops(netdev);
3444 }
3445 
3446 /*
3447  * 1. Initialize the bnad structure
3448  * 2. Setup netdev pointer in pci_dev
3449  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3450  * 4. Initialize work queue.
3451  */
3452 static int
3453 bnad_init(struct bnad *bnad,
3454 	  struct pci_dev *pdev, struct net_device *netdev)
3455 {
3456 	unsigned long flags;
3457 
3458 	SET_NETDEV_DEV(netdev, &pdev->dev);
3459 	pci_set_drvdata(pdev, netdev);
3460 
3461 	bnad->netdev = netdev;
3462 	bnad->pcidev = pdev;
3463 	bnad->mmio_start = pci_resource_start(pdev, 0);
3464 	bnad->mmio_len = pci_resource_len(pdev, 0);
3465 	bnad->bar0 = ioremap(bnad->mmio_start, bnad->mmio_len);
3466 	if (!bnad->bar0) {
3467 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3468 		return -ENOMEM;
3469 	}
3470 	dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0,
3471 		 (unsigned long long) bnad->mmio_len);
3472 
3473 	spin_lock_irqsave(&bnad->bna_lock, flags);
3474 	if (!bnad_msix_disable)
3475 		bnad->cfg_flags = BNAD_CF_MSIX;
3476 
3477 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3478 
3479 	bnad_q_num_init(bnad);
3480 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3481 
3482 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3483 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3484 			 BNAD_MAILBOX_MSIX_VECTORS;
3485 
3486 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3487 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3488 
3489 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3490 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3491 
3492 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3493 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3494 	if (!bnad->work_q) {
3495 		iounmap(bnad->bar0);
3496 		return -ENOMEM;
3497 	}
3498 
3499 	return 0;
3500 }
3501 
3502 /*
3503  * Must be called after bnad_pci_uninit()
3504  * so that iounmap() and pci_set_drvdata(NULL)
3505  * happens only after PCI uninitialization.
3506  */
3507 static void
3508 bnad_uninit(struct bnad *bnad)
3509 {
3510 	if (bnad->work_q) {
3511 		destroy_workqueue(bnad->work_q);
3512 		bnad->work_q = NULL;
3513 	}
3514 
3515 	if (bnad->bar0)
3516 		iounmap(bnad->bar0);
3517 }
3518 
3519 /*
3520  * Initialize locks
3521 	a) Per ioceth mutes used for serializing configuration
3522 	   changes from OS interface
3523 	b) spin lock used to protect bna state machine
3524  */
3525 static void
3526 bnad_lock_init(struct bnad *bnad)
3527 {
3528 	spin_lock_init(&bnad->bna_lock);
3529 	mutex_init(&bnad->conf_mutex);
3530 }
3531 
3532 static void
3533 bnad_lock_uninit(struct bnad *bnad)
3534 {
3535 	mutex_destroy(&bnad->conf_mutex);
3536 }
3537 
3538 /* PCI Initialization */
3539 static int
3540 bnad_pci_init(struct bnad *bnad, struct pci_dev *pdev)
3541 {
3542 	int err;
3543 
3544 	err = pci_enable_device(pdev);
3545 	if (err)
3546 		return err;
3547 	err = pci_request_regions(pdev, BNAD_NAME);
3548 	if (err)
3549 		goto disable_device;
3550 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3551 	if (err)
3552 		goto release_regions;
3553 	pci_set_master(pdev);
3554 	return 0;
3555 
3556 release_regions:
3557 	pci_release_regions(pdev);
3558 disable_device:
3559 	pci_disable_device(pdev);
3560 
3561 	return err;
3562 }
3563 
3564 static void
3565 bnad_pci_uninit(struct pci_dev *pdev)
3566 {
3567 	pci_release_regions(pdev);
3568 	pci_disable_device(pdev);
3569 }
3570 
3571 static int
3572 bnad_pci_probe(struct pci_dev *pdev,
3573 		const struct pci_device_id *pcidev_id)
3574 {
3575 	int	err;
3576 	struct bnad *bnad;
3577 	struct bna *bna;
3578 	struct net_device *netdev;
3579 	struct bfa_pcidev pcidev_info;
3580 	unsigned long flags;
3581 
3582 	mutex_lock(&bnad_fwimg_mutex);
3583 	if (!cna_get_firmware_buf(pdev)) {
3584 		mutex_unlock(&bnad_fwimg_mutex);
3585 		dev_err(&pdev->dev, "failed to load firmware image!\n");
3586 		return -ENODEV;
3587 	}
3588 	mutex_unlock(&bnad_fwimg_mutex);
3589 
3590 	/*
3591 	 * Allocates sizeof(struct net_device + struct bnad)
3592 	 * bnad = netdev->priv
3593 	 */
3594 	netdev = alloc_etherdev(sizeof(struct bnad));
3595 	if (!netdev) {
3596 		err = -ENOMEM;
3597 		return err;
3598 	}
3599 	bnad = netdev_priv(netdev);
3600 	bnad_lock_init(bnad);
3601 	bnad->id = atomic_inc_return(&bna_id) - 1;
3602 
3603 	mutex_lock(&bnad->conf_mutex);
3604 	/* PCI initialization */
3605 	err = bnad_pci_init(bnad, pdev);
3606 	if (err)
3607 		goto unlock_mutex;
3608 
3609 	/*
3610 	 * Initialize bnad structure
3611 	 * Setup relation between pci_dev & netdev
3612 	 */
3613 	err = bnad_init(bnad, pdev, netdev);
3614 	if (err)
3615 		goto pci_uninit;
3616 
3617 	/* Initialize netdev structure, set up ethtool ops */
3618 	bnad_netdev_init(bnad);
3619 
3620 	/* Set link to down state */
3621 	netif_carrier_off(netdev);
3622 
3623 	/* Setup the debugfs node for this bfad */
3624 	if (bna_debugfs_enable)
3625 		bnad_debugfs_init(bnad);
3626 
3627 	/* Get resource requirement form bna */
3628 	spin_lock_irqsave(&bnad->bna_lock, flags);
3629 	bna_res_req(&bnad->res_info[0]);
3630 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3631 
3632 	/* Allocate resources from bna */
3633 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3634 	if (err)
3635 		goto drv_uninit;
3636 
3637 	bna = &bnad->bna;
3638 
3639 	/* Setup pcidev_info for bna_init() */
3640 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3641 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3642 	pcidev_info.device_id = bnad->pcidev->device;
3643 	pcidev_info.pci_bar_kva = bnad->bar0;
3644 
3645 	spin_lock_irqsave(&bnad->bna_lock, flags);
3646 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3647 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3648 
3649 	bnad->stats.bna_stats = &bna->stats;
3650 
3651 	bnad_enable_msix(bnad);
3652 	err = bnad_mbox_irq_alloc(bnad);
3653 	if (err)
3654 		goto res_free;
3655 
3656 	/* Set up timers */
3657 	timer_setup(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout, 0);
3658 	timer_setup(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check, 0);
3659 	timer_setup(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout, 0);
3660 	timer_setup(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3661 		    0);
3662 
3663 	/*
3664 	 * Start the chip
3665 	 * If the call back comes with error, we bail out.
3666 	 * This is a catastrophic error.
3667 	 */
3668 	err = bnad_ioceth_enable(bnad);
3669 	if (err) {
3670 		dev_err(&pdev->dev, "initialization failed err=%d\n", err);
3671 		goto probe_success;
3672 	}
3673 
3674 	spin_lock_irqsave(&bnad->bna_lock, flags);
3675 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3676 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3677 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3678 			bna_attr(bna)->num_rxp - 1);
3679 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3680 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3681 			err = -EIO;
3682 	}
3683 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3684 	if (err)
3685 		goto disable_ioceth;
3686 
3687 	spin_lock_irqsave(&bnad->bna_lock, flags);
3688 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3689 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3690 
3691 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3692 	if (err) {
3693 		err = -EIO;
3694 		goto disable_ioceth;
3695 	}
3696 
3697 	spin_lock_irqsave(&bnad->bna_lock, flags);
3698 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3699 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3700 
3701 	/* Get the burnt-in mac */
3702 	spin_lock_irqsave(&bnad->bna_lock, flags);
3703 	bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr);
3704 	bnad_set_netdev_perm_addr(bnad);
3705 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3706 
3707 	mutex_unlock(&bnad->conf_mutex);
3708 
3709 	/* Finally, reguister with net_device layer */
3710 	err = register_netdev(netdev);
3711 	if (err) {
3712 		dev_err(&pdev->dev, "registering net device failed\n");
3713 		goto probe_uninit;
3714 	}
3715 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3716 
3717 	return 0;
3718 
3719 probe_success:
3720 	mutex_unlock(&bnad->conf_mutex);
3721 	return 0;
3722 
3723 probe_uninit:
3724 	mutex_lock(&bnad->conf_mutex);
3725 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3726 disable_ioceth:
3727 	bnad_ioceth_disable(bnad);
3728 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3729 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3730 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3731 	spin_lock_irqsave(&bnad->bna_lock, flags);
3732 	bna_uninit(bna);
3733 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3734 	bnad_mbox_irq_free(bnad);
3735 	bnad_disable_msix(bnad);
3736 res_free:
3737 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3738 drv_uninit:
3739 	/* Remove the debugfs node for this bnad */
3740 	kfree(bnad->regdata);
3741 	bnad_debugfs_uninit(bnad);
3742 	bnad_uninit(bnad);
3743 pci_uninit:
3744 	bnad_pci_uninit(pdev);
3745 unlock_mutex:
3746 	mutex_unlock(&bnad->conf_mutex);
3747 	bnad_lock_uninit(bnad);
3748 	free_netdev(netdev);
3749 	return err;
3750 }
3751 
3752 static void
3753 bnad_pci_remove(struct pci_dev *pdev)
3754 {
3755 	struct net_device *netdev = pci_get_drvdata(pdev);
3756 	struct bnad *bnad;
3757 	struct bna *bna;
3758 	unsigned long flags;
3759 
3760 	if (!netdev)
3761 		return;
3762 
3763 	bnad = netdev_priv(netdev);
3764 	bna = &bnad->bna;
3765 
3766 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3767 		unregister_netdev(netdev);
3768 
3769 	mutex_lock(&bnad->conf_mutex);
3770 	bnad_ioceth_disable(bnad);
3771 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3772 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3773 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3774 	spin_lock_irqsave(&bnad->bna_lock, flags);
3775 	bna_uninit(bna);
3776 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3777 
3778 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3779 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3780 	bnad_mbox_irq_free(bnad);
3781 	bnad_disable_msix(bnad);
3782 	bnad_pci_uninit(pdev);
3783 	mutex_unlock(&bnad->conf_mutex);
3784 	bnad_lock_uninit(bnad);
3785 	/* Remove the debugfs node for this bnad */
3786 	kfree(bnad->regdata);
3787 	bnad_debugfs_uninit(bnad);
3788 	bnad_uninit(bnad);
3789 	free_netdev(netdev);
3790 }
3791 
3792 static const struct pci_device_id bnad_pci_id_table[] = {
3793 	{
3794 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3795 			PCI_DEVICE_ID_BROCADE_CT),
3796 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3797 		.class_mask =  0xffff00
3798 	},
3799 	{
3800 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3801 			BFA_PCI_DEVICE_ID_CT2),
3802 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3803 		.class_mask =  0xffff00
3804 	},
3805 	{0,  },
3806 };
3807 
3808 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3809 
3810 static struct pci_driver bnad_pci_driver = {
3811 	.name = BNAD_NAME,
3812 	.id_table = bnad_pci_id_table,
3813 	.probe = bnad_pci_probe,
3814 	.remove = bnad_pci_remove,
3815 };
3816 
3817 static int __init
3818 bnad_module_init(void)
3819 {
3820 	int err;
3821 
3822 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3823 
3824 	err = pci_register_driver(&bnad_pci_driver);
3825 	if (err < 0) {
3826 		pr_err("bna: PCI driver registration failed err=%d\n", err);
3827 		return err;
3828 	}
3829 
3830 	return 0;
3831 }
3832 
3833 static void __exit
3834 bnad_module_exit(void)
3835 {
3836 	pci_unregister_driver(&bnad_pci_driver);
3837 	release_firmware(bfi_fw);
3838 }
3839 
3840 module_init(bnad_module_init);
3841 module_exit(bnad_module_exit);
3842 
3843 MODULE_AUTHOR("Brocade");
3844 MODULE_LICENSE("GPL");
3845 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3846 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3847 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3848