1 /* 2 * Linux network driver for QLogic BR-series Converged Network Adapter. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License (GPL) Version 2 as 6 * published by the Free Software Foundation 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 /* 14 * Copyright (c) 2005-2014 Brocade Communications Systems, Inc. 15 * Copyright (c) 2014-2015 QLogic Corporation 16 * All rights reserved 17 * www.qlogic.com 18 */ 19 #include <linux/bitops.h> 20 #include <linux/netdevice.h> 21 #include <linux/skbuff.h> 22 #include <linux/etherdevice.h> 23 #include <linux/in.h> 24 #include <linux/ethtool.h> 25 #include <linux/if_vlan.h> 26 #include <linux/if_ether.h> 27 #include <linux/ip.h> 28 #include <linux/prefetch.h> 29 #include <linux/module.h> 30 31 #include "bnad.h" 32 #include "bna.h" 33 #include "cna.h" 34 35 static DEFINE_MUTEX(bnad_fwimg_mutex); 36 37 /* 38 * Module params 39 */ 40 static uint bnad_msix_disable; 41 module_param(bnad_msix_disable, uint, 0444); 42 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode"); 43 44 static uint bnad_ioc_auto_recover = 1; 45 module_param(bnad_ioc_auto_recover, uint, 0444); 46 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery"); 47 48 static uint bna_debugfs_enable = 1; 49 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR); 50 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1," 51 " Range[false:0|true:1]"); 52 53 /* 54 * Global variables 55 */ 56 static u32 bnad_rxqs_per_cq = 2; 57 static u32 bna_id; 58 static struct mutex bnad_list_mutex; 59 static LIST_HEAD(bnad_list); 60 static const u8 bnad_bcast_addr[] __aligned(2) = 61 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 62 63 /* 64 * Local MACROS 65 */ 66 #define BNAD_GET_MBOX_IRQ(_bnad) \ 67 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \ 68 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \ 69 ((_bnad)->pcidev->irq)) 70 71 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \ 72 do { \ 73 (_res_info)->res_type = BNA_RES_T_MEM; \ 74 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \ 75 (_res_info)->res_u.mem_info.num = (_num); \ 76 (_res_info)->res_u.mem_info.len = (_size); \ 77 } while (0) 78 79 static void 80 bnad_add_to_list(struct bnad *bnad) 81 { 82 mutex_lock(&bnad_list_mutex); 83 list_add_tail(&bnad->list_entry, &bnad_list); 84 bnad->id = bna_id++; 85 mutex_unlock(&bnad_list_mutex); 86 } 87 88 static void 89 bnad_remove_from_list(struct bnad *bnad) 90 { 91 mutex_lock(&bnad_list_mutex); 92 list_del(&bnad->list_entry); 93 mutex_unlock(&bnad_list_mutex); 94 } 95 96 /* 97 * Reinitialize completions in CQ, once Rx is taken down 98 */ 99 static void 100 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb) 101 { 102 struct bna_cq_entry *cmpl; 103 int i; 104 105 for (i = 0; i < ccb->q_depth; i++) { 106 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i]; 107 cmpl->valid = 0; 108 } 109 } 110 111 /* Tx Datapath functions */ 112 113 114 /* Caller should ensure that the entry at unmap_q[index] is valid */ 115 static u32 116 bnad_tx_buff_unmap(struct bnad *bnad, 117 struct bnad_tx_unmap *unmap_q, 118 u32 q_depth, u32 index) 119 { 120 struct bnad_tx_unmap *unmap; 121 struct sk_buff *skb; 122 int vector, nvecs; 123 124 unmap = &unmap_q[index]; 125 nvecs = unmap->nvecs; 126 127 skb = unmap->skb; 128 unmap->skb = NULL; 129 unmap->nvecs = 0; 130 dma_unmap_single(&bnad->pcidev->dev, 131 dma_unmap_addr(&unmap->vectors[0], dma_addr), 132 skb_headlen(skb), DMA_TO_DEVICE); 133 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0); 134 nvecs--; 135 136 vector = 0; 137 while (nvecs) { 138 vector++; 139 if (vector == BFI_TX_MAX_VECTORS_PER_WI) { 140 vector = 0; 141 BNA_QE_INDX_INC(index, q_depth); 142 unmap = &unmap_q[index]; 143 } 144 145 dma_unmap_page(&bnad->pcidev->dev, 146 dma_unmap_addr(&unmap->vectors[vector], dma_addr), 147 dma_unmap_len(&unmap->vectors[vector], dma_len), 148 DMA_TO_DEVICE); 149 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0); 150 nvecs--; 151 } 152 153 BNA_QE_INDX_INC(index, q_depth); 154 155 return index; 156 } 157 158 /* 159 * Frees all pending Tx Bufs 160 * At this point no activity is expected on the Q, 161 * so DMA unmap & freeing is fine. 162 */ 163 static void 164 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb) 165 { 166 struct bnad_tx_unmap *unmap_q = tcb->unmap_q; 167 struct sk_buff *skb; 168 int i; 169 170 for (i = 0; i < tcb->q_depth; i++) { 171 skb = unmap_q[i].skb; 172 if (!skb) 173 continue; 174 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i); 175 176 dev_kfree_skb_any(skb); 177 } 178 } 179 180 /* 181 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion 182 * Can be called in a) Interrupt context 183 * b) Sending context 184 */ 185 static u32 186 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb) 187 { 188 u32 sent_packets = 0, sent_bytes = 0; 189 u32 wis, unmap_wis, hw_cons, cons, q_depth; 190 struct bnad_tx_unmap *unmap_q = tcb->unmap_q; 191 struct bnad_tx_unmap *unmap; 192 struct sk_buff *skb; 193 194 /* Just return if TX is stopped */ 195 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) 196 return 0; 197 198 hw_cons = *(tcb->hw_consumer_index); 199 cons = tcb->consumer_index; 200 q_depth = tcb->q_depth; 201 202 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth); 203 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth))); 204 205 while (wis) { 206 unmap = &unmap_q[cons]; 207 208 skb = unmap->skb; 209 210 sent_packets++; 211 sent_bytes += skb->len; 212 213 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs); 214 wis -= unmap_wis; 215 216 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons); 217 dev_kfree_skb_any(skb); 218 } 219 220 /* Update consumer pointers. */ 221 tcb->consumer_index = hw_cons; 222 223 tcb->txq->tx_packets += sent_packets; 224 tcb->txq->tx_bytes += sent_bytes; 225 226 return sent_packets; 227 } 228 229 static u32 230 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb) 231 { 232 struct net_device *netdev = bnad->netdev; 233 u32 sent = 0; 234 235 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) 236 return 0; 237 238 sent = bnad_txcmpl_process(bnad, tcb); 239 if (sent) { 240 if (netif_queue_stopped(netdev) && 241 netif_carrier_ok(netdev) && 242 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >= 243 BNAD_NETIF_WAKE_THRESHOLD) { 244 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) { 245 netif_wake_queue(netdev); 246 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup); 247 } 248 } 249 } 250 251 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) 252 bna_ib_ack(tcb->i_dbell, sent); 253 254 smp_mb__before_atomic(); 255 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags); 256 257 return sent; 258 } 259 260 /* MSIX Tx Completion Handler */ 261 static irqreturn_t 262 bnad_msix_tx(int irq, void *data) 263 { 264 struct bna_tcb *tcb = (struct bna_tcb *)data; 265 struct bnad *bnad = tcb->bnad; 266 267 bnad_tx_complete(bnad, tcb); 268 269 return IRQ_HANDLED; 270 } 271 272 static inline void 273 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb) 274 { 275 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 276 277 unmap_q->reuse_pi = -1; 278 unmap_q->alloc_order = -1; 279 unmap_q->map_size = 0; 280 unmap_q->type = BNAD_RXBUF_NONE; 281 } 282 283 /* Default is page-based allocation. Multi-buffer support - TBD */ 284 static int 285 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb) 286 { 287 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 288 int order; 289 290 bnad_rxq_alloc_uninit(bnad, rcb); 291 292 order = get_order(rcb->rxq->buffer_size); 293 294 unmap_q->type = BNAD_RXBUF_PAGE; 295 296 if (bna_is_small_rxq(rcb->id)) { 297 unmap_q->alloc_order = 0; 298 unmap_q->map_size = rcb->rxq->buffer_size; 299 } else { 300 if (rcb->rxq->multi_buffer) { 301 unmap_q->alloc_order = 0; 302 unmap_q->map_size = rcb->rxq->buffer_size; 303 unmap_q->type = BNAD_RXBUF_MULTI_BUFF; 304 } else { 305 unmap_q->alloc_order = order; 306 unmap_q->map_size = 307 (rcb->rxq->buffer_size > 2048) ? 308 PAGE_SIZE << order : 2048; 309 } 310 } 311 312 BUG_ON((PAGE_SIZE << order) % unmap_q->map_size); 313 314 return 0; 315 } 316 317 static inline void 318 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap) 319 { 320 if (!unmap->page) 321 return; 322 323 dma_unmap_page(&bnad->pcidev->dev, 324 dma_unmap_addr(&unmap->vector, dma_addr), 325 unmap->vector.len, DMA_FROM_DEVICE); 326 put_page(unmap->page); 327 unmap->page = NULL; 328 dma_unmap_addr_set(&unmap->vector, dma_addr, 0); 329 unmap->vector.len = 0; 330 } 331 332 static inline void 333 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap) 334 { 335 if (!unmap->skb) 336 return; 337 338 dma_unmap_single(&bnad->pcidev->dev, 339 dma_unmap_addr(&unmap->vector, dma_addr), 340 unmap->vector.len, DMA_FROM_DEVICE); 341 dev_kfree_skb_any(unmap->skb); 342 unmap->skb = NULL; 343 dma_unmap_addr_set(&unmap->vector, dma_addr, 0); 344 unmap->vector.len = 0; 345 } 346 347 static void 348 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb) 349 { 350 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 351 int i; 352 353 for (i = 0; i < rcb->q_depth; i++) { 354 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i]; 355 356 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 357 bnad_rxq_cleanup_skb(bnad, unmap); 358 else 359 bnad_rxq_cleanup_page(bnad, unmap); 360 } 361 bnad_rxq_alloc_uninit(bnad, rcb); 362 } 363 364 static u32 365 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc) 366 { 367 u32 alloced, prod, q_depth; 368 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 369 struct bnad_rx_unmap *unmap, *prev; 370 struct bna_rxq_entry *rxent; 371 struct page *page; 372 u32 page_offset, alloc_size; 373 dma_addr_t dma_addr; 374 375 prod = rcb->producer_index; 376 q_depth = rcb->q_depth; 377 378 alloc_size = PAGE_SIZE << unmap_q->alloc_order; 379 alloced = 0; 380 381 while (nalloc--) { 382 unmap = &unmap_q->unmap[prod]; 383 384 if (unmap_q->reuse_pi < 0) { 385 page = alloc_pages(GFP_ATOMIC | __GFP_COMP, 386 unmap_q->alloc_order); 387 page_offset = 0; 388 } else { 389 prev = &unmap_q->unmap[unmap_q->reuse_pi]; 390 page = prev->page; 391 page_offset = prev->page_offset + unmap_q->map_size; 392 get_page(page); 393 } 394 395 if (unlikely(!page)) { 396 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed); 397 rcb->rxq->rxbuf_alloc_failed++; 398 goto finishing; 399 } 400 401 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset, 402 unmap_q->map_size, DMA_FROM_DEVICE); 403 404 unmap->page = page; 405 unmap->page_offset = page_offset; 406 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr); 407 unmap->vector.len = unmap_q->map_size; 408 page_offset += unmap_q->map_size; 409 410 if (page_offset < alloc_size) 411 unmap_q->reuse_pi = prod; 412 else 413 unmap_q->reuse_pi = -1; 414 415 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod]; 416 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr); 417 BNA_QE_INDX_INC(prod, q_depth); 418 alloced++; 419 } 420 421 finishing: 422 if (likely(alloced)) { 423 rcb->producer_index = prod; 424 smp_mb(); 425 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags))) 426 bna_rxq_prod_indx_doorbell(rcb); 427 } 428 429 return alloced; 430 } 431 432 static u32 433 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc) 434 { 435 u32 alloced, prod, q_depth, buff_sz; 436 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 437 struct bnad_rx_unmap *unmap; 438 struct bna_rxq_entry *rxent; 439 struct sk_buff *skb; 440 dma_addr_t dma_addr; 441 442 buff_sz = rcb->rxq->buffer_size; 443 prod = rcb->producer_index; 444 q_depth = rcb->q_depth; 445 446 alloced = 0; 447 while (nalloc--) { 448 unmap = &unmap_q->unmap[prod]; 449 450 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz); 451 452 if (unlikely(!skb)) { 453 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed); 454 rcb->rxq->rxbuf_alloc_failed++; 455 goto finishing; 456 } 457 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data, 458 buff_sz, DMA_FROM_DEVICE); 459 460 unmap->skb = skb; 461 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr); 462 unmap->vector.len = buff_sz; 463 464 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod]; 465 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr); 466 BNA_QE_INDX_INC(prod, q_depth); 467 alloced++; 468 } 469 470 finishing: 471 if (likely(alloced)) { 472 rcb->producer_index = prod; 473 smp_mb(); 474 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags))) 475 bna_rxq_prod_indx_doorbell(rcb); 476 } 477 478 return alloced; 479 } 480 481 static inline void 482 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb) 483 { 484 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q; 485 u32 to_alloc; 486 487 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth); 488 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)) 489 return; 490 491 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 492 bnad_rxq_refill_skb(bnad, rcb, to_alloc); 493 else 494 bnad_rxq_refill_page(bnad, rcb, to_alloc); 495 } 496 497 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \ 498 BNA_CQ_EF_IPV6 | \ 499 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \ 500 BNA_CQ_EF_L4_CKSUM_OK) 501 502 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \ 503 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK) 504 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \ 505 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK) 506 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \ 507 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK) 508 #define flags_udp6 (BNA_CQ_EF_IPV6 | \ 509 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK) 510 511 static void 512 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb, 513 u32 sop_ci, u32 nvecs) 514 { 515 struct bnad_rx_unmap_q *unmap_q; 516 struct bnad_rx_unmap *unmap; 517 u32 ci, vec; 518 519 unmap_q = rcb->unmap_q; 520 for (vec = 0, ci = sop_ci; vec < nvecs; vec++) { 521 unmap = &unmap_q->unmap[ci]; 522 BNA_QE_INDX_INC(ci, rcb->q_depth); 523 524 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 525 bnad_rxq_cleanup_skb(bnad, unmap); 526 else 527 bnad_rxq_cleanup_page(bnad, unmap); 528 } 529 } 530 531 static void 532 bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb, 533 u32 sop_ci, u32 nvecs, u32 last_fraglen) 534 { 535 struct bnad *bnad; 536 u32 ci, vec, len, totlen = 0; 537 struct bnad_rx_unmap_q *unmap_q; 538 struct bnad_rx_unmap *unmap; 539 540 unmap_q = rcb->unmap_q; 541 bnad = rcb->bnad; 542 543 /* prefetch header */ 544 prefetch(page_address(unmap_q->unmap[sop_ci].page) + 545 unmap_q->unmap[sop_ci].page_offset); 546 547 for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) { 548 unmap = &unmap_q->unmap[ci]; 549 BNA_QE_INDX_INC(ci, rcb->q_depth); 550 551 dma_unmap_page(&bnad->pcidev->dev, 552 dma_unmap_addr(&unmap->vector, dma_addr), 553 unmap->vector.len, DMA_FROM_DEVICE); 554 555 len = (vec == nvecs) ? 556 last_fraglen : unmap->vector.len; 557 skb->truesize += unmap->vector.len; 558 totlen += len; 559 560 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, 561 unmap->page, unmap->page_offset, len); 562 563 unmap->page = NULL; 564 unmap->vector.len = 0; 565 } 566 567 skb->len += totlen; 568 skb->data_len += totlen; 569 } 570 571 static inline void 572 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb, 573 struct bnad_rx_unmap *unmap, u32 len) 574 { 575 prefetch(skb->data); 576 577 dma_unmap_single(&bnad->pcidev->dev, 578 dma_unmap_addr(&unmap->vector, dma_addr), 579 unmap->vector.len, DMA_FROM_DEVICE); 580 581 skb_put(skb, len); 582 skb->protocol = eth_type_trans(skb, bnad->netdev); 583 584 unmap->skb = NULL; 585 unmap->vector.len = 0; 586 } 587 588 static u32 589 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget) 590 { 591 struct bna_cq_entry *cq, *cmpl, *next_cmpl; 592 struct bna_rcb *rcb = NULL; 593 struct bnad_rx_unmap_q *unmap_q; 594 struct bnad_rx_unmap *unmap = NULL; 595 struct sk_buff *skb = NULL; 596 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate; 597 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl; 598 u32 packets = 0, len = 0, totlen = 0; 599 u32 pi, vec, sop_ci = 0, nvecs = 0; 600 u32 flags, masked_flags; 601 602 prefetch(bnad->netdev); 603 604 cq = ccb->sw_q; 605 606 while (packets < budget) { 607 cmpl = &cq[ccb->producer_index]; 608 if (!cmpl->valid) 609 break; 610 /* The 'valid' field is set by the adapter, only after writing 611 * the other fields of completion entry. Hence, do not load 612 * other fields of completion entry *before* the 'valid' is 613 * loaded. Adding the rmb() here prevents the compiler and/or 614 * CPU from reordering the reads which would potentially result 615 * in reading stale values in completion entry. 616 */ 617 rmb(); 618 619 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length)); 620 621 if (bna_is_small_rxq(cmpl->rxq_id)) 622 rcb = ccb->rcb[1]; 623 else 624 rcb = ccb->rcb[0]; 625 626 unmap_q = rcb->unmap_q; 627 628 /* start of packet ci */ 629 sop_ci = rcb->consumer_index; 630 631 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) { 632 unmap = &unmap_q->unmap[sop_ci]; 633 skb = unmap->skb; 634 } else { 635 skb = napi_get_frags(&rx_ctrl->napi); 636 if (unlikely(!skb)) 637 break; 638 } 639 prefetch(skb); 640 641 flags = ntohl(cmpl->flags); 642 len = ntohs(cmpl->length); 643 totlen = len; 644 nvecs = 1; 645 646 /* Check all the completions for this frame. 647 * busy-wait doesn't help much, break here. 648 */ 649 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) && 650 (flags & BNA_CQ_EF_EOP) == 0) { 651 pi = ccb->producer_index; 652 do { 653 BNA_QE_INDX_INC(pi, ccb->q_depth); 654 next_cmpl = &cq[pi]; 655 656 if (!next_cmpl->valid) 657 break; 658 /* The 'valid' field is set by the adapter, only 659 * after writing the other fields of completion 660 * entry. Hence, do not load other fields of 661 * completion entry *before* the 'valid' is 662 * loaded. Adding the rmb() here prevents the 663 * compiler and/or CPU from reordering the reads 664 * which would potentially result in reading 665 * stale values in completion entry. 666 */ 667 rmb(); 668 669 len = ntohs(next_cmpl->length); 670 flags = ntohl(next_cmpl->flags); 671 672 nvecs++; 673 totlen += len; 674 } while ((flags & BNA_CQ_EF_EOP) == 0); 675 676 if (!next_cmpl->valid) 677 break; 678 } 679 680 /* TODO: BNA_CQ_EF_LOCAL ? */ 681 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR | 682 BNA_CQ_EF_FCS_ERROR | 683 BNA_CQ_EF_TOO_LONG))) { 684 bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs); 685 rcb->rxq->rx_packets_with_error++; 686 687 goto next; 688 } 689 690 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 691 bnad_cq_setup_skb(bnad, skb, unmap, len); 692 else 693 bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len); 694 695 packets++; 696 rcb->rxq->rx_packets++; 697 rcb->rxq->rx_bytes += totlen; 698 ccb->bytes_per_intr += totlen; 699 700 masked_flags = flags & flags_cksum_prot_mask; 701 702 if (likely 703 ((bnad->netdev->features & NETIF_F_RXCSUM) && 704 ((masked_flags == flags_tcp4) || 705 (masked_flags == flags_udp4) || 706 (masked_flags == flags_tcp6) || 707 (masked_flags == flags_udp6)))) 708 skb->ip_summed = CHECKSUM_UNNECESSARY; 709 else 710 skb_checksum_none_assert(skb); 711 712 if ((flags & BNA_CQ_EF_VLAN) && 713 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 714 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag)); 715 716 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) 717 netif_receive_skb(skb); 718 else 719 napi_gro_frags(&rx_ctrl->napi); 720 721 next: 722 BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth); 723 for (vec = 0; vec < nvecs; vec++) { 724 cmpl = &cq[ccb->producer_index]; 725 cmpl->valid = 0; 726 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth); 727 } 728 } 729 730 napi_gro_flush(&rx_ctrl->napi, false); 731 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags))) 732 bna_ib_ack_disable_irq(ccb->i_dbell, packets); 733 734 bnad_rxq_post(bnad, ccb->rcb[0]); 735 if (ccb->rcb[1]) 736 bnad_rxq_post(bnad, ccb->rcb[1]); 737 738 return packets; 739 } 740 741 static void 742 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb) 743 { 744 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl); 745 struct napi_struct *napi = &rx_ctrl->napi; 746 747 if (likely(napi_schedule_prep(napi))) { 748 __napi_schedule(napi); 749 rx_ctrl->rx_schedule++; 750 } 751 } 752 753 /* MSIX Rx Path Handler */ 754 static irqreturn_t 755 bnad_msix_rx(int irq, void *data) 756 { 757 struct bna_ccb *ccb = (struct bna_ccb *)data; 758 759 if (ccb) { 760 ((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++; 761 bnad_netif_rx_schedule_poll(ccb->bnad, ccb); 762 } 763 764 return IRQ_HANDLED; 765 } 766 767 /* Interrupt handlers */ 768 769 /* Mbox Interrupt Handlers */ 770 static irqreturn_t 771 bnad_msix_mbox_handler(int irq, void *data) 772 { 773 u32 intr_status; 774 unsigned long flags; 775 struct bnad *bnad = (struct bnad *)data; 776 777 spin_lock_irqsave(&bnad->bna_lock, flags); 778 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) { 779 spin_unlock_irqrestore(&bnad->bna_lock, flags); 780 return IRQ_HANDLED; 781 } 782 783 bna_intr_status_get(&bnad->bna, intr_status); 784 785 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status)) 786 bna_mbox_handler(&bnad->bna, intr_status); 787 788 spin_unlock_irqrestore(&bnad->bna_lock, flags); 789 790 return IRQ_HANDLED; 791 } 792 793 static irqreturn_t 794 bnad_isr(int irq, void *data) 795 { 796 int i, j; 797 u32 intr_status; 798 unsigned long flags; 799 struct bnad *bnad = (struct bnad *)data; 800 struct bnad_rx_info *rx_info; 801 struct bnad_rx_ctrl *rx_ctrl; 802 struct bna_tcb *tcb = NULL; 803 804 spin_lock_irqsave(&bnad->bna_lock, flags); 805 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) { 806 spin_unlock_irqrestore(&bnad->bna_lock, flags); 807 return IRQ_NONE; 808 } 809 810 bna_intr_status_get(&bnad->bna, intr_status); 811 812 if (unlikely(!intr_status)) { 813 spin_unlock_irqrestore(&bnad->bna_lock, flags); 814 return IRQ_NONE; 815 } 816 817 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status)) 818 bna_mbox_handler(&bnad->bna, intr_status); 819 820 spin_unlock_irqrestore(&bnad->bna_lock, flags); 821 822 if (!BNA_IS_INTX_DATA_INTR(intr_status)) 823 return IRQ_HANDLED; 824 825 /* Process data interrupts */ 826 /* Tx processing */ 827 for (i = 0; i < bnad->num_tx; i++) { 828 for (j = 0; j < bnad->num_txq_per_tx; j++) { 829 tcb = bnad->tx_info[i].tcb[j]; 830 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) 831 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]); 832 } 833 } 834 /* Rx processing */ 835 for (i = 0; i < bnad->num_rx; i++) { 836 rx_info = &bnad->rx_info[i]; 837 if (!rx_info->rx) 838 continue; 839 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 840 rx_ctrl = &rx_info->rx_ctrl[j]; 841 if (rx_ctrl->ccb) 842 bnad_netif_rx_schedule_poll(bnad, 843 rx_ctrl->ccb); 844 } 845 } 846 return IRQ_HANDLED; 847 } 848 849 /* 850 * Called in interrupt / callback context 851 * with bna_lock held, so cfg_flags access is OK 852 */ 853 static void 854 bnad_enable_mbox_irq(struct bnad *bnad) 855 { 856 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags); 857 858 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled); 859 } 860 861 /* 862 * Called with bnad->bna_lock held b'cos of 863 * bnad->cfg_flags access. 864 */ 865 static void 866 bnad_disable_mbox_irq(struct bnad *bnad) 867 { 868 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags); 869 870 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled); 871 } 872 873 static void 874 bnad_set_netdev_perm_addr(struct bnad *bnad) 875 { 876 struct net_device *netdev = bnad->netdev; 877 878 ether_addr_copy(netdev->perm_addr, bnad->perm_addr); 879 if (is_zero_ether_addr(netdev->dev_addr)) 880 ether_addr_copy(netdev->dev_addr, bnad->perm_addr); 881 } 882 883 /* Control Path Handlers */ 884 885 /* Callbacks */ 886 void 887 bnad_cb_mbox_intr_enable(struct bnad *bnad) 888 { 889 bnad_enable_mbox_irq(bnad); 890 } 891 892 void 893 bnad_cb_mbox_intr_disable(struct bnad *bnad) 894 { 895 bnad_disable_mbox_irq(bnad); 896 } 897 898 void 899 bnad_cb_ioceth_ready(struct bnad *bnad) 900 { 901 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS; 902 complete(&bnad->bnad_completions.ioc_comp); 903 } 904 905 void 906 bnad_cb_ioceth_failed(struct bnad *bnad) 907 { 908 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL; 909 complete(&bnad->bnad_completions.ioc_comp); 910 } 911 912 void 913 bnad_cb_ioceth_disabled(struct bnad *bnad) 914 { 915 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS; 916 complete(&bnad->bnad_completions.ioc_comp); 917 } 918 919 static void 920 bnad_cb_enet_disabled(void *arg) 921 { 922 struct bnad *bnad = (struct bnad *)arg; 923 924 netif_carrier_off(bnad->netdev); 925 complete(&bnad->bnad_completions.enet_comp); 926 } 927 928 void 929 bnad_cb_ethport_link_status(struct bnad *bnad, 930 enum bna_link_status link_status) 931 { 932 bool link_up = false; 933 934 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP); 935 936 if (link_status == BNA_CEE_UP) { 937 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) 938 BNAD_UPDATE_CTR(bnad, cee_toggle); 939 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags); 940 } else { 941 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) 942 BNAD_UPDATE_CTR(bnad, cee_toggle); 943 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags); 944 } 945 946 if (link_up) { 947 if (!netif_carrier_ok(bnad->netdev)) { 948 uint tx_id, tcb_id; 949 netdev_info(bnad->netdev, "link up\n"); 950 netif_carrier_on(bnad->netdev); 951 BNAD_UPDATE_CTR(bnad, link_toggle); 952 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) { 953 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx; 954 tcb_id++) { 955 struct bna_tcb *tcb = 956 bnad->tx_info[tx_id].tcb[tcb_id]; 957 u32 txq_id; 958 if (!tcb) 959 continue; 960 961 txq_id = tcb->id; 962 963 if (test_bit(BNAD_TXQ_TX_STARTED, 964 &tcb->flags)) { 965 /* 966 * Force an immediate 967 * Transmit Schedule */ 968 netif_wake_subqueue( 969 bnad->netdev, 970 txq_id); 971 BNAD_UPDATE_CTR(bnad, 972 netif_queue_wakeup); 973 } else { 974 netif_stop_subqueue( 975 bnad->netdev, 976 txq_id); 977 BNAD_UPDATE_CTR(bnad, 978 netif_queue_stop); 979 } 980 } 981 } 982 } 983 } else { 984 if (netif_carrier_ok(bnad->netdev)) { 985 netdev_info(bnad->netdev, "link down\n"); 986 netif_carrier_off(bnad->netdev); 987 BNAD_UPDATE_CTR(bnad, link_toggle); 988 } 989 } 990 } 991 992 static void 993 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx) 994 { 995 struct bnad *bnad = (struct bnad *)arg; 996 997 complete(&bnad->bnad_completions.tx_comp); 998 } 999 1000 static void 1001 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb) 1002 { 1003 struct bnad_tx_info *tx_info = 1004 (struct bnad_tx_info *)tcb->txq->tx->priv; 1005 1006 tcb->priv = tcb; 1007 tx_info->tcb[tcb->id] = tcb; 1008 } 1009 1010 static void 1011 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb) 1012 { 1013 struct bnad_tx_info *tx_info = 1014 (struct bnad_tx_info *)tcb->txq->tx->priv; 1015 1016 tx_info->tcb[tcb->id] = NULL; 1017 tcb->priv = NULL; 1018 } 1019 1020 static void 1021 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb) 1022 { 1023 struct bnad_rx_info *rx_info = 1024 (struct bnad_rx_info *)ccb->cq->rx->priv; 1025 1026 rx_info->rx_ctrl[ccb->id].ccb = ccb; 1027 ccb->ctrl = &rx_info->rx_ctrl[ccb->id]; 1028 } 1029 1030 static void 1031 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb) 1032 { 1033 struct bnad_rx_info *rx_info = 1034 (struct bnad_rx_info *)ccb->cq->rx->priv; 1035 1036 rx_info->rx_ctrl[ccb->id].ccb = NULL; 1037 } 1038 1039 static void 1040 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx) 1041 { 1042 struct bnad_tx_info *tx_info = 1043 (struct bnad_tx_info *)tx->priv; 1044 struct bna_tcb *tcb; 1045 u32 txq_id; 1046 int i; 1047 1048 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1049 tcb = tx_info->tcb[i]; 1050 if (!tcb) 1051 continue; 1052 txq_id = tcb->id; 1053 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags); 1054 netif_stop_subqueue(bnad->netdev, txq_id); 1055 } 1056 } 1057 1058 static void 1059 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx) 1060 { 1061 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv; 1062 struct bna_tcb *tcb; 1063 u32 txq_id; 1064 int i; 1065 1066 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1067 tcb = tx_info->tcb[i]; 1068 if (!tcb) 1069 continue; 1070 txq_id = tcb->id; 1071 1072 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)); 1073 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags); 1074 BUG_ON(*(tcb->hw_consumer_index) != 0); 1075 1076 if (netif_carrier_ok(bnad->netdev)) { 1077 netif_wake_subqueue(bnad->netdev, txq_id); 1078 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup); 1079 } 1080 } 1081 1082 /* 1083 * Workaround for first ioceth enable failure & we 1084 * get a 0 MAC address. We try to get the MAC address 1085 * again here. 1086 */ 1087 if (is_zero_ether_addr(bnad->perm_addr)) { 1088 bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr); 1089 bnad_set_netdev_perm_addr(bnad); 1090 } 1091 } 1092 1093 /* 1094 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm. 1095 */ 1096 static void 1097 bnad_tx_cleanup(struct delayed_work *work) 1098 { 1099 struct bnad_tx_info *tx_info = 1100 container_of(work, struct bnad_tx_info, tx_cleanup_work); 1101 struct bnad *bnad = NULL; 1102 struct bna_tcb *tcb; 1103 unsigned long flags; 1104 u32 i, pending = 0; 1105 1106 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1107 tcb = tx_info->tcb[i]; 1108 if (!tcb) 1109 continue; 1110 1111 bnad = tcb->bnad; 1112 1113 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) { 1114 pending++; 1115 continue; 1116 } 1117 1118 bnad_txq_cleanup(bnad, tcb); 1119 1120 smp_mb__before_atomic(); 1121 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags); 1122 } 1123 1124 if (pending) { 1125 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 1126 msecs_to_jiffies(1)); 1127 return; 1128 } 1129 1130 spin_lock_irqsave(&bnad->bna_lock, flags); 1131 bna_tx_cleanup_complete(tx_info->tx); 1132 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1133 } 1134 1135 static void 1136 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx) 1137 { 1138 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv; 1139 struct bna_tcb *tcb; 1140 int i; 1141 1142 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) { 1143 tcb = tx_info->tcb[i]; 1144 if (!tcb) 1145 continue; 1146 } 1147 1148 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0); 1149 } 1150 1151 static void 1152 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx) 1153 { 1154 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv; 1155 struct bna_ccb *ccb; 1156 struct bnad_rx_ctrl *rx_ctrl; 1157 int i; 1158 1159 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1160 rx_ctrl = &rx_info->rx_ctrl[i]; 1161 ccb = rx_ctrl->ccb; 1162 if (!ccb) 1163 continue; 1164 1165 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags); 1166 1167 if (ccb->rcb[1]) 1168 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags); 1169 } 1170 } 1171 1172 /* 1173 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm. 1174 */ 1175 static void 1176 bnad_rx_cleanup(void *work) 1177 { 1178 struct bnad_rx_info *rx_info = 1179 container_of(work, struct bnad_rx_info, rx_cleanup_work); 1180 struct bnad_rx_ctrl *rx_ctrl; 1181 struct bnad *bnad = NULL; 1182 unsigned long flags; 1183 u32 i; 1184 1185 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1186 rx_ctrl = &rx_info->rx_ctrl[i]; 1187 1188 if (!rx_ctrl->ccb) 1189 continue; 1190 1191 bnad = rx_ctrl->ccb->bnad; 1192 1193 /* 1194 * Wait till the poll handler has exited 1195 * and nothing can be scheduled anymore 1196 */ 1197 napi_disable(&rx_ctrl->napi); 1198 1199 bnad_cq_cleanup(bnad, rx_ctrl->ccb); 1200 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]); 1201 if (rx_ctrl->ccb->rcb[1]) 1202 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]); 1203 } 1204 1205 spin_lock_irqsave(&bnad->bna_lock, flags); 1206 bna_rx_cleanup_complete(rx_info->rx); 1207 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1208 } 1209 1210 static void 1211 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx) 1212 { 1213 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv; 1214 struct bna_ccb *ccb; 1215 struct bnad_rx_ctrl *rx_ctrl; 1216 int i; 1217 1218 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1219 rx_ctrl = &rx_info->rx_ctrl[i]; 1220 ccb = rx_ctrl->ccb; 1221 if (!ccb) 1222 continue; 1223 1224 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags); 1225 1226 if (ccb->rcb[1]) 1227 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags); 1228 } 1229 1230 queue_work(bnad->work_q, &rx_info->rx_cleanup_work); 1231 } 1232 1233 static void 1234 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx) 1235 { 1236 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv; 1237 struct bna_ccb *ccb; 1238 struct bna_rcb *rcb; 1239 struct bnad_rx_ctrl *rx_ctrl; 1240 int i, j; 1241 1242 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) { 1243 rx_ctrl = &rx_info->rx_ctrl[i]; 1244 ccb = rx_ctrl->ccb; 1245 if (!ccb) 1246 continue; 1247 1248 napi_enable(&rx_ctrl->napi); 1249 1250 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) { 1251 rcb = ccb->rcb[j]; 1252 if (!rcb) 1253 continue; 1254 1255 bnad_rxq_alloc_init(bnad, rcb); 1256 set_bit(BNAD_RXQ_STARTED, &rcb->flags); 1257 set_bit(BNAD_RXQ_POST_OK, &rcb->flags); 1258 bnad_rxq_post(bnad, rcb); 1259 } 1260 } 1261 } 1262 1263 static void 1264 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx) 1265 { 1266 struct bnad *bnad = (struct bnad *)arg; 1267 1268 complete(&bnad->bnad_completions.rx_comp); 1269 } 1270 1271 static void 1272 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx) 1273 { 1274 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS; 1275 complete(&bnad->bnad_completions.mcast_comp); 1276 } 1277 1278 void 1279 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status, 1280 struct bna_stats *stats) 1281 { 1282 if (status == BNA_CB_SUCCESS) 1283 BNAD_UPDATE_CTR(bnad, hw_stats_updates); 1284 1285 if (!netif_running(bnad->netdev) || 1286 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) 1287 return; 1288 1289 mod_timer(&bnad->stats_timer, 1290 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ)); 1291 } 1292 1293 static void 1294 bnad_cb_enet_mtu_set(struct bnad *bnad) 1295 { 1296 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS; 1297 complete(&bnad->bnad_completions.mtu_comp); 1298 } 1299 1300 void 1301 bnad_cb_completion(void *arg, enum bfa_status status) 1302 { 1303 struct bnad_iocmd_comp *iocmd_comp = 1304 (struct bnad_iocmd_comp *)arg; 1305 1306 iocmd_comp->comp_status = (u32) status; 1307 complete(&iocmd_comp->comp); 1308 } 1309 1310 /* Resource allocation, free functions */ 1311 1312 static void 1313 bnad_mem_free(struct bnad *bnad, 1314 struct bna_mem_info *mem_info) 1315 { 1316 int i; 1317 dma_addr_t dma_pa; 1318 1319 if (mem_info->mdl == NULL) 1320 return; 1321 1322 for (i = 0; i < mem_info->num; i++) { 1323 if (mem_info->mdl[i].kva != NULL) { 1324 if (mem_info->mem_type == BNA_MEM_T_DMA) { 1325 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma), 1326 dma_pa); 1327 dma_free_coherent(&bnad->pcidev->dev, 1328 mem_info->mdl[i].len, 1329 mem_info->mdl[i].kva, dma_pa); 1330 } else 1331 kfree(mem_info->mdl[i].kva); 1332 } 1333 } 1334 kfree(mem_info->mdl); 1335 mem_info->mdl = NULL; 1336 } 1337 1338 static int 1339 bnad_mem_alloc(struct bnad *bnad, 1340 struct bna_mem_info *mem_info) 1341 { 1342 int i; 1343 dma_addr_t dma_pa; 1344 1345 if ((mem_info->num == 0) || (mem_info->len == 0)) { 1346 mem_info->mdl = NULL; 1347 return 0; 1348 } 1349 1350 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr), 1351 GFP_KERNEL); 1352 if (mem_info->mdl == NULL) 1353 return -ENOMEM; 1354 1355 if (mem_info->mem_type == BNA_MEM_T_DMA) { 1356 for (i = 0; i < mem_info->num; i++) { 1357 mem_info->mdl[i].len = mem_info->len; 1358 mem_info->mdl[i].kva = 1359 dma_alloc_coherent(&bnad->pcidev->dev, 1360 mem_info->len, &dma_pa, 1361 GFP_KERNEL); 1362 if (mem_info->mdl[i].kva == NULL) 1363 goto err_return; 1364 1365 BNA_SET_DMA_ADDR(dma_pa, 1366 &(mem_info->mdl[i].dma)); 1367 } 1368 } else { 1369 for (i = 0; i < mem_info->num; i++) { 1370 mem_info->mdl[i].len = mem_info->len; 1371 mem_info->mdl[i].kva = kzalloc(mem_info->len, 1372 GFP_KERNEL); 1373 if (mem_info->mdl[i].kva == NULL) 1374 goto err_return; 1375 } 1376 } 1377 1378 return 0; 1379 1380 err_return: 1381 bnad_mem_free(bnad, mem_info); 1382 return -ENOMEM; 1383 } 1384 1385 /* Free IRQ for Mailbox */ 1386 static void 1387 bnad_mbox_irq_free(struct bnad *bnad) 1388 { 1389 int irq; 1390 unsigned long flags; 1391 1392 spin_lock_irqsave(&bnad->bna_lock, flags); 1393 bnad_disable_mbox_irq(bnad); 1394 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1395 1396 irq = BNAD_GET_MBOX_IRQ(bnad); 1397 free_irq(irq, bnad); 1398 } 1399 1400 /* 1401 * Allocates IRQ for Mailbox, but keep it disabled 1402 * This will be enabled once we get the mbox enable callback 1403 * from bna 1404 */ 1405 static int 1406 bnad_mbox_irq_alloc(struct bnad *bnad) 1407 { 1408 int err = 0; 1409 unsigned long irq_flags, flags; 1410 u32 irq; 1411 irq_handler_t irq_handler; 1412 1413 spin_lock_irqsave(&bnad->bna_lock, flags); 1414 if (bnad->cfg_flags & BNAD_CF_MSIX) { 1415 irq_handler = (irq_handler_t)bnad_msix_mbox_handler; 1416 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector; 1417 irq_flags = 0; 1418 } else { 1419 irq_handler = (irq_handler_t)bnad_isr; 1420 irq = bnad->pcidev->irq; 1421 irq_flags = IRQF_SHARED; 1422 } 1423 1424 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1425 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME); 1426 1427 /* 1428 * Set the Mbox IRQ disable flag, so that the IRQ handler 1429 * called from request_irq() for SHARED IRQs do not execute 1430 */ 1431 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags); 1432 1433 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled); 1434 1435 err = request_irq(irq, irq_handler, irq_flags, 1436 bnad->mbox_irq_name, bnad); 1437 1438 return err; 1439 } 1440 1441 static void 1442 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info) 1443 { 1444 kfree(intr_info->idl); 1445 intr_info->idl = NULL; 1446 } 1447 1448 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */ 1449 static int 1450 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src, 1451 u32 txrx_id, struct bna_intr_info *intr_info) 1452 { 1453 int i, vector_start = 0; 1454 u32 cfg_flags; 1455 unsigned long flags; 1456 1457 spin_lock_irqsave(&bnad->bna_lock, flags); 1458 cfg_flags = bnad->cfg_flags; 1459 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1460 1461 if (cfg_flags & BNAD_CF_MSIX) { 1462 intr_info->intr_type = BNA_INTR_T_MSIX; 1463 intr_info->idl = kcalloc(intr_info->num, 1464 sizeof(struct bna_intr_descr), 1465 GFP_KERNEL); 1466 if (!intr_info->idl) 1467 return -ENOMEM; 1468 1469 switch (src) { 1470 case BNAD_INTR_TX: 1471 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id; 1472 break; 1473 1474 case BNAD_INTR_RX: 1475 vector_start = BNAD_MAILBOX_MSIX_VECTORS + 1476 (bnad->num_tx * bnad->num_txq_per_tx) + 1477 txrx_id; 1478 break; 1479 1480 default: 1481 BUG(); 1482 } 1483 1484 for (i = 0; i < intr_info->num; i++) 1485 intr_info->idl[i].vector = vector_start + i; 1486 } else { 1487 intr_info->intr_type = BNA_INTR_T_INTX; 1488 intr_info->num = 1; 1489 intr_info->idl = kcalloc(intr_info->num, 1490 sizeof(struct bna_intr_descr), 1491 GFP_KERNEL); 1492 if (!intr_info->idl) 1493 return -ENOMEM; 1494 1495 switch (src) { 1496 case BNAD_INTR_TX: 1497 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK; 1498 break; 1499 1500 case BNAD_INTR_RX: 1501 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK; 1502 break; 1503 } 1504 } 1505 return 0; 1506 } 1507 1508 /* NOTE: Should be called for MSIX only 1509 * Unregisters Tx MSIX vector(s) from the kernel 1510 */ 1511 static void 1512 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info, 1513 int num_txqs) 1514 { 1515 int i; 1516 int vector_num; 1517 1518 for (i = 0; i < num_txqs; i++) { 1519 if (tx_info->tcb[i] == NULL) 1520 continue; 1521 1522 vector_num = tx_info->tcb[i]->intr_vector; 1523 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]); 1524 } 1525 } 1526 1527 /* NOTE: Should be called for MSIX only 1528 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel 1529 */ 1530 static int 1531 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info, 1532 u32 tx_id, int num_txqs) 1533 { 1534 int i; 1535 int err; 1536 int vector_num; 1537 1538 for (i = 0; i < num_txqs; i++) { 1539 vector_num = tx_info->tcb[i]->intr_vector; 1540 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name, 1541 tx_id + tx_info->tcb[i]->id); 1542 err = request_irq(bnad->msix_table[vector_num].vector, 1543 (irq_handler_t)bnad_msix_tx, 0, 1544 tx_info->tcb[i]->name, 1545 tx_info->tcb[i]); 1546 if (err) 1547 goto err_return; 1548 } 1549 1550 return 0; 1551 1552 err_return: 1553 if (i > 0) 1554 bnad_tx_msix_unregister(bnad, tx_info, (i - 1)); 1555 return -1; 1556 } 1557 1558 /* NOTE: Should be called for MSIX only 1559 * Unregisters Rx MSIX vector(s) from the kernel 1560 */ 1561 static void 1562 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info, 1563 int num_rxps) 1564 { 1565 int i; 1566 int vector_num; 1567 1568 for (i = 0; i < num_rxps; i++) { 1569 if (rx_info->rx_ctrl[i].ccb == NULL) 1570 continue; 1571 1572 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector; 1573 free_irq(bnad->msix_table[vector_num].vector, 1574 rx_info->rx_ctrl[i].ccb); 1575 } 1576 } 1577 1578 /* NOTE: Should be called for MSIX only 1579 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel 1580 */ 1581 static int 1582 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info, 1583 u32 rx_id, int num_rxps) 1584 { 1585 int i; 1586 int err; 1587 int vector_num; 1588 1589 for (i = 0; i < num_rxps; i++) { 1590 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector; 1591 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d", 1592 bnad->netdev->name, 1593 rx_id + rx_info->rx_ctrl[i].ccb->id); 1594 err = request_irq(bnad->msix_table[vector_num].vector, 1595 (irq_handler_t)bnad_msix_rx, 0, 1596 rx_info->rx_ctrl[i].ccb->name, 1597 rx_info->rx_ctrl[i].ccb); 1598 if (err) 1599 goto err_return; 1600 } 1601 1602 return 0; 1603 1604 err_return: 1605 if (i > 0) 1606 bnad_rx_msix_unregister(bnad, rx_info, (i - 1)); 1607 return -1; 1608 } 1609 1610 /* Free Tx object Resources */ 1611 static void 1612 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info) 1613 { 1614 int i; 1615 1616 for (i = 0; i < BNA_TX_RES_T_MAX; i++) { 1617 if (res_info[i].res_type == BNA_RES_T_MEM) 1618 bnad_mem_free(bnad, &res_info[i].res_u.mem_info); 1619 else if (res_info[i].res_type == BNA_RES_T_INTR) 1620 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info); 1621 } 1622 } 1623 1624 /* Allocates memory and interrupt resources for Tx object */ 1625 static int 1626 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info, 1627 u32 tx_id) 1628 { 1629 int i, err = 0; 1630 1631 for (i = 0; i < BNA_TX_RES_T_MAX; i++) { 1632 if (res_info[i].res_type == BNA_RES_T_MEM) 1633 err = bnad_mem_alloc(bnad, 1634 &res_info[i].res_u.mem_info); 1635 else if (res_info[i].res_type == BNA_RES_T_INTR) 1636 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id, 1637 &res_info[i].res_u.intr_info); 1638 if (err) 1639 goto err_return; 1640 } 1641 return 0; 1642 1643 err_return: 1644 bnad_tx_res_free(bnad, res_info); 1645 return err; 1646 } 1647 1648 /* Free Rx object Resources */ 1649 static void 1650 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info) 1651 { 1652 int i; 1653 1654 for (i = 0; i < BNA_RX_RES_T_MAX; i++) { 1655 if (res_info[i].res_type == BNA_RES_T_MEM) 1656 bnad_mem_free(bnad, &res_info[i].res_u.mem_info); 1657 else if (res_info[i].res_type == BNA_RES_T_INTR) 1658 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info); 1659 } 1660 } 1661 1662 /* Allocates memory and interrupt resources for Rx object */ 1663 static int 1664 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info, 1665 uint rx_id) 1666 { 1667 int i, err = 0; 1668 1669 /* All memory needs to be allocated before setup_ccbs */ 1670 for (i = 0; i < BNA_RX_RES_T_MAX; i++) { 1671 if (res_info[i].res_type == BNA_RES_T_MEM) 1672 err = bnad_mem_alloc(bnad, 1673 &res_info[i].res_u.mem_info); 1674 else if (res_info[i].res_type == BNA_RES_T_INTR) 1675 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id, 1676 &res_info[i].res_u.intr_info); 1677 if (err) 1678 goto err_return; 1679 } 1680 return 0; 1681 1682 err_return: 1683 bnad_rx_res_free(bnad, res_info); 1684 return err; 1685 } 1686 1687 /* Timer callbacks */ 1688 /* a) IOC timer */ 1689 static void 1690 bnad_ioc_timeout(unsigned long data) 1691 { 1692 struct bnad *bnad = (struct bnad *)data; 1693 unsigned long flags; 1694 1695 spin_lock_irqsave(&bnad->bna_lock, flags); 1696 bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc); 1697 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1698 } 1699 1700 static void 1701 bnad_ioc_hb_check(unsigned long data) 1702 { 1703 struct bnad *bnad = (struct bnad *)data; 1704 unsigned long flags; 1705 1706 spin_lock_irqsave(&bnad->bna_lock, flags); 1707 bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc); 1708 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1709 } 1710 1711 static void 1712 bnad_iocpf_timeout(unsigned long data) 1713 { 1714 struct bnad *bnad = (struct bnad *)data; 1715 unsigned long flags; 1716 1717 spin_lock_irqsave(&bnad->bna_lock, flags); 1718 bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc); 1719 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1720 } 1721 1722 static void 1723 bnad_iocpf_sem_timeout(unsigned long data) 1724 { 1725 struct bnad *bnad = (struct bnad *)data; 1726 unsigned long flags; 1727 1728 spin_lock_irqsave(&bnad->bna_lock, flags); 1729 bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc); 1730 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1731 } 1732 1733 /* 1734 * All timer routines use bnad->bna_lock to protect against 1735 * the following race, which may occur in case of no locking: 1736 * Time CPU m CPU n 1737 * 0 1 = test_bit 1738 * 1 clear_bit 1739 * 2 del_timer_sync 1740 * 3 mod_timer 1741 */ 1742 1743 /* b) Dynamic Interrupt Moderation Timer */ 1744 static void 1745 bnad_dim_timeout(unsigned long data) 1746 { 1747 struct bnad *bnad = (struct bnad *)data; 1748 struct bnad_rx_info *rx_info; 1749 struct bnad_rx_ctrl *rx_ctrl; 1750 int i, j; 1751 unsigned long flags; 1752 1753 if (!netif_carrier_ok(bnad->netdev)) 1754 return; 1755 1756 spin_lock_irqsave(&bnad->bna_lock, flags); 1757 for (i = 0; i < bnad->num_rx; i++) { 1758 rx_info = &bnad->rx_info[i]; 1759 if (!rx_info->rx) 1760 continue; 1761 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 1762 rx_ctrl = &rx_info->rx_ctrl[j]; 1763 if (!rx_ctrl->ccb) 1764 continue; 1765 bna_rx_dim_update(rx_ctrl->ccb); 1766 } 1767 } 1768 1769 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */ 1770 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) 1771 mod_timer(&bnad->dim_timer, 1772 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ)); 1773 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1774 } 1775 1776 /* c) Statistics Timer */ 1777 static void 1778 bnad_stats_timeout(unsigned long data) 1779 { 1780 struct bnad *bnad = (struct bnad *)data; 1781 unsigned long flags; 1782 1783 if (!netif_running(bnad->netdev) || 1784 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) 1785 return; 1786 1787 spin_lock_irqsave(&bnad->bna_lock, flags); 1788 bna_hw_stats_get(&bnad->bna); 1789 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1790 } 1791 1792 /* 1793 * Set up timer for DIM 1794 * Called with bnad->bna_lock held 1795 */ 1796 void 1797 bnad_dim_timer_start(struct bnad *bnad) 1798 { 1799 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED && 1800 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) { 1801 setup_timer(&bnad->dim_timer, bnad_dim_timeout, 1802 (unsigned long)bnad); 1803 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags); 1804 mod_timer(&bnad->dim_timer, 1805 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ)); 1806 } 1807 } 1808 1809 /* 1810 * Set up timer for statistics 1811 * Called with mutex_lock(&bnad->conf_mutex) held 1812 */ 1813 static void 1814 bnad_stats_timer_start(struct bnad *bnad) 1815 { 1816 unsigned long flags; 1817 1818 spin_lock_irqsave(&bnad->bna_lock, flags); 1819 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) { 1820 setup_timer(&bnad->stats_timer, bnad_stats_timeout, 1821 (unsigned long)bnad); 1822 mod_timer(&bnad->stats_timer, 1823 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ)); 1824 } 1825 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1826 } 1827 1828 /* 1829 * Stops the stats timer 1830 * Called with mutex_lock(&bnad->conf_mutex) held 1831 */ 1832 static void 1833 bnad_stats_timer_stop(struct bnad *bnad) 1834 { 1835 int to_del = 0; 1836 unsigned long flags; 1837 1838 spin_lock_irqsave(&bnad->bna_lock, flags); 1839 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) 1840 to_del = 1; 1841 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1842 if (to_del) 1843 del_timer_sync(&bnad->stats_timer); 1844 } 1845 1846 /* Utilities */ 1847 1848 static void 1849 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list) 1850 { 1851 int i = 1; /* Index 0 has broadcast address */ 1852 struct netdev_hw_addr *mc_addr; 1853 1854 netdev_for_each_mc_addr(mc_addr, netdev) { 1855 ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]); 1856 i++; 1857 } 1858 } 1859 1860 static int 1861 bnad_napi_poll_rx(struct napi_struct *napi, int budget) 1862 { 1863 struct bnad_rx_ctrl *rx_ctrl = 1864 container_of(napi, struct bnad_rx_ctrl, napi); 1865 struct bnad *bnad = rx_ctrl->bnad; 1866 int rcvd = 0; 1867 1868 rx_ctrl->rx_poll_ctr++; 1869 1870 if (!netif_carrier_ok(bnad->netdev)) 1871 goto poll_exit; 1872 1873 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget); 1874 if (rcvd >= budget) 1875 return rcvd; 1876 1877 poll_exit: 1878 napi_complete(napi); 1879 1880 rx_ctrl->rx_complete++; 1881 1882 if (rx_ctrl->ccb) 1883 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb); 1884 1885 return rcvd; 1886 } 1887 1888 #define BNAD_NAPI_POLL_QUOTA 64 1889 static void 1890 bnad_napi_add(struct bnad *bnad, u32 rx_id) 1891 { 1892 struct bnad_rx_ctrl *rx_ctrl; 1893 int i; 1894 1895 /* Initialize & enable NAPI */ 1896 for (i = 0; i < bnad->num_rxp_per_rx; i++) { 1897 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i]; 1898 netif_napi_add(bnad->netdev, &rx_ctrl->napi, 1899 bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA); 1900 } 1901 } 1902 1903 static void 1904 bnad_napi_delete(struct bnad *bnad, u32 rx_id) 1905 { 1906 int i; 1907 1908 /* First disable and then clean up */ 1909 for (i = 0; i < bnad->num_rxp_per_rx; i++) 1910 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi); 1911 } 1912 1913 /* Should be held with conf_lock held */ 1914 void 1915 bnad_destroy_tx(struct bnad *bnad, u32 tx_id) 1916 { 1917 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id]; 1918 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0]; 1919 unsigned long flags; 1920 1921 if (!tx_info->tx) 1922 return; 1923 1924 init_completion(&bnad->bnad_completions.tx_comp); 1925 spin_lock_irqsave(&bnad->bna_lock, flags); 1926 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled); 1927 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1928 wait_for_completion(&bnad->bnad_completions.tx_comp); 1929 1930 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX) 1931 bnad_tx_msix_unregister(bnad, tx_info, 1932 bnad->num_txq_per_tx); 1933 1934 spin_lock_irqsave(&bnad->bna_lock, flags); 1935 bna_tx_destroy(tx_info->tx); 1936 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1937 1938 tx_info->tx = NULL; 1939 tx_info->tx_id = 0; 1940 1941 bnad_tx_res_free(bnad, res_info); 1942 } 1943 1944 /* Should be held with conf_lock held */ 1945 int 1946 bnad_setup_tx(struct bnad *bnad, u32 tx_id) 1947 { 1948 int err; 1949 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id]; 1950 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0]; 1951 struct bna_intr_info *intr_info = 1952 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info; 1953 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id]; 1954 static const struct bna_tx_event_cbfn tx_cbfn = { 1955 .tcb_setup_cbfn = bnad_cb_tcb_setup, 1956 .tcb_destroy_cbfn = bnad_cb_tcb_destroy, 1957 .tx_stall_cbfn = bnad_cb_tx_stall, 1958 .tx_resume_cbfn = bnad_cb_tx_resume, 1959 .tx_cleanup_cbfn = bnad_cb_tx_cleanup, 1960 }; 1961 1962 struct bna_tx *tx; 1963 unsigned long flags; 1964 1965 tx_info->tx_id = tx_id; 1966 1967 /* Initialize the Tx object configuration */ 1968 tx_config->num_txq = bnad->num_txq_per_tx; 1969 tx_config->txq_depth = bnad->txq_depth; 1970 tx_config->tx_type = BNA_TX_T_REGULAR; 1971 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo; 1972 1973 /* Get BNA's resource requirement for one tx object */ 1974 spin_lock_irqsave(&bnad->bna_lock, flags); 1975 bna_tx_res_req(bnad->num_txq_per_tx, 1976 bnad->txq_depth, res_info); 1977 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1978 1979 /* Fill Unmap Q memory requirements */ 1980 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ], 1981 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) * 1982 bnad->txq_depth)); 1983 1984 /* Allocate resources */ 1985 err = bnad_tx_res_alloc(bnad, res_info, tx_id); 1986 if (err) 1987 return err; 1988 1989 /* Ask BNA to create one Tx object, supplying required resources */ 1990 spin_lock_irqsave(&bnad->bna_lock, flags); 1991 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info, 1992 tx_info); 1993 spin_unlock_irqrestore(&bnad->bna_lock, flags); 1994 if (!tx) { 1995 err = -ENOMEM; 1996 goto err_return; 1997 } 1998 tx_info->tx = tx; 1999 2000 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work, 2001 (work_func_t)bnad_tx_cleanup); 2002 2003 /* Register ISR for the Tx object */ 2004 if (intr_info->intr_type == BNA_INTR_T_MSIX) { 2005 err = bnad_tx_msix_register(bnad, tx_info, 2006 tx_id, bnad->num_txq_per_tx); 2007 if (err) 2008 goto cleanup_tx; 2009 } 2010 2011 spin_lock_irqsave(&bnad->bna_lock, flags); 2012 bna_tx_enable(tx); 2013 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2014 2015 return 0; 2016 2017 cleanup_tx: 2018 spin_lock_irqsave(&bnad->bna_lock, flags); 2019 bna_tx_destroy(tx_info->tx); 2020 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2021 tx_info->tx = NULL; 2022 tx_info->tx_id = 0; 2023 err_return: 2024 bnad_tx_res_free(bnad, res_info); 2025 return err; 2026 } 2027 2028 /* Setup the rx config for bna_rx_create */ 2029 /* bnad decides the configuration */ 2030 static void 2031 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config) 2032 { 2033 memset(rx_config, 0, sizeof(*rx_config)); 2034 rx_config->rx_type = BNA_RX_T_REGULAR; 2035 rx_config->num_paths = bnad->num_rxp_per_rx; 2036 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo; 2037 2038 if (bnad->num_rxp_per_rx > 1) { 2039 rx_config->rss_status = BNA_STATUS_T_ENABLED; 2040 rx_config->rss_config.hash_type = 2041 (BFI_ENET_RSS_IPV6 | 2042 BFI_ENET_RSS_IPV6_TCP | 2043 BFI_ENET_RSS_IPV4 | 2044 BFI_ENET_RSS_IPV4_TCP); 2045 rx_config->rss_config.hash_mask = 2046 bnad->num_rxp_per_rx - 1; 2047 netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key, 2048 sizeof(rx_config->rss_config.toeplitz_hash_key)); 2049 } else { 2050 rx_config->rss_status = BNA_STATUS_T_DISABLED; 2051 memset(&rx_config->rss_config, 0, 2052 sizeof(rx_config->rss_config)); 2053 } 2054 2055 rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu); 2056 rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED; 2057 2058 /* BNA_RXP_SINGLE - one data-buffer queue 2059 * BNA_RXP_SLR - one small-buffer and one large-buffer queues 2060 * BNA_RXP_HDS - one header-buffer and one data-buffer queues 2061 */ 2062 /* TODO: configurable param for queue type */ 2063 rx_config->rxp_type = BNA_RXP_SLR; 2064 2065 if (BNAD_PCI_DEV_IS_CAT2(bnad) && 2066 rx_config->frame_size > 4096) { 2067 /* though size_routing_enable is set in SLR, 2068 * small packets may get routed to same rxq. 2069 * set buf_size to 2048 instead of PAGE_SIZE. 2070 */ 2071 rx_config->q0_buf_size = 2048; 2072 /* this should be in multiples of 2 */ 2073 rx_config->q0_num_vecs = 4; 2074 rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs; 2075 rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED; 2076 } else { 2077 rx_config->q0_buf_size = rx_config->frame_size; 2078 rx_config->q0_num_vecs = 1; 2079 rx_config->q0_depth = bnad->rxq_depth; 2080 } 2081 2082 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */ 2083 if (rx_config->rxp_type == BNA_RXP_SLR) { 2084 rx_config->q1_depth = bnad->rxq_depth; 2085 rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE; 2086 } 2087 2088 rx_config->vlan_strip_status = 2089 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ? 2090 BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED; 2091 } 2092 2093 static void 2094 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id) 2095 { 2096 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id]; 2097 int i; 2098 2099 for (i = 0; i < bnad->num_rxp_per_rx; i++) 2100 rx_info->rx_ctrl[i].bnad = bnad; 2101 } 2102 2103 /* Called with mutex_lock(&bnad->conf_mutex) held */ 2104 static u32 2105 bnad_reinit_rx(struct bnad *bnad) 2106 { 2107 struct net_device *netdev = bnad->netdev; 2108 u32 err = 0, current_err = 0; 2109 u32 rx_id = 0, count = 0; 2110 unsigned long flags; 2111 2112 /* destroy and create new rx objects */ 2113 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) { 2114 if (!bnad->rx_info[rx_id].rx) 2115 continue; 2116 bnad_destroy_rx(bnad, rx_id); 2117 } 2118 2119 spin_lock_irqsave(&bnad->bna_lock, flags); 2120 bna_enet_mtu_set(&bnad->bna.enet, 2121 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL); 2122 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2123 2124 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) { 2125 count++; 2126 current_err = bnad_setup_rx(bnad, rx_id); 2127 if (current_err && !err) { 2128 err = current_err; 2129 netdev_err(netdev, "RXQ:%u setup failed\n", rx_id); 2130 } 2131 } 2132 2133 /* restore rx configuration */ 2134 if (bnad->rx_info[0].rx && !err) { 2135 bnad_restore_vlans(bnad, 0); 2136 bnad_enable_default_bcast(bnad); 2137 spin_lock_irqsave(&bnad->bna_lock, flags); 2138 bnad_mac_addr_set_locked(bnad, netdev->dev_addr); 2139 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2140 bnad_set_rx_mode(netdev); 2141 } 2142 2143 return count; 2144 } 2145 2146 /* Called with bnad_conf_lock() held */ 2147 void 2148 bnad_destroy_rx(struct bnad *bnad, u32 rx_id) 2149 { 2150 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id]; 2151 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id]; 2152 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0]; 2153 unsigned long flags; 2154 int to_del = 0; 2155 2156 if (!rx_info->rx) 2157 return; 2158 2159 if (0 == rx_id) { 2160 spin_lock_irqsave(&bnad->bna_lock, flags); 2161 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED && 2162 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) { 2163 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags); 2164 to_del = 1; 2165 } 2166 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2167 if (to_del) 2168 del_timer_sync(&bnad->dim_timer); 2169 } 2170 2171 init_completion(&bnad->bnad_completions.rx_comp); 2172 spin_lock_irqsave(&bnad->bna_lock, flags); 2173 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled); 2174 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2175 wait_for_completion(&bnad->bnad_completions.rx_comp); 2176 2177 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX) 2178 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths); 2179 2180 bnad_napi_delete(bnad, rx_id); 2181 2182 spin_lock_irqsave(&bnad->bna_lock, flags); 2183 bna_rx_destroy(rx_info->rx); 2184 2185 rx_info->rx = NULL; 2186 rx_info->rx_id = 0; 2187 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2188 2189 bnad_rx_res_free(bnad, res_info); 2190 } 2191 2192 /* Called with mutex_lock(&bnad->conf_mutex) held */ 2193 int 2194 bnad_setup_rx(struct bnad *bnad, u32 rx_id) 2195 { 2196 int err; 2197 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id]; 2198 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0]; 2199 struct bna_intr_info *intr_info = 2200 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info; 2201 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id]; 2202 static const struct bna_rx_event_cbfn rx_cbfn = { 2203 .rcb_setup_cbfn = NULL, 2204 .rcb_destroy_cbfn = NULL, 2205 .ccb_setup_cbfn = bnad_cb_ccb_setup, 2206 .ccb_destroy_cbfn = bnad_cb_ccb_destroy, 2207 .rx_stall_cbfn = bnad_cb_rx_stall, 2208 .rx_cleanup_cbfn = bnad_cb_rx_cleanup, 2209 .rx_post_cbfn = bnad_cb_rx_post, 2210 }; 2211 struct bna_rx *rx; 2212 unsigned long flags; 2213 2214 rx_info->rx_id = rx_id; 2215 2216 /* Initialize the Rx object configuration */ 2217 bnad_init_rx_config(bnad, rx_config); 2218 2219 /* Get BNA's resource requirement for one Rx object */ 2220 spin_lock_irqsave(&bnad->bna_lock, flags); 2221 bna_rx_res_req(rx_config, res_info); 2222 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2223 2224 /* Fill Unmap Q memory requirements */ 2225 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ], 2226 rx_config->num_paths, 2227 (rx_config->q0_depth * 2228 sizeof(struct bnad_rx_unmap)) + 2229 sizeof(struct bnad_rx_unmap_q)); 2230 2231 if (rx_config->rxp_type != BNA_RXP_SINGLE) { 2232 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ], 2233 rx_config->num_paths, 2234 (rx_config->q1_depth * 2235 sizeof(struct bnad_rx_unmap) + 2236 sizeof(struct bnad_rx_unmap_q))); 2237 } 2238 /* Allocate resource */ 2239 err = bnad_rx_res_alloc(bnad, res_info, rx_id); 2240 if (err) 2241 return err; 2242 2243 bnad_rx_ctrl_init(bnad, rx_id); 2244 2245 /* Ask BNA to create one Rx object, supplying required resources */ 2246 spin_lock_irqsave(&bnad->bna_lock, flags); 2247 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info, 2248 rx_info); 2249 if (!rx) { 2250 err = -ENOMEM; 2251 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2252 goto err_return; 2253 } 2254 rx_info->rx = rx; 2255 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2256 2257 INIT_WORK(&rx_info->rx_cleanup_work, 2258 (work_func_t)(bnad_rx_cleanup)); 2259 2260 /* 2261 * Init NAPI, so that state is set to NAPI_STATE_SCHED, 2262 * so that IRQ handler cannot schedule NAPI at this point. 2263 */ 2264 bnad_napi_add(bnad, rx_id); 2265 2266 /* Register ISR for the Rx object */ 2267 if (intr_info->intr_type == BNA_INTR_T_MSIX) { 2268 err = bnad_rx_msix_register(bnad, rx_info, rx_id, 2269 rx_config->num_paths); 2270 if (err) 2271 goto err_return; 2272 } 2273 2274 spin_lock_irqsave(&bnad->bna_lock, flags); 2275 if (0 == rx_id) { 2276 /* Set up Dynamic Interrupt Moderation Vector */ 2277 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED) 2278 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector); 2279 2280 /* Enable VLAN filtering only on the default Rx */ 2281 bna_rx_vlanfilter_enable(rx); 2282 2283 /* Start the DIM timer */ 2284 bnad_dim_timer_start(bnad); 2285 } 2286 2287 bna_rx_enable(rx); 2288 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2289 2290 return 0; 2291 2292 err_return: 2293 bnad_destroy_rx(bnad, rx_id); 2294 return err; 2295 } 2296 2297 /* Called with conf_lock & bnad->bna_lock held */ 2298 void 2299 bnad_tx_coalescing_timeo_set(struct bnad *bnad) 2300 { 2301 struct bnad_tx_info *tx_info; 2302 2303 tx_info = &bnad->tx_info[0]; 2304 if (!tx_info->tx) 2305 return; 2306 2307 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo); 2308 } 2309 2310 /* Called with conf_lock & bnad->bna_lock held */ 2311 void 2312 bnad_rx_coalescing_timeo_set(struct bnad *bnad) 2313 { 2314 struct bnad_rx_info *rx_info; 2315 int i; 2316 2317 for (i = 0; i < bnad->num_rx; i++) { 2318 rx_info = &bnad->rx_info[i]; 2319 if (!rx_info->rx) 2320 continue; 2321 bna_rx_coalescing_timeo_set(rx_info->rx, 2322 bnad->rx_coalescing_timeo); 2323 } 2324 } 2325 2326 /* 2327 * Called with bnad->bna_lock held 2328 */ 2329 int 2330 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr) 2331 { 2332 int ret; 2333 2334 if (!is_valid_ether_addr(mac_addr)) 2335 return -EADDRNOTAVAIL; 2336 2337 /* If datapath is down, pretend everything went through */ 2338 if (!bnad->rx_info[0].rx) 2339 return 0; 2340 2341 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr); 2342 if (ret != BNA_CB_SUCCESS) 2343 return -EADDRNOTAVAIL; 2344 2345 return 0; 2346 } 2347 2348 /* Should be called with conf_lock held */ 2349 int 2350 bnad_enable_default_bcast(struct bnad *bnad) 2351 { 2352 struct bnad_rx_info *rx_info = &bnad->rx_info[0]; 2353 int ret; 2354 unsigned long flags; 2355 2356 init_completion(&bnad->bnad_completions.mcast_comp); 2357 2358 spin_lock_irqsave(&bnad->bna_lock, flags); 2359 ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr, 2360 bnad_cb_rx_mcast_add); 2361 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2362 2363 if (ret == BNA_CB_SUCCESS) 2364 wait_for_completion(&bnad->bnad_completions.mcast_comp); 2365 else 2366 return -ENODEV; 2367 2368 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS) 2369 return -ENODEV; 2370 2371 return 0; 2372 } 2373 2374 /* Called with mutex_lock(&bnad->conf_mutex) held */ 2375 void 2376 bnad_restore_vlans(struct bnad *bnad, u32 rx_id) 2377 { 2378 u16 vid; 2379 unsigned long flags; 2380 2381 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) { 2382 spin_lock_irqsave(&bnad->bna_lock, flags); 2383 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid); 2384 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2385 } 2386 } 2387 2388 /* Statistics utilities */ 2389 void 2390 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats) 2391 { 2392 int i, j; 2393 2394 for (i = 0; i < bnad->num_rx; i++) { 2395 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 2396 if (bnad->rx_info[i].rx_ctrl[j].ccb) { 2397 stats->rx_packets += bnad->rx_info[i]. 2398 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets; 2399 stats->rx_bytes += bnad->rx_info[i]. 2400 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes; 2401 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] && 2402 bnad->rx_info[i].rx_ctrl[j].ccb-> 2403 rcb[1]->rxq) { 2404 stats->rx_packets += 2405 bnad->rx_info[i].rx_ctrl[j]. 2406 ccb->rcb[1]->rxq->rx_packets; 2407 stats->rx_bytes += 2408 bnad->rx_info[i].rx_ctrl[j]. 2409 ccb->rcb[1]->rxq->rx_bytes; 2410 } 2411 } 2412 } 2413 } 2414 for (i = 0; i < bnad->num_tx; i++) { 2415 for (j = 0; j < bnad->num_txq_per_tx; j++) { 2416 if (bnad->tx_info[i].tcb[j]) { 2417 stats->tx_packets += 2418 bnad->tx_info[i].tcb[j]->txq->tx_packets; 2419 stats->tx_bytes += 2420 bnad->tx_info[i].tcb[j]->txq->tx_bytes; 2421 } 2422 } 2423 } 2424 } 2425 2426 /* 2427 * Must be called with the bna_lock held. 2428 */ 2429 void 2430 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats) 2431 { 2432 struct bfi_enet_stats_mac *mac_stats; 2433 u32 bmap; 2434 int i; 2435 2436 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats; 2437 stats->rx_errors = 2438 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error + 2439 mac_stats->rx_frame_length_error + mac_stats->rx_code_error + 2440 mac_stats->rx_undersize; 2441 stats->tx_errors = mac_stats->tx_fcs_error + 2442 mac_stats->tx_undersize; 2443 stats->rx_dropped = mac_stats->rx_drop; 2444 stats->tx_dropped = mac_stats->tx_drop; 2445 stats->multicast = mac_stats->rx_multicast; 2446 stats->collisions = mac_stats->tx_total_collision; 2447 2448 stats->rx_length_errors = mac_stats->rx_frame_length_error; 2449 2450 /* receive ring buffer overflow ?? */ 2451 2452 stats->rx_crc_errors = mac_stats->rx_fcs_error; 2453 stats->rx_frame_errors = mac_stats->rx_alignment_error; 2454 /* recv'r fifo overrun */ 2455 bmap = bna_rx_rid_mask(&bnad->bna); 2456 for (i = 0; bmap; i++) { 2457 if (bmap & 1) { 2458 stats->rx_fifo_errors += 2459 bnad->stats.bna_stats-> 2460 hw_stats.rxf_stats[i].frame_drops; 2461 break; 2462 } 2463 bmap >>= 1; 2464 } 2465 } 2466 2467 static void 2468 bnad_mbox_irq_sync(struct bnad *bnad) 2469 { 2470 u32 irq; 2471 unsigned long flags; 2472 2473 spin_lock_irqsave(&bnad->bna_lock, flags); 2474 if (bnad->cfg_flags & BNAD_CF_MSIX) 2475 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector; 2476 else 2477 irq = bnad->pcidev->irq; 2478 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2479 2480 synchronize_irq(irq); 2481 } 2482 2483 /* Utility used by bnad_start_xmit, for doing TSO */ 2484 static int 2485 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb) 2486 { 2487 int err; 2488 2489 err = skb_cow_head(skb, 0); 2490 if (err < 0) { 2491 BNAD_UPDATE_CTR(bnad, tso_err); 2492 return err; 2493 } 2494 2495 /* 2496 * For TSO, the TCP checksum field is seeded with pseudo-header sum 2497 * excluding the length field. 2498 */ 2499 if (vlan_get_protocol(skb) == htons(ETH_P_IP)) { 2500 struct iphdr *iph = ip_hdr(skb); 2501 2502 /* Do we really need these? */ 2503 iph->tot_len = 0; 2504 iph->check = 0; 2505 2506 tcp_hdr(skb)->check = 2507 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 2508 IPPROTO_TCP, 0); 2509 BNAD_UPDATE_CTR(bnad, tso4); 2510 } else { 2511 struct ipv6hdr *ipv6h = ipv6_hdr(skb); 2512 2513 ipv6h->payload_len = 0; 2514 tcp_hdr(skb)->check = 2515 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0, 2516 IPPROTO_TCP, 0); 2517 BNAD_UPDATE_CTR(bnad, tso6); 2518 } 2519 2520 return 0; 2521 } 2522 2523 /* 2524 * Initialize Q numbers depending on Rx Paths 2525 * Called with bnad->bna_lock held, because of cfg_flags 2526 * access. 2527 */ 2528 static void 2529 bnad_q_num_init(struct bnad *bnad) 2530 { 2531 int rxps; 2532 2533 rxps = min((uint)num_online_cpus(), 2534 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX)); 2535 2536 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) 2537 rxps = 1; /* INTx */ 2538 2539 bnad->num_rx = 1; 2540 bnad->num_tx = 1; 2541 bnad->num_rxp_per_rx = rxps; 2542 bnad->num_txq_per_tx = BNAD_TXQ_NUM; 2543 } 2544 2545 /* 2546 * Adjusts the Q numbers, given a number of msix vectors 2547 * Give preference to RSS as opposed to Tx priority Queues, 2548 * in such a case, just use 1 Tx Q 2549 * Called with bnad->bna_lock held b'cos of cfg_flags access 2550 */ 2551 static void 2552 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp) 2553 { 2554 bnad->num_txq_per_tx = 1; 2555 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) + 2556 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) && 2557 (bnad->cfg_flags & BNAD_CF_MSIX)) { 2558 bnad->num_rxp_per_rx = msix_vectors - 2559 (bnad->num_tx * bnad->num_txq_per_tx) - 2560 BNAD_MAILBOX_MSIX_VECTORS; 2561 } else 2562 bnad->num_rxp_per_rx = 1; 2563 } 2564 2565 /* Enable / disable ioceth */ 2566 static int 2567 bnad_ioceth_disable(struct bnad *bnad) 2568 { 2569 unsigned long flags; 2570 int err = 0; 2571 2572 spin_lock_irqsave(&bnad->bna_lock, flags); 2573 init_completion(&bnad->bnad_completions.ioc_comp); 2574 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP); 2575 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2576 2577 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp, 2578 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT)); 2579 2580 err = bnad->bnad_completions.ioc_comp_status; 2581 return err; 2582 } 2583 2584 static int 2585 bnad_ioceth_enable(struct bnad *bnad) 2586 { 2587 int err = 0; 2588 unsigned long flags; 2589 2590 spin_lock_irqsave(&bnad->bna_lock, flags); 2591 init_completion(&bnad->bnad_completions.ioc_comp); 2592 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING; 2593 bna_ioceth_enable(&bnad->bna.ioceth); 2594 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2595 2596 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp, 2597 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT)); 2598 2599 err = bnad->bnad_completions.ioc_comp_status; 2600 2601 return err; 2602 } 2603 2604 /* Free BNA resources */ 2605 static void 2606 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info, 2607 u32 res_val_max) 2608 { 2609 int i; 2610 2611 for (i = 0; i < res_val_max; i++) 2612 bnad_mem_free(bnad, &res_info[i].res_u.mem_info); 2613 } 2614 2615 /* Allocates memory and interrupt resources for BNA */ 2616 static int 2617 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info, 2618 u32 res_val_max) 2619 { 2620 int i, err; 2621 2622 for (i = 0; i < res_val_max; i++) { 2623 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info); 2624 if (err) 2625 goto err_return; 2626 } 2627 return 0; 2628 2629 err_return: 2630 bnad_res_free(bnad, res_info, res_val_max); 2631 return err; 2632 } 2633 2634 /* Interrupt enable / disable */ 2635 static void 2636 bnad_enable_msix(struct bnad *bnad) 2637 { 2638 int i, ret; 2639 unsigned long flags; 2640 2641 spin_lock_irqsave(&bnad->bna_lock, flags); 2642 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) { 2643 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2644 return; 2645 } 2646 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2647 2648 if (bnad->msix_table) 2649 return; 2650 2651 bnad->msix_table = 2652 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL); 2653 2654 if (!bnad->msix_table) 2655 goto intx_mode; 2656 2657 for (i = 0; i < bnad->msix_num; i++) 2658 bnad->msix_table[i].entry = i; 2659 2660 ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table, 2661 1, bnad->msix_num); 2662 if (ret < 0) { 2663 goto intx_mode; 2664 } else if (ret < bnad->msix_num) { 2665 dev_warn(&bnad->pcidev->dev, 2666 "%d MSI-X vectors allocated < %d requested\n", 2667 ret, bnad->msix_num); 2668 2669 spin_lock_irqsave(&bnad->bna_lock, flags); 2670 /* ret = #of vectors that we got */ 2671 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2, 2672 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2); 2673 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2674 2675 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP + 2676 BNAD_MAILBOX_MSIX_VECTORS; 2677 2678 if (bnad->msix_num > ret) { 2679 pci_disable_msix(bnad->pcidev); 2680 goto intx_mode; 2681 } 2682 } 2683 2684 pci_intx(bnad->pcidev, 0); 2685 2686 return; 2687 2688 intx_mode: 2689 dev_warn(&bnad->pcidev->dev, 2690 "MSI-X enable failed - operating in INTx mode\n"); 2691 2692 kfree(bnad->msix_table); 2693 bnad->msix_table = NULL; 2694 bnad->msix_num = 0; 2695 spin_lock_irqsave(&bnad->bna_lock, flags); 2696 bnad->cfg_flags &= ~BNAD_CF_MSIX; 2697 bnad_q_num_init(bnad); 2698 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2699 } 2700 2701 static void 2702 bnad_disable_msix(struct bnad *bnad) 2703 { 2704 u32 cfg_flags; 2705 unsigned long flags; 2706 2707 spin_lock_irqsave(&bnad->bna_lock, flags); 2708 cfg_flags = bnad->cfg_flags; 2709 if (bnad->cfg_flags & BNAD_CF_MSIX) 2710 bnad->cfg_flags &= ~BNAD_CF_MSIX; 2711 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2712 2713 if (cfg_flags & BNAD_CF_MSIX) { 2714 pci_disable_msix(bnad->pcidev); 2715 kfree(bnad->msix_table); 2716 bnad->msix_table = NULL; 2717 } 2718 } 2719 2720 /* Netdev entry points */ 2721 static int 2722 bnad_open(struct net_device *netdev) 2723 { 2724 int err; 2725 struct bnad *bnad = netdev_priv(netdev); 2726 struct bna_pause_config pause_config; 2727 unsigned long flags; 2728 2729 mutex_lock(&bnad->conf_mutex); 2730 2731 /* Tx */ 2732 err = bnad_setup_tx(bnad, 0); 2733 if (err) 2734 goto err_return; 2735 2736 /* Rx */ 2737 err = bnad_setup_rx(bnad, 0); 2738 if (err) 2739 goto cleanup_tx; 2740 2741 /* Port */ 2742 pause_config.tx_pause = 0; 2743 pause_config.rx_pause = 0; 2744 2745 spin_lock_irqsave(&bnad->bna_lock, flags); 2746 bna_enet_mtu_set(&bnad->bna.enet, 2747 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL); 2748 bna_enet_pause_config(&bnad->bna.enet, &pause_config); 2749 bna_enet_enable(&bnad->bna.enet); 2750 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2751 2752 /* Enable broadcast */ 2753 bnad_enable_default_bcast(bnad); 2754 2755 /* Restore VLANs, if any */ 2756 bnad_restore_vlans(bnad, 0); 2757 2758 /* Set the UCAST address */ 2759 spin_lock_irqsave(&bnad->bna_lock, flags); 2760 bnad_mac_addr_set_locked(bnad, netdev->dev_addr); 2761 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2762 2763 /* Start the stats timer */ 2764 bnad_stats_timer_start(bnad); 2765 2766 mutex_unlock(&bnad->conf_mutex); 2767 2768 return 0; 2769 2770 cleanup_tx: 2771 bnad_destroy_tx(bnad, 0); 2772 2773 err_return: 2774 mutex_unlock(&bnad->conf_mutex); 2775 return err; 2776 } 2777 2778 static int 2779 bnad_stop(struct net_device *netdev) 2780 { 2781 struct bnad *bnad = netdev_priv(netdev); 2782 unsigned long flags; 2783 2784 mutex_lock(&bnad->conf_mutex); 2785 2786 /* Stop the stats timer */ 2787 bnad_stats_timer_stop(bnad); 2788 2789 init_completion(&bnad->bnad_completions.enet_comp); 2790 2791 spin_lock_irqsave(&bnad->bna_lock, flags); 2792 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP, 2793 bnad_cb_enet_disabled); 2794 spin_unlock_irqrestore(&bnad->bna_lock, flags); 2795 2796 wait_for_completion(&bnad->bnad_completions.enet_comp); 2797 2798 bnad_destroy_tx(bnad, 0); 2799 bnad_destroy_rx(bnad, 0); 2800 2801 /* Synchronize mailbox IRQ */ 2802 bnad_mbox_irq_sync(bnad); 2803 2804 mutex_unlock(&bnad->conf_mutex); 2805 2806 return 0; 2807 } 2808 2809 /* TX */ 2810 /* Returns 0 for success */ 2811 static int 2812 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb, 2813 struct sk_buff *skb, struct bna_txq_entry *txqent) 2814 { 2815 u16 flags = 0; 2816 u32 gso_size; 2817 u16 vlan_tag = 0; 2818 2819 if (skb_vlan_tag_present(skb)) { 2820 vlan_tag = (u16)skb_vlan_tag_get(skb); 2821 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN); 2822 } 2823 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) { 2824 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT) 2825 | (vlan_tag & 0x1fff); 2826 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN); 2827 } 2828 txqent->hdr.wi.vlan_tag = htons(vlan_tag); 2829 2830 if (skb_is_gso(skb)) { 2831 gso_size = skb_shinfo(skb)->gso_size; 2832 if (unlikely(gso_size > bnad->netdev->mtu)) { 2833 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long); 2834 return -EINVAL; 2835 } 2836 if (unlikely((gso_size + skb_transport_offset(skb) + 2837 tcp_hdrlen(skb)) >= skb->len)) { 2838 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND); 2839 txqent->hdr.wi.lso_mss = 0; 2840 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short); 2841 } else { 2842 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO); 2843 txqent->hdr.wi.lso_mss = htons(gso_size); 2844 } 2845 2846 if (bnad_tso_prepare(bnad, skb)) { 2847 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare); 2848 return -EINVAL; 2849 } 2850 2851 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM); 2852 txqent->hdr.wi.l4_hdr_size_n_offset = 2853 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET( 2854 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb))); 2855 } else { 2856 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND); 2857 txqent->hdr.wi.lso_mss = 0; 2858 2859 if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) { 2860 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long); 2861 return -EINVAL; 2862 } 2863 2864 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2865 __be16 net_proto = vlan_get_protocol(skb); 2866 u8 proto = 0; 2867 2868 if (net_proto == htons(ETH_P_IP)) 2869 proto = ip_hdr(skb)->protocol; 2870 #ifdef NETIF_F_IPV6_CSUM 2871 else if (net_proto == htons(ETH_P_IPV6)) { 2872 /* nexthdr may not be TCP immediately. */ 2873 proto = ipv6_hdr(skb)->nexthdr; 2874 } 2875 #endif 2876 if (proto == IPPROTO_TCP) { 2877 flags |= BNA_TXQ_WI_CF_TCP_CKSUM; 2878 txqent->hdr.wi.l4_hdr_size_n_offset = 2879 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET 2880 (0, skb_transport_offset(skb))); 2881 2882 BNAD_UPDATE_CTR(bnad, tcpcsum_offload); 2883 2884 if (unlikely(skb_headlen(skb) < 2885 skb_transport_offset(skb) + 2886 tcp_hdrlen(skb))) { 2887 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr); 2888 return -EINVAL; 2889 } 2890 } else if (proto == IPPROTO_UDP) { 2891 flags |= BNA_TXQ_WI_CF_UDP_CKSUM; 2892 txqent->hdr.wi.l4_hdr_size_n_offset = 2893 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET 2894 (0, skb_transport_offset(skb))); 2895 2896 BNAD_UPDATE_CTR(bnad, udpcsum_offload); 2897 if (unlikely(skb_headlen(skb) < 2898 skb_transport_offset(skb) + 2899 sizeof(struct udphdr))) { 2900 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr); 2901 return -EINVAL; 2902 } 2903 } else { 2904 2905 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err); 2906 return -EINVAL; 2907 } 2908 } else 2909 txqent->hdr.wi.l4_hdr_size_n_offset = 0; 2910 } 2911 2912 txqent->hdr.wi.flags = htons(flags); 2913 txqent->hdr.wi.frame_length = htonl(skb->len); 2914 2915 return 0; 2916 } 2917 2918 /* 2919 * bnad_start_xmit : Netdev entry point for Transmit 2920 * Called under lock held by net_device 2921 */ 2922 static netdev_tx_t 2923 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev) 2924 { 2925 struct bnad *bnad = netdev_priv(netdev); 2926 u32 txq_id = 0; 2927 struct bna_tcb *tcb = NULL; 2928 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap; 2929 u32 prod, q_depth, vect_id; 2930 u32 wis, vectors, len; 2931 int i; 2932 dma_addr_t dma_addr; 2933 struct bna_txq_entry *txqent; 2934 2935 len = skb_headlen(skb); 2936 2937 /* Sanity checks for the skb */ 2938 2939 if (unlikely(skb->len <= ETH_HLEN)) { 2940 dev_kfree_skb_any(skb); 2941 BNAD_UPDATE_CTR(bnad, tx_skb_too_short); 2942 return NETDEV_TX_OK; 2943 } 2944 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) { 2945 dev_kfree_skb_any(skb); 2946 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero); 2947 return NETDEV_TX_OK; 2948 } 2949 if (unlikely(len == 0)) { 2950 dev_kfree_skb_any(skb); 2951 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero); 2952 return NETDEV_TX_OK; 2953 } 2954 2955 tcb = bnad->tx_info[0].tcb[txq_id]; 2956 2957 /* 2958 * Takes care of the Tx that is scheduled between clearing the flag 2959 * and the netif_tx_stop_all_queues() call. 2960 */ 2961 if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) { 2962 dev_kfree_skb_any(skb); 2963 BNAD_UPDATE_CTR(bnad, tx_skb_stopping); 2964 return NETDEV_TX_OK; 2965 } 2966 2967 q_depth = tcb->q_depth; 2968 prod = tcb->producer_index; 2969 unmap_q = tcb->unmap_q; 2970 2971 vectors = 1 + skb_shinfo(skb)->nr_frags; 2972 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */ 2973 2974 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) { 2975 dev_kfree_skb_any(skb); 2976 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors); 2977 return NETDEV_TX_OK; 2978 } 2979 2980 /* Check for available TxQ resources */ 2981 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) { 2982 if ((*tcb->hw_consumer_index != tcb->consumer_index) && 2983 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) { 2984 u32 sent; 2985 sent = bnad_txcmpl_process(bnad, tcb); 2986 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) 2987 bna_ib_ack(tcb->i_dbell, sent); 2988 smp_mb__before_atomic(); 2989 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags); 2990 } else { 2991 netif_stop_queue(netdev); 2992 BNAD_UPDATE_CTR(bnad, netif_queue_stop); 2993 } 2994 2995 smp_mb(); 2996 /* 2997 * Check again to deal with race condition between 2998 * netif_stop_queue here, and netif_wake_queue in 2999 * interrupt handler which is not inside netif tx lock. 3000 */ 3001 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) { 3002 BNAD_UPDATE_CTR(bnad, netif_queue_stop); 3003 return NETDEV_TX_BUSY; 3004 } else { 3005 netif_wake_queue(netdev); 3006 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup); 3007 } 3008 } 3009 3010 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod]; 3011 head_unmap = &unmap_q[prod]; 3012 3013 /* Program the opcode, flags, frame_len, num_vectors in WI */ 3014 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) { 3015 dev_kfree_skb_any(skb); 3016 return NETDEV_TX_OK; 3017 } 3018 txqent->hdr.wi.reserved = 0; 3019 txqent->hdr.wi.num_vectors = vectors; 3020 3021 head_unmap->skb = skb; 3022 head_unmap->nvecs = 0; 3023 3024 /* Program the vectors */ 3025 unmap = head_unmap; 3026 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data, 3027 len, DMA_TO_DEVICE); 3028 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr); 3029 txqent->vector[0].length = htons(len); 3030 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr); 3031 head_unmap->nvecs++; 3032 3033 for (i = 0, vect_id = 0; i < vectors - 1; i++) { 3034 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i]; 3035 u32 size = skb_frag_size(frag); 3036 3037 if (unlikely(size == 0)) { 3038 /* Undo the changes starting at tcb->producer_index */ 3039 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, 3040 tcb->producer_index); 3041 dev_kfree_skb_any(skb); 3042 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero); 3043 return NETDEV_TX_OK; 3044 } 3045 3046 len += size; 3047 3048 vect_id++; 3049 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) { 3050 vect_id = 0; 3051 BNA_QE_INDX_INC(prod, q_depth); 3052 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod]; 3053 txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION); 3054 unmap = &unmap_q[prod]; 3055 } 3056 3057 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag, 3058 0, size, DMA_TO_DEVICE); 3059 dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size); 3060 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr); 3061 txqent->vector[vect_id].length = htons(size); 3062 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr, 3063 dma_addr); 3064 head_unmap->nvecs++; 3065 } 3066 3067 if (unlikely(len != skb->len)) { 3068 /* Undo the changes starting at tcb->producer_index */ 3069 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index); 3070 dev_kfree_skb_any(skb); 3071 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch); 3072 return NETDEV_TX_OK; 3073 } 3074 3075 BNA_QE_INDX_INC(prod, q_depth); 3076 tcb->producer_index = prod; 3077 3078 smp_mb(); 3079 3080 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) 3081 return NETDEV_TX_OK; 3082 3083 skb_tx_timestamp(skb); 3084 3085 bna_txq_prod_indx_doorbell(tcb); 3086 smp_mb(); 3087 3088 return NETDEV_TX_OK; 3089 } 3090 3091 /* 3092 * Used spin_lock to synchronize reading of stats structures, which 3093 * is written by BNA under the same lock. 3094 */ 3095 static struct rtnl_link_stats64 * 3096 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 3097 { 3098 struct bnad *bnad = netdev_priv(netdev); 3099 unsigned long flags; 3100 3101 spin_lock_irqsave(&bnad->bna_lock, flags); 3102 3103 bnad_netdev_qstats_fill(bnad, stats); 3104 bnad_netdev_hwstats_fill(bnad, stats); 3105 3106 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3107 3108 return stats; 3109 } 3110 3111 static void 3112 bnad_set_rx_ucast_fltr(struct bnad *bnad) 3113 { 3114 struct net_device *netdev = bnad->netdev; 3115 int uc_count = netdev_uc_count(netdev); 3116 enum bna_cb_status ret; 3117 u8 *mac_list; 3118 struct netdev_hw_addr *ha; 3119 int entry; 3120 3121 if (netdev_uc_empty(bnad->netdev)) { 3122 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL); 3123 return; 3124 } 3125 3126 if (uc_count > bna_attr(&bnad->bna)->num_ucmac) 3127 goto mode_default; 3128 3129 mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC); 3130 if (mac_list == NULL) 3131 goto mode_default; 3132 3133 entry = 0; 3134 netdev_for_each_uc_addr(ha, netdev) { 3135 ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]); 3136 entry++; 3137 } 3138 3139 ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list); 3140 kfree(mac_list); 3141 3142 if (ret != BNA_CB_SUCCESS) 3143 goto mode_default; 3144 3145 return; 3146 3147 /* ucast packets not in UCAM are routed to default function */ 3148 mode_default: 3149 bnad->cfg_flags |= BNAD_CF_DEFAULT; 3150 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL); 3151 } 3152 3153 static void 3154 bnad_set_rx_mcast_fltr(struct bnad *bnad) 3155 { 3156 struct net_device *netdev = bnad->netdev; 3157 int mc_count = netdev_mc_count(netdev); 3158 enum bna_cb_status ret; 3159 u8 *mac_list; 3160 3161 if (netdev->flags & IFF_ALLMULTI) 3162 goto mode_allmulti; 3163 3164 if (netdev_mc_empty(netdev)) 3165 return; 3166 3167 if (mc_count > bna_attr(&bnad->bna)->num_mcmac) 3168 goto mode_allmulti; 3169 3170 mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC); 3171 3172 if (mac_list == NULL) 3173 goto mode_allmulti; 3174 3175 ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]); 3176 3177 /* copy rest of the MCAST addresses */ 3178 bnad_netdev_mc_list_get(netdev, mac_list); 3179 ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list); 3180 kfree(mac_list); 3181 3182 if (ret != BNA_CB_SUCCESS) 3183 goto mode_allmulti; 3184 3185 return; 3186 3187 mode_allmulti: 3188 bnad->cfg_flags |= BNAD_CF_ALLMULTI; 3189 bna_rx_mcast_delall(bnad->rx_info[0].rx); 3190 } 3191 3192 void 3193 bnad_set_rx_mode(struct net_device *netdev) 3194 { 3195 struct bnad *bnad = netdev_priv(netdev); 3196 enum bna_rxmode new_mode, mode_mask; 3197 unsigned long flags; 3198 3199 spin_lock_irqsave(&bnad->bna_lock, flags); 3200 3201 if (bnad->rx_info[0].rx == NULL) { 3202 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3203 return; 3204 } 3205 3206 /* clear bnad flags to update it with new settings */ 3207 bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT | 3208 BNAD_CF_ALLMULTI); 3209 3210 new_mode = 0; 3211 if (netdev->flags & IFF_PROMISC) { 3212 new_mode |= BNAD_RXMODE_PROMISC_DEFAULT; 3213 bnad->cfg_flags |= BNAD_CF_PROMISC; 3214 } else { 3215 bnad_set_rx_mcast_fltr(bnad); 3216 3217 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) 3218 new_mode |= BNA_RXMODE_ALLMULTI; 3219 3220 bnad_set_rx_ucast_fltr(bnad); 3221 3222 if (bnad->cfg_flags & BNAD_CF_DEFAULT) 3223 new_mode |= BNA_RXMODE_DEFAULT; 3224 } 3225 3226 mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT | 3227 BNA_RXMODE_ALLMULTI; 3228 bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask); 3229 3230 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3231 } 3232 3233 /* 3234 * bna_lock is used to sync writes to netdev->addr 3235 * conf_lock cannot be used since this call may be made 3236 * in a non-blocking context. 3237 */ 3238 static int 3239 bnad_set_mac_address(struct net_device *netdev, void *addr) 3240 { 3241 int err; 3242 struct bnad *bnad = netdev_priv(netdev); 3243 struct sockaddr *sa = (struct sockaddr *)addr; 3244 unsigned long flags; 3245 3246 spin_lock_irqsave(&bnad->bna_lock, flags); 3247 3248 err = bnad_mac_addr_set_locked(bnad, sa->sa_data); 3249 if (!err) 3250 ether_addr_copy(netdev->dev_addr, sa->sa_data); 3251 3252 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3253 3254 return err; 3255 } 3256 3257 static int 3258 bnad_mtu_set(struct bnad *bnad, int frame_size) 3259 { 3260 unsigned long flags; 3261 3262 init_completion(&bnad->bnad_completions.mtu_comp); 3263 3264 spin_lock_irqsave(&bnad->bna_lock, flags); 3265 bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set); 3266 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3267 3268 wait_for_completion(&bnad->bnad_completions.mtu_comp); 3269 3270 return bnad->bnad_completions.mtu_comp_status; 3271 } 3272 3273 static int 3274 bnad_change_mtu(struct net_device *netdev, int new_mtu) 3275 { 3276 int err, mtu; 3277 struct bnad *bnad = netdev_priv(netdev); 3278 u32 rx_count = 0, frame, new_frame; 3279 3280 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU) 3281 return -EINVAL; 3282 3283 mutex_lock(&bnad->conf_mutex); 3284 3285 mtu = netdev->mtu; 3286 netdev->mtu = new_mtu; 3287 3288 frame = BNAD_FRAME_SIZE(mtu); 3289 new_frame = BNAD_FRAME_SIZE(new_mtu); 3290 3291 /* check if multi-buffer needs to be enabled */ 3292 if (BNAD_PCI_DEV_IS_CAT2(bnad) && 3293 netif_running(bnad->netdev)) { 3294 /* only when transition is over 4K */ 3295 if ((frame <= 4096 && new_frame > 4096) || 3296 (frame > 4096 && new_frame <= 4096)) 3297 rx_count = bnad_reinit_rx(bnad); 3298 } 3299 3300 /* rx_count > 0 - new rx created 3301 * - Linux set err = 0 and return 3302 */ 3303 err = bnad_mtu_set(bnad, new_frame); 3304 if (err) 3305 err = -EBUSY; 3306 3307 mutex_unlock(&bnad->conf_mutex); 3308 return err; 3309 } 3310 3311 static int 3312 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3313 { 3314 struct bnad *bnad = netdev_priv(netdev); 3315 unsigned long flags; 3316 3317 if (!bnad->rx_info[0].rx) 3318 return 0; 3319 3320 mutex_lock(&bnad->conf_mutex); 3321 3322 spin_lock_irqsave(&bnad->bna_lock, flags); 3323 bna_rx_vlan_add(bnad->rx_info[0].rx, vid); 3324 set_bit(vid, bnad->active_vlans); 3325 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3326 3327 mutex_unlock(&bnad->conf_mutex); 3328 3329 return 0; 3330 } 3331 3332 static int 3333 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3334 { 3335 struct bnad *bnad = netdev_priv(netdev); 3336 unsigned long flags; 3337 3338 if (!bnad->rx_info[0].rx) 3339 return 0; 3340 3341 mutex_lock(&bnad->conf_mutex); 3342 3343 spin_lock_irqsave(&bnad->bna_lock, flags); 3344 clear_bit(vid, bnad->active_vlans); 3345 bna_rx_vlan_del(bnad->rx_info[0].rx, vid); 3346 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3347 3348 mutex_unlock(&bnad->conf_mutex); 3349 3350 return 0; 3351 } 3352 3353 static int bnad_set_features(struct net_device *dev, netdev_features_t features) 3354 { 3355 struct bnad *bnad = netdev_priv(dev); 3356 netdev_features_t changed = features ^ dev->features; 3357 3358 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) { 3359 unsigned long flags; 3360 3361 spin_lock_irqsave(&bnad->bna_lock, flags); 3362 3363 if (features & NETIF_F_HW_VLAN_CTAG_RX) 3364 bna_rx_vlan_strip_enable(bnad->rx_info[0].rx); 3365 else 3366 bna_rx_vlan_strip_disable(bnad->rx_info[0].rx); 3367 3368 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3369 } 3370 3371 return 0; 3372 } 3373 3374 #ifdef CONFIG_NET_POLL_CONTROLLER 3375 static void 3376 bnad_netpoll(struct net_device *netdev) 3377 { 3378 struct bnad *bnad = netdev_priv(netdev); 3379 struct bnad_rx_info *rx_info; 3380 struct bnad_rx_ctrl *rx_ctrl; 3381 u32 curr_mask; 3382 int i, j; 3383 3384 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) { 3385 bna_intx_disable(&bnad->bna, curr_mask); 3386 bnad_isr(bnad->pcidev->irq, netdev); 3387 bna_intx_enable(&bnad->bna, curr_mask); 3388 } else { 3389 /* 3390 * Tx processing may happen in sending context, so no need 3391 * to explicitly process completions here 3392 */ 3393 3394 /* Rx processing */ 3395 for (i = 0; i < bnad->num_rx; i++) { 3396 rx_info = &bnad->rx_info[i]; 3397 if (!rx_info->rx) 3398 continue; 3399 for (j = 0; j < bnad->num_rxp_per_rx; j++) { 3400 rx_ctrl = &rx_info->rx_ctrl[j]; 3401 if (rx_ctrl->ccb) 3402 bnad_netif_rx_schedule_poll(bnad, 3403 rx_ctrl->ccb); 3404 } 3405 } 3406 } 3407 } 3408 #endif 3409 3410 static const struct net_device_ops bnad_netdev_ops = { 3411 .ndo_open = bnad_open, 3412 .ndo_stop = bnad_stop, 3413 .ndo_start_xmit = bnad_start_xmit, 3414 .ndo_get_stats64 = bnad_get_stats64, 3415 .ndo_set_rx_mode = bnad_set_rx_mode, 3416 .ndo_validate_addr = eth_validate_addr, 3417 .ndo_set_mac_address = bnad_set_mac_address, 3418 .ndo_change_mtu = bnad_change_mtu, 3419 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid, 3420 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid, 3421 .ndo_set_features = bnad_set_features, 3422 #ifdef CONFIG_NET_POLL_CONTROLLER 3423 .ndo_poll_controller = bnad_netpoll 3424 #endif 3425 }; 3426 3427 static void 3428 bnad_netdev_init(struct bnad *bnad, bool using_dac) 3429 { 3430 struct net_device *netdev = bnad->netdev; 3431 3432 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM | 3433 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3434 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX | 3435 NETIF_F_HW_VLAN_CTAG_RX; 3436 3437 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA | 3438 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3439 NETIF_F_TSO | NETIF_F_TSO6; 3440 3441 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER; 3442 3443 if (using_dac) 3444 netdev->features |= NETIF_F_HIGHDMA; 3445 3446 netdev->mem_start = bnad->mmio_start; 3447 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1; 3448 3449 netdev->netdev_ops = &bnad_netdev_ops; 3450 bnad_set_ethtool_ops(netdev); 3451 } 3452 3453 /* 3454 * 1. Initialize the bnad structure 3455 * 2. Setup netdev pointer in pci_dev 3456 * 3. Initialize no. of TxQ & CQs & MSIX vectors 3457 * 4. Initialize work queue. 3458 */ 3459 static int 3460 bnad_init(struct bnad *bnad, 3461 struct pci_dev *pdev, struct net_device *netdev) 3462 { 3463 unsigned long flags; 3464 3465 SET_NETDEV_DEV(netdev, &pdev->dev); 3466 pci_set_drvdata(pdev, netdev); 3467 3468 bnad->netdev = netdev; 3469 bnad->pcidev = pdev; 3470 bnad->mmio_start = pci_resource_start(pdev, 0); 3471 bnad->mmio_len = pci_resource_len(pdev, 0); 3472 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len); 3473 if (!bnad->bar0) { 3474 dev_err(&pdev->dev, "ioremap for bar0 failed\n"); 3475 return -ENOMEM; 3476 } 3477 dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0, 3478 (unsigned long long) bnad->mmio_len); 3479 3480 spin_lock_irqsave(&bnad->bna_lock, flags); 3481 if (!bnad_msix_disable) 3482 bnad->cfg_flags = BNAD_CF_MSIX; 3483 3484 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED; 3485 3486 bnad_q_num_init(bnad); 3487 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3488 3489 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) + 3490 (bnad->num_rx * bnad->num_rxp_per_rx) + 3491 BNAD_MAILBOX_MSIX_VECTORS; 3492 3493 bnad->txq_depth = BNAD_TXQ_DEPTH; 3494 bnad->rxq_depth = BNAD_RXQ_DEPTH; 3495 3496 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO; 3497 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO; 3498 3499 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id); 3500 bnad->work_q = create_singlethread_workqueue(bnad->wq_name); 3501 if (!bnad->work_q) { 3502 iounmap(bnad->bar0); 3503 return -ENOMEM; 3504 } 3505 3506 return 0; 3507 } 3508 3509 /* 3510 * Must be called after bnad_pci_uninit() 3511 * so that iounmap() and pci_set_drvdata(NULL) 3512 * happens only after PCI uninitialization. 3513 */ 3514 static void 3515 bnad_uninit(struct bnad *bnad) 3516 { 3517 if (bnad->work_q) { 3518 flush_workqueue(bnad->work_q); 3519 destroy_workqueue(bnad->work_q); 3520 bnad->work_q = NULL; 3521 } 3522 3523 if (bnad->bar0) 3524 iounmap(bnad->bar0); 3525 } 3526 3527 /* 3528 * Initialize locks 3529 a) Per ioceth mutes used for serializing configuration 3530 changes from OS interface 3531 b) spin lock used to protect bna state machine 3532 */ 3533 static void 3534 bnad_lock_init(struct bnad *bnad) 3535 { 3536 spin_lock_init(&bnad->bna_lock); 3537 mutex_init(&bnad->conf_mutex); 3538 mutex_init(&bnad_list_mutex); 3539 } 3540 3541 static void 3542 bnad_lock_uninit(struct bnad *bnad) 3543 { 3544 mutex_destroy(&bnad->conf_mutex); 3545 mutex_destroy(&bnad_list_mutex); 3546 } 3547 3548 /* PCI Initialization */ 3549 static int 3550 bnad_pci_init(struct bnad *bnad, 3551 struct pci_dev *pdev, bool *using_dac) 3552 { 3553 int err; 3554 3555 err = pci_enable_device(pdev); 3556 if (err) 3557 return err; 3558 err = pci_request_regions(pdev, BNAD_NAME); 3559 if (err) 3560 goto disable_device; 3561 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 3562 *using_dac = true; 3563 } else { 3564 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3565 if (err) 3566 goto release_regions; 3567 *using_dac = false; 3568 } 3569 pci_set_master(pdev); 3570 return 0; 3571 3572 release_regions: 3573 pci_release_regions(pdev); 3574 disable_device: 3575 pci_disable_device(pdev); 3576 3577 return err; 3578 } 3579 3580 static void 3581 bnad_pci_uninit(struct pci_dev *pdev) 3582 { 3583 pci_release_regions(pdev); 3584 pci_disable_device(pdev); 3585 } 3586 3587 static int 3588 bnad_pci_probe(struct pci_dev *pdev, 3589 const struct pci_device_id *pcidev_id) 3590 { 3591 bool using_dac; 3592 int err; 3593 struct bnad *bnad; 3594 struct bna *bna; 3595 struct net_device *netdev; 3596 struct bfa_pcidev pcidev_info; 3597 unsigned long flags; 3598 3599 mutex_lock(&bnad_fwimg_mutex); 3600 if (!cna_get_firmware_buf(pdev)) { 3601 mutex_unlock(&bnad_fwimg_mutex); 3602 dev_err(&pdev->dev, "failed to load firmware image!\n"); 3603 return -ENODEV; 3604 } 3605 mutex_unlock(&bnad_fwimg_mutex); 3606 3607 /* 3608 * Allocates sizeof(struct net_device + struct bnad) 3609 * bnad = netdev->priv 3610 */ 3611 netdev = alloc_etherdev(sizeof(struct bnad)); 3612 if (!netdev) { 3613 err = -ENOMEM; 3614 return err; 3615 } 3616 bnad = netdev_priv(netdev); 3617 bnad_lock_init(bnad); 3618 bnad_add_to_list(bnad); 3619 3620 mutex_lock(&bnad->conf_mutex); 3621 /* 3622 * PCI initialization 3623 * Output : using_dac = 1 for 64 bit DMA 3624 * = 0 for 32 bit DMA 3625 */ 3626 using_dac = false; 3627 err = bnad_pci_init(bnad, pdev, &using_dac); 3628 if (err) 3629 goto unlock_mutex; 3630 3631 /* 3632 * Initialize bnad structure 3633 * Setup relation between pci_dev & netdev 3634 */ 3635 err = bnad_init(bnad, pdev, netdev); 3636 if (err) 3637 goto pci_uninit; 3638 3639 /* Initialize netdev structure, set up ethtool ops */ 3640 bnad_netdev_init(bnad, using_dac); 3641 3642 /* Set link to down state */ 3643 netif_carrier_off(netdev); 3644 3645 /* Setup the debugfs node for this bfad */ 3646 if (bna_debugfs_enable) 3647 bnad_debugfs_init(bnad); 3648 3649 /* Get resource requirement form bna */ 3650 spin_lock_irqsave(&bnad->bna_lock, flags); 3651 bna_res_req(&bnad->res_info[0]); 3652 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3653 3654 /* Allocate resources from bna */ 3655 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX); 3656 if (err) 3657 goto drv_uninit; 3658 3659 bna = &bnad->bna; 3660 3661 /* Setup pcidev_info for bna_init() */ 3662 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn); 3663 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn); 3664 pcidev_info.device_id = bnad->pcidev->device; 3665 pcidev_info.pci_bar_kva = bnad->bar0; 3666 3667 spin_lock_irqsave(&bnad->bna_lock, flags); 3668 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]); 3669 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3670 3671 bnad->stats.bna_stats = &bna->stats; 3672 3673 bnad_enable_msix(bnad); 3674 err = bnad_mbox_irq_alloc(bnad); 3675 if (err) 3676 goto res_free; 3677 3678 /* Set up timers */ 3679 setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout, 3680 (unsigned long)bnad); 3681 setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check, 3682 (unsigned long)bnad); 3683 setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout, 3684 (unsigned long)bnad); 3685 setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout, 3686 (unsigned long)bnad); 3687 3688 /* 3689 * Start the chip 3690 * If the call back comes with error, we bail out. 3691 * This is a catastrophic error. 3692 */ 3693 err = bnad_ioceth_enable(bnad); 3694 if (err) { 3695 dev_err(&pdev->dev, "initialization failed err=%d\n", err); 3696 goto probe_success; 3697 } 3698 3699 spin_lock_irqsave(&bnad->bna_lock, flags); 3700 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) || 3701 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) { 3702 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1, 3703 bna_attr(bna)->num_rxp - 1); 3704 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) || 3705 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) 3706 err = -EIO; 3707 } 3708 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3709 if (err) 3710 goto disable_ioceth; 3711 3712 spin_lock_irqsave(&bnad->bna_lock, flags); 3713 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]); 3714 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3715 3716 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX); 3717 if (err) { 3718 err = -EIO; 3719 goto disable_ioceth; 3720 } 3721 3722 spin_lock_irqsave(&bnad->bna_lock, flags); 3723 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]); 3724 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3725 3726 /* Get the burnt-in mac */ 3727 spin_lock_irqsave(&bnad->bna_lock, flags); 3728 bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr); 3729 bnad_set_netdev_perm_addr(bnad); 3730 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3731 3732 mutex_unlock(&bnad->conf_mutex); 3733 3734 /* Finally, reguister with net_device layer */ 3735 err = register_netdev(netdev); 3736 if (err) { 3737 dev_err(&pdev->dev, "registering net device failed\n"); 3738 goto probe_uninit; 3739 } 3740 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags); 3741 3742 return 0; 3743 3744 probe_success: 3745 mutex_unlock(&bnad->conf_mutex); 3746 return 0; 3747 3748 probe_uninit: 3749 mutex_lock(&bnad->conf_mutex); 3750 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX); 3751 disable_ioceth: 3752 bnad_ioceth_disable(bnad); 3753 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer); 3754 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer); 3755 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer); 3756 spin_lock_irqsave(&bnad->bna_lock, flags); 3757 bna_uninit(bna); 3758 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3759 bnad_mbox_irq_free(bnad); 3760 bnad_disable_msix(bnad); 3761 res_free: 3762 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX); 3763 drv_uninit: 3764 /* Remove the debugfs node for this bnad */ 3765 kfree(bnad->regdata); 3766 bnad_debugfs_uninit(bnad); 3767 bnad_uninit(bnad); 3768 pci_uninit: 3769 bnad_pci_uninit(pdev); 3770 unlock_mutex: 3771 mutex_unlock(&bnad->conf_mutex); 3772 bnad_remove_from_list(bnad); 3773 bnad_lock_uninit(bnad); 3774 free_netdev(netdev); 3775 return err; 3776 } 3777 3778 static void 3779 bnad_pci_remove(struct pci_dev *pdev) 3780 { 3781 struct net_device *netdev = pci_get_drvdata(pdev); 3782 struct bnad *bnad; 3783 struct bna *bna; 3784 unsigned long flags; 3785 3786 if (!netdev) 3787 return; 3788 3789 bnad = netdev_priv(netdev); 3790 bna = &bnad->bna; 3791 3792 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags)) 3793 unregister_netdev(netdev); 3794 3795 mutex_lock(&bnad->conf_mutex); 3796 bnad_ioceth_disable(bnad); 3797 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer); 3798 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer); 3799 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer); 3800 spin_lock_irqsave(&bnad->bna_lock, flags); 3801 bna_uninit(bna); 3802 spin_unlock_irqrestore(&bnad->bna_lock, flags); 3803 3804 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX); 3805 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX); 3806 bnad_mbox_irq_free(bnad); 3807 bnad_disable_msix(bnad); 3808 bnad_pci_uninit(pdev); 3809 mutex_unlock(&bnad->conf_mutex); 3810 bnad_remove_from_list(bnad); 3811 bnad_lock_uninit(bnad); 3812 /* Remove the debugfs node for this bnad */ 3813 kfree(bnad->regdata); 3814 bnad_debugfs_uninit(bnad); 3815 bnad_uninit(bnad); 3816 free_netdev(netdev); 3817 } 3818 3819 static const struct pci_device_id bnad_pci_id_table[] = { 3820 { 3821 PCI_DEVICE(PCI_VENDOR_ID_BROCADE, 3822 PCI_DEVICE_ID_BROCADE_CT), 3823 .class = PCI_CLASS_NETWORK_ETHERNET << 8, 3824 .class_mask = 0xffff00 3825 }, 3826 { 3827 PCI_DEVICE(PCI_VENDOR_ID_BROCADE, 3828 BFA_PCI_DEVICE_ID_CT2), 3829 .class = PCI_CLASS_NETWORK_ETHERNET << 8, 3830 .class_mask = 0xffff00 3831 }, 3832 {0, }, 3833 }; 3834 3835 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table); 3836 3837 static struct pci_driver bnad_pci_driver = { 3838 .name = BNAD_NAME, 3839 .id_table = bnad_pci_id_table, 3840 .probe = bnad_pci_probe, 3841 .remove = bnad_pci_remove, 3842 }; 3843 3844 static int __init 3845 bnad_module_init(void) 3846 { 3847 int err; 3848 3849 pr_info("bna: QLogic BR-series 10G Ethernet driver - version: %s\n", 3850 BNAD_VERSION); 3851 3852 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover); 3853 3854 err = pci_register_driver(&bnad_pci_driver); 3855 if (err < 0) { 3856 pr_err("bna: PCI driver registration failed err=%d\n", err); 3857 return err; 3858 } 3859 3860 return 0; 3861 } 3862 3863 static void __exit 3864 bnad_module_exit(void) 3865 { 3866 pci_unregister_driver(&bnad_pci_driver); 3867 release_firmware(bfi_fw); 3868 } 3869 3870 module_init(bnad_module_init); 3871 module_exit(bnad_module_exit); 3872 3873 MODULE_AUTHOR("Brocade"); 3874 MODULE_LICENSE("GPL"); 3875 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver"); 3876 MODULE_VERSION(BNAD_VERSION); 3877 MODULE_FIRMWARE(CNA_FW_FILE_CT); 3878 MODULE_FIRMWARE(CNA_FW_FILE_CT2); 3879