1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Broadcom GENET (Gigabit Ethernet) controller driver 4 * 5 * Copyright (c) 2014-2020 Broadcom 6 */ 7 8 #define pr_fmt(fmt) "bcmgenet: " fmt 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/types.h> 15 #include <linux/fcntl.h> 16 #include <linux/interrupt.h> 17 #include <linux/string.h> 18 #include <linux/if_ether.h> 19 #include <linux/init.h> 20 #include <linux/errno.h> 21 #include <linux/delay.h> 22 #include <linux/platform_device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/pm.h> 25 #include <linux/clk.h> 26 #include <net/arp.h> 27 28 #include <linux/mii.h> 29 #include <linux/ethtool.h> 30 #include <linux/netdevice.h> 31 #include <linux/inetdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/in.h> 35 #include <linux/ip.h> 36 #include <linux/ipv6.h> 37 #include <linux/phy.h> 38 #include <linux/platform_data/bcmgenet.h> 39 40 #include <asm/unaligned.h> 41 42 #include "bcmgenet.h" 43 44 /* Maximum number of hardware queues, downsized if needed */ 45 #define GENET_MAX_MQ_CNT 4 46 47 /* Default highest priority queue for multi queue support */ 48 #define GENET_Q0_PRIORITY 0 49 50 #define GENET_Q16_RX_BD_CNT \ 51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q) 52 #define GENET_Q16_TX_BD_CNT \ 53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q) 54 55 #define RX_BUF_LENGTH 2048 56 #define SKB_ALIGNMENT 32 57 58 /* Tx/Rx DMA register offset, skip 256 descriptors */ 59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd) 60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) 61 62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ 63 TOTAL_DESC * DMA_DESC_SIZE) 64 65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ 66 TOTAL_DESC * DMA_DESC_SIZE) 67 68 /* Forward declarations */ 69 static void bcmgenet_set_rx_mode(struct net_device *dev); 70 71 static inline void bcmgenet_writel(u32 value, void __iomem *offset) 72 { 73 /* MIPS chips strapped for BE will automagically configure the 74 * peripheral registers for CPU-native byte order. 75 */ 76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 77 __raw_writel(value, offset); 78 else 79 writel_relaxed(value, offset); 80 } 81 82 static inline u32 bcmgenet_readl(void __iomem *offset) 83 { 84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 85 return __raw_readl(offset); 86 else 87 return readl_relaxed(offset); 88 } 89 90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, 91 void __iomem *d, u32 value) 92 { 93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS); 94 } 95 96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, 97 void __iomem *d, 98 dma_addr_t addr) 99 { 100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); 101 102 /* Register writes to GISB bus can take couple hundred nanoseconds 103 * and are done for each packet, save these expensive writes unless 104 * the platform is explicitly configured for 64-bits/LPAE. 105 */ 106 #ifdef CONFIG_PHYS_ADDR_T_64BIT 107 if (priv->hw_params->flags & GENET_HAS_40BITS) 108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); 109 #endif 110 } 111 112 /* Combined address + length/status setter */ 113 static inline void dmadesc_set(struct bcmgenet_priv *priv, 114 void __iomem *d, dma_addr_t addr, u32 val) 115 { 116 dmadesc_set_addr(priv, d, addr); 117 dmadesc_set_length_status(priv, d, val); 118 } 119 120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv, 121 void __iomem *d) 122 { 123 dma_addr_t addr; 124 125 addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO); 126 127 /* Register writes to GISB bus can take couple hundred nanoseconds 128 * and are done for each packet, save these expensive writes unless 129 * the platform is explicitly configured for 64-bits/LPAE. 130 */ 131 #ifdef CONFIG_PHYS_ADDR_T_64BIT 132 if (priv->hw_params->flags & GENET_HAS_40BITS) 133 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32; 134 #endif 135 return addr; 136 } 137 138 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" 139 140 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 141 NETIF_MSG_LINK) 142 143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) 144 { 145 if (GENET_IS_V1(priv)) 146 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); 147 else 148 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); 149 } 150 151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 152 { 153 if (GENET_IS_V1(priv)) 154 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); 155 else 156 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); 157 } 158 159 /* These macros are defined to deal with register map change 160 * between GENET1.1 and GENET2. Only those currently being used 161 * by driver are defined. 162 */ 163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) 164 { 165 if (GENET_IS_V1(priv)) 166 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); 167 else 168 return bcmgenet_readl(priv->base + 169 priv->hw_params->tbuf_offset + TBUF_CTRL); 170 } 171 172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 173 { 174 if (GENET_IS_V1(priv)) 175 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); 176 else 177 bcmgenet_writel(val, priv->base + 178 priv->hw_params->tbuf_offset + TBUF_CTRL); 179 } 180 181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) 182 { 183 if (GENET_IS_V1(priv)) 184 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); 185 else 186 return bcmgenet_readl(priv->base + 187 priv->hw_params->tbuf_offset + TBUF_BP_MC); 188 } 189 190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) 191 { 192 if (GENET_IS_V1(priv)) 193 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); 194 else 195 bcmgenet_writel(val, priv->base + 196 priv->hw_params->tbuf_offset + TBUF_BP_MC); 197 } 198 199 /* RX/TX DMA register accessors */ 200 enum dma_reg { 201 DMA_RING_CFG = 0, 202 DMA_CTRL, 203 DMA_STATUS, 204 DMA_SCB_BURST_SIZE, 205 DMA_ARB_CTRL, 206 DMA_PRIORITY_0, 207 DMA_PRIORITY_1, 208 DMA_PRIORITY_2, 209 DMA_INDEX2RING_0, 210 DMA_INDEX2RING_1, 211 DMA_INDEX2RING_2, 212 DMA_INDEX2RING_3, 213 DMA_INDEX2RING_4, 214 DMA_INDEX2RING_5, 215 DMA_INDEX2RING_6, 216 DMA_INDEX2RING_7, 217 DMA_RING0_TIMEOUT, 218 DMA_RING1_TIMEOUT, 219 DMA_RING2_TIMEOUT, 220 DMA_RING3_TIMEOUT, 221 DMA_RING4_TIMEOUT, 222 DMA_RING5_TIMEOUT, 223 DMA_RING6_TIMEOUT, 224 DMA_RING7_TIMEOUT, 225 DMA_RING8_TIMEOUT, 226 DMA_RING9_TIMEOUT, 227 DMA_RING10_TIMEOUT, 228 DMA_RING11_TIMEOUT, 229 DMA_RING12_TIMEOUT, 230 DMA_RING13_TIMEOUT, 231 DMA_RING14_TIMEOUT, 232 DMA_RING15_TIMEOUT, 233 DMA_RING16_TIMEOUT, 234 }; 235 236 static const u8 bcmgenet_dma_regs_v3plus[] = { 237 [DMA_RING_CFG] = 0x00, 238 [DMA_CTRL] = 0x04, 239 [DMA_STATUS] = 0x08, 240 [DMA_SCB_BURST_SIZE] = 0x0C, 241 [DMA_ARB_CTRL] = 0x2C, 242 [DMA_PRIORITY_0] = 0x30, 243 [DMA_PRIORITY_1] = 0x34, 244 [DMA_PRIORITY_2] = 0x38, 245 [DMA_RING0_TIMEOUT] = 0x2C, 246 [DMA_RING1_TIMEOUT] = 0x30, 247 [DMA_RING2_TIMEOUT] = 0x34, 248 [DMA_RING3_TIMEOUT] = 0x38, 249 [DMA_RING4_TIMEOUT] = 0x3c, 250 [DMA_RING5_TIMEOUT] = 0x40, 251 [DMA_RING6_TIMEOUT] = 0x44, 252 [DMA_RING7_TIMEOUT] = 0x48, 253 [DMA_RING8_TIMEOUT] = 0x4c, 254 [DMA_RING9_TIMEOUT] = 0x50, 255 [DMA_RING10_TIMEOUT] = 0x54, 256 [DMA_RING11_TIMEOUT] = 0x58, 257 [DMA_RING12_TIMEOUT] = 0x5c, 258 [DMA_RING13_TIMEOUT] = 0x60, 259 [DMA_RING14_TIMEOUT] = 0x64, 260 [DMA_RING15_TIMEOUT] = 0x68, 261 [DMA_RING16_TIMEOUT] = 0x6C, 262 [DMA_INDEX2RING_0] = 0x70, 263 [DMA_INDEX2RING_1] = 0x74, 264 [DMA_INDEX2RING_2] = 0x78, 265 [DMA_INDEX2RING_3] = 0x7C, 266 [DMA_INDEX2RING_4] = 0x80, 267 [DMA_INDEX2RING_5] = 0x84, 268 [DMA_INDEX2RING_6] = 0x88, 269 [DMA_INDEX2RING_7] = 0x8C, 270 }; 271 272 static const u8 bcmgenet_dma_regs_v2[] = { 273 [DMA_RING_CFG] = 0x00, 274 [DMA_CTRL] = 0x04, 275 [DMA_STATUS] = 0x08, 276 [DMA_SCB_BURST_SIZE] = 0x0C, 277 [DMA_ARB_CTRL] = 0x30, 278 [DMA_PRIORITY_0] = 0x34, 279 [DMA_PRIORITY_1] = 0x38, 280 [DMA_PRIORITY_2] = 0x3C, 281 [DMA_RING0_TIMEOUT] = 0x2C, 282 [DMA_RING1_TIMEOUT] = 0x30, 283 [DMA_RING2_TIMEOUT] = 0x34, 284 [DMA_RING3_TIMEOUT] = 0x38, 285 [DMA_RING4_TIMEOUT] = 0x3c, 286 [DMA_RING5_TIMEOUT] = 0x40, 287 [DMA_RING6_TIMEOUT] = 0x44, 288 [DMA_RING7_TIMEOUT] = 0x48, 289 [DMA_RING8_TIMEOUT] = 0x4c, 290 [DMA_RING9_TIMEOUT] = 0x50, 291 [DMA_RING10_TIMEOUT] = 0x54, 292 [DMA_RING11_TIMEOUT] = 0x58, 293 [DMA_RING12_TIMEOUT] = 0x5c, 294 [DMA_RING13_TIMEOUT] = 0x60, 295 [DMA_RING14_TIMEOUT] = 0x64, 296 [DMA_RING15_TIMEOUT] = 0x68, 297 [DMA_RING16_TIMEOUT] = 0x6C, 298 }; 299 300 static const u8 bcmgenet_dma_regs_v1[] = { 301 [DMA_CTRL] = 0x00, 302 [DMA_STATUS] = 0x04, 303 [DMA_SCB_BURST_SIZE] = 0x0C, 304 [DMA_ARB_CTRL] = 0x30, 305 [DMA_PRIORITY_0] = 0x34, 306 [DMA_PRIORITY_1] = 0x38, 307 [DMA_PRIORITY_2] = 0x3C, 308 [DMA_RING0_TIMEOUT] = 0x2C, 309 [DMA_RING1_TIMEOUT] = 0x30, 310 [DMA_RING2_TIMEOUT] = 0x34, 311 [DMA_RING3_TIMEOUT] = 0x38, 312 [DMA_RING4_TIMEOUT] = 0x3c, 313 [DMA_RING5_TIMEOUT] = 0x40, 314 [DMA_RING6_TIMEOUT] = 0x44, 315 [DMA_RING7_TIMEOUT] = 0x48, 316 [DMA_RING8_TIMEOUT] = 0x4c, 317 [DMA_RING9_TIMEOUT] = 0x50, 318 [DMA_RING10_TIMEOUT] = 0x54, 319 [DMA_RING11_TIMEOUT] = 0x58, 320 [DMA_RING12_TIMEOUT] = 0x5c, 321 [DMA_RING13_TIMEOUT] = 0x60, 322 [DMA_RING14_TIMEOUT] = 0x64, 323 [DMA_RING15_TIMEOUT] = 0x68, 324 [DMA_RING16_TIMEOUT] = 0x6C, 325 }; 326 327 /* Set at runtime once bcmgenet version is known */ 328 static const u8 *bcmgenet_dma_regs; 329 330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) 331 { 332 return netdev_priv(dev_get_drvdata(dev)); 333 } 334 335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, 336 enum dma_reg r) 337 { 338 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 339 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 340 } 341 342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, 343 u32 val, enum dma_reg r) 344 { 345 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 346 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 347 } 348 349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, 350 enum dma_reg r) 351 { 352 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 353 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 354 } 355 356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, 357 u32 val, enum dma_reg r) 358 { 359 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 360 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 361 } 362 363 /* RDMA/TDMA ring registers and accessors 364 * we merge the common fields and just prefix with T/D the registers 365 * having different meaning depending on the direction 366 */ 367 enum dma_ring_reg { 368 TDMA_READ_PTR = 0, 369 RDMA_WRITE_PTR = TDMA_READ_PTR, 370 TDMA_READ_PTR_HI, 371 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, 372 TDMA_CONS_INDEX, 373 RDMA_PROD_INDEX = TDMA_CONS_INDEX, 374 TDMA_PROD_INDEX, 375 RDMA_CONS_INDEX = TDMA_PROD_INDEX, 376 DMA_RING_BUF_SIZE, 377 DMA_START_ADDR, 378 DMA_START_ADDR_HI, 379 DMA_END_ADDR, 380 DMA_END_ADDR_HI, 381 DMA_MBUF_DONE_THRESH, 382 TDMA_FLOW_PERIOD, 383 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, 384 TDMA_WRITE_PTR, 385 RDMA_READ_PTR = TDMA_WRITE_PTR, 386 TDMA_WRITE_PTR_HI, 387 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI 388 }; 389 390 /* GENET v4 supports 40-bits pointer addressing 391 * for obvious reasons the LO and HI word parts 392 * are contiguous, but this offsets the other 393 * registers. 394 */ 395 static const u8 genet_dma_ring_regs_v4[] = { 396 [TDMA_READ_PTR] = 0x00, 397 [TDMA_READ_PTR_HI] = 0x04, 398 [TDMA_CONS_INDEX] = 0x08, 399 [TDMA_PROD_INDEX] = 0x0C, 400 [DMA_RING_BUF_SIZE] = 0x10, 401 [DMA_START_ADDR] = 0x14, 402 [DMA_START_ADDR_HI] = 0x18, 403 [DMA_END_ADDR] = 0x1C, 404 [DMA_END_ADDR_HI] = 0x20, 405 [DMA_MBUF_DONE_THRESH] = 0x24, 406 [TDMA_FLOW_PERIOD] = 0x28, 407 [TDMA_WRITE_PTR] = 0x2C, 408 [TDMA_WRITE_PTR_HI] = 0x30, 409 }; 410 411 static const u8 genet_dma_ring_regs_v123[] = { 412 [TDMA_READ_PTR] = 0x00, 413 [TDMA_CONS_INDEX] = 0x04, 414 [TDMA_PROD_INDEX] = 0x08, 415 [DMA_RING_BUF_SIZE] = 0x0C, 416 [DMA_START_ADDR] = 0x10, 417 [DMA_END_ADDR] = 0x14, 418 [DMA_MBUF_DONE_THRESH] = 0x18, 419 [TDMA_FLOW_PERIOD] = 0x1C, 420 [TDMA_WRITE_PTR] = 0x20, 421 }; 422 423 /* Set at runtime once GENET version is known */ 424 static const u8 *genet_dma_ring_regs; 425 426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, 427 unsigned int ring, 428 enum dma_ring_reg r) 429 { 430 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 431 (DMA_RING_SIZE * ring) + 432 genet_dma_ring_regs[r]); 433 } 434 435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, 436 unsigned int ring, u32 val, 437 enum dma_ring_reg r) 438 { 439 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 440 (DMA_RING_SIZE * ring) + 441 genet_dma_ring_regs[r]); 442 } 443 444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, 445 unsigned int ring, 446 enum dma_ring_reg r) 447 { 448 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 449 (DMA_RING_SIZE * ring) + 450 genet_dma_ring_regs[r]); 451 } 452 453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, 454 unsigned int ring, u32 val, 455 enum dma_ring_reg r) 456 { 457 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 458 (DMA_RING_SIZE * ring) + 459 genet_dma_ring_regs[r]); 460 } 461 462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index) 463 { 464 u32 offset; 465 u32 reg; 466 467 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 468 reg = bcmgenet_hfb_reg_readl(priv, offset); 469 reg |= (1 << (f_index % 32)); 470 bcmgenet_hfb_reg_writel(priv, reg, offset); 471 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL); 472 reg |= RBUF_HFB_EN; 473 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL); 474 } 475 476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index) 477 { 478 u32 offset, reg, reg1; 479 480 offset = HFB_FLT_ENABLE_V3PLUS; 481 reg = bcmgenet_hfb_reg_readl(priv, offset); 482 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32)); 483 if (f_index < 32) { 484 reg1 &= ~(1 << (f_index % 32)); 485 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32)); 486 } else { 487 reg &= ~(1 << (f_index % 32)); 488 bcmgenet_hfb_reg_writel(priv, reg, offset); 489 } 490 if (!reg && !reg1) { 491 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL); 492 reg &= ~RBUF_HFB_EN; 493 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL); 494 } 495 } 496 497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv, 498 u32 f_index, u32 rx_queue) 499 { 500 u32 offset; 501 u32 reg; 502 503 offset = f_index / 8; 504 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset); 505 reg &= ~(0xF << (4 * (f_index % 8))); 506 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8))); 507 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset); 508 } 509 510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv, 511 u32 f_index, u32 f_length) 512 { 513 u32 offset; 514 u32 reg; 515 516 offset = HFB_FLT_LEN_V3PLUS + 517 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) * 518 sizeof(u32); 519 reg = bcmgenet_hfb_reg_readl(priv, offset); 520 reg &= ~(0xFF << (8 * (f_index % 4))); 521 reg |= ((f_length & 0xFF) << (8 * (f_index % 4))); 522 bcmgenet_hfb_reg_writel(priv, reg, offset); 523 } 524 525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size) 526 { 527 while (size) { 528 switch (*(unsigned char *)mask++) { 529 case 0x00: 530 case 0x0f: 531 case 0xf0: 532 case 0xff: 533 size--; 534 continue; 535 default: 536 return -EINVAL; 537 } 538 } 539 540 return 0; 541 } 542 543 #define VALIDATE_MASK(x) \ 544 bcmgenet_hfb_validate_mask(&(x), sizeof(x)) 545 546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index, 547 u32 offset, void *val, void *mask, 548 size_t size) 549 { 550 u32 index, tmp; 551 552 index = f_index * priv->hw_params->hfb_filter_size + offset / 2; 553 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32)); 554 555 while (size--) { 556 if (offset++ & 1) { 557 tmp &= ~0x300FF; 558 tmp |= (*(unsigned char *)val++); 559 switch ((*(unsigned char *)mask++)) { 560 case 0xFF: 561 tmp |= 0x30000; 562 break; 563 case 0xF0: 564 tmp |= 0x20000; 565 break; 566 case 0x0F: 567 tmp |= 0x10000; 568 break; 569 } 570 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32)); 571 if (size) 572 tmp = bcmgenet_hfb_readl(priv, 573 index * sizeof(u32)); 574 } else { 575 tmp &= ~0xCFF00; 576 tmp |= (*(unsigned char *)val++) << 8; 577 switch ((*(unsigned char *)mask++)) { 578 case 0xFF: 579 tmp |= 0xC0000; 580 break; 581 case 0xF0: 582 tmp |= 0x80000; 583 break; 584 case 0x0F: 585 tmp |= 0x40000; 586 break; 587 } 588 if (!size) 589 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32)); 590 } 591 } 592 593 return 0; 594 } 595 596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv, 597 struct bcmgenet_rxnfc_rule *rule) 598 { 599 struct ethtool_rx_flow_spec *fs = &rule->fs; 600 u32 offset = 0, f_length = 0, f; 601 u8 val_8, mask_8; 602 __be16 val_16; 603 u16 mask_16; 604 size_t size; 605 606 f = fs->location; 607 if (fs->flow_type & FLOW_MAC_EXT) { 608 bcmgenet_hfb_insert_data(priv, f, 0, 609 &fs->h_ext.h_dest, &fs->m_ext.h_dest, 610 sizeof(fs->h_ext.h_dest)); 611 } 612 613 if (fs->flow_type & FLOW_EXT) { 614 if (fs->m_ext.vlan_etype || 615 fs->m_ext.vlan_tci) { 616 bcmgenet_hfb_insert_data(priv, f, 12, 617 &fs->h_ext.vlan_etype, 618 &fs->m_ext.vlan_etype, 619 sizeof(fs->h_ext.vlan_etype)); 620 bcmgenet_hfb_insert_data(priv, f, 14, 621 &fs->h_ext.vlan_tci, 622 &fs->m_ext.vlan_tci, 623 sizeof(fs->h_ext.vlan_tci)); 624 offset += VLAN_HLEN; 625 f_length += DIV_ROUND_UP(VLAN_HLEN, 2); 626 } 627 } 628 629 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 630 case ETHER_FLOW: 631 f_length += DIV_ROUND_UP(ETH_HLEN, 2); 632 bcmgenet_hfb_insert_data(priv, f, 0, 633 &fs->h_u.ether_spec.h_dest, 634 &fs->m_u.ether_spec.h_dest, 635 sizeof(fs->h_u.ether_spec.h_dest)); 636 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN, 637 &fs->h_u.ether_spec.h_source, 638 &fs->m_u.ether_spec.h_source, 639 sizeof(fs->h_u.ether_spec.h_source)); 640 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset, 641 &fs->h_u.ether_spec.h_proto, 642 &fs->m_u.ether_spec.h_proto, 643 sizeof(fs->h_u.ether_spec.h_proto)); 644 break; 645 case IP_USER_FLOW: 646 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2); 647 /* Specify IP Ether Type */ 648 val_16 = htons(ETH_P_IP); 649 mask_16 = 0xFFFF; 650 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset, 651 &val_16, &mask_16, sizeof(val_16)); 652 bcmgenet_hfb_insert_data(priv, f, 15 + offset, 653 &fs->h_u.usr_ip4_spec.tos, 654 &fs->m_u.usr_ip4_spec.tos, 655 sizeof(fs->h_u.usr_ip4_spec.tos)); 656 bcmgenet_hfb_insert_data(priv, f, 23 + offset, 657 &fs->h_u.usr_ip4_spec.proto, 658 &fs->m_u.usr_ip4_spec.proto, 659 sizeof(fs->h_u.usr_ip4_spec.proto)); 660 bcmgenet_hfb_insert_data(priv, f, 26 + offset, 661 &fs->h_u.usr_ip4_spec.ip4src, 662 &fs->m_u.usr_ip4_spec.ip4src, 663 sizeof(fs->h_u.usr_ip4_spec.ip4src)); 664 bcmgenet_hfb_insert_data(priv, f, 30 + offset, 665 &fs->h_u.usr_ip4_spec.ip4dst, 666 &fs->m_u.usr_ip4_spec.ip4dst, 667 sizeof(fs->h_u.usr_ip4_spec.ip4dst)); 668 if (!fs->m_u.usr_ip4_spec.l4_4_bytes) 669 break; 670 671 /* Only supports 20 byte IPv4 header */ 672 val_8 = 0x45; 673 mask_8 = 0xFF; 674 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset, 675 &val_8, &mask_8, 676 sizeof(val_8)); 677 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes); 678 bcmgenet_hfb_insert_data(priv, f, 679 ETH_HLEN + 20 + offset, 680 &fs->h_u.usr_ip4_spec.l4_4_bytes, 681 &fs->m_u.usr_ip4_spec.l4_4_bytes, 682 size); 683 f_length += DIV_ROUND_UP(size, 2); 684 break; 685 } 686 687 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length); 688 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) { 689 /* Ring 0 flows can be handled by the default Descriptor Ring 690 * We'll map them to ring 0, but don't enable the filter 691 */ 692 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0); 693 rule->state = BCMGENET_RXNFC_STATE_DISABLED; 694 } else { 695 /* Other Rx rings are direct mapped here */ 696 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 697 fs->ring_cookie); 698 bcmgenet_hfb_enable_filter(priv, f); 699 rule->state = BCMGENET_RXNFC_STATE_ENABLED; 700 } 701 } 702 703 /* bcmgenet_hfb_clear 704 * 705 * Clear Hardware Filter Block and disable all filtering. 706 */ 707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index) 708 { 709 u32 base, i; 710 711 base = f_index * priv->hw_params->hfb_filter_size; 712 for (i = 0; i < priv->hw_params->hfb_filter_size; i++) 713 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32)); 714 } 715 716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv) 717 { 718 u32 i; 719 720 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 721 return; 722 723 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL); 724 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS); 725 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4); 726 727 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++) 728 bcmgenet_rdma_writel(priv, 0x0, i); 729 730 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++) 731 bcmgenet_hfb_reg_writel(priv, 0x0, 732 HFB_FLT_LEN_V3PLUS + i * sizeof(u32)); 733 734 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++) 735 bcmgenet_hfb_clear_filter(priv, i); 736 } 737 738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv) 739 { 740 int i; 741 742 INIT_LIST_HEAD(&priv->rxnfc_list); 743 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 744 return; 745 746 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) { 747 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list); 748 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED; 749 } 750 751 bcmgenet_hfb_clear(priv); 752 } 753 754 static int bcmgenet_begin(struct net_device *dev) 755 { 756 struct bcmgenet_priv *priv = netdev_priv(dev); 757 758 /* Turn on the clock */ 759 return clk_prepare_enable(priv->clk); 760 } 761 762 static void bcmgenet_complete(struct net_device *dev) 763 { 764 struct bcmgenet_priv *priv = netdev_priv(dev); 765 766 /* Turn off the clock */ 767 clk_disable_unprepare(priv->clk); 768 } 769 770 static int bcmgenet_get_link_ksettings(struct net_device *dev, 771 struct ethtool_link_ksettings *cmd) 772 { 773 if (!netif_running(dev)) 774 return -EINVAL; 775 776 if (!dev->phydev) 777 return -ENODEV; 778 779 phy_ethtool_ksettings_get(dev->phydev, cmd); 780 781 return 0; 782 } 783 784 static int bcmgenet_set_link_ksettings(struct net_device *dev, 785 const struct ethtool_link_ksettings *cmd) 786 { 787 if (!netif_running(dev)) 788 return -EINVAL; 789 790 if (!dev->phydev) 791 return -ENODEV; 792 793 return phy_ethtool_ksettings_set(dev->phydev, cmd); 794 } 795 796 static int bcmgenet_set_features(struct net_device *dev, 797 netdev_features_t features) 798 { 799 struct bcmgenet_priv *priv = netdev_priv(dev); 800 u32 reg; 801 int ret; 802 803 ret = clk_prepare_enable(priv->clk); 804 if (ret) 805 return ret; 806 807 /* Make sure we reflect the value of CRC_CMD_FWD */ 808 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 809 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); 810 811 clk_disable_unprepare(priv->clk); 812 813 return ret; 814 } 815 816 static u32 bcmgenet_get_msglevel(struct net_device *dev) 817 { 818 struct bcmgenet_priv *priv = netdev_priv(dev); 819 820 return priv->msg_enable; 821 } 822 823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) 824 { 825 struct bcmgenet_priv *priv = netdev_priv(dev); 826 827 priv->msg_enable = level; 828 } 829 830 static int bcmgenet_get_coalesce(struct net_device *dev, 831 struct ethtool_coalesce *ec, 832 struct kernel_ethtool_coalesce *kernel_coal, 833 struct netlink_ext_ack *extack) 834 { 835 struct bcmgenet_priv *priv = netdev_priv(dev); 836 struct bcmgenet_rx_ring *ring; 837 unsigned int i; 838 839 ec->tx_max_coalesced_frames = 840 bcmgenet_tdma_ring_readl(priv, DESC_INDEX, 841 DMA_MBUF_DONE_THRESH); 842 ec->rx_max_coalesced_frames = 843 bcmgenet_rdma_ring_readl(priv, DESC_INDEX, 844 DMA_MBUF_DONE_THRESH); 845 ec->rx_coalesce_usecs = 846 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000; 847 848 for (i = 0; i < priv->hw_params->rx_queues; i++) { 849 ring = &priv->rx_rings[i]; 850 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 851 } 852 ring = &priv->rx_rings[DESC_INDEX]; 853 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 854 855 return 0; 856 } 857 858 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring, 859 u32 usecs, u32 pkts) 860 { 861 struct bcmgenet_priv *priv = ring->priv; 862 unsigned int i = ring->index; 863 u32 reg; 864 865 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH); 866 867 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i); 868 reg &= ~DMA_TIMEOUT_MASK; 869 reg |= DIV_ROUND_UP(usecs * 1000, 8192); 870 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i); 871 } 872 873 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring, 874 struct ethtool_coalesce *ec) 875 { 876 struct dim_cq_moder moder; 877 u32 usecs, pkts; 878 879 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs; 880 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames; 881 usecs = ring->rx_coalesce_usecs; 882 pkts = ring->rx_max_coalesced_frames; 883 884 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) { 885 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode); 886 usecs = moder.usec; 887 pkts = moder.pkts; 888 } 889 890 ring->dim.use_dim = ec->use_adaptive_rx_coalesce; 891 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 892 } 893 894 static int bcmgenet_set_coalesce(struct net_device *dev, 895 struct ethtool_coalesce *ec, 896 struct kernel_ethtool_coalesce *kernel_coal, 897 struct netlink_ext_ack *extack) 898 { 899 struct bcmgenet_priv *priv = netdev_priv(dev); 900 unsigned int i; 901 902 /* Base system clock is 125Mhz, DMA timeout is this reference clock 903 * divided by 1024, which yields roughly 8.192us, our maximum value 904 * has to fit in the DMA_TIMEOUT_MASK (16 bits) 905 */ 906 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 907 ec->tx_max_coalesced_frames == 0 || 908 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 909 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1) 910 return -EINVAL; 911 912 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0) 913 return -EINVAL; 914 915 /* GENET TDMA hardware does not support a configurable timeout, but will 916 * always generate an interrupt either after MBDONE packets have been 917 * transmitted, or when the ring is empty. 918 */ 919 920 /* Program all TX queues with the same values, as there is no 921 * ethtool knob to do coalescing on a per-queue basis 922 */ 923 for (i = 0; i < priv->hw_params->tx_queues; i++) 924 bcmgenet_tdma_ring_writel(priv, i, 925 ec->tx_max_coalesced_frames, 926 DMA_MBUF_DONE_THRESH); 927 bcmgenet_tdma_ring_writel(priv, DESC_INDEX, 928 ec->tx_max_coalesced_frames, 929 DMA_MBUF_DONE_THRESH); 930 931 for (i = 0; i < priv->hw_params->rx_queues; i++) 932 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec); 933 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec); 934 935 return 0; 936 } 937 938 static void bcmgenet_get_pauseparam(struct net_device *dev, 939 struct ethtool_pauseparam *epause) 940 { 941 struct bcmgenet_priv *priv; 942 u32 umac_cmd; 943 944 priv = netdev_priv(dev); 945 946 epause->autoneg = priv->autoneg_pause; 947 948 if (netif_carrier_ok(dev)) { 949 /* report active state when link is up */ 950 umac_cmd = bcmgenet_umac_readl(priv, UMAC_CMD); 951 epause->tx_pause = !(umac_cmd & CMD_TX_PAUSE_IGNORE); 952 epause->rx_pause = !(umac_cmd & CMD_RX_PAUSE_IGNORE); 953 } else { 954 /* otherwise report stored settings */ 955 epause->tx_pause = priv->tx_pause; 956 epause->rx_pause = priv->rx_pause; 957 } 958 } 959 960 static int bcmgenet_set_pauseparam(struct net_device *dev, 961 struct ethtool_pauseparam *epause) 962 { 963 struct bcmgenet_priv *priv = netdev_priv(dev); 964 965 if (!dev->phydev) 966 return -ENODEV; 967 968 if (!phy_validate_pause(dev->phydev, epause)) 969 return -EINVAL; 970 971 priv->autoneg_pause = !!epause->autoneg; 972 priv->tx_pause = !!epause->tx_pause; 973 priv->rx_pause = !!epause->rx_pause; 974 975 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause); 976 977 return 0; 978 } 979 980 /* standard ethtool support functions. */ 981 enum bcmgenet_stat_type { 982 BCMGENET_STAT_NETDEV = -1, 983 BCMGENET_STAT_MIB_RX, 984 BCMGENET_STAT_MIB_TX, 985 BCMGENET_STAT_RUNT, 986 BCMGENET_STAT_MISC, 987 BCMGENET_STAT_SOFT, 988 }; 989 990 struct bcmgenet_stats { 991 char stat_string[ETH_GSTRING_LEN]; 992 int stat_sizeof; 993 int stat_offset; 994 enum bcmgenet_stat_type type; 995 /* reg offset from UMAC base for misc counters */ 996 u16 reg_offset; 997 }; 998 999 #define STAT_NETDEV(m) { \ 1000 .stat_string = __stringify(m), \ 1001 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ 1002 .stat_offset = offsetof(struct net_device_stats, m), \ 1003 .type = BCMGENET_STAT_NETDEV, \ 1004 } 1005 1006 #define STAT_GENET_MIB(str, m, _type) { \ 1007 .stat_string = str, \ 1008 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 1009 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 1010 .type = _type, \ 1011 } 1012 1013 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) 1014 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) 1015 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) 1016 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT) 1017 1018 #define STAT_GENET_MISC(str, m, offset) { \ 1019 .stat_string = str, \ 1020 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 1021 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 1022 .type = BCMGENET_STAT_MISC, \ 1023 .reg_offset = offset, \ 1024 } 1025 1026 #define STAT_GENET_Q(num) \ 1027 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \ 1028 tx_rings[num].packets), \ 1029 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \ 1030 tx_rings[num].bytes), \ 1031 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \ 1032 rx_rings[num].bytes), \ 1033 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \ 1034 rx_rings[num].packets), \ 1035 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \ 1036 rx_rings[num].errors), \ 1037 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \ 1038 rx_rings[num].dropped) 1039 1040 /* There is a 0xC gap between the end of RX and beginning of TX stats and then 1041 * between the end of TX stats and the beginning of the RX RUNT 1042 */ 1043 #define BCMGENET_STAT_OFFSET 0xc 1044 1045 /* Hardware counters must be kept in sync because the order/offset 1046 * is important here (order in structure declaration = order in hardware) 1047 */ 1048 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { 1049 /* general stats */ 1050 STAT_NETDEV(rx_packets), 1051 STAT_NETDEV(tx_packets), 1052 STAT_NETDEV(rx_bytes), 1053 STAT_NETDEV(tx_bytes), 1054 STAT_NETDEV(rx_errors), 1055 STAT_NETDEV(tx_errors), 1056 STAT_NETDEV(rx_dropped), 1057 STAT_NETDEV(tx_dropped), 1058 STAT_NETDEV(multicast), 1059 /* UniMAC RSV counters */ 1060 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), 1061 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), 1062 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), 1063 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), 1064 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), 1065 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), 1066 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), 1067 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), 1068 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), 1069 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), 1070 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), 1071 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), 1072 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), 1073 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), 1074 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), 1075 STAT_GENET_MIB_RX("rx_control", mib.rx.cf), 1076 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), 1077 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), 1078 STAT_GENET_MIB_RX("rx_align", mib.rx.aln), 1079 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), 1080 STAT_GENET_MIB_RX("rx_code", mib.rx.cde), 1081 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), 1082 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), 1083 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), 1084 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), 1085 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), 1086 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), 1087 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), 1088 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), 1089 /* UniMAC TSV counters */ 1090 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), 1091 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), 1092 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), 1093 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), 1094 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), 1095 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), 1096 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), 1097 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), 1098 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), 1099 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), 1100 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), 1101 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), 1102 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), 1103 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), 1104 STAT_GENET_MIB_TX("tx_control", mib.tx.cf), 1105 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), 1106 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), 1107 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), 1108 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), 1109 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), 1110 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), 1111 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), 1112 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), 1113 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), 1114 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), 1115 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), 1116 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), 1117 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), 1118 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), 1119 /* UniMAC RUNT counters */ 1120 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), 1121 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), 1122 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), 1123 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), 1124 /* Misc UniMAC counters */ 1125 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, 1126 UMAC_RBUF_OVFL_CNT_V1), 1127 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, 1128 UMAC_RBUF_ERR_CNT_V1), 1129 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), 1130 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), 1131 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed), 1132 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed), 1133 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb), 1134 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed", 1135 mib.tx_realloc_tsb_failed), 1136 /* Per TX queues */ 1137 STAT_GENET_Q(0), 1138 STAT_GENET_Q(1), 1139 STAT_GENET_Q(2), 1140 STAT_GENET_Q(3), 1141 STAT_GENET_Q(16), 1142 }; 1143 1144 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) 1145 1146 static void bcmgenet_get_drvinfo(struct net_device *dev, 1147 struct ethtool_drvinfo *info) 1148 { 1149 strlcpy(info->driver, "bcmgenet", sizeof(info->driver)); 1150 } 1151 1152 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) 1153 { 1154 switch (string_set) { 1155 case ETH_SS_STATS: 1156 return BCMGENET_STATS_LEN; 1157 default: 1158 return -EOPNOTSUPP; 1159 } 1160 } 1161 1162 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, 1163 u8 *data) 1164 { 1165 int i; 1166 1167 switch (stringset) { 1168 case ETH_SS_STATS: 1169 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1170 memcpy(data + i * ETH_GSTRING_LEN, 1171 bcmgenet_gstrings_stats[i].stat_string, 1172 ETH_GSTRING_LEN); 1173 } 1174 break; 1175 } 1176 } 1177 1178 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset) 1179 { 1180 u16 new_offset; 1181 u32 val; 1182 1183 switch (offset) { 1184 case UMAC_RBUF_OVFL_CNT_V1: 1185 if (GENET_IS_V2(priv)) 1186 new_offset = RBUF_OVFL_CNT_V2; 1187 else 1188 new_offset = RBUF_OVFL_CNT_V3PLUS; 1189 1190 val = bcmgenet_rbuf_readl(priv, new_offset); 1191 /* clear if overflowed */ 1192 if (val == ~0) 1193 bcmgenet_rbuf_writel(priv, 0, new_offset); 1194 break; 1195 case UMAC_RBUF_ERR_CNT_V1: 1196 if (GENET_IS_V2(priv)) 1197 new_offset = RBUF_ERR_CNT_V2; 1198 else 1199 new_offset = RBUF_ERR_CNT_V3PLUS; 1200 1201 val = bcmgenet_rbuf_readl(priv, new_offset); 1202 /* clear if overflowed */ 1203 if (val == ~0) 1204 bcmgenet_rbuf_writel(priv, 0, new_offset); 1205 break; 1206 default: 1207 val = bcmgenet_umac_readl(priv, offset); 1208 /* clear if overflowed */ 1209 if (val == ~0) 1210 bcmgenet_umac_writel(priv, 0, offset); 1211 break; 1212 } 1213 1214 return val; 1215 } 1216 1217 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) 1218 { 1219 int i, j = 0; 1220 1221 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1222 const struct bcmgenet_stats *s; 1223 u8 offset = 0; 1224 u32 val = 0; 1225 char *p; 1226 1227 s = &bcmgenet_gstrings_stats[i]; 1228 switch (s->type) { 1229 case BCMGENET_STAT_NETDEV: 1230 case BCMGENET_STAT_SOFT: 1231 continue; 1232 case BCMGENET_STAT_RUNT: 1233 offset += BCMGENET_STAT_OFFSET; 1234 fallthrough; 1235 case BCMGENET_STAT_MIB_TX: 1236 offset += BCMGENET_STAT_OFFSET; 1237 fallthrough; 1238 case BCMGENET_STAT_MIB_RX: 1239 val = bcmgenet_umac_readl(priv, 1240 UMAC_MIB_START + j + offset); 1241 offset = 0; /* Reset Offset */ 1242 break; 1243 case BCMGENET_STAT_MISC: 1244 if (GENET_IS_V1(priv)) { 1245 val = bcmgenet_umac_readl(priv, s->reg_offset); 1246 /* clear if overflowed */ 1247 if (val == ~0) 1248 bcmgenet_umac_writel(priv, 0, 1249 s->reg_offset); 1250 } else { 1251 val = bcmgenet_update_stat_misc(priv, 1252 s->reg_offset); 1253 } 1254 break; 1255 } 1256 1257 j += s->stat_sizeof; 1258 p = (char *)priv + s->stat_offset; 1259 *(u32 *)p = val; 1260 } 1261 } 1262 1263 static void bcmgenet_get_ethtool_stats(struct net_device *dev, 1264 struct ethtool_stats *stats, 1265 u64 *data) 1266 { 1267 struct bcmgenet_priv *priv = netdev_priv(dev); 1268 int i; 1269 1270 if (netif_running(dev)) 1271 bcmgenet_update_mib_counters(priv); 1272 1273 dev->netdev_ops->ndo_get_stats(dev); 1274 1275 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1276 const struct bcmgenet_stats *s; 1277 char *p; 1278 1279 s = &bcmgenet_gstrings_stats[i]; 1280 if (s->type == BCMGENET_STAT_NETDEV) 1281 p = (char *)&dev->stats; 1282 else 1283 p = (char *)priv; 1284 p += s->stat_offset; 1285 if (sizeof(unsigned long) != sizeof(u32) && 1286 s->stat_sizeof == sizeof(unsigned long)) 1287 data[i] = *(unsigned long *)p; 1288 else 1289 data[i] = *(u32 *)p; 1290 } 1291 } 1292 1293 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable) 1294 { 1295 struct bcmgenet_priv *priv = netdev_priv(dev); 1296 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL; 1297 u32 reg; 1298 1299 if (enable && !priv->clk_eee_enabled) { 1300 clk_prepare_enable(priv->clk_eee); 1301 priv->clk_eee_enabled = true; 1302 } 1303 1304 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL); 1305 if (enable) 1306 reg |= EEE_EN; 1307 else 1308 reg &= ~EEE_EN; 1309 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL); 1310 1311 /* Enable EEE and switch to a 27Mhz clock automatically */ 1312 reg = bcmgenet_readl(priv->base + off); 1313 if (enable) 1314 reg |= TBUF_EEE_EN | TBUF_PM_EN; 1315 else 1316 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN); 1317 bcmgenet_writel(reg, priv->base + off); 1318 1319 /* Do the same for thing for RBUF */ 1320 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL); 1321 if (enable) 1322 reg |= RBUF_EEE_EN | RBUF_PM_EN; 1323 else 1324 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN); 1325 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL); 1326 1327 if (!enable && priv->clk_eee_enabled) { 1328 clk_disable_unprepare(priv->clk_eee); 1329 priv->clk_eee_enabled = false; 1330 } 1331 1332 priv->eee.eee_enabled = enable; 1333 priv->eee.eee_active = enable; 1334 } 1335 1336 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e) 1337 { 1338 struct bcmgenet_priv *priv = netdev_priv(dev); 1339 struct ethtool_eee *p = &priv->eee; 1340 1341 if (GENET_IS_V1(priv)) 1342 return -EOPNOTSUPP; 1343 1344 if (!dev->phydev) 1345 return -ENODEV; 1346 1347 e->eee_enabled = p->eee_enabled; 1348 e->eee_active = p->eee_active; 1349 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER); 1350 1351 return phy_ethtool_get_eee(dev->phydev, e); 1352 } 1353 1354 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e) 1355 { 1356 struct bcmgenet_priv *priv = netdev_priv(dev); 1357 struct ethtool_eee *p = &priv->eee; 1358 int ret = 0; 1359 1360 if (GENET_IS_V1(priv)) 1361 return -EOPNOTSUPP; 1362 1363 if (!dev->phydev) 1364 return -ENODEV; 1365 1366 p->eee_enabled = e->eee_enabled; 1367 1368 if (!p->eee_enabled) { 1369 bcmgenet_eee_enable_set(dev, false); 1370 } else { 1371 ret = phy_init_eee(dev->phydev, false); 1372 if (ret) { 1373 netif_err(priv, hw, dev, "EEE initialization failed\n"); 1374 return ret; 1375 } 1376 1377 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER); 1378 bcmgenet_eee_enable_set(dev, true); 1379 } 1380 1381 return phy_ethtool_set_eee(dev->phydev, e); 1382 } 1383 1384 static int bcmgenet_validate_flow(struct net_device *dev, 1385 struct ethtool_rxnfc *cmd) 1386 { 1387 struct ethtool_usrip4_spec *l4_mask; 1388 struct ethhdr *eth_mask; 1389 1390 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) { 1391 netdev_err(dev, "rxnfc: Invalid location (%d)\n", 1392 cmd->fs.location); 1393 return -EINVAL; 1394 } 1395 1396 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 1397 case IP_USER_FLOW: 1398 l4_mask = &cmd->fs.m_u.usr_ip4_spec; 1399 /* don't allow mask which isn't valid */ 1400 if (VALIDATE_MASK(l4_mask->ip4src) || 1401 VALIDATE_MASK(l4_mask->ip4dst) || 1402 VALIDATE_MASK(l4_mask->l4_4_bytes) || 1403 VALIDATE_MASK(l4_mask->proto) || 1404 VALIDATE_MASK(l4_mask->ip_ver) || 1405 VALIDATE_MASK(l4_mask->tos)) { 1406 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1407 return -EINVAL; 1408 } 1409 break; 1410 case ETHER_FLOW: 1411 eth_mask = &cmd->fs.m_u.ether_spec; 1412 /* don't allow mask which isn't valid */ 1413 if (VALIDATE_MASK(eth_mask->h_dest) || 1414 VALIDATE_MASK(eth_mask->h_source) || 1415 VALIDATE_MASK(eth_mask->h_proto)) { 1416 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1417 return -EINVAL; 1418 } 1419 break; 1420 default: 1421 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n", 1422 cmd->fs.flow_type); 1423 return -EINVAL; 1424 } 1425 1426 if ((cmd->fs.flow_type & FLOW_EXT)) { 1427 /* don't allow mask which isn't valid */ 1428 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) || 1429 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) { 1430 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1431 return -EINVAL; 1432 } 1433 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) { 1434 netdev_err(dev, "rxnfc: user-def not supported\n"); 1435 return -EINVAL; 1436 } 1437 } 1438 1439 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) { 1440 /* don't allow mask which isn't valid */ 1441 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) { 1442 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1443 return -EINVAL; 1444 } 1445 } 1446 1447 return 0; 1448 } 1449 1450 static int bcmgenet_insert_flow(struct net_device *dev, 1451 struct ethtool_rxnfc *cmd) 1452 { 1453 struct bcmgenet_priv *priv = netdev_priv(dev); 1454 struct bcmgenet_rxnfc_rule *loc_rule; 1455 int err; 1456 1457 if (priv->hw_params->hfb_filter_size < 128) { 1458 netdev_err(dev, "rxnfc: Not supported by this device\n"); 1459 return -EINVAL; 1460 } 1461 1462 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues && 1463 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) { 1464 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n", 1465 cmd->fs.ring_cookie); 1466 return -EINVAL; 1467 } 1468 1469 err = bcmgenet_validate_flow(dev, cmd); 1470 if (err) 1471 return err; 1472 1473 loc_rule = &priv->rxnfc_rules[cmd->fs.location]; 1474 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED) 1475 bcmgenet_hfb_disable_filter(priv, cmd->fs.location); 1476 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) { 1477 list_del(&loc_rule->list); 1478 bcmgenet_hfb_clear_filter(priv, cmd->fs.location); 1479 } 1480 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED; 1481 memcpy(&loc_rule->fs, &cmd->fs, 1482 sizeof(struct ethtool_rx_flow_spec)); 1483 1484 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule); 1485 1486 list_add_tail(&loc_rule->list, &priv->rxnfc_list); 1487 1488 return 0; 1489 } 1490 1491 static int bcmgenet_delete_flow(struct net_device *dev, 1492 struct ethtool_rxnfc *cmd) 1493 { 1494 struct bcmgenet_priv *priv = netdev_priv(dev); 1495 struct bcmgenet_rxnfc_rule *rule; 1496 int err = 0; 1497 1498 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) 1499 return -EINVAL; 1500 1501 rule = &priv->rxnfc_rules[cmd->fs.location]; 1502 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) { 1503 err = -ENOENT; 1504 goto out; 1505 } 1506 1507 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED) 1508 bcmgenet_hfb_disable_filter(priv, cmd->fs.location); 1509 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) { 1510 list_del(&rule->list); 1511 bcmgenet_hfb_clear_filter(priv, cmd->fs.location); 1512 } 1513 rule->state = BCMGENET_RXNFC_STATE_UNUSED; 1514 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec)); 1515 1516 out: 1517 return err; 1518 } 1519 1520 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 1521 { 1522 struct bcmgenet_priv *priv = netdev_priv(dev); 1523 int err = 0; 1524 1525 switch (cmd->cmd) { 1526 case ETHTOOL_SRXCLSRLINS: 1527 err = bcmgenet_insert_flow(dev, cmd); 1528 break; 1529 case ETHTOOL_SRXCLSRLDEL: 1530 err = bcmgenet_delete_flow(dev, cmd); 1531 break; 1532 default: 1533 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n", 1534 cmd->cmd); 1535 return -EINVAL; 1536 } 1537 1538 return err; 1539 } 1540 1541 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd, 1542 int loc) 1543 { 1544 struct bcmgenet_priv *priv = netdev_priv(dev); 1545 struct bcmgenet_rxnfc_rule *rule; 1546 int err = 0; 1547 1548 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES) 1549 return -EINVAL; 1550 1551 rule = &priv->rxnfc_rules[loc]; 1552 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) 1553 err = -ENOENT; 1554 else 1555 memcpy(&cmd->fs, &rule->fs, 1556 sizeof(struct ethtool_rx_flow_spec)); 1557 1558 return err; 1559 } 1560 1561 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv) 1562 { 1563 struct list_head *pos; 1564 int res = 0; 1565 1566 list_for_each(pos, &priv->rxnfc_list) 1567 res++; 1568 1569 return res; 1570 } 1571 1572 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 1573 u32 *rule_locs) 1574 { 1575 struct bcmgenet_priv *priv = netdev_priv(dev); 1576 struct bcmgenet_rxnfc_rule *rule; 1577 int err = 0; 1578 int i = 0; 1579 1580 switch (cmd->cmd) { 1581 case ETHTOOL_GRXRINGS: 1582 cmd->data = priv->hw_params->rx_queues ?: 1; 1583 break; 1584 case ETHTOOL_GRXCLSRLCNT: 1585 cmd->rule_cnt = bcmgenet_get_num_flows(priv); 1586 cmd->data = MAX_NUM_OF_FS_RULES; 1587 break; 1588 case ETHTOOL_GRXCLSRULE: 1589 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location); 1590 break; 1591 case ETHTOOL_GRXCLSRLALL: 1592 list_for_each_entry(rule, &priv->rxnfc_list, list) 1593 if (i < cmd->rule_cnt) 1594 rule_locs[i++] = rule->fs.location; 1595 cmd->rule_cnt = i; 1596 cmd->data = MAX_NUM_OF_FS_RULES; 1597 break; 1598 default: 1599 err = -EOPNOTSUPP; 1600 break; 1601 } 1602 1603 return err; 1604 } 1605 1606 /* standard ethtool support functions. */ 1607 static const struct ethtool_ops bcmgenet_ethtool_ops = { 1608 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 1609 ETHTOOL_COALESCE_MAX_FRAMES | 1610 ETHTOOL_COALESCE_USE_ADAPTIVE_RX, 1611 .begin = bcmgenet_begin, 1612 .complete = bcmgenet_complete, 1613 .get_strings = bcmgenet_get_strings, 1614 .get_sset_count = bcmgenet_get_sset_count, 1615 .get_ethtool_stats = bcmgenet_get_ethtool_stats, 1616 .get_drvinfo = bcmgenet_get_drvinfo, 1617 .get_link = ethtool_op_get_link, 1618 .get_msglevel = bcmgenet_get_msglevel, 1619 .set_msglevel = bcmgenet_set_msglevel, 1620 .get_wol = bcmgenet_get_wol, 1621 .set_wol = bcmgenet_set_wol, 1622 .get_eee = bcmgenet_get_eee, 1623 .set_eee = bcmgenet_set_eee, 1624 .nway_reset = phy_ethtool_nway_reset, 1625 .get_coalesce = bcmgenet_get_coalesce, 1626 .set_coalesce = bcmgenet_set_coalesce, 1627 .get_link_ksettings = bcmgenet_get_link_ksettings, 1628 .set_link_ksettings = bcmgenet_set_link_ksettings, 1629 .get_ts_info = ethtool_op_get_ts_info, 1630 .get_rxnfc = bcmgenet_get_rxnfc, 1631 .set_rxnfc = bcmgenet_set_rxnfc, 1632 .get_pauseparam = bcmgenet_get_pauseparam, 1633 .set_pauseparam = bcmgenet_set_pauseparam, 1634 }; 1635 1636 /* Power down the unimac, based on mode. */ 1637 static int bcmgenet_power_down(struct bcmgenet_priv *priv, 1638 enum bcmgenet_power_mode mode) 1639 { 1640 int ret = 0; 1641 u32 reg; 1642 1643 switch (mode) { 1644 case GENET_POWER_CABLE_SENSE: 1645 phy_detach(priv->dev->phydev); 1646 break; 1647 1648 case GENET_POWER_WOL_MAGIC: 1649 ret = bcmgenet_wol_power_down_cfg(priv, mode); 1650 break; 1651 1652 case GENET_POWER_PASSIVE: 1653 /* Power down LED */ 1654 if (priv->hw_params->flags & GENET_HAS_EXT) { 1655 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1656 if (GENET_IS_V5(priv) && !priv->ephy_16nm) 1657 reg |= EXT_PWR_DOWN_PHY_EN | 1658 EXT_PWR_DOWN_PHY_RD | 1659 EXT_PWR_DOWN_PHY_SD | 1660 EXT_PWR_DOWN_PHY_RX | 1661 EXT_PWR_DOWN_PHY_TX | 1662 EXT_IDDQ_GLBL_PWR; 1663 else 1664 reg |= EXT_PWR_DOWN_PHY; 1665 1666 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 1667 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1668 1669 bcmgenet_phy_power_set(priv->dev, false); 1670 } 1671 break; 1672 default: 1673 break; 1674 } 1675 1676 return ret; 1677 } 1678 1679 static void bcmgenet_power_up(struct bcmgenet_priv *priv, 1680 enum bcmgenet_power_mode mode) 1681 { 1682 u32 reg; 1683 1684 if (!(priv->hw_params->flags & GENET_HAS_EXT)) 1685 return; 1686 1687 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1688 1689 switch (mode) { 1690 case GENET_POWER_PASSIVE: 1691 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS | 1692 EXT_ENERGY_DET_MASK); 1693 if (GENET_IS_V5(priv) && !priv->ephy_16nm) { 1694 reg &= ~(EXT_PWR_DOWN_PHY_EN | 1695 EXT_PWR_DOWN_PHY_RD | 1696 EXT_PWR_DOWN_PHY_SD | 1697 EXT_PWR_DOWN_PHY_RX | 1698 EXT_PWR_DOWN_PHY_TX | 1699 EXT_IDDQ_GLBL_PWR); 1700 reg |= EXT_PHY_RESET; 1701 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1702 mdelay(1); 1703 1704 reg &= ~EXT_PHY_RESET; 1705 } else { 1706 reg &= ~EXT_PWR_DOWN_PHY; 1707 reg |= EXT_PWR_DN_EN_LD; 1708 } 1709 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1710 bcmgenet_phy_power_set(priv->dev, true); 1711 break; 1712 1713 case GENET_POWER_CABLE_SENSE: 1714 /* enable APD */ 1715 if (!GENET_IS_V5(priv)) { 1716 reg |= EXT_PWR_DN_EN_LD; 1717 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1718 } 1719 break; 1720 case GENET_POWER_WOL_MAGIC: 1721 bcmgenet_wol_power_up_cfg(priv, mode); 1722 return; 1723 default: 1724 break; 1725 } 1726 } 1727 1728 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, 1729 struct bcmgenet_tx_ring *ring) 1730 { 1731 struct enet_cb *tx_cb_ptr; 1732 1733 tx_cb_ptr = ring->cbs; 1734 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1735 1736 /* Advancing local write pointer */ 1737 if (ring->write_ptr == ring->end_ptr) 1738 ring->write_ptr = ring->cb_ptr; 1739 else 1740 ring->write_ptr++; 1741 1742 return tx_cb_ptr; 1743 } 1744 1745 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv, 1746 struct bcmgenet_tx_ring *ring) 1747 { 1748 struct enet_cb *tx_cb_ptr; 1749 1750 tx_cb_ptr = ring->cbs; 1751 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1752 1753 /* Rewinding local write pointer */ 1754 if (ring->write_ptr == ring->cb_ptr) 1755 ring->write_ptr = ring->end_ptr; 1756 else 1757 ring->write_ptr--; 1758 1759 return tx_cb_ptr; 1760 } 1761 1762 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring) 1763 { 1764 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1765 INTRL2_CPU_MASK_SET); 1766 } 1767 1768 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring) 1769 { 1770 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1771 INTRL2_CPU_MASK_CLEAR); 1772 } 1773 1774 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring) 1775 { 1776 bcmgenet_intrl2_1_writel(ring->priv, 1777 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1778 INTRL2_CPU_MASK_SET); 1779 } 1780 1781 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring) 1782 { 1783 bcmgenet_intrl2_1_writel(ring->priv, 1784 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1785 INTRL2_CPU_MASK_CLEAR); 1786 } 1787 1788 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring) 1789 { 1790 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1791 INTRL2_CPU_MASK_SET); 1792 } 1793 1794 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring) 1795 { 1796 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1797 INTRL2_CPU_MASK_CLEAR); 1798 } 1799 1800 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring) 1801 { 1802 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1803 INTRL2_CPU_MASK_CLEAR); 1804 } 1805 1806 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring) 1807 { 1808 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1809 INTRL2_CPU_MASK_SET); 1810 } 1811 1812 /* Simple helper to free a transmit control block's resources 1813 * Returns an skb when the last transmit control block associated with the 1814 * skb is freed. The skb should be freed by the caller if necessary. 1815 */ 1816 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev, 1817 struct enet_cb *cb) 1818 { 1819 struct sk_buff *skb; 1820 1821 skb = cb->skb; 1822 1823 if (skb) { 1824 cb->skb = NULL; 1825 if (cb == GENET_CB(skb)->first_cb) 1826 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1827 dma_unmap_len(cb, dma_len), 1828 DMA_TO_DEVICE); 1829 else 1830 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr), 1831 dma_unmap_len(cb, dma_len), 1832 DMA_TO_DEVICE); 1833 dma_unmap_addr_set(cb, dma_addr, 0); 1834 1835 if (cb == GENET_CB(skb)->last_cb) 1836 return skb; 1837 1838 } else if (dma_unmap_addr(cb, dma_addr)) { 1839 dma_unmap_page(dev, 1840 dma_unmap_addr(cb, dma_addr), 1841 dma_unmap_len(cb, dma_len), 1842 DMA_TO_DEVICE); 1843 dma_unmap_addr_set(cb, dma_addr, 0); 1844 } 1845 1846 return NULL; 1847 } 1848 1849 /* Simple helper to free a receive control block's resources */ 1850 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev, 1851 struct enet_cb *cb) 1852 { 1853 struct sk_buff *skb; 1854 1855 skb = cb->skb; 1856 cb->skb = NULL; 1857 1858 if (dma_unmap_addr(cb, dma_addr)) { 1859 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1860 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE); 1861 dma_unmap_addr_set(cb, dma_addr, 0); 1862 } 1863 1864 return skb; 1865 } 1866 1867 /* Unlocked version of the reclaim routine */ 1868 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev, 1869 struct bcmgenet_tx_ring *ring) 1870 { 1871 struct bcmgenet_priv *priv = netdev_priv(dev); 1872 unsigned int txbds_processed = 0; 1873 unsigned int bytes_compl = 0; 1874 unsigned int pkts_compl = 0; 1875 unsigned int txbds_ready; 1876 unsigned int c_index; 1877 struct sk_buff *skb; 1878 1879 /* Clear status before servicing to reduce spurious interrupts */ 1880 if (ring->index == DESC_INDEX) 1881 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE, 1882 INTRL2_CPU_CLEAR); 1883 else 1884 bcmgenet_intrl2_1_writel(priv, (1 << ring->index), 1885 INTRL2_CPU_CLEAR); 1886 1887 /* Compute how many buffers are transmitted since last xmit call */ 1888 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX) 1889 & DMA_C_INDEX_MASK; 1890 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK; 1891 1892 netif_dbg(priv, tx_done, dev, 1893 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n", 1894 __func__, ring->index, ring->c_index, c_index, txbds_ready); 1895 1896 /* Reclaim transmitted buffers */ 1897 while (txbds_processed < txbds_ready) { 1898 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, 1899 &priv->tx_cbs[ring->clean_ptr]); 1900 if (skb) { 1901 pkts_compl++; 1902 bytes_compl += GENET_CB(skb)->bytes_sent; 1903 dev_consume_skb_any(skb); 1904 } 1905 1906 txbds_processed++; 1907 if (likely(ring->clean_ptr < ring->end_ptr)) 1908 ring->clean_ptr++; 1909 else 1910 ring->clean_ptr = ring->cb_ptr; 1911 } 1912 1913 ring->free_bds += txbds_processed; 1914 ring->c_index = c_index; 1915 1916 ring->packets += pkts_compl; 1917 ring->bytes += bytes_compl; 1918 1919 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue), 1920 pkts_compl, bytes_compl); 1921 1922 return txbds_processed; 1923 } 1924 1925 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev, 1926 struct bcmgenet_tx_ring *ring) 1927 { 1928 unsigned int released; 1929 1930 spin_lock_bh(&ring->lock); 1931 released = __bcmgenet_tx_reclaim(dev, ring); 1932 spin_unlock_bh(&ring->lock); 1933 1934 return released; 1935 } 1936 1937 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget) 1938 { 1939 struct bcmgenet_tx_ring *ring = 1940 container_of(napi, struct bcmgenet_tx_ring, napi); 1941 unsigned int work_done = 0; 1942 struct netdev_queue *txq; 1943 1944 spin_lock(&ring->lock); 1945 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring); 1946 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) { 1947 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue); 1948 netif_tx_wake_queue(txq); 1949 } 1950 spin_unlock(&ring->lock); 1951 1952 if (work_done == 0) { 1953 napi_complete(napi); 1954 ring->int_enable(ring); 1955 1956 return 0; 1957 } 1958 1959 return budget; 1960 } 1961 1962 static void bcmgenet_tx_reclaim_all(struct net_device *dev) 1963 { 1964 struct bcmgenet_priv *priv = netdev_priv(dev); 1965 int i; 1966 1967 if (netif_is_multiqueue(dev)) { 1968 for (i = 0; i < priv->hw_params->tx_queues; i++) 1969 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); 1970 } 1971 1972 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); 1973 } 1974 1975 /* Reallocate the SKB to put enough headroom in front of it and insert 1976 * the transmit checksum offsets in the descriptors 1977 */ 1978 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev, 1979 struct sk_buff *skb) 1980 { 1981 struct bcmgenet_priv *priv = netdev_priv(dev); 1982 struct status_64 *status = NULL; 1983 struct sk_buff *new_skb; 1984 u16 offset; 1985 u8 ip_proto; 1986 __be16 ip_ver; 1987 u32 tx_csum_info; 1988 1989 if (unlikely(skb_headroom(skb) < sizeof(*status))) { 1990 /* If 64 byte status block enabled, must make sure skb has 1991 * enough headroom for us to insert 64B status block. 1992 */ 1993 new_skb = skb_realloc_headroom(skb, sizeof(*status)); 1994 if (!new_skb) { 1995 dev_kfree_skb_any(skb); 1996 priv->mib.tx_realloc_tsb_failed++; 1997 dev->stats.tx_dropped++; 1998 return NULL; 1999 } 2000 dev_consume_skb_any(skb); 2001 skb = new_skb; 2002 priv->mib.tx_realloc_tsb++; 2003 } 2004 2005 skb_push(skb, sizeof(*status)); 2006 status = (struct status_64 *)skb->data; 2007 2008 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2009 ip_ver = skb->protocol; 2010 switch (ip_ver) { 2011 case htons(ETH_P_IP): 2012 ip_proto = ip_hdr(skb)->protocol; 2013 break; 2014 case htons(ETH_P_IPV6): 2015 ip_proto = ipv6_hdr(skb)->nexthdr; 2016 break; 2017 default: 2018 /* don't use UDP flag */ 2019 ip_proto = 0; 2020 break; 2021 } 2022 2023 offset = skb_checksum_start_offset(skb) - sizeof(*status); 2024 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | 2025 (offset + skb->csum_offset) | 2026 STATUS_TX_CSUM_LV; 2027 2028 /* Set the special UDP flag for UDP */ 2029 if (ip_proto == IPPROTO_UDP) 2030 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; 2031 2032 status->tx_csum_info = tx_csum_info; 2033 } 2034 2035 return skb; 2036 } 2037 2038 static void bcmgenet_hide_tsb(struct sk_buff *skb) 2039 { 2040 __skb_pull(skb, sizeof(struct status_64)); 2041 } 2042 2043 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) 2044 { 2045 struct bcmgenet_priv *priv = netdev_priv(dev); 2046 struct device *kdev = &priv->pdev->dev; 2047 struct bcmgenet_tx_ring *ring = NULL; 2048 struct enet_cb *tx_cb_ptr; 2049 struct netdev_queue *txq; 2050 int nr_frags, index; 2051 dma_addr_t mapping; 2052 unsigned int size; 2053 skb_frag_t *frag; 2054 u32 len_stat; 2055 int ret; 2056 int i; 2057 2058 index = skb_get_queue_mapping(skb); 2059 /* Mapping strategy: 2060 * queue_mapping = 0, unclassified, packet xmited through ring16 2061 * queue_mapping = 1, goes to ring 0. (highest priority queue 2062 * queue_mapping = 2, goes to ring 1. 2063 * queue_mapping = 3, goes to ring 2. 2064 * queue_mapping = 4, goes to ring 3. 2065 */ 2066 if (index == 0) 2067 index = DESC_INDEX; 2068 else 2069 index -= 1; 2070 2071 ring = &priv->tx_rings[index]; 2072 txq = netdev_get_tx_queue(dev, ring->queue); 2073 2074 nr_frags = skb_shinfo(skb)->nr_frags; 2075 2076 spin_lock(&ring->lock); 2077 if (ring->free_bds <= (nr_frags + 1)) { 2078 if (!netif_tx_queue_stopped(txq)) { 2079 netif_tx_stop_queue(txq); 2080 netdev_err(dev, 2081 "%s: tx ring %d full when queue %d awake\n", 2082 __func__, index, ring->queue); 2083 } 2084 ret = NETDEV_TX_BUSY; 2085 goto out; 2086 } 2087 2088 /* Retain how many bytes will be sent on the wire, without TSB inserted 2089 * by transmit checksum offload 2090 */ 2091 GENET_CB(skb)->bytes_sent = skb->len; 2092 2093 /* add the Transmit Status Block */ 2094 skb = bcmgenet_add_tsb(dev, skb); 2095 if (!skb) { 2096 ret = NETDEV_TX_OK; 2097 goto out; 2098 } 2099 2100 for (i = 0; i <= nr_frags; i++) { 2101 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 2102 2103 BUG_ON(!tx_cb_ptr); 2104 2105 if (!i) { 2106 /* Transmit single SKB or head of fragment list */ 2107 GENET_CB(skb)->first_cb = tx_cb_ptr; 2108 size = skb_headlen(skb); 2109 mapping = dma_map_single(kdev, skb->data, size, 2110 DMA_TO_DEVICE); 2111 } else { 2112 /* xmit fragment */ 2113 frag = &skb_shinfo(skb)->frags[i - 1]; 2114 size = skb_frag_size(frag); 2115 mapping = skb_frag_dma_map(kdev, frag, 0, size, 2116 DMA_TO_DEVICE); 2117 } 2118 2119 ret = dma_mapping_error(kdev, mapping); 2120 if (ret) { 2121 priv->mib.tx_dma_failed++; 2122 netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); 2123 ret = NETDEV_TX_OK; 2124 goto out_unmap_frags; 2125 } 2126 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 2127 dma_unmap_len_set(tx_cb_ptr, dma_len, size); 2128 2129 tx_cb_ptr->skb = skb; 2130 2131 len_stat = (size << DMA_BUFLENGTH_SHIFT) | 2132 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT); 2133 2134 /* Note: if we ever change from DMA_TX_APPEND_CRC below we 2135 * will need to restore software padding of "runt" packets 2136 */ 2137 if (!i) { 2138 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP; 2139 if (skb->ip_summed == CHECKSUM_PARTIAL) 2140 len_stat |= DMA_TX_DO_CSUM; 2141 } 2142 if (i == nr_frags) 2143 len_stat |= DMA_EOP; 2144 2145 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat); 2146 } 2147 2148 GENET_CB(skb)->last_cb = tx_cb_ptr; 2149 2150 bcmgenet_hide_tsb(skb); 2151 skb_tx_timestamp(skb); 2152 2153 /* Decrement total BD count and advance our write pointer */ 2154 ring->free_bds -= nr_frags + 1; 2155 ring->prod_index += nr_frags + 1; 2156 ring->prod_index &= DMA_P_INDEX_MASK; 2157 2158 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent); 2159 2160 if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) 2161 netif_tx_stop_queue(txq); 2162 2163 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 2164 /* Packets are ready, update producer index */ 2165 bcmgenet_tdma_ring_writel(priv, ring->index, 2166 ring->prod_index, TDMA_PROD_INDEX); 2167 out: 2168 spin_unlock(&ring->lock); 2169 2170 return ret; 2171 2172 out_unmap_frags: 2173 /* Back up for failed control block mapping */ 2174 bcmgenet_put_txcb(priv, ring); 2175 2176 /* Unmap successfully mapped control blocks */ 2177 while (i-- > 0) { 2178 tx_cb_ptr = bcmgenet_put_txcb(priv, ring); 2179 bcmgenet_free_tx_cb(kdev, tx_cb_ptr); 2180 } 2181 2182 dev_kfree_skb(skb); 2183 goto out; 2184 } 2185 2186 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv, 2187 struct enet_cb *cb) 2188 { 2189 struct device *kdev = &priv->pdev->dev; 2190 struct sk_buff *skb; 2191 struct sk_buff *rx_skb; 2192 dma_addr_t mapping; 2193 2194 /* Allocate a new Rx skb */ 2195 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT, 2196 GFP_ATOMIC | __GFP_NOWARN); 2197 if (!skb) { 2198 priv->mib.alloc_rx_buff_failed++; 2199 netif_err(priv, rx_err, priv->dev, 2200 "%s: Rx skb allocation failed\n", __func__); 2201 return NULL; 2202 } 2203 2204 /* DMA-map the new Rx skb */ 2205 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, 2206 DMA_FROM_DEVICE); 2207 if (dma_mapping_error(kdev, mapping)) { 2208 priv->mib.rx_dma_failed++; 2209 dev_kfree_skb_any(skb); 2210 netif_err(priv, rx_err, priv->dev, 2211 "%s: Rx skb DMA mapping failed\n", __func__); 2212 return NULL; 2213 } 2214 2215 /* Grab the current Rx skb from the ring and DMA-unmap it */ 2216 rx_skb = bcmgenet_free_rx_cb(kdev, cb); 2217 2218 /* Put the new Rx skb on the ring */ 2219 cb->skb = skb; 2220 dma_unmap_addr_set(cb, dma_addr, mapping); 2221 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len); 2222 dmadesc_set_addr(priv, cb->bd_addr, mapping); 2223 2224 /* Return the current Rx skb to caller */ 2225 return rx_skb; 2226 } 2227 2228 /* bcmgenet_desc_rx - descriptor based rx process. 2229 * this could be called from bottom half, or from NAPI polling method. 2230 */ 2231 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring, 2232 unsigned int budget) 2233 { 2234 struct bcmgenet_priv *priv = ring->priv; 2235 struct net_device *dev = priv->dev; 2236 struct enet_cb *cb; 2237 struct sk_buff *skb; 2238 u32 dma_length_status; 2239 unsigned long dma_flag; 2240 int len; 2241 unsigned int rxpktprocessed = 0, rxpkttoprocess; 2242 unsigned int bytes_processed = 0; 2243 unsigned int p_index, mask; 2244 unsigned int discards; 2245 2246 /* Clear status before servicing to reduce spurious interrupts */ 2247 if (ring->index == DESC_INDEX) { 2248 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE, 2249 INTRL2_CPU_CLEAR); 2250 } else { 2251 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index); 2252 bcmgenet_intrl2_1_writel(priv, 2253 mask, 2254 INTRL2_CPU_CLEAR); 2255 } 2256 2257 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX); 2258 2259 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) & 2260 DMA_P_INDEX_DISCARD_CNT_MASK; 2261 if (discards > ring->old_discards) { 2262 discards = discards - ring->old_discards; 2263 ring->errors += discards; 2264 ring->old_discards += discards; 2265 2266 /* Clear HW register when we reach 75% of maximum 0xFFFF */ 2267 if (ring->old_discards >= 0xC000) { 2268 ring->old_discards = 0; 2269 bcmgenet_rdma_ring_writel(priv, ring->index, 0, 2270 RDMA_PROD_INDEX); 2271 } 2272 } 2273 2274 p_index &= DMA_P_INDEX_MASK; 2275 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK; 2276 2277 netif_dbg(priv, rx_status, dev, 2278 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); 2279 2280 while ((rxpktprocessed < rxpkttoprocess) && 2281 (rxpktprocessed < budget)) { 2282 struct status_64 *status; 2283 __be16 rx_csum; 2284 2285 cb = &priv->rx_cbs[ring->read_ptr]; 2286 skb = bcmgenet_rx_refill(priv, cb); 2287 2288 if (unlikely(!skb)) { 2289 ring->dropped++; 2290 goto next; 2291 } 2292 2293 status = (struct status_64 *)skb->data; 2294 dma_length_status = status->length_status; 2295 if (dev->features & NETIF_F_RXCSUM) { 2296 rx_csum = (__force __be16)(status->rx_csum & 0xffff); 2297 if (rx_csum) { 2298 skb->csum = (__force __wsum)ntohs(rx_csum); 2299 skb->ip_summed = CHECKSUM_COMPLETE; 2300 } 2301 } 2302 2303 /* DMA flags and length are still valid no matter how 2304 * we got the Receive Status Vector (64B RSB or register) 2305 */ 2306 dma_flag = dma_length_status & 0xffff; 2307 len = dma_length_status >> DMA_BUFLENGTH_SHIFT; 2308 2309 netif_dbg(priv, rx_status, dev, 2310 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", 2311 __func__, p_index, ring->c_index, 2312 ring->read_ptr, dma_length_status); 2313 2314 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { 2315 netif_err(priv, rx_status, dev, 2316 "dropping fragmented packet!\n"); 2317 ring->errors++; 2318 dev_kfree_skb_any(skb); 2319 goto next; 2320 } 2321 2322 /* report errors */ 2323 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | 2324 DMA_RX_OV | 2325 DMA_RX_NO | 2326 DMA_RX_LG | 2327 DMA_RX_RXER))) { 2328 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", 2329 (unsigned int)dma_flag); 2330 if (dma_flag & DMA_RX_CRC_ERROR) 2331 dev->stats.rx_crc_errors++; 2332 if (dma_flag & DMA_RX_OV) 2333 dev->stats.rx_over_errors++; 2334 if (dma_flag & DMA_RX_NO) 2335 dev->stats.rx_frame_errors++; 2336 if (dma_flag & DMA_RX_LG) 2337 dev->stats.rx_length_errors++; 2338 dev->stats.rx_errors++; 2339 dev_kfree_skb_any(skb); 2340 goto next; 2341 } /* error packet */ 2342 2343 skb_put(skb, len); 2344 2345 /* remove RSB and hardware 2bytes added for IP alignment */ 2346 skb_pull(skb, 66); 2347 len -= 66; 2348 2349 if (priv->crc_fwd_en) { 2350 skb_trim(skb, len - ETH_FCS_LEN); 2351 len -= ETH_FCS_LEN; 2352 } 2353 2354 bytes_processed += len; 2355 2356 /*Finish setting up the received SKB and send it to the kernel*/ 2357 skb->protocol = eth_type_trans(skb, priv->dev); 2358 ring->packets++; 2359 ring->bytes += len; 2360 if (dma_flag & DMA_RX_MULT) 2361 dev->stats.multicast++; 2362 2363 /* Notify kernel */ 2364 napi_gro_receive(&ring->napi, skb); 2365 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); 2366 2367 next: 2368 rxpktprocessed++; 2369 if (likely(ring->read_ptr < ring->end_ptr)) 2370 ring->read_ptr++; 2371 else 2372 ring->read_ptr = ring->cb_ptr; 2373 2374 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK; 2375 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX); 2376 } 2377 2378 ring->dim.bytes = bytes_processed; 2379 ring->dim.packets = rxpktprocessed; 2380 2381 return rxpktprocessed; 2382 } 2383 2384 /* Rx NAPI polling method */ 2385 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget) 2386 { 2387 struct bcmgenet_rx_ring *ring = container_of(napi, 2388 struct bcmgenet_rx_ring, napi); 2389 struct dim_sample dim_sample = {}; 2390 unsigned int work_done; 2391 2392 work_done = bcmgenet_desc_rx(ring, budget); 2393 2394 if (work_done < budget) { 2395 napi_complete_done(napi, work_done); 2396 ring->int_enable(ring); 2397 } 2398 2399 if (ring->dim.use_dim) { 2400 dim_update_sample(ring->dim.event_ctr, ring->dim.packets, 2401 ring->dim.bytes, &dim_sample); 2402 net_dim(&ring->dim.dim, dim_sample); 2403 } 2404 2405 return work_done; 2406 } 2407 2408 static void bcmgenet_dim_work(struct work_struct *work) 2409 { 2410 struct dim *dim = container_of(work, struct dim, work); 2411 struct bcmgenet_net_dim *ndim = 2412 container_of(dim, struct bcmgenet_net_dim, dim); 2413 struct bcmgenet_rx_ring *ring = 2414 container_of(ndim, struct bcmgenet_rx_ring, dim); 2415 struct dim_cq_moder cur_profile = 2416 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 2417 2418 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts); 2419 dim->state = DIM_START_MEASURE; 2420 } 2421 2422 /* Assign skb to RX DMA descriptor. */ 2423 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv, 2424 struct bcmgenet_rx_ring *ring) 2425 { 2426 struct enet_cb *cb; 2427 struct sk_buff *skb; 2428 int i; 2429 2430 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 2431 2432 /* loop here for each buffer needing assign */ 2433 for (i = 0; i < ring->size; i++) { 2434 cb = ring->cbs + i; 2435 skb = bcmgenet_rx_refill(priv, cb); 2436 if (skb) 2437 dev_consume_skb_any(skb); 2438 if (!cb->skb) 2439 return -ENOMEM; 2440 } 2441 2442 return 0; 2443 } 2444 2445 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) 2446 { 2447 struct sk_buff *skb; 2448 struct enet_cb *cb; 2449 int i; 2450 2451 for (i = 0; i < priv->num_rx_bds; i++) { 2452 cb = &priv->rx_cbs[i]; 2453 2454 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb); 2455 if (skb) 2456 dev_consume_skb_any(skb); 2457 } 2458 } 2459 2460 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable) 2461 { 2462 u32 reg; 2463 2464 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2465 if (reg & CMD_SW_RESET) 2466 return; 2467 if (enable) 2468 reg |= mask; 2469 else 2470 reg &= ~mask; 2471 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 2472 2473 /* UniMAC stops on a packet boundary, wait for a full-size packet 2474 * to be processed 2475 */ 2476 if (enable == 0) 2477 usleep_range(1000, 2000); 2478 } 2479 2480 static void reset_umac(struct bcmgenet_priv *priv) 2481 { 2482 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ 2483 bcmgenet_rbuf_ctrl_set(priv, 0); 2484 udelay(10); 2485 2486 /* issue soft reset and disable MAC while updating its registers */ 2487 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD); 2488 udelay(2); 2489 } 2490 2491 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv) 2492 { 2493 /* Mask all interrupts.*/ 2494 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2495 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2496 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2497 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2498 } 2499 2500 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv) 2501 { 2502 u32 int0_enable = 0; 2503 2504 /* Monitor cable plug/unplugged event for internal PHY, external PHY 2505 * and MoCA PHY 2506 */ 2507 if (priv->internal_phy) { 2508 int0_enable |= UMAC_IRQ_LINK_EVENT; 2509 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv)) 2510 int0_enable |= UMAC_IRQ_PHY_DET_R; 2511 } else if (priv->ext_phy) { 2512 int0_enable |= UMAC_IRQ_LINK_EVENT; 2513 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2514 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) 2515 int0_enable |= UMAC_IRQ_LINK_EVENT; 2516 } 2517 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2518 } 2519 2520 static void init_umac(struct bcmgenet_priv *priv) 2521 { 2522 struct device *kdev = &priv->pdev->dev; 2523 u32 reg; 2524 u32 int0_enable = 0; 2525 2526 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); 2527 2528 reset_umac(priv); 2529 2530 /* clear tx/rx counter */ 2531 bcmgenet_umac_writel(priv, 2532 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, 2533 UMAC_MIB_CTRL); 2534 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); 2535 2536 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); 2537 2538 /* init tx registers, enable TSB */ 2539 reg = bcmgenet_tbuf_ctrl_get(priv); 2540 reg |= TBUF_64B_EN; 2541 bcmgenet_tbuf_ctrl_set(priv, reg); 2542 2543 /* init rx registers, enable ip header optimization and RSB */ 2544 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 2545 reg |= RBUF_ALIGN_2B | RBUF_64B_EN; 2546 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); 2547 2548 /* enable rx checksumming */ 2549 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); 2550 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS; 2551 /* If UniMAC forwards CRC, we need to skip over it to get 2552 * a valid CHK bit to be set in the per-packet status word 2553 */ 2554 if (priv->crc_fwd_en) 2555 reg |= RBUF_SKIP_FCS; 2556 else 2557 reg &= ~RBUF_SKIP_FCS; 2558 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL); 2559 2560 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) 2561 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); 2562 2563 bcmgenet_intr_disable(priv); 2564 2565 /* Configure backpressure vectors for MoCA */ 2566 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2567 reg = bcmgenet_bp_mc_get(priv); 2568 reg |= BIT(priv->hw_params->bp_in_en_shift); 2569 2570 /* bp_mask: back pressure mask */ 2571 if (netif_is_multiqueue(priv->dev)) 2572 reg |= priv->hw_params->bp_in_mask; 2573 else 2574 reg &= ~priv->hw_params->bp_in_mask; 2575 bcmgenet_bp_mc_set(priv, reg); 2576 } 2577 2578 /* Enable MDIO interrupts on GENET v3+ */ 2579 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) 2580 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 2581 2582 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2583 2584 dev_dbg(kdev, "done init umac\n"); 2585 } 2586 2587 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring, 2588 void (*cb)(struct work_struct *work)) 2589 { 2590 struct bcmgenet_net_dim *dim = &ring->dim; 2591 2592 INIT_WORK(&dim->dim.work, cb); 2593 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 2594 dim->event_ctr = 0; 2595 dim->packets = 0; 2596 dim->bytes = 0; 2597 } 2598 2599 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring) 2600 { 2601 struct bcmgenet_net_dim *dim = &ring->dim; 2602 struct dim_cq_moder moder; 2603 u32 usecs, pkts; 2604 2605 usecs = ring->rx_coalesce_usecs; 2606 pkts = ring->rx_max_coalesced_frames; 2607 2608 /* If DIM was enabled, re-apply default parameters */ 2609 if (dim->use_dim) { 2610 moder = net_dim_get_def_rx_moderation(dim->dim.mode); 2611 usecs = moder.usec; 2612 pkts = moder.pkts; 2613 } 2614 2615 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 2616 } 2617 2618 /* Initialize a Tx ring along with corresponding hardware registers */ 2619 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, 2620 unsigned int index, unsigned int size, 2621 unsigned int start_ptr, unsigned int end_ptr) 2622 { 2623 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; 2624 u32 words_per_bd = WORDS_PER_BD(priv); 2625 u32 flow_period_val = 0; 2626 2627 spin_lock_init(&ring->lock); 2628 ring->priv = priv; 2629 ring->index = index; 2630 if (index == DESC_INDEX) { 2631 ring->queue = 0; 2632 ring->int_enable = bcmgenet_tx_ring16_int_enable; 2633 ring->int_disable = bcmgenet_tx_ring16_int_disable; 2634 } else { 2635 ring->queue = index + 1; 2636 ring->int_enable = bcmgenet_tx_ring_int_enable; 2637 ring->int_disable = bcmgenet_tx_ring_int_disable; 2638 } 2639 ring->cbs = priv->tx_cbs + start_ptr; 2640 ring->size = size; 2641 ring->clean_ptr = start_ptr; 2642 ring->c_index = 0; 2643 ring->free_bds = size; 2644 ring->write_ptr = start_ptr; 2645 ring->cb_ptr = start_ptr; 2646 ring->end_ptr = end_ptr - 1; 2647 ring->prod_index = 0; 2648 2649 /* Set flow period for ring != 16 */ 2650 if (index != DESC_INDEX) 2651 flow_period_val = ENET_MAX_MTU_SIZE << 16; 2652 2653 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); 2654 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); 2655 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 2656 /* Disable rate control for now */ 2657 bcmgenet_tdma_ring_writel(priv, index, flow_period_val, 2658 TDMA_FLOW_PERIOD); 2659 bcmgenet_tdma_ring_writel(priv, index, 2660 ((size << DMA_RING_SIZE_SHIFT) | 2661 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2662 2663 /* Set start and end address, read and write pointers */ 2664 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2665 DMA_START_ADDR); 2666 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2667 TDMA_READ_PTR); 2668 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2669 TDMA_WRITE_PTR); 2670 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2671 DMA_END_ADDR); 2672 2673 /* Initialize Tx NAPI */ 2674 netif_napi_add_tx(priv->dev, &ring->napi, bcmgenet_tx_poll); 2675 } 2676 2677 /* Initialize a RDMA ring */ 2678 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, 2679 unsigned int index, unsigned int size, 2680 unsigned int start_ptr, unsigned int end_ptr) 2681 { 2682 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index]; 2683 u32 words_per_bd = WORDS_PER_BD(priv); 2684 int ret; 2685 2686 ring->priv = priv; 2687 ring->index = index; 2688 if (index == DESC_INDEX) { 2689 ring->int_enable = bcmgenet_rx_ring16_int_enable; 2690 ring->int_disable = bcmgenet_rx_ring16_int_disable; 2691 } else { 2692 ring->int_enable = bcmgenet_rx_ring_int_enable; 2693 ring->int_disable = bcmgenet_rx_ring_int_disable; 2694 } 2695 ring->cbs = priv->rx_cbs + start_ptr; 2696 ring->size = size; 2697 ring->c_index = 0; 2698 ring->read_ptr = start_ptr; 2699 ring->cb_ptr = start_ptr; 2700 ring->end_ptr = end_ptr - 1; 2701 2702 ret = bcmgenet_alloc_rx_buffers(priv, ring); 2703 if (ret) 2704 return ret; 2705 2706 bcmgenet_init_dim(ring, bcmgenet_dim_work); 2707 bcmgenet_init_rx_coalesce(ring); 2708 2709 /* Initialize Rx NAPI */ 2710 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 2711 NAPI_POLL_WEIGHT); 2712 2713 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); 2714 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); 2715 bcmgenet_rdma_ring_writel(priv, index, 2716 ((size << DMA_RING_SIZE_SHIFT) | 2717 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2718 bcmgenet_rdma_ring_writel(priv, index, 2719 (DMA_FC_THRESH_LO << 2720 DMA_XOFF_THRESHOLD_SHIFT) | 2721 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); 2722 2723 /* Set start and end address, read and write pointers */ 2724 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2725 DMA_START_ADDR); 2726 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2727 RDMA_READ_PTR); 2728 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2729 RDMA_WRITE_PTR); 2730 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2731 DMA_END_ADDR); 2732 2733 return ret; 2734 } 2735 2736 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv) 2737 { 2738 unsigned int i; 2739 struct bcmgenet_tx_ring *ring; 2740 2741 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2742 ring = &priv->tx_rings[i]; 2743 napi_enable(&ring->napi); 2744 ring->int_enable(ring); 2745 } 2746 2747 ring = &priv->tx_rings[DESC_INDEX]; 2748 napi_enable(&ring->napi); 2749 ring->int_enable(ring); 2750 } 2751 2752 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv) 2753 { 2754 unsigned int i; 2755 struct bcmgenet_tx_ring *ring; 2756 2757 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2758 ring = &priv->tx_rings[i]; 2759 napi_disable(&ring->napi); 2760 } 2761 2762 ring = &priv->tx_rings[DESC_INDEX]; 2763 napi_disable(&ring->napi); 2764 } 2765 2766 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv) 2767 { 2768 unsigned int i; 2769 struct bcmgenet_tx_ring *ring; 2770 2771 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2772 ring = &priv->tx_rings[i]; 2773 netif_napi_del(&ring->napi); 2774 } 2775 2776 ring = &priv->tx_rings[DESC_INDEX]; 2777 netif_napi_del(&ring->napi); 2778 } 2779 2780 /* Initialize Tx queues 2781 * 2782 * Queues 0-3 are priority-based, each one has 32 descriptors, 2783 * with queue 0 being the highest priority queue. 2784 * 2785 * Queue 16 is the default Tx queue with 2786 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors. 2787 * 2788 * The transmit control block pool is then partitioned as follows: 2789 * - Tx queue 0 uses tx_cbs[0..31] 2790 * - Tx queue 1 uses tx_cbs[32..63] 2791 * - Tx queue 2 uses tx_cbs[64..95] 2792 * - Tx queue 3 uses tx_cbs[96..127] 2793 * - Tx queue 16 uses tx_cbs[128..255] 2794 */ 2795 static void bcmgenet_init_tx_queues(struct net_device *dev) 2796 { 2797 struct bcmgenet_priv *priv = netdev_priv(dev); 2798 u32 i, dma_enable; 2799 u32 dma_ctrl, ring_cfg; 2800 u32 dma_priority[3] = {0, 0, 0}; 2801 2802 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); 2803 dma_enable = dma_ctrl & DMA_EN; 2804 dma_ctrl &= ~DMA_EN; 2805 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2806 2807 dma_ctrl = 0; 2808 ring_cfg = 0; 2809 2810 /* Enable strict priority arbiter mode */ 2811 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); 2812 2813 /* Initialize Tx priority queues */ 2814 for (i = 0; i < priv->hw_params->tx_queues; i++) { 2815 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q, 2816 i * priv->hw_params->tx_bds_per_q, 2817 (i + 1) * priv->hw_params->tx_bds_per_q); 2818 ring_cfg |= (1 << i); 2819 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2820 dma_priority[DMA_PRIO_REG_INDEX(i)] |= 2821 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i)); 2822 } 2823 2824 /* Initialize Tx default queue 16 */ 2825 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT, 2826 priv->hw_params->tx_queues * 2827 priv->hw_params->tx_bds_per_q, 2828 TOTAL_DESC); 2829 ring_cfg |= (1 << DESC_INDEX); 2830 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2831 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |= 2832 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 2833 DMA_PRIO_REG_SHIFT(DESC_INDEX)); 2834 2835 /* Set Tx queue priorities */ 2836 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0); 2837 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1); 2838 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2); 2839 2840 /* Enable Tx queues */ 2841 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG); 2842 2843 /* Enable Tx DMA */ 2844 if (dma_enable) 2845 dma_ctrl |= DMA_EN; 2846 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2847 } 2848 2849 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv) 2850 { 2851 unsigned int i; 2852 struct bcmgenet_rx_ring *ring; 2853 2854 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2855 ring = &priv->rx_rings[i]; 2856 napi_enable(&ring->napi); 2857 ring->int_enable(ring); 2858 } 2859 2860 ring = &priv->rx_rings[DESC_INDEX]; 2861 napi_enable(&ring->napi); 2862 ring->int_enable(ring); 2863 } 2864 2865 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv) 2866 { 2867 unsigned int i; 2868 struct bcmgenet_rx_ring *ring; 2869 2870 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2871 ring = &priv->rx_rings[i]; 2872 napi_disable(&ring->napi); 2873 cancel_work_sync(&ring->dim.dim.work); 2874 } 2875 2876 ring = &priv->rx_rings[DESC_INDEX]; 2877 napi_disable(&ring->napi); 2878 cancel_work_sync(&ring->dim.dim.work); 2879 } 2880 2881 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv) 2882 { 2883 unsigned int i; 2884 struct bcmgenet_rx_ring *ring; 2885 2886 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2887 ring = &priv->rx_rings[i]; 2888 netif_napi_del(&ring->napi); 2889 } 2890 2891 ring = &priv->rx_rings[DESC_INDEX]; 2892 netif_napi_del(&ring->napi); 2893 } 2894 2895 /* Initialize Rx queues 2896 * 2897 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be 2898 * used to direct traffic to these queues. 2899 * 2900 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors. 2901 */ 2902 static int bcmgenet_init_rx_queues(struct net_device *dev) 2903 { 2904 struct bcmgenet_priv *priv = netdev_priv(dev); 2905 u32 i; 2906 u32 dma_enable; 2907 u32 dma_ctrl; 2908 u32 ring_cfg; 2909 int ret; 2910 2911 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL); 2912 dma_enable = dma_ctrl & DMA_EN; 2913 dma_ctrl &= ~DMA_EN; 2914 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2915 2916 dma_ctrl = 0; 2917 ring_cfg = 0; 2918 2919 /* Initialize Rx priority queues */ 2920 for (i = 0; i < priv->hw_params->rx_queues; i++) { 2921 ret = bcmgenet_init_rx_ring(priv, i, 2922 priv->hw_params->rx_bds_per_q, 2923 i * priv->hw_params->rx_bds_per_q, 2924 (i + 1) * 2925 priv->hw_params->rx_bds_per_q); 2926 if (ret) 2927 return ret; 2928 2929 ring_cfg |= (1 << i); 2930 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2931 } 2932 2933 /* Initialize Rx default queue 16 */ 2934 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT, 2935 priv->hw_params->rx_queues * 2936 priv->hw_params->rx_bds_per_q, 2937 TOTAL_DESC); 2938 if (ret) 2939 return ret; 2940 2941 ring_cfg |= (1 << DESC_INDEX); 2942 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2943 2944 /* Enable rings */ 2945 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG); 2946 2947 /* Configure ring as descriptor ring and re-enable DMA if enabled */ 2948 if (dma_enable) 2949 dma_ctrl |= DMA_EN; 2950 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2951 2952 return 0; 2953 } 2954 2955 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) 2956 { 2957 int ret = 0; 2958 int timeout = 0; 2959 u32 reg; 2960 u32 dma_ctrl; 2961 int i; 2962 2963 /* Disable TDMA to stop add more frames in TX DMA */ 2964 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2965 reg &= ~DMA_EN; 2966 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2967 2968 /* Check TDMA status register to confirm TDMA is disabled */ 2969 while (timeout++ < DMA_TIMEOUT_VAL) { 2970 reg = bcmgenet_tdma_readl(priv, DMA_STATUS); 2971 if (reg & DMA_DISABLED) 2972 break; 2973 2974 udelay(1); 2975 } 2976 2977 if (timeout == DMA_TIMEOUT_VAL) { 2978 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); 2979 ret = -ETIMEDOUT; 2980 } 2981 2982 /* Wait 10ms for packet drain in both tx and rx dma */ 2983 usleep_range(10000, 20000); 2984 2985 /* Disable RDMA */ 2986 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2987 reg &= ~DMA_EN; 2988 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2989 2990 timeout = 0; 2991 /* Check RDMA status register to confirm RDMA is disabled */ 2992 while (timeout++ < DMA_TIMEOUT_VAL) { 2993 reg = bcmgenet_rdma_readl(priv, DMA_STATUS); 2994 if (reg & DMA_DISABLED) 2995 break; 2996 2997 udelay(1); 2998 } 2999 3000 if (timeout == DMA_TIMEOUT_VAL) { 3001 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); 3002 ret = -ETIMEDOUT; 3003 } 3004 3005 dma_ctrl = 0; 3006 for (i = 0; i < priv->hw_params->rx_queues; i++) 3007 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3008 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3009 reg &= ~dma_ctrl; 3010 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3011 3012 dma_ctrl = 0; 3013 for (i = 0; i < priv->hw_params->tx_queues; i++) 3014 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3015 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3016 reg &= ~dma_ctrl; 3017 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3018 3019 return ret; 3020 } 3021 3022 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) 3023 { 3024 struct netdev_queue *txq; 3025 int i; 3026 3027 bcmgenet_fini_rx_napi(priv); 3028 bcmgenet_fini_tx_napi(priv); 3029 3030 for (i = 0; i < priv->num_tx_bds; i++) 3031 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev, 3032 priv->tx_cbs + i)); 3033 3034 for (i = 0; i < priv->hw_params->tx_queues; i++) { 3035 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue); 3036 netdev_tx_reset_queue(txq); 3037 } 3038 3039 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue); 3040 netdev_tx_reset_queue(txq); 3041 3042 bcmgenet_free_rx_buffers(priv); 3043 kfree(priv->rx_cbs); 3044 kfree(priv->tx_cbs); 3045 } 3046 3047 /* init_edma: Initialize DMA control register */ 3048 static int bcmgenet_init_dma(struct bcmgenet_priv *priv) 3049 { 3050 int ret; 3051 unsigned int i; 3052 struct enet_cb *cb; 3053 3054 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 3055 3056 /* Initialize common Rx ring structures */ 3057 priv->rx_bds = priv->base + priv->hw_params->rdma_offset; 3058 priv->num_rx_bds = TOTAL_DESC; 3059 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb), 3060 GFP_KERNEL); 3061 if (!priv->rx_cbs) 3062 return -ENOMEM; 3063 3064 for (i = 0; i < priv->num_rx_bds; i++) { 3065 cb = priv->rx_cbs + i; 3066 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE; 3067 } 3068 3069 /* Initialize common TX ring structures */ 3070 priv->tx_bds = priv->base + priv->hw_params->tdma_offset; 3071 priv->num_tx_bds = TOTAL_DESC; 3072 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb), 3073 GFP_KERNEL); 3074 if (!priv->tx_cbs) { 3075 kfree(priv->rx_cbs); 3076 return -ENOMEM; 3077 } 3078 3079 for (i = 0; i < priv->num_tx_bds; i++) { 3080 cb = priv->tx_cbs + i; 3081 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE; 3082 } 3083 3084 /* Init rDma */ 3085 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length, 3086 DMA_SCB_BURST_SIZE); 3087 3088 /* Initialize Rx queues */ 3089 ret = bcmgenet_init_rx_queues(priv->dev); 3090 if (ret) { 3091 netdev_err(priv->dev, "failed to initialize Rx queues\n"); 3092 bcmgenet_free_rx_buffers(priv); 3093 kfree(priv->rx_cbs); 3094 kfree(priv->tx_cbs); 3095 return ret; 3096 } 3097 3098 /* Init tDma */ 3099 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length, 3100 DMA_SCB_BURST_SIZE); 3101 3102 /* Initialize Tx queues */ 3103 bcmgenet_init_tx_queues(priv->dev); 3104 3105 return 0; 3106 } 3107 3108 /* Interrupt bottom half */ 3109 static void bcmgenet_irq_task(struct work_struct *work) 3110 { 3111 unsigned int status; 3112 struct bcmgenet_priv *priv = container_of( 3113 work, struct bcmgenet_priv, bcmgenet_irq_work); 3114 3115 netif_dbg(priv, intr, priv->dev, "%s\n", __func__); 3116 3117 spin_lock_irq(&priv->lock); 3118 status = priv->irq0_stat; 3119 priv->irq0_stat = 0; 3120 spin_unlock_irq(&priv->lock); 3121 3122 if (status & UMAC_IRQ_PHY_DET_R && 3123 priv->dev->phydev->autoneg != AUTONEG_ENABLE) { 3124 phy_init_hw(priv->dev->phydev); 3125 genphy_config_aneg(priv->dev->phydev); 3126 } 3127 3128 /* Link UP/DOWN event */ 3129 if (status & UMAC_IRQ_LINK_EVENT) 3130 phy_mac_interrupt(priv->dev->phydev); 3131 3132 } 3133 3134 /* bcmgenet_isr1: handle Rx and Tx priority queues */ 3135 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) 3136 { 3137 struct bcmgenet_priv *priv = dev_id; 3138 struct bcmgenet_rx_ring *rx_ring; 3139 struct bcmgenet_tx_ring *tx_ring; 3140 unsigned int index, status; 3141 3142 /* Read irq status */ 3143 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & 3144 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3145 3146 /* clear interrupts */ 3147 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR); 3148 3149 netif_dbg(priv, intr, priv->dev, 3150 "%s: IRQ=0x%x\n", __func__, status); 3151 3152 /* Check Rx priority queue interrupts */ 3153 for (index = 0; index < priv->hw_params->rx_queues; index++) { 3154 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index))) 3155 continue; 3156 3157 rx_ring = &priv->rx_rings[index]; 3158 rx_ring->dim.event_ctr++; 3159 3160 if (likely(napi_schedule_prep(&rx_ring->napi))) { 3161 rx_ring->int_disable(rx_ring); 3162 __napi_schedule_irqoff(&rx_ring->napi); 3163 } 3164 } 3165 3166 /* Check Tx priority queue interrupts */ 3167 for (index = 0; index < priv->hw_params->tx_queues; index++) { 3168 if (!(status & BIT(index))) 3169 continue; 3170 3171 tx_ring = &priv->tx_rings[index]; 3172 3173 if (likely(napi_schedule_prep(&tx_ring->napi))) { 3174 tx_ring->int_disable(tx_ring); 3175 __napi_schedule_irqoff(&tx_ring->napi); 3176 } 3177 } 3178 3179 return IRQ_HANDLED; 3180 } 3181 3182 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */ 3183 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) 3184 { 3185 struct bcmgenet_priv *priv = dev_id; 3186 struct bcmgenet_rx_ring *rx_ring; 3187 struct bcmgenet_tx_ring *tx_ring; 3188 unsigned int status; 3189 unsigned long flags; 3190 3191 /* Read irq status */ 3192 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & 3193 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3194 3195 /* clear interrupts */ 3196 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR); 3197 3198 netif_dbg(priv, intr, priv->dev, 3199 "IRQ=0x%x\n", status); 3200 3201 if (status & UMAC_IRQ_RXDMA_DONE) { 3202 rx_ring = &priv->rx_rings[DESC_INDEX]; 3203 rx_ring->dim.event_ctr++; 3204 3205 if (likely(napi_schedule_prep(&rx_ring->napi))) { 3206 rx_ring->int_disable(rx_ring); 3207 __napi_schedule_irqoff(&rx_ring->napi); 3208 } 3209 } 3210 3211 if (status & UMAC_IRQ_TXDMA_DONE) { 3212 tx_ring = &priv->tx_rings[DESC_INDEX]; 3213 3214 if (likely(napi_schedule_prep(&tx_ring->napi))) { 3215 tx_ring->int_disable(tx_ring); 3216 __napi_schedule_irqoff(&tx_ring->napi); 3217 } 3218 } 3219 3220 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 3221 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { 3222 wake_up(&priv->wq); 3223 } 3224 3225 /* all other interested interrupts handled in bottom half */ 3226 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R); 3227 if (status) { 3228 /* Save irq status for bottom-half processing. */ 3229 spin_lock_irqsave(&priv->lock, flags); 3230 priv->irq0_stat |= status; 3231 spin_unlock_irqrestore(&priv->lock, flags); 3232 3233 schedule_work(&priv->bcmgenet_irq_work); 3234 } 3235 3236 return IRQ_HANDLED; 3237 } 3238 3239 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id) 3240 { 3241 /* Acknowledge the interrupt */ 3242 return IRQ_HANDLED; 3243 } 3244 3245 #ifdef CONFIG_NET_POLL_CONTROLLER 3246 static void bcmgenet_poll_controller(struct net_device *dev) 3247 { 3248 struct bcmgenet_priv *priv = netdev_priv(dev); 3249 3250 /* Invoke the main RX/TX interrupt handler */ 3251 disable_irq(priv->irq0); 3252 bcmgenet_isr0(priv->irq0, priv); 3253 enable_irq(priv->irq0); 3254 3255 /* And the interrupt handler for RX/TX priority queues */ 3256 disable_irq(priv->irq1); 3257 bcmgenet_isr1(priv->irq1, priv); 3258 enable_irq(priv->irq1); 3259 } 3260 #endif 3261 3262 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) 3263 { 3264 u32 reg; 3265 3266 reg = bcmgenet_rbuf_ctrl_get(priv); 3267 reg |= BIT(1); 3268 bcmgenet_rbuf_ctrl_set(priv, reg); 3269 udelay(10); 3270 3271 reg &= ~BIT(1); 3272 bcmgenet_rbuf_ctrl_set(priv, reg); 3273 udelay(10); 3274 } 3275 3276 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, 3277 const unsigned char *addr) 3278 { 3279 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0); 3280 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1); 3281 } 3282 3283 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv, 3284 unsigned char *addr) 3285 { 3286 u32 addr_tmp; 3287 3288 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0); 3289 put_unaligned_be32(addr_tmp, &addr[0]); 3290 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1); 3291 put_unaligned_be16(addr_tmp, &addr[4]); 3292 } 3293 3294 /* Returns a reusable dma control register value */ 3295 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv) 3296 { 3297 unsigned int i; 3298 u32 reg; 3299 u32 dma_ctrl; 3300 3301 /* disable DMA */ 3302 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 3303 for (i = 0; i < priv->hw_params->tx_queues; i++) 3304 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3305 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3306 reg &= ~dma_ctrl; 3307 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3308 3309 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 3310 for (i = 0; i < priv->hw_params->rx_queues; i++) 3311 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 3312 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3313 reg &= ~dma_ctrl; 3314 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3315 3316 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); 3317 udelay(10); 3318 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); 3319 3320 return dma_ctrl; 3321 } 3322 3323 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) 3324 { 3325 u32 reg; 3326 3327 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3328 reg |= dma_ctrl; 3329 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3330 3331 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3332 reg |= dma_ctrl; 3333 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3334 } 3335 3336 static void bcmgenet_netif_start(struct net_device *dev) 3337 { 3338 struct bcmgenet_priv *priv = netdev_priv(dev); 3339 3340 /* Start the network engine */ 3341 bcmgenet_set_rx_mode(dev); 3342 bcmgenet_enable_rx_napi(priv); 3343 3344 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true); 3345 3346 bcmgenet_enable_tx_napi(priv); 3347 3348 /* Monitor link interrupts now */ 3349 bcmgenet_link_intr_enable(priv); 3350 3351 phy_start(dev->phydev); 3352 } 3353 3354 static int bcmgenet_open(struct net_device *dev) 3355 { 3356 struct bcmgenet_priv *priv = netdev_priv(dev); 3357 unsigned long dma_ctrl; 3358 int ret; 3359 3360 netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); 3361 3362 /* Turn on the clock */ 3363 clk_prepare_enable(priv->clk); 3364 3365 /* If this is an internal GPHY, power it back on now, before UniMAC is 3366 * brought out of reset as absolutely no UniMAC activity is allowed 3367 */ 3368 if (priv->internal_phy) 3369 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 3370 3371 /* take MAC out of reset */ 3372 bcmgenet_umac_reset(priv); 3373 3374 init_umac(priv); 3375 3376 /* Apply features again in case we changed them while interface was 3377 * down 3378 */ 3379 bcmgenet_set_features(dev, dev->features); 3380 3381 bcmgenet_set_hw_addr(priv, dev->dev_addr); 3382 3383 /* Disable RX/TX DMA and flush TX queues */ 3384 dma_ctrl = bcmgenet_dma_disable(priv); 3385 3386 /* Reinitialize TDMA and RDMA and SW housekeeping */ 3387 ret = bcmgenet_init_dma(priv); 3388 if (ret) { 3389 netdev_err(dev, "failed to initialize DMA\n"); 3390 goto err_clk_disable; 3391 } 3392 3393 /* Always enable ring 16 - descriptor ring */ 3394 bcmgenet_enable_dma(priv, dma_ctrl); 3395 3396 /* HFB init */ 3397 bcmgenet_hfb_init(priv); 3398 3399 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, 3400 dev->name, priv); 3401 if (ret < 0) { 3402 netdev_err(dev, "can't request IRQ %d\n", priv->irq0); 3403 goto err_fini_dma; 3404 } 3405 3406 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, 3407 dev->name, priv); 3408 if (ret < 0) { 3409 netdev_err(dev, "can't request IRQ %d\n", priv->irq1); 3410 goto err_irq0; 3411 } 3412 3413 ret = bcmgenet_mii_probe(dev); 3414 if (ret) { 3415 netdev_err(dev, "failed to connect to PHY\n"); 3416 goto err_irq1; 3417 } 3418 3419 bcmgenet_phy_pause_set(dev, priv->rx_pause, priv->tx_pause); 3420 3421 bcmgenet_netif_start(dev); 3422 3423 netif_tx_start_all_queues(dev); 3424 3425 return 0; 3426 3427 err_irq1: 3428 free_irq(priv->irq1, priv); 3429 err_irq0: 3430 free_irq(priv->irq0, priv); 3431 err_fini_dma: 3432 bcmgenet_dma_teardown(priv); 3433 bcmgenet_fini_dma(priv); 3434 err_clk_disable: 3435 if (priv->internal_phy) 3436 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3437 clk_disable_unprepare(priv->clk); 3438 return ret; 3439 } 3440 3441 static void bcmgenet_netif_stop(struct net_device *dev) 3442 { 3443 struct bcmgenet_priv *priv = netdev_priv(dev); 3444 3445 bcmgenet_disable_tx_napi(priv); 3446 netif_tx_disable(dev); 3447 3448 /* Disable MAC receive */ 3449 umac_enable_set(priv, CMD_RX_EN, false); 3450 3451 bcmgenet_dma_teardown(priv); 3452 3453 /* Disable MAC transmit. TX DMA disabled must be done before this */ 3454 umac_enable_set(priv, CMD_TX_EN, false); 3455 3456 phy_stop(dev->phydev); 3457 bcmgenet_disable_rx_napi(priv); 3458 bcmgenet_intr_disable(priv); 3459 3460 /* Wait for pending work items to complete. Since interrupts are 3461 * disabled no new work will be scheduled. 3462 */ 3463 cancel_work_sync(&priv->bcmgenet_irq_work); 3464 3465 /* tx reclaim */ 3466 bcmgenet_tx_reclaim_all(dev); 3467 bcmgenet_fini_dma(priv); 3468 } 3469 3470 static int bcmgenet_close(struct net_device *dev) 3471 { 3472 struct bcmgenet_priv *priv = netdev_priv(dev); 3473 int ret = 0; 3474 3475 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); 3476 3477 bcmgenet_netif_stop(dev); 3478 3479 /* Really kill the PHY state machine and disconnect from it */ 3480 phy_disconnect(dev->phydev); 3481 3482 free_irq(priv->irq0, priv); 3483 free_irq(priv->irq1, priv); 3484 3485 if (priv->internal_phy) 3486 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3487 3488 clk_disable_unprepare(priv->clk); 3489 3490 return ret; 3491 } 3492 3493 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring) 3494 { 3495 struct bcmgenet_priv *priv = ring->priv; 3496 u32 p_index, c_index, intsts, intmsk; 3497 struct netdev_queue *txq; 3498 unsigned int free_bds; 3499 bool txq_stopped; 3500 3501 if (!netif_msg_tx_err(priv)) 3502 return; 3503 3504 txq = netdev_get_tx_queue(priv->dev, ring->queue); 3505 3506 spin_lock(&ring->lock); 3507 if (ring->index == DESC_INDEX) { 3508 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3509 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE; 3510 } else { 3511 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3512 intmsk = 1 << ring->index; 3513 } 3514 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 3515 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX); 3516 txq_stopped = netif_tx_queue_stopped(txq); 3517 free_bds = ring->free_bds; 3518 spin_unlock(&ring->lock); 3519 3520 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n" 3521 "TX queue status: %s, interrupts: %s\n" 3522 "(sw)free_bds: %d (sw)size: %d\n" 3523 "(sw)p_index: %d (hw)p_index: %d\n" 3524 "(sw)c_index: %d (hw)c_index: %d\n" 3525 "(sw)clean_p: %d (sw)write_p: %d\n" 3526 "(sw)cb_ptr: %d (sw)end_ptr: %d\n", 3527 ring->index, ring->queue, 3528 txq_stopped ? "stopped" : "active", 3529 intsts & intmsk ? "enabled" : "disabled", 3530 free_bds, ring->size, 3531 ring->prod_index, p_index & DMA_P_INDEX_MASK, 3532 ring->c_index, c_index & DMA_C_INDEX_MASK, 3533 ring->clean_ptr, ring->write_ptr, 3534 ring->cb_ptr, ring->end_ptr); 3535 } 3536 3537 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue) 3538 { 3539 struct bcmgenet_priv *priv = netdev_priv(dev); 3540 u32 int0_enable = 0; 3541 u32 int1_enable = 0; 3542 unsigned int q; 3543 3544 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); 3545 3546 for (q = 0; q < priv->hw_params->tx_queues; q++) 3547 bcmgenet_dump_tx_queue(&priv->tx_rings[q]); 3548 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]); 3549 3550 bcmgenet_tx_reclaim_all(dev); 3551 3552 for (q = 0; q < priv->hw_params->tx_queues; q++) 3553 int1_enable |= (1 << q); 3554 3555 int0_enable = UMAC_IRQ_TXDMA_DONE; 3556 3557 /* Re-enable TX interrupts if disabled */ 3558 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 3559 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 3560 3561 netif_trans_update(dev); 3562 3563 dev->stats.tx_errors++; 3564 3565 netif_tx_wake_all_queues(dev); 3566 } 3567 3568 #define MAX_MDF_FILTER 17 3569 3570 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, 3571 const unsigned char *addr, 3572 int *i) 3573 { 3574 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], 3575 UMAC_MDF_ADDR + (*i * 4)); 3576 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | 3577 addr[4] << 8 | addr[5], 3578 UMAC_MDF_ADDR + ((*i + 1) * 4)); 3579 *i += 2; 3580 } 3581 3582 static void bcmgenet_set_rx_mode(struct net_device *dev) 3583 { 3584 struct bcmgenet_priv *priv = netdev_priv(dev); 3585 struct netdev_hw_addr *ha; 3586 int i, nfilter; 3587 u32 reg; 3588 3589 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); 3590 3591 /* Number of filters needed */ 3592 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2; 3593 3594 /* 3595 * Turn on promicuous mode for three scenarios 3596 * 1. IFF_PROMISC flag is set 3597 * 2. IFF_ALLMULTI flag is set 3598 * 3. The number of filters needed exceeds the number filters 3599 * supported by the hardware. 3600 */ 3601 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 3602 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) || 3603 (nfilter > MAX_MDF_FILTER)) { 3604 reg |= CMD_PROMISC; 3605 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3606 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); 3607 return; 3608 } else { 3609 reg &= ~CMD_PROMISC; 3610 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3611 } 3612 3613 /* update MDF filter */ 3614 i = 0; 3615 /* Broadcast */ 3616 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i); 3617 /* my own address.*/ 3618 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i); 3619 3620 /* Unicast */ 3621 netdev_for_each_uc_addr(ha, dev) 3622 bcmgenet_set_mdf_addr(priv, ha->addr, &i); 3623 3624 /* Multicast */ 3625 netdev_for_each_mc_addr(ha, dev) 3626 bcmgenet_set_mdf_addr(priv, ha->addr, &i); 3627 3628 /* Enable filters */ 3629 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter); 3630 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); 3631 } 3632 3633 /* Set the hardware MAC address. */ 3634 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) 3635 { 3636 struct sockaddr *addr = p; 3637 3638 /* Setting the MAC address at the hardware level is not possible 3639 * without disabling the UniMAC RX/TX enable bits. 3640 */ 3641 if (netif_running(dev)) 3642 return -EBUSY; 3643 3644 eth_hw_addr_set(dev, addr->sa_data); 3645 3646 return 0; 3647 } 3648 3649 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev) 3650 { 3651 struct bcmgenet_priv *priv = netdev_priv(dev); 3652 unsigned long tx_bytes = 0, tx_packets = 0; 3653 unsigned long rx_bytes = 0, rx_packets = 0; 3654 unsigned long rx_errors = 0, rx_dropped = 0; 3655 struct bcmgenet_tx_ring *tx_ring; 3656 struct bcmgenet_rx_ring *rx_ring; 3657 unsigned int q; 3658 3659 for (q = 0; q < priv->hw_params->tx_queues; q++) { 3660 tx_ring = &priv->tx_rings[q]; 3661 tx_bytes += tx_ring->bytes; 3662 tx_packets += tx_ring->packets; 3663 } 3664 tx_ring = &priv->tx_rings[DESC_INDEX]; 3665 tx_bytes += tx_ring->bytes; 3666 tx_packets += tx_ring->packets; 3667 3668 for (q = 0; q < priv->hw_params->rx_queues; q++) { 3669 rx_ring = &priv->rx_rings[q]; 3670 3671 rx_bytes += rx_ring->bytes; 3672 rx_packets += rx_ring->packets; 3673 rx_errors += rx_ring->errors; 3674 rx_dropped += rx_ring->dropped; 3675 } 3676 rx_ring = &priv->rx_rings[DESC_INDEX]; 3677 rx_bytes += rx_ring->bytes; 3678 rx_packets += rx_ring->packets; 3679 rx_errors += rx_ring->errors; 3680 rx_dropped += rx_ring->dropped; 3681 3682 dev->stats.tx_bytes = tx_bytes; 3683 dev->stats.tx_packets = tx_packets; 3684 dev->stats.rx_bytes = rx_bytes; 3685 dev->stats.rx_packets = rx_packets; 3686 dev->stats.rx_errors = rx_errors; 3687 dev->stats.rx_missed_errors = rx_errors; 3688 dev->stats.rx_dropped = rx_dropped; 3689 return &dev->stats; 3690 } 3691 3692 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier) 3693 { 3694 struct bcmgenet_priv *priv = netdev_priv(dev); 3695 3696 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) || 3697 priv->phy_interface != PHY_INTERFACE_MODE_MOCA) 3698 return -EOPNOTSUPP; 3699 3700 if (new_carrier) 3701 netif_carrier_on(dev); 3702 else 3703 netif_carrier_off(dev); 3704 3705 return 0; 3706 } 3707 3708 static const struct net_device_ops bcmgenet_netdev_ops = { 3709 .ndo_open = bcmgenet_open, 3710 .ndo_stop = bcmgenet_close, 3711 .ndo_start_xmit = bcmgenet_xmit, 3712 .ndo_tx_timeout = bcmgenet_timeout, 3713 .ndo_set_rx_mode = bcmgenet_set_rx_mode, 3714 .ndo_set_mac_address = bcmgenet_set_mac_addr, 3715 .ndo_eth_ioctl = phy_do_ioctl_running, 3716 .ndo_set_features = bcmgenet_set_features, 3717 #ifdef CONFIG_NET_POLL_CONTROLLER 3718 .ndo_poll_controller = bcmgenet_poll_controller, 3719 #endif 3720 .ndo_get_stats = bcmgenet_get_stats, 3721 .ndo_change_carrier = bcmgenet_change_carrier, 3722 }; 3723 3724 /* Array of GENET hardware parameters/characteristics */ 3725 static struct bcmgenet_hw_params bcmgenet_hw_params[] = { 3726 [GENET_V1] = { 3727 .tx_queues = 0, 3728 .tx_bds_per_q = 0, 3729 .rx_queues = 0, 3730 .rx_bds_per_q = 0, 3731 .bp_in_en_shift = 16, 3732 .bp_in_mask = 0xffff, 3733 .hfb_filter_cnt = 16, 3734 .qtag_mask = 0x1F, 3735 .hfb_offset = 0x1000, 3736 .rdma_offset = 0x2000, 3737 .tdma_offset = 0x3000, 3738 .words_per_bd = 2, 3739 }, 3740 [GENET_V2] = { 3741 .tx_queues = 4, 3742 .tx_bds_per_q = 32, 3743 .rx_queues = 0, 3744 .rx_bds_per_q = 0, 3745 .bp_in_en_shift = 16, 3746 .bp_in_mask = 0xffff, 3747 .hfb_filter_cnt = 16, 3748 .qtag_mask = 0x1F, 3749 .tbuf_offset = 0x0600, 3750 .hfb_offset = 0x1000, 3751 .hfb_reg_offset = 0x2000, 3752 .rdma_offset = 0x3000, 3753 .tdma_offset = 0x4000, 3754 .words_per_bd = 2, 3755 .flags = GENET_HAS_EXT, 3756 }, 3757 [GENET_V3] = { 3758 .tx_queues = 4, 3759 .tx_bds_per_q = 32, 3760 .rx_queues = 0, 3761 .rx_bds_per_q = 0, 3762 .bp_in_en_shift = 17, 3763 .bp_in_mask = 0x1ffff, 3764 .hfb_filter_cnt = 48, 3765 .hfb_filter_size = 128, 3766 .qtag_mask = 0x3F, 3767 .tbuf_offset = 0x0600, 3768 .hfb_offset = 0x8000, 3769 .hfb_reg_offset = 0xfc00, 3770 .rdma_offset = 0x10000, 3771 .tdma_offset = 0x11000, 3772 .words_per_bd = 2, 3773 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR | 3774 GENET_HAS_MOCA_LINK_DET, 3775 }, 3776 [GENET_V4] = { 3777 .tx_queues = 4, 3778 .tx_bds_per_q = 32, 3779 .rx_queues = 0, 3780 .rx_bds_per_q = 0, 3781 .bp_in_en_shift = 17, 3782 .bp_in_mask = 0x1ffff, 3783 .hfb_filter_cnt = 48, 3784 .hfb_filter_size = 128, 3785 .qtag_mask = 0x3F, 3786 .tbuf_offset = 0x0600, 3787 .hfb_offset = 0x8000, 3788 .hfb_reg_offset = 0xfc00, 3789 .rdma_offset = 0x2000, 3790 .tdma_offset = 0x4000, 3791 .words_per_bd = 3, 3792 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3793 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3794 }, 3795 [GENET_V5] = { 3796 .tx_queues = 4, 3797 .tx_bds_per_q = 32, 3798 .rx_queues = 0, 3799 .rx_bds_per_q = 0, 3800 .bp_in_en_shift = 17, 3801 .bp_in_mask = 0x1ffff, 3802 .hfb_filter_cnt = 48, 3803 .hfb_filter_size = 128, 3804 .qtag_mask = 0x3F, 3805 .tbuf_offset = 0x0600, 3806 .hfb_offset = 0x8000, 3807 .hfb_reg_offset = 0xfc00, 3808 .rdma_offset = 0x2000, 3809 .tdma_offset = 0x4000, 3810 .words_per_bd = 3, 3811 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3812 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3813 }, 3814 }; 3815 3816 /* Infer hardware parameters from the detected GENET version */ 3817 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) 3818 { 3819 struct bcmgenet_hw_params *params; 3820 u32 reg; 3821 u8 major; 3822 u16 gphy_rev; 3823 3824 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) { 3825 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3826 genet_dma_ring_regs = genet_dma_ring_regs_v4; 3827 } else if (GENET_IS_V3(priv)) { 3828 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3829 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3830 } else if (GENET_IS_V2(priv)) { 3831 bcmgenet_dma_regs = bcmgenet_dma_regs_v2; 3832 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3833 } else if (GENET_IS_V1(priv)) { 3834 bcmgenet_dma_regs = bcmgenet_dma_regs_v1; 3835 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3836 } 3837 3838 /* enum genet_version starts at 1 */ 3839 priv->hw_params = &bcmgenet_hw_params[priv->version]; 3840 params = priv->hw_params; 3841 3842 /* Read GENET HW version */ 3843 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); 3844 major = (reg >> 24 & 0x0f); 3845 if (major == 6) 3846 major = 5; 3847 else if (major == 5) 3848 major = 4; 3849 else if (major == 0) 3850 major = 1; 3851 if (major != priv->version) { 3852 dev_err(&priv->pdev->dev, 3853 "GENET version mismatch, got: %d, configured for: %d\n", 3854 major, priv->version); 3855 } 3856 3857 /* Print the GENET core version */ 3858 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, 3859 major, (reg >> 16) & 0x0f, reg & 0xffff); 3860 3861 /* Store the integrated PHY revision for the MDIO probing function 3862 * to pass this information to the PHY driver. The PHY driver expects 3863 * to find the PHY major revision in bits 15:8 while the GENET register 3864 * stores that information in bits 7:0, account for that. 3865 * 3866 * On newer chips, starting with PHY revision G0, a new scheme is 3867 * deployed similar to the Starfighter 2 switch with GPHY major 3868 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0 3869 * is reserved as well as special value 0x01ff, we have a small 3870 * heuristic to check for the new GPHY revision and re-arrange things 3871 * so the GPHY driver is happy. 3872 */ 3873 gphy_rev = reg & 0xffff; 3874 3875 if (GENET_IS_V5(priv)) { 3876 /* The EPHY revision should come from the MDIO registers of 3877 * the PHY not from GENET. 3878 */ 3879 if (gphy_rev != 0) { 3880 pr_warn("GENET is reporting EPHY revision: 0x%04x\n", 3881 gphy_rev); 3882 } 3883 /* This is reserved so should require special treatment */ 3884 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) { 3885 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev); 3886 return; 3887 /* This is the good old scheme, just GPHY major, no minor nor patch */ 3888 } else if ((gphy_rev & 0xf0) != 0) { 3889 priv->gphy_rev = gphy_rev << 8; 3890 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */ 3891 } else if ((gphy_rev & 0xff00) != 0) { 3892 priv->gphy_rev = gphy_rev; 3893 } 3894 3895 #ifdef CONFIG_PHYS_ADDR_T_64BIT 3896 if (!(params->flags & GENET_HAS_40BITS)) 3897 pr_warn("GENET does not support 40-bits PA\n"); 3898 #endif 3899 3900 pr_debug("Configuration for version: %d\n" 3901 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n" 3902 "BP << en: %2d, BP msk: 0x%05x\n" 3903 "HFB count: %2d, QTAQ msk: 0x%05x\n" 3904 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" 3905 "RDMA: 0x%05x, TDMA: 0x%05x\n" 3906 "Words/BD: %d\n", 3907 priv->version, 3908 params->tx_queues, params->tx_bds_per_q, 3909 params->rx_queues, params->rx_bds_per_q, 3910 params->bp_in_en_shift, params->bp_in_mask, 3911 params->hfb_filter_cnt, params->qtag_mask, 3912 params->tbuf_offset, params->hfb_offset, 3913 params->hfb_reg_offset, 3914 params->rdma_offset, params->tdma_offset, 3915 params->words_per_bd); 3916 } 3917 3918 struct bcmgenet_plat_data { 3919 enum bcmgenet_version version; 3920 u32 dma_max_burst_length; 3921 bool ephy_16nm; 3922 }; 3923 3924 static const struct bcmgenet_plat_data v1_plat_data = { 3925 .version = GENET_V1, 3926 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3927 }; 3928 3929 static const struct bcmgenet_plat_data v2_plat_data = { 3930 .version = GENET_V2, 3931 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3932 }; 3933 3934 static const struct bcmgenet_plat_data v3_plat_data = { 3935 .version = GENET_V3, 3936 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3937 }; 3938 3939 static const struct bcmgenet_plat_data v4_plat_data = { 3940 .version = GENET_V4, 3941 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3942 }; 3943 3944 static const struct bcmgenet_plat_data v5_plat_data = { 3945 .version = GENET_V5, 3946 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3947 }; 3948 3949 static const struct bcmgenet_plat_data bcm2711_plat_data = { 3950 .version = GENET_V5, 3951 .dma_max_burst_length = 0x08, 3952 }; 3953 3954 static const struct bcmgenet_plat_data bcm7712_plat_data = { 3955 .version = GENET_V5, 3956 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3957 .ephy_16nm = true, 3958 }; 3959 3960 static const struct of_device_id bcmgenet_match[] = { 3961 { .compatible = "brcm,genet-v1", .data = &v1_plat_data }, 3962 { .compatible = "brcm,genet-v2", .data = &v2_plat_data }, 3963 { .compatible = "brcm,genet-v3", .data = &v3_plat_data }, 3964 { .compatible = "brcm,genet-v4", .data = &v4_plat_data }, 3965 { .compatible = "brcm,genet-v5", .data = &v5_plat_data }, 3966 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data }, 3967 { .compatible = "brcm,bcm7712-genet-v5", .data = &bcm7712_plat_data }, 3968 { }, 3969 }; 3970 MODULE_DEVICE_TABLE(of, bcmgenet_match); 3971 3972 static int bcmgenet_probe(struct platform_device *pdev) 3973 { 3974 struct bcmgenet_platform_data *pd = pdev->dev.platform_data; 3975 const struct bcmgenet_plat_data *pdata; 3976 struct bcmgenet_priv *priv; 3977 struct net_device *dev; 3978 unsigned int i; 3979 int err = -EIO; 3980 3981 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */ 3982 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 3983 GENET_MAX_MQ_CNT + 1); 3984 if (!dev) { 3985 dev_err(&pdev->dev, "can't allocate net device\n"); 3986 return -ENOMEM; 3987 } 3988 3989 priv = netdev_priv(dev); 3990 priv->irq0 = platform_get_irq(pdev, 0); 3991 if (priv->irq0 < 0) { 3992 err = priv->irq0; 3993 goto err; 3994 } 3995 priv->irq1 = platform_get_irq(pdev, 1); 3996 if (priv->irq1 < 0) { 3997 err = priv->irq1; 3998 goto err; 3999 } 4000 priv->wol_irq = platform_get_irq_optional(pdev, 2); 4001 if (priv->wol_irq == -EPROBE_DEFER) { 4002 err = priv->wol_irq; 4003 goto err; 4004 } 4005 4006 priv->base = devm_platform_ioremap_resource(pdev, 0); 4007 if (IS_ERR(priv->base)) { 4008 err = PTR_ERR(priv->base); 4009 goto err; 4010 } 4011 4012 spin_lock_init(&priv->lock); 4013 4014 /* Set default pause parameters */ 4015 priv->autoneg_pause = 1; 4016 priv->tx_pause = 1; 4017 priv->rx_pause = 1; 4018 4019 SET_NETDEV_DEV(dev, &pdev->dev); 4020 dev_set_drvdata(&pdev->dev, dev); 4021 dev->watchdog_timeo = 2 * HZ; 4022 dev->ethtool_ops = &bcmgenet_ethtool_ops; 4023 dev->netdev_ops = &bcmgenet_netdev_ops; 4024 4025 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); 4026 4027 /* Set default features */ 4028 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | 4029 NETIF_F_RXCSUM; 4030 dev->hw_features |= dev->features; 4031 dev->vlan_features |= dev->features; 4032 4033 /* Request the WOL interrupt and advertise suspend if available */ 4034 priv->wol_irq_disabled = true; 4035 if (priv->wol_irq > 0) { 4036 err = devm_request_irq(&pdev->dev, priv->wol_irq, 4037 bcmgenet_wol_isr, 0, dev->name, priv); 4038 if (!err) 4039 device_set_wakeup_capable(&pdev->dev, 1); 4040 } 4041 4042 /* Set the needed headroom to account for any possible 4043 * features enabling/disabling at runtime 4044 */ 4045 dev->needed_headroom += 64; 4046 4047 priv->dev = dev; 4048 priv->pdev = pdev; 4049 4050 pdata = device_get_match_data(&pdev->dev); 4051 if (pdata) { 4052 priv->version = pdata->version; 4053 priv->dma_max_burst_length = pdata->dma_max_burst_length; 4054 priv->ephy_16nm = pdata->ephy_16nm; 4055 } else { 4056 priv->version = pd->genet_version; 4057 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH; 4058 } 4059 4060 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet"); 4061 if (IS_ERR(priv->clk)) { 4062 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n"); 4063 err = PTR_ERR(priv->clk); 4064 goto err; 4065 } 4066 4067 err = clk_prepare_enable(priv->clk); 4068 if (err) 4069 goto err; 4070 4071 bcmgenet_set_hw_params(priv); 4072 4073 err = -EIO; 4074 if (priv->hw_params->flags & GENET_HAS_40BITS) 4075 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); 4076 if (err) 4077 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4078 if (err) 4079 goto err_clk_disable; 4080 4081 /* Mii wait queue */ 4082 init_waitqueue_head(&priv->wq); 4083 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ 4084 priv->rx_buf_len = RX_BUF_LENGTH; 4085 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); 4086 4087 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol"); 4088 if (IS_ERR(priv->clk_wol)) { 4089 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n"); 4090 err = PTR_ERR(priv->clk_wol); 4091 goto err_clk_disable; 4092 } 4093 4094 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee"); 4095 if (IS_ERR(priv->clk_eee)) { 4096 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n"); 4097 err = PTR_ERR(priv->clk_eee); 4098 goto err_clk_disable; 4099 } 4100 4101 /* If this is an internal GPHY, power it on now, before UniMAC is 4102 * brought out of reset as absolutely no UniMAC activity is allowed 4103 */ 4104 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL) 4105 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 4106 4107 if (pd && !IS_ERR_OR_NULL(pd->mac_address)) 4108 eth_hw_addr_set(dev, pd->mac_address); 4109 else 4110 if (device_get_ethdev_address(&pdev->dev, dev)) 4111 if (has_acpi_companion(&pdev->dev)) { 4112 u8 addr[ETH_ALEN]; 4113 4114 bcmgenet_get_hw_addr(priv, addr); 4115 eth_hw_addr_set(dev, addr); 4116 } 4117 4118 if (!is_valid_ether_addr(dev->dev_addr)) { 4119 dev_warn(&pdev->dev, "using random Ethernet MAC\n"); 4120 eth_hw_addr_random(dev); 4121 } 4122 4123 reset_umac(priv); 4124 4125 err = bcmgenet_mii_init(dev); 4126 if (err) 4127 goto err_clk_disable; 4128 4129 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues 4130 * just the ring 16 descriptor based TX 4131 */ 4132 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); 4133 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); 4134 4135 /* Set default coalescing parameters */ 4136 for (i = 0; i < priv->hw_params->rx_queues; i++) 4137 priv->rx_rings[i].rx_max_coalesced_frames = 1; 4138 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1; 4139 4140 /* libphy will determine the link state */ 4141 netif_carrier_off(dev); 4142 4143 /* Turn off the main clock, WOL clock is handled separately */ 4144 clk_disable_unprepare(priv->clk); 4145 4146 err = register_netdev(dev); 4147 if (err) { 4148 bcmgenet_mii_exit(dev); 4149 goto err; 4150 } 4151 4152 return err; 4153 4154 err_clk_disable: 4155 clk_disable_unprepare(priv->clk); 4156 err: 4157 free_netdev(dev); 4158 return err; 4159 } 4160 4161 static int bcmgenet_remove(struct platform_device *pdev) 4162 { 4163 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); 4164 4165 dev_set_drvdata(&pdev->dev, NULL); 4166 unregister_netdev(priv->dev); 4167 bcmgenet_mii_exit(priv->dev); 4168 free_netdev(priv->dev); 4169 4170 return 0; 4171 } 4172 4173 static void bcmgenet_shutdown(struct platform_device *pdev) 4174 { 4175 bcmgenet_remove(pdev); 4176 } 4177 4178 #ifdef CONFIG_PM_SLEEP 4179 static int bcmgenet_resume_noirq(struct device *d) 4180 { 4181 struct net_device *dev = dev_get_drvdata(d); 4182 struct bcmgenet_priv *priv = netdev_priv(dev); 4183 int ret; 4184 u32 reg; 4185 4186 if (!netif_running(dev)) 4187 return 0; 4188 4189 /* Turn on the clock */ 4190 ret = clk_prepare_enable(priv->clk); 4191 if (ret) 4192 return ret; 4193 4194 if (device_may_wakeup(d) && priv->wolopts) { 4195 /* Account for Wake-on-LAN events and clear those events 4196 * (Some devices need more time between enabling the clocks 4197 * and the interrupt register reflecting the wake event so 4198 * read the register twice) 4199 */ 4200 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT); 4201 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT); 4202 if (reg & UMAC_IRQ_WAKE_EVENT) 4203 pm_wakeup_event(&priv->pdev->dev, 0); 4204 } 4205 4206 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR); 4207 4208 return 0; 4209 } 4210 4211 static int bcmgenet_resume(struct device *d) 4212 { 4213 struct net_device *dev = dev_get_drvdata(d); 4214 struct bcmgenet_priv *priv = netdev_priv(dev); 4215 struct bcmgenet_rxnfc_rule *rule; 4216 unsigned long dma_ctrl; 4217 int ret; 4218 4219 if (!netif_running(dev)) 4220 return 0; 4221 4222 /* From WOL-enabled suspend, switch to regular clock */ 4223 if (device_may_wakeup(d) && priv->wolopts) 4224 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 4225 4226 /* If this is an internal GPHY, power it back on now, before UniMAC is 4227 * brought out of reset as absolutely no UniMAC activity is allowed 4228 */ 4229 if (priv->internal_phy) 4230 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 4231 4232 bcmgenet_umac_reset(priv); 4233 4234 init_umac(priv); 4235 4236 phy_init_hw(dev->phydev); 4237 4238 /* Speed settings must be restored */ 4239 genphy_config_aneg(dev->phydev); 4240 bcmgenet_mii_config(priv->dev, false); 4241 4242 /* Restore enabled features */ 4243 bcmgenet_set_features(dev, dev->features); 4244 4245 bcmgenet_set_hw_addr(priv, dev->dev_addr); 4246 4247 /* Restore hardware filters */ 4248 bcmgenet_hfb_clear(priv); 4249 list_for_each_entry(rule, &priv->rxnfc_list, list) 4250 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) 4251 bcmgenet_hfb_create_rxnfc_filter(priv, rule); 4252 4253 /* Disable RX/TX DMA and flush TX queues */ 4254 dma_ctrl = bcmgenet_dma_disable(priv); 4255 4256 /* Reinitialize TDMA and RDMA and SW housekeeping */ 4257 ret = bcmgenet_init_dma(priv); 4258 if (ret) { 4259 netdev_err(dev, "failed to initialize DMA\n"); 4260 goto out_clk_disable; 4261 } 4262 4263 /* Always enable ring 16 - descriptor ring */ 4264 bcmgenet_enable_dma(priv, dma_ctrl); 4265 4266 if (!device_may_wakeup(d)) 4267 phy_resume(dev->phydev); 4268 4269 if (priv->eee.eee_enabled) 4270 bcmgenet_eee_enable_set(dev, true); 4271 4272 bcmgenet_netif_start(dev); 4273 4274 netif_device_attach(dev); 4275 4276 return 0; 4277 4278 out_clk_disable: 4279 if (priv->internal_phy) 4280 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 4281 clk_disable_unprepare(priv->clk); 4282 return ret; 4283 } 4284 4285 static int bcmgenet_suspend(struct device *d) 4286 { 4287 struct net_device *dev = dev_get_drvdata(d); 4288 struct bcmgenet_priv *priv = netdev_priv(dev); 4289 4290 if (!netif_running(dev)) 4291 return 0; 4292 4293 netif_device_detach(dev); 4294 4295 bcmgenet_netif_stop(dev); 4296 4297 if (!device_may_wakeup(d)) 4298 phy_suspend(dev->phydev); 4299 4300 /* Disable filtering */ 4301 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL); 4302 4303 return 0; 4304 } 4305 4306 static int bcmgenet_suspend_noirq(struct device *d) 4307 { 4308 struct net_device *dev = dev_get_drvdata(d); 4309 struct bcmgenet_priv *priv = netdev_priv(dev); 4310 int ret = 0; 4311 4312 if (!netif_running(dev)) 4313 return 0; 4314 4315 /* Prepare the device for Wake-on-LAN and switch to the slow clock */ 4316 if (device_may_wakeup(d) && priv->wolopts) 4317 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC); 4318 else if (priv->internal_phy) 4319 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 4320 4321 /* Let the framework handle resumption and leave the clocks on */ 4322 if (ret) 4323 return ret; 4324 4325 /* Turn off the clocks */ 4326 clk_disable_unprepare(priv->clk); 4327 4328 return 0; 4329 } 4330 #else 4331 #define bcmgenet_suspend NULL 4332 #define bcmgenet_suspend_noirq NULL 4333 #define bcmgenet_resume NULL 4334 #define bcmgenet_resume_noirq NULL 4335 #endif /* CONFIG_PM_SLEEP */ 4336 4337 static const struct dev_pm_ops bcmgenet_pm_ops = { 4338 .suspend = bcmgenet_suspend, 4339 .suspend_noirq = bcmgenet_suspend_noirq, 4340 .resume = bcmgenet_resume, 4341 .resume_noirq = bcmgenet_resume_noirq, 4342 }; 4343 4344 static const struct acpi_device_id genet_acpi_match[] = { 4345 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data }, 4346 { }, 4347 }; 4348 MODULE_DEVICE_TABLE(acpi, genet_acpi_match); 4349 4350 static struct platform_driver bcmgenet_driver = { 4351 .probe = bcmgenet_probe, 4352 .remove = bcmgenet_remove, 4353 .shutdown = bcmgenet_shutdown, 4354 .driver = { 4355 .name = "bcmgenet", 4356 .of_match_table = bcmgenet_match, 4357 .pm = &bcmgenet_pm_ops, 4358 .acpi_match_table = genet_acpi_match, 4359 }, 4360 }; 4361 module_platform_driver(bcmgenet_driver); 4362 4363 MODULE_AUTHOR("Broadcom Corporation"); 4364 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); 4365 MODULE_ALIAS("platform:bcmgenet"); 4366 MODULE_LICENSE("GPL"); 4367 MODULE_SOFTDEP("pre: mdio-bcm-unimac"); 4368