xref: /linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_DEFAULT_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->bds_cnt)
59 
60 #define RX_BUF_LENGTH		2048
61 #define SKB_ALIGNMENT		32
62 
63 /* Tx/Rx DMA register offset, skip 256 descriptors */
64 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
65 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
66 
67 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
68 				TOTAL_DESC * DMA_DESC_SIZE)
69 
70 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
71 				TOTAL_DESC * DMA_DESC_SIZE)
72 
73 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
74 					     void __iomem *d, u32 value)
75 {
76 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
77 }
78 
79 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
80 					    void __iomem *d)
81 {
82 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
83 }
84 
85 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
86 				    void __iomem *d,
87 				    dma_addr_t addr)
88 {
89 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
90 
91 	/* Register writes to GISB bus can take couple hundred nanoseconds
92 	 * and are done for each packet, save these expensive writes unless
93 	 * the platform is explicitly configured for 64-bits/LPAE.
94 	 */
95 #ifdef CONFIG_PHYS_ADDR_T_64BIT
96 	if (priv->hw_params->flags & GENET_HAS_40BITS)
97 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
98 #endif
99 }
100 
101 /* Combined address + length/status setter */
102 static inline void dmadesc_set(struct bcmgenet_priv *priv,
103 			       void __iomem *d, dma_addr_t addr, u32 val)
104 {
105 	dmadesc_set_length_status(priv, d, val);
106 	dmadesc_set_addr(priv, d, addr);
107 }
108 
109 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
110 					  void __iomem *d)
111 {
112 	dma_addr_t addr;
113 
114 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
115 
116 	/* Register writes to GISB bus can take couple hundred nanoseconds
117 	 * and are done for each packet, save these expensive writes unless
118 	 * the platform is explicitly configured for 64-bits/LPAE.
119 	 */
120 #ifdef CONFIG_PHYS_ADDR_T_64BIT
121 	if (priv->hw_params->flags & GENET_HAS_40BITS)
122 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
123 #endif
124 	return addr;
125 }
126 
127 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
128 
129 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
130 				NETIF_MSG_LINK)
131 
132 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
133 {
134 	if (GENET_IS_V1(priv))
135 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
136 	else
137 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
138 }
139 
140 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
141 {
142 	if (GENET_IS_V1(priv))
143 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
144 	else
145 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
146 }
147 
148 /* These macros are defined to deal with register map change
149  * between GENET1.1 and GENET2. Only those currently being used
150  * by driver are defined.
151  */
152 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
153 {
154 	if (GENET_IS_V1(priv))
155 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
156 	else
157 		return __raw_readl(priv->base +
158 				priv->hw_params->tbuf_offset + TBUF_CTRL);
159 }
160 
161 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
162 {
163 	if (GENET_IS_V1(priv))
164 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
165 	else
166 		__raw_writel(val, priv->base +
167 				priv->hw_params->tbuf_offset + TBUF_CTRL);
168 }
169 
170 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
171 {
172 	if (GENET_IS_V1(priv))
173 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
174 	else
175 		return __raw_readl(priv->base +
176 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
177 }
178 
179 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
180 {
181 	if (GENET_IS_V1(priv))
182 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
183 	else
184 		__raw_writel(val, priv->base +
185 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
186 }
187 
188 /* RX/TX DMA register accessors */
189 enum dma_reg {
190 	DMA_RING_CFG = 0,
191 	DMA_CTRL,
192 	DMA_STATUS,
193 	DMA_SCB_BURST_SIZE,
194 	DMA_ARB_CTRL,
195 	DMA_PRIORITY_0,
196 	DMA_PRIORITY_1,
197 	DMA_PRIORITY_2,
198 };
199 
200 static const u8 bcmgenet_dma_regs_v3plus[] = {
201 	[DMA_RING_CFG]		= 0x00,
202 	[DMA_CTRL]		= 0x04,
203 	[DMA_STATUS]		= 0x08,
204 	[DMA_SCB_BURST_SIZE]	= 0x0C,
205 	[DMA_ARB_CTRL]		= 0x2C,
206 	[DMA_PRIORITY_0]	= 0x30,
207 	[DMA_PRIORITY_1]	= 0x34,
208 	[DMA_PRIORITY_2]	= 0x38,
209 };
210 
211 static const u8 bcmgenet_dma_regs_v2[] = {
212 	[DMA_RING_CFG]		= 0x00,
213 	[DMA_CTRL]		= 0x04,
214 	[DMA_STATUS]		= 0x08,
215 	[DMA_SCB_BURST_SIZE]	= 0x0C,
216 	[DMA_ARB_CTRL]		= 0x30,
217 	[DMA_PRIORITY_0]	= 0x34,
218 	[DMA_PRIORITY_1]	= 0x38,
219 	[DMA_PRIORITY_2]	= 0x3C,
220 };
221 
222 static const u8 bcmgenet_dma_regs_v1[] = {
223 	[DMA_CTRL]		= 0x00,
224 	[DMA_STATUS]		= 0x04,
225 	[DMA_SCB_BURST_SIZE]	= 0x0C,
226 	[DMA_ARB_CTRL]		= 0x30,
227 	[DMA_PRIORITY_0]	= 0x34,
228 	[DMA_PRIORITY_1]	= 0x38,
229 	[DMA_PRIORITY_2]	= 0x3C,
230 };
231 
232 /* Set at runtime once bcmgenet version is known */
233 static const u8 *bcmgenet_dma_regs;
234 
235 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
236 {
237 	return netdev_priv(dev_get_drvdata(dev));
238 }
239 
240 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
241 				      enum dma_reg r)
242 {
243 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
244 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
245 }
246 
247 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
248 					u32 val, enum dma_reg r)
249 {
250 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
251 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
252 }
253 
254 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
255 				      enum dma_reg r)
256 {
257 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
258 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
259 }
260 
261 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
262 					u32 val, enum dma_reg r)
263 {
264 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
265 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
266 }
267 
268 /* RDMA/TDMA ring registers and accessors
269  * we merge the common fields and just prefix with T/D the registers
270  * having different meaning depending on the direction
271  */
272 enum dma_ring_reg {
273 	TDMA_READ_PTR = 0,
274 	RDMA_WRITE_PTR = TDMA_READ_PTR,
275 	TDMA_READ_PTR_HI,
276 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
277 	TDMA_CONS_INDEX,
278 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
279 	TDMA_PROD_INDEX,
280 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
281 	DMA_RING_BUF_SIZE,
282 	DMA_START_ADDR,
283 	DMA_START_ADDR_HI,
284 	DMA_END_ADDR,
285 	DMA_END_ADDR_HI,
286 	DMA_MBUF_DONE_THRESH,
287 	TDMA_FLOW_PERIOD,
288 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
289 	TDMA_WRITE_PTR,
290 	RDMA_READ_PTR = TDMA_WRITE_PTR,
291 	TDMA_WRITE_PTR_HI,
292 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
293 };
294 
295 /* GENET v4 supports 40-bits pointer addressing
296  * for obvious reasons the LO and HI word parts
297  * are contiguous, but this offsets the other
298  * registers.
299  */
300 static const u8 genet_dma_ring_regs_v4[] = {
301 	[TDMA_READ_PTR]			= 0x00,
302 	[TDMA_READ_PTR_HI]		= 0x04,
303 	[TDMA_CONS_INDEX]		= 0x08,
304 	[TDMA_PROD_INDEX]		= 0x0C,
305 	[DMA_RING_BUF_SIZE]		= 0x10,
306 	[DMA_START_ADDR]		= 0x14,
307 	[DMA_START_ADDR_HI]		= 0x18,
308 	[DMA_END_ADDR]			= 0x1C,
309 	[DMA_END_ADDR_HI]		= 0x20,
310 	[DMA_MBUF_DONE_THRESH]		= 0x24,
311 	[TDMA_FLOW_PERIOD]		= 0x28,
312 	[TDMA_WRITE_PTR]		= 0x2C,
313 	[TDMA_WRITE_PTR_HI]		= 0x30,
314 };
315 
316 static const u8 genet_dma_ring_regs_v123[] = {
317 	[TDMA_READ_PTR]			= 0x00,
318 	[TDMA_CONS_INDEX]		= 0x04,
319 	[TDMA_PROD_INDEX]		= 0x08,
320 	[DMA_RING_BUF_SIZE]		= 0x0C,
321 	[DMA_START_ADDR]		= 0x10,
322 	[DMA_END_ADDR]			= 0x14,
323 	[DMA_MBUF_DONE_THRESH]		= 0x18,
324 	[TDMA_FLOW_PERIOD]		= 0x1C,
325 	[TDMA_WRITE_PTR]		= 0x20,
326 };
327 
328 /* Set at runtime once GENET version is known */
329 static const u8 *genet_dma_ring_regs;
330 
331 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
332 					   unsigned int ring,
333 					   enum dma_ring_reg r)
334 {
335 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
336 			(DMA_RING_SIZE * ring) +
337 			genet_dma_ring_regs[r]);
338 }
339 
340 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
341 					     unsigned int ring, u32 val,
342 					     enum dma_ring_reg r)
343 {
344 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
345 			(DMA_RING_SIZE * ring) +
346 			genet_dma_ring_regs[r]);
347 }
348 
349 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
350 					   unsigned int ring,
351 					   enum dma_ring_reg r)
352 {
353 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
354 			(DMA_RING_SIZE * ring) +
355 			genet_dma_ring_regs[r]);
356 }
357 
358 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
359 					     unsigned int ring, u32 val,
360 					     enum dma_ring_reg r)
361 {
362 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
363 			(DMA_RING_SIZE * ring) +
364 			genet_dma_ring_regs[r]);
365 }
366 
367 static int bcmgenet_get_settings(struct net_device *dev,
368 				 struct ethtool_cmd *cmd)
369 {
370 	struct bcmgenet_priv *priv = netdev_priv(dev);
371 
372 	if (!netif_running(dev))
373 		return -EINVAL;
374 
375 	if (!priv->phydev)
376 		return -ENODEV;
377 
378 	return phy_ethtool_gset(priv->phydev, cmd);
379 }
380 
381 static int bcmgenet_set_settings(struct net_device *dev,
382 				 struct ethtool_cmd *cmd)
383 {
384 	struct bcmgenet_priv *priv = netdev_priv(dev);
385 
386 	if (!netif_running(dev))
387 		return -EINVAL;
388 
389 	if (!priv->phydev)
390 		return -ENODEV;
391 
392 	return phy_ethtool_sset(priv->phydev, cmd);
393 }
394 
395 static int bcmgenet_set_rx_csum(struct net_device *dev,
396 				netdev_features_t wanted)
397 {
398 	struct bcmgenet_priv *priv = netdev_priv(dev);
399 	u32 rbuf_chk_ctrl;
400 	bool rx_csum_en;
401 
402 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
403 
404 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
405 
406 	/* enable rx checksumming */
407 	if (rx_csum_en)
408 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
409 	else
410 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
411 	priv->desc_rxchk_en = rx_csum_en;
412 
413 	/* If UniMAC forwards CRC, we need to skip over it to get
414 	 * a valid CHK bit to be set in the per-packet status word
415 	*/
416 	if (rx_csum_en && priv->crc_fwd_en)
417 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
418 	else
419 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
420 
421 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
422 
423 	return 0;
424 }
425 
426 static int bcmgenet_set_tx_csum(struct net_device *dev,
427 				netdev_features_t wanted)
428 {
429 	struct bcmgenet_priv *priv = netdev_priv(dev);
430 	bool desc_64b_en;
431 	u32 tbuf_ctrl, rbuf_ctrl;
432 
433 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
434 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
435 
436 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
437 
438 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
439 	if (desc_64b_en) {
440 		tbuf_ctrl |= RBUF_64B_EN;
441 		rbuf_ctrl |= RBUF_64B_EN;
442 	} else {
443 		tbuf_ctrl &= ~RBUF_64B_EN;
444 		rbuf_ctrl &= ~RBUF_64B_EN;
445 	}
446 	priv->desc_64b_en = desc_64b_en;
447 
448 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
449 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
450 
451 	return 0;
452 }
453 
454 static int bcmgenet_set_features(struct net_device *dev,
455 				 netdev_features_t features)
456 {
457 	netdev_features_t changed = features ^ dev->features;
458 	netdev_features_t wanted = dev->wanted_features;
459 	int ret = 0;
460 
461 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
462 		ret = bcmgenet_set_tx_csum(dev, wanted);
463 	if (changed & (NETIF_F_RXCSUM))
464 		ret = bcmgenet_set_rx_csum(dev, wanted);
465 
466 	return ret;
467 }
468 
469 static u32 bcmgenet_get_msglevel(struct net_device *dev)
470 {
471 	struct bcmgenet_priv *priv = netdev_priv(dev);
472 
473 	return priv->msg_enable;
474 }
475 
476 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
477 {
478 	struct bcmgenet_priv *priv = netdev_priv(dev);
479 
480 	priv->msg_enable = level;
481 }
482 
483 /* standard ethtool support functions. */
484 enum bcmgenet_stat_type {
485 	BCMGENET_STAT_NETDEV = -1,
486 	BCMGENET_STAT_MIB_RX,
487 	BCMGENET_STAT_MIB_TX,
488 	BCMGENET_STAT_RUNT,
489 	BCMGENET_STAT_MISC,
490 	BCMGENET_STAT_SOFT,
491 };
492 
493 struct bcmgenet_stats {
494 	char stat_string[ETH_GSTRING_LEN];
495 	int stat_sizeof;
496 	int stat_offset;
497 	enum bcmgenet_stat_type type;
498 	/* reg offset from UMAC base for misc counters */
499 	u16 reg_offset;
500 };
501 
502 #define STAT_NETDEV(m) { \
503 	.stat_string = __stringify(m), \
504 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
505 	.stat_offset = offsetof(struct net_device_stats, m), \
506 	.type = BCMGENET_STAT_NETDEV, \
507 }
508 
509 #define STAT_GENET_MIB(str, m, _type) { \
510 	.stat_string = str, \
511 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
512 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
513 	.type = _type, \
514 }
515 
516 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
517 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
518 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
519 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
520 
521 #define STAT_GENET_MISC(str, m, offset) { \
522 	.stat_string = str, \
523 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
524 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
525 	.type = BCMGENET_STAT_MISC, \
526 	.reg_offset = offset, \
527 }
528 
529 
530 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
531  * between the end of TX stats and the beginning of the RX RUNT
532  */
533 #define BCMGENET_STAT_OFFSET	0xc
534 
535 /* Hardware counters must be kept in sync because the order/offset
536  * is important here (order in structure declaration = order in hardware)
537  */
538 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
539 	/* general stats */
540 	STAT_NETDEV(rx_packets),
541 	STAT_NETDEV(tx_packets),
542 	STAT_NETDEV(rx_bytes),
543 	STAT_NETDEV(tx_bytes),
544 	STAT_NETDEV(rx_errors),
545 	STAT_NETDEV(tx_errors),
546 	STAT_NETDEV(rx_dropped),
547 	STAT_NETDEV(tx_dropped),
548 	STAT_NETDEV(multicast),
549 	/* UniMAC RSV counters */
550 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
551 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
552 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
553 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
554 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
555 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
556 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
557 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
558 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
559 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
560 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
561 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
562 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
563 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
564 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
565 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
566 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
567 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
568 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
569 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
570 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
571 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
572 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
573 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
574 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
575 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
576 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
577 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
578 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
579 	/* UniMAC TSV counters */
580 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
581 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
582 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
583 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
584 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
585 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
586 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
587 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
588 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
589 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
590 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
591 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
592 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
593 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
594 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
595 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
596 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
597 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
598 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
599 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
600 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
601 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
602 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
603 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
604 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
605 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
606 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
607 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
608 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
609 	/* UniMAC RUNT counters */
610 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
611 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
612 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
613 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
614 	/* Misc UniMAC counters */
615 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
616 			UMAC_RBUF_OVFL_CNT),
617 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
618 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
619 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
620 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
621 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
622 };
623 
624 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
625 
626 static void bcmgenet_get_drvinfo(struct net_device *dev,
627 				 struct ethtool_drvinfo *info)
628 {
629 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
630 	strlcpy(info->version, "v2.0", sizeof(info->version));
631 	info->n_stats = BCMGENET_STATS_LEN;
632 }
633 
634 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
635 {
636 	switch (string_set) {
637 	case ETH_SS_STATS:
638 		return BCMGENET_STATS_LEN;
639 	default:
640 		return -EOPNOTSUPP;
641 	}
642 }
643 
644 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
645 				 u8 *data)
646 {
647 	int i;
648 
649 	switch (stringset) {
650 	case ETH_SS_STATS:
651 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
652 			memcpy(data + i * ETH_GSTRING_LEN,
653 			       bcmgenet_gstrings_stats[i].stat_string,
654 			       ETH_GSTRING_LEN);
655 		}
656 		break;
657 	}
658 }
659 
660 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
661 {
662 	int i, j = 0;
663 
664 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
665 		const struct bcmgenet_stats *s;
666 		u8 offset = 0;
667 		u32 val = 0;
668 		char *p;
669 
670 		s = &bcmgenet_gstrings_stats[i];
671 		switch (s->type) {
672 		case BCMGENET_STAT_NETDEV:
673 		case BCMGENET_STAT_SOFT:
674 			continue;
675 		case BCMGENET_STAT_MIB_RX:
676 		case BCMGENET_STAT_MIB_TX:
677 		case BCMGENET_STAT_RUNT:
678 			if (s->type != BCMGENET_STAT_MIB_RX)
679 				offset = BCMGENET_STAT_OFFSET;
680 			val = bcmgenet_umac_readl(priv,
681 						  UMAC_MIB_START + j + offset);
682 			break;
683 		case BCMGENET_STAT_MISC:
684 			val = bcmgenet_umac_readl(priv, s->reg_offset);
685 			/* clear if overflowed */
686 			if (val == ~0)
687 				bcmgenet_umac_writel(priv, 0, s->reg_offset);
688 			break;
689 		}
690 
691 		j += s->stat_sizeof;
692 		p = (char *)priv + s->stat_offset;
693 		*(u32 *)p = val;
694 	}
695 }
696 
697 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
698 				       struct ethtool_stats *stats,
699 				       u64 *data)
700 {
701 	struct bcmgenet_priv *priv = netdev_priv(dev);
702 	int i;
703 
704 	if (netif_running(dev))
705 		bcmgenet_update_mib_counters(priv);
706 
707 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
708 		const struct bcmgenet_stats *s;
709 		char *p;
710 
711 		s = &bcmgenet_gstrings_stats[i];
712 		if (s->type == BCMGENET_STAT_NETDEV)
713 			p = (char *)&dev->stats;
714 		else
715 			p = (char *)priv;
716 		p += s->stat_offset;
717 		data[i] = *(u32 *)p;
718 	}
719 }
720 
721 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
722 {
723 	struct bcmgenet_priv *priv = netdev_priv(dev);
724 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
725 	u32 reg;
726 
727 	if (enable && !priv->clk_eee_enabled) {
728 		clk_prepare_enable(priv->clk_eee);
729 		priv->clk_eee_enabled = true;
730 	}
731 
732 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
733 	if (enable)
734 		reg |= EEE_EN;
735 	else
736 		reg &= ~EEE_EN;
737 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
738 
739 	/* Enable EEE and switch to a 27Mhz clock automatically */
740 	reg = __raw_readl(priv->base + off);
741 	if (enable)
742 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
743 	else
744 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
745 	__raw_writel(reg, priv->base + off);
746 
747 	/* Do the same for thing for RBUF */
748 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
749 	if (enable)
750 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
751 	else
752 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
753 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
754 
755 	if (!enable && priv->clk_eee_enabled) {
756 		clk_disable_unprepare(priv->clk_eee);
757 		priv->clk_eee_enabled = false;
758 	}
759 
760 	priv->eee.eee_enabled = enable;
761 	priv->eee.eee_active = enable;
762 }
763 
764 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
765 {
766 	struct bcmgenet_priv *priv = netdev_priv(dev);
767 	struct ethtool_eee *p = &priv->eee;
768 
769 	if (GENET_IS_V1(priv))
770 		return -EOPNOTSUPP;
771 
772 	e->eee_enabled = p->eee_enabled;
773 	e->eee_active = p->eee_active;
774 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
775 
776 	return phy_ethtool_get_eee(priv->phydev, e);
777 }
778 
779 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
780 {
781 	struct bcmgenet_priv *priv = netdev_priv(dev);
782 	struct ethtool_eee *p = &priv->eee;
783 	int ret = 0;
784 
785 	if (GENET_IS_V1(priv))
786 		return -EOPNOTSUPP;
787 
788 	p->eee_enabled = e->eee_enabled;
789 
790 	if (!p->eee_enabled) {
791 		bcmgenet_eee_enable_set(dev, false);
792 	} else {
793 		ret = phy_init_eee(priv->phydev, 0);
794 		if (ret) {
795 			netif_err(priv, hw, dev, "EEE initialization failed\n");
796 			return ret;
797 		}
798 
799 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
800 		bcmgenet_eee_enable_set(dev, true);
801 	}
802 
803 	return phy_ethtool_set_eee(priv->phydev, e);
804 }
805 
806 static int bcmgenet_nway_reset(struct net_device *dev)
807 {
808 	struct bcmgenet_priv *priv = netdev_priv(dev);
809 
810 	return genphy_restart_aneg(priv->phydev);
811 }
812 
813 /* standard ethtool support functions. */
814 static struct ethtool_ops bcmgenet_ethtool_ops = {
815 	.get_strings		= bcmgenet_get_strings,
816 	.get_sset_count		= bcmgenet_get_sset_count,
817 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
818 	.get_settings		= bcmgenet_get_settings,
819 	.set_settings		= bcmgenet_set_settings,
820 	.get_drvinfo		= bcmgenet_get_drvinfo,
821 	.get_link		= ethtool_op_get_link,
822 	.get_msglevel		= bcmgenet_get_msglevel,
823 	.set_msglevel		= bcmgenet_set_msglevel,
824 	.get_wol		= bcmgenet_get_wol,
825 	.set_wol		= bcmgenet_set_wol,
826 	.get_eee		= bcmgenet_get_eee,
827 	.set_eee		= bcmgenet_set_eee,
828 	.nway_reset		= bcmgenet_nway_reset,
829 };
830 
831 /* Power down the unimac, based on mode. */
832 static void bcmgenet_power_down(struct bcmgenet_priv *priv,
833 				enum bcmgenet_power_mode mode)
834 {
835 	u32 reg;
836 
837 	switch (mode) {
838 	case GENET_POWER_CABLE_SENSE:
839 		phy_detach(priv->phydev);
840 		break;
841 
842 	case GENET_POWER_WOL_MAGIC:
843 		bcmgenet_wol_power_down_cfg(priv, mode);
844 		break;
845 
846 	case GENET_POWER_PASSIVE:
847 		/* Power down LED */
848 		if (priv->hw_params->flags & GENET_HAS_EXT) {
849 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
850 			reg |= (EXT_PWR_DOWN_PHY |
851 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
852 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
853 		}
854 		break;
855 	default:
856 		break;
857 	}
858 }
859 
860 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
861 			      enum bcmgenet_power_mode mode)
862 {
863 	u32 reg;
864 
865 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
866 		return;
867 
868 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
869 
870 	switch (mode) {
871 	case GENET_POWER_PASSIVE:
872 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
873 				EXT_PWR_DOWN_BIAS);
874 		/* fallthrough */
875 	case GENET_POWER_CABLE_SENSE:
876 		/* enable APD */
877 		reg |= EXT_PWR_DN_EN_LD;
878 		break;
879 	case GENET_POWER_WOL_MAGIC:
880 		bcmgenet_wol_power_up_cfg(priv, mode);
881 		return;
882 	default:
883 		break;
884 	}
885 
886 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
887 
888 	if (mode == GENET_POWER_PASSIVE)
889 		bcmgenet_mii_reset(priv->dev);
890 }
891 
892 /* ioctl handle special commands that are not present in ethtool. */
893 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
894 {
895 	struct bcmgenet_priv *priv = netdev_priv(dev);
896 	int val = 0;
897 
898 	if (!netif_running(dev))
899 		return -EINVAL;
900 
901 	switch (cmd) {
902 	case SIOCGMIIPHY:
903 	case SIOCGMIIREG:
904 	case SIOCSMIIREG:
905 		if (!priv->phydev)
906 			val = -ENODEV;
907 		else
908 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
909 		break;
910 
911 	default:
912 		val = -EINVAL;
913 		break;
914 	}
915 
916 	return val;
917 }
918 
919 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
920 					 struct bcmgenet_tx_ring *ring)
921 {
922 	struct enet_cb *tx_cb_ptr;
923 
924 	tx_cb_ptr = ring->cbs;
925 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
926 	tx_cb_ptr->bd_addr = priv->tx_bds + ring->write_ptr * DMA_DESC_SIZE;
927 	/* Advancing local write pointer */
928 	if (ring->write_ptr == ring->end_ptr)
929 		ring->write_ptr = ring->cb_ptr;
930 	else
931 		ring->write_ptr++;
932 
933 	return tx_cb_ptr;
934 }
935 
936 /* Simple helper to free a control block's resources */
937 static void bcmgenet_free_cb(struct enet_cb *cb)
938 {
939 	dev_kfree_skb_any(cb->skb);
940 	cb->skb = NULL;
941 	dma_unmap_addr_set(cb, dma_addr, 0);
942 }
943 
944 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_priv *priv,
945 						  struct bcmgenet_tx_ring *ring)
946 {
947 	bcmgenet_intrl2_0_writel(priv,
948 				 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
949 				 INTRL2_CPU_MASK_SET);
950 }
951 
952 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_priv *priv,
953 						 struct bcmgenet_tx_ring *ring)
954 {
955 	bcmgenet_intrl2_0_writel(priv,
956 				 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
957 				 INTRL2_CPU_MASK_CLEAR);
958 }
959 
960 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_priv *priv,
961 					       struct bcmgenet_tx_ring *ring)
962 {
963 	bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
964 				 INTRL2_CPU_MASK_CLEAR);
965 	priv->int1_mask &= ~(1 << ring->index);
966 }
967 
968 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_priv *priv,
969 						struct bcmgenet_tx_ring *ring)
970 {
971 	bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
972 				 INTRL2_CPU_MASK_SET);
973 	priv->int1_mask |= (1 << ring->index);
974 }
975 
976 /* Unlocked version of the reclaim routine */
977 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
978 					  struct bcmgenet_tx_ring *ring)
979 {
980 	struct bcmgenet_priv *priv = netdev_priv(dev);
981 	int last_tx_cn, last_c_index, num_tx_bds;
982 	struct enet_cb *tx_cb_ptr;
983 	struct netdev_queue *txq;
984 	unsigned int pkts_compl = 0;
985 	unsigned int bds_compl;
986 	unsigned int c_index;
987 
988 	/* Compute how many buffers are transmitted since last xmit call */
989 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
990 	txq = netdev_get_tx_queue(dev, ring->queue);
991 
992 	last_c_index = ring->c_index;
993 	num_tx_bds = ring->size;
994 
995 	c_index &= (num_tx_bds - 1);
996 
997 	if (c_index >= last_c_index)
998 		last_tx_cn = c_index - last_c_index;
999 	else
1000 		last_tx_cn = num_tx_bds - last_c_index + c_index;
1001 
1002 	netif_dbg(priv, tx_done, dev,
1003 		  "%s ring=%d index=%d last_tx_cn=%d last_index=%d\n",
1004 		  __func__, ring->index,
1005 		  c_index, last_tx_cn, last_c_index);
1006 
1007 	/* Reclaim transmitted buffers */
1008 	while (last_tx_cn-- > 0) {
1009 		tx_cb_ptr = ring->cbs + last_c_index;
1010 		bds_compl = 0;
1011 		if (tx_cb_ptr->skb) {
1012 			pkts_compl++;
1013 			bds_compl = skb_shinfo(tx_cb_ptr->skb)->nr_frags + 1;
1014 			dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1015 			dma_unmap_single(&dev->dev,
1016 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1017 					 tx_cb_ptr->skb->len,
1018 					 DMA_TO_DEVICE);
1019 			bcmgenet_free_cb(tx_cb_ptr);
1020 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1021 			dev->stats.tx_bytes +=
1022 				dma_unmap_len(tx_cb_ptr, dma_len);
1023 			dma_unmap_page(&dev->dev,
1024 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1025 				       dma_unmap_len(tx_cb_ptr, dma_len),
1026 				       DMA_TO_DEVICE);
1027 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1028 		}
1029 		dev->stats.tx_packets++;
1030 		ring->free_bds += bds_compl;
1031 
1032 		last_c_index++;
1033 		last_c_index &= (num_tx_bds - 1);
1034 	}
1035 
1036 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1037 		if (netif_tx_queue_stopped(txq))
1038 			netif_tx_wake_queue(txq);
1039 	}
1040 
1041 	ring->c_index = c_index;
1042 
1043 	return pkts_compl;
1044 }
1045 
1046 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1047 				struct bcmgenet_tx_ring *ring)
1048 {
1049 	unsigned int released;
1050 	unsigned long flags;
1051 
1052 	spin_lock_irqsave(&ring->lock, flags);
1053 	released = __bcmgenet_tx_reclaim(dev, ring);
1054 	spin_unlock_irqrestore(&ring->lock, flags);
1055 
1056 	return released;
1057 }
1058 
1059 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1060 {
1061 	struct bcmgenet_tx_ring *ring =
1062 		container_of(napi, struct bcmgenet_tx_ring, napi);
1063 	unsigned int work_done = 0;
1064 
1065 	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1066 
1067 	if (work_done == 0) {
1068 		napi_complete(napi);
1069 		ring->int_enable(ring->priv, ring);
1070 
1071 		return 0;
1072 	}
1073 
1074 	return budget;
1075 }
1076 
1077 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1078 {
1079 	struct bcmgenet_priv *priv = netdev_priv(dev);
1080 	int i;
1081 
1082 	if (netif_is_multiqueue(dev)) {
1083 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1084 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1085 	}
1086 
1087 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1088 }
1089 
1090 /* Transmits a single SKB (either head of a fragment or a single SKB)
1091  * caller must hold priv->lock
1092  */
1093 static int bcmgenet_xmit_single(struct net_device *dev,
1094 				struct sk_buff *skb,
1095 				u16 dma_desc_flags,
1096 				struct bcmgenet_tx_ring *ring)
1097 {
1098 	struct bcmgenet_priv *priv = netdev_priv(dev);
1099 	struct device *kdev = &priv->pdev->dev;
1100 	struct enet_cb *tx_cb_ptr;
1101 	unsigned int skb_len;
1102 	dma_addr_t mapping;
1103 	u32 length_status;
1104 	int ret;
1105 
1106 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1107 
1108 	if (unlikely(!tx_cb_ptr))
1109 		BUG();
1110 
1111 	tx_cb_ptr->skb = skb;
1112 
1113 	skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1114 
1115 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1116 	ret = dma_mapping_error(kdev, mapping);
1117 	if (ret) {
1118 		priv->mib.tx_dma_failed++;
1119 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1120 		dev_kfree_skb(skb);
1121 		return ret;
1122 	}
1123 
1124 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1125 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1126 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1127 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1128 			DMA_TX_APPEND_CRC;
1129 
1130 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1131 		length_status |= DMA_TX_DO_CSUM;
1132 
1133 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1134 
1135 	/* Decrement total BD count and advance our write pointer */
1136 	ring->free_bds -= 1;
1137 	ring->prod_index += 1;
1138 	ring->prod_index &= DMA_P_INDEX_MASK;
1139 
1140 	return 0;
1141 }
1142 
1143 /* Transmit a SKB fragment */
1144 static int bcmgenet_xmit_frag(struct net_device *dev,
1145 			      skb_frag_t *frag,
1146 			      u16 dma_desc_flags,
1147 			      struct bcmgenet_tx_ring *ring)
1148 {
1149 	struct bcmgenet_priv *priv = netdev_priv(dev);
1150 	struct device *kdev = &priv->pdev->dev;
1151 	struct enet_cb *tx_cb_ptr;
1152 	dma_addr_t mapping;
1153 	int ret;
1154 
1155 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1156 
1157 	if (unlikely(!tx_cb_ptr))
1158 		BUG();
1159 	tx_cb_ptr->skb = NULL;
1160 
1161 	mapping = skb_frag_dma_map(kdev, frag, 0,
1162 				   skb_frag_size(frag), DMA_TO_DEVICE);
1163 	ret = dma_mapping_error(kdev, mapping);
1164 	if (ret) {
1165 		priv->mib.tx_dma_failed++;
1166 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1167 			  __func__);
1168 		return ret;
1169 	}
1170 
1171 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1172 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1173 
1174 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1175 		    (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1176 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1177 
1178 
1179 	ring->free_bds -= 1;
1180 	ring->prod_index += 1;
1181 	ring->prod_index &= DMA_P_INDEX_MASK;
1182 
1183 	return 0;
1184 }
1185 
1186 /* Reallocate the SKB to put enough headroom in front of it and insert
1187  * the transmit checksum offsets in the descriptors
1188  */
1189 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1190 					    struct sk_buff *skb)
1191 {
1192 	struct status_64 *status = NULL;
1193 	struct sk_buff *new_skb;
1194 	u16 offset;
1195 	u8 ip_proto;
1196 	u16 ip_ver;
1197 	u32 tx_csum_info;
1198 
1199 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1200 		/* If 64 byte status block enabled, must make sure skb has
1201 		 * enough headroom for us to insert 64B status block.
1202 		 */
1203 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1204 		dev_kfree_skb(skb);
1205 		if (!new_skb) {
1206 			dev->stats.tx_errors++;
1207 			dev->stats.tx_dropped++;
1208 			return NULL;
1209 		}
1210 		skb = new_skb;
1211 	}
1212 
1213 	skb_push(skb, sizeof(*status));
1214 	status = (struct status_64 *)skb->data;
1215 
1216 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1217 		ip_ver = htons(skb->protocol);
1218 		switch (ip_ver) {
1219 		case ETH_P_IP:
1220 			ip_proto = ip_hdr(skb)->protocol;
1221 			break;
1222 		case ETH_P_IPV6:
1223 			ip_proto = ipv6_hdr(skb)->nexthdr;
1224 			break;
1225 		default:
1226 			return skb;
1227 		}
1228 
1229 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1230 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1231 				(offset + skb->csum_offset);
1232 
1233 		/* Set the length valid bit for TCP and UDP and just set
1234 		 * the special UDP flag for IPv4, else just set to 0.
1235 		 */
1236 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1237 			tx_csum_info |= STATUS_TX_CSUM_LV;
1238 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1239 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1240 		} else {
1241 			tx_csum_info = 0;
1242 		}
1243 
1244 		status->tx_csum_info = tx_csum_info;
1245 	}
1246 
1247 	return skb;
1248 }
1249 
1250 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1251 {
1252 	struct bcmgenet_priv *priv = netdev_priv(dev);
1253 	struct bcmgenet_tx_ring *ring = NULL;
1254 	struct netdev_queue *txq;
1255 	unsigned long flags = 0;
1256 	int nr_frags, index;
1257 	u16 dma_desc_flags;
1258 	int ret;
1259 	int i;
1260 
1261 	index = skb_get_queue_mapping(skb);
1262 	/* Mapping strategy:
1263 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1264 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1265 	 * queue_mapping = 2, goes to ring 1.
1266 	 * queue_mapping = 3, goes to ring 2.
1267 	 * queue_mapping = 4, goes to ring 3.
1268 	 */
1269 	if (index == 0)
1270 		index = DESC_INDEX;
1271 	else
1272 		index -= 1;
1273 
1274 	nr_frags = skb_shinfo(skb)->nr_frags;
1275 	ring = &priv->tx_rings[index];
1276 	txq = netdev_get_tx_queue(dev, ring->queue);
1277 
1278 	spin_lock_irqsave(&ring->lock, flags);
1279 	if (ring->free_bds <= nr_frags + 1) {
1280 		netif_tx_stop_queue(txq);
1281 		netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1282 			   __func__, index, ring->queue);
1283 		ret = NETDEV_TX_BUSY;
1284 		goto out;
1285 	}
1286 
1287 	if (skb_padto(skb, ETH_ZLEN)) {
1288 		ret = NETDEV_TX_OK;
1289 		goto out;
1290 	}
1291 
1292 	/* set the SKB transmit checksum */
1293 	if (priv->desc_64b_en) {
1294 		skb = bcmgenet_put_tx_csum(dev, skb);
1295 		if (!skb) {
1296 			ret = NETDEV_TX_OK;
1297 			goto out;
1298 		}
1299 	}
1300 
1301 	dma_desc_flags = DMA_SOP;
1302 	if (nr_frags == 0)
1303 		dma_desc_flags |= DMA_EOP;
1304 
1305 	/* Transmit single SKB or head of fragment list */
1306 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1307 	if (ret) {
1308 		ret = NETDEV_TX_OK;
1309 		goto out;
1310 	}
1311 
1312 	/* xmit fragment */
1313 	for (i = 0; i < nr_frags; i++) {
1314 		ret = bcmgenet_xmit_frag(dev,
1315 					 &skb_shinfo(skb)->frags[i],
1316 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1317 					 ring);
1318 		if (ret) {
1319 			ret = NETDEV_TX_OK;
1320 			goto out;
1321 		}
1322 	}
1323 
1324 	skb_tx_timestamp(skb);
1325 
1326 	/* we kept a software copy of how much we should advance the TDMA
1327 	 * producer index, now write it down to the hardware
1328 	 */
1329 	bcmgenet_tdma_ring_writel(priv, ring->index,
1330 				  ring->prod_index, TDMA_PROD_INDEX);
1331 
1332 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1333 		netif_tx_stop_queue(txq);
1334 
1335 out:
1336 	spin_unlock_irqrestore(&ring->lock, flags);
1337 
1338 	return ret;
1339 }
1340 
1341 
1342 static int bcmgenet_rx_refill(struct bcmgenet_priv *priv, struct enet_cb *cb)
1343 {
1344 	struct device *kdev = &priv->pdev->dev;
1345 	struct sk_buff *skb;
1346 	dma_addr_t mapping;
1347 	int ret;
1348 
1349 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1350 	if (!skb)
1351 		return -ENOMEM;
1352 
1353 	/* a caller did not release this control block */
1354 	WARN_ON(cb->skb != NULL);
1355 	cb->skb = skb;
1356 	mapping = dma_map_single(kdev, skb->data,
1357 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1358 	ret = dma_mapping_error(kdev, mapping);
1359 	if (ret) {
1360 		priv->mib.rx_dma_failed++;
1361 		bcmgenet_free_cb(cb);
1362 		netif_err(priv, rx_err, priv->dev,
1363 			  "%s DMA map failed\n", __func__);
1364 		return ret;
1365 	}
1366 
1367 	dma_unmap_addr_set(cb, dma_addr, mapping);
1368 	/* assign packet, prepare descriptor, and advance pointer */
1369 
1370 	dmadesc_set_addr(priv, priv->rx_bd_assign_ptr, mapping);
1371 
1372 	/* turn on the newly assigned BD for DMA to use */
1373 	priv->rx_bd_assign_index++;
1374 	priv->rx_bd_assign_index &= (priv->num_rx_bds - 1);
1375 
1376 	priv->rx_bd_assign_ptr = priv->rx_bds +
1377 		(priv->rx_bd_assign_index * DMA_DESC_SIZE);
1378 
1379 	return 0;
1380 }
1381 
1382 /* bcmgenet_desc_rx - descriptor based rx process.
1383  * this could be called from bottom half, or from NAPI polling method.
1384  */
1385 static unsigned int bcmgenet_desc_rx(struct bcmgenet_priv *priv,
1386 				     unsigned int budget)
1387 {
1388 	struct net_device *dev = priv->dev;
1389 	struct enet_cb *cb;
1390 	struct sk_buff *skb;
1391 	u32 dma_length_status;
1392 	unsigned long dma_flag;
1393 	int len, err;
1394 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1395 	unsigned int p_index;
1396 	unsigned int chksum_ok = 0;
1397 
1398 	p_index = bcmgenet_rdma_ring_readl(priv, DESC_INDEX, RDMA_PROD_INDEX);
1399 	p_index &= DMA_P_INDEX_MASK;
1400 
1401 	if (p_index < priv->rx_c_index)
1402 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) -
1403 			priv->rx_c_index + p_index;
1404 	else
1405 		rxpkttoprocess = p_index - priv->rx_c_index;
1406 
1407 	netif_dbg(priv, rx_status, dev,
1408 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1409 
1410 	while ((rxpktprocessed < rxpkttoprocess) &&
1411 	       (rxpktprocessed < budget)) {
1412 		cb = &priv->rx_cbs[priv->rx_read_ptr];
1413 		skb = cb->skb;
1414 
1415 		/* We do not have a backing SKB, so we do not have a
1416 		 * corresponding DMA mapping for this incoming packet since
1417 		 * bcmgenet_rx_refill always either has both skb and mapping or
1418 		 * none.
1419 		 */
1420 		if (unlikely(!skb)) {
1421 			dev->stats.rx_dropped++;
1422 			dev->stats.rx_errors++;
1423 			goto refill;
1424 		}
1425 
1426 		/* Unmap the packet contents such that we can use the
1427 		 * RSV from the 64 bytes descriptor when enabled and save
1428 		 * a 32-bits register read
1429 		 */
1430 		dma_unmap_single(&dev->dev, dma_unmap_addr(cb, dma_addr),
1431 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1432 
1433 		if (!priv->desc_64b_en) {
1434 			dma_length_status =
1435 				dmadesc_get_length_status(priv,
1436 							  priv->rx_bds +
1437 							  (priv->rx_read_ptr *
1438 							   DMA_DESC_SIZE));
1439 		} else {
1440 			struct status_64 *status;
1441 
1442 			status = (struct status_64 *)skb->data;
1443 			dma_length_status = status->length_status;
1444 		}
1445 
1446 		/* DMA flags and length are still valid no matter how
1447 		 * we got the Receive Status Vector (64B RSB or register)
1448 		 */
1449 		dma_flag = dma_length_status & 0xffff;
1450 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1451 
1452 		netif_dbg(priv, rx_status, dev,
1453 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1454 			  __func__, p_index, priv->rx_c_index,
1455 			  priv->rx_read_ptr, dma_length_status);
1456 
1457 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1458 			netif_err(priv, rx_status, dev,
1459 				  "dropping fragmented packet!\n");
1460 			dev->stats.rx_dropped++;
1461 			dev->stats.rx_errors++;
1462 			dev_kfree_skb_any(cb->skb);
1463 			cb->skb = NULL;
1464 			goto refill;
1465 		}
1466 		/* report errors */
1467 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1468 						DMA_RX_OV |
1469 						DMA_RX_NO |
1470 						DMA_RX_LG |
1471 						DMA_RX_RXER))) {
1472 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1473 				  (unsigned int)dma_flag);
1474 			if (dma_flag & DMA_RX_CRC_ERROR)
1475 				dev->stats.rx_crc_errors++;
1476 			if (dma_flag & DMA_RX_OV)
1477 				dev->stats.rx_over_errors++;
1478 			if (dma_flag & DMA_RX_NO)
1479 				dev->stats.rx_frame_errors++;
1480 			if (dma_flag & DMA_RX_LG)
1481 				dev->stats.rx_length_errors++;
1482 			dev->stats.rx_dropped++;
1483 			dev->stats.rx_errors++;
1484 
1485 			/* discard the packet and advance consumer index.*/
1486 			dev_kfree_skb_any(cb->skb);
1487 			cb->skb = NULL;
1488 			goto refill;
1489 		} /* error packet */
1490 
1491 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1492 			     priv->desc_rxchk_en;
1493 
1494 		skb_put(skb, len);
1495 		if (priv->desc_64b_en) {
1496 			skb_pull(skb, 64);
1497 			len -= 64;
1498 		}
1499 
1500 		if (likely(chksum_ok))
1501 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1502 
1503 		/* remove hardware 2bytes added for IP alignment */
1504 		skb_pull(skb, 2);
1505 		len -= 2;
1506 
1507 		if (priv->crc_fwd_en) {
1508 			skb_trim(skb, len - ETH_FCS_LEN);
1509 			len -= ETH_FCS_LEN;
1510 		}
1511 
1512 		/*Finish setting up the received SKB and send it to the kernel*/
1513 		skb->protocol = eth_type_trans(skb, priv->dev);
1514 		dev->stats.rx_packets++;
1515 		dev->stats.rx_bytes += len;
1516 		if (dma_flag & DMA_RX_MULT)
1517 			dev->stats.multicast++;
1518 
1519 		/* Notify kernel */
1520 		napi_gro_receive(&priv->napi, skb);
1521 		cb->skb = NULL;
1522 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1523 
1524 		/* refill RX path on the current control block */
1525 refill:
1526 		err = bcmgenet_rx_refill(priv, cb);
1527 		if (err) {
1528 			priv->mib.alloc_rx_buff_failed++;
1529 			netif_err(priv, rx_err, dev, "Rx refill failed\n");
1530 		}
1531 
1532 		rxpktprocessed++;
1533 		priv->rx_read_ptr++;
1534 		priv->rx_read_ptr &= (priv->num_rx_bds - 1);
1535 	}
1536 
1537 	return rxpktprocessed;
1538 }
1539 
1540 /* Assign skb to RX DMA descriptor. */
1541 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv)
1542 {
1543 	struct enet_cb *cb;
1544 	int ret = 0;
1545 	int i;
1546 
1547 	netif_dbg(priv, hw, priv->dev, "%s:\n", __func__);
1548 
1549 	/* loop here for each buffer needing assign */
1550 	for (i = 0; i < priv->num_rx_bds; i++) {
1551 		cb = &priv->rx_cbs[priv->rx_bd_assign_index];
1552 		if (cb->skb)
1553 			continue;
1554 
1555 		ret = bcmgenet_rx_refill(priv, cb);
1556 		if (ret)
1557 			break;
1558 	}
1559 
1560 	return ret;
1561 }
1562 
1563 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1564 {
1565 	struct enet_cb *cb;
1566 	int i;
1567 
1568 	for (i = 0; i < priv->num_rx_bds; i++) {
1569 		cb = &priv->rx_cbs[i];
1570 
1571 		if (dma_unmap_addr(cb, dma_addr)) {
1572 			dma_unmap_single(&priv->dev->dev,
1573 					 dma_unmap_addr(cb, dma_addr),
1574 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1575 			dma_unmap_addr_set(cb, dma_addr, 0);
1576 		}
1577 
1578 		if (cb->skb)
1579 			bcmgenet_free_cb(cb);
1580 	}
1581 }
1582 
1583 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1584 {
1585 	u32 reg;
1586 
1587 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1588 	if (enable)
1589 		reg |= mask;
1590 	else
1591 		reg &= ~mask;
1592 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1593 
1594 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1595 	 * to be processed
1596 	 */
1597 	if (enable == 0)
1598 		usleep_range(1000, 2000);
1599 }
1600 
1601 static int reset_umac(struct bcmgenet_priv *priv)
1602 {
1603 	struct device *kdev = &priv->pdev->dev;
1604 	unsigned int timeout = 0;
1605 	u32 reg;
1606 
1607 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1608 	bcmgenet_rbuf_ctrl_set(priv, 0);
1609 	udelay(10);
1610 
1611 	/* disable MAC while updating its registers */
1612 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1613 
1614 	/* issue soft reset, wait for it to complete */
1615 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1616 	while (timeout++ < 1000) {
1617 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1618 		if (!(reg & CMD_SW_RESET))
1619 			return 0;
1620 
1621 		udelay(1);
1622 	}
1623 
1624 	if (timeout == 1000) {
1625 		dev_err(kdev,
1626 			"timeout waiting for MAC to come out of reset\n");
1627 		return -ETIMEDOUT;
1628 	}
1629 
1630 	return 0;
1631 }
1632 
1633 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1634 {
1635 	/* Mask all interrupts.*/
1636 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1637 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1638 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1639 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1640 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1641 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1642 }
1643 
1644 static int init_umac(struct bcmgenet_priv *priv)
1645 {
1646 	struct device *kdev = &priv->pdev->dev;
1647 	int ret;
1648 	u32 reg, cpu_mask_clear;
1649 	int index;
1650 
1651 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1652 
1653 	ret = reset_umac(priv);
1654 	if (ret)
1655 		return ret;
1656 
1657 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1658 	/* clear tx/rx counter */
1659 	bcmgenet_umac_writel(priv,
1660 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1661 			     UMAC_MIB_CTRL);
1662 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1663 
1664 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1665 
1666 	/* init rx registers, enable ip header optimization */
1667 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1668 	reg |= RBUF_ALIGN_2B;
1669 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1670 
1671 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1672 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1673 
1674 	bcmgenet_intr_disable(priv);
1675 
1676 	cpu_mask_clear = UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_TXDMA_BDONE;
1677 
1678 	dev_dbg(kdev, "%s:Enabling RXDMA_BDONE interrupt\n", __func__);
1679 
1680 	/* Monitor cable plug/unplugged event for internal PHY */
1681 	if (phy_is_internal(priv->phydev)) {
1682 		cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1683 	} else if (priv->ext_phy) {
1684 		cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1685 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1686 		reg = bcmgenet_bp_mc_get(priv);
1687 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1688 
1689 		/* bp_mask: back pressure mask */
1690 		if (netif_is_multiqueue(priv->dev))
1691 			reg |= priv->hw_params->bp_in_mask;
1692 		else
1693 			reg &= ~priv->hw_params->bp_in_mask;
1694 		bcmgenet_bp_mc_set(priv, reg);
1695 	}
1696 
1697 	/* Enable MDIO interrupts on GENET v3+ */
1698 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1699 		cpu_mask_clear |= UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR;
1700 
1701 	bcmgenet_intrl2_0_writel(priv, cpu_mask_clear, INTRL2_CPU_MASK_CLEAR);
1702 
1703 	for (index = 0; index < priv->hw_params->tx_queues; index++)
1704 		bcmgenet_intrl2_1_writel(priv, (1 << index),
1705 					 INTRL2_CPU_MASK_CLEAR);
1706 
1707 	/* Enable rx/tx engine.*/
1708 	dev_dbg(kdev, "done init umac\n");
1709 
1710 	return 0;
1711 }
1712 
1713 /* Initialize all house-keeping variables for a TX ring, along
1714  * with corresponding hardware registers
1715  */
1716 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1717 				  unsigned int index, unsigned int size,
1718 				  unsigned int write_ptr, unsigned int end_ptr)
1719 {
1720 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1721 	u32 words_per_bd = WORDS_PER_BD(priv);
1722 	u32 flow_period_val = 0;
1723 	unsigned int first_bd;
1724 
1725 	spin_lock_init(&ring->lock);
1726 	ring->priv = priv;
1727 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1728 	ring->index = index;
1729 	if (index == DESC_INDEX) {
1730 		ring->queue = 0;
1731 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1732 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1733 	} else {
1734 		ring->queue = index + 1;
1735 		ring->int_enable = bcmgenet_tx_ring_int_enable;
1736 		ring->int_disable = bcmgenet_tx_ring_int_disable;
1737 	}
1738 	ring->cbs = priv->tx_cbs + write_ptr;
1739 	ring->size = size;
1740 	ring->c_index = 0;
1741 	ring->free_bds = size;
1742 	ring->write_ptr = write_ptr;
1743 	ring->cb_ptr = write_ptr;
1744 	ring->end_ptr = end_ptr - 1;
1745 	ring->prod_index = 0;
1746 
1747 	/* Set flow period for ring != 16 */
1748 	if (index != DESC_INDEX)
1749 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1750 
1751 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1752 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1753 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1754 	/* Disable rate control for now */
1755 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1756 				  TDMA_FLOW_PERIOD);
1757 	/* Unclassified traffic goes to ring 16 */
1758 	bcmgenet_tdma_ring_writel(priv, index,
1759 				  ((size << DMA_RING_SIZE_SHIFT) |
1760 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1761 
1762 	first_bd = write_ptr;
1763 
1764 	/* Set start and end address, read and write pointers */
1765 	bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1766 				  DMA_START_ADDR);
1767 	bcmgenet_tdma_ring_writel(priv, index, first_bd * words_per_bd,
1768 				  TDMA_READ_PTR);
1769 	bcmgenet_tdma_ring_writel(priv, index, first_bd,
1770 				  TDMA_WRITE_PTR);
1771 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1772 				  DMA_END_ADDR);
1773 
1774 	napi_enable(&ring->napi);
1775 }
1776 
1777 static void bcmgenet_fini_tx_ring(struct bcmgenet_priv *priv,
1778 				  unsigned int index)
1779 {
1780 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1781 
1782 	napi_disable(&ring->napi);
1783 	netif_napi_del(&ring->napi);
1784 }
1785 
1786 /* Initialize a RDMA ring */
1787 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1788 				 unsigned int index, unsigned int size)
1789 {
1790 	u32 words_per_bd = WORDS_PER_BD(priv);
1791 	int ret;
1792 
1793 	priv->num_rx_bds = TOTAL_DESC;
1794 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
1795 	priv->rx_bd_assign_ptr = priv->rx_bds;
1796 	priv->rx_bd_assign_index = 0;
1797 	priv->rx_c_index = 0;
1798 	priv->rx_read_ptr = 0;
1799 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
1800 			       GFP_KERNEL);
1801 	if (!priv->rx_cbs)
1802 		return -ENOMEM;
1803 
1804 	ret = bcmgenet_alloc_rx_buffers(priv);
1805 	if (ret) {
1806 		kfree(priv->rx_cbs);
1807 		return ret;
1808 	}
1809 
1810 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_WRITE_PTR);
1811 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1812 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1813 	bcmgenet_rdma_ring_writel(priv, index,
1814 				  ((size << DMA_RING_SIZE_SHIFT) |
1815 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1816 	bcmgenet_rdma_ring_writel(priv, index, 0, DMA_START_ADDR);
1817 	bcmgenet_rdma_ring_writel(priv, index,
1818 				  words_per_bd * size - 1, DMA_END_ADDR);
1819 	bcmgenet_rdma_ring_writel(priv, index,
1820 				  (DMA_FC_THRESH_LO <<
1821 				   DMA_XOFF_THRESHOLD_SHIFT) |
1822 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1823 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_READ_PTR);
1824 
1825 	return ret;
1826 }
1827 
1828 /* init multi xmit queues, only available for GENET2+
1829  * the queue is partitioned as follows:
1830  *
1831  * queue 0 - 3 is priority based, each one has 32 descriptors,
1832  * with queue 0 being the highest priority queue.
1833  *
1834  * queue 16 is the default tx queue with GENET_DEFAULT_BD_CNT
1835  * descriptors: 256 - (number of tx queues * bds per queues) = 128
1836  * descriptors.
1837  *
1838  * The transmit control block pool is then partitioned as following:
1839  * - tx_cbs[0...127] are for queue 16
1840  * - tx_ring_cbs[0] points to tx_cbs[128..159]
1841  * - tx_ring_cbs[1] points to tx_cbs[160..191]
1842  * - tx_ring_cbs[2] points to tx_cbs[192..223]
1843  * - tx_ring_cbs[3] points to tx_cbs[224..255]
1844  */
1845 static void bcmgenet_init_multiq(struct net_device *dev)
1846 {
1847 	struct bcmgenet_priv *priv = netdev_priv(dev);
1848 	unsigned int i, dma_enable;
1849 	u32 reg, dma_ctrl, ring_cfg = 0;
1850 	u32 dma_priority[3] = {0, 0, 0};
1851 
1852 	if (!netif_is_multiqueue(dev)) {
1853 		netdev_warn(dev, "called with non multi queue aware HW\n");
1854 		return;
1855 	}
1856 
1857 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1858 	dma_enable = dma_ctrl & DMA_EN;
1859 	dma_ctrl &= ~DMA_EN;
1860 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1861 
1862 	/* Enable strict priority arbiter mode */
1863 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1864 
1865 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
1866 		/* first 64 tx_cbs are reserved for default tx queue
1867 		 * (ring 16)
1868 		 */
1869 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->bds_cnt,
1870 				      i * priv->hw_params->bds_cnt,
1871 				      (i + 1) * priv->hw_params->bds_cnt);
1872 
1873 		/* Configure ring as descriptor ring and setup priority */
1874 		ring_cfg |= 1 << i;
1875 		dma_ctrl |= 1 << (i + DMA_RING_BUF_EN_SHIFT);
1876 
1877 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1878 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1879 	}
1880 
1881 	/* Set ring 16 priority and program the hardware registers */
1882 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1883 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1884 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
1885 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1886 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1887 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1888 
1889 	/* Enable rings */
1890 	reg = bcmgenet_tdma_readl(priv, DMA_RING_CFG);
1891 	reg |= ring_cfg;
1892 	bcmgenet_tdma_writel(priv, reg, DMA_RING_CFG);
1893 
1894 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
1895 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1896 	reg |= dma_ctrl;
1897 	if (dma_enable)
1898 		reg |= DMA_EN;
1899 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1900 }
1901 
1902 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
1903 {
1904 	int ret = 0;
1905 	int timeout = 0;
1906 	u32 reg;
1907 
1908 	/* Disable TDMA to stop add more frames in TX DMA */
1909 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1910 	reg &= ~DMA_EN;
1911 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1912 
1913 	/* Check TDMA status register to confirm TDMA is disabled */
1914 	while (timeout++ < DMA_TIMEOUT_VAL) {
1915 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
1916 		if (reg & DMA_DISABLED)
1917 			break;
1918 
1919 		udelay(1);
1920 	}
1921 
1922 	if (timeout == DMA_TIMEOUT_VAL) {
1923 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
1924 		ret = -ETIMEDOUT;
1925 	}
1926 
1927 	/* Wait 10ms for packet drain in both tx and rx dma */
1928 	usleep_range(10000, 20000);
1929 
1930 	/* Disable RDMA */
1931 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
1932 	reg &= ~DMA_EN;
1933 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
1934 
1935 	timeout = 0;
1936 	/* Check RDMA status register to confirm RDMA is disabled */
1937 	while (timeout++ < DMA_TIMEOUT_VAL) {
1938 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
1939 		if (reg & DMA_DISABLED)
1940 			break;
1941 
1942 		udelay(1);
1943 	}
1944 
1945 	if (timeout == DMA_TIMEOUT_VAL) {
1946 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
1947 		ret = -ETIMEDOUT;
1948 	}
1949 
1950 	return ret;
1951 }
1952 
1953 static void __bcmgenet_fini_dma(struct bcmgenet_priv *priv)
1954 {
1955 	int i;
1956 
1957 	/* disable DMA */
1958 	bcmgenet_dma_teardown(priv);
1959 
1960 	for (i = 0; i < priv->num_tx_bds; i++) {
1961 		if (priv->tx_cbs[i].skb != NULL) {
1962 			dev_kfree_skb(priv->tx_cbs[i].skb);
1963 			priv->tx_cbs[i].skb = NULL;
1964 		}
1965 	}
1966 
1967 	bcmgenet_free_rx_buffers(priv);
1968 	kfree(priv->rx_cbs);
1969 	kfree(priv->tx_cbs);
1970 }
1971 
1972 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
1973 {
1974 	int i;
1975 
1976 	bcmgenet_fini_tx_ring(priv, DESC_INDEX);
1977 
1978 	for (i = 0; i < priv->hw_params->tx_queues; i++)
1979 		bcmgenet_fini_tx_ring(priv, i);
1980 
1981 	__bcmgenet_fini_dma(priv);
1982 }
1983 
1984 /* init_edma: Initialize DMA control register */
1985 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
1986 {
1987 	int ret;
1988 
1989 	netif_dbg(priv, hw, priv->dev, "bcmgenet: init_edma\n");
1990 
1991 	/* by default, enable ring 16 (descriptor based) */
1992 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, TOTAL_DESC);
1993 	if (ret) {
1994 		netdev_err(priv->dev, "failed to initialize RX ring\n");
1995 		return ret;
1996 	}
1997 
1998 	/* init rDma */
1999 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2000 
2001 	/* Init tDma */
2002 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2003 
2004 	/* Initialize common TX ring structures */
2005 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2006 	priv->num_tx_bds = TOTAL_DESC;
2007 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2008 			       GFP_KERNEL);
2009 	if (!priv->tx_cbs) {
2010 		__bcmgenet_fini_dma(priv);
2011 		return -ENOMEM;
2012 	}
2013 
2014 	/* initialize multi xmit queue */
2015 	bcmgenet_init_multiq(priv->dev);
2016 
2017 	/* initialize special ring 16 */
2018 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_DEFAULT_BD_CNT,
2019 			      priv->hw_params->tx_queues *
2020 			      priv->hw_params->bds_cnt,
2021 			      TOTAL_DESC);
2022 
2023 	return 0;
2024 }
2025 
2026 /* NAPI polling method*/
2027 static int bcmgenet_poll(struct napi_struct *napi, int budget)
2028 {
2029 	struct bcmgenet_priv *priv = container_of(napi,
2030 			struct bcmgenet_priv, napi);
2031 	unsigned int work_done;
2032 
2033 	work_done = bcmgenet_desc_rx(priv, budget);
2034 
2035 	/* Advancing our consumer index*/
2036 	priv->rx_c_index += work_done;
2037 	priv->rx_c_index &= DMA_C_INDEX_MASK;
2038 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
2039 				  priv->rx_c_index, RDMA_CONS_INDEX);
2040 	if (work_done < budget) {
2041 		napi_complete(napi);
2042 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2043 					 INTRL2_CPU_MASK_CLEAR);
2044 	}
2045 
2046 	return work_done;
2047 }
2048 
2049 /* Interrupt bottom half */
2050 static void bcmgenet_irq_task(struct work_struct *work)
2051 {
2052 	struct bcmgenet_priv *priv = container_of(
2053 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2054 
2055 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2056 
2057 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2058 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2059 		netif_dbg(priv, wol, priv->dev,
2060 			  "magic packet detected, waking up\n");
2061 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2062 	}
2063 
2064 	/* Link UP/DOWN event */
2065 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2066 	    (priv->irq0_stat & (UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN))) {
2067 		phy_mac_interrupt(priv->phydev,
2068 				  priv->irq0_stat & UMAC_IRQ_LINK_UP);
2069 		priv->irq0_stat &= ~(UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN);
2070 	}
2071 }
2072 
2073 /* bcmgenet_isr1: interrupt handler for ring buffer. */
2074 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2075 {
2076 	struct bcmgenet_priv *priv = dev_id;
2077 	struct bcmgenet_tx_ring *ring;
2078 	unsigned int index;
2079 
2080 	/* Save irq status for bottom-half processing. */
2081 	priv->irq1_stat =
2082 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2083 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2084 	/* clear interrupts */
2085 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2086 
2087 	netif_dbg(priv, intr, priv->dev,
2088 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2089 
2090 	/* Check the MBDONE interrupts.
2091 	 * packet is done, reclaim descriptors
2092 	 */
2093 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2094 		if (!(priv->irq1_stat & BIT(index)))
2095 			continue;
2096 
2097 		ring = &priv->tx_rings[index];
2098 
2099 		if (likely(napi_schedule_prep(&ring->napi))) {
2100 			ring->int_disable(priv, ring);
2101 			__napi_schedule(&ring->napi);
2102 		}
2103 	}
2104 
2105 	return IRQ_HANDLED;
2106 }
2107 
2108 /* bcmgenet_isr0: Handle various interrupts. */
2109 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2110 {
2111 	struct bcmgenet_priv *priv = dev_id;
2112 
2113 	/* Save irq status for bottom-half processing. */
2114 	priv->irq0_stat =
2115 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2116 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2117 	/* clear interrupts */
2118 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2119 
2120 	netif_dbg(priv, intr, priv->dev,
2121 		  "IRQ=0x%x\n", priv->irq0_stat);
2122 
2123 	if (priv->irq0_stat & (UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_RXDMA_PDONE)) {
2124 		/* We use NAPI(software interrupt throttling, if
2125 		 * Rx Descriptor throttling is not used.
2126 		 * Disable interrupt, will be enabled in the poll method.
2127 		 */
2128 		if (likely(napi_schedule_prep(&priv->napi))) {
2129 			bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2130 						 INTRL2_CPU_MASK_SET);
2131 			__napi_schedule(&priv->napi);
2132 		}
2133 	}
2134 	if (priv->irq0_stat &
2135 			(UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE)) {
2136 		struct bcmgenet_tx_ring *ring = &priv->tx_rings[DESC_INDEX];
2137 
2138 		if (likely(napi_schedule_prep(&ring->napi))) {
2139 			ring->int_disable(priv, ring);
2140 			__napi_schedule(&ring->napi);
2141 		}
2142 	}
2143 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2144 				UMAC_IRQ_PHY_DET_F |
2145 				UMAC_IRQ_LINK_UP |
2146 				UMAC_IRQ_LINK_DOWN |
2147 				UMAC_IRQ_HFB_SM |
2148 				UMAC_IRQ_HFB_MM |
2149 				UMAC_IRQ_MPD_R)) {
2150 		/* all other interested interrupts handled in bottom half */
2151 		schedule_work(&priv->bcmgenet_irq_work);
2152 	}
2153 
2154 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2155 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2156 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2157 		wake_up(&priv->wq);
2158 	}
2159 
2160 	return IRQ_HANDLED;
2161 }
2162 
2163 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2164 {
2165 	struct bcmgenet_priv *priv = dev_id;
2166 
2167 	pm_wakeup_event(&priv->pdev->dev, 0);
2168 
2169 	return IRQ_HANDLED;
2170 }
2171 
2172 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2173 {
2174 	u32 reg;
2175 
2176 	reg = bcmgenet_rbuf_ctrl_get(priv);
2177 	reg |= BIT(1);
2178 	bcmgenet_rbuf_ctrl_set(priv, reg);
2179 	udelay(10);
2180 
2181 	reg &= ~BIT(1);
2182 	bcmgenet_rbuf_ctrl_set(priv, reg);
2183 	udelay(10);
2184 }
2185 
2186 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2187 				 unsigned char *addr)
2188 {
2189 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2190 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2191 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2192 }
2193 
2194 /* Returns a reusable dma control register value */
2195 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2196 {
2197 	u32 reg;
2198 	u32 dma_ctrl;
2199 
2200 	/* disable DMA */
2201 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2202 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2203 	reg &= ~dma_ctrl;
2204 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2205 
2206 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2207 	reg &= ~dma_ctrl;
2208 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2209 
2210 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2211 	udelay(10);
2212 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2213 
2214 	return dma_ctrl;
2215 }
2216 
2217 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2218 {
2219 	u32 reg;
2220 
2221 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2222 	reg |= dma_ctrl;
2223 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2224 
2225 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2226 	reg |= dma_ctrl;
2227 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2228 }
2229 
2230 static void bcmgenet_netif_start(struct net_device *dev)
2231 {
2232 	struct bcmgenet_priv *priv = netdev_priv(dev);
2233 
2234 	/* Start the network engine */
2235 	napi_enable(&priv->napi);
2236 
2237 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2238 
2239 	if (phy_is_internal(priv->phydev))
2240 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2241 
2242 	netif_tx_start_all_queues(dev);
2243 
2244 	phy_start(priv->phydev);
2245 }
2246 
2247 static int bcmgenet_open(struct net_device *dev)
2248 {
2249 	struct bcmgenet_priv *priv = netdev_priv(dev);
2250 	unsigned long dma_ctrl;
2251 	u32 reg;
2252 	int ret;
2253 
2254 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2255 
2256 	/* Turn on the clock */
2257 	if (!IS_ERR(priv->clk))
2258 		clk_prepare_enable(priv->clk);
2259 
2260 	/* take MAC out of reset */
2261 	bcmgenet_umac_reset(priv);
2262 
2263 	ret = init_umac(priv);
2264 	if (ret)
2265 		goto err_clk_disable;
2266 
2267 	/* disable ethernet MAC while updating its registers */
2268 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2269 
2270 	/* Make sure we reflect the value of CRC_CMD_FWD */
2271 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2272 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2273 
2274 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2275 
2276 	if (phy_is_internal(priv->phydev)) {
2277 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2278 		reg |= EXT_ENERGY_DET_MASK;
2279 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2280 	}
2281 
2282 	/* Disable RX/TX DMA and flush TX queues */
2283 	dma_ctrl = bcmgenet_dma_disable(priv);
2284 
2285 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2286 	ret = bcmgenet_init_dma(priv);
2287 	if (ret) {
2288 		netdev_err(dev, "failed to initialize DMA\n");
2289 		goto err_fini_dma;
2290 	}
2291 
2292 	/* Always enable ring 16 - descriptor ring */
2293 	bcmgenet_enable_dma(priv, dma_ctrl);
2294 
2295 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2296 			  dev->name, priv);
2297 	if (ret < 0) {
2298 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2299 		goto err_fini_dma;
2300 	}
2301 
2302 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2303 			  dev->name, priv);
2304 	if (ret < 0) {
2305 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2306 		goto err_irq0;
2307 	}
2308 
2309 	/* Re-configure the port multiplexer towards the PHY device */
2310 	bcmgenet_mii_config(priv->dev, false);
2311 
2312 	phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2313 			   priv->phy_interface);
2314 
2315 	bcmgenet_netif_start(dev);
2316 
2317 	return 0;
2318 
2319 err_irq0:
2320 	free_irq(priv->irq0, dev);
2321 err_fini_dma:
2322 	bcmgenet_fini_dma(priv);
2323 err_clk_disable:
2324 	if (!IS_ERR(priv->clk))
2325 		clk_disable_unprepare(priv->clk);
2326 	return ret;
2327 }
2328 
2329 static void bcmgenet_netif_stop(struct net_device *dev)
2330 {
2331 	struct bcmgenet_priv *priv = netdev_priv(dev);
2332 
2333 	netif_tx_stop_all_queues(dev);
2334 	napi_disable(&priv->napi);
2335 	phy_stop(priv->phydev);
2336 
2337 	bcmgenet_intr_disable(priv);
2338 
2339 	/* Wait for pending work items to complete. Since interrupts are
2340 	 * disabled no new work will be scheduled.
2341 	 */
2342 	cancel_work_sync(&priv->bcmgenet_irq_work);
2343 
2344 	priv->old_link = -1;
2345 	priv->old_speed = -1;
2346 	priv->old_duplex = -1;
2347 	priv->old_pause = -1;
2348 }
2349 
2350 static int bcmgenet_close(struct net_device *dev)
2351 {
2352 	struct bcmgenet_priv *priv = netdev_priv(dev);
2353 	int ret;
2354 
2355 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2356 
2357 	bcmgenet_netif_stop(dev);
2358 
2359 	/* Really kill the PHY state machine and disconnect from it */
2360 	phy_disconnect(priv->phydev);
2361 
2362 	/* Disable MAC receive */
2363 	umac_enable_set(priv, CMD_RX_EN, false);
2364 
2365 	ret = bcmgenet_dma_teardown(priv);
2366 	if (ret)
2367 		return ret;
2368 
2369 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2370 	umac_enable_set(priv, CMD_TX_EN, false);
2371 
2372 	/* tx reclaim */
2373 	bcmgenet_tx_reclaim_all(dev);
2374 	bcmgenet_fini_dma(priv);
2375 
2376 	free_irq(priv->irq0, priv);
2377 	free_irq(priv->irq1, priv);
2378 
2379 	if (phy_is_internal(priv->phydev))
2380 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2381 
2382 	if (!IS_ERR(priv->clk))
2383 		clk_disable_unprepare(priv->clk);
2384 
2385 	return 0;
2386 }
2387 
2388 static void bcmgenet_timeout(struct net_device *dev)
2389 {
2390 	struct bcmgenet_priv *priv = netdev_priv(dev);
2391 
2392 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2393 
2394 	dev->trans_start = jiffies;
2395 
2396 	dev->stats.tx_errors++;
2397 
2398 	netif_tx_wake_all_queues(dev);
2399 }
2400 
2401 #define MAX_MC_COUNT	16
2402 
2403 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2404 					 unsigned char *addr,
2405 					 int *i,
2406 					 int *mc)
2407 {
2408 	u32 reg;
2409 
2410 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2411 			     UMAC_MDF_ADDR + (*i * 4));
2412 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2413 			     addr[4] << 8 | addr[5],
2414 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
2415 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2416 	reg |= (1 << (MAX_MC_COUNT - *mc));
2417 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2418 	*i += 2;
2419 	(*mc)++;
2420 }
2421 
2422 static void bcmgenet_set_rx_mode(struct net_device *dev)
2423 {
2424 	struct bcmgenet_priv *priv = netdev_priv(dev);
2425 	struct netdev_hw_addr *ha;
2426 	int i, mc;
2427 	u32 reg;
2428 
2429 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2430 
2431 	/* Promiscuous mode */
2432 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2433 	if (dev->flags & IFF_PROMISC) {
2434 		reg |= CMD_PROMISC;
2435 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2436 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2437 		return;
2438 	} else {
2439 		reg &= ~CMD_PROMISC;
2440 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2441 	}
2442 
2443 	/* UniMac doesn't support ALLMULTI */
2444 	if (dev->flags & IFF_ALLMULTI) {
2445 		netdev_warn(dev, "ALLMULTI is not supported\n");
2446 		return;
2447 	}
2448 
2449 	/* update MDF filter */
2450 	i = 0;
2451 	mc = 0;
2452 	/* Broadcast */
2453 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2454 	/* my own address.*/
2455 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2456 	/* Unicast list*/
2457 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2458 		return;
2459 
2460 	if (!netdev_uc_empty(dev))
2461 		netdev_for_each_uc_addr(ha, dev)
2462 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2463 	/* Multicast */
2464 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2465 		return;
2466 
2467 	netdev_for_each_mc_addr(ha, dev)
2468 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2469 }
2470 
2471 /* Set the hardware MAC address. */
2472 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2473 {
2474 	struct sockaddr *addr = p;
2475 
2476 	/* Setting the MAC address at the hardware level is not possible
2477 	 * without disabling the UniMAC RX/TX enable bits.
2478 	 */
2479 	if (netif_running(dev))
2480 		return -EBUSY;
2481 
2482 	ether_addr_copy(dev->dev_addr, addr->sa_data);
2483 
2484 	return 0;
2485 }
2486 
2487 static const struct net_device_ops bcmgenet_netdev_ops = {
2488 	.ndo_open		= bcmgenet_open,
2489 	.ndo_stop		= bcmgenet_close,
2490 	.ndo_start_xmit		= bcmgenet_xmit,
2491 	.ndo_tx_timeout		= bcmgenet_timeout,
2492 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
2493 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
2494 	.ndo_do_ioctl		= bcmgenet_ioctl,
2495 	.ndo_set_features	= bcmgenet_set_features,
2496 };
2497 
2498 /* Array of GENET hardware parameters/characteristics */
2499 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2500 	[GENET_V1] = {
2501 		.tx_queues = 0,
2502 		.rx_queues = 0,
2503 		.bds_cnt = 0,
2504 		.bp_in_en_shift = 16,
2505 		.bp_in_mask = 0xffff,
2506 		.hfb_filter_cnt = 16,
2507 		.qtag_mask = 0x1F,
2508 		.hfb_offset = 0x1000,
2509 		.rdma_offset = 0x2000,
2510 		.tdma_offset = 0x3000,
2511 		.words_per_bd = 2,
2512 	},
2513 	[GENET_V2] = {
2514 		.tx_queues = 4,
2515 		.rx_queues = 4,
2516 		.bds_cnt = 32,
2517 		.bp_in_en_shift = 16,
2518 		.bp_in_mask = 0xffff,
2519 		.hfb_filter_cnt = 16,
2520 		.qtag_mask = 0x1F,
2521 		.tbuf_offset = 0x0600,
2522 		.hfb_offset = 0x1000,
2523 		.hfb_reg_offset = 0x2000,
2524 		.rdma_offset = 0x3000,
2525 		.tdma_offset = 0x4000,
2526 		.words_per_bd = 2,
2527 		.flags = GENET_HAS_EXT,
2528 	},
2529 	[GENET_V3] = {
2530 		.tx_queues = 4,
2531 		.rx_queues = 4,
2532 		.bds_cnt = 32,
2533 		.bp_in_en_shift = 17,
2534 		.bp_in_mask = 0x1ffff,
2535 		.hfb_filter_cnt = 48,
2536 		.qtag_mask = 0x3F,
2537 		.tbuf_offset = 0x0600,
2538 		.hfb_offset = 0x8000,
2539 		.hfb_reg_offset = 0xfc00,
2540 		.rdma_offset = 0x10000,
2541 		.tdma_offset = 0x11000,
2542 		.words_per_bd = 2,
2543 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2544 	},
2545 	[GENET_V4] = {
2546 		.tx_queues = 4,
2547 		.rx_queues = 4,
2548 		.bds_cnt = 32,
2549 		.bp_in_en_shift = 17,
2550 		.bp_in_mask = 0x1ffff,
2551 		.hfb_filter_cnt = 48,
2552 		.qtag_mask = 0x3F,
2553 		.tbuf_offset = 0x0600,
2554 		.hfb_offset = 0x8000,
2555 		.hfb_reg_offset = 0xfc00,
2556 		.rdma_offset = 0x2000,
2557 		.tdma_offset = 0x4000,
2558 		.words_per_bd = 3,
2559 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2560 	},
2561 };
2562 
2563 /* Infer hardware parameters from the detected GENET version */
2564 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
2565 {
2566 	struct bcmgenet_hw_params *params;
2567 	u32 reg;
2568 	u8 major;
2569 	u16 gphy_rev;
2570 
2571 	if (GENET_IS_V4(priv)) {
2572 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2573 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
2574 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2575 		priv->version = GENET_V4;
2576 	} else if (GENET_IS_V3(priv)) {
2577 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2578 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2579 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2580 		priv->version = GENET_V3;
2581 	} else if (GENET_IS_V2(priv)) {
2582 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
2583 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2584 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2585 		priv->version = GENET_V2;
2586 	} else if (GENET_IS_V1(priv)) {
2587 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
2588 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
2589 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2590 		priv->version = GENET_V1;
2591 	}
2592 
2593 	/* enum genet_version starts at 1 */
2594 	priv->hw_params = &bcmgenet_hw_params[priv->version];
2595 	params = priv->hw_params;
2596 
2597 	/* Read GENET HW version */
2598 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
2599 	major = (reg >> 24 & 0x0f);
2600 	if (major == 5)
2601 		major = 4;
2602 	else if (major == 0)
2603 		major = 1;
2604 	if (major != priv->version) {
2605 		dev_err(&priv->pdev->dev,
2606 			"GENET version mismatch, got: %d, configured for: %d\n",
2607 			major, priv->version);
2608 	}
2609 
2610 	/* Print the GENET core version */
2611 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
2612 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
2613 
2614 	/* Store the integrated PHY revision for the MDIO probing function
2615 	 * to pass this information to the PHY driver. The PHY driver expects
2616 	 * to find the PHY major revision in bits 15:8 while the GENET register
2617 	 * stores that information in bits 7:0, account for that.
2618 	 *
2619 	 * On newer chips, starting with PHY revision G0, a new scheme is
2620 	 * deployed similar to the Starfighter 2 switch with GPHY major
2621 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
2622 	 * is reserved as well as special value 0x01ff, we have a small
2623 	 * heuristic to check for the new GPHY revision and re-arrange things
2624 	 * so the GPHY driver is happy.
2625 	 */
2626 	gphy_rev = reg & 0xffff;
2627 
2628 	/* This is the good old scheme, just GPHY major, no minor nor patch */
2629 	if ((gphy_rev & 0xf0) != 0)
2630 		priv->gphy_rev = gphy_rev << 8;
2631 
2632 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
2633 	else if ((gphy_rev & 0xff00) != 0)
2634 		priv->gphy_rev = gphy_rev;
2635 
2636 	/* This is reserved so should require special treatment */
2637 	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
2638 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
2639 		return;
2640 	}
2641 
2642 #ifdef CONFIG_PHYS_ADDR_T_64BIT
2643 	if (!(params->flags & GENET_HAS_40BITS))
2644 		pr_warn("GENET does not support 40-bits PA\n");
2645 #endif
2646 
2647 	pr_debug("Configuration for version: %d\n"
2648 		"TXq: %1d, RXq: %1d, BDs: %1d\n"
2649 		"BP << en: %2d, BP msk: 0x%05x\n"
2650 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
2651 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
2652 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
2653 		"Words/BD: %d\n",
2654 		priv->version,
2655 		params->tx_queues, params->rx_queues, params->bds_cnt,
2656 		params->bp_in_en_shift, params->bp_in_mask,
2657 		params->hfb_filter_cnt, params->qtag_mask,
2658 		params->tbuf_offset, params->hfb_offset,
2659 		params->hfb_reg_offset,
2660 		params->rdma_offset, params->tdma_offset,
2661 		params->words_per_bd);
2662 }
2663 
2664 static const struct of_device_id bcmgenet_match[] = {
2665 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
2666 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
2667 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
2668 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
2669 	{ },
2670 };
2671 
2672 static int bcmgenet_probe(struct platform_device *pdev)
2673 {
2674 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
2675 	struct device_node *dn = pdev->dev.of_node;
2676 	const struct of_device_id *of_id = NULL;
2677 	struct bcmgenet_priv *priv;
2678 	struct net_device *dev;
2679 	const void *macaddr;
2680 	struct resource *r;
2681 	int err = -EIO;
2682 
2683 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and a single RX queue */
2684 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 1);
2685 	if (!dev) {
2686 		dev_err(&pdev->dev, "can't allocate net device\n");
2687 		return -ENOMEM;
2688 	}
2689 
2690 	if (dn) {
2691 		of_id = of_match_node(bcmgenet_match, dn);
2692 		if (!of_id)
2693 			return -EINVAL;
2694 	}
2695 
2696 	priv = netdev_priv(dev);
2697 	priv->irq0 = platform_get_irq(pdev, 0);
2698 	priv->irq1 = platform_get_irq(pdev, 1);
2699 	priv->wol_irq = platform_get_irq(pdev, 2);
2700 	if (!priv->irq0 || !priv->irq1) {
2701 		dev_err(&pdev->dev, "can't find IRQs\n");
2702 		err = -EINVAL;
2703 		goto err;
2704 	}
2705 
2706 	if (dn) {
2707 		macaddr = of_get_mac_address(dn);
2708 		if (!macaddr) {
2709 			dev_err(&pdev->dev, "can't find MAC address\n");
2710 			err = -EINVAL;
2711 			goto err;
2712 		}
2713 	} else {
2714 		macaddr = pd->mac_address;
2715 	}
2716 
2717 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2718 	priv->base = devm_ioremap_resource(&pdev->dev, r);
2719 	if (IS_ERR(priv->base)) {
2720 		err = PTR_ERR(priv->base);
2721 		goto err;
2722 	}
2723 
2724 	SET_NETDEV_DEV(dev, &pdev->dev);
2725 	dev_set_drvdata(&pdev->dev, dev);
2726 	ether_addr_copy(dev->dev_addr, macaddr);
2727 	dev->watchdog_timeo = 2 * HZ;
2728 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
2729 	dev->netdev_ops = &bcmgenet_netdev_ops;
2730 	netif_napi_add(dev, &priv->napi, bcmgenet_poll, 64);
2731 
2732 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
2733 
2734 	/* Set hardware features */
2735 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
2736 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2737 
2738 	/* Request the WOL interrupt and advertise suspend if available */
2739 	priv->wol_irq_disabled = true;
2740 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
2741 			       dev->name, priv);
2742 	if (!err)
2743 		device_set_wakeup_capable(&pdev->dev, 1);
2744 
2745 	/* Set the needed headroom to account for any possible
2746 	 * features enabling/disabling at runtime
2747 	 */
2748 	dev->needed_headroom += 64;
2749 
2750 	netdev_boot_setup_check(dev);
2751 
2752 	priv->dev = dev;
2753 	priv->pdev = pdev;
2754 	if (of_id)
2755 		priv->version = (enum bcmgenet_version)of_id->data;
2756 	else
2757 		priv->version = pd->genet_version;
2758 
2759 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
2760 	if (IS_ERR(priv->clk))
2761 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
2762 
2763 	if (!IS_ERR(priv->clk))
2764 		clk_prepare_enable(priv->clk);
2765 
2766 	bcmgenet_set_hw_params(priv);
2767 
2768 	/* Mii wait queue */
2769 	init_waitqueue_head(&priv->wq);
2770 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
2771 	priv->rx_buf_len = RX_BUF_LENGTH;
2772 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
2773 
2774 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
2775 	if (IS_ERR(priv->clk_wol))
2776 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
2777 
2778 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
2779 	if (IS_ERR(priv->clk_eee)) {
2780 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
2781 		priv->clk_eee = NULL;
2782 	}
2783 
2784 	err = reset_umac(priv);
2785 	if (err)
2786 		goto err_clk_disable;
2787 
2788 	err = bcmgenet_mii_init(dev);
2789 	if (err)
2790 		goto err_clk_disable;
2791 
2792 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
2793 	 * just the ring 16 descriptor based TX
2794 	 */
2795 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
2796 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
2797 
2798 	/* libphy will determine the link state */
2799 	netif_carrier_off(dev);
2800 
2801 	/* Turn off the main clock, WOL clock is handled separately */
2802 	if (!IS_ERR(priv->clk))
2803 		clk_disable_unprepare(priv->clk);
2804 
2805 	err = register_netdev(dev);
2806 	if (err)
2807 		goto err;
2808 
2809 	return err;
2810 
2811 err_clk_disable:
2812 	if (!IS_ERR(priv->clk))
2813 		clk_disable_unprepare(priv->clk);
2814 err:
2815 	free_netdev(dev);
2816 	return err;
2817 }
2818 
2819 static int bcmgenet_remove(struct platform_device *pdev)
2820 {
2821 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
2822 
2823 	dev_set_drvdata(&pdev->dev, NULL);
2824 	unregister_netdev(priv->dev);
2825 	bcmgenet_mii_exit(priv->dev);
2826 	free_netdev(priv->dev);
2827 
2828 	return 0;
2829 }
2830 
2831 #ifdef CONFIG_PM_SLEEP
2832 static int bcmgenet_suspend(struct device *d)
2833 {
2834 	struct net_device *dev = dev_get_drvdata(d);
2835 	struct bcmgenet_priv *priv = netdev_priv(dev);
2836 	int ret;
2837 
2838 	if (!netif_running(dev))
2839 		return 0;
2840 
2841 	bcmgenet_netif_stop(dev);
2842 
2843 	phy_suspend(priv->phydev);
2844 
2845 	netif_device_detach(dev);
2846 
2847 	/* Disable MAC receive */
2848 	umac_enable_set(priv, CMD_RX_EN, false);
2849 
2850 	ret = bcmgenet_dma_teardown(priv);
2851 	if (ret)
2852 		return ret;
2853 
2854 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2855 	umac_enable_set(priv, CMD_TX_EN, false);
2856 
2857 	/* tx reclaim */
2858 	bcmgenet_tx_reclaim_all(dev);
2859 	bcmgenet_fini_dma(priv);
2860 
2861 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
2862 	if (device_may_wakeup(d) && priv->wolopts) {
2863 		bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
2864 		clk_prepare_enable(priv->clk_wol);
2865 	}
2866 
2867 	/* Turn off the clocks */
2868 	clk_disable_unprepare(priv->clk);
2869 
2870 	return 0;
2871 }
2872 
2873 static int bcmgenet_resume(struct device *d)
2874 {
2875 	struct net_device *dev = dev_get_drvdata(d);
2876 	struct bcmgenet_priv *priv = netdev_priv(dev);
2877 	unsigned long dma_ctrl;
2878 	int ret;
2879 	u32 reg;
2880 
2881 	if (!netif_running(dev))
2882 		return 0;
2883 
2884 	/* Turn on the clock */
2885 	ret = clk_prepare_enable(priv->clk);
2886 	if (ret)
2887 		return ret;
2888 
2889 	bcmgenet_umac_reset(priv);
2890 
2891 	ret = init_umac(priv);
2892 	if (ret)
2893 		goto out_clk_disable;
2894 
2895 	/* From WOL-enabled suspend, switch to regular clock */
2896 	if (priv->wolopts)
2897 		clk_disable_unprepare(priv->clk_wol);
2898 
2899 	phy_init_hw(priv->phydev);
2900 	/* Speed settings must be restored */
2901 	bcmgenet_mii_config(priv->dev, false);
2902 
2903 	/* disable ethernet MAC while updating its registers */
2904 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2905 
2906 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2907 
2908 	if (phy_is_internal(priv->phydev)) {
2909 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2910 		reg |= EXT_ENERGY_DET_MASK;
2911 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2912 	}
2913 
2914 	if (priv->wolopts)
2915 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2916 
2917 	/* Disable RX/TX DMA and flush TX queues */
2918 	dma_ctrl = bcmgenet_dma_disable(priv);
2919 
2920 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2921 	ret = bcmgenet_init_dma(priv);
2922 	if (ret) {
2923 		netdev_err(dev, "failed to initialize DMA\n");
2924 		goto out_clk_disable;
2925 	}
2926 
2927 	/* Always enable ring 16 - descriptor ring */
2928 	bcmgenet_enable_dma(priv, dma_ctrl);
2929 
2930 	netif_device_attach(dev);
2931 
2932 	phy_resume(priv->phydev);
2933 
2934 	if (priv->eee.eee_enabled)
2935 		bcmgenet_eee_enable_set(dev, true);
2936 
2937 	bcmgenet_netif_start(dev);
2938 
2939 	return 0;
2940 
2941 out_clk_disable:
2942 	clk_disable_unprepare(priv->clk);
2943 	return ret;
2944 }
2945 #endif /* CONFIG_PM_SLEEP */
2946 
2947 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
2948 
2949 static struct platform_driver bcmgenet_driver = {
2950 	.probe	= bcmgenet_probe,
2951 	.remove	= bcmgenet_remove,
2952 	.driver	= {
2953 		.name	= "bcmgenet",
2954 		.of_match_table = bcmgenet_match,
2955 		.pm	= &bcmgenet_pm_ops,
2956 	},
2957 };
2958 module_platform_driver(bcmgenet_driver);
2959 
2960 MODULE_AUTHOR("Broadcom Corporation");
2961 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
2962 MODULE_ALIAS("platform:bcmgenet");
2963 MODULE_LICENSE("GPL");
2964