xref: /linux/drivers/net/ethernet/brocade/bna/bnad.c (revision b77e0ce62d63a761ffb7f7245a215a49f5921c2f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Linux network driver for QLogic BR-series Converged Network Adapter.
4  */
5 /*
6  * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
7  * Copyright (c) 2014-2015 QLogic Corporation
8  * All rights reserved
9  * www.qlogic.com
10  */
11 #include <linux/bitops.h>
12 #include <linux/netdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/etherdevice.h>
15 #include <linux/in.h>
16 #include <linux/ethtool.h>
17 #include <linux/if_vlan.h>
18 #include <linux/if_ether.h>
19 #include <linux/ip.h>
20 #include <linux/prefetch.h>
21 #include <linux/module.h>
22 
23 #include "bnad.h"
24 #include "bna.h"
25 #include "cna.h"
26 
27 static DEFINE_MUTEX(bnad_fwimg_mutex);
28 
29 /*
30  * Module params
31  */
32 static uint bnad_msix_disable;
33 module_param(bnad_msix_disable, uint, 0444);
34 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
35 
36 static uint bnad_ioc_auto_recover = 1;
37 module_param(bnad_ioc_auto_recover, uint, 0444);
38 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
39 
40 static uint bna_debugfs_enable = 1;
41 module_param(bna_debugfs_enable, uint, 0644);
42 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
43 		 " Range[false:0|true:1]");
44 
45 /*
46  * Global variables
47  */
48 static u32 bnad_rxqs_per_cq = 2;
49 static atomic_t bna_id;
50 static const u8 bnad_bcast_addr[] __aligned(2) =
51 	{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
52 
53 /*
54  * Local MACROS
55  */
56 #define BNAD_GET_MBOX_IRQ(_bnad)				\
57 	(((_bnad)->cfg_flags & BNAD_CF_MSIX) ?			\
58 	 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
59 	 ((_bnad)->pcidev->irq))
60 
61 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size)	\
62 do {								\
63 	(_res_info)->res_type = BNA_RES_T_MEM;			\
64 	(_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA;	\
65 	(_res_info)->res_u.mem_info.num = (_num);		\
66 	(_res_info)->res_u.mem_info.len = (_size);		\
67 } while (0)
68 
69 /*
70  * Reinitialize completions in CQ, once Rx is taken down
71  */
72 static void
73 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
74 {
75 	struct bna_cq_entry *cmpl;
76 	int i;
77 
78 	for (i = 0; i < ccb->q_depth; i++) {
79 		cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
80 		cmpl->valid = 0;
81 	}
82 }
83 
84 /* Tx Datapath functions */
85 
86 
87 /* Caller should ensure that the entry at unmap_q[index] is valid */
88 static u32
89 bnad_tx_buff_unmap(struct bnad *bnad,
90 			      struct bnad_tx_unmap *unmap_q,
91 			      u32 q_depth, u32 index)
92 {
93 	struct bnad_tx_unmap *unmap;
94 	struct sk_buff *skb;
95 	int vector, nvecs;
96 
97 	unmap = &unmap_q[index];
98 	nvecs = unmap->nvecs;
99 
100 	skb = unmap->skb;
101 	unmap->skb = NULL;
102 	unmap->nvecs = 0;
103 	dma_unmap_single(&bnad->pcidev->dev,
104 		dma_unmap_addr(&unmap->vectors[0], dma_addr),
105 		skb_headlen(skb), DMA_TO_DEVICE);
106 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
107 	nvecs--;
108 
109 	vector = 0;
110 	while (nvecs) {
111 		vector++;
112 		if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
113 			vector = 0;
114 			BNA_QE_INDX_INC(index, q_depth);
115 			unmap = &unmap_q[index];
116 		}
117 
118 		dma_unmap_page(&bnad->pcidev->dev,
119 			dma_unmap_addr(&unmap->vectors[vector], dma_addr),
120 			dma_unmap_len(&unmap->vectors[vector], dma_len),
121 			DMA_TO_DEVICE);
122 		dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
123 		nvecs--;
124 	}
125 
126 	BNA_QE_INDX_INC(index, q_depth);
127 
128 	return index;
129 }
130 
131 /*
132  * Frees all pending Tx Bufs
133  * At this point no activity is expected on the Q,
134  * so DMA unmap & freeing is fine.
135  */
136 static void
137 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
138 {
139 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
140 	struct sk_buff *skb;
141 	int i;
142 
143 	for (i = 0; i < tcb->q_depth; i++) {
144 		skb = unmap_q[i].skb;
145 		if (!skb)
146 			continue;
147 		bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
148 
149 		dev_kfree_skb_any(skb);
150 	}
151 }
152 
153 /*
154  * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
155  * Can be called in a) Interrupt context
156  *		    b) Sending context
157  */
158 static u32
159 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
160 {
161 	u32 sent_packets = 0, sent_bytes = 0;
162 	u32 wis, unmap_wis, hw_cons, cons, q_depth;
163 	struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
164 	struct bnad_tx_unmap *unmap;
165 	struct sk_buff *skb;
166 
167 	/* Just return if TX is stopped */
168 	if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
169 		return 0;
170 
171 	hw_cons = *(tcb->hw_consumer_index);
172 	rmb();
173 	cons = tcb->consumer_index;
174 	q_depth = tcb->q_depth;
175 
176 	wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
177 	BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
178 
179 	while (wis) {
180 		unmap = &unmap_q[cons];
181 
182 		skb = unmap->skb;
183 
184 		sent_packets++;
185 		sent_bytes += skb->len;
186 
187 		unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
188 		wis -= unmap_wis;
189 
190 		cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
191 		dev_kfree_skb_any(skb);
192 	}
193 
194 	/* Update consumer pointers. */
195 	tcb->consumer_index = hw_cons;
196 
197 	tcb->txq->tx_packets += sent_packets;
198 	tcb->txq->tx_bytes += sent_bytes;
199 
200 	return sent_packets;
201 }
202 
203 static u32
204 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
205 {
206 	struct net_device *netdev = bnad->netdev;
207 	u32 sent = 0;
208 
209 	if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
210 		return 0;
211 
212 	sent = bnad_txcmpl_process(bnad, tcb);
213 	if (sent) {
214 		if (netif_queue_stopped(netdev) &&
215 		    netif_carrier_ok(netdev) &&
216 		    BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
217 				    BNAD_NETIF_WAKE_THRESHOLD) {
218 			if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
219 				netif_wake_queue(netdev);
220 				BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
221 			}
222 		}
223 	}
224 
225 	if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
226 		bna_ib_ack(tcb->i_dbell, sent);
227 
228 	smp_mb__before_atomic();
229 	clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
230 
231 	return sent;
232 }
233 
234 /* MSIX Tx Completion Handler */
235 static irqreturn_t
236 bnad_msix_tx(int irq, void *data)
237 {
238 	struct bna_tcb *tcb = (struct bna_tcb *)data;
239 	struct bnad *bnad = tcb->bnad;
240 
241 	bnad_tx_complete(bnad, tcb);
242 
243 	return IRQ_HANDLED;
244 }
245 
246 static inline void
247 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
248 {
249 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
250 
251 	unmap_q->reuse_pi = -1;
252 	unmap_q->alloc_order = -1;
253 	unmap_q->map_size = 0;
254 	unmap_q->type = BNAD_RXBUF_NONE;
255 }
256 
257 /* Default is page-based allocation. Multi-buffer support - TBD */
258 static int
259 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
260 {
261 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
262 	int order;
263 
264 	bnad_rxq_alloc_uninit(bnad, rcb);
265 
266 	order = get_order(rcb->rxq->buffer_size);
267 
268 	unmap_q->type = BNAD_RXBUF_PAGE;
269 
270 	if (bna_is_small_rxq(rcb->id)) {
271 		unmap_q->alloc_order = 0;
272 		unmap_q->map_size = rcb->rxq->buffer_size;
273 	} else {
274 		if (rcb->rxq->multi_buffer) {
275 			unmap_q->alloc_order = 0;
276 			unmap_q->map_size = rcb->rxq->buffer_size;
277 			unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
278 		} else {
279 			unmap_q->alloc_order = order;
280 			unmap_q->map_size =
281 				(rcb->rxq->buffer_size > 2048) ?
282 				PAGE_SIZE << order : 2048;
283 		}
284 	}
285 
286 	BUG_ON((PAGE_SIZE << order) % unmap_q->map_size);
287 
288 	return 0;
289 }
290 
291 static inline void
292 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
293 {
294 	if (!unmap->page)
295 		return;
296 
297 	dma_unmap_page(&bnad->pcidev->dev,
298 			dma_unmap_addr(&unmap->vector, dma_addr),
299 			unmap->vector.len, DMA_FROM_DEVICE);
300 	put_page(unmap->page);
301 	unmap->page = NULL;
302 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
303 	unmap->vector.len = 0;
304 }
305 
306 static inline void
307 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
308 {
309 	if (!unmap->skb)
310 		return;
311 
312 	dma_unmap_single(&bnad->pcidev->dev,
313 			dma_unmap_addr(&unmap->vector, dma_addr),
314 			unmap->vector.len, DMA_FROM_DEVICE);
315 	dev_kfree_skb_any(unmap->skb);
316 	unmap->skb = NULL;
317 	dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
318 	unmap->vector.len = 0;
319 }
320 
321 static void
322 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
323 {
324 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
325 	int i;
326 
327 	for (i = 0; i < rcb->q_depth; i++) {
328 		struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
329 
330 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
331 			bnad_rxq_cleanup_skb(bnad, unmap);
332 		else
333 			bnad_rxq_cleanup_page(bnad, unmap);
334 	}
335 	bnad_rxq_alloc_uninit(bnad, rcb);
336 }
337 
338 static u32
339 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
340 {
341 	u32 alloced, prod, q_depth;
342 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
343 	struct bnad_rx_unmap *unmap, *prev;
344 	struct bna_rxq_entry *rxent;
345 	struct page *page;
346 	u32 page_offset, alloc_size;
347 	dma_addr_t dma_addr;
348 
349 	prod = rcb->producer_index;
350 	q_depth = rcb->q_depth;
351 
352 	alloc_size = PAGE_SIZE << unmap_q->alloc_order;
353 	alloced = 0;
354 
355 	while (nalloc--) {
356 		unmap = &unmap_q->unmap[prod];
357 
358 		if (unmap_q->reuse_pi < 0) {
359 			page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
360 					unmap_q->alloc_order);
361 			page_offset = 0;
362 		} else {
363 			prev = &unmap_q->unmap[unmap_q->reuse_pi];
364 			page = prev->page;
365 			page_offset = prev->page_offset + unmap_q->map_size;
366 			get_page(page);
367 		}
368 
369 		if (unlikely(!page)) {
370 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
371 			rcb->rxq->rxbuf_alloc_failed++;
372 			goto finishing;
373 		}
374 
375 		dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
376 					unmap_q->map_size, DMA_FROM_DEVICE);
377 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
378 			put_page(page);
379 			BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
380 			rcb->rxq->rxbuf_map_failed++;
381 			goto finishing;
382 		}
383 
384 		unmap->page = page;
385 		unmap->page_offset = page_offset;
386 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
387 		unmap->vector.len = unmap_q->map_size;
388 		page_offset += unmap_q->map_size;
389 
390 		if (page_offset < alloc_size)
391 			unmap_q->reuse_pi = prod;
392 		else
393 			unmap_q->reuse_pi = -1;
394 
395 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
396 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
397 		BNA_QE_INDX_INC(prod, q_depth);
398 		alloced++;
399 	}
400 
401 finishing:
402 	if (likely(alloced)) {
403 		rcb->producer_index = prod;
404 		smp_mb();
405 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
406 			bna_rxq_prod_indx_doorbell(rcb);
407 	}
408 
409 	return alloced;
410 }
411 
412 static u32
413 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
414 {
415 	u32 alloced, prod, q_depth, buff_sz;
416 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
417 	struct bnad_rx_unmap *unmap;
418 	struct bna_rxq_entry *rxent;
419 	struct sk_buff *skb;
420 	dma_addr_t dma_addr;
421 
422 	buff_sz = rcb->rxq->buffer_size;
423 	prod = rcb->producer_index;
424 	q_depth = rcb->q_depth;
425 
426 	alloced = 0;
427 	while (nalloc--) {
428 		unmap = &unmap_q->unmap[prod];
429 
430 		skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
431 
432 		if (unlikely(!skb)) {
433 			BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
434 			rcb->rxq->rxbuf_alloc_failed++;
435 			goto finishing;
436 		}
437 
438 		dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
439 					  buff_sz, DMA_FROM_DEVICE);
440 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
441 			dev_kfree_skb_any(skb);
442 			BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
443 			rcb->rxq->rxbuf_map_failed++;
444 			goto finishing;
445 		}
446 
447 		unmap->skb = skb;
448 		dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
449 		unmap->vector.len = buff_sz;
450 
451 		rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
452 		BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
453 		BNA_QE_INDX_INC(prod, q_depth);
454 		alloced++;
455 	}
456 
457 finishing:
458 	if (likely(alloced)) {
459 		rcb->producer_index = prod;
460 		smp_mb();
461 		if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
462 			bna_rxq_prod_indx_doorbell(rcb);
463 	}
464 
465 	return alloced;
466 }
467 
468 static inline void
469 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
470 {
471 	struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
472 	u32 to_alloc;
473 
474 	to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
475 	if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
476 		return;
477 
478 	if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
479 		bnad_rxq_refill_skb(bnad, rcb, to_alloc);
480 	else
481 		bnad_rxq_refill_page(bnad, rcb, to_alloc);
482 }
483 
484 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
485 					BNA_CQ_EF_IPV6 | \
486 					BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
487 					BNA_CQ_EF_L4_CKSUM_OK)
488 
489 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
490 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
491 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
492 				BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
493 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
494 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
495 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
496 				BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
497 
498 static void
499 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
500 		    u32 sop_ci, u32 nvecs)
501 {
502 	struct bnad_rx_unmap_q *unmap_q;
503 	struct bnad_rx_unmap *unmap;
504 	u32 ci, vec;
505 
506 	unmap_q = rcb->unmap_q;
507 	for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
508 		unmap = &unmap_q->unmap[ci];
509 		BNA_QE_INDX_INC(ci, rcb->q_depth);
510 
511 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
512 			bnad_rxq_cleanup_skb(bnad, unmap);
513 		else
514 			bnad_rxq_cleanup_page(bnad, unmap);
515 	}
516 }
517 
518 static void
519 bnad_cq_setup_skb_frags(struct bna_ccb *ccb, struct sk_buff *skb, u32 nvecs)
520 {
521 	struct bna_rcb *rcb;
522 	struct bnad *bnad;
523 	struct bnad_rx_unmap_q *unmap_q;
524 	struct bna_cq_entry *cq, *cmpl;
525 	u32 ci, pi, totlen = 0;
526 
527 	cq = ccb->sw_q;
528 	pi = ccb->producer_index;
529 	cmpl = &cq[pi];
530 
531 	rcb = bna_is_small_rxq(cmpl->rxq_id) ? ccb->rcb[1] : ccb->rcb[0];
532 	unmap_q = rcb->unmap_q;
533 	bnad = rcb->bnad;
534 	ci = rcb->consumer_index;
535 
536 	/* prefetch header */
537 	prefetch(page_address(unmap_q->unmap[ci].page) +
538 		 unmap_q->unmap[ci].page_offset);
539 
540 	while (nvecs--) {
541 		struct bnad_rx_unmap *unmap;
542 		u32 len;
543 
544 		unmap = &unmap_q->unmap[ci];
545 		BNA_QE_INDX_INC(ci, rcb->q_depth);
546 
547 		dma_unmap_page(&bnad->pcidev->dev,
548 			       dma_unmap_addr(&unmap->vector, dma_addr),
549 			       unmap->vector.len, DMA_FROM_DEVICE);
550 
551 		len = ntohs(cmpl->length);
552 		skb->truesize += unmap->vector.len;
553 		totlen += len;
554 
555 		skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
556 				   unmap->page, unmap->page_offset, len);
557 
558 		unmap->page = NULL;
559 		unmap->vector.len = 0;
560 
561 		BNA_QE_INDX_INC(pi, ccb->q_depth);
562 		cmpl = &cq[pi];
563 	}
564 
565 	skb->len += totlen;
566 	skb->data_len += totlen;
567 }
568 
569 static inline void
570 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
571 		  struct bnad_rx_unmap *unmap, u32 len)
572 {
573 	prefetch(skb->data);
574 
575 	dma_unmap_single(&bnad->pcidev->dev,
576 			dma_unmap_addr(&unmap->vector, dma_addr),
577 			unmap->vector.len, DMA_FROM_DEVICE);
578 
579 	skb_put(skb, len);
580 	skb->protocol = eth_type_trans(skb, bnad->netdev);
581 
582 	unmap->skb = NULL;
583 	unmap->vector.len = 0;
584 }
585 
586 static u32
587 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
588 {
589 	struct bna_cq_entry *cq, *cmpl, *next_cmpl;
590 	struct bna_rcb *rcb = NULL;
591 	struct bnad_rx_unmap_q *unmap_q;
592 	struct bnad_rx_unmap *unmap = NULL;
593 	struct sk_buff *skb = NULL;
594 	struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
595 	struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
596 	u32 packets = 0, len = 0, totlen = 0;
597 	u32 pi, vec, sop_ci = 0, nvecs = 0;
598 	u32 flags, masked_flags;
599 
600 	prefetch(bnad->netdev);
601 
602 	cq = ccb->sw_q;
603 
604 	while (packets < budget) {
605 		cmpl = &cq[ccb->producer_index];
606 		if (!cmpl->valid)
607 			break;
608 		/* The 'valid' field is set by the adapter, only after writing
609 		 * the other fields of completion entry. Hence, do not load
610 		 * other fields of completion entry *before* the 'valid' is
611 		 * loaded. Adding the rmb() here prevents the compiler and/or
612 		 * CPU from reordering the reads which would potentially result
613 		 * in reading stale values in completion entry.
614 		 */
615 		rmb();
616 
617 		BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
618 
619 		if (bna_is_small_rxq(cmpl->rxq_id))
620 			rcb = ccb->rcb[1];
621 		else
622 			rcb = ccb->rcb[0];
623 
624 		unmap_q = rcb->unmap_q;
625 
626 		/* start of packet ci */
627 		sop_ci = rcb->consumer_index;
628 
629 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
630 			unmap = &unmap_q->unmap[sop_ci];
631 			skb = unmap->skb;
632 		} else {
633 			skb = napi_get_frags(&rx_ctrl->napi);
634 			if (unlikely(!skb))
635 				break;
636 		}
637 		prefetch(skb);
638 
639 		flags = ntohl(cmpl->flags);
640 		len = ntohs(cmpl->length);
641 		totlen = len;
642 		nvecs = 1;
643 
644 		/* Check all the completions for this frame.
645 		 * busy-wait doesn't help much, break here.
646 		 */
647 		if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
648 		    (flags & BNA_CQ_EF_EOP) == 0) {
649 			pi = ccb->producer_index;
650 			do {
651 				BNA_QE_INDX_INC(pi, ccb->q_depth);
652 				next_cmpl = &cq[pi];
653 
654 				if (!next_cmpl->valid)
655 					break;
656 				/* The 'valid' field is set by the adapter, only
657 				 * after writing the other fields of completion
658 				 * entry. Hence, do not load other fields of
659 				 * completion entry *before* the 'valid' is
660 				 * loaded. Adding the rmb() here prevents the
661 				 * compiler and/or CPU from reordering the reads
662 				 * which would potentially result in reading
663 				 * stale values in completion entry.
664 				 */
665 				rmb();
666 
667 				len = ntohs(next_cmpl->length);
668 				flags = ntohl(next_cmpl->flags);
669 
670 				nvecs++;
671 				totlen += len;
672 			} while ((flags & BNA_CQ_EF_EOP) == 0);
673 
674 			if (!next_cmpl->valid)
675 				break;
676 		}
677 		packets++;
678 
679 		/* TODO: BNA_CQ_EF_LOCAL ? */
680 		if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
681 						BNA_CQ_EF_FCS_ERROR |
682 						BNA_CQ_EF_TOO_LONG))) {
683 			bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
684 			rcb->rxq->rx_packets_with_error++;
685 
686 			goto next;
687 		}
688 
689 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
690 			bnad_cq_setup_skb(bnad, skb, unmap, len);
691 		else
692 			bnad_cq_setup_skb_frags(ccb, skb, nvecs);
693 
694 		rcb->rxq->rx_packets++;
695 		rcb->rxq->rx_bytes += totlen;
696 		ccb->bytes_per_intr += totlen;
697 
698 		masked_flags = flags & flags_cksum_prot_mask;
699 
700 		if (likely
701 		    ((bnad->netdev->features & NETIF_F_RXCSUM) &&
702 		     ((masked_flags == flags_tcp4) ||
703 		      (masked_flags == flags_udp4) ||
704 		      (masked_flags == flags_tcp6) ||
705 		      (masked_flags == flags_udp6))))
706 			skb->ip_summed = CHECKSUM_UNNECESSARY;
707 		else
708 			skb_checksum_none_assert(skb);
709 
710 		if ((flags & BNA_CQ_EF_VLAN) &&
711 		    (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
712 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
713 
714 		if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
715 			netif_receive_skb(skb);
716 		else
717 			napi_gro_frags(&rx_ctrl->napi);
718 
719 next:
720 		BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
721 		for (vec = 0; vec < nvecs; vec++) {
722 			cmpl = &cq[ccb->producer_index];
723 			cmpl->valid = 0;
724 			BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
725 		}
726 	}
727 
728 	napi_gro_flush(&rx_ctrl->napi, false);
729 	if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
730 		bna_ib_ack_disable_irq(ccb->i_dbell, packets);
731 
732 	bnad_rxq_post(bnad, ccb->rcb[0]);
733 	if (ccb->rcb[1])
734 		bnad_rxq_post(bnad, ccb->rcb[1]);
735 
736 	return packets;
737 }
738 
739 static void
740 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
741 {
742 	struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
743 	struct napi_struct *napi = &rx_ctrl->napi;
744 
745 	if (likely(napi_schedule_prep(napi))) {
746 		__napi_schedule(napi);
747 		rx_ctrl->rx_schedule++;
748 	}
749 }
750 
751 /* MSIX Rx Path Handler */
752 static irqreturn_t
753 bnad_msix_rx(int irq, void *data)
754 {
755 	struct bna_ccb *ccb = (struct bna_ccb *)data;
756 
757 	if (ccb) {
758 		((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++;
759 		bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
760 	}
761 
762 	return IRQ_HANDLED;
763 }
764 
765 /* Interrupt handlers */
766 
767 /* Mbox Interrupt Handlers */
768 static irqreturn_t
769 bnad_msix_mbox_handler(int irq, void *data)
770 {
771 	u32 intr_status;
772 	unsigned long flags;
773 	struct bnad *bnad = (struct bnad *)data;
774 
775 	spin_lock_irqsave(&bnad->bna_lock, flags);
776 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
777 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
778 		return IRQ_HANDLED;
779 	}
780 
781 	bna_intr_status_get(&bnad->bna, intr_status);
782 
783 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
784 		bna_mbox_handler(&bnad->bna, intr_status);
785 
786 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
787 
788 	return IRQ_HANDLED;
789 }
790 
791 static irqreturn_t
792 bnad_isr(int irq, void *data)
793 {
794 	int i, j;
795 	u32 intr_status;
796 	unsigned long flags;
797 	struct bnad *bnad = (struct bnad *)data;
798 	struct bnad_rx_info *rx_info;
799 	struct bnad_rx_ctrl *rx_ctrl;
800 	struct bna_tcb *tcb = NULL;
801 
802 	spin_lock_irqsave(&bnad->bna_lock, flags);
803 	if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
804 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
805 		return IRQ_NONE;
806 	}
807 
808 	bna_intr_status_get(&bnad->bna, intr_status);
809 
810 	if (unlikely(!intr_status)) {
811 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
812 		return IRQ_NONE;
813 	}
814 
815 	if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
816 		bna_mbox_handler(&bnad->bna, intr_status);
817 
818 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
819 
820 	if (!BNA_IS_INTX_DATA_INTR(intr_status))
821 		return IRQ_HANDLED;
822 
823 	/* Process data interrupts */
824 	/* Tx processing */
825 	for (i = 0; i < bnad->num_tx; i++) {
826 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
827 			tcb = bnad->tx_info[i].tcb[j];
828 			if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
829 				bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
830 		}
831 	}
832 	/* Rx processing */
833 	for (i = 0; i < bnad->num_rx; i++) {
834 		rx_info = &bnad->rx_info[i];
835 		if (!rx_info->rx)
836 			continue;
837 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
838 			rx_ctrl = &rx_info->rx_ctrl[j];
839 			if (rx_ctrl->ccb)
840 				bnad_netif_rx_schedule_poll(bnad,
841 							    rx_ctrl->ccb);
842 		}
843 	}
844 	return IRQ_HANDLED;
845 }
846 
847 /*
848  * Called in interrupt / callback context
849  * with bna_lock held, so cfg_flags access is OK
850  */
851 static void
852 bnad_enable_mbox_irq(struct bnad *bnad)
853 {
854 	clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
855 
856 	BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
857 }
858 
859 /*
860  * Called with bnad->bna_lock held b'cos of
861  * bnad->cfg_flags access.
862  */
863 static void
864 bnad_disable_mbox_irq(struct bnad *bnad)
865 {
866 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
867 
868 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
869 }
870 
871 static void
872 bnad_set_netdev_perm_addr(struct bnad *bnad)
873 {
874 	struct net_device *netdev = bnad->netdev;
875 
876 	ether_addr_copy(netdev->perm_addr, bnad->perm_addr);
877 	if (is_zero_ether_addr(netdev->dev_addr))
878 		ether_addr_copy(netdev->dev_addr, bnad->perm_addr);
879 }
880 
881 /* Control Path Handlers */
882 
883 /* Callbacks */
884 void
885 bnad_cb_mbox_intr_enable(struct bnad *bnad)
886 {
887 	bnad_enable_mbox_irq(bnad);
888 }
889 
890 void
891 bnad_cb_mbox_intr_disable(struct bnad *bnad)
892 {
893 	bnad_disable_mbox_irq(bnad);
894 }
895 
896 void
897 bnad_cb_ioceth_ready(struct bnad *bnad)
898 {
899 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
900 	complete(&bnad->bnad_completions.ioc_comp);
901 }
902 
903 void
904 bnad_cb_ioceth_failed(struct bnad *bnad)
905 {
906 	bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
907 	complete(&bnad->bnad_completions.ioc_comp);
908 }
909 
910 void
911 bnad_cb_ioceth_disabled(struct bnad *bnad)
912 {
913 	bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
914 	complete(&bnad->bnad_completions.ioc_comp);
915 }
916 
917 static void
918 bnad_cb_enet_disabled(void *arg)
919 {
920 	struct bnad *bnad = (struct bnad *)arg;
921 
922 	netif_carrier_off(bnad->netdev);
923 	complete(&bnad->bnad_completions.enet_comp);
924 }
925 
926 void
927 bnad_cb_ethport_link_status(struct bnad *bnad,
928 			enum bna_link_status link_status)
929 {
930 	bool link_up = false;
931 
932 	link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
933 
934 	if (link_status == BNA_CEE_UP) {
935 		if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
936 			BNAD_UPDATE_CTR(bnad, cee_toggle);
937 		set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
938 	} else {
939 		if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
940 			BNAD_UPDATE_CTR(bnad, cee_toggle);
941 		clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
942 	}
943 
944 	if (link_up) {
945 		if (!netif_carrier_ok(bnad->netdev)) {
946 			uint tx_id, tcb_id;
947 			netdev_info(bnad->netdev, "link up\n");
948 			netif_carrier_on(bnad->netdev);
949 			BNAD_UPDATE_CTR(bnad, link_toggle);
950 			for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
951 				for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
952 				      tcb_id++) {
953 					struct bna_tcb *tcb =
954 					bnad->tx_info[tx_id].tcb[tcb_id];
955 					u32 txq_id;
956 					if (!tcb)
957 						continue;
958 
959 					txq_id = tcb->id;
960 
961 					if (test_bit(BNAD_TXQ_TX_STARTED,
962 						     &tcb->flags)) {
963 						/*
964 						 * Force an immediate
965 						 * Transmit Schedule */
966 						netif_wake_subqueue(
967 								bnad->netdev,
968 								txq_id);
969 						BNAD_UPDATE_CTR(bnad,
970 							netif_queue_wakeup);
971 					} else {
972 						netif_stop_subqueue(
973 								bnad->netdev,
974 								txq_id);
975 						BNAD_UPDATE_CTR(bnad,
976 							netif_queue_stop);
977 					}
978 				}
979 			}
980 		}
981 	} else {
982 		if (netif_carrier_ok(bnad->netdev)) {
983 			netdev_info(bnad->netdev, "link down\n");
984 			netif_carrier_off(bnad->netdev);
985 			BNAD_UPDATE_CTR(bnad, link_toggle);
986 		}
987 	}
988 }
989 
990 static void
991 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
992 {
993 	struct bnad *bnad = (struct bnad *)arg;
994 
995 	complete(&bnad->bnad_completions.tx_comp);
996 }
997 
998 static void
999 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1000 {
1001 	struct bnad_tx_info *tx_info =
1002 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1003 
1004 	tcb->priv = tcb;
1005 	tx_info->tcb[tcb->id] = tcb;
1006 }
1007 
1008 static void
1009 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1010 {
1011 	struct bnad_tx_info *tx_info =
1012 			(struct bnad_tx_info *)tcb->txq->tx->priv;
1013 
1014 	tx_info->tcb[tcb->id] = NULL;
1015 	tcb->priv = NULL;
1016 }
1017 
1018 static void
1019 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1020 {
1021 	struct bnad_rx_info *rx_info =
1022 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1023 
1024 	rx_info->rx_ctrl[ccb->id].ccb = ccb;
1025 	ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1026 }
1027 
1028 static void
1029 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1030 {
1031 	struct bnad_rx_info *rx_info =
1032 			(struct bnad_rx_info *)ccb->cq->rx->priv;
1033 
1034 	rx_info->rx_ctrl[ccb->id].ccb = NULL;
1035 }
1036 
1037 static void
1038 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1039 {
1040 	struct bnad_tx_info *tx_info =
1041 			(struct bnad_tx_info *)tx->priv;
1042 	struct bna_tcb *tcb;
1043 	u32 txq_id;
1044 	int i;
1045 
1046 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1047 		tcb = tx_info->tcb[i];
1048 		if (!tcb)
1049 			continue;
1050 		txq_id = tcb->id;
1051 		clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1052 		netif_stop_subqueue(bnad->netdev, txq_id);
1053 	}
1054 }
1055 
1056 static void
1057 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1058 {
1059 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1060 	struct bna_tcb *tcb;
1061 	u32 txq_id;
1062 	int i;
1063 
1064 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1065 		tcb = tx_info->tcb[i];
1066 		if (!tcb)
1067 			continue;
1068 		txq_id = tcb->id;
1069 
1070 		BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1071 		set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1072 		BUG_ON(*(tcb->hw_consumer_index) != 0);
1073 
1074 		if (netif_carrier_ok(bnad->netdev)) {
1075 			netif_wake_subqueue(bnad->netdev, txq_id);
1076 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1077 		}
1078 	}
1079 
1080 	/*
1081 	 * Workaround for first ioceth enable failure & we
1082 	 * get a 0 MAC address. We try to get the MAC address
1083 	 * again here.
1084 	 */
1085 	if (is_zero_ether_addr(bnad->perm_addr)) {
1086 		bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr);
1087 		bnad_set_netdev_perm_addr(bnad);
1088 	}
1089 }
1090 
1091 /*
1092  * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1093  */
1094 static void
1095 bnad_tx_cleanup(struct delayed_work *work)
1096 {
1097 	struct bnad_tx_info *tx_info =
1098 		container_of(work, struct bnad_tx_info, tx_cleanup_work);
1099 	struct bnad *bnad = NULL;
1100 	struct bna_tcb *tcb;
1101 	unsigned long flags;
1102 	u32 i, pending = 0;
1103 
1104 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1105 		tcb = tx_info->tcb[i];
1106 		if (!tcb)
1107 			continue;
1108 
1109 		bnad = tcb->bnad;
1110 
1111 		if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1112 			pending++;
1113 			continue;
1114 		}
1115 
1116 		bnad_txq_cleanup(bnad, tcb);
1117 
1118 		smp_mb__before_atomic();
1119 		clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1120 	}
1121 
1122 	if (pending) {
1123 		queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1124 			msecs_to_jiffies(1));
1125 		return;
1126 	}
1127 
1128 	spin_lock_irqsave(&bnad->bna_lock, flags);
1129 	bna_tx_cleanup_complete(tx_info->tx);
1130 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1131 }
1132 
1133 static void
1134 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1135 {
1136 	struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1137 	struct bna_tcb *tcb;
1138 	int i;
1139 
1140 	for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1141 		tcb = tx_info->tcb[i];
1142 		if (!tcb)
1143 			continue;
1144 	}
1145 
1146 	queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1147 }
1148 
1149 static void
1150 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1151 {
1152 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1153 	struct bna_ccb *ccb;
1154 	struct bnad_rx_ctrl *rx_ctrl;
1155 	int i;
1156 
1157 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1158 		rx_ctrl = &rx_info->rx_ctrl[i];
1159 		ccb = rx_ctrl->ccb;
1160 		if (!ccb)
1161 			continue;
1162 
1163 		clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1164 
1165 		if (ccb->rcb[1])
1166 			clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1167 	}
1168 }
1169 
1170 /*
1171  * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1172  */
1173 static void
1174 bnad_rx_cleanup(void *work)
1175 {
1176 	struct bnad_rx_info *rx_info =
1177 		container_of(work, struct bnad_rx_info, rx_cleanup_work);
1178 	struct bnad_rx_ctrl *rx_ctrl;
1179 	struct bnad *bnad = NULL;
1180 	unsigned long flags;
1181 	u32 i;
1182 
1183 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1184 		rx_ctrl = &rx_info->rx_ctrl[i];
1185 
1186 		if (!rx_ctrl->ccb)
1187 			continue;
1188 
1189 		bnad = rx_ctrl->ccb->bnad;
1190 
1191 		/*
1192 		 * Wait till the poll handler has exited
1193 		 * and nothing can be scheduled anymore
1194 		 */
1195 		napi_disable(&rx_ctrl->napi);
1196 
1197 		bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1198 		bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1199 		if (rx_ctrl->ccb->rcb[1])
1200 			bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1201 	}
1202 
1203 	spin_lock_irqsave(&bnad->bna_lock, flags);
1204 	bna_rx_cleanup_complete(rx_info->rx);
1205 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1206 }
1207 
1208 static void
1209 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1210 {
1211 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1212 	struct bna_ccb *ccb;
1213 	struct bnad_rx_ctrl *rx_ctrl;
1214 	int i;
1215 
1216 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1217 		rx_ctrl = &rx_info->rx_ctrl[i];
1218 		ccb = rx_ctrl->ccb;
1219 		if (!ccb)
1220 			continue;
1221 
1222 		clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1223 
1224 		if (ccb->rcb[1])
1225 			clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1226 	}
1227 
1228 	queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1229 }
1230 
1231 static void
1232 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1233 {
1234 	struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1235 	struct bna_ccb *ccb;
1236 	struct bna_rcb *rcb;
1237 	struct bnad_rx_ctrl *rx_ctrl;
1238 	int i, j;
1239 
1240 	for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1241 		rx_ctrl = &rx_info->rx_ctrl[i];
1242 		ccb = rx_ctrl->ccb;
1243 		if (!ccb)
1244 			continue;
1245 
1246 		napi_enable(&rx_ctrl->napi);
1247 
1248 		for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1249 			rcb = ccb->rcb[j];
1250 			if (!rcb)
1251 				continue;
1252 
1253 			bnad_rxq_alloc_init(bnad, rcb);
1254 			set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1255 			set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1256 			bnad_rxq_post(bnad, rcb);
1257 		}
1258 	}
1259 }
1260 
1261 static void
1262 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1263 {
1264 	struct bnad *bnad = (struct bnad *)arg;
1265 
1266 	complete(&bnad->bnad_completions.rx_comp);
1267 }
1268 
1269 static void
1270 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1271 {
1272 	bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1273 	complete(&bnad->bnad_completions.mcast_comp);
1274 }
1275 
1276 void
1277 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1278 		       struct bna_stats *stats)
1279 {
1280 	if (status == BNA_CB_SUCCESS)
1281 		BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1282 
1283 	if (!netif_running(bnad->netdev) ||
1284 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1285 		return;
1286 
1287 	mod_timer(&bnad->stats_timer,
1288 		  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1289 }
1290 
1291 static void
1292 bnad_cb_enet_mtu_set(struct bnad *bnad)
1293 {
1294 	bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1295 	complete(&bnad->bnad_completions.mtu_comp);
1296 }
1297 
1298 void
1299 bnad_cb_completion(void *arg, enum bfa_status status)
1300 {
1301 	struct bnad_iocmd_comp *iocmd_comp =
1302 			(struct bnad_iocmd_comp *)arg;
1303 
1304 	iocmd_comp->comp_status = (u32) status;
1305 	complete(&iocmd_comp->comp);
1306 }
1307 
1308 /* Resource allocation, free functions */
1309 
1310 static void
1311 bnad_mem_free(struct bnad *bnad,
1312 	      struct bna_mem_info *mem_info)
1313 {
1314 	int i;
1315 	dma_addr_t dma_pa;
1316 
1317 	if (mem_info->mdl == NULL)
1318 		return;
1319 
1320 	for (i = 0; i < mem_info->num; i++) {
1321 		if (mem_info->mdl[i].kva != NULL) {
1322 			if (mem_info->mem_type == BNA_MEM_T_DMA) {
1323 				BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1324 						dma_pa);
1325 				dma_free_coherent(&bnad->pcidev->dev,
1326 						  mem_info->mdl[i].len,
1327 						  mem_info->mdl[i].kva, dma_pa);
1328 			} else
1329 				kfree(mem_info->mdl[i].kva);
1330 		}
1331 	}
1332 	kfree(mem_info->mdl);
1333 	mem_info->mdl = NULL;
1334 }
1335 
1336 static int
1337 bnad_mem_alloc(struct bnad *bnad,
1338 	       struct bna_mem_info *mem_info)
1339 {
1340 	int i;
1341 	dma_addr_t dma_pa;
1342 
1343 	if ((mem_info->num == 0) || (mem_info->len == 0)) {
1344 		mem_info->mdl = NULL;
1345 		return 0;
1346 	}
1347 
1348 	mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1349 				GFP_KERNEL);
1350 	if (mem_info->mdl == NULL)
1351 		return -ENOMEM;
1352 
1353 	if (mem_info->mem_type == BNA_MEM_T_DMA) {
1354 		for (i = 0; i < mem_info->num; i++) {
1355 			mem_info->mdl[i].len = mem_info->len;
1356 			mem_info->mdl[i].kva =
1357 				dma_alloc_coherent(&bnad->pcidev->dev,
1358 						   mem_info->len, &dma_pa,
1359 						   GFP_KERNEL);
1360 			if (mem_info->mdl[i].kva == NULL)
1361 				goto err_return;
1362 
1363 			BNA_SET_DMA_ADDR(dma_pa,
1364 					 &(mem_info->mdl[i].dma));
1365 		}
1366 	} else {
1367 		for (i = 0; i < mem_info->num; i++) {
1368 			mem_info->mdl[i].len = mem_info->len;
1369 			mem_info->mdl[i].kva = kzalloc(mem_info->len,
1370 							GFP_KERNEL);
1371 			if (mem_info->mdl[i].kva == NULL)
1372 				goto err_return;
1373 		}
1374 	}
1375 
1376 	return 0;
1377 
1378 err_return:
1379 	bnad_mem_free(bnad, mem_info);
1380 	return -ENOMEM;
1381 }
1382 
1383 /* Free IRQ for Mailbox */
1384 static void
1385 bnad_mbox_irq_free(struct bnad *bnad)
1386 {
1387 	int irq;
1388 	unsigned long flags;
1389 
1390 	spin_lock_irqsave(&bnad->bna_lock, flags);
1391 	bnad_disable_mbox_irq(bnad);
1392 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1393 
1394 	irq = BNAD_GET_MBOX_IRQ(bnad);
1395 	free_irq(irq, bnad);
1396 }
1397 
1398 /*
1399  * Allocates IRQ for Mailbox, but keep it disabled
1400  * This will be enabled once we get the mbox enable callback
1401  * from bna
1402  */
1403 static int
1404 bnad_mbox_irq_alloc(struct bnad *bnad)
1405 {
1406 	int		err = 0;
1407 	unsigned long	irq_flags, flags;
1408 	u32	irq;
1409 	irq_handler_t	irq_handler;
1410 
1411 	spin_lock_irqsave(&bnad->bna_lock, flags);
1412 	if (bnad->cfg_flags & BNAD_CF_MSIX) {
1413 		irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1414 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1415 		irq_flags = 0;
1416 	} else {
1417 		irq_handler = (irq_handler_t)bnad_isr;
1418 		irq = bnad->pcidev->irq;
1419 		irq_flags = IRQF_SHARED;
1420 	}
1421 
1422 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1423 	sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1424 
1425 	/*
1426 	 * Set the Mbox IRQ disable flag, so that the IRQ handler
1427 	 * called from request_irq() for SHARED IRQs do not execute
1428 	 */
1429 	set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1430 
1431 	BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1432 
1433 	err = request_irq(irq, irq_handler, irq_flags,
1434 			  bnad->mbox_irq_name, bnad);
1435 
1436 	return err;
1437 }
1438 
1439 static void
1440 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1441 {
1442 	kfree(intr_info->idl);
1443 	intr_info->idl = NULL;
1444 }
1445 
1446 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1447 static int
1448 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1449 		    u32 txrx_id, struct bna_intr_info *intr_info)
1450 {
1451 	int i, vector_start = 0;
1452 	u32 cfg_flags;
1453 	unsigned long flags;
1454 
1455 	spin_lock_irqsave(&bnad->bna_lock, flags);
1456 	cfg_flags = bnad->cfg_flags;
1457 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1458 
1459 	if (cfg_flags & BNAD_CF_MSIX) {
1460 		intr_info->intr_type = BNA_INTR_T_MSIX;
1461 		intr_info->idl = kcalloc(intr_info->num,
1462 					sizeof(struct bna_intr_descr),
1463 					GFP_KERNEL);
1464 		if (!intr_info->idl)
1465 			return -ENOMEM;
1466 
1467 		switch (src) {
1468 		case BNAD_INTR_TX:
1469 			vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1470 			break;
1471 
1472 		case BNAD_INTR_RX:
1473 			vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1474 					(bnad->num_tx * bnad->num_txq_per_tx) +
1475 					txrx_id;
1476 			break;
1477 
1478 		default:
1479 			BUG();
1480 		}
1481 
1482 		for (i = 0; i < intr_info->num; i++)
1483 			intr_info->idl[i].vector = vector_start + i;
1484 	} else {
1485 		intr_info->intr_type = BNA_INTR_T_INTX;
1486 		intr_info->num = 1;
1487 		intr_info->idl = kcalloc(intr_info->num,
1488 					sizeof(struct bna_intr_descr),
1489 					GFP_KERNEL);
1490 		if (!intr_info->idl)
1491 			return -ENOMEM;
1492 
1493 		switch (src) {
1494 		case BNAD_INTR_TX:
1495 			intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1496 			break;
1497 
1498 		case BNAD_INTR_RX:
1499 			intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1500 			break;
1501 		}
1502 	}
1503 	return 0;
1504 }
1505 
1506 /* NOTE: Should be called for MSIX only
1507  * Unregisters Tx MSIX vector(s) from the kernel
1508  */
1509 static void
1510 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1511 			int num_txqs)
1512 {
1513 	int i;
1514 	int vector_num;
1515 
1516 	for (i = 0; i < num_txqs; i++) {
1517 		if (tx_info->tcb[i] == NULL)
1518 			continue;
1519 
1520 		vector_num = tx_info->tcb[i]->intr_vector;
1521 		free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1522 	}
1523 }
1524 
1525 /* NOTE: Should be called for MSIX only
1526  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1527  */
1528 static int
1529 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1530 			u32 tx_id, int num_txqs)
1531 {
1532 	int i;
1533 	int err;
1534 	int vector_num;
1535 
1536 	for (i = 0; i < num_txqs; i++) {
1537 		vector_num = tx_info->tcb[i]->intr_vector;
1538 		sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1539 				tx_id + tx_info->tcb[i]->id);
1540 		err = request_irq(bnad->msix_table[vector_num].vector,
1541 				  (irq_handler_t)bnad_msix_tx, 0,
1542 				  tx_info->tcb[i]->name,
1543 				  tx_info->tcb[i]);
1544 		if (err)
1545 			goto err_return;
1546 	}
1547 
1548 	return 0;
1549 
1550 err_return:
1551 	if (i > 0)
1552 		bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1553 	return -1;
1554 }
1555 
1556 /* NOTE: Should be called for MSIX only
1557  * Unregisters Rx MSIX vector(s) from the kernel
1558  */
1559 static void
1560 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1561 			int num_rxps)
1562 {
1563 	int i;
1564 	int vector_num;
1565 
1566 	for (i = 0; i < num_rxps; i++) {
1567 		if (rx_info->rx_ctrl[i].ccb == NULL)
1568 			continue;
1569 
1570 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1571 		free_irq(bnad->msix_table[vector_num].vector,
1572 			 rx_info->rx_ctrl[i].ccb);
1573 	}
1574 }
1575 
1576 /* NOTE: Should be called for MSIX only
1577  * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1578  */
1579 static int
1580 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1581 			u32 rx_id, int num_rxps)
1582 {
1583 	int i;
1584 	int err;
1585 	int vector_num;
1586 
1587 	for (i = 0; i < num_rxps; i++) {
1588 		vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1589 		sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1590 			bnad->netdev->name,
1591 			rx_id + rx_info->rx_ctrl[i].ccb->id);
1592 		err = request_irq(bnad->msix_table[vector_num].vector,
1593 				  (irq_handler_t)bnad_msix_rx, 0,
1594 				  rx_info->rx_ctrl[i].ccb->name,
1595 				  rx_info->rx_ctrl[i].ccb);
1596 		if (err)
1597 			goto err_return;
1598 	}
1599 
1600 	return 0;
1601 
1602 err_return:
1603 	if (i > 0)
1604 		bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1605 	return -1;
1606 }
1607 
1608 /* Free Tx object Resources */
1609 static void
1610 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1611 {
1612 	int i;
1613 
1614 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1615 		if (res_info[i].res_type == BNA_RES_T_MEM)
1616 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1617 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1618 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1619 	}
1620 }
1621 
1622 /* Allocates memory and interrupt resources for Tx object */
1623 static int
1624 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1625 		  u32 tx_id)
1626 {
1627 	int i, err = 0;
1628 
1629 	for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1630 		if (res_info[i].res_type == BNA_RES_T_MEM)
1631 			err = bnad_mem_alloc(bnad,
1632 					&res_info[i].res_u.mem_info);
1633 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1634 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1635 					&res_info[i].res_u.intr_info);
1636 		if (err)
1637 			goto err_return;
1638 	}
1639 	return 0;
1640 
1641 err_return:
1642 	bnad_tx_res_free(bnad, res_info);
1643 	return err;
1644 }
1645 
1646 /* Free Rx object Resources */
1647 static void
1648 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1649 {
1650 	int i;
1651 
1652 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1653 		if (res_info[i].res_type == BNA_RES_T_MEM)
1654 			bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1655 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1656 			bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1657 	}
1658 }
1659 
1660 /* Allocates memory and interrupt resources for Rx object */
1661 static int
1662 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1663 		  uint rx_id)
1664 {
1665 	int i, err = 0;
1666 
1667 	/* All memory needs to be allocated before setup_ccbs */
1668 	for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1669 		if (res_info[i].res_type == BNA_RES_T_MEM)
1670 			err = bnad_mem_alloc(bnad,
1671 					&res_info[i].res_u.mem_info);
1672 		else if (res_info[i].res_type == BNA_RES_T_INTR)
1673 			err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1674 					&res_info[i].res_u.intr_info);
1675 		if (err)
1676 			goto err_return;
1677 	}
1678 	return 0;
1679 
1680 err_return:
1681 	bnad_rx_res_free(bnad, res_info);
1682 	return err;
1683 }
1684 
1685 /* Timer callbacks */
1686 /* a) IOC timer */
1687 static void
1688 bnad_ioc_timeout(struct timer_list *t)
1689 {
1690 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.ioc_timer);
1691 	unsigned long flags;
1692 
1693 	spin_lock_irqsave(&bnad->bna_lock, flags);
1694 	bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc);
1695 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1696 }
1697 
1698 static void
1699 bnad_ioc_hb_check(struct timer_list *t)
1700 {
1701 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.hb_timer);
1702 	unsigned long flags;
1703 
1704 	spin_lock_irqsave(&bnad->bna_lock, flags);
1705 	bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc);
1706 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1707 }
1708 
1709 static void
1710 bnad_iocpf_timeout(struct timer_list *t)
1711 {
1712 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.iocpf_timer);
1713 	unsigned long flags;
1714 
1715 	spin_lock_irqsave(&bnad->bna_lock, flags);
1716 	bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc);
1717 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1718 }
1719 
1720 static void
1721 bnad_iocpf_sem_timeout(struct timer_list *t)
1722 {
1723 	struct bnad *bnad = from_timer(bnad, t, bna.ioceth.ioc.sem_timer);
1724 	unsigned long flags;
1725 
1726 	spin_lock_irqsave(&bnad->bna_lock, flags);
1727 	bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc);
1728 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1729 }
1730 
1731 /*
1732  * All timer routines use bnad->bna_lock to protect against
1733  * the following race, which may occur in case of no locking:
1734  *	Time	CPU m	CPU n
1735  *	0       1 = test_bit
1736  *	1			clear_bit
1737  *	2			del_timer_sync
1738  *	3	mod_timer
1739  */
1740 
1741 /* b) Dynamic Interrupt Moderation Timer */
1742 static void
1743 bnad_dim_timeout(struct timer_list *t)
1744 {
1745 	struct bnad *bnad = from_timer(bnad, t, dim_timer);
1746 	struct bnad_rx_info *rx_info;
1747 	struct bnad_rx_ctrl *rx_ctrl;
1748 	int i, j;
1749 	unsigned long flags;
1750 
1751 	if (!netif_carrier_ok(bnad->netdev))
1752 		return;
1753 
1754 	spin_lock_irqsave(&bnad->bna_lock, flags);
1755 	for (i = 0; i < bnad->num_rx; i++) {
1756 		rx_info = &bnad->rx_info[i];
1757 		if (!rx_info->rx)
1758 			continue;
1759 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1760 			rx_ctrl = &rx_info->rx_ctrl[j];
1761 			if (!rx_ctrl->ccb)
1762 				continue;
1763 			bna_rx_dim_update(rx_ctrl->ccb);
1764 		}
1765 	}
1766 
1767 	/* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1768 	if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1769 		mod_timer(&bnad->dim_timer,
1770 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1771 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1772 }
1773 
1774 /* c)  Statistics Timer */
1775 static void
1776 bnad_stats_timeout(struct timer_list *t)
1777 {
1778 	struct bnad *bnad = from_timer(bnad, t, stats_timer);
1779 	unsigned long flags;
1780 
1781 	if (!netif_running(bnad->netdev) ||
1782 		!test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1783 		return;
1784 
1785 	spin_lock_irqsave(&bnad->bna_lock, flags);
1786 	bna_hw_stats_get(&bnad->bna);
1787 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1788 }
1789 
1790 /*
1791  * Set up timer for DIM
1792  * Called with bnad->bna_lock held
1793  */
1794 void
1795 bnad_dim_timer_start(struct bnad *bnad)
1796 {
1797 	if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1798 	    !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1799 		timer_setup(&bnad->dim_timer, bnad_dim_timeout, 0);
1800 		set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1801 		mod_timer(&bnad->dim_timer,
1802 			  jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1803 	}
1804 }
1805 
1806 /*
1807  * Set up timer for statistics
1808  * Called with mutex_lock(&bnad->conf_mutex) held
1809  */
1810 static void
1811 bnad_stats_timer_start(struct bnad *bnad)
1812 {
1813 	unsigned long flags;
1814 
1815 	spin_lock_irqsave(&bnad->bna_lock, flags);
1816 	if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1817 		timer_setup(&bnad->stats_timer, bnad_stats_timeout, 0);
1818 		mod_timer(&bnad->stats_timer,
1819 			  jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1820 	}
1821 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1822 }
1823 
1824 /*
1825  * Stops the stats timer
1826  * Called with mutex_lock(&bnad->conf_mutex) held
1827  */
1828 static void
1829 bnad_stats_timer_stop(struct bnad *bnad)
1830 {
1831 	int to_del = 0;
1832 	unsigned long flags;
1833 
1834 	spin_lock_irqsave(&bnad->bna_lock, flags);
1835 	if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1836 		to_del = 1;
1837 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1838 	if (to_del)
1839 		del_timer_sync(&bnad->stats_timer);
1840 }
1841 
1842 /* Utilities */
1843 
1844 static void
1845 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1846 {
1847 	int i = 1; /* Index 0 has broadcast address */
1848 	struct netdev_hw_addr *mc_addr;
1849 
1850 	netdev_for_each_mc_addr(mc_addr, netdev) {
1851 		ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]);
1852 		i++;
1853 	}
1854 }
1855 
1856 static int
1857 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1858 {
1859 	struct bnad_rx_ctrl *rx_ctrl =
1860 		container_of(napi, struct bnad_rx_ctrl, napi);
1861 	struct bnad *bnad = rx_ctrl->bnad;
1862 	int rcvd = 0;
1863 
1864 	rx_ctrl->rx_poll_ctr++;
1865 
1866 	if (!netif_carrier_ok(bnad->netdev))
1867 		goto poll_exit;
1868 
1869 	rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1870 	if (rcvd >= budget)
1871 		return rcvd;
1872 
1873 poll_exit:
1874 	napi_complete_done(napi, rcvd);
1875 
1876 	rx_ctrl->rx_complete++;
1877 
1878 	if (rx_ctrl->ccb)
1879 		bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1880 
1881 	return rcvd;
1882 }
1883 
1884 #define BNAD_NAPI_POLL_QUOTA		64
1885 static void
1886 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1887 {
1888 	struct bnad_rx_ctrl *rx_ctrl;
1889 	int i;
1890 
1891 	/* Initialize & enable NAPI */
1892 	for (i = 0; i <	bnad->num_rxp_per_rx; i++) {
1893 		rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1894 		netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1895 			       bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1896 	}
1897 }
1898 
1899 static void
1900 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1901 {
1902 	int i;
1903 
1904 	/* First disable and then clean up */
1905 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
1906 		netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1907 }
1908 
1909 /* Should be held with conf_lock held */
1910 void
1911 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1912 {
1913 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1914 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1915 	unsigned long flags;
1916 
1917 	if (!tx_info->tx)
1918 		return;
1919 
1920 	init_completion(&bnad->bnad_completions.tx_comp);
1921 	spin_lock_irqsave(&bnad->bna_lock, flags);
1922 	bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1923 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1924 	wait_for_completion(&bnad->bnad_completions.tx_comp);
1925 
1926 	if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1927 		bnad_tx_msix_unregister(bnad, tx_info,
1928 			bnad->num_txq_per_tx);
1929 
1930 	spin_lock_irqsave(&bnad->bna_lock, flags);
1931 	bna_tx_destroy(tx_info->tx);
1932 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1933 
1934 	tx_info->tx = NULL;
1935 	tx_info->tx_id = 0;
1936 
1937 	bnad_tx_res_free(bnad, res_info);
1938 }
1939 
1940 /* Should be held with conf_lock held */
1941 int
1942 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1943 {
1944 	int err;
1945 	struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1946 	struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1947 	struct bna_intr_info *intr_info =
1948 			&res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1949 	struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1950 	static const struct bna_tx_event_cbfn tx_cbfn = {
1951 		.tcb_setup_cbfn = bnad_cb_tcb_setup,
1952 		.tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1953 		.tx_stall_cbfn = bnad_cb_tx_stall,
1954 		.tx_resume_cbfn = bnad_cb_tx_resume,
1955 		.tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1956 	};
1957 
1958 	struct bna_tx *tx;
1959 	unsigned long flags;
1960 
1961 	tx_info->tx_id = tx_id;
1962 
1963 	/* Initialize the Tx object configuration */
1964 	tx_config->num_txq = bnad->num_txq_per_tx;
1965 	tx_config->txq_depth = bnad->txq_depth;
1966 	tx_config->tx_type = BNA_TX_T_REGULAR;
1967 	tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1968 
1969 	/* Get BNA's resource requirement for one tx object */
1970 	spin_lock_irqsave(&bnad->bna_lock, flags);
1971 	bna_tx_res_req(bnad->num_txq_per_tx,
1972 		bnad->txq_depth, res_info);
1973 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1974 
1975 	/* Fill Unmap Q memory requirements */
1976 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1977 			bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1978 			bnad->txq_depth));
1979 
1980 	/* Allocate resources */
1981 	err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1982 	if (err)
1983 		return err;
1984 
1985 	/* Ask BNA to create one Tx object, supplying required resources */
1986 	spin_lock_irqsave(&bnad->bna_lock, flags);
1987 	tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1988 			tx_info);
1989 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
1990 	if (!tx) {
1991 		err = -ENOMEM;
1992 		goto err_return;
1993 	}
1994 	tx_info->tx = tx;
1995 
1996 	INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
1997 			(work_func_t)bnad_tx_cleanup);
1998 
1999 	/* Register ISR for the Tx object */
2000 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2001 		err = bnad_tx_msix_register(bnad, tx_info,
2002 			tx_id, bnad->num_txq_per_tx);
2003 		if (err)
2004 			goto cleanup_tx;
2005 	}
2006 
2007 	spin_lock_irqsave(&bnad->bna_lock, flags);
2008 	bna_tx_enable(tx);
2009 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2010 
2011 	return 0;
2012 
2013 cleanup_tx:
2014 	spin_lock_irqsave(&bnad->bna_lock, flags);
2015 	bna_tx_destroy(tx_info->tx);
2016 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2017 	tx_info->tx = NULL;
2018 	tx_info->tx_id = 0;
2019 err_return:
2020 	bnad_tx_res_free(bnad, res_info);
2021 	return err;
2022 }
2023 
2024 /* Setup the rx config for bna_rx_create */
2025 /* bnad decides the configuration */
2026 static void
2027 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2028 {
2029 	memset(rx_config, 0, sizeof(*rx_config));
2030 	rx_config->rx_type = BNA_RX_T_REGULAR;
2031 	rx_config->num_paths = bnad->num_rxp_per_rx;
2032 	rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2033 
2034 	if (bnad->num_rxp_per_rx > 1) {
2035 		rx_config->rss_status = BNA_STATUS_T_ENABLED;
2036 		rx_config->rss_config.hash_type =
2037 				(BFI_ENET_RSS_IPV6 |
2038 				 BFI_ENET_RSS_IPV6_TCP |
2039 				 BFI_ENET_RSS_IPV4 |
2040 				 BFI_ENET_RSS_IPV4_TCP);
2041 		rx_config->rss_config.hash_mask =
2042 				bnad->num_rxp_per_rx - 1;
2043 		netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2044 			sizeof(rx_config->rss_config.toeplitz_hash_key));
2045 	} else {
2046 		rx_config->rss_status = BNA_STATUS_T_DISABLED;
2047 		memset(&rx_config->rss_config, 0,
2048 		       sizeof(rx_config->rss_config));
2049 	}
2050 
2051 	rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2052 	rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2053 
2054 	/* BNA_RXP_SINGLE - one data-buffer queue
2055 	 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2056 	 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2057 	 */
2058 	/* TODO: configurable param for queue type */
2059 	rx_config->rxp_type = BNA_RXP_SLR;
2060 
2061 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2062 	    rx_config->frame_size > 4096) {
2063 		/* though size_routing_enable is set in SLR,
2064 		 * small packets may get routed to same rxq.
2065 		 * set buf_size to 2048 instead of PAGE_SIZE.
2066 		 */
2067 		rx_config->q0_buf_size = 2048;
2068 		/* this should be in multiples of 2 */
2069 		rx_config->q0_num_vecs = 4;
2070 		rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2071 		rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2072 	} else {
2073 		rx_config->q0_buf_size = rx_config->frame_size;
2074 		rx_config->q0_num_vecs = 1;
2075 		rx_config->q0_depth = bnad->rxq_depth;
2076 	}
2077 
2078 	/* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2079 	if (rx_config->rxp_type == BNA_RXP_SLR) {
2080 		rx_config->q1_depth = bnad->rxq_depth;
2081 		rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2082 	}
2083 
2084 	rx_config->vlan_strip_status =
2085 		(bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2086 		BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2087 }
2088 
2089 static void
2090 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2091 {
2092 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2093 	int i;
2094 
2095 	for (i = 0; i < bnad->num_rxp_per_rx; i++)
2096 		rx_info->rx_ctrl[i].bnad = bnad;
2097 }
2098 
2099 /* Called with mutex_lock(&bnad->conf_mutex) held */
2100 static u32
2101 bnad_reinit_rx(struct bnad *bnad)
2102 {
2103 	struct net_device *netdev = bnad->netdev;
2104 	u32 err = 0, current_err = 0;
2105 	u32 rx_id = 0, count = 0;
2106 	unsigned long flags;
2107 
2108 	/* destroy and create new rx objects */
2109 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2110 		if (!bnad->rx_info[rx_id].rx)
2111 			continue;
2112 		bnad_destroy_rx(bnad, rx_id);
2113 	}
2114 
2115 	spin_lock_irqsave(&bnad->bna_lock, flags);
2116 	bna_enet_mtu_set(&bnad->bna.enet,
2117 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2118 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2119 
2120 	for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2121 		count++;
2122 		current_err = bnad_setup_rx(bnad, rx_id);
2123 		if (current_err && !err) {
2124 			err = current_err;
2125 			netdev_err(netdev, "RXQ:%u setup failed\n", rx_id);
2126 		}
2127 	}
2128 
2129 	/* restore rx configuration */
2130 	if (bnad->rx_info[0].rx && !err) {
2131 		bnad_restore_vlans(bnad, 0);
2132 		bnad_enable_default_bcast(bnad);
2133 		spin_lock_irqsave(&bnad->bna_lock, flags);
2134 		bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2135 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2136 		bnad_set_rx_mode(netdev);
2137 	}
2138 
2139 	return count;
2140 }
2141 
2142 /* Called with bnad_conf_lock() held */
2143 void
2144 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2145 {
2146 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2147 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2148 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2149 	unsigned long flags;
2150 	int to_del = 0;
2151 
2152 	if (!rx_info->rx)
2153 		return;
2154 
2155 	if (0 == rx_id) {
2156 		spin_lock_irqsave(&bnad->bna_lock, flags);
2157 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2158 		    test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2159 			clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2160 			to_del = 1;
2161 		}
2162 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2163 		if (to_del)
2164 			del_timer_sync(&bnad->dim_timer);
2165 	}
2166 
2167 	init_completion(&bnad->bnad_completions.rx_comp);
2168 	spin_lock_irqsave(&bnad->bna_lock, flags);
2169 	bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2170 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2171 	wait_for_completion(&bnad->bnad_completions.rx_comp);
2172 
2173 	if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2174 		bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2175 
2176 	bnad_napi_delete(bnad, rx_id);
2177 
2178 	spin_lock_irqsave(&bnad->bna_lock, flags);
2179 	bna_rx_destroy(rx_info->rx);
2180 
2181 	rx_info->rx = NULL;
2182 	rx_info->rx_id = 0;
2183 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2184 
2185 	bnad_rx_res_free(bnad, res_info);
2186 }
2187 
2188 /* Called with mutex_lock(&bnad->conf_mutex) held */
2189 int
2190 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2191 {
2192 	int err;
2193 	struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2194 	struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2195 	struct bna_intr_info *intr_info =
2196 			&res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2197 	struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2198 	static const struct bna_rx_event_cbfn rx_cbfn = {
2199 		.rcb_setup_cbfn = NULL,
2200 		.rcb_destroy_cbfn = NULL,
2201 		.ccb_setup_cbfn = bnad_cb_ccb_setup,
2202 		.ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2203 		.rx_stall_cbfn = bnad_cb_rx_stall,
2204 		.rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2205 		.rx_post_cbfn = bnad_cb_rx_post,
2206 	};
2207 	struct bna_rx *rx;
2208 	unsigned long flags;
2209 
2210 	rx_info->rx_id = rx_id;
2211 
2212 	/* Initialize the Rx object configuration */
2213 	bnad_init_rx_config(bnad, rx_config);
2214 
2215 	/* Get BNA's resource requirement for one Rx object */
2216 	spin_lock_irqsave(&bnad->bna_lock, flags);
2217 	bna_rx_res_req(rx_config, res_info);
2218 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2219 
2220 	/* Fill Unmap Q memory requirements */
2221 	BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2222 				 rx_config->num_paths,
2223 			(rx_config->q0_depth *
2224 			 sizeof(struct bnad_rx_unmap)) +
2225 			 sizeof(struct bnad_rx_unmap_q));
2226 
2227 	if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2228 		BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2229 					 rx_config->num_paths,
2230 				(rx_config->q1_depth *
2231 				 sizeof(struct bnad_rx_unmap) +
2232 				 sizeof(struct bnad_rx_unmap_q)));
2233 	}
2234 	/* Allocate resource */
2235 	err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2236 	if (err)
2237 		return err;
2238 
2239 	bnad_rx_ctrl_init(bnad, rx_id);
2240 
2241 	/* Ask BNA to create one Rx object, supplying required resources */
2242 	spin_lock_irqsave(&bnad->bna_lock, flags);
2243 	rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2244 			rx_info);
2245 	if (!rx) {
2246 		err = -ENOMEM;
2247 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2248 		goto err_return;
2249 	}
2250 	rx_info->rx = rx;
2251 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2252 
2253 	INIT_WORK(&rx_info->rx_cleanup_work,
2254 			(work_func_t)(bnad_rx_cleanup));
2255 
2256 	/*
2257 	 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2258 	 * so that IRQ handler cannot schedule NAPI at this point.
2259 	 */
2260 	bnad_napi_add(bnad, rx_id);
2261 
2262 	/* Register ISR for the Rx object */
2263 	if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2264 		err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2265 						rx_config->num_paths);
2266 		if (err)
2267 			goto err_return;
2268 	}
2269 
2270 	spin_lock_irqsave(&bnad->bna_lock, flags);
2271 	if (0 == rx_id) {
2272 		/* Set up Dynamic Interrupt Moderation Vector */
2273 		if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2274 			bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2275 
2276 		/* Enable VLAN filtering only on the default Rx */
2277 		bna_rx_vlanfilter_enable(rx);
2278 
2279 		/* Start the DIM timer */
2280 		bnad_dim_timer_start(bnad);
2281 	}
2282 
2283 	bna_rx_enable(rx);
2284 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2285 
2286 	return 0;
2287 
2288 err_return:
2289 	bnad_destroy_rx(bnad, rx_id);
2290 	return err;
2291 }
2292 
2293 /* Called with conf_lock & bnad->bna_lock held */
2294 void
2295 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2296 {
2297 	struct bnad_tx_info *tx_info;
2298 
2299 	tx_info = &bnad->tx_info[0];
2300 	if (!tx_info->tx)
2301 		return;
2302 
2303 	bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2304 }
2305 
2306 /* Called with conf_lock & bnad->bna_lock held */
2307 void
2308 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2309 {
2310 	struct bnad_rx_info *rx_info;
2311 	int	i;
2312 
2313 	for (i = 0; i < bnad->num_rx; i++) {
2314 		rx_info = &bnad->rx_info[i];
2315 		if (!rx_info->rx)
2316 			continue;
2317 		bna_rx_coalescing_timeo_set(rx_info->rx,
2318 				bnad->rx_coalescing_timeo);
2319 	}
2320 }
2321 
2322 /*
2323  * Called with bnad->bna_lock held
2324  */
2325 int
2326 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr)
2327 {
2328 	int ret;
2329 
2330 	if (!is_valid_ether_addr(mac_addr))
2331 		return -EADDRNOTAVAIL;
2332 
2333 	/* If datapath is down, pretend everything went through */
2334 	if (!bnad->rx_info[0].rx)
2335 		return 0;
2336 
2337 	ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr);
2338 	if (ret != BNA_CB_SUCCESS)
2339 		return -EADDRNOTAVAIL;
2340 
2341 	return 0;
2342 }
2343 
2344 /* Should be called with conf_lock held */
2345 int
2346 bnad_enable_default_bcast(struct bnad *bnad)
2347 {
2348 	struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2349 	int ret;
2350 	unsigned long flags;
2351 
2352 	init_completion(&bnad->bnad_completions.mcast_comp);
2353 
2354 	spin_lock_irqsave(&bnad->bna_lock, flags);
2355 	ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr,
2356 			       bnad_cb_rx_mcast_add);
2357 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2358 
2359 	if (ret == BNA_CB_SUCCESS)
2360 		wait_for_completion(&bnad->bnad_completions.mcast_comp);
2361 	else
2362 		return -ENODEV;
2363 
2364 	if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2365 		return -ENODEV;
2366 
2367 	return 0;
2368 }
2369 
2370 /* Called with mutex_lock(&bnad->conf_mutex) held */
2371 void
2372 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2373 {
2374 	u16 vid;
2375 	unsigned long flags;
2376 
2377 	for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2378 		spin_lock_irqsave(&bnad->bna_lock, flags);
2379 		bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2380 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2381 	}
2382 }
2383 
2384 /* Statistics utilities */
2385 void
2386 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2387 {
2388 	int i, j;
2389 
2390 	for (i = 0; i < bnad->num_rx; i++) {
2391 		for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2392 			if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2393 				stats->rx_packets += bnad->rx_info[i].
2394 				rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2395 				stats->rx_bytes += bnad->rx_info[i].
2396 					rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2397 				if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2398 					bnad->rx_info[i].rx_ctrl[j].ccb->
2399 					rcb[1]->rxq) {
2400 					stats->rx_packets +=
2401 						bnad->rx_info[i].rx_ctrl[j].
2402 						ccb->rcb[1]->rxq->rx_packets;
2403 					stats->rx_bytes +=
2404 						bnad->rx_info[i].rx_ctrl[j].
2405 						ccb->rcb[1]->rxq->rx_bytes;
2406 				}
2407 			}
2408 		}
2409 	}
2410 	for (i = 0; i < bnad->num_tx; i++) {
2411 		for (j = 0; j < bnad->num_txq_per_tx; j++) {
2412 			if (bnad->tx_info[i].tcb[j]) {
2413 				stats->tx_packets +=
2414 				bnad->tx_info[i].tcb[j]->txq->tx_packets;
2415 				stats->tx_bytes +=
2416 					bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2417 			}
2418 		}
2419 	}
2420 }
2421 
2422 /*
2423  * Must be called with the bna_lock held.
2424  */
2425 void
2426 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2427 {
2428 	struct bfi_enet_stats_mac *mac_stats;
2429 	u32 bmap;
2430 	int i;
2431 
2432 	mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2433 	stats->rx_errors =
2434 		mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2435 		mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2436 		mac_stats->rx_undersize;
2437 	stats->tx_errors = mac_stats->tx_fcs_error +
2438 					mac_stats->tx_undersize;
2439 	stats->rx_dropped = mac_stats->rx_drop;
2440 	stats->tx_dropped = mac_stats->tx_drop;
2441 	stats->multicast = mac_stats->rx_multicast;
2442 	stats->collisions = mac_stats->tx_total_collision;
2443 
2444 	stats->rx_length_errors = mac_stats->rx_frame_length_error;
2445 
2446 	/* receive ring buffer overflow  ?? */
2447 
2448 	stats->rx_crc_errors = mac_stats->rx_fcs_error;
2449 	stats->rx_frame_errors = mac_stats->rx_alignment_error;
2450 	/* recv'r fifo overrun */
2451 	bmap = bna_rx_rid_mask(&bnad->bna);
2452 	for (i = 0; bmap; i++) {
2453 		if (bmap & 1) {
2454 			stats->rx_fifo_errors +=
2455 				bnad->stats.bna_stats->
2456 					hw_stats.rxf_stats[i].frame_drops;
2457 			break;
2458 		}
2459 		bmap >>= 1;
2460 	}
2461 }
2462 
2463 static void
2464 bnad_mbox_irq_sync(struct bnad *bnad)
2465 {
2466 	u32 irq;
2467 	unsigned long flags;
2468 
2469 	spin_lock_irqsave(&bnad->bna_lock, flags);
2470 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2471 		irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2472 	else
2473 		irq = bnad->pcidev->irq;
2474 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2475 
2476 	synchronize_irq(irq);
2477 }
2478 
2479 /* Utility used by bnad_start_xmit, for doing TSO */
2480 static int
2481 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2482 {
2483 	int err;
2484 
2485 	err = skb_cow_head(skb, 0);
2486 	if (err < 0) {
2487 		BNAD_UPDATE_CTR(bnad, tso_err);
2488 		return err;
2489 	}
2490 
2491 	/*
2492 	 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2493 	 * excluding the length field.
2494 	 */
2495 	if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2496 		struct iphdr *iph = ip_hdr(skb);
2497 
2498 		/* Do we really need these? */
2499 		iph->tot_len = 0;
2500 		iph->check = 0;
2501 
2502 		tcp_hdr(skb)->check =
2503 			~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2504 					   IPPROTO_TCP, 0);
2505 		BNAD_UPDATE_CTR(bnad, tso4);
2506 	} else {
2507 		tcp_v6_gso_csum_prep(skb);
2508 		BNAD_UPDATE_CTR(bnad, tso6);
2509 	}
2510 
2511 	return 0;
2512 }
2513 
2514 /*
2515  * Initialize Q numbers depending on Rx Paths
2516  * Called with bnad->bna_lock held, because of cfg_flags
2517  * access.
2518  */
2519 static void
2520 bnad_q_num_init(struct bnad *bnad)
2521 {
2522 	int rxps;
2523 
2524 	rxps = min((uint)num_online_cpus(),
2525 			(uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2526 
2527 	if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2528 		rxps = 1;	/* INTx */
2529 
2530 	bnad->num_rx = 1;
2531 	bnad->num_tx = 1;
2532 	bnad->num_rxp_per_rx = rxps;
2533 	bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2534 }
2535 
2536 /*
2537  * Adjusts the Q numbers, given a number of msix vectors
2538  * Give preference to RSS as opposed to Tx priority Queues,
2539  * in such a case, just use 1 Tx Q
2540  * Called with bnad->bna_lock held b'cos of cfg_flags access
2541  */
2542 static void
2543 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2544 {
2545 	bnad->num_txq_per_tx = 1;
2546 	if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx)  +
2547 	     bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2548 	    (bnad->cfg_flags & BNAD_CF_MSIX)) {
2549 		bnad->num_rxp_per_rx = msix_vectors -
2550 			(bnad->num_tx * bnad->num_txq_per_tx) -
2551 			BNAD_MAILBOX_MSIX_VECTORS;
2552 	} else
2553 		bnad->num_rxp_per_rx = 1;
2554 }
2555 
2556 /* Enable / disable ioceth */
2557 static int
2558 bnad_ioceth_disable(struct bnad *bnad)
2559 {
2560 	unsigned long flags;
2561 	int err = 0;
2562 
2563 	spin_lock_irqsave(&bnad->bna_lock, flags);
2564 	init_completion(&bnad->bnad_completions.ioc_comp);
2565 	bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2566 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2567 
2568 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2569 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2570 
2571 	err = bnad->bnad_completions.ioc_comp_status;
2572 	return err;
2573 }
2574 
2575 static int
2576 bnad_ioceth_enable(struct bnad *bnad)
2577 {
2578 	int err = 0;
2579 	unsigned long flags;
2580 
2581 	spin_lock_irqsave(&bnad->bna_lock, flags);
2582 	init_completion(&bnad->bnad_completions.ioc_comp);
2583 	bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2584 	bna_ioceth_enable(&bnad->bna.ioceth);
2585 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2586 
2587 	wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2588 		msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2589 
2590 	err = bnad->bnad_completions.ioc_comp_status;
2591 
2592 	return err;
2593 }
2594 
2595 /* Free BNA resources */
2596 static void
2597 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2598 		u32 res_val_max)
2599 {
2600 	int i;
2601 
2602 	for (i = 0; i < res_val_max; i++)
2603 		bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2604 }
2605 
2606 /* Allocates memory and interrupt resources for BNA */
2607 static int
2608 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2609 		u32 res_val_max)
2610 {
2611 	int i, err;
2612 
2613 	for (i = 0; i < res_val_max; i++) {
2614 		err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2615 		if (err)
2616 			goto err_return;
2617 	}
2618 	return 0;
2619 
2620 err_return:
2621 	bnad_res_free(bnad, res_info, res_val_max);
2622 	return err;
2623 }
2624 
2625 /* Interrupt enable / disable */
2626 static void
2627 bnad_enable_msix(struct bnad *bnad)
2628 {
2629 	int i, ret;
2630 	unsigned long flags;
2631 
2632 	spin_lock_irqsave(&bnad->bna_lock, flags);
2633 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2634 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2635 		return;
2636 	}
2637 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2638 
2639 	if (bnad->msix_table)
2640 		return;
2641 
2642 	bnad->msix_table =
2643 		kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2644 
2645 	if (!bnad->msix_table)
2646 		goto intx_mode;
2647 
2648 	for (i = 0; i < bnad->msix_num; i++)
2649 		bnad->msix_table[i].entry = i;
2650 
2651 	ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2652 				    1, bnad->msix_num);
2653 	if (ret < 0) {
2654 		goto intx_mode;
2655 	} else if (ret < bnad->msix_num) {
2656 		dev_warn(&bnad->pcidev->dev,
2657 			 "%d MSI-X vectors allocated < %d requested\n",
2658 			 ret, bnad->msix_num);
2659 
2660 		spin_lock_irqsave(&bnad->bna_lock, flags);
2661 		/* ret = #of vectors that we got */
2662 		bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2663 			(ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2664 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
2665 
2666 		bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2667 			 BNAD_MAILBOX_MSIX_VECTORS;
2668 
2669 		if (bnad->msix_num > ret) {
2670 			pci_disable_msix(bnad->pcidev);
2671 			goto intx_mode;
2672 		}
2673 	}
2674 
2675 	pci_intx(bnad->pcidev, 0);
2676 
2677 	return;
2678 
2679 intx_mode:
2680 	dev_warn(&bnad->pcidev->dev,
2681 		 "MSI-X enable failed - operating in INTx mode\n");
2682 
2683 	kfree(bnad->msix_table);
2684 	bnad->msix_table = NULL;
2685 	bnad->msix_num = 0;
2686 	spin_lock_irqsave(&bnad->bna_lock, flags);
2687 	bnad->cfg_flags &= ~BNAD_CF_MSIX;
2688 	bnad_q_num_init(bnad);
2689 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2690 }
2691 
2692 static void
2693 bnad_disable_msix(struct bnad *bnad)
2694 {
2695 	u32 cfg_flags;
2696 	unsigned long flags;
2697 
2698 	spin_lock_irqsave(&bnad->bna_lock, flags);
2699 	cfg_flags = bnad->cfg_flags;
2700 	if (bnad->cfg_flags & BNAD_CF_MSIX)
2701 		bnad->cfg_flags &= ~BNAD_CF_MSIX;
2702 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2703 
2704 	if (cfg_flags & BNAD_CF_MSIX) {
2705 		pci_disable_msix(bnad->pcidev);
2706 		kfree(bnad->msix_table);
2707 		bnad->msix_table = NULL;
2708 	}
2709 }
2710 
2711 /* Netdev entry points */
2712 static int
2713 bnad_open(struct net_device *netdev)
2714 {
2715 	int err;
2716 	struct bnad *bnad = netdev_priv(netdev);
2717 	struct bna_pause_config pause_config;
2718 	unsigned long flags;
2719 
2720 	mutex_lock(&bnad->conf_mutex);
2721 
2722 	/* Tx */
2723 	err = bnad_setup_tx(bnad, 0);
2724 	if (err)
2725 		goto err_return;
2726 
2727 	/* Rx */
2728 	err = bnad_setup_rx(bnad, 0);
2729 	if (err)
2730 		goto cleanup_tx;
2731 
2732 	/* Port */
2733 	pause_config.tx_pause = 0;
2734 	pause_config.rx_pause = 0;
2735 
2736 	spin_lock_irqsave(&bnad->bna_lock, flags);
2737 	bna_enet_mtu_set(&bnad->bna.enet,
2738 			 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2739 	bna_enet_pause_config(&bnad->bna.enet, &pause_config);
2740 	bna_enet_enable(&bnad->bna.enet);
2741 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2742 
2743 	/* Enable broadcast */
2744 	bnad_enable_default_bcast(bnad);
2745 
2746 	/* Restore VLANs, if any */
2747 	bnad_restore_vlans(bnad, 0);
2748 
2749 	/* Set the UCAST address */
2750 	spin_lock_irqsave(&bnad->bna_lock, flags);
2751 	bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2752 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2753 
2754 	/* Start the stats timer */
2755 	bnad_stats_timer_start(bnad);
2756 
2757 	mutex_unlock(&bnad->conf_mutex);
2758 
2759 	return 0;
2760 
2761 cleanup_tx:
2762 	bnad_destroy_tx(bnad, 0);
2763 
2764 err_return:
2765 	mutex_unlock(&bnad->conf_mutex);
2766 	return err;
2767 }
2768 
2769 static int
2770 bnad_stop(struct net_device *netdev)
2771 {
2772 	struct bnad *bnad = netdev_priv(netdev);
2773 	unsigned long flags;
2774 
2775 	mutex_lock(&bnad->conf_mutex);
2776 
2777 	/* Stop the stats timer */
2778 	bnad_stats_timer_stop(bnad);
2779 
2780 	init_completion(&bnad->bnad_completions.enet_comp);
2781 
2782 	spin_lock_irqsave(&bnad->bna_lock, flags);
2783 	bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2784 			bnad_cb_enet_disabled);
2785 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
2786 
2787 	wait_for_completion(&bnad->bnad_completions.enet_comp);
2788 
2789 	bnad_destroy_tx(bnad, 0);
2790 	bnad_destroy_rx(bnad, 0);
2791 
2792 	/* Synchronize mailbox IRQ */
2793 	bnad_mbox_irq_sync(bnad);
2794 
2795 	mutex_unlock(&bnad->conf_mutex);
2796 
2797 	return 0;
2798 }
2799 
2800 /* TX */
2801 /* Returns 0 for success */
2802 static int
2803 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2804 		    struct sk_buff *skb, struct bna_txq_entry *txqent)
2805 {
2806 	u16 flags = 0;
2807 	u32 gso_size;
2808 	u16 vlan_tag = 0;
2809 
2810 	if (skb_vlan_tag_present(skb)) {
2811 		vlan_tag = (u16)skb_vlan_tag_get(skb);
2812 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2813 	}
2814 	if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2815 		vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2816 				| (vlan_tag & 0x1fff);
2817 		flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2818 	}
2819 	txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2820 
2821 	if (skb_is_gso(skb)) {
2822 		gso_size = skb_shinfo(skb)->gso_size;
2823 		if (unlikely(gso_size > bnad->netdev->mtu)) {
2824 			BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2825 			return -EINVAL;
2826 		}
2827 		if (unlikely((gso_size + skb_transport_offset(skb) +
2828 			      tcp_hdrlen(skb)) >= skb->len)) {
2829 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2830 			txqent->hdr.wi.lso_mss = 0;
2831 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2832 		} else {
2833 			txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2834 			txqent->hdr.wi.lso_mss = htons(gso_size);
2835 		}
2836 
2837 		if (bnad_tso_prepare(bnad, skb)) {
2838 			BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2839 			return -EINVAL;
2840 		}
2841 
2842 		flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2843 		txqent->hdr.wi.l4_hdr_size_n_offset =
2844 			htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2845 			tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2846 	} else  {
2847 		txqent->hdr.wi.opcode =	htons(BNA_TXQ_WI_SEND);
2848 		txqent->hdr.wi.lso_mss = 0;
2849 
2850 		if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2851 			BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2852 			return -EINVAL;
2853 		}
2854 
2855 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2856 			__be16 net_proto = vlan_get_protocol(skb);
2857 			u8 proto = 0;
2858 
2859 			if (net_proto == htons(ETH_P_IP))
2860 				proto = ip_hdr(skb)->protocol;
2861 #ifdef NETIF_F_IPV6_CSUM
2862 			else if (net_proto == htons(ETH_P_IPV6)) {
2863 				/* nexthdr may not be TCP immediately. */
2864 				proto = ipv6_hdr(skb)->nexthdr;
2865 			}
2866 #endif
2867 			if (proto == IPPROTO_TCP) {
2868 				flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2869 				txqent->hdr.wi.l4_hdr_size_n_offset =
2870 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2871 					      (0, skb_transport_offset(skb)));
2872 
2873 				BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2874 
2875 				if (unlikely(skb_headlen(skb) <
2876 					    skb_transport_offset(skb) +
2877 				    tcp_hdrlen(skb))) {
2878 					BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2879 					return -EINVAL;
2880 				}
2881 			} else if (proto == IPPROTO_UDP) {
2882 				flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2883 				txqent->hdr.wi.l4_hdr_size_n_offset =
2884 					htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2885 					      (0, skb_transport_offset(skb)));
2886 
2887 				BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2888 				if (unlikely(skb_headlen(skb) <
2889 					    skb_transport_offset(skb) +
2890 				    sizeof(struct udphdr))) {
2891 					BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2892 					return -EINVAL;
2893 				}
2894 			} else {
2895 
2896 				BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2897 				return -EINVAL;
2898 			}
2899 		} else
2900 			txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2901 	}
2902 
2903 	txqent->hdr.wi.flags = htons(flags);
2904 	txqent->hdr.wi.frame_length = htonl(skb->len);
2905 
2906 	return 0;
2907 }
2908 
2909 /*
2910  * bnad_start_xmit : Netdev entry point for Transmit
2911  *		     Called under lock held by net_device
2912  */
2913 static netdev_tx_t
2914 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2915 {
2916 	struct bnad *bnad = netdev_priv(netdev);
2917 	u32 txq_id = 0;
2918 	struct bna_tcb *tcb = NULL;
2919 	struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2920 	u32		prod, q_depth, vect_id;
2921 	u32		wis, vectors, len;
2922 	int		i;
2923 	dma_addr_t		dma_addr;
2924 	struct bna_txq_entry *txqent;
2925 
2926 	len = skb_headlen(skb);
2927 
2928 	/* Sanity checks for the skb */
2929 
2930 	if (unlikely(skb->len <= ETH_HLEN)) {
2931 		dev_kfree_skb_any(skb);
2932 		BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2933 		return NETDEV_TX_OK;
2934 	}
2935 	if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2936 		dev_kfree_skb_any(skb);
2937 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2938 		return NETDEV_TX_OK;
2939 	}
2940 	if (unlikely(len == 0)) {
2941 		dev_kfree_skb_any(skb);
2942 		BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2943 		return NETDEV_TX_OK;
2944 	}
2945 
2946 	tcb = bnad->tx_info[0].tcb[txq_id];
2947 
2948 	/*
2949 	 * Takes care of the Tx that is scheduled between clearing the flag
2950 	 * and the netif_tx_stop_all_queues() call.
2951 	 */
2952 	if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2953 		dev_kfree_skb_any(skb);
2954 		BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2955 		return NETDEV_TX_OK;
2956 	}
2957 
2958 	q_depth = tcb->q_depth;
2959 	prod = tcb->producer_index;
2960 	unmap_q = tcb->unmap_q;
2961 
2962 	vectors = 1 + skb_shinfo(skb)->nr_frags;
2963 	wis = BNA_TXQ_WI_NEEDED(vectors);	/* 4 vectors per work item */
2964 
2965 	if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2966 		dev_kfree_skb_any(skb);
2967 		BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2968 		return NETDEV_TX_OK;
2969 	}
2970 
2971 	/* Check for available TxQ resources */
2972 	if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2973 		if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2974 		    !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2975 			u32 sent;
2976 			sent = bnad_txcmpl_process(bnad, tcb);
2977 			if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2978 				bna_ib_ack(tcb->i_dbell, sent);
2979 			smp_mb__before_atomic();
2980 			clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2981 		} else {
2982 			netif_stop_queue(netdev);
2983 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2984 		}
2985 
2986 		smp_mb();
2987 		/*
2988 		 * Check again to deal with race condition between
2989 		 * netif_stop_queue here, and netif_wake_queue in
2990 		 * interrupt handler which is not inside netif tx lock.
2991 		 */
2992 		if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2993 			BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2994 			return NETDEV_TX_BUSY;
2995 		} else {
2996 			netif_wake_queue(netdev);
2997 			BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2998 		}
2999 	}
3000 
3001 	txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3002 	head_unmap = &unmap_q[prod];
3003 
3004 	/* Program the opcode, flags, frame_len, num_vectors in WI */
3005 	if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3006 		dev_kfree_skb_any(skb);
3007 		return NETDEV_TX_OK;
3008 	}
3009 	txqent->hdr.wi.reserved = 0;
3010 	txqent->hdr.wi.num_vectors = vectors;
3011 
3012 	head_unmap->skb = skb;
3013 	head_unmap->nvecs = 0;
3014 
3015 	/* Program the vectors */
3016 	unmap = head_unmap;
3017 	dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3018 				  len, DMA_TO_DEVICE);
3019 	if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3020 		dev_kfree_skb_any(skb);
3021 		BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3022 		return NETDEV_TX_OK;
3023 	}
3024 	BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3025 	txqent->vector[0].length = htons(len);
3026 	dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3027 	head_unmap->nvecs++;
3028 
3029 	for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3030 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3031 		u32		size = skb_frag_size(frag);
3032 
3033 		if (unlikely(size == 0)) {
3034 			/* Undo the changes starting at tcb->producer_index */
3035 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3036 				tcb->producer_index);
3037 			dev_kfree_skb_any(skb);
3038 			BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3039 			return NETDEV_TX_OK;
3040 		}
3041 
3042 		len += size;
3043 
3044 		vect_id++;
3045 		if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3046 			vect_id = 0;
3047 			BNA_QE_INDX_INC(prod, q_depth);
3048 			txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3049 			txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3050 			unmap = &unmap_q[prod];
3051 		}
3052 
3053 		dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3054 					    0, size, DMA_TO_DEVICE);
3055 		if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3056 			/* Undo the changes starting at tcb->producer_index */
3057 			bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3058 					   tcb->producer_index);
3059 			dev_kfree_skb_any(skb);
3060 			BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3061 			return NETDEV_TX_OK;
3062 		}
3063 
3064 		dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3065 		BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3066 		txqent->vector[vect_id].length = htons(size);
3067 		dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3068 				   dma_addr);
3069 		head_unmap->nvecs++;
3070 	}
3071 
3072 	if (unlikely(len != skb->len)) {
3073 		/* Undo the changes starting at tcb->producer_index */
3074 		bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3075 		dev_kfree_skb_any(skb);
3076 		BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3077 		return NETDEV_TX_OK;
3078 	}
3079 
3080 	BNA_QE_INDX_INC(prod, q_depth);
3081 	tcb->producer_index = prod;
3082 
3083 	wmb();
3084 
3085 	if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3086 		return NETDEV_TX_OK;
3087 
3088 	skb_tx_timestamp(skb);
3089 
3090 	bna_txq_prod_indx_doorbell(tcb);
3091 
3092 	return NETDEV_TX_OK;
3093 }
3094 
3095 /*
3096  * Used spin_lock to synchronize reading of stats structures, which
3097  * is written by BNA under the same lock.
3098  */
3099 static void
3100 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3101 {
3102 	struct bnad *bnad = netdev_priv(netdev);
3103 	unsigned long flags;
3104 
3105 	spin_lock_irqsave(&bnad->bna_lock, flags);
3106 
3107 	bnad_netdev_qstats_fill(bnad, stats);
3108 	bnad_netdev_hwstats_fill(bnad, stats);
3109 
3110 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3111 }
3112 
3113 static void
3114 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3115 {
3116 	struct net_device *netdev = bnad->netdev;
3117 	int uc_count = netdev_uc_count(netdev);
3118 	enum bna_cb_status ret;
3119 	u8 *mac_list;
3120 	struct netdev_hw_addr *ha;
3121 	int entry;
3122 
3123 	if (netdev_uc_empty(bnad->netdev)) {
3124 		bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3125 		return;
3126 	}
3127 
3128 	if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3129 		goto mode_default;
3130 
3131 	mac_list = kcalloc(ETH_ALEN, uc_count, GFP_ATOMIC);
3132 	if (mac_list == NULL)
3133 		goto mode_default;
3134 
3135 	entry = 0;
3136 	netdev_for_each_uc_addr(ha, netdev) {
3137 		ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]);
3138 		entry++;
3139 	}
3140 
3141 	ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list);
3142 	kfree(mac_list);
3143 
3144 	if (ret != BNA_CB_SUCCESS)
3145 		goto mode_default;
3146 
3147 	return;
3148 
3149 	/* ucast packets not in UCAM are routed to default function */
3150 mode_default:
3151 	bnad->cfg_flags |= BNAD_CF_DEFAULT;
3152 	bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3153 }
3154 
3155 static void
3156 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3157 {
3158 	struct net_device *netdev = bnad->netdev;
3159 	int mc_count = netdev_mc_count(netdev);
3160 	enum bna_cb_status ret;
3161 	u8 *mac_list;
3162 
3163 	if (netdev->flags & IFF_ALLMULTI)
3164 		goto mode_allmulti;
3165 
3166 	if (netdev_mc_empty(netdev))
3167 		return;
3168 
3169 	if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3170 		goto mode_allmulti;
3171 
3172 	mac_list = kcalloc(mc_count + 1, ETH_ALEN, GFP_ATOMIC);
3173 
3174 	if (mac_list == NULL)
3175 		goto mode_allmulti;
3176 
3177 	ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]);
3178 
3179 	/* copy rest of the MCAST addresses */
3180 	bnad_netdev_mc_list_get(netdev, mac_list);
3181 	ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list);
3182 	kfree(mac_list);
3183 
3184 	if (ret != BNA_CB_SUCCESS)
3185 		goto mode_allmulti;
3186 
3187 	return;
3188 
3189 mode_allmulti:
3190 	bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3191 	bna_rx_mcast_delall(bnad->rx_info[0].rx);
3192 }
3193 
3194 void
3195 bnad_set_rx_mode(struct net_device *netdev)
3196 {
3197 	struct bnad *bnad = netdev_priv(netdev);
3198 	enum bna_rxmode new_mode, mode_mask;
3199 	unsigned long flags;
3200 
3201 	spin_lock_irqsave(&bnad->bna_lock, flags);
3202 
3203 	if (bnad->rx_info[0].rx == NULL) {
3204 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3205 		return;
3206 	}
3207 
3208 	/* clear bnad flags to update it with new settings */
3209 	bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3210 			BNAD_CF_ALLMULTI);
3211 
3212 	new_mode = 0;
3213 	if (netdev->flags & IFF_PROMISC) {
3214 		new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3215 		bnad->cfg_flags |= BNAD_CF_PROMISC;
3216 	} else {
3217 		bnad_set_rx_mcast_fltr(bnad);
3218 
3219 		if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3220 			new_mode |= BNA_RXMODE_ALLMULTI;
3221 
3222 		bnad_set_rx_ucast_fltr(bnad);
3223 
3224 		if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3225 			new_mode |= BNA_RXMODE_DEFAULT;
3226 	}
3227 
3228 	mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3229 			BNA_RXMODE_ALLMULTI;
3230 	bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask);
3231 
3232 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3233 }
3234 
3235 /*
3236  * bna_lock is used to sync writes to netdev->addr
3237  * conf_lock cannot be used since this call may be made
3238  * in a non-blocking context.
3239  */
3240 static int
3241 bnad_set_mac_address(struct net_device *netdev, void *addr)
3242 {
3243 	int err;
3244 	struct bnad *bnad = netdev_priv(netdev);
3245 	struct sockaddr *sa = (struct sockaddr *)addr;
3246 	unsigned long flags;
3247 
3248 	spin_lock_irqsave(&bnad->bna_lock, flags);
3249 
3250 	err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3251 	if (!err)
3252 		ether_addr_copy(netdev->dev_addr, sa->sa_data);
3253 
3254 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3255 
3256 	return err;
3257 }
3258 
3259 static int
3260 bnad_mtu_set(struct bnad *bnad, int frame_size)
3261 {
3262 	unsigned long flags;
3263 
3264 	init_completion(&bnad->bnad_completions.mtu_comp);
3265 
3266 	spin_lock_irqsave(&bnad->bna_lock, flags);
3267 	bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3268 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3269 
3270 	wait_for_completion(&bnad->bnad_completions.mtu_comp);
3271 
3272 	return bnad->bnad_completions.mtu_comp_status;
3273 }
3274 
3275 static int
3276 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3277 {
3278 	int err, mtu;
3279 	struct bnad *bnad = netdev_priv(netdev);
3280 	u32 frame, new_frame;
3281 
3282 	mutex_lock(&bnad->conf_mutex);
3283 
3284 	mtu = netdev->mtu;
3285 	netdev->mtu = new_mtu;
3286 
3287 	frame = BNAD_FRAME_SIZE(mtu);
3288 	new_frame = BNAD_FRAME_SIZE(new_mtu);
3289 
3290 	/* check if multi-buffer needs to be enabled */
3291 	if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3292 	    netif_running(bnad->netdev)) {
3293 		/* only when transition is over 4K */
3294 		if ((frame <= 4096 && new_frame > 4096) ||
3295 		    (frame > 4096 && new_frame <= 4096))
3296 			bnad_reinit_rx(bnad);
3297 	}
3298 
3299 	err = bnad_mtu_set(bnad, new_frame);
3300 	if (err)
3301 		err = -EBUSY;
3302 
3303 	mutex_unlock(&bnad->conf_mutex);
3304 	return err;
3305 }
3306 
3307 static int
3308 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3309 {
3310 	struct bnad *bnad = netdev_priv(netdev);
3311 	unsigned long flags;
3312 
3313 	if (!bnad->rx_info[0].rx)
3314 		return 0;
3315 
3316 	mutex_lock(&bnad->conf_mutex);
3317 
3318 	spin_lock_irqsave(&bnad->bna_lock, flags);
3319 	bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3320 	set_bit(vid, bnad->active_vlans);
3321 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3322 
3323 	mutex_unlock(&bnad->conf_mutex);
3324 
3325 	return 0;
3326 }
3327 
3328 static int
3329 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3330 {
3331 	struct bnad *bnad = netdev_priv(netdev);
3332 	unsigned long flags;
3333 
3334 	if (!bnad->rx_info[0].rx)
3335 		return 0;
3336 
3337 	mutex_lock(&bnad->conf_mutex);
3338 
3339 	spin_lock_irqsave(&bnad->bna_lock, flags);
3340 	clear_bit(vid, bnad->active_vlans);
3341 	bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3342 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3343 
3344 	mutex_unlock(&bnad->conf_mutex);
3345 
3346 	return 0;
3347 }
3348 
3349 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3350 {
3351 	struct bnad *bnad = netdev_priv(dev);
3352 	netdev_features_t changed = features ^ dev->features;
3353 
3354 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3355 		unsigned long flags;
3356 
3357 		spin_lock_irqsave(&bnad->bna_lock, flags);
3358 
3359 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
3360 			bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3361 		else
3362 			bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3363 
3364 		spin_unlock_irqrestore(&bnad->bna_lock, flags);
3365 	}
3366 
3367 	return 0;
3368 }
3369 
3370 #ifdef CONFIG_NET_POLL_CONTROLLER
3371 static void
3372 bnad_netpoll(struct net_device *netdev)
3373 {
3374 	struct bnad *bnad = netdev_priv(netdev);
3375 	struct bnad_rx_info *rx_info;
3376 	struct bnad_rx_ctrl *rx_ctrl;
3377 	u32 curr_mask;
3378 	int i, j;
3379 
3380 	if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3381 		bna_intx_disable(&bnad->bna, curr_mask);
3382 		bnad_isr(bnad->pcidev->irq, netdev);
3383 		bna_intx_enable(&bnad->bna, curr_mask);
3384 	} else {
3385 		/*
3386 		 * Tx processing may happen in sending context, so no need
3387 		 * to explicitly process completions here
3388 		 */
3389 
3390 		/* Rx processing */
3391 		for (i = 0; i < bnad->num_rx; i++) {
3392 			rx_info = &bnad->rx_info[i];
3393 			if (!rx_info->rx)
3394 				continue;
3395 			for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3396 				rx_ctrl = &rx_info->rx_ctrl[j];
3397 				if (rx_ctrl->ccb)
3398 					bnad_netif_rx_schedule_poll(bnad,
3399 							    rx_ctrl->ccb);
3400 			}
3401 		}
3402 	}
3403 }
3404 #endif
3405 
3406 static const struct net_device_ops bnad_netdev_ops = {
3407 	.ndo_open		= bnad_open,
3408 	.ndo_stop		= bnad_stop,
3409 	.ndo_start_xmit		= bnad_start_xmit,
3410 	.ndo_get_stats64	= bnad_get_stats64,
3411 	.ndo_set_rx_mode	= bnad_set_rx_mode,
3412 	.ndo_validate_addr      = eth_validate_addr,
3413 	.ndo_set_mac_address    = bnad_set_mac_address,
3414 	.ndo_change_mtu		= bnad_change_mtu,
3415 	.ndo_vlan_rx_add_vid    = bnad_vlan_rx_add_vid,
3416 	.ndo_vlan_rx_kill_vid   = bnad_vlan_rx_kill_vid,
3417 	.ndo_set_features	= bnad_set_features,
3418 #ifdef CONFIG_NET_POLL_CONTROLLER
3419 	.ndo_poll_controller    = bnad_netpoll
3420 #endif
3421 };
3422 
3423 static void
3424 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3425 {
3426 	struct net_device *netdev = bnad->netdev;
3427 
3428 	netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3429 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3430 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3431 		NETIF_F_HW_VLAN_CTAG_RX;
3432 
3433 	netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3434 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3435 		NETIF_F_TSO | NETIF_F_TSO6;
3436 
3437 	netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3438 
3439 	if (using_dac)
3440 		netdev->features |= NETIF_F_HIGHDMA;
3441 
3442 	netdev->mem_start = bnad->mmio_start;
3443 	netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3444 
3445 	/* MTU range: 46 - 9000 */
3446 	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
3447 	netdev->max_mtu = BNAD_JUMBO_MTU;
3448 
3449 	netdev->netdev_ops = &bnad_netdev_ops;
3450 	bnad_set_ethtool_ops(netdev);
3451 }
3452 
3453 /*
3454  * 1. Initialize the bnad structure
3455  * 2. Setup netdev pointer in pci_dev
3456  * 3. Initialize no. of TxQ & CQs & MSIX vectors
3457  * 4. Initialize work queue.
3458  */
3459 static int
3460 bnad_init(struct bnad *bnad,
3461 	  struct pci_dev *pdev, struct net_device *netdev)
3462 {
3463 	unsigned long flags;
3464 
3465 	SET_NETDEV_DEV(netdev, &pdev->dev);
3466 	pci_set_drvdata(pdev, netdev);
3467 
3468 	bnad->netdev = netdev;
3469 	bnad->pcidev = pdev;
3470 	bnad->mmio_start = pci_resource_start(pdev, 0);
3471 	bnad->mmio_len = pci_resource_len(pdev, 0);
3472 	bnad->bar0 = ioremap(bnad->mmio_start, bnad->mmio_len);
3473 	if (!bnad->bar0) {
3474 		dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3475 		return -ENOMEM;
3476 	}
3477 	dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0,
3478 		 (unsigned long long) bnad->mmio_len);
3479 
3480 	spin_lock_irqsave(&bnad->bna_lock, flags);
3481 	if (!bnad_msix_disable)
3482 		bnad->cfg_flags = BNAD_CF_MSIX;
3483 
3484 	bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3485 
3486 	bnad_q_num_init(bnad);
3487 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3488 
3489 	bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3490 		(bnad->num_rx * bnad->num_rxp_per_rx) +
3491 			 BNAD_MAILBOX_MSIX_VECTORS;
3492 
3493 	bnad->txq_depth = BNAD_TXQ_DEPTH;
3494 	bnad->rxq_depth = BNAD_RXQ_DEPTH;
3495 
3496 	bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3497 	bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3498 
3499 	sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3500 	bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3501 	if (!bnad->work_q) {
3502 		iounmap(bnad->bar0);
3503 		return -ENOMEM;
3504 	}
3505 
3506 	return 0;
3507 }
3508 
3509 /*
3510  * Must be called after bnad_pci_uninit()
3511  * so that iounmap() and pci_set_drvdata(NULL)
3512  * happens only after PCI uninitialization.
3513  */
3514 static void
3515 bnad_uninit(struct bnad *bnad)
3516 {
3517 	if (bnad->work_q) {
3518 		flush_workqueue(bnad->work_q);
3519 		destroy_workqueue(bnad->work_q);
3520 		bnad->work_q = NULL;
3521 	}
3522 
3523 	if (bnad->bar0)
3524 		iounmap(bnad->bar0);
3525 }
3526 
3527 /*
3528  * Initialize locks
3529 	a) Per ioceth mutes used for serializing configuration
3530 	   changes from OS interface
3531 	b) spin lock used to protect bna state machine
3532  */
3533 static void
3534 bnad_lock_init(struct bnad *bnad)
3535 {
3536 	spin_lock_init(&bnad->bna_lock);
3537 	mutex_init(&bnad->conf_mutex);
3538 }
3539 
3540 static void
3541 bnad_lock_uninit(struct bnad *bnad)
3542 {
3543 	mutex_destroy(&bnad->conf_mutex);
3544 }
3545 
3546 /* PCI Initialization */
3547 static int
3548 bnad_pci_init(struct bnad *bnad,
3549 	      struct pci_dev *pdev, bool *using_dac)
3550 {
3551 	int err;
3552 
3553 	err = pci_enable_device(pdev);
3554 	if (err)
3555 		return err;
3556 	err = pci_request_regions(pdev, BNAD_NAME);
3557 	if (err)
3558 		goto disable_device;
3559 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3560 		*using_dac = true;
3561 	} else {
3562 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3563 		if (err)
3564 			goto release_regions;
3565 		*using_dac = false;
3566 	}
3567 	pci_set_master(pdev);
3568 	return 0;
3569 
3570 release_regions:
3571 	pci_release_regions(pdev);
3572 disable_device:
3573 	pci_disable_device(pdev);
3574 
3575 	return err;
3576 }
3577 
3578 static void
3579 bnad_pci_uninit(struct pci_dev *pdev)
3580 {
3581 	pci_release_regions(pdev);
3582 	pci_disable_device(pdev);
3583 }
3584 
3585 static int
3586 bnad_pci_probe(struct pci_dev *pdev,
3587 		const struct pci_device_id *pcidev_id)
3588 {
3589 	bool	using_dac;
3590 	int	err;
3591 	struct bnad *bnad;
3592 	struct bna *bna;
3593 	struct net_device *netdev;
3594 	struct bfa_pcidev pcidev_info;
3595 	unsigned long flags;
3596 
3597 	mutex_lock(&bnad_fwimg_mutex);
3598 	if (!cna_get_firmware_buf(pdev)) {
3599 		mutex_unlock(&bnad_fwimg_mutex);
3600 		dev_err(&pdev->dev, "failed to load firmware image!\n");
3601 		return -ENODEV;
3602 	}
3603 	mutex_unlock(&bnad_fwimg_mutex);
3604 
3605 	/*
3606 	 * Allocates sizeof(struct net_device + struct bnad)
3607 	 * bnad = netdev->priv
3608 	 */
3609 	netdev = alloc_etherdev(sizeof(struct bnad));
3610 	if (!netdev) {
3611 		err = -ENOMEM;
3612 		return err;
3613 	}
3614 	bnad = netdev_priv(netdev);
3615 	bnad_lock_init(bnad);
3616 	bnad->id = atomic_inc_return(&bna_id) - 1;
3617 
3618 	mutex_lock(&bnad->conf_mutex);
3619 	/*
3620 	 * PCI initialization
3621 	 *	Output : using_dac = 1 for 64 bit DMA
3622 	 *			   = 0 for 32 bit DMA
3623 	 */
3624 	using_dac = false;
3625 	err = bnad_pci_init(bnad, pdev, &using_dac);
3626 	if (err)
3627 		goto unlock_mutex;
3628 
3629 	/*
3630 	 * Initialize bnad structure
3631 	 * Setup relation between pci_dev & netdev
3632 	 */
3633 	err = bnad_init(bnad, pdev, netdev);
3634 	if (err)
3635 		goto pci_uninit;
3636 
3637 	/* Initialize netdev structure, set up ethtool ops */
3638 	bnad_netdev_init(bnad, using_dac);
3639 
3640 	/* Set link to down state */
3641 	netif_carrier_off(netdev);
3642 
3643 	/* Setup the debugfs node for this bfad */
3644 	if (bna_debugfs_enable)
3645 		bnad_debugfs_init(bnad);
3646 
3647 	/* Get resource requirement form bna */
3648 	spin_lock_irqsave(&bnad->bna_lock, flags);
3649 	bna_res_req(&bnad->res_info[0]);
3650 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3651 
3652 	/* Allocate resources from bna */
3653 	err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3654 	if (err)
3655 		goto drv_uninit;
3656 
3657 	bna = &bnad->bna;
3658 
3659 	/* Setup pcidev_info for bna_init() */
3660 	pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3661 	pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3662 	pcidev_info.device_id = bnad->pcidev->device;
3663 	pcidev_info.pci_bar_kva = bnad->bar0;
3664 
3665 	spin_lock_irqsave(&bnad->bna_lock, flags);
3666 	bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3667 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3668 
3669 	bnad->stats.bna_stats = &bna->stats;
3670 
3671 	bnad_enable_msix(bnad);
3672 	err = bnad_mbox_irq_alloc(bnad);
3673 	if (err)
3674 		goto res_free;
3675 
3676 	/* Set up timers */
3677 	timer_setup(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout, 0);
3678 	timer_setup(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check, 0);
3679 	timer_setup(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout, 0);
3680 	timer_setup(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3681 		    0);
3682 
3683 	/*
3684 	 * Start the chip
3685 	 * If the call back comes with error, we bail out.
3686 	 * This is a catastrophic error.
3687 	 */
3688 	err = bnad_ioceth_enable(bnad);
3689 	if (err) {
3690 		dev_err(&pdev->dev, "initialization failed err=%d\n", err);
3691 		goto probe_success;
3692 	}
3693 
3694 	spin_lock_irqsave(&bnad->bna_lock, flags);
3695 	if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3696 		bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3697 		bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3698 			bna_attr(bna)->num_rxp - 1);
3699 		if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3700 			bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3701 			err = -EIO;
3702 	}
3703 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3704 	if (err)
3705 		goto disable_ioceth;
3706 
3707 	spin_lock_irqsave(&bnad->bna_lock, flags);
3708 	bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3709 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3710 
3711 	err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3712 	if (err) {
3713 		err = -EIO;
3714 		goto disable_ioceth;
3715 	}
3716 
3717 	spin_lock_irqsave(&bnad->bna_lock, flags);
3718 	bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3719 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3720 
3721 	/* Get the burnt-in mac */
3722 	spin_lock_irqsave(&bnad->bna_lock, flags);
3723 	bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr);
3724 	bnad_set_netdev_perm_addr(bnad);
3725 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3726 
3727 	mutex_unlock(&bnad->conf_mutex);
3728 
3729 	/* Finally, reguister with net_device layer */
3730 	err = register_netdev(netdev);
3731 	if (err) {
3732 		dev_err(&pdev->dev, "registering net device failed\n");
3733 		goto probe_uninit;
3734 	}
3735 	set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3736 
3737 	return 0;
3738 
3739 probe_success:
3740 	mutex_unlock(&bnad->conf_mutex);
3741 	return 0;
3742 
3743 probe_uninit:
3744 	mutex_lock(&bnad->conf_mutex);
3745 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3746 disable_ioceth:
3747 	bnad_ioceth_disable(bnad);
3748 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3749 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3750 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3751 	spin_lock_irqsave(&bnad->bna_lock, flags);
3752 	bna_uninit(bna);
3753 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3754 	bnad_mbox_irq_free(bnad);
3755 	bnad_disable_msix(bnad);
3756 res_free:
3757 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3758 drv_uninit:
3759 	/* Remove the debugfs node for this bnad */
3760 	kfree(bnad->regdata);
3761 	bnad_debugfs_uninit(bnad);
3762 	bnad_uninit(bnad);
3763 pci_uninit:
3764 	bnad_pci_uninit(pdev);
3765 unlock_mutex:
3766 	mutex_unlock(&bnad->conf_mutex);
3767 	bnad_lock_uninit(bnad);
3768 	free_netdev(netdev);
3769 	return err;
3770 }
3771 
3772 static void
3773 bnad_pci_remove(struct pci_dev *pdev)
3774 {
3775 	struct net_device *netdev = pci_get_drvdata(pdev);
3776 	struct bnad *bnad;
3777 	struct bna *bna;
3778 	unsigned long flags;
3779 
3780 	if (!netdev)
3781 		return;
3782 
3783 	bnad = netdev_priv(netdev);
3784 	bna = &bnad->bna;
3785 
3786 	if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3787 		unregister_netdev(netdev);
3788 
3789 	mutex_lock(&bnad->conf_mutex);
3790 	bnad_ioceth_disable(bnad);
3791 	del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3792 	del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3793 	del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3794 	spin_lock_irqsave(&bnad->bna_lock, flags);
3795 	bna_uninit(bna);
3796 	spin_unlock_irqrestore(&bnad->bna_lock, flags);
3797 
3798 	bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3799 	bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3800 	bnad_mbox_irq_free(bnad);
3801 	bnad_disable_msix(bnad);
3802 	bnad_pci_uninit(pdev);
3803 	mutex_unlock(&bnad->conf_mutex);
3804 	bnad_lock_uninit(bnad);
3805 	/* Remove the debugfs node for this bnad */
3806 	kfree(bnad->regdata);
3807 	bnad_debugfs_uninit(bnad);
3808 	bnad_uninit(bnad);
3809 	free_netdev(netdev);
3810 }
3811 
3812 static const struct pci_device_id bnad_pci_id_table[] = {
3813 	{
3814 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3815 			PCI_DEVICE_ID_BROCADE_CT),
3816 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3817 		.class_mask =  0xffff00
3818 	},
3819 	{
3820 		PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3821 			BFA_PCI_DEVICE_ID_CT2),
3822 		.class = PCI_CLASS_NETWORK_ETHERNET << 8,
3823 		.class_mask =  0xffff00
3824 	},
3825 	{0,  },
3826 };
3827 
3828 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3829 
3830 static struct pci_driver bnad_pci_driver = {
3831 	.name = BNAD_NAME,
3832 	.id_table = bnad_pci_id_table,
3833 	.probe = bnad_pci_probe,
3834 	.remove = bnad_pci_remove,
3835 };
3836 
3837 static int __init
3838 bnad_module_init(void)
3839 {
3840 	int err;
3841 
3842 	bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3843 
3844 	err = pci_register_driver(&bnad_pci_driver);
3845 	if (err < 0) {
3846 		pr_err("bna: PCI driver registration failed err=%d\n", err);
3847 		return err;
3848 	}
3849 
3850 	return 0;
3851 }
3852 
3853 static void __exit
3854 bnad_module_exit(void)
3855 {
3856 	pci_unregister_driver(&bnad_pci_driver);
3857 	release_firmware(bfi_fw);
3858 }
3859 
3860 module_init(bnad_module_init);
3861 module_exit(bnad_module_exit);
3862 
3863 MODULE_AUTHOR("Brocade");
3864 MODULE_LICENSE("GPL");
3865 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3866 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3867 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
3868