xref: /linux/drivers/net/ethernet/brocade/bna/bnad.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * Linux network driver for Brocade Converged Network Adapter.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License (GPL) Version 2 as
6  * published by the Free Software Foundation
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 /*
14  * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15  * All rights reserved
16  * www.brocade.com
17  */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
29 
30 #include "bnad.h"
31 #include "bna.h"
32 #include "cna.h"
33 
34 static DEFINE_MUTEX(bnad_fwimg_mutex);
35 
36 /*
37  * Module params
38  */
39 static uint bnad_msix_disable;
40 module_param(bnad_msix_disable, uint, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
42 
43 static uint bnad_ioc_auto_recover = 1;
44 module_param(bnad_ioc_auto_recover, uint, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
46 
47 static uint bna_debugfs_enable = 1;
48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
50 		 " Range[false:0|true:1]");
51 
52 /*
53  * Global variables
54  */
55 u32 bnad_rxqs_per_cq = 2;
56 static u32 bna_id;
57 static struct mutex bnad_list_mutex;
58 static LIST_HEAD(bnad_list);
59 static const u8 bnad_bcast_addr[] =  {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
60 
61 /*
62  * Local MACROS
63  */
64 #define BNAD_GET_MBOX_IRQ(_bnad)				\
65 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
66 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 	 ((_bnad)->pcidev->irq))
68 
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
70 do {								\
71 	(_res_info)->res_type = BNA_RES_T_MEM;			\
72 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
73 	(_res_info)->res_u.mem_info.num = (_num);		\
74 	(_res_info)->res_u.mem_info.len = (_size);		\
75 } while (0)
76 
77 static void
78 bnad_add_to_list(struct bnad *bnad)
79 {
80 	mutex_lock(&bnad_list_mutex);
81 	list_add_tail(&bnad->list_entry, &bnad_list);
82 	bnad->id = bna_id++;
83 	mutex_unlock(&bnad_list_mutex);
84 }
85 
86 static void
87 bnad_remove_from_list(struct bnad *bnad)
88 {
89 	mutex_lock(&bnad_list_mutex);
90 	list_del(&bnad->list_entry);
91 	mutex_unlock(&bnad_list_mutex);
92 }
93 
94 /*
95  * Reinitialize completions in CQ, once Rx is taken down
96  */
97 static void
98 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
99 {
100 	struct bna_cq_entry *cmpl;
101 	int i;
102 
103 	for (i = 0; i < ccb->q_depth; i++) {
104 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
105 		cmpl->valid = 0;
106 	}
107 }
108 
109 /* Tx Datapath functions */
110 
111 
112 /* Caller should ensure that the entry at unmap_q[index] is valid */
113 static u32
114 bnad_tx_buff_unmap(struct bnad *bnad,
115 			      struct bnad_tx_unmap *unmap_q,
116 			      u32 q_depth, u32 index)
117 {
118 	struct bnad_tx_unmap *unmap;
119 	struct sk_buff *skb;
120 	int vector, nvecs;
121 
122 	unmap = &unmap_q[index];
123 	nvecs = unmap->nvecs;
124 
125 	skb = unmap->skb;
126 	unmap->skb = NULL;
127 	unmap->nvecs = 0;
128 	dma_unmap_single(&bnad->pcidev->dev,
129 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
130 		skb_headlen(skb), DMA_TO_DEVICE);
131 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
132 	nvecs--;
133 
134 	vector = 0;
135 	while (nvecs) {
136 		vector++;
137 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
138 			vector = 0;
139 			BNA_QE_INDX_INC(index, q_depth);
140 			unmap = &unmap_q[index];
141 		}
142 
143 		dma_unmap_page(&bnad->pcidev->dev,
144 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
145 			skb_shinfo(skb)->frags[nvecs].size, DMA_TO_DEVICE);
146 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
147 		nvecs--;
148 	}
149 
150 	BNA_QE_INDX_INC(index, q_depth);
151 
152 	return index;
153 }
154 
155 /*
156  * Frees all pending Tx Bufs
157  * At this point no activity is expected on the Q,
158  * so DMA unmap & freeing is fine.
159  */
160 static void
161 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
162 {
163 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
164 	struct sk_buff *skb;
165 	int i;
166 
167 	for (i = 0; i < tcb->q_depth; i++) {
168 		skb = unmap_q[i].skb;
169 		if (!skb)
170 			continue;
171 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
172 
173 		dev_kfree_skb_any(skb);
174 	}
175 }
176 
177 /*
178  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
179  * Can be called in a) Interrupt context
180  *		    b) Sending context
181  */
182 static u32
183 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
184 {
185 	u32 sent_packets = 0, sent_bytes = 0;
186 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
187 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
188 	struct bnad_tx_unmap *unmap;
189 	struct sk_buff *skb;
190 
191 	/* Just return if TX is stopped */
192 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
193 		return 0;
194 
195 	hw_cons = *(tcb->hw_consumer_index);
196 	cons = tcb->consumer_index;
197 	q_depth = tcb->q_depth;
198 
199 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
200 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
201 
202 	while (wis) {
203 		unmap = &unmap_q[cons];
204 
205 		skb = unmap->skb;
206 
207 		sent_packets++;
208 		sent_bytes += skb->len;
209 
210 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
211 		wis -= unmap_wis;
212 
213 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
214 		dev_kfree_skb_any(skb);
215 	}
216 
217 	/* Update consumer pointers. */
218 	tcb->consumer_index = hw_cons;
219 
220 	tcb->txq->tx_packets += sent_packets;
221 	tcb->txq->tx_bytes += sent_bytes;
222 
223 	return sent_packets;
224 }
225 
226 static u32
227 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
228 {
229 	struct net_device *netdev = bnad->netdev;
230 	u32 sent = 0;
231 
232 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
233 		return 0;
234 
235 	sent = bnad_txcmpl_process(bnad, tcb);
236 	if (sent) {
237 		if (netif_queue_stopped(netdev) &&
238 		    netif_carrier_ok(netdev) &&
239 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
240 				    BNAD_NETIF_WAKE_THRESHOLD) {
241 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
242 				netif_wake_queue(netdev);
243 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
244 			}
245 		}
246 	}
247 
248 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
249 		bna_ib_ack(tcb->i_dbell, sent);
250 
251 	smp_mb__before_clear_bit();
252 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
253 
254 	return sent;
255 }
256 
257 /* MSIX Tx Completion Handler */
258 static irqreturn_t
259 bnad_msix_tx(int irq, void *data)
260 {
261 	struct bna_tcb *tcb = (struct bna_tcb *)data;
262 	struct bnad *bnad = tcb->bnad;
263 
264 	bnad_tx_complete(bnad, tcb);
265 
266 	return IRQ_HANDLED;
267 }
268 
269 static inline void
270 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
271 {
272 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
273 
274 	unmap_q->reuse_pi = -1;
275 	unmap_q->alloc_order = -1;
276 	unmap_q->map_size = 0;
277 	unmap_q->type = BNAD_RXBUF_NONE;
278 }
279 
280 /* Default is page-based allocation. Multi-buffer support - TBD */
281 static int
282 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
283 {
284 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
285 	int mtu, order;
286 
287 	bnad_rxq_alloc_uninit(bnad, rcb);
288 
289 	mtu = bna_enet_mtu_get(&bnad->bna.enet);
290 	order = get_order(mtu);
291 
292 	if (bna_is_small_rxq(rcb->id)) {
293 		unmap_q->alloc_order = 0;
294 		unmap_q->map_size = rcb->rxq->buffer_size;
295 	} else {
296 		unmap_q->alloc_order = order;
297 		unmap_q->map_size =
298 			(rcb->rxq->buffer_size > 2048) ?
299 			PAGE_SIZE << order : 2048;
300 	}
301 
302 	BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
303 
304 	unmap_q->type = BNAD_RXBUF_PAGE;
305 
306 	return 0;
307 }
308 
309 static inline void
310 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
311 {
312 	if (!unmap->page)
313 		return;
314 
315 	dma_unmap_page(&bnad->pcidev->dev,
316 			dma_unmap_addr(&unmap->vector, dma_addr),
317 			unmap->vector.len, DMA_FROM_DEVICE);
318 	put_page(unmap->page);
319 	unmap->page = NULL;
320 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
321 	unmap->vector.len = 0;
322 }
323 
324 static inline void
325 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
326 {
327 	if (!unmap->skb)
328 		return;
329 
330 	dma_unmap_single(&bnad->pcidev->dev,
331 			dma_unmap_addr(&unmap->vector, dma_addr),
332 			unmap->vector.len, DMA_FROM_DEVICE);
333 	dev_kfree_skb_any(unmap->skb);
334 	unmap->skb = NULL;
335 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
336 	unmap->vector.len = 0;
337 }
338 
339 static void
340 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
341 {
342 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
343 	int i;
344 
345 	for (i = 0; i < rcb->q_depth; i++) {
346 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
347 
348 		if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
349 			bnad_rxq_cleanup_page(bnad, unmap);
350 		else
351 			bnad_rxq_cleanup_skb(bnad, unmap);
352 	}
353 	bnad_rxq_alloc_uninit(bnad, rcb);
354 }
355 
356 static u32
357 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
358 {
359 	u32 alloced, prod, q_depth;
360 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
361 	struct bnad_rx_unmap *unmap, *prev;
362 	struct bna_rxq_entry *rxent;
363 	struct page *page;
364 	u32 page_offset, alloc_size;
365 	dma_addr_t dma_addr;
366 
367 	prod = rcb->producer_index;
368 	q_depth = rcb->q_depth;
369 
370 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
371 	alloced = 0;
372 
373 	while (nalloc--) {
374 		unmap = &unmap_q->unmap[prod];
375 
376 		if (unmap_q->reuse_pi < 0) {
377 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
378 					unmap_q->alloc_order);
379 			page_offset = 0;
380 		} else {
381 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
382 			page = prev->page;
383 			page_offset = prev->page_offset + unmap_q->map_size;
384 			get_page(page);
385 		}
386 
387 		if (unlikely(!page)) {
388 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
389 			rcb->rxq->rxbuf_alloc_failed++;
390 			goto finishing;
391 		}
392 
393 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
394 				unmap_q->map_size, DMA_FROM_DEVICE);
395 
396 		unmap->page = page;
397 		unmap->page_offset = page_offset;
398 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
399 		unmap->vector.len = unmap_q->map_size;
400 		page_offset += unmap_q->map_size;
401 
402 		if (page_offset < alloc_size)
403 			unmap_q->reuse_pi = prod;
404 		else
405 			unmap_q->reuse_pi = -1;
406 
407 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
408 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
409 		BNA_QE_INDX_INC(prod, q_depth);
410 		alloced++;
411 	}
412 
413 finishing:
414 	if (likely(alloced)) {
415 		rcb->producer_index = prod;
416 		smp_mb();
417 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
418 			bna_rxq_prod_indx_doorbell(rcb);
419 	}
420 
421 	return alloced;
422 }
423 
424 static u32
425 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
426 {
427 	u32 alloced, prod, q_depth, buff_sz;
428 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
429 	struct bnad_rx_unmap *unmap;
430 	struct bna_rxq_entry *rxent;
431 	struct sk_buff *skb;
432 	dma_addr_t dma_addr;
433 
434 	buff_sz = rcb->rxq->buffer_size;
435 	prod = rcb->producer_index;
436 	q_depth = rcb->q_depth;
437 
438 	alloced = 0;
439 	while (nalloc--) {
440 		unmap = &unmap_q->unmap[prod];
441 
442 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
443 
444 		if (unlikely(!skb)) {
445 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
446 			rcb->rxq->rxbuf_alloc_failed++;
447 			goto finishing;
448 		}
449 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
450 					  buff_sz, DMA_FROM_DEVICE);
451 
452 		unmap->skb = skb;
453 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
454 		unmap->vector.len = buff_sz;
455 
456 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
457 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
458 		BNA_QE_INDX_INC(prod, q_depth);
459 		alloced++;
460 	}
461 
462 finishing:
463 	if (likely(alloced)) {
464 		rcb->producer_index = prod;
465 		smp_mb();
466 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
467 			bna_rxq_prod_indx_doorbell(rcb);
468 	}
469 
470 	return alloced;
471 }
472 
473 static inline void
474 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
475 {
476 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
477 	u32 to_alloc;
478 
479 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
480 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
481 		return;
482 
483 	if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
484 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
485 	else
486 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
487 }
488 
489 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
490 					BNA_CQ_EF_IPV6 | \
491 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
492 					BNA_CQ_EF_L4_CKSUM_OK)
493 
494 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
495 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
496 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
497 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
498 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
499 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
500 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
501 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
502 
503 static inline struct sk_buff *
504 bnad_cq_prepare_skb(struct bnad_rx_ctrl *rx_ctrl,
505 		struct bnad_rx_unmap_q *unmap_q,
506 		struct bnad_rx_unmap *unmap,
507 		u32 length, u32 flags)
508 {
509 	struct bnad *bnad = rx_ctrl->bnad;
510 	struct sk_buff *skb;
511 
512 	if (BNAD_RXBUF_IS_PAGE(unmap_q->type)) {
513 		skb = napi_get_frags(&rx_ctrl->napi);
514 		if (unlikely(!skb))
515 			return NULL;
516 
517 		dma_unmap_page(&bnad->pcidev->dev,
518 				dma_unmap_addr(&unmap->vector, dma_addr),
519 				unmap->vector.len, DMA_FROM_DEVICE);
520 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
521 				unmap->page, unmap->page_offset, length);
522 		skb->len += length;
523 		skb->data_len += length;
524 		skb->truesize += length;
525 
526 		unmap->page = NULL;
527 		unmap->vector.len = 0;
528 
529 		return skb;
530 	}
531 
532 	skb = unmap->skb;
533 	BUG_ON(!skb);
534 
535 	dma_unmap_single(&bnad->pcidev->dev,
536 			dma_unmap_addr(&unmap->vector, dma_addr),
537 			unmap->vector.len, DMA_FROM_DEVICE);
538 
539 	skb_put(skb, length);
540 
541 	skb->protocol = eth_type_trans(skb, bnad->netdev);
542 
543 	unmap->skb = NULL;
544 	unmap->vector.len = 0;
545 	return skb;
546 }
547 
548 static u32
549 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
550 {
551 	struct bna_cq_entry *cq, *cmpl;
552 	struct bna_rcb *rcb = NULL;
553 	struct bnad_rx_unmap_q *unmap_q;
554 	struct bnad_rx_unmap *unmap;
555 	struct sk_buff *skb;
556 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
557 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
558 	u32 packets = 0, length = 0, flags, masked_flags;
559 
560 	prefetch(bnad->netdev);
561 
562 	cq = ccb->sw_q;
563 	cmpl = &cq[ccb->producer_index];
564 
565 	while (cmpl->valid && (packets < budget)) {
566 		packets++;
567 		flags = ntohl(cmpl->flags);
568 		length = ntohs(cmpl->length);
569 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
570 
571 		if (bna_is_small_rxq(cmpl->rxq_id))
572 			rcb = ccb->rcb[1];
573 		else
574 			rcb = ccb->rcb[0];
575 
576 		unmap_q = rcb->unmap_q;
577 		unmap = &unmap_q->unmap[rcb->consumer_index];
578 
579 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
580 					BNA_CQ_EF_FCS_ERROR |
581 					BNA_CQ_EF_TOO_LONG))) {
582 			if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
583 				bnad_rxq_cleanup_page(bnad, unmap);
584 			else
585 				bnad_rxq_cleanup_skb(bnad, unmap);
586 
587 			rcb->rxq->rx_packets_with_error++;
588 			goto next;
589 		}
590 
591 		skb = bnad_cq_prepare_skb(ccb->ctrl, unmap_q, unmap,
592 				length, flags);
593 
594 		if (unlikely(!skb))
595 			break;
596 
597 		masked_flags = flags & flags_cksum_prot_mask;
598 
599 		if (likely
600 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
601 		     ((masked_flags == flags_tcp4) ||
602 		      (masked_flags == flags_udp4) ||
603 		      (masked_flags == flags_tcp6) ||
604 		      (masked_flags == flags_udp6))))
605 			skb->ip_summed = CHECKSUM_UNNECESSARY;
606 		else
607 			skb_checksum_none_assert(skb);
608 
609 		rcb->rxq->rx_packets++;
610 		rcb->rxq->rx_bytes += length;
611 
612 		if (flags & BNA_CQ_EF_VLAN)
613 			__vlan_hwaccel_put_tag(skb, ntohs(cmpl->vlan_tag));
614 
615 		if (BNAD_RXBUF_IS_PAGE(unmap_q->type))
616 			napi_gro_frags(&rx_ctrl->napi);
617 		else
618 			netif_receive_skb(skb);
619 
620 next:
621 		cmpl->valid = 0;
622 		BNA_QE_INDX_INC(rcb->consumer_index, rcb->q_depth);
623 		BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
624 		cmpl = &cq[ccb->producer_index];
625 	}
626 
627 	napi_gro_flush(&rx_ctrl->napi, false);
628 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
629 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
630 
631 	bnad_rxq_post(bnad, ccb->rcb[0]);
632 	if (ccb->rcb[1])
633 		bnad_rxq_post(bnad, ccb->rcb[1]);
634 
635 	return packets;
636 }
637 
638 static void
639 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
640 {
641 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
642 	struct napi_struct *napi = &rx_ctrl->napi;
643 
644 	if (likely(napi_schedule_prep(napi))) {
645 		__napi_schedule(napi);
646 		rx_ctrl->rx_schedule++;
647 	}
648 }
649 
650 /* MSIX Rx Path Handler */
651 static irqreturn_t
652 bnad_msix_rx(int irq, void *data)
653 {
654 	struct bna_ccb *ccb = (struct bna_ccb *)data;
655 
656 	if (ccb) {
657 		((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
658 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
659 	}
660 
661 	return IRQ_HANDLED;
662 }
663 
664 /* Interrupt handlers */
665 
666 /* Mbox Interrupt Handlers */
667 static irqreturn_t
668 bnad_msix_mbox_handler(int irq, void *data)
669 {
670 	u32 intr_status;
671 	unsigned long flags;
672 	struct bnad *bnad = (struct bnad *)data;
673 
674 	spin_lock_irqsave(&bnad->bna_lock, flags);
675 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
676 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
677 		return IRQ_HANDLED;
678 	}
679 
680 	bna_intr_status_get(&bnad->bna, intr_status);
681 
682 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
683 		bna_mbox_handler(&bnad->bna, intr_status);
684 
685 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
686 
687 	return IRQ_HANDLED;
688 }
689 
690 static irqreturn_t
691 bnad_isr(int irq, void *data)
692 {
693 	int i, j;
694 	u32 intr_status;
695 	unsigned long flags;
696 	struct bnad *bnad = (struct bnad *)data;
697 	struct bnad_rx_info *rx_info;
698 	struct bnad_rx_ctrl *rx_ctrl;
699 	struct bna_tcb *tcb = NULL;
700 
701 	spin_lock_irqsave(&bnad->bna_lock, flags);
702 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
703 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
704 		return IRQ_NONE;
705 	}
706 
707 	bna_intr_status_get(&bnad->bna, intr_status);
708 
709 	if (unlikely(!intr_status)) {
710 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
711 		return IRQ_NONE;
712 	}
713 
714 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
715 		bna_mbox_handler(&bnad->bna, intr_status);
716 
717 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
718 
719 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
720 		return IRQ_HANDLED;
721 
722 	/* Process data interrupts */
723 	/* Tx processing */
724 	for (i = 0; i < bnad->num_tx; i++) {
725 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
726 			tcb = bnad->tx_info[i].tcb[j];
727 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
728 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
729 		}
730 	}
731 	/* Rx processing */
732 	for (i = 0; i < bnad->num_rx; i++) {
733 		rx_info = &bnad->rx_info[i];
734 		if (!rx_info->rx)
735 			continue;
736 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
737 			rx_ctrl = &rx_info->rx_ctrl[j];
738 			if (rx_ctrl->ccb)
739 				bnad_netif_rx_schedule_poll(bnad,
740 							    rx_ctrl->ccb);
741 		}
742 	}
743 	return IRQ_HANDLED;
744 }
745 
746 /*
747  * Called in interrupt / callback context
748  * with bna_lock held, so cfg_flags access is OK
749  */
750 static void
751 bnad_enable_mbox_irq(struct bnad *bnad)
752 {
753 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
754 
755 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
756 }
757 
758 /*
759  * Called with bnad->bna_lock held b'cos of
760  * bnad->cfg_flags access.
761  */
762 static void
763 bnad_disable_mbox_irq(struct bnad *bnad)
764 {
765 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
766 
767 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
768 }
769 
770 static void
771 bnad_set_netdev_perm_addr(struct bnad *bnad)
772 {
773 	struct net_device *netdev = bnad->netdev;
774 
775 	memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
776 	if (is_zero_ether_addr(netdev->dev_addr))
777 		memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
778 }
779 
780 /* Control Path Handlers */
781 
782 /* Callbacks */
783 void
784 bnad_cb_mbox_intr_enable(struct bnad *bnad)
785 {
786 	bnad_enable_mbox_irq(bnad);
787 }
788 
789 void
790 bnad_cb_mbox_intr_disable(struct bnad *bnad)
791 {
792 	bnad_disable_mbox_irq(bnad);
793 }
794 
795 void
796 bnad_cb_ioceth_ready(struct bnad *bnad)
797 {
798 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
799 	complete(&bnad->bnad_completions.ioc_comp);
800 }
801 
802 void
803 bnad_cb_ioceth_failed(struct bnad *bnad)
804 {
805 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
806 	complete(&bnad->bnad_completions.ioc_comp);
807 }
808 
809 void
810 bnad_cb_ioceth_disabled(struct bnad *bnad)
811 {
812 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
813 	complete(&bnad->bnad_completions.ioc_comp);
814 }
815 
816 static void
817 bnad_cb_enet_disabled(void *arg)
818 {
819 	struct bnad *bnad = (struct bnad *)arg;
820 
821 	netif_carrier_off(bnad->netdev);
822 	complete(&bnad->bnad_completions.enet_comp);
823 }
824 
825 void
826 bnad_cb_ethport_link_status(struct bnad *bnad,
827 			enum bna_link_status link_status)
828 {
829 	bool link_up = false;
830 
831 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
832 
833 	if (link_status == BNA_CEE_UP) {
834 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
835 			BNAD_UPDATE_CTR(bnad, cee_toggle);
836 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
837 	} else {
838 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
839 			BNAD_UPDATE_CTR(bnad, cee_toggle);
840 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
841 	}
842 
843 	if (link_up) {
844 		if (!netif_carrier_ok(bnad->netdev)) {
845 			uint tx_id, tcb_id;
846 			printk(KERN_WARNING "bna: %s link up\n",
847 				bnad->netdev->name);
848 			netif_carrier_on(bnad->netdev);
849 			BNAD_UPDATE_CTR(bnad, link_toggle);
850 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
851 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
852 				      tcb_id++) {
853 					struct bna_tcb *tcb =
854 					bnad->tx_info[tx_id].tcb[tcb_id];
855 					u32 txq_id;
856 					if (!tcb)
857 						continue;
858 
859 					txq_id = tcb->id;
860 
861 					if (test_bit(BNAD_TXQ_TX_STARTED,
862 						     &tcb->flags)) {
863 						/*
864 						 * Force an immediate
865 						 * Transmit Schedule */
866 						printk(KERN_INFO "bna: %s %d "
867 						      "TXQ_STARTED\n",
868 						       bnad->netdev->name,
869 						       txq_id);
870 						netif_wake_subqueue(
871 								bnad->netdev,
872 								txq_id);
873 						BNAD_UPDATE_CTR(bnad,
874 							netif_queue_wakeup);
875 					} else {
876 						netif_stop_subqueue(
877 								bnad->netdev,
878 								txq_id);
879 						BNAD_UPDATE_CTR(bnad,
880 							netif_queue_stop);
881 					}
882 				}
883 			}
884 		}
885 	} else {
886 		if (netif_carrier_ok(bnad->netdev)) {
887 			printk(KERN_WARNING "bna: %s link down\n",
888 				bnad->netdev->name);
889 			netif_carrier_off(bnad->netdev);
890 			BNAD_UPDATE_CTR(bnad, link_toggle);
891 		}
892 	}
893 }
894 
895 static void
896 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
897 {
898 	struct bnad *bnad = (struct bnad *)arg;
899 
900 	complete(&bnad->bnad_completions.tx_comp);
901 }
902 
903 static void
904 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
905 {
906 	struct bnad_tx_info *tx_info =
907 			(struct bnad_tx_info *)tcb->txq->tx->priv;
908 
909 	tcb->priv = tcb;
910 	tx_info->tcb[tcb->id] = tcb;
911 }
912 
913 static void
914 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
915 {
916 	struct bnad_tx_info *tx_info =
917 			(struct bnad_tx_info *)tcb->txq->tx->priv;
918 
919 	tx_info->tcb[tcb->id] = NULL;
920 	tcb->priv = NULL;
921 }
922 
923 static void
924 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
925 {
926 	struct bnad_rx_info *rx_info =
927 			(struct bnad_rx_info *)ccb->cq->rx->priv;
928 
929 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
930 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
931 }
932 
933 static void
934 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
935 {
936 	struct bnad_rx_info *rx_info =
937 			(struct bnad_rx_info *)ccb->cq->rx->priv;
938 
939 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
940 }
941 
942 static void
943 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
944 {
945 	struct bnad_tx_info *tx_info =
946 			(struct bnad_tx_info *)tx->priv;
947 	struct bna_tcb *tcb;
948 	u32 txq_id;
949 	int i;
950 
951 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
952 		tcb = tx_info->tcb[i];
953 		if (!tcb)
954 			continue;
955 		txq_id = tcb->id;
956 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
957 		netif_stop_subqueue(bnad->netdev, txq_id);
958 		printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
959 			bnad->netdev->name, txq_id);
960 	}
961 }
962 
963 static void
964 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
965 {
966 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
967 	struct bna_tcb *tcb;
968 	u32 txq_id;
969 	int i;
970 
971 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
972 		tcb = tx_info->tcb[i];
973 		if (!tcb)
974 			continue;
975 		txq_id = tcb->id;
976 
977 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
978 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
979 		BUG_ON(*(tcb->hw_consumer_index) != 0);
980 
981 		if (netif_carrier_ok(bnad->netdev)) {
982 			printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
983 				bnad->netdev->name, txq_id);
984 			netif_wake_subqueue(bnad->netdev, txq_id);
985 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
986 		}
987 	}
988 
989 	/*
990 	 * Workaround for first ioceth enable failure & we
991 	 * get a 0 MAC address. We try to get the MAC address
992 	 * again here.
993 	 */
994 	if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
995 		bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
996 		bnad_set_netdev_perm_addr(bnad);
997 	}
998 }
999 
1000 /*
1001  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1002  */
1003 static void
1004 bnad_tx_cleanup(struct delayed_work *work)
1005 {
1006 	struct bnad_tx_info *tx_info =
1007 		container_of(work, struct bnad_tx_info, tx_cleanup_work);
1008 	struct bnad *bnad = NULL;
1009 	struct bna_tcb *tcb;
1010 	unsigned long flags;
1011 	u32 i, pending = 0;
1012 
1013 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1014 		tcb = tx_info->tcb[i];
1015 		if (!tcb)
1016 			continue;
1017 
1018 		bnad = tcb->bnad;
1019 
1020 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1021 			pending++;
1022 			continue;
1023 		}
1024 
1025 		bnad_txq_cleanup(bnad, tcb);
1026 
1027 		smp_mb__before_clear_bit();
1028 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1029 	}
1030 
1031 	if (pending) {
1032 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1033 			msecs_to_jiffies(1));
1034 		return;
1035 	}
1036 
1037 	spin_lock_irqsave(&bnad->bna_lock, flags);
1038 	bna_tx_cleanup_complete(tx_info->tx);
1039 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1040 }
1041 
1042 static void
1043 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1044 {
1045 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1046 	struct bna_tcb *tcb;
1047 	int i;
1048 
1049 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1050 		tcb = tx_info->tcb[i];
1051 		if (!tcb)
1052 			continue;
1053 	}
1054 
1055 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1056 }
1057 
1058 static void
1059 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1060 {
1061 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1062 	struct bna_ccb *ccb;
1063 	struct bnad_rx_ctrl *rx_ctrl;
1064 	int i;
1065 
1066 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1067 		rx_ctrl = &rx_info->rx_ctrl[i];
1068 		ccb = rx_ctrl->ccb;
1069 		if (!ccb)
1070 			continue;
1071 
1072 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1073 
1074 		if (ccb->rcb[1])
1075 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1076 	}
1077 }
1078 
1079 /*
1080  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1081  */
1082 static void
1083 bnad_rx_cleanup(void *work)
1084 {
1085 	struct bnad_rx_info *rx_info =
1086 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1087 	struct bnad_rx_ctrl *rx_ctrl;
1088 	struct bnad *bnad = NULL;
1089 	unsigned long flags;
1090 	u32 i;
1091 
1092 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1093 		rx_ctrl = &rx_info->rx_ctrl[i];
1094 
1095 		if (!rx_ctrl->ccb)
1096 			continue;
1097 
1098 		bnad = rx_ctrl->ccb->bnad;
1099 
1100 		/*
1101 		 * Wait till the poll handler has exited
1102 		 * and nothing can be scheduled anymore
1103 		 */
1104 		napi_disable(&rx_ctrl->napi);
1105 
1106 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1107 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1108 		if (rx_ctrl->ccb->rcb[1])
1109 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1110 	}
1111 
1112 	spin_lock_irqsave(&bnad->bna_lock, flags);
1113 	bna_rx_cleanup_complete(rx_info->rx);
1114 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1115 }
1116 
1117 static void
1118 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1119 {
1120 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1121 	struct bna_ccb *ccb;
1122 	struct bnad_rx_ctrl *rx_ctrl;
1123 	int i;
1124 
1125 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1126 		rx_ctrl = &rx_info->rx_ctrl[i];
1127 		ccb = rx_ctrl->ccb;
1128 		if (!ccb)
1129 			continue;
1130 
1131 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1132 
1133 		if (ccb->rcb[1])
1134 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1135 	}
1136 
1137 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1138 }
1139 
1140 static void
1141 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1142 {
1143 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1144 	struct bna_ccb *ccb;
1145 	struct bna_rcb *rcb;
1146 	struct bnad_rx_ctrl *rx_ctrl;
1147 	int i, j;
1148 
1149 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1150 		rx_ctrl = &rx_info->rx_ctrl[i];
1151 		ccb = rx_ctrl->ccb;
1152 		if (!ccb)
1153 			continue;
1154 
1155 		napi_enable(&rx_ctrl->napi);
1156 
1157 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1158 			rcb = ccb->rcb[j];
1159 			if (!rcb)
1160 				continue;
1161 
1162 			bnad_rxq_alloc_init(bnad, rcb);
1163 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1164 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1165 			bnad_rxq_post(bnad, rcb);
1166 		}
1167 	}
1168 }
1169 
1170 static void
1171 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1172 {
1173 	struct bnad *bnad = (struct bnad *)arg;
1174 
1175 	complete(&bnad->bnad_completions.rx_comp);
1176 }
1177 
1178 static void
1179 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1180 {
1181 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1182 	complete(&bnad->bnad_completions.mcast_comp);
1183 }
1184 
1185 void
1186 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1187 		       struct bna_stats *stats)
1188 {
1189 	if (status == BNA_CB_SUCCESS)
1190 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1191 
1192 	if (!netif_running(bnad->netdev) ||
1193 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1194 		return;
1195 
1196 	mod_timer(&bnad->stats_timer,
1197 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1198 }
1199 
1200 static void
1201 bnad_cb_enet_mtu_set(struct bnad *bnad)
1202 {
1203 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1204 	complete(&bnad->bnad_completions.mtu_comp);
1205 }
1206 
1207 void
1208 bnad_cb_completion(void *arg, enum bfa_status status)
1209 {
1210 	struct bnad_iocmd_comp *iocmd_comp =
1211 			(struct bnad_iocmd_comp *)arg;
1212 
1213 	iocmd_comp->comp_status = (u32) status;
1214 	complete(&iocmd_comp->comp);
1215 }
1216 
1217 /* Resource allocation, free functions */
1218 
1219 static void
1220 bnad_mem_free(struct bnad *bnad,
1221 	      struct bna_mem_info *mem_info)
1222 {
1223 	int i;
1224 	dma_addr_t dma_pa;
1225 
1226 	if (mem_info->mdl == NULL)
1227 		return;
1228 
1229 	for (i = 0; i < mem_info->num; i++) {
1230 		if (mem_info->mdl[i].kva != NULL) {
1231 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1232 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1233 						dma_pa);
1234 				dma_free_coherent(&bnad->pcidev->dev,
1235 						  mem_info->mdl[i].len,
1236 						  mem_info->mdl[i].kva, dma_pa);
1237 			} else
1238 				kfree(mem_info->mdl[i].kva);
1239 		}
1240 	}
1241 	kfree(mem_info->mdl);
1242 	mem_info->mdl = NULL;
1243 }
1244 
1245 static int
1246 bnad_mem_alloc(struct bnad *bnad,
1247 	       struct bna_mem_info *mem_info)
1248 {
1249 	int i;
1250 	dma_addr_t dma_pa;
1251 
1252 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1253 		mem_info->mdl = NULL;
1254 		return 0;
1255 	}
1256 
1257 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1258 				GFP_KERNEL);
1259 	if (mem_info->mdl == NULL)
1260 		return -ENOMEM;
1261 
1262 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1263 		for (i = 0; i < mem_info->num; i++) {
1264 			mem_info->mdl[i].len = mem_info->len;
1265 			mem_info->mdl[i].kva =
1266 				dma_alloc_coherent(&bnad->pcidev->dev,
1267 						mem_info->len, &dma_pa,
1268 						GFP_KERNEL);
1269 
1270 			if (mem_info->mdl[i].kva == NULL)
1271 				goto err_return;
1272 
1273 			BNA_SET_DMA_ADDR(dma_pa,
1274 					 &(mem_info->mdl[i].dma));
1275 		}
1276 	} else {
1277 		for (i = 0; i < mem_info->num; i++) {
1278 			mem_info->mdl[i].len = mem_info->len;
1279 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1280 							GFP_KERNEL);
1281 			if (mem_info->mdl[i].kva == NULL)
1282 				goto err_return;
1283 		}
1284 	}
1285 
1286 	return 0;
1287 
1288 err_return:
1289 	bnad_mem_free(bnad, mem_info);
1290 	return -ENOMEM;
1291 }
1292 
1293 /* Free IRQ for Mailbox */
1294 static void
1295 bnad_mbox_irq_free(struct bnad *bnad)
1296 {
1297 	int irq;
1298 	unsigned long flags;
1299 
1300 	spin_lock_irqsave(&bnad->bna_lock, flags);
1301 	bnad_disable_mbox_irq(bnad);
1302 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1303 
1304 	irq = BNAD_GET_MBOX_IRQ(bnad);
1305 	free_irq(irq, bnad);
1306 }
1307 
1308 /*
1309  * Allocates IRQ for Mailbox, but keep it disabled
1310  * This will be enabled once we get the mbox enable callback
1311  * from bna
1312  */
1313 static int
1314 bnad_mbox_irq_alloc(struct bnad *bnad)
1315 {
1316 	int		err = 0;
1317 	unsigned long	irq_flags, flags;
1318 	u32	irq;
1319 	irq_handler_t	irq_handler;
1320 
1321 	spin_lock_irqsave(&bnad->bna_lock, flags);
1322 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1323 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1324 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1325 		irq_flags = 0;
1326 	} else {
1327 		irq_handler = (irq_handler_t)bnad_isr;
1328 		irq = bnad->pcidev->irq;
1329 		irq_flags = IRQF_SHARED;
1330 	}
1331 
1332 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1333 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1334 
1335 	/*
1336 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1337 	 * called from request_irq() for SHARED IRQs do not execute
1338 	 */
1339 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1340 
1341 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1342 
1343 	err = request_irq(irq, irq_handler, irq_flags,
1344 			  bnad->mbox_irq_name, bnad);
1345 
1346 	return err;
1347 }
1348 
1349 static void
1350 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1351 {
1352 	kfree(intr_info->idl);
1353 	intr_info->idl = NULL;
1354 }
1355 
1356 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1357 static int
1358 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1359 		    u32 txrx_id, struct bna_intr_info *intr_info)
1360 {
1361 	int i, vector_start = 0;
1362 	u32 cfg_flags;
1363 	unsigned long flags;
1364 
1365 	spin_lock_irqsave(&bnad->bna_lock, flags);
1366 	cfg_flags = bnad->cfg_flags;
1367 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1368 
1369 	if (cfg_flags & BNAD_CF_MSIX) {
1370 		intr_info->intr_type = BNA_INTR_T_MSIX;
1371 		intr_info->idl = kcalloc(intr_info->num,
1372 					sizeof(struct bna_intr_descr),
1373 					GFP_KERNEL);
1374 		if (!intr_info->idl)
1375 			return -ENOMEM;
1376 
1377 		switch (src) {
1378 		case BNAD_INTR_TX:
1379 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1380 			break;
1381 
1382 		case BNAD_INTR_RX:
1383 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1384 					(bnad->num_tx * bnad->num_txq_per_tx) +
1385 					txrx_id;
1386 			break;
1387 
1388 		default:
1389 			BUG();
1390 		}
1391 
1392 		for (i = 0; i < intr_info->num; i++)
1393 			intr_info->idl[i].vector = vector_start + i;
1394 	} else {
1395 		intr_info->intr_type = BNA_INTR_T_INTX;
1396 		intr_info->num = 1;
1397 		intr_info->idl = kcalloc(intr_info->num,
1398 					sizeof(struct bna_intr_descr),
1399 					GFP_KERNEL);
1400 		if (!intr_info->idl)
1401 			return -ENOMEM;
1402 
1403 		switch (src) {
1404 		case BNAD_INTR_TX:
1405 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1406 			break;
1407 
1408 		case BNAD_INTR_RX:
1409 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1410 			break;
1411 		}
1412 	}
1413 	return 0;
1414 }
1415 
1416 /* NOTE: Should be called for MSIX only
1417  * Unregisters Tx MSIX vector(s) from the kernel
1418  */
1419 static void
1420 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1421 			int num_txqs)
1422 {
1423 	int i;
1424 	int vector_num;
1425 
1426 	for (i = 0; i < num_txqs; i++) {
1427 		if (tx_info->tcb[i] == NULL)
1428 			continue;
1429 
1430 		vector_num = tx_info->tcb[i]->intr_vector;
1431 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1432 	}
1433 }
1434 
1435 /* NOTE: Should be called for MSIX only
1436  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1437  */
1438 static int
1439 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1440 			u32 tx_id, int num_txqs)
1441 {
1442 	int i;
1443 	int err;
1444 	int vector_num;
1445 
1446 	for (i = 0; i < num_txqs; i++) {
1447 		vector_num = tx_info->tcb[i]->intr_vector;
1448 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1449 				tx_id + tx_info->tcb[i]->id);
1450 		err = request_irq(bnad->msix_table[vector_num].vector,
1451 				  (irq_handler_t)bnad_msix_tx, 0,
1452 				  tx_info->tcb[i]->name,
1453 				  tx_info->tcb[i]);
1454 		if (err)
1455 			goto err_return;
1456 	}
1457 
1458 	return 0;
1459 
1460 err_return:
1461 	if (i > 0)
1462 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1463 	return -1;
1464 }
1465 
1466 /* NOTE: Should be called for MSIX only
1467  * Unregisters Rx MSIX vector(s) from the kernel
1468  */
1469 static void
1470 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1471 			int num_rxps)
1472 {
1473 	int i;
1474 	int vector_num;
1475 
1476 	for (i = 0; i < num_rxps; i++) {
1477 		if (rx_info->rx_ctrl[i].ccb == NULL)
1478 			continue;
1479 
1480 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1481 		free_irq(bnad->msix_table[vector_num].vector,
1482 			 rx_info->rx_ctrl[i].ccb);
1483 	}
1484 }
1485 
1486 /* NOTE: Should be called for MSIX only
1487  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1488  */
1489 static int
1490 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1491 			u32 rx_id, int num_rxps)
1492 {
1493 	int i;
1494 	int err;
1495 	int vector_num;
1496 
1497 	for (i = 0; i < num_rxps; i++) {
1498 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1499 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1500 			bnad->netdev->name,
1501 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1502 		err = request_irq(bnad->msix_table[vector_num].vector,
1503 				  (irq_handler_t)bnad_msix_rx, 0,
1504 				  rx_info->rx_ctrl[i].ccb->name,
1505 				  rx_info->rx_ctrl[i].ccb);
1506 		if (err)
1507 			goto err_return;
1508 	}
1509 
1510 	return 0;
1511 
1512 err_return:
1513 	if (i > 0)
1514 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1515 	return -1;
1516 }
1517 
1518 /* Free Tx object Resources */
1519 static void
1520 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1521 {
1522 	int i;
1523 
1524 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1525 		if (res_info[i].res_type == BNA_RES_T_MEM)
1526 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1527 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1528 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1529 	}
1530 }
1531 
1532 /* Allocates memory and interrupt resources for Tx object */
1533 static int
1534 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1535 		  u32 tx_id)
1536 {
1537 	int i, err = 0;
1538 
1539 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1540 		if (res_info[i].res_type == BNA_RES_T_MEM)
1541 			err = bnad_mem_alloc(bnad,
1542 					&res_info[i].res_u.mem_info);
1543 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1544 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1545 					&res_info[i].res_u.intr_info);
1546 		if (err)
1547 			goto err_return;
1548 	}
1549 	return 0;
1550 
1551 err_return:
1552 	bnad_tx_res_free(bnad, res_info);
1553 	return err;
1554 }
1555 
1556 /* Free Rx object Resources */
1557 static void
1558 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1559 {
1560 	int i;
1561 
1562 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1563 		if (res_info[i].res_type == BNA_RES_T_MEM)
1564 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1565 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1566 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1567 	}
1568 }
1569 
1570 /* Allocates memory and interrupt resources for Rx object */
1571 static int
1572 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1573 		  uint rx_id)
1574 {
1575 	int i, err = 0;
1576 
1577 	/* All memory needs to be allocated before setup_ccbs */
1578 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1579 		if (res_info[i].res_type == BNA_RES_T_MEM)
1580 			err = bnad_mem_alloc(bnad,
1581 					&res_info[i].res_u.mem_info);
1582 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1583 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1584 					&res_info[i].res_u.intr_info);
1585 		if (err)
1586 			goto err_return;
1587 	}
1588 	return 0;
1589 
1590 err_return:
1591 	bnad_rx_res_free(bnad, res_info);
1592 	return err;
1593 }
1594 
1595 /* Timer callbacks */
1596 /* a) IOC timer */
1597 static void
1598 bnad_ioc_timeout(unsigned long data)
1599 {
1600 	struct bnad *bnad = (struct bnad *)data;
1601 	unsigned long flags;
1602 
1603 	spin_lock_irqsave(&bnad->bna_lock, flags);
1604 	bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1605 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1606 }
1607 
1608 static void
1609 bnad_ioc_hb_check(unsigned long data)
1610 {
1611 	struct bnad *bnad = (struct bnad *)data;
1612 	unsigned long flags;
1613 
1614 	spin_lock_irqsave(&bnad->bna_lock, flags);
1615 	bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1616 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1617 }
1618 
1619 static void
1620 bnad_iocpf_timeout(unsigned long data)
1621 {
1622 	struct bnad *bnad = (struct bnad *)data;
1623 	unsigned long flags;
1624 
1625 	spin_lock_irqsave(&bnad->bna_lock, flags);
1626 	bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1627 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1628 }
1629 
1630 static void
1631 bnad_iocpf_sem_timeout(unsigned long data)
1632 {
1633 	struct bnad *bnad = (struct bnad *)data;
1634 	unsigned long flags;
1635 
1636 	spin_lock_irqsave(&bnad->bna_lock, flags);
1637 	bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1638 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1639 }
1640 
1641 /*
1642  * All timer routines use bnad->bna_lock to protect against
1643  * the following race, which may occur in case of no locking:
1644  *	Time	CPU m	CPU n
1645  *	0       1 = test_bit
1646  *	1			clear_bit
1647  *	2			del_timer_sync
1648  *	3	mod_timer
1649  */
1650 
1651 /* b) Dynamic Interrupt Moderation Timer */
1652 static void
1653 bnad_dim_timeout(unsigned long data)
1654 {
1655 	struct bnad *bnad = (struct bnad *)data;
1656 	struct bnad_rx_info *rx_info;
1657 	struct bnad_rx_ctrl *rx_ctrl;
1658 	int i, j;
1659 	unsigned long flags;
1660 
1661 	if (!netif_carrier_ok(bnad->netdev))
1662 		return;
1663 
1664 	spin_lock_irqsave(&bnad->bna_lock, flags);
1665 	for (i = 0; i < bnad->num_rx; i++) {
1666 		rx_info = &bnad->rx_info[i];
1667 		if (!rx_info->rx)
1668 			continue;
1669 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1670 			rx_ctrl = &rx_info->rx_ctrl[j];
1671 			if (!rx_ctrl->ccb)
1672 				continue;
1673 			bna_rx_dim_update(rx_ctrl->ccb);
1674 		}
1675 	}
1676 
1677 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1678 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1679 		mod_timer(&bnad->dim_timer,
1680 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1681 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1682 }
1683 
1684 /* c)  Statistics Timer */
1685 static void
1686 bnad_stats_timeout(unsigned long data)
1687 {
1688 	struct bnad *bnad = (struct bnad *)data;
1689 	unsigned long flags;
1690 
1691 	if (!netif_running(bnad->netdev) ||
1692 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1693 		return;
1694 
1695 	spin_lock_irqsave(&bnad->bna_lock, flags);
1696 	bna_hw_stats_get(&bnad->bna);
1697 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1698 }
1699 
1700 /*
1701  * Set up timer for DIM
1702  * Called with bnad->bna_lock held
1703  */
1704 void
1705 bnad_dim_timer_start(struct bnad *bnad)
1706 {
1707 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1708 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1709 		setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1710 			    (unsigned long)bnad);
1711 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1712 		mod_timer(&bnad->dim_timer,
1713 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1714 	}
1715 }
1716 
1717 /*
1718  * Set up timer for statistics
1719  * Called with mutex_lock(&bnad->conf_mutex) held
1720  */
1721 static void
1722 bnad_stats_timer_start(struct bnad *bnad)
1723 {
1724 	unsigned long flags;
1725 
1726 	spin_lock_irqsave(&bnad->bna_lock, flags);
1727 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1728 		setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1729 			    (unsigned long)bnad);
1730 		mod_timer(&bnad->stats_timer,
1731 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1732 	}
1733 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1734 }
1735 
1736 /*
1737  * Stops the stats timer
1738  * Called with mutex_lock(&bnad->conf_mutex) held
1739  */
1740 static void
1741 bnad_stats_timer_stop(struct bnad *bnad)
1742 {
1743 	int to_del = 0;
1744 	unsigned long flags;
1745 
1746 	spin_lock_irqsave(&bnad->bna_lock, flags);
1747 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1748 		to_del = 1;
1749 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1750 	if (to_del)
1751 		del_timer_sync(&bnad->stats_timer);
1752 }
1753 
1754 /* Utilities */
1755 
1756 static void
1757 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1758 {
1759 	int i = 1; /* Index 0 has broadcast address */
1760 	struct netdev_hw_addr *mc_addr;
1761 
1762 	netdev_for_each_mc_addr(mc_addr, netdev) {
1763 		memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1764 							ETH_ALEN);
1765 		i++;
1766 	}
1767 }
1768 
1769 static int
1770 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1771 {
1772 	struct bnad_rx_ctrl *rx_ctrl =
1773 		container_of(napi, struct bnad_rx_ctrl, napi);
1774 	struct bnad *bnad = rx_ctrl->bnad;
1775 	int rcvd = 0;
1776 
1777 	rx_ctrl->rx_poll_ctr++;
1778 
1779 	if (!netif_carrier_ok(bnad->netdev))
1780 		goto poll_exit;
1781 
1782 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1783 	if (rcvd >= budget)
1784 		return rcvd;
1785 
1786 poll_exit:
1787 	napi_complete(napi);
1788 
1789 	rx_ctrl->rx_complete++;
1790 
1791 	if (rx_ctrl->ccb)
1792 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1793 
1794 	return rcvd;
1795 }
1796 
1797 #define BNAD_NAPI_POLL_QUOTA		64
1798 static void
1799 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1800 {
1801 	struct bnad_rx_ctrl *rx_ctrl;
1802 	int i;
1803 
1804 	/* Initialize & enable NAPI */
1805 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1806 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1807 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1808 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1809 	}
1810 }
1811 
1812 static void
1813 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1814 {
1815 	int i;
1816 
1817 	/* First disable and then clean up */
1818 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1819 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1820 }
1821 
1822 /* Should be held with conf_lock held */
1823 void
1824 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1825 {
1826 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1827 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1828 	unsigned long flags;
1829 
1830 	if (!tx_info->tx)
1831 		return;
1832 
1833 	init_completion(&bnad->bnad_completions.tx_comp);
1834 	spin_lock_irqsave(&bnad->bna_lock, flags);
1835 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1836 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1837 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1838 
1839 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1840 		bnad_tx_msix_unregister(bnad, tx_info,
1841 			bnad->num_txq_per_tx);
1842 
1843 	spin_lock_irqsave(&bnad->bna_lock, flags);
1844 	bna_tx_destroy(tx_info->tx);
1845 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1846 
1847 	tx_info->tx = NULL;
1848 	tx_info->tx_id = 0;
1849 
1850 	bnad_tx_res_free(bnad, res_info);
1851 }
1852 
1853 /* Should be held with conf_lock held */
1854 int
1855 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1856 {
1857 	int err;
1858 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1859 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1860 	struct bna_intr_info *intr_info =
1861 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1862 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1863 	static const struct bna_tx_event_cbfn tx_cbfn = {
1864 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1865 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1866 		.tx_stall_cbfn = bnad_cb_tx_stall,
1867 		.tx_resume_cbfn = bnad_cb_tx_resume,
1868 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1869 	};
1870 
1871 	struct bna_tx *tx;
1872 	unsigned long flags;
1873 
1874 	tx_info->tx_id = tx_id;
1875 
1876 	/* Initialize the Tx object configuration */
1877 	tx_config->num_txq = bnad->num_txq_per_tx;
1878 	tx_config->txq_depth = bnad->txq_depth;
1879 	tx_config->tx_type = BNA_TX_T_REGULAR;
1880 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1881 
1882 	/* Get BNA's resource requirement for one tx object */
1883 	spin_lock_irqsave(&bnad->bna_lock, flags);
1884 	bna_tx_res_req(bnad->num_txq_per_tx,
1885 		bnad->txq_depth, res_info);
1886 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1887 
1888 	/* Fill Unmap Q memory requirements */
1889 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1890 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1891 			bnad->txq_depth));
1892 
1893 	/* Allocate resources */
1894 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1895 	if (err)
1896 		return err;
1897 
1898 	/* Ask BNA to create one Tx object, supplying required resources */
1899 	spin_lock_irqsave(&bnad->bna_lock, flags);
1900 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1901 			tx_info);
1902 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1903 	if (!tx)
1904 		goto err_return;
1905 	tx_info->tx = tx;
1906 
1907 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
1908 			(work_func_t)bnad_tx_cleanup);
1909 
1910 	/* Register ISR for the Tx object */
1911 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1912 		err = bnad_tx_msix_register(bnad, tx_info,
1913 			tx_id, bnad->num_txq_per_tx);
1914 		if (err)
1915 			goto err_return;
1916 	}
1917 
1918 	spin_lock_irqsave(&bnad->bna_lock, flags);
1919 	bna_tx_enable(tx);
1920 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1921 
1922 	return 0;
1923 
1924 err_return:
1925 	bnad_tx_res_free(bnad, res_info);
1926 	return err;
1927 }
1928 
1929 /* Setup the rx config for bna_rx_create */
1930 /* bnad decides the configuration */
1931 static void
1932 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1933 {
1934 	rx_config->rx_type = BNA_RX_T_REGULAR;
1935 	rx_config->num_paths = bnad->num_rxp_per_rx;
1936 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
1937 
1938 	if (bnad->num_rxp_per_rx > 1) {
1939 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
1940 		rx_config->rss_config.hash_type =
1941 				(BFI_ENET_RSS_IPV6 |
1942 				 BFI_ENET_RSS_IPV6_TCP |
1943 				 BFI_ENET_RSS_IPV4 |
1944 				 BFI_ENET_RSS_IPV4_TCP);
1945 		rx_config->rss_config.hash_mask =
1946 				bnad->num_rxp_per_rx - 1;
1947 		get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1948 			sizeof(rx_config->rss_config.toeplitz_hash_key));
1949 	} else {
1950 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
1951 		memset(&rx_config->rss_config, 0,
1952 		       sizeof(rx_config->rss_config));
1953 	}
1954 	rx_config->rxp_type = BNA_RXP_SLR;
1955 	rx_config->q_depth = bnad->rxq_depth;
1956 
1957 	rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1958 
1959 	rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1960 }
1961 
1962 static void
1963 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
1964 {
1965 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1966 	int i;
1967 
1968 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1969 		rx_info->rx_ctrl[i].bnad = bnad;
1970 }
1971 
1972 /* Called with mutex_lock(&bnad->conf_mutex) held */
1973 void
1974 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
1975 {
1976 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1977 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1978 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1979 	unsigned long flags;
1980 	int to_del = 0;
1981 
1982 	if (!rx_info->rx)
1983 		return;
1984 
1985 	if (0 == rx_id) {
1986 		spin_lock_irqsave(&bnad->bna_lock, flags);
1987 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1988 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1989 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1990 			to_del = 1;
1991 		}
1992 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
1993 		if (to_del)
1994 			del_timer_sync(&bnad->dim_timer);
1995 	}
1996 
1997 	init_completion(&bnad->bnad_completions.rx_comp);
1998 	spin_lock_irqsave(&bnad->bna_lock, flags);
1999 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2000 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2001 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2002 
2003 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2004 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2005 
2006 	bnad_napi_delete(bnad, rx_id);
2007 
2008 	spin_lock_irqsave(&bnad->bna_lock, flags);
2009 	bna_rx_destroy(rx_info->rx);
2010 
2011 	rx_info->rx = NULL;
2012 	rx_info->rx_id = 0;
2013 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2014 
2015 	bnad_rx_res_free(bnad, res_info);
2016 }
2017 
2018 /* Called with mutex_lock(&bnad->conf_mutex) held */
2019 int
2020 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2021 {
2022 	int err;
2023 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2024 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2025 	struct bna_intr_info *intr_info =
2026 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2027 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2028 	static const struct bna_rx_event_cbfn rx_cbfn = {
2029 		.rcb_setup_cbfn = NULL,
2030 		.rcb_destroy_cbfn = NULL,
2031 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2032 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2033 		.rx_stall_cbfn = bnad_cb_rx_stall,
2034 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2035 		.rx_post_cbfn = bnad_cb_rx_post,
2036 	};
2037 	struct bna_rx *rx;
2038 	unsigned long flags;
2039 
2040 	rx_info->rx_id = rx_id;
2041 
2042 	/* Initialize the Rx object configuration */
2043 	bnad_init_rx_config(bnad, rx_config);
2044 
2045 	/* Get BNA's resource requirement for one Rx object */
2046 	spin_lock_irqsave(&bnad->bna_lock, flags);
2047 	bna_rx_res_req(rx_config, res_info);
2048 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2049 
2050 	/* Fill Unmap Q memory requirements */
2051 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPQ],
2052 			rx_config->num_paths +
2053 			((rx_config->rxp_type == BNA_RXP_SINGLE) ?
2054 			 0 : rx_config->num_paths),
2055 			((bnad->rxq_depth * sizeof(struct bnad_rx_unmap)) +
2056 			 sizeof(struct bnad_rx_unmap_q)));
2057 
2058 	/* Allocate resource */
2059 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2060 	if (err)
2061 		return err;
2062 
2063 	bnad_rx_ctrl_init(bnad, rx_id);
2064 
2065 	/* Ask BNA to create one Rx object, supplying required resources */
2066 	spin_lock_irqsave(&bnad->bna_lock, flags);
2067 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2068 			rx_info);
2069 	if (!rx) {
2070 		err = -ENOMEM;
2071 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2072 		goto err_return;
2073 	}
2074 	rx_info->rx = rx;
2075 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2076 
2077 	INIT_WORK(&rx_info->rx_cleanup_work,
2078 			(work_func_t)(bnad_rx_cleanup));
2079 
2080 	/*
2081 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2082 	 * so that IRQ handler cannot schedule NAPI at this point.
2083 	 */
2084 	bnad_napi_add(bnad, rx_id);
2085 
2086 	/* Register ISR for the Rx object */
2087 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2088 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2089 						rx_config->num_paths);
2090 		if (err)
2091 			goto err_return;
2092 	}
2093 
2094 	spin_lock_irqsave(&bnad->bna_lock, flags);
2095 	if (0 == rx_id) {
2096 		/* Set up Dynamic Interrupt Moderation Vector */
2097 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2098 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2099 
2100 		/* Enable VLAN filtering only on the default Rx */
2101 		bna_rx_vlanfilter_enable(rx);
2102 
2103 		/* Start the DIM timer */
2104 		bnad_dim_timer_start(bnad);
2105 	}
2106 
2107 	bna_rx_enable(rx);
2108 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2109 
2110 	return 0;
2111 
2112 err_return:
2113 	bnad_destroy_rx(bnad, rx_id);
2114 	return err;
2115 }
2116 
2117 /* Called with conf_lock & bnad->bna_lock held */
2118 void
2119 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2120 {
2121 	struct bnad_tx_info *tx_info;
2122 
2123 	tx_info = &bnad->tx_info[0];
2124 	if (!tx_info->tx)
2125 		return;
2126 
2127 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2128 }
2129 
2130 /* Called with conf_lock & bnad->bna_lock held */
2131 void
2132 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2133 {
2134 	struct bnad_rx_info *rx_info;
2135 	int	i;
2136 
2137 	for (i = 0; i < bnad->num_rx; i++) {
2138 		rx_info = &bnad->rx_info[i];
2139 		if (!rx_info->rx)
2140 			continue;
2141 		bna_rx_coalescing_timeo_set(rx_info->rx,
2142 				bnad->rx_coalescing_timeo);
2143 	}
2144 }
2145 
2146 /*
2147  * Called with bnad->bna_lock held
2148  */
2149 int
2150 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2151 {
2152 	int ret;
2153 
2154 	if (!is_valid_ether_addr(mac_addr))
2155 		return -EADDRNOTAVAIL;
2156 
2157 	/* If datapath is down, pretend everything went through */
2158 	if (!bnad->rx_info[0].rx)
2159 		return 0;
2160 
2161 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2162 	if (ret != BNA_CB_SUCCESS)
2163 		return -EADDRNOTAVAIL;
2164 
2165 	return 0;
2166 }
2167 
2168 /* Should be called with conf_lock held */
2169 int
2170 bnad_enable_default_bcast(struct bnad *bnad)
2171 {
2172 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2173 	int ret;
2174 	unsigned long flags;
2175 
2176 	init_completion(&bnad->bnad_completions.mcast_comp);
2177 
2178 	spin_lock_irqsave(&bnad->bna_lock, flags);
2179 	ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2180 				bnad_cb_rx_mcast_add);
2181 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2182 
2183 	if (ret == BNA_CB_SUCCESS)
2184 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2185 	else
2186 		return -ENODEV;
2187 
2188 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2189 		return -ENODEV;
2190 
2191 	return 0;
2192 }
2193 
2194 /* Called with mutex_lock(&bnad->conf_mutex) held */
2195 void
2196 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2197 {
2198 	u16 vid;
2199 	unsigned long flags;
2200 
2201 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2202 		spin_lock_irqsave(&bnad->bna_lock, flags);
2203 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2204 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2205 	}
2206 }
2207 
2208 /* Statistics utilities */
2209 void
2210 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2211 {
2212 	int i, j;
2213 
2214 	for (i = 0; i < bnad->num_rx; i++) {
2215 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2216 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2217 				stats->rx_packets += bnad->rx_info[i].
2218 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2219 				stats->rx_bytes += bnad->rx_info[i].
2220 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2221 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2222 					bnad->rx_info[i].rx_ctrl[j].ccb->
2223 					rcb[1]->rxq) {
2224 					stats->rx_packets +=
2225 						bnad->rx_info[i].rx_ctrl[j].
2226 						ccb->rcb[1]->rxq->rx_packets;
2227 					stats->rx_bytes +=
2228 						bnad->rx_info[i].rx_ctrl[j].
2229 						ccb->rcb[1]->rxq->rx_bytes;
2230 				}
2231 			}
2232 		}
2233 	}
2234 	for (i = 0; i < bnad->num_tx; i++) {
2235 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2236 			if (bnad->tx_info[i].tcb[j]) {
2237 				stats->tx_packets +=
2238 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2239 				stats->tx_bytes +=
2240 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2241 			}
2242 		}
2243 	}
2244 }
2245 
2246 /*
2247  * Must be called with the bna_lock held.
2248  */
2249 void
2250 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2251 {
2252 	struct bfi_enet_stats_mac *mac_stats;
2253 	u32 bmap;
2254 	int i;
2255 
2256 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2257 	stats->rx_errors =
2258 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2259 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2260 		mac_stats->rx_undersize;
2261 	stats->tx_errors = mac_stats->tx_fcs_error +
2262 					mac_stats->tx_undersize;
2263 	stats->rx_dropped = mac_stats->rx_drop;
2264 	stats->tx_dropped = mac_stats->tx_drop;
2265 	stats->multicast = mac_stats->rx_multicast;
2266 	stats->collisions = mac_stats->tx_total_collision;
2267 
2268 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2269 
2270 	/* receive ring buffer overflow  ?? */
2271 
2272 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2273 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2274 	/* recv'r fifo overrun */
2275 	bmap = bna_rx_rid_mask(&bnad->bna);
2276 	for (i = 0; bmap; i++) {
2277 		if (bmap & 1) {
2278 			stats->rx_fifo_errors +=
2279 				bnad->stats.bna_stats->
2280 					hw_stats.rxf_stats[i].frame_drops;
2281 			break;
2282 		}
2283 		bmap >>= 1;
2284 	}
2285 }
2286 
2287 static void
2288 bnad_mbox_irq_sync(struct bnad *bnad)
2289 {
2290 	u32 irq;
2291 	unsigned long flags;
2292 
2293 	spin_lock_irqsave(&bnad->bna_lock, flags);
2294 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2295 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2296 	else
2297 		irq = bnad->pcidev->irq;
2298 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2299 
2300 	synchronize_irq(irq);
2301 }
2302 
2303 /* Utility used by bnad_start_xmit, for doing TSO */
2304 static int
2305 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2306 {
2307 	int err;
2308 
2309 	if (skb_header_cloned(skb)) {
2310 		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2311 		if (err) {
2312 			BNAD_UPDATE_CTR(bnad, tso_err);
2313 			return err;
2314 		}
2315 	}
2316 
2317 	/*
2318 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2319 	 * excluding the length field.
2320 	 */
2321 	if (skb->protocol == htons(ETH_P_IP)) {
2322 		struct iphdr *iph = ip_hdr(skb);
2323 
2324 		/* Do we really need these? */
2325 		iph->tot_len = 0;
2326 		iph->check = 0;
2327 
2328 		tcp_hdr(skb)->check =
2329 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2330 					   IPPROTO_TCP, 0);
2331 		BNAD_UPDATE_CTR(bnad, tso4);
2332 	} else {
2333 		struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2334 
2335 		ipv6h->payload_len = 0;
2336 		tcp_hdr(skb)->check =
2337 			~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2338 					 IPPROTO_TCP, 0);
2339 		BNAD_UPDATE_CTR(bnad, tso6);
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 /*
2346  * Initialize Q numbers depending on Rx Paths
2347  * Called with bnad->bna_lock held, because of cfg_flags
2348  * access.
2349  */
2350 static void
2351 bnad_q_num_init(struct bnad *bnad)
2352 {
2353 	int rxps;
2354 
2355 	rxps = min((uint)num_online_cpus(),
2356 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2357 
2358 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2359 		rxps = 1;	/* INTx */
2360 
2361 	bnad->num_rx = 1;
2362 	bnad->num_tx = 1;
2363 	bnad->num_rxp_per_rx = rxps;
2364 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2365 }
2366 
2367 /*
2368  * Adjusts the Q numbers, given a number of msix vectors
2369  * Give preference to RSS as opposed to Tx priority Queues,
2370  * in such a case, just use 1 Tx Q
2371  * Called with bnad->bna_lock held b'cos of cfg_flags access
2372  */
2373 static void
2374 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2375 {
2376 	bnad->num_txq_per_tx = 1;
2377 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2378 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2379 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2380 		bnad->num_rxp_per_rx = msix_vectors -
2381 			(bnad->num_tx * bnad->num_txq_per_tx) -
2382 			BNAD_MAILBOX_MSIX_VECTORS;
2383 	} else
2384 		bnad->num_rxp_per_rx = 1;
2385 }
2386 
2387 /* Enable / disable ioceth */
2388 static int
2389 bnad_ioceth_disable(struct bnad *bnad)
2390 {
2391 	unsigned long flags;
2392 	int err = 0;
2393 
2394 	spin_lock_irqsave(&bnad->bna_lock, flags);
2395 	init_completion(&bnad->bnad_completions.ioc_comp);
2396 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2397 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2398 
2399 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2400 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2401 
2402 	err = bnad->bnad_completions.ioc_comp_status;
2403 	return err;
2404 }
2405 
2406 static int
2407 bnad_ioceth_enable(struct bnad *bnad)
2408 {
2409 	int err = 0;
2410 	unsigned long flags;
2411 
2412 	spin_lock_irqsave(&bnad->bna_lock, flags);
2413 	init_completion(&bnad->bnad_completions.ioc_comp);
2414 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2415 	bna_ioceth_enable(&bnad->bna.ioceth);
2416 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2417 
2418 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2419 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2420 
2421 	err = bnad->bnad_completions.ioc_comp_status;
2422 
2423 	return err;
2424 }
2425 
2426 /* Free BNA resources */
2427 static void
2428 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2429 		u32 res_val_max)
2430 {
2431 	int i;
2432 
2433 	for (i = 0; i < res_val_max; i++)
2434 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2435 }
2436 
2437 /* Allocates memory and interrupt resources for BNA */
2438 static int
2439 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2440 		u32 res_val_max)
2441 {
2442 	int i, err;
2443 
2444 	for (i = 0; i < res_val_max; i++) {
2445 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2446 		if (err)
2447 			goto err_return;
2448 	}
2449 	return 0;
2450 
2451 err_return:
2452 	bnad_res_free(bnad, res_info, res_val_max);
2453 	return err;
2454 }
2455 
2456 /* Interrupt enable / disable */
2457 static void
2458 bnad_enable_msix(struct bnad *bnad)
2459 {
2460 	int i, ret;
2461 	unsigned long flags;
2462 
2463 	spin_lock_irqsave(&bnad->bna_lock, flags);
2464 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2465 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2466 		return;
2467 	}
2468 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2469 
2470 	if (bnad->msix_table)
2471 		return;
2472 
2473 	bnad->msix_table =
2474 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2475 
2476 	if (!bnad->msix_table)
2477 		goto intx_mode;
2478 
2479 	for (i = 0; i < bnad->msix_num; i++)
2480 		bnad->msix_table[i].entry = i;
2481 
2482 	ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2483 	if (ret > 0) {
2484 		/* Not enough MSI-X vectors. */
2485 		pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2486 			ret, bnad->msix_num);
2487 
2488 		spin_lock_irqsave(&bnad->bna_lock, flags);
2489 		/* ret = #of vectors that we got */
2490 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2491 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2492 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2493 
2494 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2495 			 BNAD_MAILBOX_MSIX_VECTORS;
2496 
2497 		if (bnad->msix_num > ret)
2498 			goto intx_mode;
2499 
2500 		/* Try once more with adjusted numbers */
2501 		/* If this fails, fall back to INTx */
2502 		ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2503 				      bnad->msix_num);
2504 		if (ret)
2505 			goto intx_mode;
2506 
2507 	} else if (ret < 0)
2508 		goto intx_mode;
2509 
2510 	pci_intx(bnad->pcidev, 0);
2511 
2512 	return;
2513 
2514 intx_mode:
2515 	pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2516 
2517 	kfree(bnad->msix_table);
2518 	bnad->msix_table = NULL;
2519 	bnad->msix_num = 0;
2520 	spin_lock_irqsave(&bnad->bna_lock, flags);
2521 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2522 	bnad_q_num_init(bnad);
2523 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2524 }
2525 
2526 static void
2527 bnad_disable_msix(struct bnad *bnad)
2528 {
2529 	u32 cfg_flags;
2530 	unsigned long flags;
2531 
2532 	spin_lock_irqsave(&bnad->bna_lock, flags);
2533 	cfg_flags = bnad->cfg_flags;
2534 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2535 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2536 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2537 
2538 	if (cfg_flags & BNAD_CF_MSIX) {
2539 		pci_disable_msix(bnad->pcidev);
2540 		kfree(bnad->msix_table);
2541 		bnad->msix_table = NULL;
2542 	}
2543 }
2544 
2545 /* Netdev entry points */
2546 static int
2547 bnad_open(struct net_device *netdev)
2548 {
2549 	int err;
2550 	struct bnad *bnad = netdev_priv(netdev);
2551 	struct bna_pause_config pause_config;
2552 	int mtu;
2553 	unsigned long flags;
2554 
2555 	mutex_lock(&bnad->conf_mutex);
2556 
2557 	/* Tx */
2558 	err = bnad_setup_tx(bnad, 0);
2559 	if (err)
2560 		goto err_return;
2561 
2562 	/* Rx */
2563 	err = bnad_setup_rx(bnad, 0);
2564 	if (err)
2565 		goto cleanup_tx;
2566 
2567 	/* Port */
2568 	pause_config.tx_pause = 0;
2569 	pause_config.rx_pause = 0;
2570 
2571 	mtu = ETH_HLEN + VLAN_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2572 
2573 	spin_lock_irqsave(&bnad->bna_lock, flags);
2574 	bna_enet_mtu_set(&bnad->bna.enet, mtu, NULL);
2575 	bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2576 	bna_enet_enable(&bnad->bna.enet);
2577 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2578 
2579 	/* Enable broadcast */
2580 	bnad_enable_default_bcast(bnad);
2581 
2582 	/* Restore VLANs, if any */
2583 	bnad_restore_vlans(bnad, 0);
2584 
2585 	/* Set the UCAST address */
2586 	spin_lock_irqsave(&bnad->bna_lock, flags);
2587 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2588 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2589 
2590 	/* Start the stats timer */
2591 	bnad_stats_timer_start(bnad);
2592 
2593 	mutex_unlock(&bnad->conf_mutex);
2594 
2595 	return 0;
2596 
2597 cleanup_tx:
2598 	bnad_destroy_tx(bnad, 0);
2599 
2600 err_return:
2601 	mutex_unlock(&bnad->conf_mutex);
2602 	return err;
2603 }
2604 
2605 static int
2606 bnad_stop(struct net_device *netdev)
2607 {
2608 	struct bnad *bnad = netdev_priv(netdev);
2609 	unsigned long flags;
2610 
2611 	mutex_lock(&bnad->conf_mutex);
2612 
2613 	/* Stop the stats timer */
2614 	bnad_stats_timer_stop(bnad);
2615 
2616 	init_completion(&bnad->bnad_completions.enet_comp);
2617 
2618 	spin_lock_irqsave(&bnad->bna_lock, flags);
2619 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2620 			bnad_cb_enet_disabled);
2621 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2622 
2623 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2624 
2625 	bnad_destroy_tx(bnad, 0);
2626 	bnad_destroy_rx(bnad, 0);
2627 
2628 	/* Synchronize mailbox IRQ */
2629 	bnad_mbox_irq_sync(bnad);
2630 
2631 	mutex_unlock(&bnad->conf_mutex);
2632 
2633 	return 0;
2634 }
2635 
2636 /* TX */
2637 /* Returns 0 for success */
2638 static int
2639 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2640 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2641 {
2642 	u16 flags = 0;
2643 	u32 gso_size;
2644 	u16 vlan_tag = 0;
2645 
2646 	if (vlan_tx_tag_present(skb)) {
2647 		vlan_tag = (u16)vlan_tx_tag_get(skb);
2648 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2649 	}
2650 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2651 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2652 				| (vlan_tag & 0x1fff);
2653 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2654 	}
2655 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2656 
2657 	if (skb_is_gso(skb)) {
2658 		gso_size = skb_shinfo(skb)->gso_size;
2659 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2660 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2661 			return -EINVAL;
2662 		}
2663 		if (unlikely((gso_size + skb_transport_offset(skb) +
2664 			      tcp_hdrlen(skb)) >= skb->len)) {
2665 			txqent->hdr.wi.opcode =
2666 				__constant_htons(BNA_TXQ_WI_SEND);
2667 			txqent->hdr.wi.lso_mss = 0;
2668 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2669 		} else {
2670 			txqent->hdr.wi.opcode =
2671 				__constant_htons(BNA_TXQ_WI_SEND_LSO);
2672 			txqent->hdr.wi.lso_mss = htons(gso_size);
2673 		}
2674 
2675 		if (bnad_tso_prepare(bnad, skb)) {
2676 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2677 			return -EINVAL;
2678 		}
2679 
2680 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2681 		txqent->hdr.wi.l4_hdr_size_n_offset =
2682 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2683 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2684 	} else  {
2685 		txqent->hdr.wi.opcode =	__constant_htons(BNA_TXQ_WI_SEND);
2686 		txqent->hdr.wi.lso_mss = 0;
2687 
2688 		if (unlikely(skb->len > (bnad->netdev->mtu + ETH_HLEN))) {
2689 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2690 			return -EINVAL;
2691 		}
2692 
2693 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2694 			u8 proto = 0;
2695 
2696 			if (skb->protocol == __constant_htons(ETH_P_IP))
2697 				proto = ip_hdr(skb)->protocol;
2698 #ifdef NETIF_F_IPV6_CSUM
2699 			else if (skb->protocol ==
2700 				 __constant_htons(ETH_P_IPV6)) {
2701 				/* nexthdr may not be TCP immediately. */
2702 				proto = ipv6_hdr(skb)->nexthdr;
2703 			}
2704 #endif
2705 			if (proto == IPPROTO_TCP) {
2706 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2707 				txqent->hdr.wi.l4_hdr_size_n_offset =
2708 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2709 					      (0, skb_transport_offset(skb)));
2710 
2711 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2712 
2713 				if (unlikely(skb_headlen(skb) <
2714 					    skb_transport_offset(skb) +
2715 				    tcp_hdrlen(skb))) {
2716 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2717 					return -EINVAL;
2718 				}
2719 			} else if (proto == IPPROTO_UDP) {
2720 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2721 				txqent->hdr.wi.l4_hdr_size_n_offset =
2722 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2723 					      (0, skb_transport_offset(skb)));
2724 
2725 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2726 				if (unlikely(skb_headlen(skb) <
2727 					    skb_transport_offset(skb) +
2728 				    sizeof(struct udphdr))) {
2729 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2730 					return -EINVAL;
2731 				}
2732 			} else {
2733 
2734 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2735 				return -EINVAL;
2736 			}
2737 		} else
2738 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2739 	}
2740 
2741 	txqent->hdr.wi.flags = htons(flags);
2742 	txqent->hdr.wi.frame_length = htonl(skb->len);
2743 
2744 	return 0;
2745 }
2746 
2747 /*
2748  * bnad_start_xmit : Netdev entry point for Transmit
2749  *		     Called under lock held by net_device
2750  */
2751 static netdev_tx_t
2752 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2753 {
2754 	struct bnad *bnad = netdev_priv(netdev);
2755 	u32 txq_id = 0;
2756 	struct bna_tcb *tcb = NULL;
2757 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2758 	u32		prod, q_depth, vect_id;
2759 	u32		wis, vectors, len;
2760 	int		i;
2761 	dma_addr_t		dma_addr;
2762 	struct bna_txq_entry *txqent;
2763 
2764 	len = skb_headlen(skb);
2765 
2766 	/* Sanity checks for the skb */
2767 
2768 	if (unlikely(skb->len <= ETH_HLEN)) {
2769 		dev_kfree_skb(skb);
2770 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2771 		return NETDEV_TX_OK;
2772 	}
2773 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2774 		dev_kfree_skb(skb);
2775 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2776 		return NETDEV_TX_OK;
2777 	}
2778 	if (unlikely(len == 0)) {
2779 		dev_kfree_skb(skb);
2780 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2781 		return NETDEV_TX_OK;
2782 	}
2783 
2784 	tcb = bnad->tx_info[0].tcb[txq_id];
2785 	q_depth = tcb->q_depth;
2786 	prod = tcb->producer_index;
2787 
2788 	unmap_q = tcb->unmap_q;
2789 
2790 	/*
2791 	 * Takes care of the Tx that is scheduled between clearing the flag
2792 	 * and the netif_tx_stop_all_queues() call.
2793 	 */
2794 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2795 		dev_kfree_skb(skb);
2796 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2797 		return NETDEV_TX_OK;
2798 	}
2799 
2800 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2801 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2802 
2803 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2804 		dev_kfree_skb(skb);
2805 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2806 		return NETDEV_TX_OK;
2807 	}
2808 
2809 	/* Check for available TxQ resources */
2810 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2811 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2812 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2813 			u32 sent;
2814 			sent = bnad_txcmpl_process(bnad, tcb);
2815 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2816 				bna_ib_ack(tcb->i_dbell, sent);
2817 			smp_mb__before_clear_bit();
2818 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2819 		} else {
2820 			netif_stop_queue(netdev);
2821 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2822 		}
2823 
2824 		smp_mb();
2825 		/*
2826 		 * Check again to deal with race condition between
2827 		 * netif_stop_queue here, and netif_wake_queue in
2828 		 * interrupt handler which is not inside netif tx lock.
2829 		 */
2830 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2831 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2832 			return NETDEV_TX_BUSY;
2833 		} else {
2834 			netif_wake_queue(netdev);
2835 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2836 		}
2837 	}
2838 
2839 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2840 	head_unmap = &unmap_q[prod];
2841 
2842 	/* Program the opcode, flags, frame_len, num_vectors in WI */
2843 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
2844 		dev_kfree_skb(skb);
2845 		return NETDEV_TX_OK;
2846 	}
2847 	txqent->hdr.wi.reserved = 0;
2848 	txqent->hdr.wi.num_vectors = vectors;
2849 
2850 	head_unmap->skb = skb;
2851 	head_unmap->nvecs = 0;
2852 
2853 	/* Program the vectors */
2854 	unmap = head_unmap;
2855 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2856 				  len, DMA_TO_DEVICE);
2857 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
2858 	txqent->vector[0].length = htons(len);
2859 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
2860 	head_unmap->nvecs++;
2861 
2862 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
2863 		const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2864 		u16		size = skb_frag_size(frag);
2865 
2866 		if (unlikely(size == 0)) {
2867 			/* Undo the changes starting at tcb->producer_index */
2868 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
2869 				tcb->producer_index);
2870 			dev_kfree_skb(skb);
2871 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
2872 			return NETDEV_TX_OK;
2873 		}
2874 
2875 		len += size;
2876 
2877 		vect_id++;
2878 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2879 			vect_id = 0;
2880 			BNA_QE_INDX_INC(prod, q_depth);
2881 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
2882 			txqent->hdr.wi_ext.opcode =
2883 				__constant_htons(BNA_TXQ_WI_EXTENSION);
2884 			unmap = &unmap_q[prod];
2885 		}
2886 
2887 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
2888 					    0, size, DMA_TO_DEVICE);
2889 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2890 		txqent->vector[vect_id].length = htons(size);
2891 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
2892 						dma_addr);
2893 		head_unmap->nvecs++;
2894 	}
2895 
2896 	if (unlikely(len != skb->len)) {
2897 		/* Undo the changes starting at tcb->producer_index */
2898 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
2899 		dev_kfree_skb(skb);
2900 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
2901 		return NETDEV_TX_OK;
2902 	}
2903 
2904 	BNA_QE_INDX_INC(prod, q_depth);
2905 	tcb->producer_index = prod;
2906 
2907 	smp_mb();
2908 
2909 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2910 		return NETDEV_TX_OK;
2911 
2912 	bna_txq_prod_indx_doorbell(tcb);
2913 	smp_mb();
2914 
2915 	return NETDEV_TX_OK;
2916 }
2917 
2918 /*
2919  * Used spin_lock to synchronize reading of stats structures, which
2920  * is written by BNA under the same lock.
2921  */
2922 static struct rtnl_link_stats64 *
2923 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2924 {
2925 	struct bnad *bnad = netdev_priv(netdev);
2926 	unsigned long flags;
2927 
2928 	spin_lock_irqsave(&bnad->bna_lock, flags);
2929 
2930 	bnad_netdev_qstats_fill(bnad, stats);
2931 	bnad_netdev_hwstats_fill(bnad, stats);
2932 
2933 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2934 
2935 	return stats;
2936 }
2937 
2938 void
2939 bnad_set_rx_mode(struct net_device *netdev)
2940 {
2941 	struct bnad *bnad = netdev_priv(netdev);
2942 	u32	new_mask, valid_mask;
2943 	unsigned long flags;
2944 
2945 	spin_lock_irqsave(&bnad->bna_lock, flags);
2946 
2947 	new_mask = valid_mask = 0;
2948 
2949 	if (netdev->flags & IFF_PROMISC) {
2950 		if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2951 			new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2952 			valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2953 			bnad->cfg_flags |= BNAD_CF_PROMISC;
2954 		}
2955 	} else {
2956 		if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2957 			new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2958 			valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2959 			bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2960 		}
2961 	}
2962 
2963 	if (netdev->flags & IFF_ALLMULTI) {
2964 		if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2965 			new_mask |= BNA_RXMODE_ALLMULTI;
2966 			valid_mask |= BNA_RXMODE_ALLMULTI;
2967 			bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2968 		}
2969 	} else {
2970 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2971 			new_mask &= ~BNA_RXMODE_ALLMULTI;
2972 			valid_mask |= BNA_RXMODE_ALLMULTI;
2973 			bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2974 		}
2975 	}
2976 
2977 	if (bnad->rx_info[0].rx == NULL)
2978 		goto unlock;
2979 
2980 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2981 
2982 	if (!netdev_mc_empty(netdev)) {
2983 		u8 *mcaddr_list;
2984 		int mc_count = netdev_mc_count(netdev);
2985 
2986 		/* Index 0 holds the broadcast address */
2987 		mcaddr_list =
2988 			kzalloc((mc_count + 1) * ETH_ALEN,
2989 				GFP_ATOMIC);
2990 		if (!mcaddr_list)
2991 			goto unlock;
2992 
2993 		memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2994 
2995 		/* Copy rest of the MC addresses */
2996 		bnad_netdev_mc_list_get(netdev, mcaddr_list);
2997 
2998 		bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2999 					mcaddr_list, NULL);
3000 
3001 		/* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
3002 		kfree(mcaddr_list);
3003 	}
3004 unlock:
3005 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3006 }
3007 
3008 /*
3009  * bna_lock is used to sync writes to netdev->addr
3010  * conf_lock cannot be used since this call may be made
3011  * in a non-blocking context.
3012  */
3013 static int
3014 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
3015 {
3016 	int err;
3017 	struct bnad *bnad = netdev_priv(netdev);
3018 	struct sockaddr *sa = (struct sockaddr *)mac_addr;
3019 	unsigned long flags;
3020 
3021 	spin_lock_irqsave(&bnad->bna_lock, flags);
3022 
3023 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3024 
3025 	if (!err)
3026 		memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
3027 
3028 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3029 
3030 	return err;
3031 }
3032 
3033 static int
3034 bnad_mtu_set(struct bnad *bnad, int mtu)
3035 {
3036 	unsigned long flags;
3037 
3038 	init_completion(&bnad->bnad_completions.mtu_comp);
3039 
3040 	spin_lock_irqsave(&bnad->bna_lock, flags);
3041 	bna_enet_mtu_set(&bnad->bna.enet, mtu, bnad_cb_enet_mtu_set);
3042 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3043 
3044 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3045 
3046 	return bnad->bnad_completions.mtu_comp_status;
3047 }
3048 
3049 static int
3050 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3051 {
3052 	int err, mtu = netdev->mtu;
3053 	struct bnad *bnad = netdev_priv(netdev);
3054 
3055 	if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3056 		return -EINVAL;
3057 
3058 	mutex_lock(&bnad->conf_mutex);
3059 
3060 	netdev->mtu = new_mtu;
3061 
3062 	mtu = ETH_HLEN + VLAN_HLEN + new_mtu + ETH_FCS_LEN;
3063 	err = bnad_mtu_set(bnad, mtu);
3064 	if (err)
3065 		err = -EBUSY;
3066 
3067 	mutex_unlock(&bnad->conf_mutex);
3068 	return err;
3069 }
3070 
3071 static int
3072 bnad_vlan_rx_add_vid(struct net_device *netdev,
3073 				 unsigned short vid)
3074 {
3075 	struct bnad *bnad = netdev_priv(netdev);
3076 	unsigned long flags;
3077 
3078 	if (!bnad->rx_info[0].rx)
3079 		return 0;
3080 
3081 	mutex_lock(&bnad->conf_mutex);
3082 
3083 	spin_lock_irqsave(&bnad->bna_lock, flags);
3084 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3085 	set_bit(vid, bnad->active_vlans);
3086 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3087 
3088 	mutex_unlock(&bnad->conf_mutex);
3089 
3090 	return 0;
3091 }
3092 
3093 static int
3094 bnad_vlan_rx_kill_vid(struct net_device *netdev,
3095 				  unsigned short vid)
3096 {
3097 	struct bnad *bnad = netdev_priv(netdev);
3098 	unsigned long flags;
3099 
3100 	if (!bnad->rx_info[0].rx)
3101 		return 0;
3102 
3103 	mutex_lock(&bnad->conf_mutex);
3104 
3105 	spin_lock_irqsave(&bnad->bna_lock, flags);
3106 	clear_bit(vid, bnad->active_vlans);
3107 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3108 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3109 
3110 	mutex_unlock(&bnad->conf_mutex);
3111 
3112 	return 0;
3113 }
3114 
3115 #ifdef CONFIG_NET_POLL_CONTROLLER
3116 static void
3117 bnad_netpoll(struct net_device *netdev)
3118 {
3119 	struct bnad *bnad = netdev_priv(netdev);
3120 	struct bnad_rx_info *rx_info;
3121 	struct bnad_rx_ctrl *rx_ctrl;
3122 	u32 curr_mask;
3123 	int i, j;
3124 
3125 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3126 		bna_intx_disable(&bnad->bna, curr_mask);
3127 		bnad_isr(bnad->pcidev->irq, netdev);
3128 		bna_intx_enable(&bnad->bna, curr_mask);
3129 	} else {
3130 		/*
3131 		 * Tx processing may happen in sending context, so no need
3132 		 * to explicitly process completions here
3133 		 */
3134 
3135 		/* Rx processing */
3136 		for (i = 0; i < bnad->num_rx; i++) {
3137 			rx_info = &bnad->rx_info[i];
3138 			if (!rx_info->rx)
3139 				continue;
3140 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3141 				rx_ctrl = &rx_info->rx_ctrl[j];
3142 				if (rx_ctrl->ccb)
3143 					bnad_netif_rx_schedule_poll(bnad,
3144 							    rx_ctrl->ccb);
3145 			}
3146 		}
3147 	}
3148 }
3149 #endif
3150 
3151 static const struct net_device_ops bnad_netdev_ops = {
3152 	.ndo_open		= bnad_open,
3153 	.ndo_stop		= bnad_stop,
3154 	.ndo_start_xmit		= bnad_start_xmit,
3155 	.ndo_get_stats64		= bnad_get_stats64,
3156 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3157 	.ndo_validate_addr      = eth_validate_addr,
3158 	.ndo_set_mac_address    = bnad_set_mac_address,
3159 	.ndo_change_mtu		= bnad_change_mtu,
3160 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3161 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3162 #ifdef CONFIG_NET_POLL_CONTROLLER
3163 	.ndo_poll_controller    = bnad_netpoll
3164 #endif
3165 };
3166 
3167 static void
3168 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3169 {
3170 	struct net_device *netdev = bnad->netdev;
3171 
3172 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3173 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3174 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_TX;
3175 
3176 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3177 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3178 		NETIF_F_TSO | NETIF_F_TSO6;
3179 
3180 	netdev->features |= netdev->hw_features |
3181 		NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
3182 
3183 	if (using_dac)
3184 		netdev->features |= NETIF_F_HIGHDMA;
3185 
3186 	netdev->mem_start = bnad->mmio_start;
3187 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3188 
3189 	netdev->netdev_ops = &bnad_netdev_ops;
3190 	bnad_set_ethtool_ops(netdev);
3191 }
3192 
3193 /*
3194  * 1. Initialize the bnad structure
3195  * 2. Setup netdev pointer in pci_dev
3196  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3197  * 4. Initialize work queue.
3198  */
3199 static int
3200 bnad_init(struct bnad *bnad,
3201 	  struct pci_dev *pdev, struct net_device *netdev)
3202 {
3203 	unsigned long flags;
3204 
3205 	SET_NETDEV_DEV(netdev, &pdev->dev);
3206 	pci_set_drvdata(pdev, netdev);
3207 
3208 	bnad->netdev = netdev;
3209 	bnad->pcidev = pdev;
3210 	bnad->mmio_start = pci_resource_start(pdev, 0);
3211 	bnad->mmio_len = pci_resource_len(pdev, 0);
3212 	bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3213 	if (!bnad->bar0) {
3214 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3215 		pci_set_drvdata(pdev, NULL);
3216 		return -ENOMEM;
3217 	}
3218 	pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3219 	       (unsigned long long) bnad->mmio_len);
3220 
3221 	spin_lock_irqsave(&bnad->bna_lock, flags);
3222 	if (!bnad_msix_disable)
3223 		bnad->cfg_flags = BNAD_CF_MSIX;
3224 
3225 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3226 
3227 	bnad_q_num_init(bnad);
3228 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3229 
3230 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3231 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3232 			 BNAD_MAILBOX_MSIX_VECTORS;
3233 
3234 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3235 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3236 
3237 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3238 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3239 
3240 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3241 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3242 
3243 	if (!bnad->work_q)
3244 		return -ENOMEM;
3245 
3246 	return 0;
3247 }
3248 
3249 /*
3250  * Must be called after bnad_pci_uninit()
3251  * so that iounmap() and pci_set_drvdata(NULL)
3252  * happens only after PCI uninitialization.
3253  */
3254 static void
3255 bnad_uninit(struct bnad *bnad)
3256 {
3257 	if (bnad->work_q) {
3258 		flush_workqueue(bnad->work_q);
3259 		destroy_workqueue(bnad->work_q);
3260 		bnad->work_q = NULL;
3261 	}
3262 
3263 	if (bnad->bar0)
3264 		iounmap(bnad->bar0);
3265 	pci_set_drvdata(bnad->pcidev, NULL);
3266 }
3267 
3268 /*
3269  * Initialize locks
3270 	a) Per ioceth mutes used for serializing configuration
3271 	   changes from OS interface
3272 	b) spin lock used to protect bna state machine
3273  */
3274 static void
3275 bnad_lock_init(struct bnad *bnad)
3276 {
3277 	spin_lock_init(&bnad->bna_lock);
3278 	mutex_init(&bnad->conf_mutex);
3279 	mutex_init(&bnad_list_mutex);
3280 }
3281 
3282 static void
3283 bnad_lock_uninit(struct bnad *bnad)
3284 {
3285 	mutex_destroy(&bnad->conf_mutex);
3286 	mutex_destroy(&bnad_list_mutex);
3287 }
3288 
3289 /* PCI Initialization */
3290 static int
3291 bnad_pci_init(struct bnad *bnad,
3292 	      struct pci_dev *pdev, bool *using_dac)
3293 {
3294 	int err;
3295 
3296 	err = pci_enable_device(pdev);
3297 	if (err)
3298 		return err;
3299 	err = pci_request_regions(pdev, BNAD_NAME);
3300 	if (err)
3301 		goto disable_device;
3302 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3303 	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3304 		*using_dac = true;
3305 	} else {
3306 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3307 		if (err) {
3308 			err = dma_set_coherent_mask(&pdev->dev,
3309 						    DMA_BIT_MASK(32));
3310 			if (err)
3311 				goto release_regions;
3312 		}
3313 		*using_dac = false;
3314 	}
3315 	pci_set_master(pdev);
3316 	return 0;
3317 
3318 release_regions:
3319 	pci_release_regions(pdev);
3320 disable_device:
3321 	pci_disable_device(pdev);
3322 
3323 	return err;
3324 }
3325 
3326 static void
3327 bnad_pci_uninit(struct pci_dev *pdev)
3328 {
3329 	pci_release_regions(pdev);
3330 	pci_disable_device(pdev);
3331 }
3332 
3333 static int
3334 bnad_pci_probe(struct pci_dev *pdev,
3335 		const struct pci_device_id *pcidev_id)
3336 {
3337 	bool	using_dac;
3338 	int	err;
3339 	struct bnad *bnad;
3340 	struct bna *bna;
3341 	struct net_device *netdev;
3342 	struct bfa_pcidev pcidev_info;
3343 	unsigned long flags;
3344 
3345 	pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3346 	       pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3347 
3348 	mutex_lock(&bnad_fwimg_mutex);
3349 	if (!cna_get_firmware_buf(pdev)) {
3350 		mutex_unlock(&bnad_fwimg_mutex);
3351 		pr_warn("Failed to load Firmware Image!\n");
3352 		return -ENODEV;
3353 	}
3354 	mutex_unlock(&bnad_fwimg_mutex);
3355 
3356 	/*
3357 	 * Allocates sizeof(struct net_device + struct bnad)
3358 	 * bnad = netdev->priv
3359 	 */
3360 	netdev = alloc_etherdev(sizeof(struct bnad));
3361 	if (!netdev) {
3362 		err = -ENOMEM;
3363 		return err;
3364 	}
3365 	bnad = netdev_priv(netdev);
3366 	bnad_lock_init(bnad);
3367 	bnad_add_to_list(bnad);
3368 
3369 	mutex_lock(&bnad->conf_mutex);
3370 	/*
3371 	 * PCI initialization
3372 	 *	Output : using_dac = 1 for 64 bit DMA
3373 	 *			   = 0 for 32 bit DMA
3374 	 */
3375 	using_dac = false;
3376 	err = bnad_pci_init(bnad, pdev, &using_dac);
3377 	if (err)
3378 		goto unlock_mutex;
3379 
3380 	/*
3381 	 * Initialize bnad structure
3382 	 * Setup relation between pci_dev & netdev
3383 	 */
3384 	err = bnad_init(bnad, pdev, netdev);
3385 	if (err)
3386 		goto pci_uninit;
3387 
3388 	/* Initialize netdev structure, set up ethtool ops */
3389 	bnad_netdev_init(bnad, using_dac);
3390 
3391 	/* Set link to down state */
3392 	netif_carrier_off(netdev);
3393 
3394 	/* Setup the debugfs node for this bfad */
3395 	if (bna_debugfs_enable)
3396 		bnad_debugfs_init(bnad);
3397 
3398 	/* Get resource requirement form bna */
3399 	spin_lock_irqsave(&bnad->bna_lock, flags);
3400 	bna_res_req(&bnad->res_info[0]);
3401 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3402 
3403 	/* Allocate resources from bna */
3404 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3405 	if (err)
3406 		goto drv_uninit;
3407 
3408 	bna = &bnad->bna;
3409 
3410 	/* Setup pcidev_info for bna_init() */
3411 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3412 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3413 	pcidev_info.device_id = bnad->pcidev->device;
3414 	pcidev_info.pci_bar_kva = bnad->bar0;
3415 
3416 	spin_lock_irqsave(&bnad->bna_lock, flags);
3417 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3418 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3419 
3420 	bnad->stats.bna_stats = &bna->stats;
3421 
3422 	bnad_enable_msix(bnad);
3423 	err = bnad_mbox_irq_alloc(bnad);
3424 	if (err)
3425 		goto res_free;
3426 
3427 	/* Set up timers */
3428 	setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3429 				((unsigned long)bnad));
3430 	setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3431 				((unsigned long)bnad));
3432 	setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3433 				((unsigned long)bnad));
3434 	setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3435 				((unsigned long)bnad));
3436 
3437 	/* Now start the timer before calling IOC */
3438 	mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3439 		  jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3440 
3441 	/*
3442 	 * Start the chip
3443 	 * If the call back comes with error, we bail out.
3444 	 * This is a catastrophic error.
3445 	 */
3446 	err = bnad_ioceth_enable(bnad);
3447 	if (err) {
3448 		pr_err("BNA: Initialization failed err=%d\n",
3449 		       err);
3450 		goto probe_success;
3451 	}
3452 
3453 	spin_lock_irqsave(&bnad->bna_lock, flags);
3454 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3455 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3456 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3457 			bna_attr(bna)->num_rxp - 1);
3458 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3459 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3460 			err = -EIO;
3461 	}
3462 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3463 	if (err)
3464 		goto disable_ioceth;
3465 
3466 	spin_lock_irqsave(&bnad->bna_lock, flags);
3467 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3468 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3469 
3470 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3471 	if (err) {
3472 		err = -EIO;
3473 		goto disable_ioceth;
3474 	}
3475 
3476 	spin_lock_irqsave(&bnad->bna_lock, flags);
3477 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3478 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3479 
3480 	/* Get the burnt-in mac */
3481 	spin_lock_irqsave(&bnad->bna_lock, flags);
3482 	bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3483 	bnad_set_netdev_perm_addr(bnad);
3484 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3485 
3486 	mutex_unlock(&bnad->conf_mutex);
3487 
3488 	/* Finally, reguister with net_device layer */
3489 	err = register_netdev(netdev);
3490 	if (err) {
3491 		pr_err("BNA : Registering with netdev failed\n");
3492 		goto probe_uninit;
3493 	}
3494 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3495 
3496 	return 0;
3497 
3498 probe_success:
3499 	mutex_unlock(&bnad->conf_mutex);
3500 	return 0;
3501 
3502 probe_uninit:
3503 	mutex_lock(&bnad->conf_mutex);
3504 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3505 disable_ioceth:
3506 	bnad_ioceth_disable(bnad);
3507 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3508 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3509 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3510 	spin_lock_irqsave(&bnad->bna_lock, flags);
3511 	bna_uninit(bna);
3512 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3513 	bnad_mbox_irq_free(bnad);
3514 	bnad_disable_msix(bnad);
3515 res_free:
3516 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3517 drv_uninit:
3518 	/* Remove the debugfs node for this bnad */
3519 	kfree(bnad->regdata);
3520 	bnad_debugfs_uninit(bnad);
3521 	bnad_uninit(bnad);
3522 pci_uninit:
3523 	bnad_pci_uninit(pdev);
3524 unlock_mutex:
3525 	mutex_unlock(&bnad->conf_mutex);
3526 	bnad_remove_from_list(bnad);
3527 	bnad_lock_uninit(bnad);
3528 	free_netdev(netdev);
3529 	return err;
3530 }
3531 
3532 static void
3533 bnad_pci_remove(struct pci_dev *pdev)
3534 {
3535 	struct net_device *netdev = pci_get_drvdata(pdev);
3536 	struct bnad *bnad;
3537 	struct bna *bna;
3538 	unsigned long flags;
3539 
3540 	if (!netdev)
3541 		return;
3542 
3543 	pr_info("%s bnad_pci_remove\n", netdev->name);
3544 	bnad = netdev_priv(netdev);
3545 	bna = &bnad->bna;
3546 
3547 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3548 		unregister_netdev(netdev);
3549 
3550 	mutex_lock(&bnad->conf_mutex);
3551 	bnad_ioceth_disable(bnad);
3552 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3553 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3554 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3555 	spin_lock_irqsave(&bnad->bna_lock, flags);
3556 	bna_uninit(bna);
3557 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3558 
3559 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3560 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3561 	bnad_mbox_irq_free(bnad);
3562 	bnad_disable_msix(bnad);
3563 	bnad_pci_uninit(pdev);
3564 	mutex_unlock(&bnad->conf_mutex);
3565 	bnad_remove_from_list(bnad);
3566 	bnad_lock_uninit(bnad);
3567 	/* Remove the debugfs node for this bnad */
3568 	kfree(bnad->regdata);
3569 	bnad_debugfs_uninit(bnad);
3570 	bnad_uninit(bnad);
3571 	free_netdev(netdev);
3572 }
3573 
3574 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
3575 	{
3576 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3577 			PCI_DEVICE_ID_BROCADE_CT),
3578 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3579 		.class_mask =  0xffff00
3580 	},
3581 	{
3582 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3583 			BFA_PCI_DEVICE_ID_CT2),
3584 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3585 		.class_mask =  0xffff00
3586 	},
3587 	{0,  },
3588 };
3589 
3590 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3591 
3592 static struct pci_driver bnad_pci_driver = {
3593 	.name = BNAD_NAME,
3594 	.id_table = bnad_pci_id_table,
3595 	.probe = bnad_pci_probe,
3596 	.remove = bnad_pci_remove,
3597 };
3598 
3599 static int __init
3600 bnad_module_init(void)
3601 {
3602 	int err;
3603 
3604 	pr_info("Brocade 10G Ethernet driver - version: %s\n",
3605 			BNAD_VERSION);
3606 
3607 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3608 
3609 	err = pci_register_driver(&bnad_pci_driver);
3610 	if (err < 0) {
3611 		pr_err("bna : PCI registration failed in module init "
3612 		       "(%d)\n", err);
3613 		return err;
3614 	}
3615 
3616 	return 0;
3617 }
3618 
3619 static void __exit
3620 bnad_module_exit(void)
3621 {
3622 	pci_unregister_driver(&bnad_pci_driver);
3623 	release_firmware(bfi_fw);
3624 }
3625 
3626 module_init(bnad_module_init);
3627 module_exit(bnad_module_exit);
3628 
3629 MODULE_AUTHOR("Brocade");
3630 MODULE_LICENSE("GPL");
3631 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3632 MODULE_VERSION(BNAD_VERSION);
3633 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3634 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3635