1 /* 2 * Broadcom GENET (Gigabit Ethernet) controller driver 3 * 4 * Copyright (c) 2014 Broadcom Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10 11 #define pr_fmt(fmt) "bcmgenet: " fmt 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/sched.h> 16 #include <linux/types.h> 17 #include <linux/fcntl.h> 18 #include <linux/interrupt.h> 19 #include <linux/string.h> 20 #include <linux/if_ether.h> 21 #include <linux/init.h> 22 #include <linux/errno.h> 23 #include <linux/delay.h> 24 #include <linux/platform_device.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/pm.h> 27 #include <linux/clk.h> 28 #include <linux/of.h> 29 #include <linux/of_address.h> 30 #include <linux/of_irq.h> 31 #include <linux/of_net.h> 32 #include <linux/of_platform.h> 33 #include <net/arp.h> 34 35 #include <linux/mii.h> 36 #include <linux/ethtool.h> 37 #include <linux/netdevice.h> 38 #include <linux/inetdevice.h> 39 #include <linux/etherdevice.h> 40 #include <linux/skbuff.h> 41 #include <linux/in.h> 42 #include <linux/ip.h> 43 #include <linux/ipv6.h> 44 #include <linux/phy.h> 45 #include <linux/platform_data/bcmgenet.h> 46 47 #include <asm/unaligned.h> 48 49 #include "bcmgenet.h" 50 51 /* Maximum number of hardware queues, downsized if needed */ 52 #define GENET_MAX_MQ_CNT 4 53 54 /* Default highest priority queue for multi queue support */ 55 #define GENET_Q0_PRIORITY 0 56 57 #define GENET_Q16_RX_BD_CNT \ 58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q) 59 #define GENET_Q16_TX_BD_CNT \ 60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q) 61 62 #define RX_BUF_LENGTH 2048 63 #define SKB_ALIGNMENT 32 64 65 /* Tx/Rx DMA register offset, skip 256 descriptors */ 66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd) 67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) 68 69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ 70 TOTAL_DESC * DMA_DESC_SIZE) 71 72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ 73 TOTAL_DESC * DMA_DESC_SIZE) 74 75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, 76 void __iomem *d, u32 value) 77 { 78 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS); 79 } 80 81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv, 82 void __iomem *d) 83 { 84 return __raw_readl(d + DMA_DESC_LENGTH_STATUS); 85 } 86 87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, 88 void __iomem *d, 89 dma_addr_t addr) 90 { 91 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); 92 93 /* Register writes to GISB bus can take couple hundred nanoseconds 94 * and are done for each packet, save these expensive writes unless 95 * the platform is explicitly configured for 64-bits/LPAE. 96 */ 97 #ifdef CONFIG_PHYS_ADDR_T_64BIT 98 if (priv->hw_params->flags & GENET_HAS_40BITS) 99 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); 100 #endif 101 } 102 103 /* Combined address + length/status setter */ 104 static inline void dmadesc_set(struct bcmgenet_priv *priv, 105 void __iomem *d, dma_addr_t addr, u32 val) 106 { 107 dmadesc_set_length_status(priv, d, val); 108 dmadesc_set_addr(priv, d, addr); 109 } 110 111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv, 112 void __iomem *d) 113 { 114 dma_addr_t addr; 115 116 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO); 117 118 /* Register writes to GISB bus can take couple hundred nanoseconds 119 * and are done for each packet, save these expensive writes unless 120 * the platform is explicitly configured for 64-bits/LPAE. 121 */ 122 #ifdef CONFIG_PHYS_ADDR_T_64BIT 123 if (priv->hw_params->flags & GENET_HAS_40BITS) 124 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32; 125 #endif 126 return addr; 127 } 128 129 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" 130 131 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 132 NETIF_MSG_LINK) 133 134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) 135 { 136 if (GENET_IS_V1(priv)) 137 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); 138 else 139 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); 140 } 141 142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 143 { 144 if (GENET_IS_V1(priv)) 145 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); 146 else 147 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); 148 } 149 150 /* These macros are defined to deal with register map change 151 * between GENET1.1 and GENET2. Only those currently being used 152 * by driver are defined. 153 */ 154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) 155 { 156 if (GENET_IS_V1(priv)) 157 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); 158 else 159 return __raw_readl(priv->base + 160 priv->hw_params->tbuf_offset + TBUF_CTRL); 161 } 162 163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 164 { 165 if (GENET_IS_V1(priv)) 166 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); 167 else 168 __raw_writel(val, priv->base + 169 priv->hw_params->tbuf_offset + TBUF_CTRL); 170 } 171 172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) 173 { 174 if (GENET_IS_V1(priv)) 175 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); 176 else 177 return __raw_readl(priv->base + 178 priv->hw_params->tbuf_offset + TBUF_BP_MC); 179 } 180 181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) 182 { 183 if (GENET_IS_V1(priv)) 184 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); 185 else 186 __raw_writel(val, priv->base + 187 priv->hw_params->tbuf_offset + TBUF_BP_MC); 188 } 189 190 /* RX/TX DMA register accessors */ 191 enum dma_reg { 192 DMA_RING_CFG = 0, 193 DMA_CTRL, 194 DMA_STATUS, 195 DMA_SCB_BURST_SIZE, 196 DMA_ARB_CTRL, 197 DMA_PRIORITY_0, 198 DMA_PRIORITY_1, 199 DMA_PRIORITY_2, 200 DMA_INDEX2RING_0, 201 DMA_INDEX2RING_1, 202 DMA_INDEX2RING_2, 203 DMA_INDEX2RING_3, 204 DMA_INDEX2RING_4, 205 DMA_INDEX2RING_5, 206 DMA_INDEX2RING_6, 207 DMA_INDEX2RING_7, 208 }; 209 210 static const u8 bcmgenet_dma_regs_v3plus[] = { 211 [DMA_RING_CFG] = 0x00, 212 [DMA_CTRL] = 0x04, 213 [DMA_STATUS] = 0x08, 214 [DMA_SCB_BURST_SIZE] = 0x0C, 215 [DMA_ARB_CTRL] = 0x2C, 216 [DMA_PRIORITY_0] = 0x30, 217 [DMA_PRIORITY_1] = 0x34, 218 [DMA_PRIORITY_2] = 0x38, 219 [DMA_INDEX2RING_0] = 0x70, 220 [DMA_INDEX2RING_1] = 0x74, 221 [DMA_INDEX2RING_2] = 0x78, 222 [DMA_INDEX2RING_3] = 0x7C, 223 [DMA_INDEX2RING_4] = 0x80, 224 [DMA_INDEX2RING_5] = 0x84, 225 [DMA_INDEX2RING_6] = 0x88, 226 [DMA_INDEX2RING_7] = 0x8C, 227 }; 228 229 static const u8 bcmgenet_dma_regs_v2[] = { 230 [DMA_RING_CFG] = 0x00, 231 [DMA_CTRL] = 0x04, 232 [DMA_STATUS] = 0x08, 233 [DMA_SCB_BURST_SIZE] = 0x0C, 234 [DMA_ARB_CTRL] = 0x30, 235 [DMA_PRIORITY_0] = 0x34, 236 [DMA_PRIORITY_1] = 0x38, 237 [DMA_PRIORITY_2] = 0x3C, 238 }; 239 240 static const u8 bcmgenet_dma_regs_v1[] = { 241 [DMA_CTRL] = 0x00, 242 [DMA_STATUS] = 0x04, 243 [DMA_SCB_BURST_SIZE] = 0x0C, 244 [DMA_ARB_CTRL] = 0x30, 245 [DMA_PRIORITY_0] = 0x34, 246 [DMA_PRIORITY_1] = 0x38, 247 [DMA_PRIORITY_2] = 0x3C, 248 }; 249 250 /* Set at runtime once bcmgenet version is known */ 251 static const u8 *bcmgenet_dma_regs; 252 253 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) 254 { 255 return netdev_priv(dev_get_drvdata(dev)); 256 } 257 258 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, 259 enum dma_reg r) 260 { 261 return __raw_readl(priv->base + GENET_TDMA_REG_OFF + 262 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 263 } 264 265 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, 266 u32 val, enum dma_reg r) 267 { 268 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF + 269 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 270 } 271 272 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, 273 enum dma_reg r) 274 { 275 return __raw_readl(priv->base + GENET_RDMA_REG_OFF + 276 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 277 } 278 279 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, 280 u32 val, enum dma_reg r) 281 { 282 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF + 283 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 284 } 285 286 /* RDMA/TDMA ring registers and accessors 287 * we merge the common fields and just prefix with T/D the registers 288 * having different meaning depending on the direction 289 */ 290 enum dma_ring_reg { 291 TDMA_READ_PTR = 0, 292 RDMA_WRITE_PTR = TDMA_READ_PTR, 293 TDMA_READ_PTR_HI, 294 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, 295 TDMA_CONS_INDEX, 296 RDMA_PROD_INDEX = TDMA_CONS_INDEX, 297 TDMA_PROD_INDEX, 298 RDMA_CONS_INDEX = TDMA_PROD_INDEX, 299 DMA_RING_BUF_SIZE, 300 DMA_START_ADDR, 301 DMA_START_ADDR_HI, 302 DMA_END_ADDR, 303 DMA_END_ADDR_HI, 304 DMA_MBUF_DONE_THRESH, 305 TDMA_FLOW_PERIOD, 306 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, 307 TDMA_WRITE_PTR, 308 RDMA_READ_PTR = TDMA_WRITE_PTR, 309 TDMA_WRITE_PTR_HI, 310 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI 311 }; 312 313 /* GENET v4 supports 40-bits pointer addressing 314 * for obvious reasons the LO and HI word parts 315 * are contiguous, but this offsets the other 316 * registers. 317 */ 318 static const u8 genet_dma_ring_regs_v4[] = { 319 [TDMA_READ_PTR] = 0x00, 320 [TDMA_READ_PTR_HI] = 0x04, 321 [TDMA_CONS_INDEX] = 0x08, 322 [TDMA_PROD_INDEX] = 0x0C, 323 [DMA_RING_BUF_SIZE] = 0x10, 324 [DMA_START_ADDR] = 0x14, 325 [DMA_START_ADDR_HI] = 0x18, 326 [DMA_END_ADDR] = 0x1C, 327 [DMA_END_ADDR_HI] = 0x20, 328 [DMA_MBUF_DONE_THRESH] = 0x24, 329 [TDMA_FLOW_PERIOD] = 0x28, 330 [TDMA_WRITE_PTR] = 0x2C, 331 [TDMA_WRITE_PTR_HI] = 0x30, 332 }; 333 334 static const u8 genet_dma_ring_regs_v123[] = { 335 [TDMA_READ_PTR] = 0x00, 336 [TDMA_CONS_INDEX] = 0x04, 337 [TDMA_PROD_INDEX] = 0x08, 338 [DMA_RING_BUF_SIZE] = 0x0C, 339 [DMA_START_ADDR] = 0x10, 340 [DMA_END_ADDR] = 0x14, 341 [DMA_MBUF_DONE_THRESH] = 0x18, 342 [TDMA_FLOW_PERIOD] = 0x1C, 343 [TDMA_WRITE_PTR] = 0x20, 344 }; 345 346 /* Set at runtime once GENET version is known */ 347 static const u8 *genet_dma_ring_regs; 348 349 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, 350 unsigned int ring, 351 enum dma_ring_reg r) 352 { 353 return __raw_readl(priv->base + GENET_TDMA_REG_OFF + 354 (DMA_RING_SIZE * ring) + 355 genet_dma_ring_regs[r]); 356 } 357 358 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, 359 unsigned int ring, u32 val, 360 enum dma_ring_reg r) 361 { 362 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF + 363 (DMA_RING_SIZE * ring) + 364 genet_dma_ring_regs[r]); 365 } 366 367 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, 368 unsigned int ring, 369 enum dma_ring_reg r) 370 { 371 return __raw_readl(priv->base + GENET_RDMA_REG_OFF + 372 (DMA_RING_SIZE * ring) + 373 genet_dma_ring_regs[r]); 374 } 375 376 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, 377 unsigned int ring, u32 val, 378 enum dma_ring_reg r) 379 { 380 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF + 381 (DMA_RING_SIZE * ring) + 382 genet_dma_ring_regs[r]); 383 } 384 385 static int bcmgenet_get_settings(struct net_device *dev, 386 struct ethtool_cmd *cmd) 387 { 388 struct bcmgenet_priv *priv = netdev_priv(dev); 389 390 if (!netif_running(dev)) 391 return -EINVAL; 392 393 if (!priv->phydev) 394 return -ENODEV; 395 396 return phy_ethtool_gset(priv->phydev, cmd); 397 } 398 399 static int bcmgenet_set_settings(struct net_device *dev, 400 struct ethtool_cmd *cmd) 401 { 402 struct bcmgenet_priv *priv = netdev_priv(dev); 403 404 if (!netif_running(dev)) 405 return -EINVAL; 406 407 if (!priv->phydev) 408 return -ENODEV; 409 410 return phy_ethtool_sset(priv->phydev, cmd); 411 } 412 413 static int bcmgenet_set_rx_csum(struct net_device *dev, 414 netdev_features_t wanted) 415 { 416 struct bcmgenet_priv *priv = netdev_priv(dev); 417 u32 rbuf_chk_ctrl; 418 bool rx_csum_en; 419 420 rx_csum_en = !!(wanted & NETIF_F_RXCSUM); 421 422 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); 423 424 /* enable rx checksumming */ 425 if (rx_csum_en) 426 rbuf_chk_ctrl |= RBUF_RXCHK_EN; 427 else 428 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN; 429 priv->desc_rxchk_en = rx_csum_en; 430 431 /* If UniMAC forwards CRC, we need to skip over it to get 432 * a valid CHK bit to be set in the per-packet status word 433 */ 434 if (rx_csum_en && priv->crc_fwd_en) 435 rbuf_chk_ctrl |= RBUF_SKIP_FCS; 436 else 437 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS; 438 439 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL); 440 441 return 0; 442 } 443 444 static int bcmgenet_set_tx_csum(struct net_device *dev, 445 netdev_features_t wanted) 446 { 447 struct bcmgenet_priv *priv = netdev_priv(dev); 448 bool desc_64b_en; 449 u32 tbuf_ctrl, rbuf_ctrl; 450 451 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv); 452 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 453 454 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 455 456 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */ 457 if (desc_64b_en) { 458 tbuf_ctrl |= RBUF_64B_EN; 459 rbuf_ctrl |= RBUF_64B_EN; 460 } else { 461 tbuf_ctrl &= ~RBUF_64B_EN; 462 rbuf_ctrl &= ~RBUF_64B_EN; 463 } 464 priv->desc_64b_en = desc_64b_en; 465 466 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl); 467 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL); 468 469 return 0; 470 } 471 472 static int bcmgenet_set_features(struct net_device *dev, 473 netdev_features_t features) 474 { 475 netdev_features_t changed = features ^ dev->features; 476 netdev_features_t wanted = dev->wanted_features; 477 int ret = 0; 478 479 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) 480 ret = bcmgenet_set_tx_csum(dev, wanted); 481 if (changed & (NETIF_F_RXCSUM)) 482 ret = bcmgenet_set_rx_csum(dev, wanted); 483 484 return ret; 485 } 486 487 static u32 bcmgenet_get_msglevel(struct net_device *dev) 488 { 489 struct bcmgenet_priv *priv = netdev_priv(dev); 490 491 return priv->msg_enable; 492 } 493 494 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) 495 { 496 struct bcmgenet_priv *priv = netdev_priv(dev); 497 498 priv->msg_enable = level; 499 } 500 501 /* standard ethtool support functions. */ 502 enum bcmgenet_stat_type { 503 BCMGENET_STAT_NETDEV = -1, 504 BCMGENET_STAT_MIB_RX, 505 BCMGENET_STAT_MIB_TX, 506 BCMGENET_STAT_RUNT, 507 BCMGENET_STAT_MISC, 508 BCMGENET_STAT_SOFT, 509 }; 510 511 struct bcmgenet_stats { 512 char stat_string[ETH_GSTRING_LEN]; 513 int stat_sizeof; 514 int stat_offset; 515 enum bcmgenet_stat_type type; 516 /* reg offset from UMAC base for misc counters */ 517 u16 reg_offset; 518 }; 519 520 #define STAT_NETDEV(m) { \ 521 .stat_string = __stringify(m), \ 522 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ 523 .stat_offset = offsetof(struct net_device_stats, m), \ 524 .type = BCMGENET_STAT_NETDEV, \ 525 } 526 527 #define STAT_GENET_MIB(str, m, _type) { \ 528 .stat_string = str, \ 529 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 530 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 531 .type = _type, \ 532 } 533 534 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) 535 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) 536 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) 537 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT) 538 539 #define STAT_GENET_MISC(str, m, offset) { \ 540 .stat_string = str, \ 541 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 542 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 543 .type = BCMGENET_STAT_MISC, \ 544 .reg_offset = offset, \ 545 } 546 547 548 /* There is a 0xC gap between the end of RX and beginning of TX stats and then 549 * between the end of TX stats and the beginning of the RX RUNT 550 */ 551 #define BCMGENET_STAT_OFFSET 0xc 552 553 /* Hardware counters must be kept in sync because the order/offset 554 * is important here (order in structure declaration = order in hardware) 555 */ 556 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { 557 /* general stats */ 558 STAT_NETDEV(rx_packets), 559 STAT_NETDEV(tx_packets), 560 STAT_NETDEV(rx_bytes), 561 STAT_NETDEV(tx_bytes), 562 STAT_NETDEV(rx_errors), 563 STAT_NETDEV(tx_errors), 564 STAT_NETDEV(rx_dropped), 565 STAT_NETDEV(tx_dropped), 566 STAT_NETDEV(multicast), 567 /* UniMAC RSV counters */ 568 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), 569 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), 570 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), 571 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), 572 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), 573 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), 574 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), 575 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), 576 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), 577 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), 578 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), 579 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), 580 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), 581 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), 582 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), 583 STAT_GENET_MIB_RX("rx_control", mib.rx.cf), 584 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), 585 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), 586 STAT_GENET_MIB_RX("rx_align", mib.rx.aln), 587 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), 588 STAT_GENET_MIB_RX("rx_code", mib.rx.cde), 589 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), 590 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), 591 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), 592 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), 593 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), 594 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), 595 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), 596 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), 597 /* UniMAC TSV counters */ 598 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), 599 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), 600 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), 601 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), 602 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), 603 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), 604 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), 605 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), 606 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), 607 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), 608 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), 609 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), 610 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), 611 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), 612 STAT_GENET_MIB_TX("tx_control", mib.tx.cf), 613 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), 614 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), 615 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), 616 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), 617 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), 618 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), 619 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), 620 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), 621 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), 622 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), 623 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), 624 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), 625 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), 626 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), 627 /* UniMAC RUNT counters */ 628 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), 629 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), 630 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), 631 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), 632 /* Misc UniMAC counters */ 633 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, 634 UMAC_RBUF_OVFL_CNT), 635 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT), 636 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), 637 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), 638 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed), 639 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed), 640 }; 641 642 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) 643 644 static void bcmgenet_get_drvinfo(struct net_device *dev, 645 struct ethtool_drvinfo *info) 646 { 647 strlcpy(info->driver, "bcmgenet", sizeof(info->driver)); 648 strlcpy(info->version, "v2.0", sizeof(info->version)); 649 info->n_stats = BCMGENET_STATS_LEN; 650 } 651 652 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) 653 { 654 switch (string_set) { 655 case ETH_SS_STATS: 656 return BCMGENET_STATS_LEN; 657 default: 658 return -EOPNOTSUPP; 659 } 660 } 661 662 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, 663 u8 *data) 664 { 665 int i; 666 667 switch (stringset) { 668 case ETH_SS_STATS: 669 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 670 memcpy(data + i * ETH_GSTRING_LEN, 671 bcmgenet_gstrings_stats[i].stat_string, 672 ETH_GSTRING_LEN); 673 } 674 break; 675 } 676 } 677 678 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) 679 { 680 int i, j = 0; 681 682 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 683 const struct bcmgenet_stats *s; 684 u8 offset = 0; 685 u32 val = 0; 686 char *p; 687 688 s = &bcmgenet_gstrings_stats[i]; 689 switch (s->type) { 690 case BCMGENET_STAT_NETDEV: 691 case BCMGENET_STAT_SOFT: 692 continue; 693 case BCMGENET_STAT_MIB_RX: 694 case BCMGENET_STAT_MIB_TX: 695 case BCMGENET_STAT_RUNT: 696 if (s->type != BCMGENET_STAT_MIB_RX) 697 offset = BCMGENET_STAT_OFFSET; 698 val = bcmgenet_umac_readl(priv, 699 UMAC_MIB_START + j + offset); 700 break; 701 case BCMGENET_STAT_MISC: 702 val = bcmgenet_umac_readl(priv, s->reg_offset); 703 /* clear if overflowed */ 704 if (val == ~0) 705 bcmgenet_umac_writel(priv, 0, s->reg_offset); 706 break; 707 } 708 709 j += s->stat_sizeof; 710 p = (char *)priv + s->stat_offset; 711 *(u32 *)p = val; 712 } 713 } 714 715 static void bcmgenet_get_ethtool_stats(struct net_device *dev, 716 struct ethtool_stats *stats, 717 u64 *data) 718 { 719 struct bcmgenet_priv *priv = netdev_priv(dev); 720 int i; 721 722 if (netif_running(dev)) 723 bcmgenet_update_mib_counters(priv); 724 725 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 726 const struct bcmgenet_stats *s; 727 char *p; 728 729 s = &bcmgenet_gstrings_stats[i]; 730 if (s->type == BCMGENET_STAT_NETDEV) 731 p = (char *)&dev->stats; 732 else 733 p = (char *)priv; 734 p += s->stat_offset; 735 data[i] = *(u32 *)p; 736 } 737 } 738 739 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable) 740 { 741 struct bcmgenet_priv *priv = netdev_priv(dev); 742 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL; 743 u32 reg; 744 745 if (enable && !priv->clk_eee_enabled) { 746 clk_prepare_enable(priv->clk_eee); 747 priv->clk_eee_enabled = true; 748 } 749 750 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL); 751 if (enable) 752 reg |= EEE_EN; 753 else 754 reg &= ~EEE_EN; 755 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL); 756 757 /* Enable EEE and switch to a 27Mhz clock automatically */ 758 reg = __raw_readl(priv->base + off); 759 if (enable) 760 reg |= TBUF_EEE_EN | TBUF_PM_EN; 761 else 762 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN); 763 __raw_writel(reg, priv->base + off); 764 765 /* Do the same for thing for RBUF */ 766 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL); 767 if (enable) 768 reg |= RBUF_EEE_EN | RBUF_PM_EN; 769 else 770 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN); 771 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL); 772 773 if (!enable && priv->clk_eee_enabled) { 774 clk_disable_unprepare(priv->clk_eee); 775 priv->clk_eee_enabled = false; 776 } 777 778 priv->eee.eee_enabled = enable; 779 priv->eee.eee_active = enable; 780 } 781 782 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e) 783 { 784 struct bcmgenet_priv *priv = netdev_priv(dev); 785 struct ethtool_eee *p = &priv->eee; 786 787 if (GENET_IS_V1(priv)) 788 return -EOPNOTSUPP; 789 790 e->eee_enabled = p->eee_enabled; 791 e->eee_active = p->eee_active; 792 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER); 793 794 return phy_ethtool_get_eee(priv->phydev, e); 795 } 796 797 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e) 798 { 799 struct bcmgenet_priv *priv = netdev_priv(dev); 800 struct ethtool_eee *p = &priv->eee; 801 int ret = 0; 802 803 if (GENET_IS_V1(priv)) 804 return -EOPNOTSUPP; 805 806 p->eee_enabled = e->eee_enabled; 807 808 if (!p->eee_enabled) { 809 bcmgenet_eee_enable_set(dev, false); 810 } else { 811 ret = phy_init_eee(priv->phydev, 0); 812 if (ret) { 813 netif_err(priv, hw, dev, "EEE initialization failed\n"); 814 return ret; 815 } 816 817 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER); 818 bcmgenet_eee_enable_set(dev, true); 819 } 820 821 return phy_ethtool_set_eee(priv->phydev, e); 822 } 823 824 static int bcmgenet_nway_reset(struct net_device *dev) 825 { 826 struct bcmgenet_priv *priv = netdev_priv(dev); 827 828 return genphy_restart_aneg(priv->phydev); 829 } 830 831 /* standard ethtool support functions. */ 832 static struct ethtool_ops bcmgenet_ethtool_ops = { 833 .get_strings = bcmgenet_get_strings, 834 .get_sset_count = bcmgenet_get_sset_count, 835 .get_ethtool_stats = bcmgenet_get_ethtool_stats, 836 .get_settings = bcmgenet_get_settings, 837 .set_settings = bcmgenet_set_settings, 838 .get_drvinfo = bcmgenet_get_drvinfo, 839 .get_link = ethtool_op_get_link, 840 .get_msglevel = bcmgenet_get_msglevel, 841 .set_msglevel = bcmgenet_set_msglevel, 842 .get_wol = bcmgenet_get_wol, 843 .set_wol = bcmgenet_set_wol, 844 .get_eee = bcmgenet_get_eee, 845 .set_eee = bcmgenet_set_eee, 846 .nway_reset = bcmgenet_nway_reset, 847 }; 848 849 /* Power down the unimac, based on mode. */ 850 static int bcmgenet_power_down(struct bcmgenet_priv *priv, 851 enum bcmgenet_power_mode mode) 852 { 853 int ret = 0; 854 u32 reg; 855 856 switch (mode) { 857 case GENET_POWER_CABLE_SENSE: 858 phy_detach(priv->phydev); 859 break; 860 861 case GENET_POWER_WOL_MAGIC: 862 ret = bcmgenet_wol_power_down_cfg(priv, mode); 863 break; 864 865 case GENET_POWER_PASSIVE: 866 /* Power down LED */ 867 if (priv->hw_params->flags & GENET_HAS_EXT) { 868 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 869 reg |= (EXT_PWR_DOWN_PHY | 870 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 871 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 872 873 bcmgenet_phy_power_set(priv->dev, false); 874 } 875 break; 876 default: 877 break; 878 } 879 880 return 0; 881 } 882 883 static void bcmgenet_power_up(struct bcmgenet_priv *priv, 884 enum bcmgenet_power_mode mode) 885 { 886 u32 reg; 887 888 if (!(priv->hw_params->flags & GENET_HAS_EXT)) 889 return; 890 891 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 892 893 switch (mode) { 894 case GENET_POWER_PASSIVE: 895 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY | 896 EXT_PWR_DOWN_BIAS); 897 /* fallthrough */ 898 case GENET_POWER_CABLE_SENSE: 899 /* enable APD */ 900 reg |= EXT_PWR_DN_EN_LD; 901 break; 902 case GENET_POWER_WOL_MAGIC: 903 bcmgenet_wol_power_up_cfg(priv, mode); 904 return; 905 default: 906 break; 907 } 908 909 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 910 911 if (mode == GENET_POWER_PASSIVE) 912 bcmgenet_mii_reset(priv->dev); 913 } 914 915 /* ioctl handle special commands that are not present in ethtool. */ 916 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 917 { 918 struct bcmgenet_priv *priv = netdev_priv(dev); 919 int val = 0; 920 921 if (!netif_running(dev)) 922 return -EINVAL; 923 924 switch (cmd) { 925 case SIOCGMIIPHY: 926 case SIOCGMIIREG: 927 case SIOCSMIIREG: 928 if (!priv->phydev) 929 val = -ENODEV; 930 else 931 val = phy_mii_ioctl(priv->phydev, rq, cmd); 932 break; 933 934 default: 935 val = -EINVAL; 936 break; 937 } 938 939 return val; 940 } 941 942 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, 943 struct bcmgenet_tx_ring *ring) 944 { 945 struct enet_cb *tx_cb_ptr; 946 947 tx_cb_ptr = ring->cbs; 948 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 949 950 /* Advancing local write pointer */ 951 if (ring->write_ptr == ring->end_ptr) 952 ring->write_ptr = ring->cb_ptr; 953 else 954 ring->write_ptr++; 955 956 return tx_cb_ptr; 957 } 958 959 /* Simple helper to free a control block's resources */ 960 static void bcmgenet_free_cb(struct enet_cb *cb) 961 { 962 dev_kfree_skb_any(cb->skb); 963 cb->skb = NULL; 964 dma_unmap_addr_set(cb, dma_addr, 0); 965 } 966 967 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring) 968 { 969 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 970 INTRL2_CPU_MASK_SET); 971 } 972 973 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring) 974 { 975 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 976 INTRL2_CPU_MASK_CLEAR); 977 } 978 979 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring) 980 { 981 bcmgenet_intrl2_1_writel(ring->priv, 982 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 983 INTRL2_CPU_MASK_SET); 984 } 985 986 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring) 987 { 988 bcmgenet_intrl2_1_writel(ring->priv, 989 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 990 INTRL2_CPU_MASK_CLEAR); 991 } 992 993 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring) 994 { 995 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 996 INTRL2_CPU_MASK_SET); 997 } 998 999 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring) 1000 { 1001 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1002 INTRL2_CPU_MASK_CLEAR); 1003 } 1004 1005 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring) 1006 { 1007 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1008 INTRL2_CPU_MASK_CLEAR); 1009 } 1010 1011 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring) 1012 { 1013 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1014 INTRL2_CPU_MASK_SET); 1015 } 1016 1017 /* Unlocked version of the reclaim routine */ 1018 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev, 1019 struct bcmgenet_tx_ring *ring) 1020 { 1021 struct bcmgenet_priv *priv = netdev_priv(dev); 1022 struct enet_cb *tx_cb_ptr; 1023 struct netdev_queue *txq; 1024 unsigned int pkts_compl = 0; 1025 unsigned int c_index; 1026 unsigned int txbds_ready; 1027 unsigned int txbds_processed = 0; 1028 1029 /* Compute how many buffers are transmitted since last xmit call */ 1030 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 1031 c_index &= DMA_C_INDEX_MASK; 1032 1033 if (likely(c_index >= ring->c_index)) 1034 txbds_ready = c_index - ring->c_index; 1035 else 1036 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index; 1037 1038 netif_dbg(priv, tx_done, dev, 1039 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n", 1040 __func__, ring->index, ring->c_index, c_index, txbds_ready); 1041 1042 /* Reclaim transmitted buffers */ 1043 while (txbds_processed < txbds_ready) { 1044 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr]; 1045 if (tx_cb_ptr->skb) { 1046 pkts_compl++; 1047 dev->stats.tx_packets++; 1048 dev->stats.tx_bytes += tx_cb_ptr->skb->len; 1049 dma_unmap_single(&dev->dev, 1050 dma_unmap_addr(tx_cb_ptr, dma_addr), 1051 tx_cb_ptr->skb->len, 1052 DMA_TO_DEVICE); 1053 bcmgenet_free_cb(tx_cb_ptr); 1054 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) { 1055 dev->stats.tx_bytes += 1056 dma_unmap_len(tx_cb_ptr, dma_len); 1057 dma_unmap_page(&dev->dev, 1058 dma_unmap_addr(tx_cb_ptr, dma_addr), 1059 dma_unmap_len(tx_cb_ptr, dma_len), 1060 DMA_TO_DEVICE); 1061 dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0); 1062 } 1063 1064 txbds_processed++; 1065 if (likely(ring->clean_ptr < ring->end_ptr)) 1066 ring->clean_ptr++; 1067 else 1068 ring->clean_ptr = ring->cb_ptr; 1069 } 1070 1071 ring->free_bds += txbds_processed; 1072 ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK; 1073 1074 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) { 1075 txq = netdev_get_tx_queue(dev, ring->queue); 1076 if (netif_tx_queue_stopped(txq)) 1077 netif_tx_wake_queue(txq); 1078 } 1079 1080 return pkts_compl; 1081 } 1082 1083 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev, 1084 struct bcmgenet_tx_ring *ring) 1085 { 1086 unsigned int released; 1087 unsigned long flags; 1088 1089 spin_lock_irqsave(&ring->lock, flags); 1090 released = __bcmgenet_tx_reclaim(dev, ring); 1091 spin_unlock_irqrestore(&ring->lock, flags); 1092 1093 return released; 1094 } 1095 1096 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget) 1097 { 1098 struct bcmgenet_tx_ring *ring = 1099 container_of(napi, struct bcmgenet_tx_ring, napi); 1100 unsigned int work_done = 0; 1101 1102 work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring); 1103 1104 if (work_done == 0) { 1105 napi_complete(napi); 1106 ring->int_enable(ring); 1107 1108 return 0; 1109 } 1110 1111 return budget; 1112 } 1113 1114 static void bcmgenet_tx_reclaim_all(struct net_device *dev) 1115 { 1116 struct bcmgenet_priv *priv = netdev_priv(dev); 1117 int i; 1118 1119 if (netif_is_multiqueue(dev)) { 1120 for (i = 0; i < priv->hw_params->tx_queues; i++) 1121 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); 1122 } 1123 1124 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); 1125 } 1126 1127 /* Transmits a single SKB (either head of a fragment or a single SKB) 1128 * caller must hold priv->lock 1129 */ 1130 static int bcmgenet_xmit_single(struct net_device *dev, 1131 struct sk_buff *skb, 1132 u16 dma_desc_flags, 1133 struct bcmgenet_tx_ring *ring) 1134 { 1135 struct bcmgenet_priv *priv = netdev_priv(dev); 1136 struct device *kdev = &priv->pdev->dev; 1137 struct enet_cb *tx_cb_ptr; 1138 unsigned int skb_len; 1139 dma_addr_t mapping; 1140 u32 length_status; 1141 int ret; 1142 1143 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 1144 1145 if (unlikely(!tx_cb_ptr)) 1146 BUG(); 1147 1148 tx_cb_ptr->skb = skb; 1149 1150 skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb); 1151 1152 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE); 1153 ret = dma_mapping_error(kdev, mapping); 1154 if (ret) { 1155 priv->mib.tx_dma_failed++; 1156 netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); 1157 dev_kfree_skb(skb); 1158 return ret; 1159 } 1160 1161 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 1162 dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len); 1163 length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags | 1164 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) | 1165 DMA_TX_APPEND_CRC; 1166 1167 if (skb->ip_summed == CHECKSUM_PARTIAL) 1168 length_status |= DMA_TX_DO_CSUM; 1169 1170 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status); 1171 1172 return 0; 1173 } 1174 1175 /* Transmit a SKB fragment */ 1176 static int bcmgenet_xmit_frag(struct net_device *dev, 1177 skb_frag_t *frag, 1178 u16 dma_desc_flags, 1179 struct bcmgenet_tx_ring *ring) 1180 { 1181 struct bcmgenet_priv *priv = netdev_priv(dev); 1182 struct device *kdev = &priv->pdev->dev; 1183 struct enet_cb *tx_cb_ptr; 1184 dma_addr_t mapping; 1185 int ret; 1186 1187 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 1188 1189 if (unlikely(!tx_cb_ptr)) 1190 BUG(); 1191 tx_cb_ptr->skb = NULL; 1192 1193 mapping = skb_frag_dma_map(kdev, frag, 0, 1194 skb_frag_size(frag), DMA_TO_DEVICE); 1195 ret = dma_mapping_error(kdev, mapping); 1196 if (ret) { 1197 priv->mib.tx_dma_failed++; 1198 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n", 1199 __func__); 1200 return ret; 1201 } 1202 1203 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 1204 dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size); 1205 1206 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, 1207 (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags | 1208 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT)); 1209 1210 return 0; 1211 } 1212 1213 /* Reallocate the SKB to put enough headroom in front of it and insert 1214 * the transmit checksum offsets in the descriptors 1215 */ 1216 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev, 1217 struct sk_buff *skb) 1218 { 1219 struct status_64 *status = NULL; 1220 struct sk_buff *new_skb; 1221 u16 offset; 1222 u8 ip_proto; 1223 u16 ip_ver; 1224 u32 tx_csum_info; 1225 1226 if (unlikely(skb_headroom(skb) < sizeof(*status))) { 1227 /* If 64 byte status block enabled, must make sure skb has 1228 * enough headroom for us to insert 64B status block. 1229 */ 1230 new_skb = skb_realloc_headroom(skb, sizeof(*status)); 1231 dev_kfree_skb(skb); 1232 if (!new_skb) { 1233 dev->stats.tx_dropped++; 1234 return NULL; 1235 } 1236 skb = new_skb; 1237 } 1238 1239 skb_push(skb, sizeof(*status)); 1240 status = (struct status_64 *)skb->data; 1241 1242 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1243 ip_ver = htons(skb->protocol); 1244 switch (ip_ver) { 1245 case ETH_P_IP: 1246 ip_proto = ip_hdr(skb)->protocol; 1247 break; 1248 case ETH_P_IPV6: 1249 ip_proto = ipv6_hdr(skb)->nexthdr; 1250 break; 1251 default: 1252 return skb; 1253 } 1254 1255 offset = skb_checksum_start_offset(skb) - sizeof(*status); 1256 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | 1257 (offset + skb->csum_offset); 1258 1259 /* Set the length valid bit for TCP and UDP and just set 1260 * the special UDP flag for IPv4, else just set to 0. 1261 */ 1262 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) { 1263 tx_csum_info |= STATUS_TX_CSUM_LV; 1264 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP) 1265 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; 1266 } else { 1267 tx_csum_info = 0; 1268 } 1269 1270 status->tx_csum_info = tx_csum_info; 1271 } 1272 1273 return skb; 1274 } 1275 1276 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) 1277 { 1278 struct bcmgenet_priv *priv = netdev_priv(dev); 1279 struct bcmgenet_tx_ring *ring = NULL; 1280 struct netdev_queue *txq; 1281 unsigned long flags = 0; 1282 int nr_frags, index; 1283 u16 dma_desc_flags; 1284 int ret; 1285 int i; 1286 1287 index = skb_get_queue_mapping(skb); 1288 /* Mapping strategy: 1289 * queue_mapping = 0, unclassified, packet xmited through ring16 1290 * queue_mapping = 1, goes to ring 0. (highest priority queue 1291 * queue_mapping = 2, goes to ring 1. 1292 * queue_mapping = 3, goes to ring 2. 1293 * queue_mapping = 4, goes to ring 3. 1294 */ 1295 if (index == 0) 1296 index = DESC_INDEX; 1297 else 1298 index -= 1; 1299 1300 nr_frags = skb_shinfo(skb)->nr_frags; 1301 ring = &priv->tx_rings[index]; 1302 txq = netdev_get_tx_queue(dev, ring->queue); 1303 1304 spin_lock_irqsave(&ring->lock, flags); 1305 if (ring->free_bds <= nr_frags + 1) { 1306 netif_tx_stop_queue(txq); 1307 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n", 1308 __func__, index, ring->queue); 1309 ret = NETDEV_TX_BUSY; 1310 goto out; 1311 } 1312 1313 if (skb_padto(skb, ETH_ZLEN)) { 1314 ret = NETDEV_TX_OK; 1315 goto out; 1316 } 1317 1318 /* set the SKB transmit checksum */ 1319 if (priv->desc_64b_en) { 1320 skb = bcmgenet_put_tx_csum(dev, skb); 1321 if (!skb) { 1322 ret = NETDEV_TX_OK; 1323 goto out; 1324 } 1325 } 1326 1327 dma_desc_flags = DMA_SOP; 1328 if (nr_frags == 0) 1329 dma_desc_flags |= DMA_EOP; 1330 1331 /* Transmit single SKB or head of fragment list */ 1332 ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring); 1333 if (ret) { 1334 ret = NETDEV_TX_OK; 1335 goto out; 1336 } 1337 1338 /* xmit fragment */ 1339 for (i = 0; i < nr_frags; i++) { 1340 ret = bcmgenet_xmit_frag(dev, 1341 &skb_shinfo(skb)->frags[i], 1342 (i == nr_frags - 1) ? DMA_EOP : 0, 1343 ring); 1344 if (ret) { 1345 ret = NETDEV_TX_OK; 1346 goto out; 1347 } 1348 } 1349 1350 skb_tx_timestamp(skb); 1351 1352 /* Decrement total BD count and advance our write pointer */ 1353 ring->free_bds -= nr_frags + 1; 1354 ring->prod_index += nr_frags + 1; 1355 ring->prod_index &= DMA_P_INDEX_MASK; 1356 1357 if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) 1358 netif_tx_stop_queue(txq); 1359 1360 if (!skb->xmit_more || netif_xmit_stopped(txq)) 1361 /* Packets are ready, update producer index */ 1362 bcmgenet_tdma_ring_writel(priv, ring->index, 1363 ring->prod_index, TDMA_PROD_INDEX); 1364 out: 1365 spin_unlock_irqrestore(&ring->lock, flags); 1366 1367 return ret; 1368 } 1369 1370 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv, 1371 struct enet_cb *cb) 1372 { 1373 struct device *kdev = &priv->pdev->dev; 1374 struct sk_buff *skb; 1375 struct sk_buff *rx_skb; 1376 dma_addr_t mapping; 1377 1378 /* Allocate a new Rx skb */ 1379 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT); 1380 if (!skb) { 1381 priv->mib.alloc_rx_buff_failed++; 1382 netif_err(priv, rx_err, priv->dev, 1383 "%s: Rx skb allocation failed\n", __func__); 1384 return NULL; 1385 } 1386 1387 /* DMA-map the new Rx skb */ 1388 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, 1389 DMA_FROM_DEVICE); 1390 if (dma_mapping_error(kdev, mapping)) { 1391 priv->mib.rx_dma_failed++; 1392 dev_kfree_skb_any(skb); 1393 netif_err(priv, rx_err, priv->dev, 1394 "%s: Rx skb DMA mapping failed\n", __func__); 1395 return NULL; 1396 } 1397 1398 /* Grab the current Rx skb from the ring and DMA-unmap it */ 1399 rx_skb = cb->skb; 1400 if (likely(rx_skb)) 1401 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr), 1402 priv->rx_buf_len, DMA_FROM_DEVICE); 1403 1404 /* Put the new Rx skb on the ring */ 1405 cb->skb = skb; 1406 dma_unmap_addr_set(cb, dma_addr, mapping); 1407 dmadesc_set_addr(priv, cb->bd_addr, mapping); 1408 1409 /* Return the current Rx skb to caller */ 1410 return rx_skb; 1411 } 1412 1413 /* bcmgenet_desc_rx - descriptor based rx process. 1414 * this could be called from bottom half, or from NAPI polling method. 1415 */ 1416 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring, 1417 unsigned int budget) 1418 { 1419 struct bcmgenet_priv *priv = ring->priv; 1420 struct net_device *dev = priv->dev; 1421 struct enet_cb *cb; 1422 struct sk_buff *skb; 1423 u32 dma_length_status; 1424 unsigned long dma_flag; 1425 int len; 1426 unsigned int rxpktprocessed = 0, rxpkttoprocess; 1427 unsigned int p_index; 1428 unsigned int discards; 1429 unsigned int chksum_ok = 0; 1430 1431 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX); 1432 1433 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) & 1434 DMA_P_INDEX_DISCARD_CNT_MASK; 1435 if (discards > ring->old_discards) { 1436 discards = discards - ring->old_discards; 1437 dev->stats.rx_missed_errors += discards; 1438 dev->stats.rx_errors += discards; 1439 ring->old_discards += discards; 1440 1441 /* Clear HW register when we reach 75% of maximum 0xFFFF */ 1442 if (ring->old_discards >= 0xC000) { 1443 ring->old_discards = 0; 1444 bcmgenet_rdma_ring_writel(priv, ring->index, 0, 1445 RDMA_PROD_INDEX); 1446 } 1447 } 1448 1449 p_index &= DMA_P_INDEX_MASK; 1450 1451 if (likely(p_index >= ring->c_index)) 1452 rxpkttoprocess = p_index - ring->c_index; 1453 else 1454 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index + 1455 p_index; 1456 1457 netif_dbg(priv, rx_status, dev, 1458 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); 1459 1460 while ((rxpktprocessed < rxpkttoprocess) && 1461 (rxpktprocessed < budget)) { 1462 cb = &priv->rx_cbs[ring->read_ptr]; 1463 skb = bcmgenet_rx_refill(priv, cb); 1464 1465 if (unlikely(!skb)) { 1466 dev->stats.rx_dropped++; 1467 goto next; 1468 } 1469 1470 if (!priv->desc_64b_en) { 1471 dma_length_status = 1472 dmadesc_get_length_status(priv, cb->bd_addr); 1473 } else { 1474 struct status_64 *status; 1475 1476 status = (struct status_64 *)skb->data; 1477 dma_length_status = status->length_status; 1478 } 1479 1480 /* DMA flags and length are still valid no matter how 1481 * we got the Receive Status Vector (64B RSB or register) 1482 */ 1483 dma_flag = dma_length_status & 0xffff; 1484 len = dma_length_status >> DMA_BUFLENGTH_SHIFT; 1485 1486 netif_dbg(priv, rx_status, dev, 1487 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", 1488 __func__, p_index, ring->c_index, 1489 ring->read_ptr, dma_length_status); 1490 1491 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { 1492 netif_err(priv, rx_status, dev, 1493 "dropping fragmented packet!\n"); 1494 dev->stats.rx_errors++; 1495 dev_kfree_skb_any(skb); 1496 goto next; 1497 } 1498 1499 /* report errors */ 1500 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | 1501 DMA_RX_OV | 1502 DMA_RX_NO | 1503 DMA_RX_LG | 1504 DMA_RX_RXER))) { 1505 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", 1506 (unsigned int)dma_flag); 1507 if (dma_flag & DMA_RX_CRC_ERROR) 1508 dev->stats.rx_crc_errors++; 1509 if (dma_flag & DMA_RX_OV) 1510 dev->stats.rx_over_errors++; 1511 if (dma_flag & DMA_RX_NO) 1512 dev->stats.rx_frame_errors++; 1513 if (dma_flag & DMA_RX_LG) 1514 dev->stats.rx_length_errors++; 1515 dev->stats.rx_errors++; 1516 dev_kfree_skb_any(skb); 1517 goto next; 1518 } /* error packet */ 1519 1520 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) && 1521 priv->desc_rxchk_en; 1522 1523 skb_put(skb, len); 1524 if (priv->desc_64b_en) { 1525 skb_pull(skb, 64); 1526 len -= 64; 1527 } 1528 1529 if (likely(chksum_ok)) 1530 skb->ip_summed = CHECKSUM_UNNECESSARY; 1531 1532 /* remove hardware 2bytes added for IP alignment */ 1533 skb_pull(skb, 2); 1534 len -= 2; 1535 1536 if (priv->crc_fwd_en) { 1537 skb_trim(skb, len - ETH_FCS_LEN); 1538 len -= ETH_FCS_LEN; 1539 } 1540 1541 /*Finish setting up the received SKB and send it to the kernel*/ 1542 skb->protocol = eth_type_trans(skb, priv->dev); 1543 dev->stats.rx_packets++; 1544 dev->stats.rx_bytes += len; 1545 if (dma_flag & DMA_RX_MULT) 1546 dev->stats.multicast++; 1547 1548 /* Notify kernel */ 1549 napi_gro_receive(&ring->napi, skb); 1550 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); 1551 1552 next: 1553 rxpktprocessed++; 1554 if (likely(ring->read_ptr < ring->end_ptr)) 1555 ring->read_ptr++; 1556 else 1557 ring->read_ptr = ring->cb_ptr; 1558 1559 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK; 1560 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX); 1561 } 1562 1563 return rxpktprocessed; 1564 } 1565 1566 /* Rx NAPI polling method */ 1567 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget) 1568 { 1569 struct bcmgenet_rx_ring *ring = container_of(napi, 1570 struct bcmgenet_rx_ring, napi); 1571 unsigned int work_done; 1572 1573 work_done = bcmgenet_desc_rx(ring, budget); 1574 1575 if (work_done < budget) { 1576 napi_complete(napi); 1577 ring->int_enable(ring); 1578 } 1579 1580 return work_done; 1581 } 1582 1583 /* Assign skb to RX DMA descriptor. */ 1584 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv, 1585 struct bcmgenet_rx_ring *ring) 1586 { 1587 struct enet_cb *cb; 1588 struct sk_buff *skb; 1589 int i; 1590 1591 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 1592 1593 /* loop here for each buffer needing assign */ 1594 for (i = 0; i < ring->size; i++) { 1595 cb = ring->cbs + i; 1596 skb = bcmgenet_rx_refill(priv, cb); 1597 if (skb) 1598 dev_kfree_skb_any(skb); 1599 if (!cb->skb) 1600 return -ENOMEM; 1601 } 1602 1603 return 0; 1604 } 1605 1606 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) 1607 { 1608 struct enet_cb *cb; 1609 int i; 1610 1611 for (i = 0; i < priv->num_rx_bds; i++) { 1612 cb = &priv->rx_cbs[i]; 1613 1614 if (dma_unmap_addr(cb, dma_addr)) { 1615 dma_unmap_single(&priv->dev->dev, 1616 dma_unmap_addr(cb, dma_addr), 1617 priv->rx_buf_len, DMA_FROM_DEVICE); 1618 dma_unmap_addr_set(cb, dma_addr, 0); 1619 } 1620 1621 if (cb->skb) 1622 bcmgenet_free_cb(cb); 1623 } 1624 } 1625 1626 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable) 1627 { 1628 u32 reg; 1629 1630 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 1631 if (enable) 1632 reg |= mask; 1633 else 1634 reg &= ~mask; 1635 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 1636 1637 /* UniMAC stops on a packet boundary, wait for a full-size packet 1638 * to be processed 1639 */ 1640 if (enable == 0) 1641 usleep_range(1000, 2000); 1642 } 1643 1644 static int reset_umac(struct bcmgenet_priv *priv) 1645 { 1646 struct device *kdev = &priv->pdev->dev; 1647 unsigned int timeout = 0; 1648 u32 reg; 1649 1650 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ 1651 bcmgenet_rbuf_ctrl_set(priv, 0); 1652 udelay(10); 1653 1654 /* disable MAC while updating its registers */ 1655 bcmgenet_umac_writel(priv, 0, UMAC_CMD); 1656 1657 /* issue soft reset, wait for it to complete */ 1658 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD); 1659 while (timeout++ < 1000) { 1660 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 1661 if (!(reg & CMD_SW_RESET)) 1662 return 0; 1663 1664 udelay(1); 1665 } 1666 1667 if (timeout == 1000) { 1668 dev_err(kdev, 1669 "timeout waiting for MAC to come out of reset\n"); 1670 return -ETIMEDOUT; 1671 } 1672 1673 return 0; 1674 } 1675 1676 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv) 1677 { 1678 /* Mask all interrupts.*/ 1679 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 1680 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 1681 bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); 1682 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 1683 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 1684 bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); 1685 } 1686 1687 static int init_umac(struct bcmgenet_priv *priv) 1688 { 1689 struct device *kdev = &priv->pdev->dev; 1690 int ret; 1691 u32 reg; 1692 u32 int0_enable = 0; 1693 u32 int1_enable = 0; 1694 int i; 1695 1696 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); 1697 1698 ret = reset_umac(priv); 1699 if (ret) 1700 return ret; 1701 1702 bcmgenet_umac_writel(priv, 0, UMAC_CMD); 1703 /* clear tx/rx counter */ 1704 bcmgenet_umac_writel(priv, 1705 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, 1706 UMAC_MIB_CTRL); 1707 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); 1708 1709 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); 1710 1711 /* init rx registers, enable ip header optimization */ 1712 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 1713 reg |= RBUF_ALIGN_2B; 1714 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); 1715 1716 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) 1717 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); 1718 1719 bcmgenet_intr_disable(priv); 1720 1721 /* Enable Rx default queue 16 interrupts */ 1722 int0_enable |= UMAC_IRQ_RXDMA_DONE; 1723 1724 /* Enable Tx default queue 16 interrupts */ 1725 int0_enable |= UMAC_IRQ_TXDMA_DONE; 1726 1727 /* Monitor cable plug/unplugged event for internal PHY */ 1728 if (phy_is_internal(priv->phydev)) { 1729 int0_enable |= UMAC_IRQ_LINK_EVENT; 1730 } else if (priv->ext_phy) { 1731 int0_enable |= UMAC_IRQ_LINK_EVENT; 1732 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 1733 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) 1734 int0_enable |= UMAC_IRQ_LINK_EVENT; 1735 1736 reg = bcmgenet_bp_mc_get(priv); 1737 reg |= BIT(priv->hw_params->bp_in_en_shift); 1738 1739 /* bp_mask: back pressure mask */ 1740 if (netif_is_multiqueue(priv->dev)) 1741 reg |= priv->hw_params->bp_in_mask; 1742 else 1743 reg &= ~priv->hw_params->bp_in_mask; 1744 bcmgenet_bp_mc_set(priv, reg); 1745 } 1746 1747 /* Enable MDIO interrupts on GENET v3+ */ 1748 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) 1749 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 1750 1751 /* Enable Rx priority queue interrupts */ 1752 for (i = 0; i < priv->hw_params->rx_queues; ++i) 1753 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i)); 1754 1755 /* Enable Tx priority queue interrupts */ 1756 for (i = 0; i < priv->hw_params->tx_queues; ++i) 1757 int1_enable |= (1 << i); 1758 1759 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 1760 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 1761 1762 /* Enable rx/tx engine.*/ 1763 dev_dbg(kdev, "done init umac\n"); 1764 1765 return 0; 1766 } 1767 1768 /* Initialize a Tx ring along with corresponding hardware registers */ 1769 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, 1770 unsigned int index, unsigned int size, 1771 unsigned int start_ptr, unsigned int end_ptr) 1772 { 1773 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; 1774 u32 words_per_bd = WORDS_PER_BD(priv); 1775 u32 flow_period_val = 0; 1776 1777 spin_lock_init(&ring->lock); 1778 ring->priv = priv; 1779 ring->index = index; 1780 if (index == DESC_INDEX) { 1781 ring->queue = 0; 1782 ring->int_enable = bcmgenet_tx_ring16_int_enable; 1783 ring->int_disable = bcmgenet_tx_ring16_int_disable; 1784 } else { 1785 ring->queue = index + 1; 1786 ring->int_enable = bcmgenet_tx_ring_int_enable; 1787 ring->int_disable = bcmgenet_tx_ring_int_disable; 1788 } 1789 ring->cbs = priv->tx_cbs + start_ptr; 1790 ring->size = size; 1791 ring->clean_ptr = start_ptr; 1792 ring->c_index = 0; 1793 ring->free_bds = size; 1794 ring->write_ptr = start_ptr; 1795 ring->cb_ptr = start_ptr; 1796 ring->end_ptr = end_ptr - 1; 1797 ring->prod_index = 0; 1798 1799 /* Set flow period for ring != 16 */ 1800 if (index != DESC_INDEX) 1801 flow_period_val = ENET_MAX_MTU_SIZE << 16; 1802 1803 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); 1804 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); 1805 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 1806 /* Disable rate control for now */ 1807 bcmgenet_tdma_ring_writel(priv, index, flow_period_val, 1808 TDMA_FLOW_PERIOD); 1809 bcmgenet_tdma_ring_writel(priv, index, 1810 ((size << DMA_RING_SIZE_SHIFT) | 1811 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 1812 1813 /* Set start and end address, read and write pointers */ 1814 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 1815 DMA_START_ADDR); 1816 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 1817 TDMA_READ_PTR); 1818 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 1819 TDMA_WRITE_PTR); 1820 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 1821 DMA_END_ADDR); 1822 } 1823 1824 /* Initialize a RDMA ring */ 1825 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, 1826 unsigned int index, unsigned int size, 1827 unsigned int start_ptr, unsigned int end_ptr) 1828 { 1829 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index]; 1830 u32 words_per_bd = WORDS_PER_BD(priv); 1831 int ret; 1832 1833 ring->priv = priv; 1834 ring->index = index; 1835 if (index == DESC_INDEX) { 1836 ring->int_enable = bcmgenet_rx_ring16_int_enable; 1837 ring->int_disable = bcmgenet_rx_ring16_int_disable; 1838 } else { 1839 ring->int_enable = bcmgenet_rx_ring_int_enable; 1840 ring->int_disable = bcmgenet_rx_ring_int_disable; 1841 } 1842 ring->cbs = priv->rx_cbs + start_ptr; 1843 ring->size = size; 1844 ring->c_index = 0; 1845 ring->read_ptr = start_ptr; 1846 ring->cb_ptr = start_ptr; 1847 ring->end_ptr = end_ptr - 1; 1848 1849 ret = bcmgenet_alloc_rx_buffers(priv, ring); 1850 if (ret) 1851 return ret; 1852 1853 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); 1854 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); 1855 bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 1856 bcmgenet_rdma_ring_writel(priv, index, 1857 ((size << DMA_RING_SIZE_SHIFT) | 1858 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 1859 bcmgenet_rdma_ring_writel(priv, index, 1860 (DMA_FC_THRESH_LO << 1861 DMA_XOFF_THRESHOLD_SHIFT) | 1862 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); 1863 1864 /* Set start and end address, read and write pointers */ 1865 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 1866 DMA_START_ADDR); 1867 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 1868 RDMA_READ_PTR); 1869 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 1870 RDMA_WRITE_PTR); 1871 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 1872 DMA_END_ADDR); 1873 1874 return ret; 1875 } 1876 1877 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv) 1878 { 1879 unsigned int i; 1880 struct bcmgenet_tx_ring *ring; 1881 1882 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 1883 ring = &priv->tx_rings[i]; 1884 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64); 1885 } 1886 1887 ring = &priv->tx_rings[DESC_INDEX]; 1888 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64); 1889 } 1890 1891 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv) 1892 { 1893 unsigned int i; 1894 struct bcmgenet_tx_ring *ring; 1895 1896 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 1897 ring = &priv->tx_rings[i]; 1898 napi_enable(&ring->napi); 1899 } 1900 1901 ring = &priv->tx_rings[DESC_INDEX]; 1902 napi_enable(&ring->napi); 1903 } 1904 1905 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv) 1906 { 1907 unsigned int i; 1908 struct bcmgenet_tx_ring *ring; 1909 1910 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 1911 ring = &priv->tx_rings[i]; 1912 napi_disable(&ring->napi); 1913 } 1914 1915 ring = &priv->tx_rings[DESC_INDEX]; 1916 napi_disable(&ring->napi); 1917 } 1918 1919 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv) 1920 { 1921 unsigned int i; 1922 struct bcmgenet_tx_ring *ring; 1923 1924 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 1925 ring = &priv->tx_rings[i]; 1926 netif_napi_del(&ring->napi); 1927 } 1928 1929 ring = &priv->tx_rings[DESC_INDEX]; 1930 netif_napi_del(&ring->napi); 1931 } 1932 1933 /* Initialize Tx queues 1934 * 1935 * Queues 0-3 are priority-based, each one has 32 descriptors, 1936 * with queue 0 being the highest priority queue. 1937 * 1938 * Queue 16 is the default Tx queue with 1939 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors. 1940 * 1941 * The transmit control block pool is then partitioned as follows: 1942 * - Tx queue 0 uses tx_cbs[0..31] 1943 * - Tx queue 1 uses tx_cbs[32..63] 1944 * - Tx queue 2 uses tx_cbs[64..95] 1945 * - Tx queue 3 uses tx_cbs[96..127] 1946 * - Tx queue 16 uses tx_cbs[128..255] 1947 */ 1948 static void bcmgenet_init_tx_queues(struct net_device *dev) 1949 { 1950 struct bcmgenet_priv *priv = netdev_priv(dev); 1951 u32 i, dma_enable; 1952 u32 dma_ctrl, ring_cfg; 1953 u32 dma_priority[3] = {0, 0, 0}; 1954 1955 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); 1956 dma_enable = dma_ctrl & DMA_EN; 1957 dma_ctrl &= ~DMA_EN; 1958 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 1959 1960 dma_ctrl = 0; 1961 ring_cfg = 0; 1962 1963 /* Enable strict priority arbiter mode */ 1964 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); 1965 1966 /* Initialize Tx priority queues */ 1967 for (i = 0; i < priv->hw_params->tx_queues; i++) { 1968 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q, 1969 i * priv->hw_params->tx_bds_per_q, 1970 (i + 1) * priv->hw_params->tx_bds_per_q); 1971 ring_cfg |= (1 << i); 1972 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 1973 dma_priority[DMA_PRIO_REG_INDEX(i)] |= 1974 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i)); 1975 } 1976 1977 /* Initialize Tx default queue 16 */ 1978 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT, 1979 priv->hw_params->tx_queues * 1980 priv->hw_params->tx_bds_per_q, 1981 TOTAL_DESC); 1982 ring_cfg |= (1 << DESC_INDEX); 1983 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 1984 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |= 1985 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 1986 DMA_PRIO_REG_SHIFT(DESC_INDEX)); 1987 1988 /* Set Tx queue priorities */ 1989 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0); 1990 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1); 1991 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2); 1992 1993 /* Initialize Tx NAPI */ 1994 bcmgenet_init_tx_napi(priv); 1995 1996 /* Enable Tx queues */ 1997 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG); 1998 1999 /* Enable Tx DMA */ 2000 if (dma_enable) 2001 dma_ctrl |= DMA_EN; 2002 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2003 } 2004 2005 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv) 2006 { 2007 unsigned int i; 2008 struct bcmgenet_rx_ring *ring; 2009 2010 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2011 ring = &priv->rx_rings[i]; 2012 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64); 2013 } 2014 2015 ring = &priv->rx_rings[DESC_INDEX]; 2016 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64); 2017 } 2018 2019 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv) 2020 { 2021 unsigned int i; 2022 struct bcmgenet_rx_ring *ring; 2023 2024 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2025 ring = &priv->rx_rings[i]; 2026 napi_enable(&ring->napi); 2027 } 2028 2029 ring = &priv->rx_rings[DESC_INDEX]; 2030 napi_enable(&ring->napi); 2031 } 2032 2033 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv) 2034 { 2035 unsigned int i; 2036 struct bcmgenet_rx_ring *ring; 2037 2038 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2039 ring = &priv->rx_rings[i]; 2040 napi_disable(&ring->napi); 2041 } 2042 2043 ring = &priv->rx_rings[DESC_INDEX]; 2044 napi_disable(&ring->napi); 2045 } 2046 2047 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv) 2048 { 2049 unsigned int i; 2050 struct bcmgenet_rx_ring *ring; 2051 2052 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2053 ring = &priv->rx_rings[i]; 2054 netif_napi_del(&ring->napi); 2055 } 2056 2057 ring = &priv->rx_rings[DESC_INDEX]; 2058 netif_napi_del(&ring->napi); 2059 } 2060 2061 /* Initialize Rx queues 2062 * 2063 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be 2064 * used to direct traffic to these queues. 2065 * 2066 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors. 2067 */ 2068 static int bcmgenet_init_rx_queues(struct net_device *dev) 2069 { 2070 struct bcmgenet_priv *priv = netdev_priv(dev); 2071 u32 i; 2072 u32 dma_enable; 2073 u32 dma_ctrl; 2074 u32 ring_cfg; 2075 int ret; 2076 2077 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL); 2078 dma_enable = dma_ctrl & DMA_EN; 2079 dma_ctrl &= ~DMA_EN; 2080 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2081 2082 dma_ctrl = 0; 2083 ring_cfg = 0; 2084 2085 /* Initialize Rx priority queues */ 2086 for (i = 0; i < priv->hw_params->rx_queues; i++) { 2087 ret = bcmgenet_init_rx_ring(priv, i, 2088 priv->hw_params->rx_bds_per_q, 2089 i * priv->hw_params->rx_bds_per_q, 2090 (i + 1) * 2091 priv->hw_params->rx_bds_per_q); 2092 if (ret) 2093 return ret; 2094 2095 ring_cfg |= (1 << i); 2096 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2097 } 2098 2099 /* Initialize Rx default queue 16 */ 2100 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT, 2101 priv->hw_params->rx_queues * 2102 priv->hw_params->rx_bds_per_q, 2103 TOTAL_DESC); 2104 if (ret) 2105 return ret; 2106 2107 ring_cfg |= (1 << DESC_INDEX); 2108 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2109 2110 /* Initialize Rx NAPI */ 2111 bcmgenet_init_rx_napi(priv); 2112 2113 /* Enable rings */ 2114 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG); 2115 2116 /* Configure ring as descriptor ring and re-enable DMA if enabled */ 2117 if (dma_enable) 2118 dma_ctrl |= DMA_EN; 2119 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2120 2121 return 0; 2122 } 2123 2124 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) 2125 { 2126 int ret = 0; 2127 int timeout = 0; 2128 u32 reg; 2129 u32 dma_ctrl; 2130 int i; 2131 2132 /* Disable TDMA to stop add more frames in TX DMA */ 2133 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2134 reg &= ~DMA_EN; 2135 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2136 2137 /* Check TDMA status register to confirm TDMA is disabled */ 2138 while (timeout++ < DMA_TIMEOUT_VAL) { 2139 reg = bcmgenet_tdma_readl(priv, DMA_STATUS); 2140 if (reg & DMA_DISABLED) 2141 break; 2142 2143 udelay(1); 2144 } 2145 2146 if (timeout == DMA_TIMEOUT_VAL) { 2147 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); 2148 ret = -ETIMEDOUT; 2149 } 2150 2151 /* Wait 10ms for packet drain in both tx and rx dma */ 2152 usleep_range(10000, 20000); 2153 2154 /* Disable RDMA */ 2155 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2156 reg &= ~DMA_EN; 2157 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2158 2159 timeout = 0; 2160 /* Check RDMA status register to confirm RDMA is disabled */ 2161 while (timeout++ < DMA_TIMEOUT_VAL) { 2162 reg = bcmgenet_rdma_readl(priv, DMA_STATUS); 2163 if (reg & DMA_DISABLED) 2164 break; 2165 2166 udelay(1); 2167 } 2168 2169 if (timeout == DMA_TIMEOUT_VAL) { 2170 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); 2171 ret = -ETIMEDOUT; 2172 } 2173 2174 dma_ctrl = 0; 2175 for (i = 0; i < priv->hw_params->rx_queues; i++) 2176 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2177 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2178 reg &= ~dma_ctrl; 2179 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2180 2181 dma_ctrl = 0; 2182 for (i = 0; i < priv->hw_params->tx_queues; i++) 2183 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2184 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2185 reg &= ~dma_ctrl; 2186 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2187 2188 return ret; 2189 } 2190 2191 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) 2192 { 2193 int i; 2194 2195 bcmgenet_fini_rx_napi(priv); 2196 bcmgenet_fini_tx_napi(priv); 2197 2198 /* disable DMA */ 2199 bcmgenet_dma_teardown(priv); 2200 2201 for (i = 0; i < priv->num_tx_bds; i++) { 2202 if (priv->tx_cbs[i].skb != NULL) { 2203 dev_kfree_skb(priv->tx_cbs[i].skb); 2204 priv->tx_cbs[i].skb = NULL; 2205 } 2206 } 2207 2208 bcmgenet_free_rx_buffers(priv); 2209 kfree(priv->rx_cbs); 2210 kfree(priv->tx_cbs); 2211 } 2212 2213 /* init_edma: Initialize DMA control register */ 2214 static int bcmgenet_init_dma(struct bcmgenet_priv *priv) 2215 { 2216 int ret; 2217 unsigned int i; 2218 struct enet_cb *cb; 2219 2220 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 2221 2222 /* Initialize common Rx ring structures */ 2223 priv->rx_bds = priv->base + priv->hw_params->rdma_offset; 2224 priv->num_rx_bds = TOTAL_DESC; 2225 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb), 2226 GFP_KERNEL); 2227 if (!priv->rx_cbs) 2228 return -ENOMEM; 2229 2230 for (i = 0; i < priv->num_rx_bds; i++) { 2231 cb = priv->rx_cbs + i; 2232 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE; 2233 } 2234 2235 /* Initialize common TX ring structures */ 2236 priv->tx_bds = priv->base + priv->hw_params->tdma_offset; 2237 priv->num_tx_bds = TOTAL_DESC; 2238 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb), 2239 GFP_KERNEL); 2240 if (!priv->tx_cbs) { 2241 kfree(priv->rx_cbs); 2242 return -ENOMEM; 2243 } 2244 2245 for (i = 0; i < priv->num_tx_bds; i++) { 2246 cb = priv->tx_cbs + i; 2247 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE; 2248 } 2249 2250 /* Init rDma */ 2251 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); 2252 2253 /* Initialize Rx queues */ 2254 ret = bcmgenet_init_rx_queues(priv->dev); 2255 if (ret) { 2256 netdev_err(priv->dev, "failed to initialize Rx queues\n"); 2257 bcmgenet_free_rx_buffers(priv); 2258 kfree(priv->rx_cbs); 2259 kfree(priv->tx_cbs); 2260 return ret; 2261 } 2262 2263 /* Init tDma */ 2264 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); 2265 2266 /* Initialize Tx queues */ 2267 bcmgenet_init_tx_queues(priv->dev); 2268 2269 return 0; 2270 } 2271 2272 /* Interrupt bottom half */ 2273 static void bcmgenet_irq_task(struct work_struct *work) 2274 { 2275 struct bcmgenet_priv *priv = container_of( 2276 work, struct bcmgenet_priv, bcmgenet_irq_work); 2277 2278 netif_dbg(priv, intr, priv->dev, "%s\n", __func__); 2279 2280 if (priv->irq0_stat & UMAC_IRQ_MPD_R) { 2281 priv->irq0_stat &= ~UMAC_IRQ_MPD_R; 2282 netif_dbg(priv, wol, priv->dev, 2283 "magic packet detected, waking up\n"); 2284 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 2285 } 2286 2287 /* Link UP/DOWN event */ 2288 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 2289 (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) { 2290 phy_mac_interrupt(priv->phydev, 2291 !!(priv->irq0_stat & UMAC_IRQ_LINK_UP)); 2292 priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT; 2293 } 2294 } 2295 2296 /* bcmgenet_isr1: handle Rx and Tx priority queues */ 2297 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) 2298 { 2299 struct bcmgenet_priv *priv = dev_id; 2300 struct bcmgenet_rx_ring *rx_ring; 2301 struct bcmgenet_tx_ring *tx_ring; 2302 unsigned int index; 2303 2304 /* Save irq status for bottom-half processing. */ 2305 priv->irq1_stat = 2306 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & 2307 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 2308 2309 /* clear interrupts */ 2310 bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR); 2311 2312 netif_dbg(priv, intr, priv->dev, 2313 "%s: IRQ=0x%x\n", __func__, priv->irq1_stat); 2314 2315 /* Check Rx priority queue interrupts */ 2316 for (index = 0; index < priv->hw_params->rx_queues; index++) { 2317 if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index))) 2318 continue; 2319 2320 rx_ring = &priv->rx_rings[index]; 2321 2322 if (likely(napi_schedule_prep(&rx_ring->napi))) { 2323 rx_ring->int_disable(rx_ring); 2324 __napi_schedule(&rx_ring->napi); 2325 } 2326 } 2327 2328 /* Check Tx priority queue interrupts */ 2329 for (index = 0; index < priv->hw_params->tx_queues; index++) { 2330 if (!(priv->irq1_stat & BIT(index))) 2331 continue; 2332 2333 tx_ring = &priv->tx_rings[index]; 2334 2335 if (likely(napi_schedule_prep(&tx_ring->napi))) { 2336 tx_ring->int_disable(tx_ring); 2337 __napi_schedule(&tx_ring->napi); 2338 } 2339 } 2340 2341 return IRQ_HANDLED; 2342 } 2343 2344 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */ 2345 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) 2346 { 2347 struct bcmgenet_priv *priv = dev_id; 2348 struct bcmgenet_rx_ring *rx_ring; 2349 struct bcmgenet_tx_ring *tx_ring; 2350 2351 /* Save irq status for bottom-half processing. */ 2352 priv->irq0_stat = 2353 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & 2354 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 2355 2356 /* clear interrupts */ 2357 bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR); 2358 2359 netif_dbg(priv, intr, priv->dev, 2360 "IRQ=0x%x\n", priv->irq0_stat); 2361 2362 if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) { 2363 rx_ring = &priv->rx_rings[DESC_INDEX]; 2364 2365 if (likely(napi_schedule_prep(&rx_ring->napi))) { 2366 rx_ring->int_disable(rx_ring); 2367 __napi_schedule(&rx_ring->napi); 2368 } 2369 } 2370 2371 if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) { 2372 tx_ring = &priv->tx_rings[DESC_INDEX]; 2373 2374 if (likely(napi_schedule_prep(&tx_ring->napi))) { 2375 tx_ring->int_disable(tx_ring); 2376 __napi_schedule(&tx_ring->napi); 2377 } 2378 } 2379 2380 if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R | 2381 UMAC_IRQ_PHY_DET_F | 2382 UMAC_IRQ_LINK_EVENT | 2383 UMAC_IRQ_HFB_SM | 2384 UMAC_IRQ_HFB_MM | 2385 UMAC_IRQ_MPD_R)) { 2386 /* all other interested interrupts handled in bottom half */ 2387 schedule_work(&priv->bcmgenet_irq_work); 2388 } 2389 2390 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 2391 priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { 2392 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 2393 wake_up(&priv->wq); 2394 } 2395 2396 return IRQ_HANDLED; 2397 } 2398 2399 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id) 2400 { 2401 struct bcmgenet_priv *priv = dev_id; 2402 2403 pm_wakeup_event(&priv->pdev->dev, 0); 2404 2405 return IRQ_HANDLED; 2406 } 2407 2408 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) 2409 { 2410 u32 reg; 2411 2412 reg = bcmgenet_rbuf_ctrl_get(priv); 2413 reg |= BIT(1); 2414 bcmgenet_rbuf_ctrl_set(priv, reg); 2415 udelay(10); 2416 2417 reg &= ~BIT(1); 2418 bcmgenet_rbuf_ctrl_set(priv, reg); 2419 udelay(10); 2420 } 2421 2422 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, 2423 unsigned char *addr) 2424 { 2425 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) | 2426 (addr[2] << 8) | addr[3], UMAC_MAC0); 2427 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1); 2428 } 2429 2430 /* Returns a reusable dma control register value */ 2431 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv) 2432 { 2433 u32 reg; 2434 u32 dma_ctrl; 2435 2436 /* disable DMA */ 2437 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 2438 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2439 reg &= ~dma_ctrl; 2440 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2441 2442 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2443 reg &= ~dma_ctrl; 2444 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2445 2446 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); 2447 udelay(10); 2448 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); 2449 2450 return dma_ctrl; 2451 } 2452 2453 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) 2454 { 2455 u32 reg; 2456 2457 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2458 reg |= dma_ctrl; 2459 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2460 2461 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2462 reg |= dma_ctrl; 2463 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2464 } 2465 2466 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv, 2467 u32 f_index) 2468 { 2469 u32 offset; 2470 u32 reg; 2471 2472 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 2473 reg = bcmgenet_hfb_reg_readl(priv, offset); 2474 return !!(reg & (1 << (f_index % 32))); 2475 } 2476 2477 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index) 2478 { 2479 u32 offset; 2480 u32 reg; 2481 2482 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 2483 reg = bcmgenet_hfb_reg_readl(priv, offset); 2484 reg |= (1 << (f_index % 32)); 2485 bcmgenet_hfb_reg_writel(priv, reg, offset); 2486 } 2487 2488 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv, 2489 u32 f_index, u32 rx_queue) 2490 { 2491 u32 offset; 2492 u32 reg; 2493 2494 offset = f_index / 8; 2495 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset); 2496 reg &= ~(0xF << (4 * (f_index % 8))); 2497 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8))); 2498 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset); 2499 } 2500 2501 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv, 2502 u32 f_index, u32 f_length) 2503 { 2504 u32 offset; 2505 u32 reg; 2506 2507 offset = HFB_FLT_LEN_V3PLUS + 2508 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) * 2509 sizeof(u32); 2510 reg = bcmgenet_hfb_reg_readl(priv, offset); 2511 reg &= ~(0xFF << (8 * (f_index % 4))); 2512 reg |= ((f_length & 0xFF) << (8 * (f_index % 4))); 2513 bcmgenet_hfb_reg_writel(priv, reg, offset); 2514 } 2515 2516 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv) 2517 { 2518 u32 f_index; 2519 2520 for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++) 2521 if (!bcmgenet_hfb_is_filter_enabled(priv, f_index)) 2522 return f_index; 2523 2524 return -ENOMEM; 2525 } 2526 2527 /* bcmgenet_hfb_add_filter 2528 * 2529 * Add new filter to Hardware Filter Block to match and direct Rx traffic to 2530 * desired Rx queue. 2531 * 2532 * f_data is an array of unsigned 32-bit integers where each 32-bit integer 2533 * provides filter data for 2 bytes (4 nibbles) of Rx frame: 2534 * 2535 * bits 31:20 - unused 2536 * bit 19 - nibble 0 match enable 2537 * bit 18 - nibble 1 match enable 2538 * bit 17 - nibble 2 match enable 2539 * bit 16 - nibble 3 match enable 2540 * bits 15:12 - nibble 0 data 2541 * bits 11:8 - nibble 1 data 2542 * bits 7:4 - nibble 2 data 2543 * bits 3:0 - nibble 3 data 2544 * 2545 * Example: 2546 * In order to match: 2547 * - Ethernet frame type = 0x0800 (IP) 2548 * - IP version field = 4 2549 * - IP protocol field = 0x11 (UDP) 2550 * 2551 * The following filter is needed: 2552 * u32 hfb_filter_ipv4_udp[] = { 2553 * Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000, 2554 * Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000, 2555 * Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011, 2556 * }; 2557 * 2558 * To add the filter to HFB and direct the traffic to Rx queue 0, call: 2559 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp, 2560 * ARRAY_SIZE(hfb_filter_ipv4_udp), 0); 2561 */ 2562 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data, 2563 u32 f_length, u32 rx_queue) 2564 { 2565 int f_index; 2566 u32 i; 2567 2568 f_index = bcmgenet_hfb_find_unused_filter(priv); 2569 if (f_index < 0) 2570 return -ENOMEM; 2571 2572 if (f_length > priv->hw_params->hfb_filter_size) 2573 return -EINVAL; 2574 2575 for (i = 0; i < f_length; i++) 2576 bcmgenet_hfb_writel(priv, f_data[i], 2577 (f_index * priv->hw_params->hfb_filter_size + i) * 2578 sizeof(u32)); 2579 2580 bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length); 2581 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue); 2582 bcmgenet_hfb_enable_filter(priv, f_index); 2583 bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL); 2584 2585 return 0; 2586 } 2587 2588 /* bcmgenet_hfb_clear 2589 * 2590 * Clear Hardware Filter Block and disable all filtering. 2591 */ 2592 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv) 2593 { 2594 u32 i; 2595 2596 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL); 2597 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS); 2598 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4); 2599 2600 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++) 2601 bcmgenet_rdma_writel(priv, 0x0, i); 2602 2603 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++) 2604 bcmgenet_hfb_reg_writel(priv, 0x0, 2605 HFB_FLT_LEN_V3PLUS + i * sizeof(u32)); 2606 2607 for (i = 0; i < priv->hw_params->hfb_filter_cnt * 2608 priv->hw_params->hfb_filter_size; i++) 2609 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32)); 2610 } 2611 2612 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv) 2613 { 2614 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 2615 return; 2616 2617 bcmgenet_hfb_clear(priv); 2618 } 2619 2620 static void bcmgenet_netif_start(struct net_device *dev) 2621 { 2622 struct bcmgenet_priv *priv = netdev_priv(dev); 2623 2624 /* Start the network engine */ 2625 bcmgenet_enable_rx_napi(priv); 2626 bcmgenet_enable_tx_napi(priv); 2627 2628 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true); 2629 2630 netif_tx_start_all_queues(dev); 2631 2632 phy_start(priv->phydev); 2633 } 2634 2635 static int bcmgenet_open(struct net_device *dev) 2636 { 2637 struct bcmgenet_priv *priv = netdev_priv(dev); 2638 unsigned long dma_ctrl; 2639 u32 reg; 2640 int ret; 2641 2642 netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); 2643 2644 /* Turn on the clock */ 2645 if (!IS_ERR(priv->clk)) 2646 clk_prepare_enable(priv->clk); 2647 2648 /* If this is an internal GPHY, power it back on now, before UniMAC is 2649 * brought out of reset as absolutely no UniMAC activity is allowed 2650 */ 2651 if (phy_is_internal(priv->phydev)) 2652 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 2653 2654 /* take MAC out of reset */ 2655 bcmgenet_umac_reset(priv); 2656 2657 ret = init_umac(priv); 2658 if (ret) 2659 goto err_clk_disable; 2660 2661 /* disable ethernet MAC while updating its registers */ 2662 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false); 2663 2664 /* Make sure we reflect the value of CRC_CMD_FWD */ 2665 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2666 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); 2667 2668 bcmgenet_set_hw_addr(priv, dev->dev_addr); 2669 2670 if (phy_is_internal(priv->phydev)) { 2671 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 2672 reg |= EXT_ENERGY_DET_MASK; 2673 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 2674 } 2675 2676 /* Disable RX/TX DMA and flush TX queues */ 2677 dma_ctrl = bcmgenet_dma_disable(priv); 2678 2679 /* Reinitialize TDMA and RDMA and SW housekeeping */ 2680 ret = bcmgenet_init_dma(priv); 2681 if (ret) { 2682 netdev_err(dev, "failed to initialize DMA\n"); 2683 goto err_clk_disable; 2684 } 2685 2686 /* Always enable ring 16 - descriptor ring */ 2687 bcmgenet_enable_dma(priv, dma_ctrl); 2688 2689 /* HFB init */ 2690 bcmgenet_hfb_init(priv); 2691 2692 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, 2693 dev->name, priv); 2694 if (ret < 0) { 2695 netdev_err(dev, "can't request IRQ %d\n", priv->irq0); 2696 goto err_fini_dma; 2697 } 2698 2699 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, 2700 dev->name, priv); 2701 if (ret < 0) { 2702 netdev_err(dev, "can't request IRQ %d\n", priv->irq1); 2703 goto err_irq0; 2704 } 2705 2706 /* Re-configure the port multiplexer towards the PHY device */ 2707 bcmgenet_mii_config(priv->dev, false); 2708 2709 phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup, 2710 priv->phy_interface); 2711 2712 bcmgenet_netif_start(dev); 2713 2714 return 0; 2715 2716 err_irq0: 2717 free_irq(priv->irq0, dev); 2718 err_fini_dma: 2719 bcmgenet_fini_dma(priv); 2720 err_clk_disable: 2721 if (!IS_ERR(priv->clk)) 2722 clk_disable_unprepare(priv->clk); 2723 return ret; 2724 } 2725 2726 static void bcmgenet_netif_stop(struct net_device *dev) 2727 { 2728 struct bcmgenet_priv *priv = netdev_priv(dev); 2729 2730 netif_tx_stop_all_queues(dev); 2731 phy_stop(priv->phydev); 2732 bcmgenet_intr_disable(priv); 2733 bcmgenet_disable_rx_napi(priv); 2734 bcmgenet_disable_tx_napi(priv); 2735 2736 /* Wait for pending work items to complete. Since interrupts are 2737 * disabled no new work will be scheduled. 2738 */ 2739 cancel_work_sync(&priv->bcmgenet_irq_work); 2740 2741 priv->old_link = -1; 2742 priv->old_speed = -1; 2743 priv->old_duplex = -1; 2744 priv->old_pause = -1; 2745 } 2746 2747 static int bcmgenet_close(struct net_device *dev) 2748 { 2749 struct bcmgenet_priv *priv = netdev_priv(dev); 2750 int ret; 2751 2752 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); 2753 2754 bcmgenet_netif_stop(dev); 2755 2756 /* Really kill the PHY state machine and disconnect from it */ 2757 phy_disconnect(priv->phydev); 2758 2759 /* Disable MAC receive */ 2760 umac_enable_set(priv, CMD_RX_EN, false); 2761 2762 ret = bcmgenet_dma_teardown(priv); 2763 if (ret) 2764 return ret; 2765 2766 /* Disable MAC transmit. TX DMA disabled have to done before this */ 2767 umac_enable_set(priv, CMD_TX_EN, false); 2768 2769 /* tx reclaim */ 2770 bcmgenet_tx_reclaim_all(dev); 2771 bcmgenet_fini_dma(priv); 2772 2773 free_irq(priv->irq0, priv); 2774 free_irq(priv->irq1, priv); 2775 2776 if (phy_is_internal(priv->phydev)) 2777 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 2778 2779 if (!IS_ERR(priv->clk)) 2780 clk_disable_unprepare(priv->clk); 2781 2782 return ret; 2783 } 2784 2785 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring) 2786 { 2787 struct bcmgenet_priv *priv = ring->priv; 2788 u32 p_index, c_index, intsts, intmsk; 2789 struct netdev_queue *txq; 2790 unsigned int free_bds; 2791 unsigned long flags; 2792 bool txq_stopped; 2793 2794 if (!netif_msg_tx_err(priv)) 2795 return; 2796 2797 txq = netdev_get_tx_queue(priv->dev, ring->queue); 2798 2799 spin_lock_irqsave(&ring->lock, flags); 2800 if (ring->index == DESC_INDEX) { 2801 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 2802 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE; 2803 } else { 2804 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 2805 intmsk = 1 << ring->index; 2806 } 2807 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 2808 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX); 2809 txq_stopped = netif_tx_queue_stopped(txq); 2810 free_bds = ring->free_bds; 2811 spin_unlock_irqrestore(&ring->lock, flags); 2812 2813 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n" 2814 "TX queue status: %s, interrupts: %s\n" 2815 "(sw)free_bds: %d (sw)size: %d\n" 2816 "(sw)p_index: %d (hw)p_index: %d\n" 2817 "(sw)c_index: %d (hw)c_index: %d\n" 2818 "(sw)clean_p: %d (sw)write_p: %d\n" 2819 "(sw)cb_ptr: %d (sw)end_ptr: %d\n", 2820 ring->index, ring->queue, 2821 txq_stopped ? "stopped" : "active", 2822 intsts & intmsk ? "enabled" : "disabled", 2823 free_bds, ring->size, 2824 ring->prod_index, p_index & DMA_P_INDEX_MASK, 2825 ring->c_index, c_index & DMA_C_INDEX_MASK, 2826 ring->clean_ptr, ring->write_ptr, 2827 ring->cb_ptr, ring->end_ptr); 2828 } 2829 2830 static void bcmgenet_timeout(struct net_device *dev) 2831 { 2832 struct bcmgenet_priv *priv = netdev_priv(dev); 2833 u32 int0_enable = 0; 2834 u32 int1_enable = 0; 2835 unsigned int q; 2836 2837 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); 2838 2839 for (q = 0; q < priv->hw_params->tx_queues; q++) 2840 bcmgenet_dump_tx_queue(&priv->tx_rings[q]); 2841 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]); 2842 2843 bcmgenet_tx_reclaim_all(dev); 2844 2845 for (q = 0; q < priv->hw_params->tx_queues; q++) 2846 int1_enable |= (1 << q); 2847 2848 int0_enable = UMAC_IRQ_TXDMA_DONE; 2849 2850 /* Re-enable TX interrupts if disabled */ 2851 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2852 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 2853 2854 dev->trans_start = jiffies; 2855 2856 dev->stats.tx_errors++; 2857 2858 netif_tx_wake_all_queues(dev); 2859 } 2860 2861 #define MAX_MC_COUNT 16 2862 2863 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, 2864 unsigned char *addr, 2865 int *i, 2866 int *mc) 2867 { 2868 u32 reg; 2869 2870 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], 2871 UMAC_MDF_ADDR + (*i * 4)); 2872 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | 2873 addr[4] << 8 | addr[5], 2874 UMAC_MDF_ADDR + ((*i + 1) * 4)); 2875 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL); 2876 reg |= (1 << (MAX_MC_COUNT - *mc)); 2877 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); 2878 *i += 2; 2879 (*mc)++; 2880 } 2881 2882 static void bcmgenet_set_rx_mode(struct net_device *dev) 2883 { 2884 struct bcmgenet_priv *priv = netdev_priv(dev); 2885 struct netdev_hw_addr *ha; 2886 int i, mc; 2887 u32 reg; 2888 2889 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); 2890 2891 /* Promiscuous mode */ 2892 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2893 if (dev->flags & IFF_PROMISC) { 2894 reg |= CMD_PROMISC; 2895 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 2896 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); 2897 return; 2898 } else { 2899 reg &= ~CMD_PROMISC; 2900 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 2901 } 2902 2903 /* UniMac doesn't support ALLMULTI */ 2904 if (dev->flags & IFF_ALLMULTI) { 2905 netdev_warn(dev, "ALLMULTI is not supported\n"); 2906 return; 2907 } 2908 2909 /* update MDF filter */ 2910 i = 0; 2911 mc = 0; 2912 /* Broadcast */ 2913 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc); 2914 /* my own address.*/ 2915 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc); 2916 /* Unicast list*/ 2917 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc)) 2918 return; 2919 2920 if (!netdev_uc_empty(dev)) 2921 netdev_for_each_uc_addr(ha, dev) 2922 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc); 2923 /* Multicast */ 2924 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc)) 2925 return; 2926 2927 netdev_for_each_mc_addr(ha, dev) 2928 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc); 2929 } 2930 2931 /* Set the hardware MAC address. */ 2932 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) 2933 { 2934 struct sockaddr *addr = p; 2935 2936 /* Setting the MAC address at the hardware level is not possible 2937 * without disabling the UniMAC RX/TX enable bits. 2938 */ 2939 if (netif_running(dev)) 2940 return -EBUSY; 2941 2942 ether_addr_copy(dev->dev_addr, addr->sa_data); 2943 2944 return 0; 2945 } 2946 2947 static const struct net_device_ops bcmgenet_netdev_ops = { 2948 .ndo_open = bcmgenet_open, 2949 .ndo_stop = bcmgenet_close, 2950 .ndo_start_xmit = bcmgenet_xmit, 2951 .ndo_tx_timeout = bcmgenet_timeout, 2952 .ndo_set_rx_mode = bcmgenet_set_rx_mode, 2953 .ndo_set_mac_address = bcmgenet_set_mac_addr, 2954 .ndo_do_ioctl = bcmgenet_ioctl, 2955 .ndo_set_features = bcmgenet_set_features, 2956 }; 2957 2958 /* Array of GENET hardware parameters/characteristics */ 2959 static struct bcmgenet_hw_params bcmgenet_hw_params[] = { 2960 [GENET_V1] = { 2961 .tx_queues = 0, 2962 .tx_bds_per_q = 0, 2963 .rx_queues = 0, 2964 .rx_bds_per_q = 0, 2965 .bp_in_en_shift = 16, 2966 .bp_in_mask = 0xffff, 2967 .hfb_filter_cnt = 16, 2968 .qtag_mask = 0x1F, 2969 .hfb_offset = 0x1000, 2970 .rdma_offset = 0x2000, 2971 .tdma_offset = 0x3000, 2972 .words_per_bd = 2, 2973 }, 2974 [GENET_V2] = { 2975 .tx_queues = 4, 2976 .tx_bds_per_q = 32, 2977 .rx_queues = 0, 2978 .rx_bds_per_q = 0, 2979 .bp_in_en_shift = 16, 2980 .bp_in_mask = 0xffff, 2981 .hfb_filter_cnt = 16, 2982 .qtag_mask = 0x1F, 2983 .tbuf_offset = 0x0600, 2984 .hfb_offset = 0x1000, 2985 .hfb_reg_offset = 0x2000, 2986 .rdma_offset = 0x3000, 2987 .tdma_offset = 0x4000, 2988 .words_per_bd = 2, 2989 .flags = GENET_HAS_EXT, 2990 }, 2991 [GENET_V3] = { 2992 .tx_queues = 4, 2993 .tx_bds_per_q = 32, 2994 .rx_queues = 0, 2995 .rx_bds_per_q = 0, 2996 .bp_in_en_shift = 17, 2997 .bp_in_mask = 0x1ffff, 2998 .hfb_filter_cnt = 48, 2999 .hfb_filter_size = 128, 3000 .qtag_mask = 0x3F, 3001 .tbuf_offset = 0x0600, 3002 .hfb_offset = 0x8000, 3003 .hfb_reg_offset = 0xfc00, 3004 .rdma_offset = 0x10000, 3005 .tdma_offset = 0x11000, 3006 .words_per_bd = 2, 3007 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR | 3008 GENET_HAS_MOCA_LINK_DET, 3009 }, 3010 [GENET_V4] = { 3011 .tx_queues = 4, 3012 .tx_bds_per_q = 32, 3013 .rx_queues = 0, 3014 .rx_bds_per_q = 0, 3015 .bp_in_en_shift = 17, 3016 .bp_in_mask = 0x1ffff, 3017 .hfb_filter_cnt = 48, 3018 .hfb_filter_size = 128, 3019 .qtag_mask = 0x3F, 3020 .tbuf_offset = 0x0600, 3021 .hfb_offset = 0x8000, 3022 .hfb_reg_offset = 0xfc00, 3023 .rdma_offset = 0x2000, 3024 .tdma_offset = 0x4000, 3025 .words_per_bd = 3, 3026 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3027 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3028 }, 3029 }; 3030 3031 /* Infer hardware parameters from the detected GENET version */ 3032 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) 3033 { 3034 struct bcmgenet_hw_params *params; 3035 u32 reg; 3036 u8 major; 3037 u16 gphy_rev; 3038 3039 if (GENET_IS_V4(priv)) { 3040 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3041 genet_dma_ring_regs = genet_dma_ring_regs_v4; 3042 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; 3043 priv->version = GENET_V4; 3044 } else if (GENET_IS_V3(priv)) { 3045 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3046 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3047 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; 3048 priv->version = GENET_V3; 3049 } else if (GENET_IS_V2(priv)) { 3050 bcmgenet_dma_regs = bcmgenet_dma_regs_v2; 3051 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3052 priv->dma_rx_chk_bit = DMA_RX_CHK_V12; 3053 priv->version = GENET_V2; 3054 } else if (GENET_IS_V1(priv)) { 3055 bcmgenet_dma_regs = bcmgenet_dma_regs_v1; 3056 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3057 priv->dma_rx_chk_bit = DMA_RX_CHK_V12; 3058 priv->version = GENET_V1; 3059 } 3060 3061 /* enum genet_version starts at 1 */ 3062 priv->hw_params = &bcmgenet_hw_params[priv->version]; 3063 params = priv->hw_params; 3064 3065 /* Read GENET HW version */ 3066 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); 3067 major = (reg >> 24 & 0x0f); 3068 if (major == 5) 3069 major = 4; 3070 else if (major == 0) 3071 major = 1; 3072 if (major != priv->version) { 3073 dev_err(&priv->pdev->dev, 3074 "GENET version mismatch, got: %d, configured for: %d\n", 3075 major, priv->version); 3076 } 3077 3078 /* Print the GENET core version */ 3079 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, 3080 major, (reg >> 16) & 0x0f, reg & 0xffff); 3081 3082 /* Store the integrated PHY revision for the MDIO probing function 3083 * to pass this information to the PHY driver. The PHY driver expects 3084 * to find the PHY major revision in bits 15:8 while the GENET register 3085 * stores that information in bits 7:0, account for that. 3086 * 3087 * On newer chips, starting with PHY revision G0, a new scheme is 3088 * deployed similar to the Starfighter 2 switch with GPHY major 3089 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0 3090 * is reserved as well as special value 0x01ff, we have a small 3091 * heuristic to check for the new GPHY revision and re-arrange things 3092 * so the GPHY driver is happy. 3093 */ 3094 gphy_rev = reg & 0xffff; 3095 3096 /* This is the good old scheme, just GPHY major, no minor nor patch */ 3097 if ((gphy_rev & 0xf0) != 0) 3098 priv->gphy_rev = gphy_rev << 8; 3099 3100 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */ 3101 else if ((gphy_rev & 0xff00) != 0) 3102 priv->gphy_rev = gphy_rev; 3103 3104 /* This is reserved so should require special treatment */ 3105 else if (gphy_rev == 0 || gphy_rev == 0x01ff) { 3106 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev); 3107 return; 3108 } 3109 3110 #ifdef CONFIG_PHYS_ADDR_T_64BIT 3111 if (!(params->flags & GENET_HAS_40BITS)) 3112 pr_warn("GENET does not support 40-bits PA\n"); 3113 #endif 3114 3115 pr_debug("Configuration for version: %d\n" 3116 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n" 3117 "BP << en: %2d, BP msk: 0x%05x\n" 3118 "HFB count: %2d, QTAQ msk: 0x%05x\n" 3119 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" 3120 "RDMA: 0x%05x, TDMA: 0x%05x\n" 3121 "Words/BD: %d\n", 3122 priv->version, 3123 params->tx_queues, params->tx_bds_per_q, 3124 params->rx_queues, params->rx_bds_per_q, 3125 params->bp_in_en_shift, params->bp_in_mask, 3126 params->hfb_filter_cnt, params->qtag_mask, 3127 params->tbuf_offset, params->hfb_offset, 3128 params->hfb_reg_offset, 3129 params->rdma_offset, params->tdma_offset, 3130 params->words_per_bd); 3131 } 3132 3133 static const struct of_device_id bcmgenet_match[] = { 3134 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 }, 3135 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 }, 3136 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 }, 3137 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 }, 3138 { }, 3139 }; 3140 3141 static int bcmgenet_probe(struct platform_device *pdev) 3142 { 3143 struct bcmgenet_platform_data *pd = pdev->dev.platform_data; 3144 struct device_node *dn = pdev->dev.of_node; 3145 const struct of_device_id *of_id = NULL; 3146 struct bcmgenet_priv *priv; 3147 struct net_device *dev; 3148 const void *macaddr; 3149 struct resource *r; 3150 int err = -EIO; 3151 3152 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */ 3153 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 3154 GENET_MAX_MQ_CNT + 1); 3155 if (!dev) { 3156 dev_err(&pdev->dev, "can't allocate net device\n"); 3157 return -ENOMEM; 3158 } 3159 3160 if (dn) { 3161 of_id = of_match_node(bcmgenet_match, dn); 3162 if (!of_id) 3163 return -EINVAL; 3164 } 3165 3166 priv = netdev_priv(dev); 3167 priv->irq0 = platform_get_irq(pdev, 0); 3168 priv->irq1 = platform_get_irq(pdev, 1); 3169 priv->wol_irq = platform_get_irq(pdev, 2); 3170 if (!priv->irq0 || !priv->irq1) { 3171 dev_err(&pdev->dev, "can't find IRQs\n"); 3172 err = -EINVAL; 3173 goto err; 3174 } 3175 3176 if (dn) { 3177 macaddr = of_get_mac_address(dn); 3178 if (!macaddr) { 3179 dev_err(&pdev->dev, "can't find MAC address\n"); 3180 err = -EINVAL; 3181 goto err; 3182 } 3183 } else { 3184 macaddr = pd->mac_address; 3185 } 3186 3187 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3188 priv->base = devm_ioremap_resource(&pdev->dev, r); 3189 if (IS_ERR(priv->base)) { 3190 err = PTR_ERR(priv->base); 3191 goto err; 3192 } 3193 3194 SET_NETDEV_DEV(dev, &pdev->dev); 3195 dev_set_drvdata(&pdev->dev, dev); 3196 ether_addr_copy(dev->dev_addr, macaddr); 3197 dev->watchdog_timeo = 2 * HZ; 3198 dev->ethtool_ops = &bcmgenet_ethtool_ops; 3199 dev->netdev_ops = &bcmgenet_netdev_ops; 3200 3201 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); 3202 3203 /* Set hardware features */ 3204 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | 3205 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 3206 3207 /* Request the WOL interrupt and advertise suspend if available */ 3208 priv->wol_irq_disabled = true; 3209 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0, 3210 dev->name, priv); 3211 if (!err) 3212 device_set_wakeup_capable(&pdev->dev, 1); 3213 3214 /* Set the needed headroom to account for any possible 3215 * features enabling/disabling at runtime 3216 */ 3217 dev->needed_headroom += 64; 3218 3219 netdev_boot_setup_check(dev); 3220 3221 priv->dev = dev; 3222 priv->pdev = pdev; 3223 if (of_id) 3224 priv->version = (enum bcmgenet_version)of_id->data; 3225 else 3226 priv->version = pd->genet_version; 3227 3228 priv->clk = devm_clk_get(&priv->pdev->dev, "enet"); 3229 if (IS_ERR(priv->clk)) 3230 dev_warn(&priv->pdev->dev, "failed to get enet clock\n"); 3231 3232 if (!IS_ERR(priv->clk)) 3233 clk_prepare_enable(priv->clk); 3234 3235 bcmgenet_set_hw_params(priv); 3236 3237 /* Mii wait queue */ 3238 init_waitqueue_head(&priv->wq); 3239 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ 3240 priv->rx_buf_len = RX_BUF_LENGTH; 3241 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); 3242 3243 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol"); 3244 if (IS_ERR(priv->clk_wol)) 3245 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n"); 3246 3247 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee"); 3248 if (IS_ERR(priv->clk_eee)) { 3249 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n"); 3250 priv->clk_eee = NULL; 3251 } 3252 3253 err = reset_umac(priv); 3254 if (err) 3255 goto err_clk_disable; 3256 3257 err = bcmgenet_mii_init(dev); 3258 if (err) 3259 goto err_clk_disable; 3260 3261 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues 3262 * just the ring 16 descriptor based TX 3263 */ 3264 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); 3265 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); 3266 3267 /* libphy will determine the link state */ 3268 netif_carrier_off(dev); 3269 3270 /* Turn off the main clock, WOL clock is handled separately */ 3271 if (!IS_ERR(priv->clk)) 3272 clk_disable_unprepare(priv->clk); 3273 3274 err = register_netdev(dev); 3275 if (err) 3276 goto err; 3277 3278 return err; 3279 3280 err_clk_disable: 3281 if (!IS_ERR(priv->clk)) 3282 clk_disable_unprepare(priv->clk); 3283 err: 3284 free_netdev(dev); 3285 return err; 3286 } 3287 3288 static int bcmgenet_remove(struct platform_device *pdev) 3289 { 3290 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); 3291 3292 dev_set_drvdata(&pdev->dev, NULL); 3293 unregister_netdev(priv->dev); 3294 bcmgenet_mii_exit(priv->dev); 3295 free_netdev(priv->dev); 3296 3297 return 0; 3298 } 3299 3300 #ifdef CONFIG_PM_SLEEP 3301 static int bcmgenet_suspend(struct device *d) 3302 { 3303 struct net_device *dev = dev_get_drvdata(d); 3304 struct bcmgenet_priv *priv = netdev_priv(dev); 3305 int ret; 3306 3307 if (!netif_running(dev)) 3308 return 0; 3309 3310 bcmgenet_netif_stop(dev); 3311 3312 phy_suspend(priv->phydev); 3313 3314 netif_device_detach(dev); 3315 3316 /* Disable MAC receive */ 3317 umac_enable_set(priv, CMD_RX_EN, false); 3318 3319 ret = bcmgenet_dma_teardown(priv); 3320 if (ret) 3321 return ret; 3322 3323 /* Disable MAC transmit. TX DMA disabled have to done before this */ 3324 umac_enable_set(priv, CMD_TX_EN, false); 3325 3326 /* tx reclaim */ 3327 bcmgenet_tx_reclaim_all(dev); 3328 bcmgenet_fini_dma(priv); 3329 3330 /* Prepare the device for Wake-on-LAN and switch to the slow clock */ 3331 if (device_may_wakeup(d) && priv->wolopts) { 3332 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC); 3333 clk_prepare_enable(priv->clk_wol); 3334 } else if (phy_is_internal(priv->phydev)) { 3335 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3336 } 3337 3338 /* Turn off the clocks */ 3339 clk_disable_unprepare(priv->clk); 3340 3341 return ret; 3342 } 3343 3344 static int bcmgenet_resume(struct device *d) 3345 { 3346 struct net_device *dev = dev_get_drvdata(d); 3347 struct bcmgenet_priv *priv = netdev_priv(dev); 3348 unsigned long dma_ctrl; 3349 int ret; 3350 u32 reg; 3351 3352 if (!netif_running(dev)) 3353 return 0; 3354 3355 /* Turn on the clock */ 3356 ret = clk_prepare_enable(priv->clk); 3357 if (ret) 3358 return ret; 3359 3360 /* If this is an internal GPHY, power it back on now, before UniMAC is 3361 * brought out of reset as absolutely no UniMAC activity is allowed 3362 */ 3363 if (phy_is_internal(priv->phydev)) 3364 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 3365 3366 bcmgenet_umac_reset(priv); 3367 3368 ret = init_umac(priv); 3369 if (ret) 3370 goto out_clk_disable; 3371 3372 /* From WOL-enabled suspend, switch to regular clock */ 3373 if (priv->wolopts) 3374 clk_disable_unprepare(priv->clk_wol); 3375 3376 phy_init_hw(priv->phydev); 3377 /* Speed settings must be restored */ 3378 bcmgenet_mii_config(priv->dev, false); 3379 3380 /* disable ethernet MAC while updating its registers */ 3381 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false); 3382 3383 bcmgenet_set_hw_addr(priv, dev->dev_addr); 3384 3385 if (phy_is_internal(priv->phydev)) { 3386 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 3387 reg |= EXT_ENERGY_DET_MASK; 3388 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 3389 } 3390 3391 if (priv->wolopts) 3392 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 3393 3394 /* Disable RX/TX DMA and flush TX queues */ 3395 dma_ctrl = bcmgenet_dma_disable(priv); 3396 3397 /* Reinitialize TDMA and RDMA and SW housekeeping */ 3398 ret = bcmgenet_init_dma(priv); 3399 if (ret) { 3400 netdev_err(dev, "failed to initialize DMA\n"); 3401 goto out_clk_disable; 3402 } 3403 3404 /* Always enable ring 16 - descriptor ring */ 3405 bcmgenet_enable_dma(priv, dma_ctrl); 3406 3407 netif_device_attach(dev); 3408 3409 phy_resume(priv->phydev); 3410 3411 if (priv->eee.eee_enabled) 3412 bcmgenet_eee_enable_set(dev, true); 3413 3414 bcmgenet_netif_start(dev); 3415 3416 return 0; 3417 3418 out_clk_disable: 3419 clk_disable_unprepare(priv->clk); 3420 return ret; 3421 } 3422 #endif /* CONFIG_PM_SLEEP */ 3423 3424 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume); 3425 3426 static struct platform_driver bcmgenet_driver = { 3427 .probe = bcmgenet_probe, 3428 .remove = bcmgenet_remove, 3429 .driver = { 3430 .name = "bcmgenet", 3431 .of_match_table = bcmgenet_match, 3432 .pm = &bcmgenet_pm_ops, 3433 }, 3434 }; 3435 module_platform_driver(bcmgenet_driver); 3436 3437 MODULE_AUTHOR("Broadcom Corporation"); 3438 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); 3439 MODULE_ALIAS("platform:bcmgenet"); 3440 MODULE_LICENSE("GPL"); 3441