1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Broadcom GENET (Gigabit Ethernet) controller driver 4 * 5 * Copyright (c) 2014-2020 Broadcom 6 */ 7 8 #define pr_fmt(fmt) "bcmgenet: " fmt 9 10 #include <linux/acpi.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/sched.h> 14 #include <linux/types.h> 15 #include <linux/fcntl.h> 16 #include <linux/interrupt.h> 17 #include <linux/string.h> 18 #include <linux/if_ether.h> 19 #include <linux/init.h> 20 #include <linux/errno.h> 21 #include <linux/delay.h> 22 #include <linux/platform_device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/pm.h> 25 #include <linux/clk.h> 26 #include <net/arp.h> 27 28 #include <linux/mii.h> 29 #include <linux/ethtool.h> 30 #include <linux/netdevice.h> 31 #include <linux/inetdevice.h> 32 #include <linux/etherdevice.h> 33 #include <linux/skbuff.h> 34 #include <linux/in.h> 35 #include <linux/ip.h> 36 #include <linux/ipv6.h> 37 #include <linux/phy.h> 38 #include <linux/platform_data/bcmgenet.h> 39 40 #include <asm/unaligned.h> 41 42 #include "bcmgenet.h" 43 44 /* Maximum number of hardware queues, downsized if needed */ 45 #define GENET_MAX_MQ_CNT 4 46 47 /* Default highest priority queue for multi queue support */ 48 #define GENET_Q0_PRIORITY 0 49 50 #define GENET_Q16_RX_BD_CNT \ 51 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q) 52 #define GENET_Q16_TX_BD_CNT \ 53 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q) 54 55 #define RX_BUF_LENGTH 2048 56 #define SKB_ALIGNMENT 32 57 58 /* Tx/Rx DMA register offset, skip 256 descriptors */ 59 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd) 60 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) 61 62 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ 63 TOTAL_DESC * DMA_DESC_SIZE) 64 65 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ 66 TOTAL_DESC * DMA_DESC_SIZE) 67 68 /* Forward declarations */ 69 static void bcmgenet_set_rx_mode(struct net_device *dev); 70 71 static inline void bcmgenet_writel(u32 value, void __iomem *offset) 72 { 73 /* MIPS chips strapped for BE will automagically configure the 74 * peripheral registers for CPU-native byte order. 75 */ 76 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 77 __raw_writel(value, offset); 78 else 79 writel_relaxed(value, offset); 80 } 81 82 static inline u32 bcmgenet_readl(void __iomem *offset) 83 { 84 if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) 85 return __raw_readl(offset); 86 else 87 return readl_relaxed(offset); 88 } 89 90 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, 91 void __iomem *d, u32 value) 92 { 93 bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS); 94 } 95 96 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, 97 void __iomem *d, 98 dma_addr_t addr) 99 { 100 bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); 101 102 /* Register writes to GISB bus can take couple hundred nanoseconds 103 * and are done for each packet, save these expensive writes unless 104 * the platform is explicitly configured for 64-bits/LPAE. 105 */ 106 #ifdef CONFIG_PHYS_ADDR_T_64BIT 107 if (priv->hw_params->flags & GENET_HAS_40BITS) 108 bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); 109 #endif 110 } 111 112 /* Combined address + length/status setter */ 113 static inline void dmadesc_set(struct bcmgenet_priv *priv, 114 void __iomem *d, dma_addr_t addr, u32 val) 115 { 116 dmadesc_set_addr(priv, d, addr); 117 dmadesc_set_length_status(priv, d, val); 118 } 119 120 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv, 121 void __iomem *d) 122 { 123 dma_addr_t addr; 124 125 addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO); 126 127 /* Register writes to GISB bus can take couple hundred nanoseconds 128 * and are done for each packet, save these expensive writes unless 129 * the platform is explicitly configured for 64-bits/LPAE. 130 */ 131 #ifdef CONFIG_PHYS_ADDR_T_64BIT 132 if (priv->hw_params->flags & GENET_HAS_40BITS) 133 addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32; 134 #endif 135 return addr; 136 } 137 138 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" 139 140 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 141 NETIF_MSG_LINK) 142 143 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) 144 { 145 if (GENET_IS_V1(priv)) 146 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); 147 else 148 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); 149 } 150 151 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 152 { 153 if (GENET_IS_V1(priv)) 154 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); 155 else 156 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); 157 } 158 159 /* These macros are defined to deal with register map change 160 * between GENET1.1 and GENET2. Only those currently being used 161 * by driver are defined. 162 */ 163 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) 164 { 165 if (GENET_IS_V1(priv)) 166 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); 167 else 168 return bcmgenet_readl(priv->base + 169 priv->hw_params->tbuf_offset + TBUF_CTRL); 170 } 171 172 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) 173 { 174 if (GENET_IS_V1(priv)) 175 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); 176 else 177 bcmgenet_writel(val, priv->base + 178 priv->hw_params->tbuf_offset + TBUF_CTRL); 179 } 180 181 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) 182 { 183 if (GENET_IS_V1(priv)) 184 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); 185 else 186 return bcmgenet_readl(priv->base + 187 priv->hw_params->tbuf_offset + TBUF_BP_MC); 188 } 189 190 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) 191 { 192 if (GENET_IS_V1(priv)) 193 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); 194 else 195 bcmgenet_writel(val, priv->base + 196 priv->hw_params->tbuf_offset + TBUF_BP_MC); 197 } 198 199 /* RX/TX DMA register accessors */ 200 enum dma_reg { 201 DMA_RING_CFG = 0, 202 DMA_CTRL, 203 DMA_STATUS, 204 DMA_SCB_BURST_SIZE, 205 DMA_ARB_CTRL, 206 DMA_PRIORITY_0, 207 DMA_PRIORITY_1, 208 DMA_PRIORITY_2, 209 DMA_INDEX2RING_0, 210 DMA_INDEX2RING_1, 211 DMA_INDEX2RING_2, 212 DMA_INDEX2RING_3, 213 DMA_INDEX2RING_4, 214 DMA_INDEX2RING_5, 215 DMA_INDEX2RING_6, 216 DMA_INDEX2RING_7, 217 DMA_RING0_TIMEOUT, 218 DMA_RING1_TIMEOUT, 219 DMA_RING2_TIMEOUT, 220 DMA_RING3_TIMEOUT, 221 DMA_RING4_TIMEOUT, 222 DMA_RING5_TIMEOUT, 223 DMA_RING6_TIMEOUT, 224 DMA_RING7_TIMEOUT, 225 DMA_RING8_TIMEOUT, 226 DMA_RING9_TIMEOUT, 227 DMA_RING10_TIMEOUT, 228 DMA_RING11_TIMEOUT, 229 DMA_RING12_TIMEOUT, 230 DMA_RING13_TIMEOUT, 231 DMA_RING14_TIMEOUT, 232 DMA_RING15_TIMEOUT, 233 DMA_RING16_TIMEOUT, 234 }; 235 236 static const u8 bcmgenet_dma_regs_v3plus[] = { 237 [DMA_RING_CFG] = 0x00, 238 [DMA_CTRL] = 0x04, 239 [DMA_STATUS] = 0x08, 240 [DMA_SCB_BURST_SIZE] = 0x0C, 241 [DMA_ARB_CTRL] = 0x2C, 242 [DMA_PRIORITY_0] = 0x30, 243 [DMA_PRIORITY_1] = 0x34, 244 [DMA_PRIORITY_2] = 0x38, 245 [DMA_RING0_TIMEOUT] = 0x2C, 246 [DMA_RING1_TIMEOUT] = 0x30, 247 [DMA_RING2_TIMEOUT] = 0x34, 248 [DMA_RING3_TIMEOUT] = 0x38, 249 [DMA_RING4_TIMEOUT] = 0x3c, 250 [DMA_RING5_TIMEOUT] = 0x40, 251 [DMA_RING6_TIMEOUT] = 0x44, 252 [DMA_RING7_TIMEOUT] = 0x48, 253 [DMA_RING8_TIMEOUT] = 0x4c, 254 [DMA_RING9_TIMEOUT] = 0x50, 255 [DMA_RING10_TIMEOUT] = 0x54, 256 [DMA_RING11_TIMEOUT] = 0x58, 257 [DMA_RING12_TIMEOUT] = 0x5c, 258 [DMA_RING13_TIMEOUT] = 0x60, 259 [DMA_RING14_TIMEOUT] = 0x64, 260 [DMA_RING15_TIMEOUT] = 0x68, 261 [DMA_RING16_TIMEOUT] = 0x6C, 262 [DMA_INDEX2RING_0] = 0x70, 263 [DMA_INDEX2RING_1] = 0x74, 264 [DMA_INDEX2RING_2] = 0x78, 265 [DMA_INDEX2RING_3] = 0x7C, 266 [DMA_INDEX2RING_4] = 0x80, 267 [DMA_INDEX2RING_5] = 0x84, 268 [DMA_INDEX2RING_6] = 0x88, 269 [DMA_INDEX2RING_7] = 0x8C, 270 }; 271 272 static const u8 bcmgenet_dma_regs_v2[] = { 273 [DMA_RING_CFG] = 0x00, 274 [DMA_CTRL] = 0x04, 275 [DMA_STATUS] = 0x08, 276 [DMA_SCB_BURST_SIZE] = 0x0C, 277 [DMA_ARB_CTRL] = 0x30, 278 [DMA_PRIORITY_0] = 0x34, 279 [DMA_PRIORITY_1] = 0x38, 280 [DMA_PRIORITY_2] = 0x3C, 281 [DMA_RING0_TIMEOUT] = 0x2C, 282 [DMA_RING1_TIMEOUT] = 0x30, 283 [DMA_RING2_TIMEOUT] = 0x34, 284 [DMA_RING3_TIMEOUT] = 0x38, 285 [DMA_RING4_TIMEOUT] = 0x3c, 286 [DMA_RING5_TIMEOUT] = 0x40, 287 [DMA_RING6_TIMEOUT] = 0x44, 288 [DMA_RING7_TIMEOUT] = 0x48, 289 [DMA_RING8_TIMEOUT] = 0x4c, 290 [DMA_RING9_TIMEOUT] = 0x50, 291 [DMA_RING10_TIMEOUT] = 0x54, 292 [DMA_RING11_TIMEOUT] = 0x58, 293 [DMA_RING12_TIMEOUT] = 0x5c, 294 [DMA_RING13_TIMEOUT] = 0x60, 295 [DMA_RING14_TIMEOUT] = 0x64, 296 [DMA_RING15_TIMEOUT] = 0x68, 297 [DMA_RING16_TIMEOUT] = 0x6C, 298 }; 299 300 static const u8 bcmgenet_dma_regs_v1[] = { 301 [DMA_CTRL] = 0x00, 302 [DMA_STATUS] = 0x04, 303 [DMA_SCB_BURST_SIZE] = 0x0C, 304 [DMA_ARB_CTRL] = 0x30, 305 [DMA_PRIORITY_0] = 0x34, 306 [DMA_PRIORITY_1] = 0x38, 307 [DMA_PRIORITY_2] = 0x3C, 308 [DMA_RING0_TIMEOUT] = 0x2C, 309 [DMA_RING1_TIMEOUT] = 0x30, 310 [DMA_RING2_TIMEOUT] = 0x34, 311 [DMA_RING3_TIMEOUT] = 0x38, 312 [DMA_RING4_TIMEOUT] = 0x3c, 313 [DMA_RING5_TIMEOUT] = 0x40, 314 [DMA_RING6_TIMEOUT] = 0x44, 315 [DMA_RING7_TIMEOUT] = 0x48, 316 [DMA_RING8_TIMEOUT] = 0x4c, 317 [DMA_RING9_TIMEOUT] = 0x50, 318 [DMA_RING10_TIMEOUT] = 0x54, 319 [DMA_RING11_TIMEOUT] = 0x58, 320 [DMA_RING12_TIMEOUT] = 0x5c, 321 [DMA_RING13_TIMEOUT] = 0x60, 322 [DMA_RING14_TIMEOUT] = 0x64, 323 [DMA_RING15_TIMEOUT] = 0x68, 324 [DMA_RING16_TIMEOUT] = 0x6C, 325 }; 326 327 /* Set at runtime once bcmgenet version is known */ 328 static const u8 *bcmgenet_dma_regs; 329 330 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) 331 { 332 return netdev_priv(dev_get_drvdata(dev)); 333 } 334 335 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, 336 enum dma_reg r) 337 { 338 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 339 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 340 } 341 342 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, 343 u32 val, enum dma_reg r) 344 { 345 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 346 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 347 } 348 349 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, 350 enum dma_reg r) 351 { 352 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 353 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 354 } 355 356 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, 357 u32 val, enum dma_reg r) 358 { 359 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 360 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); 361 } 362 363 /* RDMA/TDMA ring registers and accessors 364 * we merge the common fields and just prefix with T/D the registers 365 * having different meaning depending on the direction 366 */ 367 enum dma_ring_reg { 368 TDMA_READ_PTR = 0, 369 RDMA_WRITE_PTR = TDMA_READ_PTR, 370 TDMA_READ_PTR_HI, 371 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, 372 TDMA_CONS_INDEX, 373 RDMA_PROD_INDEX = TDMA_CONS_INDEX, 374 TDMA_PROD_INDEX, 375 RDMA_CONS_INDEX = TDMA_PROD_INDEX, 376 DMA_RING_BUF_SIZE, 377 DMA_START_ADDR, 378 DMA_START_ADDR_HI, 379 DMA_END_ADDR, 380 DMA_END_ADDR_HI, 381 DMA_MBUF_DONE_THRESH, 382 TDMA_FLOW_PERIOD, 383 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, 384 TDMA_WRITE_PTR, 385 RDMA_READ_PTR = TDMA_WRITE_PTR, 386 TDMA_WRITE_PTR_HI, 387 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI 388 }; 389 390 /* GENET v4 supports 40-bits pointer addressing 391 * for obvious reasons the LO and HI word parts 392 * are contiguous, but this offsets the other 393 * registers. 394 */ 395 static const u8 genet_dma_ring_regs_v4[] = { 396 [TDMA_READ_PTR] = 0x00, 397 [TDMA_READ_PTR_HI] = 0x04, 398 [TDMA_CONS_INDEX] = 0x08, 399 [TDMA_PROD_INDEX] = 0x0C, 400 [DMA_RING_BUF_SIZE] = 0x10, 401 [DMA_START_ADDR] = 0x14, 402 [DMA_START_ADDR_HI] = 0x18, 403 [DMA_END_ADDR] = 0x1C, 404 [DMA_END_ADDR_HI] = 0x20, 405 [DMA_MBUF_DONE_THRESH] = 0x24, 406 [TDMA_FLOW_PERIOD] = 0x28, 407 [TDMA_WRITE_PTR] = 0x2C, 408 [TDMA_WRITE_PTR_HI] = 0x30, 409 }; 410 411 static const u8 genet_dma_ring_regs_v123[] = { 412 [TDMA_READ_PTR] = 0x00, 413 [TDMA_CONS_INDEX] = 0x04, 414 [TDMA_PROD_INDEX] = 0x08, 415 [DMA_RING_BUF_SIZE] = 0x0C, 416 [DMA_START_ADDR] = 0x10, 417 [DMA_END_ADDR] = 0x14, 418 [DMA_MBUF_DONE_THRESH] = 0x18, 419 [TDMA_FLOW_PERIOD] = 0x1C, 420 [TDMA_WRITE_PTR] = 0x20, 421 }; 422 423 /* Set at runtime once GENET version is known */ 424 static const u8 *genet_dma_ring_regs; 425 426 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, 427 unsigned int ring, 428 enum dma_ring_reg r) 429 { 430 return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF + 431 (DMA_RING_SIZE * ring) + 432 genet_dma_ring_regs[r]); 433 } 434 435 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, 436 unsigned int ring, u32 val, 437 enum dma_ring_reg r) 438 { 439 bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF + 440 (DMA_RING_SIZE * ring) + 441 genet_dma_ring_regs[r]); 442 } 443 444 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, 445 unsigned int ring, 446 enum dma_ring_reg r) 447 { 448 return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF + 449 (DMA_RING_SIZE * ring) + 450 genet_dma_ring_regs[r]); 451 } 452 453 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, 454 unsigned int ring, u32 val, 455 enum dma_ring_reg r) 456 { 457 bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF + 458 (DMA_RING_SIZE * ring) + 459 genet_dma_ring_regs[r]); 460 } 461 462 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index) 463 { 464 u32 offset; 465 u32 reg; 466 467 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32); 468 reg = bcmgenet_hfb_reg_readl(priv, offset); 469 reg |= (1 << (f_index % 32)); 470 bcmgenet_hfb_reg_writel(priv, reg, offset); 471 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL); 472 reg |= RBUF_HFB_EN; 473 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL); 474 } 475 476 static void bcmgenet_hfb_disable_filter(struct bcmgenet_priv *priv, u32 f_index) 477 { 478 u32 offset, reg, reg1; 479 480 offset = HFB_FLT_ENABLE_V3PLUS; 481 reg = bcmgenet_hfb_reg_readl(priv, offset); 482 reg1 = bcmgenet_hfb_reg_readl(priv, offset + sizeof(u32)); 483 if (f_index < 32) { 484 reg1 &= ~(1 << (f_index % 32)); 485 bcmgenet_hfb_reg_writel(priv, reg1, offset + sizeof(u32)); 486 } else { 487 reg &= ~(1 << (f_index % 32)); 488 bcmgenet_hfb_reg_writel(priv, reg, offset); 489 } 490 if (!reg && !reg1) { 491 reg = bcmgenet_hfb_reg_readl(priv, HFB_CTRL); 492 reg &= ~RBUF_HFB_EN; 493 bcmgenet_hfb_reg_writel(priv, reg, HFB_CTRL); 494 } 495 } 496 497 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv, 498 u32 f_index, u32 rx_queue) 499 { 500 u32 offset; 501 u32 reg; 502 503 offset = f_index / 8; 504 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset); 505 reg &= ~(0xF << (4 * (f_index % 8))); 506 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8))); 507 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset); 508 } 509 510 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv, 511 u32 f_index, u32 f_length) 512 { 513 u32 offset; 514 u32 reg; 515 516 offset = HFB_FLT_LEN_V3PLUS + 517 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) * 518 sizeof(u32); 519 reg = bcmgenet_hfb_reg_readl(priv, offset); 520 reg &= ~(0xFF << (8 * (f_index % 4))); 521 reg |= ((f_length & 0xFF) << (8 * (f_index % 4))); 522 bcmgenet_hfb_reg_writel(priv, reg, offset); 523 } 524 525 static int bcmgenet_hfb_validate_mask(void *mask, size_t size) 526 { 527 while (size) { 528 switch (*(unsigned char *)mask++) { 529 case 0x00: 530 case 0x0f: 531 case 0xf0: 532 case 0xff: 533 size--; 534 continue; 535 default: 536 return -EINVAL; 537 } 538 } 539 540 return 0; 541 } 542 543 #define VALIDATE_MASK(x) \ 544 bcmgenet_hfb_validate_mask(&(x), sizeof(x)) 545 546 static int bcmgenet_hfb_insert_data(struct bcmgenet_priv *priv, u32 f_index, 547 u32 offset, void *val, void *mask, 548 size_t size) 549 { 550 u32 index, tmp; 551 552 index = f_index * priv->hw_params->hfb_filter_size + offset / 2; 553 tmp = bcmgenet_hfb_readl(priv, index * sizeof(u32)); 554 555 while (size--) { 556 if (offset++ & 1) { 557 tmp &= ~0x300FF; 558 tmp |= (*(unsigned char *)val++); 559 switch ((*(unsigned char *)mask++)) { 560 case 0xFF: 561 tmp |= 0x30000; 562 break; 563 case 0xF0: 564 tmp |= 0x20000; 565 break; 566 case 0x0F: 567 tmp |= 0x10000; 568 break; 569 } 570 bcmgenet_hfb_writel(priv, tmp, index++ * sizeof(u32)); 571 if (size) 572 tmp = bcmgenet_hfb_readl(priv, 573 index * sizeof(u32)); 574 } else { 575 tmp &= ~0xCFF00; 576 tmp |= (*(unsigned char *)val++) << 8; 577 switch ((*(unsigned char *)mask++)) { 578 case 0xFF: 579 tmp |= 0xC0000; 580 break; 581 case 0xF0: 582 tmp |= 0x80000; 583 break; 584 case 0x0F: 585 tmp |= 0x40000; 586 break; 587 } 588 if (!size) 589 bcmgenet_hfb_writel(priv, tmp, index * sizeof(u32)); 590 } 591 } 592 593 return 0; 594 } 595 596 static void bcmgenet_hfb_create_rxnfc_filter(struct bcmgenet_priv *priv, 597 struct bcmgenet_rxnfc_rule *rule) 598 { 599 struct ethtool_rx_flow_spec *fs = &rule->fs; 600 u32 offset = 0, f_length = 0, f; 601 u8 val_8, mask_8; 602 __be16 val_16; 603 u16 mask_16; 604 size_t size; 605 606 f = fs->location; 607 if (fs->flow_type & FLOW_MAC_EXT) { 608 bcmgenet_hfb_insert_data(priv, f, 0, 609 &fs->h_ext.h_dest, &fs->m_ext.h_dest, 610 sizeof(fs->h_ext.h_dest)); 611 } 612 613 if (fs->flow_type & FLOW_EXT) { 614 if (fs->m_ext.vlan_etype || 615 fs->m_ext.vlan_tci) { 616 bcmgenet_hfb_insert_data(priv, f, 12, 617 &fs->h_ext.vlan_etype, 618 &fs->m_ext.vlan_etype, 619 sizeof(fs->h_ext.vlan_etype)); 620 bcmgenet_hfb_insert_data(priv, f, 14, 621 &fs->h_ext.vlan_tci, 622 &fs->m_ext.vlan_tci, 623 sizeof(fs->h_ext.vlan_tci)); 624 offset += VLAN_HLEN; 625 f_length += DIV_ROUND_UP(VLAN_HLEN, 2); 626 } 627 } 628 629 switch (fs->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 630 case ETHER_FLOW: 631 f_length += DIV_ROUND_UP(ETH_HLEN, 2); 632 bcmgenet_hfb_insert_data(priv, f, 0, 633 &fs->h_u.ether_spec.h_dest, 634 &fs->m_u.ether_spec.h_dest, 635 sizeof(fs->h_u.ether_spec.h_dest)); 636 bcmgenet_hfb_insert_data(priv, f, ETH_ALEN, 637 &fs->h_u.ether_spec.h_source, 638 &fs->m_u.ether_spec.h_source, 639 sizeof(fs->h_u.ether_spec.h_source)); 640 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset, 641 &fs->h_u.ether_spec.h_proto, 642 &fs->m_u.ether_spec.h_proto, 643 sizeof(fs->h_u.ether_spec.h_proto)); 644 break; 645 case IP_USER_FLOW: 646 f_length += DIV_ROUND_UP(ETH_HLEN + 20, 2); 647 /* Specify IP Ether Type */ 648 val_16 = htons(ETH_P_IP); 649 mask_16 = 0xFFFF; 650 bcmgenet_hfb_insert_data(priv, f, (2 * ETH_ALEN) + offset, 651 &val_16, &mask_16, sizeof(val_16)); 652 bcmgenet_hfb_insert_data(priv, f, 15 + offset, 653 &fs->h_u.usr_ip4_spec.tos, 654 &fs->m_u.usr_ip4_spec.tos, 655 sizeof(fs->h_u.usr_ip4_spec.tos)); 656 bcmgenet_hfb_insert_data(priv, f, 23 + offset, 657 &fs->h_u.usr_ip4_spec.proto, 658 &fs->m_u.usr_ip4_spec.proto, 659 sizeof(fs->h_u.usr_ip4_spec.proto)); 660 bcmgenet_hfb_insert_data(priv, f, 26 + offset, 661 &fs->h_u.usr_ip4_spec.ip4src, 662 &fs->m_u.usr_ip4_spec.ip4src, 663 sizeof(fs->h_u.usr_ip4_spec.ip4src)); 664 bcmgenet_hfb_insert_data(priv, f, 30 + offset, 665 &fs->h_u.usr_ip4_spec.ip4dst, 666 &fs->m_u.usr_ip4_spec.ip4dst, 667 sizeof(fs->h_u.usr_ip4_spec.ip4dst)); 668 if (!fs->m_u.usr_ip4_spec.l4_4_bytes) 669 break; 670 671 /* Only supports 20 byte IPv4 header */ 672 val_8 = 0x45; 673 mask_8 = 0xFF; 674 bcmgenet_hfb_insert_data(priv, f, ETH_HLEN + offset, 675 &val_8, &mask_8, 676 sizeof(val_8)); 677 size = sizeof(fs->h_u.usr_ip4_spec.l4_4_bytes); 678 bcmgenet_hfb_insert_data(priv, f, 679 ETH_HLEN + 20 + offset, 680 &fs->h_u.usr_ip4_spec.l4_4_bytes, 681 &fs->m_u.usr_ip4_spec.l4_4_bytes, 682 size); 683 f_length += DIV_ROUND_UP(size, 2); 684 break; 685 } 686 687 bcmgenet_hfb_set_filter_length(priv, f, 2 * f_length); 688 if (!fs->ring_cookie || fs->ring_cookie == RX_CLS_FLOW_WAKE) { 689 /* Ring 0 flows can be handled by the default Descriptor Ring 690 * We'll map them to ring 0, but don't enable the filter 691 */ 692 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 0); 693 rule->state = BCMGENET_RXNFC_STATE_DISABLED; 694 } else { 695 /* Other Rx rings are direct mapped here */ 696 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f, 697 fs->ring_cookie); 698 bcmgenet_hfb_enable_filter(priv, f); 699 rule->state = BCMGENET_RXNFC_STATE_ENABLED; 700 } 701 } 702 703 /* bcmgenet_hfb_clear 704 * 705 * Clear Hardware Filter Block and disable all filtering. 706 */ 707 static void bcmgenet_hfb_clear_filter(struct bcmgenet_priv *priv, u32 f_index) 708 { 709 u32 base, i; 710 711 base = f_index * priv->hw_params->hfb_filter_size; 712 for (i = 0; i < priv->hw_params->hfb_filter_size; i++) 713 bcmgenet_hfb_writel(priv, 0x0, (base + i) * sizeof(u32)); 714 } 715 716 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv) 717 { 718 u32 i; 719 720 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 721 return; 722 723 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL); 724 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS); 725 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4); 726 727 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++) 728 bcmgenet_rdma_writel(priv, 0x0, i); 729 730 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++) 731 bcmgenet_hfb_reg_writel(priv, 0x0, 732 HFB_FLT_LEN_V3PLUS + i * sizeof(u32)); 733 734 for (i = 0; i < priv->hw_params->hfb_filter_cnt; i++) 735 bcmgenet_hfb_clear_filter(priv, i); 736 } 737 738 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv) 739 { 740 int i; 741 742 INIT_LIST_HEAD(&priv->rxnfc_list); 743 if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) 744 return; 745 746 for (i = 0; i < MAX_NUM_OF_FS_RULES; i++) { 747 INIT_LIST_HEAD(&priv->rxnfc_rules[i].list); 748 priv->rxnfc_rules[i].state = BCMGENET_RXNFC_STATE_UNUSED; 749 } 750 751 bcmgenet_hfb_clear(priv); 752 } 753 754 static int bcmgenet_begin(struct net_device *dev) 755 { 756 struct bcmgenet_priv *priv = netdev_priv(dev); 757 758 /* Turn on the clock */ 759 return clk_prepare_enable(priv->clk); 760 } 761 762 static void bcmgenet_complete(struct net_device *dev) 763 { 764 struct bcmgenet_priv *priv = netdev_priv(dev); 765 766 /* Turn off the clock */ 767 clk_disable_unprepare(priv->clk); 768 } 769 770 static int bcmgenet_get_link_ksettings(struct net_device *dev, 771 struct ethtool_link_ksettings *cmd) 772 { 773 if (!netif_running(dev)) 774 return -EINVAL; 775 776 if (!dev->phydev) 777 return -ENODEV; 778 779 phy_ethtool_ksettings_get(dev->phydev, cmd); 780 781 return 0; 782 } 783 784 static int bcmgenet_set_link_ksettings(struct net_device *dev, 785 const struct ethtool_link_ksettings *cmd) 786 { 787 if (!netif_running(dev)) 788 return -EINVAL; 789 790 if (!dev->phydev) 791 return -ENODEV; 792 793 return phy_ethtool_ksettings_set(dev->phydev, cmd); 794 } 795 796 static int bcmgenet_set_features(struct net_device *dev, 797 netdev_features_t features) 798 { 799 struct bcmgenet_priv *priv = netdev_priv(dev); 800 u32 reg; 801 int ret; 802 803 ret = clk_prepare_enable(priv->clk); 804 if (ret) 805 return ret; 806 807 /* Make sure we reflect the value of CRC_CMD_FWD */ 808 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 809 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); 810 811 clk_disable_unprepare(priv->clk); 812 813 return ret; 814 } 815 816 static u32 bcmgenet_get_msglevel(struct net_device *dev) 817 { 818 struct bcmgenet_priv *priv = netdev_priv(dev); 819 820 return priv->msg_enable; 821 } 822 823 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) 824 { 825 struct bcmgenet_priv *priv = netdev_priv(dev); 826 827 priv->msg_enable = level; 828 } 829 830 static int bcmgenet_get_coalesce(struct net_device *dev, 831 struct ethtool_coalesce *ec) 832 { 833 struct bcmgenet_priv *priv = netdev_priv(dev); 834 struct bcmgenet_rx_ring *ring; 835 unsigned int i; 836 837 ec->tx_max_coalesced_frames = 838 bcmgenet_tdma_ring_readl(priv, DESC_INDEX, 839 DMA_MBUF_DONE_THRESH); 840 ec->rx_max_coalesced_frames = 841 bcmgenet_rdma_ring_readl(priv, DESC_INDEX, 842 DMA_MBUF_DONE_THRESH); 843 ec->rx_coalesce_usecs = 844 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000; 845 846 for (i = 0; i < priv->hw_params->rx_queues; i++) { 847 ring = &priv->rx_rings[i]; 848 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 849 } 850 ring = &priv->rx_rings[DESC_INDEX]; 851 ec->use_adaptive_rx_coalesce |= ring->dim.use_dim; 852 853 return 0; 854 } 855 856 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring, 857 u32 usecs, u32 pkts) 858 { 859 struct bcmgenet_priv *priv = ring->priv; 860 unsigned int i = ring->index; 861 u32 reg; 862 863 bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH); 864 865 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i); 866 reg &= ~DMA_TIMEOUT_MASK; 867 reg |= DIV_ROUND_UP(usecs * 1000, 8192); 868 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i); 869 } 870 871 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring, 872 struct ethtool_coalesce *ec) 873 { 874 struct dim_cq_moder moder; 875 u32 usecs, pkts; 876 877 ring->rx_coalesce_usecs = ec->rx_coalesce_usecs; 878 ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames; 879 usecs = ring->rx_coalesce_usecs; 880 pkts = ring->rx_max_coalesced_frames; 881 882 if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) { 883 moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode); 884 usecs = moder.usec; 885 pkts = moder.pkts; 886 } 887 888 ring->dim.use_dim = ec->use_adaptive_rx_coalesce; 889 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 890 } 891 892 static int bcmgenet_set_coalesce(struct net_device *dev, 893 struct ethtool_coalesce *ec) 894 { 895 struct bcmgenet_priv *priv = netdev_priv(dev); 896 unsigned int i; 897 898 /* Base system clock is 125Mhz, DMA timeout is this reference clock 899 * divided by 1024, which yields roughly 8.192us, our maximum value 900 * has to fit in the DMA_TIMEOUT_MASK (16 bits) 901 */ 902 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 903 ec->tx_max_coalesced_frames == 0 || 904 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || 905 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1) 906 return -EINVAL; 907 908 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0) 909 return -EINVAL; 910 911 /* GENET TDMA hardware does not support a configurable timeout, but will 912 * always generate an interrupt either after MBDONE packets have been 913 * transmitted, or when the ring is empty. 914 */ 915 916 /* Program all TX queues with the same values, as there is no 917 * ethtool knob to do coalescing on a per-queue basis 918 */ 919 for (i = 0; i < priv->hw_params->tx_queues; i++) 920 bcmgenet_tdma_ring_writel(priv, i, 921 ec->tx_max_coalesced_frames, 922 DMA_MBUF_DONE_THRESH); 923 bcmgenet_tdma_ring_writel(priv, DESC_INDEX, 924 ec->tx_max_coalesced_frames, 925 DMA_MBUF_DONE_THRESH); 926 927 for (i = 0; i < priv->hw_params->rx_queues; i++) 928 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec); 929 bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec); 930 931 return 0; 932 } 933 934 /* standard ethtool support functions. */ 935 enum bcmgenet_stat_type { 936 BCMGENET_STAT_NETDEV = -1, 937 BCMGENET_STAT_MIB_RX, 938 BCMGENET_STAT_MIB_TX, 939 BCMGENET_STAT_RUNT, 940 BCMGENET_STAT_MISC, 941 BCMGENET_STAT_SOFT, 942 }; 943 944 struct bcmgenet_stats { 945 char stat_string[ETH_GSTRING_LEN]; 946 int stat_sizeof; 947 int stat_offset; 948 enum bcmgenet_stat_type type; 949 /* reg offset from UMAC base for misc counters */ 950 u16 reg_offset; 951 }; 952 953 #define STAT_NETDEV(m) { \ 954 .stat_string = __stringify(m), \ 955 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ 956 .stat_offset = offsetof(struct net_device_stats, m), \ 957 .type = BCMGENET_STAT_NETDEV, \ 958 } 959 960 #define STAT_GENET_MIB(str, m, _type) { \ 961 .stat_string = str, \ 962 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 963 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 964 .type = _type, \ 965 } 966 967 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) 968 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) 969 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) 970 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT) 971 972 #define STAT_GENET_MISC(str, m, offset) { \ 973 .stat_string = str, \ 974 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ 975 .stat_offset = offsetof(struct bcmgenet_priv, m), \ 976 .type = BCMGENET_STAT_MISC, \ 977 .reg_offset = offset, \ 978 } 979 980 #define STAT_GENET_Q(num) \ 981 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \ 982 tx_rings[num].packets), \ 983 STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \ 984 tx_rings[num].bytes), \ 985 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \ 986 rx_rings[num].bytes), \ 987 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \ 988 rx_rings[num].packets), \ 989 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \ 990 rx_rings[num].errors), \ 991 STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \ 992 rx_rings[num].dropped) 993 994 /* There is a 0xC gap between the end of RX and beginning of TX stats and then 995 * between the end of TX stats and the beginning of the RX RUNT 996 */ 997 #define BCMGENET_STAT_OFFSET 0xc 998 999 /* Hardware counters must be kept in sync because the order/offset 1000 * is important here (order in structure declaration = order in hardware) 1001 */ 1002 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { 1003 /* general stats */ 1004 STAT_NETDEV(rx_packets), 1005 STAT_NETDEV(tx_packets), 1006 STAT_NETDEV(rx_bytes), 1007 STAT_NETDEV(tx_bytes), 1008 STAT_NETDEV(rx_errors), 1009 STAT_NETDEV(tx_errors), 1010 STAT_NETDEV(rx_dropped), 1011 STAT_NETDEV(tx_dropped), 1012 STAT_NETDEV(multicast), 1013 /* UniMAC RSV counters */ 1014 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), 1015 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), 1016 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), 1017 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), 1018 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), 1019 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), 1020 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), 1021 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), 1022 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), 1023 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), 1024 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), 1025 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), 1026 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), 1027 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), 1028 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), 1029 STAT_GENET_MIB_RX("rx_control", mib.rx.cf), 1030 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), 1031 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), 1032 STAT_GENET_MIB_RX("rx_align", mib.rx.aln), 1033 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), 1034 STAT_GENET_MIB_RX("rx_code", mib.rx.cde), 1035 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), 1036 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), 1037 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), 1038 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), 1039 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), 1040 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), 1041 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), 1042 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), 1043 /* UniMAC TSV counters */ 1044 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), 1045 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), 1046 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), 1047 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), 1048 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), 1049 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), 1050 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), 1051 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), 1052 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), 1053 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), 1054 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), 1055 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), 1056 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), 1057 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), 1058 STAT_GENET_MIB_TX("tx_control", mib.tx.cf), 1059 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), 1060 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), 1061 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), 1062 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), 1063 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), 1064 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), 1065 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), 1066 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), 1067 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), 1068 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), 1069 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), 1070 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), 1071 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), 1072 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), 1073 /* UniMAC RUNT counters */ 1074 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), 1075 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), 1076 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), 1077 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), 1078 /* Misc UniMAC counters */ 1079 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, 1080 UMAC_RBUF_OVFL_CNT_V1), 1081 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, 1082 UMAC_RBUF_ERR_CNT_V1), 1083 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), 1084 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), 1085 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed), 1086 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed), 1087 STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb), 1088 STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed", 1089 mib.tx_realloc_tsb_failed), 1090 /* Per TX queues */ 1091 STAT_GENET_Q(0), 1092 STAT_GENET_Q(1), 1093 STAT_GENET_Q(2), 1094 STAT_GENET_Q(3), 1095 STAT_GENET_Q(16), 1096 }; 1097 1098 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) 1099 1100 static void bcmgenet_get_drvinfo(struct net_device *dev, 1101 struct ethtool_drvinfo *info) 1102 { 1103 strlcpy(info->driver, "bcmgenet", sizeof(info->driver)); 1104 } 1105 1106 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) 1107 { 1108 switch (string_set) { 1109 case ETH_SS_STATS: 1110 return BCMGENET_STATS_LEN; 1111 default: 1112 return -EOPNOTSUPP; 1113 } 1114 } 1115 1116 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, 1117 u8 *data) 1118 { 1119 int i; 1120 1121 switch (stringset) { 1122 case ETH_SS_STATS: 1123 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1124 memcpy(data + i * ETH_GSTRING_LEN, 1125 bcmgenet_gstrings_stats[i].stat_string, 1126 ETH_GSTRING_LEN); 1127 } 1128 break; 1129 } 1130 } 1131 1132 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset) 1133 { 1134 u16 new_offset; 1135 u32 val; 1136 1137 switch (offset) { 1138 case UMAC_RBUF_OVFL_CNT_V1: 1139 if (GENET_IS_V2(priv)) 1140 new_offset = RBUF_OVFL_CNT_V2; 1141 else 1142 new_offset = RBUF_OVFL_CNT_V3PLUS; 1143 1144 val = bcmgenet_rbuf_readl(priv, new_offset); 1145 /* clear if overflowed */ 1146 if (val == ~0) 1147 bcmgenet_rbuf_writel(priv, 0, new_offset); 1148 break; 1149 case UMAC_RBUF_ERR_CNT_V1: 1150 if (GENET_IS_V2(priv)) 1151 new_offset = RBUF_ERR_CNT_V2; 1152 else 1153 new_offset = RBUF_ERR_CNT_V3PLUS; 1154 1155 val = bcmgenet_rbuf_readl(priv, new_offset); 1156 /* clear if overflowed */ 1157 if (val == ~0) 1158 bcmgenet_rbuf_writel(priv, 0, new_offset); 1159 break; 1160 default: 1161 val = bcmgenet_umac_readl(priv, offset); 1162 /* clear if overflowed */ 1163 if (val == ~0) 1164 bcmgenet_umac_writel(priv, 0, offset); 1165 break; 1166 } 1167 1168 return val; 1169 } 1170 1171 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) 1172 { 1173 int i, j = 0; 1174 1175 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1176 const struct bcmgenet_stats *s; 1177 u8 offset = 0; 1178 u32 val = 0; 1179 char *p; 1180 1181 s = &bcmgenet_gstrings_stats[i]; 1182 switch (s->type) { 1183 case BCMGENET_STAT_NETDEV: 1184 case BCMGENET_STAT_SOFT: 1185 continue; 1186 case BCMGENET_STAT_RUNT: 1187 offset += BCMGENET_STAT_OFFSET; 1188 /* fall through */ 1189 case BCMGENET_STAT_MIB_TX: 1190 offset += BCMGENET_STAT_OFFSET; 1191 /* fall through */ 1192 case BCMGENET_STAT_MIB_RX: 1193 val = bcmgenet_umac_readl(priv, 1194 UMAC_MIB_START + j + offset); 1195 offset = 0; /* Reset Offset */ 1196 break; 1197 case BCMGENET_STAT_MISC: 1198 if (GENET_IS_V1(priv)) { 1199 val = bcmgenet_umac_readl(priv, s->reg_offset); 1200 /* clear if overflowed */ 1201 if (val == ~0) 1202 bcmgenet_umac_writel(priv, 0, 1203 s->reg_offset); 1204 } else { 1205 val = bcmgenet_update_stat_misc(priv, 1206 s->reg_offset); 1207 } 1208 break; 1209 } 1210 1211 j += s->stat_sizeof; 1212 p = (char *)priv + s->stat_offset; 1213 *(u32 *)p = val; 1214 } 1215 } 1216 1217 static void bcmgenet_get_ethtool_stats(struct net_device *dev, 1218 struct ethtool_stats *stats, 1219 u64 *data) 1220 { 1221 struct bcmgenet_priv *priv = netdev_priv(dev); 1222 int i; 1223 1224 if (netif_running(dev)) 1225 bcmgenet_update_mib_counters(priv); 1226 1227 dev->netdev_ops->ndo_get_stats(dev); 1228 1229 for (i = 0; i < BCMGENET_STATS_LEN; i++) { 1230 const struct bcmgenet_stats *s; 1231 char *p; 1232 1233 s = &bcmgenet_gstrings_stats[i]; 1234 if (s->type == BCMGENET_STAT_NETDEV) 1235 p = (char *)&dev->stats; 1236 else 1237 p = (char *)priv; 1238 p += s->stat_offset; 1239 if (sizeof(unsigned long) != sizeof(u32) && 1240 s->stat_sizeof == sizeof(unsigned long)) 1241 data[i] = *(unsigned long *)p; 1242 else 1243 data[i] = *(u32 *)p; 1244 } 1245 } 1246 1247 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable) 1248 { 1249 struct bcmgenet_priv *priv = netdev_priv(dev); 1250 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL; 1251 u32 reg; 1252 1253 if (enable && !priv->clk_eee_enabled) { 1254 clk_prepare_enable(priv->clk_eee); 1255 priv->clk_eee_enabled = true; 1256 } 1257 1258 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL); 1259 if (enable) 1260 reg |= EEE_EN; 1261 else 1262 reg &= ~EEE_EN; 1263 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL); 1264 1265 /* Enable EEE and switch to a 27Mhz clock automatically */ 1266 reg = bcmgenet_readl(priv->base + off); 1267 if (enable) 1268 reg |= TBUF_EEE_EN | TBUF_PM_EN; 1269 else 1270 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN); 1271 bcmgenet_writel(reg, priv->base + off); 1272 1273 /* Do the same for thing for RBUF */ 1274 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL); 1275 if (enable) 1276 reg |= RBUF_EEE_EN | RBUF_PM_EN; 1277 else 1278 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN); 1279 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL); 1280 1281 if (!enable && priv->clk_eee_enabled) { 1282 clk_disable_unprepare(priv->clk_eee); 1283 priv->clk_eee_enabled = false; 1284 } 1285 1286 priv->eee.eee_enabled = enable; 1287 priv->eee.eee_active = enable; 1288 } 1289 1290 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e) 1291 { 1292 struct bcmgenet_priv *priv = netdev_priv(dev); 1293 struct ethtool_eee *p = &priv->eee; 1294 1295 if (GENET_IS_V1(priv)) 1296 return -EOPNOTSUPP; 1297 1298 if (!dev->phydev) 1299 return -ENODEV; 1300 1301 e->eee_enabled = p->eee_enabled; 1302 e->eee_active = p->eee_active; 1303 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER); 1304 1305 return phy_ethtool_get_eee(dev->phydev, e); 1306 } 1307 1308 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e) 1309 { 1310 struct bcmgenet_priv *priv = netdev_priv(dev); 1311 struct ethtool_eee *p = &priv->eee; 1312 int ret = 0; 1313 1314 if (GENET_IS_V1(priv)) 1315 return -EOPNOTSUPP; 1316 1317 if (!dev->phydev) 1318 return -ENODEV; 1319 1320 p->eee_enabled = e->eee_enabled; 1321 1322 if (!p->eee_enabled) { 1323 bcmgenet_eee_enable_set(dev, false); 1324 } else { 1325 ret = phy_init_eee(dev->phydev, 0); 1326 if (ret) { 1327 netif_err(priv, hw, dev, "EEE initialization failed\n"); 1328 return ret; 1329 } 1330 1331 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER); 1332 bcmgenet_eee_enable_set(dev, true); 1333 } 1334 1335 return phy_ethtool_set_eee(dev->phydev, e); 1336 } 1337 1338 static int bcmgenet_validate_flow(struct net_device *dev, 1339 struct ethtool_rxnfc *cmd) 1340 { 1341 struct ethtool_usrip4_spec *l4_mask; 1342 struct ethhdr *eth_mask; 1343 1344 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) { 1345 netdev_err(dev, "rxnfc: Invalid location (%d)\n", 1346 cmd->fs.location); 1347 return -EINVAL; 1348 } 1349 1350 switch (cmd->fs.flow_type & ~(FLOW_EXT | FLOW_MAC_EXT)) { 1351 case IP_USER_FLOW: 1352 l4_mask = &cmd->fs.m_u.usr_ip4_spec; 1353 /* don't allow mask which isn't valid */ 1354 if (VALIDATE_MASK(l4_mask->ip4src) || 1355 VALIDATE_MASK(l4_mask->ip4dst) || 1356 VALIDATE_MASK(l4_mask->l4_4_bytes) || 1357 VALIDATE_MASK(l4_mask->proto) || 1358 VALIDATE_MASK(l4_mask->ip_ver) || 1359 VALIDATE_MASK(l4_mask->tos)) { 1360 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1361 return -EINVAL; 1362 } 1363 break; 1364 case ETHER_FLOW: 1365 eth_mask = &cmd->fs.m_u.ether_spec; 1366 /* don't allow mask which isn't valid */ 1367 if (VALIDATE_MASK(eth_mask->h_source) || 1368 VALIDATE_MASK(eth_mask->h_source) || 1369 VALIDATE_MASK(eth_mask->h_proto)) { 1370 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1371 return -EINVAL; 1372 } 1373 break; 1374 default: 1375 netdev_err(dev, "rxnfc: Unsupported flow type (0x%x)\n", 1376 cmd->fs.flow_type); 1377 return -EINVAL; 1378 } 1379 1380 if ((cmd->fs.flow_type & FLOW_EXT)) { 1381 /* don't allow mask which isn't valid */ 1382 if (VALIDATE_MASK(cmd->fs.m_ext.vlan_etype) || 1383 VALIDATE_MASK(cmd->fs.m_ext.vlan_tci)) { 1384 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1385 return -EINVAL; 1386 } 1387 if (cmd->fs.m_ext.data[0] || cmd->fs.m_ext.data[1]) { 1388 netdev_err(dev, "rxnfc: user-def not supported\n"); 1389 return -EINVAL; 1390 } 1391 } 1392 1393 if ((cmd->fs.flow_type & FLOW_MAC_EXT)) { 1394 /* don't allow mask which isn't valid */ 1395 if (VALIDATE_MASK(cmd->fs.m_ext.h_dest)) { 1396 netdev_err(dev, "rxnfc: Unsupported mask\n"); 1397 return -EINVAL; 1398 } 1399 } 1400 1401 return 0; 1402 } 1403 1404 static int bcmgenet_insert_flow(struct net_device *dev, 1405 struct ethtool_rxnfc *cmd) 1406 { 1407 struct bcmgenet_priv *priv = netdev_priv(dev); 1408 struct bcmgenet_rxnfc_rule *loc_rule; 1409 int err; 1410 1411 if (priv->hw_params->hfb_filter_size < 128) { 1412 netdev_err(dev, "rxnfc: Not supported by this device\n"); 1413 return -EINVAL; 1414 } 1415 1416 if (cmd->fs.ring_cookie > priv->hw_params->rx_queues && 1417 cmd->fs.ring_cookie != RX_CLS_FLOW_WAKE) { 1418 netdev_err(dev, "rxnfc: Unsupported action (%llu)\n", 1419 cmd->fs.ring_cookie); 1420 return -EINVAL; 1421 } 1422 1423 err = bcmgenet_validate_flow(dev, cmd); 1424 if (err) 1425 return err; 1426 1427 loc_rule = &priv->rxnfc_rules[cmd->fs.location]; 1428 if (loc_rule->state == BCMGENET_RXNFC_STATE_ENABLED) 1429 bcmgenet_hfb_disable_filter(priv, cmd->fs.location); 1430 if (loc_rule->state != BCMGENET_RXNFC_STATE_UNUSED) { 1431 list_del(&loc_rule->list); 1432 bcmgenet_hfb_clear_filter(priv, cmd->fs.location); 1433 } 1434 loc_rule->state = BCMGENET_RXNFC_STATE_UNUSED; 1435 memcpy(&loc_rule->fs, &cmd->fs, 1436 sizeof(struct ethtool_rx_flow_spec)); 1437 1438 bcmgenet_hfb_create_rxnfc_filter(priv, loc_rule); 1439 1440 list_add_tail(&loc_rule->list, &priv->rxnfc_list); 1441 1442 return 0; 1443 } 1444 1445 static int bcmgenet_delete_flow(struct net_device *dev, 1446 struct ethtool_rxnfc *cmd) 1447 { 1448 struct bcmgenet_priv *priv = netdev_priv(dev); 1449 struct bcmgenet_rxnfc_rule *rule; 1450 int err = 0; 1451 1452 if (cmd->fs.location >= MAX_NUM_OF_FS_RULES) 1453 return -EINVAL; 1454 1455 rule = &priv->rxnfc_rules[cmd->fs.location]; 1456 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) { 1457 err = -ENOENT; 1458 goto out; 1459 } 1460 1461 if (rule->state == BCMGENET_RXNFC_STATE_ENABLED) 1462 bcmgenet_hfb_disable_filter(priv, cmd->fs.location); 1463 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) { 1464 list_del(&rule->list); 1465 bcmgenet_hfb_clear_filter(priv, cmd->fs.location); 1466 } 1467 rule->state = BCMGENET_RXNFC_STATE_UNUSED; 1468 memset(&rule->fs, 0, sizeof(struct ethtool_rx_flow_spec)); 1469 1470 out: 1471 return err; 1472 } 1473 1474 static int bcmgenet_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) 1475 { 1476 struct bcmgenet_priv *priv = netdev_priv(dev); 1477 int err = 0; 1478 1479 switch (cmd->cmd) { 1480 case ETHTOOL_SRXCLSRLINS: 1481 err = bcmgenet_insert_flow(dev, cmd); 1482 break; 1483 case ETHTOOL_SRXCLSRLDEL: 1484 err = bcmgenet_delete_flow(dev, cmd); 1485 break; 1486 default: 1487 netdev_warn(priv->dev, "Unsupported ethtool command. (%d)\n", 1488 cmd->cmd); 1489 return -EINVAL; 1490 } 1491 1492 return err; 1493 } 1494 1495 static int bcmgenet_get_flow(struct net_device *dev, struct ethtool_rxnfc *cmd, 1496 int loc) 1497 { 1498 struct bcmgenet_priv *priv = netdev_priv(dev); 1499 struct bcmgenet_rxnfc_rule *rule; 1500 int err = 0; 1501 1502 if (loc < 0 || loc >= MAX_NUM_OF_FS_RULES) 1503 return -EINVAL; 1504 1505 rule = &priv->rxnfc_rules[loc]; 1506 if (rule->state == BCMGENET_RXNFC_STATE_UNUSED) 1507 err = -ENOENT; 1508 else 1509 memcpy(&cmd->fs, &rule->fs, 1510 sizeof(struct ethtool_rx_flow_spec)); 1511 1512 return err; 1513 } 1514 1515 static int bcmgenet_get_num_flows(struct bcmgenet_priv *priv) 1516 { 1517 struct list_head *pos; 1518 int res = 0; 1519 1520 list_for_each(pos, &priv->rxnfc_list) 1521 res++; 1522 1523 return res; 1524 } 1525 1526 static int bcmgenet_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, 1527 u32 *rule_locs) 1528 { 1529 struct bcmgenet_priv *priv = netdev_priv(dev); 1530 struct bcmgenet_rxnfc_rule *rule; 1531 int err = 0; 1532 int i = 0; 1533 1534 switch (cmd->cmd) { 1535 case ETHTOOL_GRXRINGS: 1536 cmd->data = priv->hw_params->rx_queues ?: 1; 1537 break; 1538 case ETHTOOL_GRXCLSRLCNT: 1539 cmd->rule_cnt = bcmgenet_get_num_flows(priv); 1540 cmd->data = MAX_NUM_OF_FS_RULES; 1541 break; 1542 case ETHTOOL_GRXCLSRULE: 1543 err = bcmgenet_get_flow(dev, cmd, cmd->fs.location); 1544 break; 1545 case ETHTOOL_GRXCLSRLALL: 1546 list_for_each_entry(rule, &priv->rxnfc_list, list) 1547 if (i < cmd->rule_cnt) 1548 rule_locs[i++] = rule->fs.location; 1549 cmd->rule_cnt = i; 1550 cmd->data = MAX_NUM_OF_FS_RULES; 1551 break; 1552 default: 1553 err = -EOPNOTSUPP; 1554 break; 1555 } 1556 1557 return err; 1558 } 1559 1560 /* standard ethtool support functions. */ 1561 static const struct ethtool_ops bcmgenet_ethtool_ops = { 1562 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 1563 ETHTOOL_COALESCE_MAX_FRAMES | 1564 ETHTOOL_COALESCE_USE_ADAPTIVE_RX, 1565 .begin = bcmgenet_begin, 1566 .complete = bcmgenet_complete, 1567 .get_strings = bcmgenet_get_strings, 1568 .get_sset_count = bcmgenet_get_sset_count, 1569 .get_ethtool_stats = bcmgenet_get_ethtool_stats, 1570 .get_drvinfo = bcmgenet_get_drvinfo, 1571 .get_link = ethtool_op_get_link, 1572 .get_msglevel = bcmgenet_get_msglevel, 1573 .set_msglevel = bcmgenet_set_msglevel, 1574 .get_wol = bcmgenet_get_wol, 1575 .set_wol = bcmgenet_set_wol, 1576 .get_eee = bcmgenet_get_eee, 1577 .set_eee = bcmgenet_set_eee, 1578 .nway_reset = phy_ethtool_nway_reset, 1579 .get_coalesce = bcmgenet_get_coalesce, 1580 .set_coalesce = bcmgenet_set_coalesce, 1581 .get_link_ksettings = bcmgenet_get_link_ksettings, 1582 .set_link_ksettings = bcmgenet_set_link_ksettings, 1583 .get_ts_info = ethtool_op_get_ts_info, 1584 .get_rxnfc = bcmgenet_get_rxnfc, 1585 .set_rxnfc = bcmgenet_set_rxnfc, 1586 }; 1587 1588 /* Power down the unimac, based on mode. */ 1589 static int bcmgenet_power_down(struct bcmgenet_priv *priv, 1590 enum bcmgenet_power_mode mode) 1591 { 1592 int ret = 0; 1593 u32 reg; 1594 1595 switch (mode) { 1596 case GENET_POWER_CABLE_SENSE: 1597 phy_detach(priv->dev->phydev); 1598 break; 1599 1600 case GENET_POWER_WOL_MAGIC: 1601 ret = bcmgenet_wol_power_down_cfg(priv, mode); 1602 break; 1603 1604 case GENET_POWER_PASSIVE: 1605 /* Power down LED */ 1606 if (priv->hw_params->flags & GENET_HAS_EXT) { 1607 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1608 if (GENET_IS_V5(priv)) 1609 reg |= EXT_PWR_DOWN_PHY_EN | 1610 EXT_PWR_DOWN_PHY_RD | 1611 EXT_PWR_DOWN_PHY_SD | 1612 EXT_PWR_DOWN_PHY_RX | 1613 EXT_PWR_DOWN_PHY_TX | 1614 EXT_IDDQ_GLBL_PWR; 1615 else 1616 reg |= EXT_PWR_DOWN_PHY; 1617 1618 reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 1619 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1620 1621 bcmgenet_phy_power_set(priv->dev, false); 1622 } 1623 break; 1624 default: 1625 break; 1626 } 1627 1628 return ret; 1629 } 1630 1631 static void bcmgenet_power_up(struct bcmgenet_priv *priv, 1632 enum bcmgenet_power_mode mode) 1633 { 1634 u32 reg; 1635 1636 if (!(priv->hw_params->flags & GENET_HAS_EXT)) 1637 return; 1638 1639 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 1640 1641 switch (mode) { 1642 case GENET_POWER_PASSIVE: 1643 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); 1644 if (GENET_IS_V5(priv)) { 1645 reg &= ~(EXT_PWR_DOWN_PHY_EN | 1646 EXT_PWR_DOWN_PHY_RD | 1647 EXT_PWR_DOWN_PHY_SD | 1648 EXT_PWR_DOWN_PHY_RX | 1649 EXT_PWR_DOWN_PHY_TX | 1650 EXT_IDDQ_GLBL_PWR); 1651 reg |= EXT_PHY_RESET; 1652 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1653 mdelay(1); 1654 1655 reg &= ~EXT_PHY_RESET; 1656 } else { 1657 reg &= ~EXT_PWR_DOWN_PHY; 1658 reg |= EXT_PWR_DN_EN_LD; 1659 } 1660 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1661 bcmgenet_phy_power_set(priv->dev, true); 1662 break; 1663 1664 case GENET_POWER_CABLE_SENSE: 1665 /* enable APD */ 1666 if (!GENET_IS_V5(priv)) { 1667 reg |= EXT_PWR_DN_EN_LD; 1668 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 1669 } 1670 break; 1671 case GENET_POWER_WOL_MAGIC: 1672 bcmgenet_wol_power_up_cfg(priv, mode); 1673 return; 1674 default: 1675 break; 1676 } 1677 } 1678 1679 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, 1680 struct bcmgenet_tx_ring *ring) 1681 { 1682 struct enet_cb *tx_cb_ptr; 1683 1684 tx_cb_ptr = ring->cbs; 1685 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1686 1687 /* Advancing local write pointer */ 1688 if (ring->write_ptr == ring->end_ptr) 1689 ring->write_ptr = ring->cb_ptr; 1690 else 1691 ring->write_ptr++; 1692 1693 return tx_cb_ptr; 1694 } 1695 1696 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv, 1697 struct bcmgenet_tx_ring *ring) 1698 { 1699 struct enet_cb *tx_cb_ptr; 1700 1701 tx_cb_ptr = ring->cbs; 1702 tx_cb_ptr += ring->write_ptr - ring->cb_ptr; 1703 1704 /* Rewinding local write pointer */ 1705 if (ring->write_ptr == ring->cb_ptr) 1706 ring->write_ptr = ring->end_ptr; 1707 else 1708 ring->write_ptr--; 1709 1710 return tx_cb_ptr; 1711 } 1712 1713 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring) 1714 { 1715 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1716 INTRL2_CPU_MASK_SET); 1717 } 1718 1719 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring) 1720 { 1721 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, 1722 INTRL2_CPU_MASK_CLEAR); 1723 } 1724 1725 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring) 1726 { 1727 bcmgenet_intrl2_1_writel(ring->priv, 1728 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1729 INTRL2_CPU_MASK_SET); 1730 } 1731 1732 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring) 1733 { 1734 bcmgenet_intrl2_1_writel(ring->priv, 1735 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), 1736 INTRL2_CPU_MASK_CLEAR); 1737 } 1738 1739 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring) 1740 { 1741 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1742 INTRL2_CPU_MASK_SET); 1743 } 1744 1745 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring) 1746 { 1747 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, 1748 INTRL2_CPU_MASK_CLEAR); 1749 } 1750 1751 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring) 1752 { 1753 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1754 INTRL2_CPU_MASK_CLEAR); 1755 } 1756 1757 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring) 1758 { 1759 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, 1760 INTRL2_CPU_MASK_SET); 1761 } 1762 1763 /* Simple helper to free a transmit control block's resources 1764 * Returns an skb when the last transmit control block associated with the 1765 * skb is freed. The skb should be freed by the caller if necessary. 1766 */ 1767 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev, 1768 struct enet_cb *cb) 1769 { 1770 struct sk_buff *skb; 1771 1772 skb = cb->skb; 1773 1774 if (skb) { 1775 cb->skb = NULL; 1776 if (cb == GENET_CB(skb)->first_cb) 1777 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1778 dma_unmap_len(cb, dma_len), 1779 DMA_TO_DEVICE); 1780 else 1781 dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr), 1782 dma_unmap_len(cb, dma_len), 1783 DMA_TO_DEVICE); 1784 dma_unmap_addr_set(cb, dma_addr, 0); 1785 1786 if (cb == GENET_CB(skb)->last_cb) 1787 return skb; 1788 1789 } else if (dma_unmap_addr(cb, dma_addr)) { 1790 dma_unmap_page(dev, 1791 dma_unmap_addr(cb, dma_addr), 1792 dma_unmap_len(cb, dma_len), 1793 DMA_TO_DEVICE); 1794 dma_unmap_addr_set(cb, dma_addr, 0); 1795 } 1796 1797 return NULL; 1798 } 1799 1800 /* Simple helper to free a receive control block's resources */ 1801 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev, 1802 struct enet_cb *cb) 1803 { 1804 struct sk_buff *skb; 1805 1806 skb = cb->skb; 1807 cb->skb = NULL; 1808 1809 if (dma_unmap_addr(cb, dma_addr)) { 1810 dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr), 1811 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE); 1812 dma_unmap_addr_set(cb, dma_addr, 0); 1813 } 1814 1815 return skb; 1816 } 1817 1818 /* Unlocked version of the reclaim routine */ 1819 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev, 1820 struct bcmgenet_tx_ring *ring) 1821 { 1822 struct bcmgenet_priv *priv = netdev_priv(dev); 1823 unsigned int txbds_processed = 0; 1824 unsigned int bytes_compl = 0; 1825 unsigned int pkts_compl = 0; 1826 unsigned int txbds_ready; 1827 unsigned int c_index; 1828 struct sk_buff *skb; 1829 1830 /* Clear status before servicing to reduce spurious interrupts */ 1831 if (ring->index == DESC_INDEX) 1832 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE, 1833 INTRL2_CPU_CLEAR); 1834 else 1835 bcmgenet_intrl2_1_writel(priv, (1 << ring->index), 1836 INTRL2_CPU_CLEAR); 1837 1838 /* Compute how many buffers are transmitted since last xmit call */ 1839 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX) 1840 & DMA_C_INDEX_MASK; 1841 txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK; 1842 1843 netif_dbg(priv, tx_done, dev, 1844 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n", 1845 __func__, ring->index, ring->c_index, c_index, txbds_ready); 1846 1847 /* Reclaim transmitted buffers */ 1848 while (txbds_processed < txbds_ready) { 1849 skb = bcmgenet_free_tx_cb(&priv->pdev->dev, 1850 &priv->tx_cbs[ring->clean_ptr]); 1851 if (skb) { 1852 pkts_compl++; 1853 bytes_compl += GENET_CB(skb)->bytes_sent; 1854 dev_consume_skb_any(skb); 1855 } 1856 1857 txbds_processed++; 1858 if (likely(ring->clean_ptr < ring->end_ptr)) 1859 ring->clean_ptr++; 1860 else 1861 ring->clean_ptr = ring->cb_ptr; 1862 } 1863 1864 ring->free_bds += txbds_processed; 1865 ring->c_index = c_index; 1866 1867 ring->packets += pkts_compl; 1868 ring->bytes += bytes_compl; 1869 1870 netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue), 1871 pkts_compl, bytes_compl); 1872 1873 return txbds_processed; 1874 } 1875 1876 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev, 1877 struct bcmgenet_tx_ring *ring) 1878 { 1879 unsigned int released; 1880 1881 spin_lock_bh(&ring->lock); 1882 released = __bcmgenet_tx_reclaim(dev, ring); 1883 spin_unlock_bh(&ring->lock); 1884 1885 return released; 1886 } 1887 1888 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget) 1889 { 1890 struct bcmgenet_tx_ring *ring = 1891 container_of(napi, struct bcmgenet_tx_ring, napi); 1892 unsigned int work_done = 0; 1893 struct netdev_queue *txq; 1894 1895 spin_lock(&ring->lock); 1896 work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring); 1897 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) { 1898 txq = netdev_get_tx_queue(ring->priv->dev, ring->queue); 1899 netif_tx_wake_queue(txq); 1900 } 1901 spin_unlock(&ring->lock); 1902 1903 if (work_done == 0) { 1904 napi_complete(napi); 1905 ring->int_enable(ring); 1906 1907 return 0; 1908 } 1909 1910 return budget; 1911 } 1912 1913 static void bcmgenet_tx_reclaim_all(struct net_device *dev) 1914 { 1915 struct bcmgenet_priv *priv = netdev_priv(dev); 1916 int i; 1917 1918 if (netif_is_multiqueue(dev)) { 1919 for (i = 0; i < priv->hw_params->tx_queues; i++) 1920 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); 1921 } 1922 1923 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); 1924 } 1925 1926 /* Reallocate the SKB to put enough headroom in front of it and insert 1927 * the transmit checksum offsets in the descriptors 1928 */ 1929 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev, 1930 struct sk_buff *skb) 1931 { 1932 struct bcmgenet_priv *priv = netdev_priv(dev); 1933 struct status_64 *status = NULL; 1934 struct sk_buff *new_skb; 1935 u16 offset; 1936 u8 ip_proto; 1937 __be16 ip_ver; 1938 u32 tx_csum_info; 1939 1940 if (unlikely(skb_headroom(skb) < sizeof(*status))) { 1941 /* If 64 byte status block enabled, must make sure skb has 1942 * enough headroom for us to insert 64B status block. 1943 */ 1944 new_skb = skb_realloc_headroom(skb, sizeof(*status)); 1945 if (!new_skb) { 1946 dev_kfree_skb_any(skb); 1947 priv->mib.tx_realloc_tsb_failed++; 1948 dev->stats.tx_dropped++; 1949 return NULL; 1950 } 1951 dev_consume_skb_any(skb); 1952 skb = new_skb; 1953 priv->mib.tx_realloc_tsb++; 1954 } 1955 1956 skb_push(skb, sizeof(*status)); 1957 status = (struct status_64 *)skb->data; 1958 1959 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1960 ip_ver = skb->protocol; 1961 switch (ip_ver) { 1962 case htons(ETH_P_IP): 1963 ip_proto = ip_hdr(skb)->protocol; 1964 break; 1965 case htons(ETH_P_IPV6): 1966 ip_proto = ipv6_hdr(skb)->nexthdr; 1967 break; 1968 default: 1969 /* don't use UDP flag */ 1970 ip_proto = 0; 1971 break; 1972 } 1973 1974 offset = skb_checksum_start_offset(skb) - sizeof(*status); 1975 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | 1976 (offset + skb->csum_offset) | 1977 STATUS_TX_CSUM_LV; 1978 1979 /* Set the special UDP flag for UDP */ 1980 if (ip_proto == IPPROTO_UDP) 1981 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; 1982 1983 status->tx_csum_info = tx_csum_info; 1984 } 1985 1986 return skb; 1987 } 1988 1989 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) 1990 { 1991 struct bcmgenet_priv *priv = netdev_priv(dev); 1992 struct device *kdev = &priv->pdev->dev; 1993 struct bcmgenet_tx_ring *ring = NULL; 1994 struct enet_cb *tx_cb_ptr; 1995 struct netdev_queue *txq; 1996 int nr_frags, index; 1997 dma_addr_t mapping; 1998 unsigned int size; 1999 skb_frag_t *frag; 2000 u32 len_stat; 2001 int ret; 2002 int i; 2003 2004 index = skb_get_queue_mapping(skb); 2005 /* Mapping strategy: 2006 * queue_mapping = 0, unclassified, packet xmited through ring16 2007 * queue_mapping = 1, goes to ring 0. (highest priority queue 2008 * queue_mapping = 2, goes to ring 1. 2009 * queue_mapping = 3, goes to ring 2. 2010 * queue_mapping = 4, goes to ring 3. 2011 */ 2012 if (index == 0) 2013 index = DESC_INDEX; 2014 else 2015 index -= 1; 2016 2017 ring = &priv->tx_rings[index]; 2018 txq = netdev_get_tx_queue(dev, ring->queue); 2019 2020 nr_frags = skb_shinfo(skb)->nr_frags; 2021 2022 spin_lock(&ring->lock); 2023 if (ring->free_bds <= (nr_frags + 1)) { 2024 if (!netif_tx_queue_stopped(txq)) { 2025 netif_tx_stop_queue(txq); 2026 netdev_err(dev, 2027 "%s: tx ring %d full when queue %d awake\n", 2028 __func__, index, ring->queue); 2029 } 2030 ret = NETDEV_TX_BUSY; 2031 goto out; 2032 } 2033 2034 /* Retain how many bytes will be sent on the wire, without TSB inserted 2035 * by transmit checksum offload 2036 */ 2037 GENET_CB(skb)->bytes_sent = skb->len; 2038 2039 /* add the Transmit Status Block */ 2040 skb = bcmgenet_add_tsb(dev, skb); 2041 if (!skb) { 2042 ret = NETDEV_TX_OK; 2043 goto out; 2044 } 2045 2046 for (i = 0; i <= nr_frags; i++) { 2047 tx_cb_ptr = bcmgenet_get_txcb(priv, ring); 2048 2049 BUG_ON(!tx_cb_ptr); 2050 2051 if (!i) { 2052 /* Transmit single SKB or head of fragment list */ 2053 GENET_CB(skb)->first_cb = tx_cb_ptr; 2054 size = skb_headlen(skb); 2055 mapping = dma_map_single(kdev, skb->data, size, 2056 DMA_TO_DEVICE); 2057 } else { 2058 /* xmit fragment */ 2059 frag = &skb_shinfo(skb)->frags[i - 1]; 2060 size = skb_frag_size(frag); 2061 mapping = skb_frag_dma_map(kdev, frag, 0, size, 2062 DMA_TO_DEVICE); 2063 } 2064 2065 ret = dma_mapping_error(kdev, mapping); 2066 if (ret) { 2067 priv->mib.tx_dma_failed++; 2068 netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); 2069 ret = NETDEV_TX_OK; 2070 goto out_unmap_frags; 2071 } 2072 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); 2073 dma_unmap_len_set(tx_cb_ptr, dma_len, size); 2074 2075 tx_cb_ptr->skb = skb; 2076 2077 len_stat = (size << DMA_BUFLENGTH_SHIFT) | 2078 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT); 2079 2080 /* Note: if we ever change from DMA_TX_APPEND_CRC below we 2081 * will need to restore software padding of "runt" packets 2082 */ 2083 if (!i) { 2084 len_stat |= DMA_TX_APPEND_CRC | DMA_SOP; 2085 if (skb->ip_summed == CHECKSUM_PARTIAL) 2086 len_stat |= DMA_TX_DO_CSUM; 2087 } 2088 if (i == nr_frags) 2089 len_stat |= DMA_EOP; 2090 2091 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat); 2092 } 2093 2094 GENET_CB(skb)->last_cb = tx_cb_ptr; 2095 skb_tx_timestamp(skb); 2096 2097 /* Decrement total BD count and advance our write pointer */ 2098 ring->free_bds -= nr_frags + 1; 2099 ring->prod_index += nr_frags + 1; 2100 ring->prod_index &= DMA_P_INDEX_MASK; 2101 2102 netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent); 2103 2104 if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) 2105 netif_tx_stop_queue(txq); 2106 2107 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) 2108 /* Packets are ready, update producer index */ 2109 bcmgenet_tdma_ring_writel(priv, ring->index, 2110 ring->prod_index, TDMA_PROD_INDEX); 2111 out: 2112 spin_unlock(&ring->lock); 2113 2114 return ret; 2115 2116 out_unmap_frags: 2117 /* Back up for failed control block mapping */ 2118 bcmgenet_put_txcb(priv, ring); 2119 2120 /* Unmap successfully mapped control blocks */ 2121 while (i-- > 0) { 2122 tx_cb_ptr = bcmgenet_put_txcb(priv, ring); 2123 bcmgenet_free_tx_cb(kdev, tx_cb_ptr); 2124 } 2125 2126 dev_kfree_skb(skb); 2127 goto out; 2128 } 2129 2130 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv, 2131 struct enet_cb *cb) 2132 { 2133 struct device *kdev = &priv->pdev->dev; 2134 struct sk_buff *skb; 2135 struct sk_buff *rx_skb; 2136 dma_addr_t mapping; 2137 2138 /* Allocate a new Rx skb */ 2139 skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT, 2140 GFP_ATOMIC | __GFP_NOWARN); 2141 if (!skb) { 2142 priv->mib.alloc_rx_buff_failed++; 2143 netif_err(priv, rx_err, priv->dev, 2144 "%s: Rx skb allocation failed\n", __func__); 2145 return NULL; 2146 } 2147 2148 /* DMA-map the new Rx skb */ 2149 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, 2150 DMA_FROM_DEVICE); 2151 if (dma_mapping_error(kdev, mapping)) { 2152 priv->mib.rx_dma_failed++; 2153 dev_kfree_skb_any(skb); 2154 netif_err(priv, rx_err, priv->dev, 2155 "%s: Rx skb DMA mapping failed\n", __func__); 2156 return NULL; 2157 } 2158 2159 /* Grab the current Rx skb from the ring and DMA-unmap it */ 2160 rx_skb = bcmgenet_free_rx_cb(kdev, cb); 2161 2162 /* Put the new Rx skb on the ring */ 2163 cb->skb = skb; 2164 dma_unmap_addr_set(cb, dma_addr, mapping); 2165 dma_unmap_len_set(cb, dma_len, priv->rx_buf_len); 2166 dmadesc_set_addr(priv, cb->bd_addr, mapping); 2167 2168 /* Return the current Rx skb to caller */ 2169 return rx_skb; 2170 } 2171 2172 /* bcmgenet_desc_rx - descriptor based rx process. 2173 * this could be called from bottom half, or from NAPI polling method. 2174 */ 2175 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring, 2176 unsigned int budget) 2177 { 2178 struct bcmgenet_priv *priv = ring->priv; 2179 struct net_device *dev = priv->dev; 2180 struct enet_cb *cb; 2181 struct sk_buff *skb; 2182 u32 dma_length_status; 2183 unsigned long dma_flag; 2184 int len; 2185 unsigned int rxpktprocessed = 0, rxpkttoprocess; 2186 unsigned int bytes_processed = 0; 2187 unsigned int p_index, mask; 2188 unsigned int discards; 2189 2190 /* Clear status before servicing to reduce spurious interrupts */ 2191 if (ring->index == DESC_INDEX) { 2192 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE, 2193 INTRL2_CPU_CLEAR); 2194 } else { 2195 mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index); 2196 bcmgenet_intrl2_1_writel(priv, 2197 mask, 2198 INTRL2_CPU_CLEAR); 2199 } 2200 2201 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX); 2202 2203 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) & 2204 DMA_P_INDEX_DISCARD_CNT_MASK; 2205 if (discards > ring->old_discards) { 2206 discards = discards - ring->old_discards; 2207 ring->errors += discards; 2208 ring->old_discards += discards; 2209 2210 /* Clear HW register when we reach 75% of maximum 0xFFFF */ 2211 if (ring->old_discards >= 0xC000) { 2212 ring->old_discards = 0; 2213 bcmgenet_rdma_ring_writel(priv, ring->index, 0, 2214 RDMA_PROD_INDEX); 2215 } 2216 } 2217 2218 p_index &= DMA_P_INDEX_MASK; 2219 rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK; 2220 2221 netif_dbg(priv, rx_status, dev, 2222 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); 2223 2224 while ((rxpktprocessed < rxpkttoprocess) && 2225 (rxpktprocessed < budget)) { 2226 struct status_64 *status; 2227 __be16 rx_csum; 2228 2229 cb = &priv->rx_cbs[ring->read_ptr]; 2230 skb = bcmgenet_rx_refill(priv, cb); 2231 2232 if (unlikely(!skb)) { 2233 ring->dropped++; 2234 goto next; 2235 } 2236 2237 status = (struct status_64 *)skb->data; 2238 dma_length_status = status->length_status; 2239 if (dev->features & NETIF_F_RXCSUM) { 2240 rx_csum = (__force __be16)(status->rx_csum & 0xffff); 2241 skb->csum = (__force __wsum)ntohs(rx_csum); 2242 skb->ip_summed = CHECKSUM_COMPLETE; 2243 } 2244 2245 /* DMA flags and length are still valid no matter how 2246 * we got the Receive Status Vector (64B RSB or register) 2247 */ 2248 dma_flag = dma_length_status & 0xffff; 2249 len = dma_length_status >> DMA_BUFLENGTH_SHIFT; 2250 2251 netif_dbg(priv, rx_status, dev, 2252 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", 2253 __func__, p_index, ring->c_index, 2254 ring->read_ptr, dma_length_status); 2255 2256 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { 2257 netif_err(priv, rx_status, dev, 2258 "dropping fragmented packet!\n"); 2259 ring->errors++; 2260 dev_kfree_skb_any(skb); 2261 goto next; 2262 } 2263 2264 /* report errors */ 2265 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | 2266 DMA_RX_OV | 2267 DMA_RX_NO | 2268 DMA_RX_LG | 2269 DMA_RX_RXER))) { 2270 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", 2271 (unsigned int)dma_flag); 2272 if (dma_flag & DMA_RX_CRC_ERROR) 2273 dev->stats.rx_crc_errors++; 2274 if (dma_flag & DMA_RX_OV) 2275 dev->stats.rx_over_errors++; 2276 if (dma_flag & DMA_RX_NO) 2277 dev->stats.rx_frame_errors++; 2278 if (dma_flag & DMA_RX_LG) 2279 dev->stats.rx_length_errors++; 2280 dev->stats.rx_errors++; 2281 dev_kfree_skb_any(skb); 2282 goto next; 2283 } /* error packet */ 2284 2285 skb_put(skb, len); 2286 2287 /* remove RSB and hardware 2bytes added for IP alignment */ 2288 skb_pull(skb, 66); 2289 len -= 66; 2290 2291 if (priv->crc_fwd_en) { 2292 skb_trim(skb, len - ETH_FCS_LEN); 2293 len -= ETH_FCS_LEN; 2294 } 2295 2296 bytes_processed += len; 2297 2298 /*Finish setting up the received SKB and send it to the kernel*/ 2299 skb->protocol = eth_type_trans(skb, priv->dev); 2300 ring->packets++; 2301 ring->bytes += len; 2302 if (dma_flag & DMA_RX_MULT) 2303 dev->stats.multicast++; 2304 2305 /* Notify kernel */ 2306 napi_gro_receive(&ring->napi, skb); 2307 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); 2308 2309 next: 2310 rxpktprocessed++; 2311 if (likely(ring->read_ptr < ring->end_ptr)) 2312 ring->read_ptr++; 2313 else 2314 ring->read_ptr = ring->cb_ptr; 2315 2316 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK; 2317 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX); 2318 } 2319 2320 ring->dim.bytes = bytes_processed; 2321 ring->dim.packets = rxpktprocessed; 2322 2323 return rxpktprocessed; 2324 } 2325 2326 /* Rx NAPI polling method */ 2327 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget) 2328 { 2329 struct bcmgenet_rx_ring *ring = container_of(napi, 2330 struct bcmgenet_rx_ring, napi); 2331 struct dim_sample dim_sample = {}; 2332 unsigned int work_done; 2333 2334 work_done = bcmgenet_desc_rx(ring, budget); 2335 2336 if (work_done < budget) { 2337 napi_complete_done(napi, work_done); 2338 ring->int_enable(ring); 2339 } 2340 2341 if (ring->dim.use_dim) { 2342 dim_update_sample(ring->dim.event_ctr, ring->dim.packets, 2343 ring->dim.bytes, &dim_sample); 2344 net_dim(&ring->dim.dim, dim_sample); 2345 } 2346 2347 return work_done; 2348 } 2349 2350 static void bcmgenet_dim_work(struct work_struct *work) 2351 { 2352 struct dim *dim = container_of(work, struct dim, work); 2353 struct bcmgenet_net_dim *ndim = 2354 container_of(dim, struct bcmgenet_net_dim, dim); 2355 struct bcmgenet_rx_ring *ring = 2356 container_of(ndim, struct bcmgenet_rx_ring, dim); 2357 struct dim_cq_moder cur_profile = 2358 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 2359 2360 bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts); 2361 dim->state = DIM_START_MEASURE; 2362 } 2363 2364 /* Assign skb to RX DMA descriptor. */ 2365 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv, 2366 struct bcmgenet_rx_ring *ring) 2367 { 2368 struct enet_cb *cb; 2369 struct sk_buff *skb; 2370 int i; 2371 2372 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 2373 2374 /* loop here for each buffer needing assign */ 2375 for (i = 0; i < ring->size; i++) { 2376 cb = ring->cbs + i; 2377 skb = bcmgenet_rx_refill(priv, cb); 2378 if (skb) 2379 dev_consume_skb_any(skb); 2380 if (!cb->skb) 2381 return -ENOMEM; 2382 } 2383 2384 return 0; 2385 } 2386 2387 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) 2388 { 2389 struct sk_buff *skb; 2390 struct enet_cb *cb; 2391 int i; 2392 2393 for (i = 0; i < priv->num_rx_bds; i++) { 2394 cb = &priv->rx_cbs[i]; 2395 2396 skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb); 2397 if (skb) 2398 dev_consume_skb_any(skb); 2399 } 2400 } 2401 2402 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable) 2403 { 2404 u32 reg; 2405 2406 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 2407 if (reg & CMD_SW_RESET) 2408 return; 2409 if (enable) 2410 reg |= mask; 2411 else 2412 reg &= ~mask; 2413 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 2414 2415 /* UniMAC stops on a packet boundary, wait for a full-size packet 2416 * to be processed 2417 */ 2418 if (enable == 0) 2419 usleep_range(1000, 2000); 2420 } 2421 2422 static void reset_umac(struct bcmgenet_priv *priv) 2423 { 2424 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ 2425 bcmgenet_rbuf_ctrl_set(priv, 0); 2426 udelay(10); 2427 2428 /* issue soft reset and disable MAC while updating its registers */ 2429 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD); 2430 udelay(2); 2431 } 2432 2433 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv) 2434 { 2435 /* Mask all interrupts.*/ 2436 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2437 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2438 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); 2439 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); 2440 } 2441 2442 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv) 2443 { 2444 u32 int0_enable = 0; 2445 2446 /* Monitor cable plug/unplugged event for internal PHY, external PHY 2447 * and MoCA PHY 2448 */ 2449 if (priv->internal_phy) { 2450 int0_enable |= UMAC_IRQ_LINK_EVENT; 2451 if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv)) 2452 int0_enable |= UMAC_IRQ_PHY_DET_R; 2453 } else if (priv->ext_phy) { 2454 int0_enable |= UMAC_IRQ_LINK_EVENT; 2455 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2456 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) 2457 int0_enable |= UMAC_IRQ_LINK_EVENT; 2458 } 2459 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2460 } 2461 2462 static void init_umac(struct bcmgenet_priv *priv) 2463 { 2464 struct device *kdev = &priv->pdev->dev; 2465 u32 reg; 2466 u32 int0_enable = 0; 2467 2468 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); 2469 2470 reset_umac(priv); 2471 2472 /* clear tx/rx counter */ 2473 bcmgenet_umac_writel(priv, 2474 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, 2475 UMAC_MIB_CTRL); 2476 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); 2477 2478 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); 2479 2480 /* init tx registers, enable TSB */ 2481 reg = bcmgenet_tbuf_ctrl_get(priv); 2482 reg |= TBUF_64B_EN; 2483 bcmgenet_tbuf_ctrl_set(priv, reg); 2484 2485 /* init rx registers, enable ip header optimization and RSB */ 2486 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); 2487 reg |= RBUF_ALIGN_2B | RBUF_64B_EN; 2488 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); 2489 2490 /* enable rx checksumming */ 2491 reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); 2492 reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS; 2493 /* If UniMAC forwards CRC, we need to skip over it to get 2494 * a valid CHK bit to be set in the per-packet status word 2495 */ 2496 if (priv->crc_fwd_en) 2497 reg |= RBUF_SKIP_FCS; 2498 else 2499 reg &= ~RBUF_SKIP_FCS; 2500 bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL); 2501 2502 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) 2503 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); 2504 2505 bcmgenet_intr_disable(priv); 2506 2507 /* Configure backpressure vectors for MoCA */ 2508 if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { 2509 reg = bcmgenet_bp_mc_get(priv); 2510 reg |= BIT(priv->hw_params->bp_in_en_shift); 2511 2512 /* bp_mask: back pressure mask */ 2513 if (netif_is_multiqueue(priv->dev)) 2514 reg |= priv->hw_params->bp_in_mask; 2515 else 2516 reg &= ~priv->hw_params->bp_in_mask; 2517 bcmgenet_bp_mc_set(priv, reg); 2518 } 2519 2520 /* Enable MDIO interrupts on GENET v3+ */ 2521 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) 2522 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); 2523 2524 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 2525 2526 dev_dbg(kdev, "done init umac\n"); 2527 } 2528 2529 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring, 2530 void (*cb)(struct work_struct *work)) 2531 { 2532 struct bcmgenet_net_dim *dim = &ring->dim; 2533 2534 INIT_WORK(&dim->dim.work, cb); 2535 dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 2536 dim->event_ctr = 0; 2537 dim->packets = 0; 2538 dim->bytes = 0; 2539 } 2540 2541 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring) 2542 { 2543 struct bcmgenet_net_dim *dim = &ring->dim; 2544 struct dim_cq_moder moder; 2545 u32 usecs, pkts; 2546 2547 usecs = ring->rx_coalesce_usecs; 2548 pkts = ring->rx_max_coalesced_frames; 2549 2550 /* If DIM was enabled, re-apply default parameters */ 2551 if (dim->use_dim) { 2552 moder = net_dim_get_def_rx_moderation(dim->dim.mode); 2553 usecs = moder.usec; 2554 pkts = moder.pkts; 2555 } 2556 2557 bcmgenet_set_rx_coalesce(ring, usecs, pkts); 2558 } 2559 2560 /* Initialize a Tx ring along with corresponding hardware registers */ 2561 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, 2562 unsigned int index, unsigned int size, 2563 unsigned int start_ptr, unsigned int end_ptr) 2564 { 2565 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; 2566 u32 words_per_bd = WORDS_PER_BD(priv); 2567 u32 flow_period_val = 0; 2568 2569 spin_lock_init(&ring->lock); 2570 ring->priv = priv; 2571 ring->index = index; 2572 if (index == DESC_INDEX) { 2573 ring->queue = 0; 2574 ring->int_enable = bcmgenet_tx_ring16_int_enable; 2575 ring->int_disable = bcmgenet_tx_ring16_int_disable; 2576 } else { 2577 ring->queue = index + 1; 2578 ring->int_enable = bcmgenet_tx_ring_int_enable; 2579 ring->int_disable = bcmgenet_tx_ring_int_disable; 2580 } 2581 ring->cbs = priv->tx_cbs + start_ptr; 2582 ring->size = size; 2583 ring->clean_ptr = start_ptr; 2584 ring->c_index = 0; 2585 ring->free_bds = size; 2586 ring->write_ptr = start_ptr; 2587 ring->cb_ptr = start_ptr; 2588 ring->end_ptr = end_ptr - 1; 2589 ring->prod_index = 0; 2590 2591 /* Set flow period for ring != 16 */ 2592 if (index != DESC_INDEX) 2593 flow_period_val = ENET_MAX_MTU_SIZE << 16; 2594 2595 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); 2596 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); 2597 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); 2598 /* Disable rate control for now */ 2599 bcmgenet_tdma_ring_writel(priv, index, flow_period_val, 2600 TDMA_FLOW_PERIOD); 2601 bcmgenet_tdma_ring_writel(priv, index, 2602 ((size << DMA_RING_SIZE_SHIFT) | 2603 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2604 2605 /* Set start and end address, read and write pointers */ 2606 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2607 DMA_START_ADDR); 2608 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2609 TDMA_READ_PTR); 2610 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, 2611 TDMA_WRITE_PTR); 2612 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2613 DMA_END_ADDR); 2614 2615 /* Initialize Tx NAPI */ 2616 netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 2617 NAPI_POLL_WEIGHT); 2618 } 2619 2620 /* Initialize a RDMA ring */ 2621 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, 2622 unsigned int index, unsigned int size, 2623 unsigned int start_ptr, unsigned int end_ptr) 2624 { 2625 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index]; 2626 u32 words_per_bd = WORDS_PER_BD(priv); 2627 int ret; 2628 2629 ring->priv = priv; 2630 ring->index = index; 2631 if (index == DESC_INDEX) { 2632 ring->int_enable = bcmgenet_rx_ring16_int_enable; 2633 ring->int_disable = bcmgenet_rx_ring16_int_disable; 2634 } else { 2635 ring->int_enable = bcmgenet_rx_ring_int_enable; 2636 ring->int_disable = bcmgenet_rx_ring_int_disable; 2637 } 2638 ring->cbs = priv->rx_cbs + start_ptr; 2639 ring->size = size; 2640 ring->c_index = 0; 2641 ring->read_ptr = start_ptr; 2642 ring->cb_ptr = start_ptr; 2643 ring->end_ptr = end_ptr - 1; 2644 2645 ret = bcmgenet_alloc_rx_buffers(priv, ring); 2646 if (ret) 2647 return ret; 2648 2649 bcmgenet_init_dim(ring, bcmgenet_dim_work); 2650 bcmgenet_init_rx_coalesce(ring); 2651 2652 /* Initialize Rx NAPI */ 2653 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 2654 NAPI_POLL_WEIGHT); 2655 2656 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); 2657 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); 2658 bcmgenet_rdma_ring_writel(priv, index, 2659 ((size << DMA_RING_SIZE_SHIFT) | 2660 RX_BUF_LENGTH), DMA_RING_BUF_SIZE); 2661 bcmgenet_rdma_ring_writel(priv, index, 2662 (DMA_FC_THRESH_LO << 2663 DMA_XOFF_THRESHOLD_SHIFT) | 2664 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); 2665 2666 /* Set start and end address, read and write pointers */ 2667 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2668 DMA_START_ADDR); 2669 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2670 RDMA_READ_PTR); 2671 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, 2672 RDMA_WRITE_PTR); 2673 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, 2674 DMA_END_ADDR); 2675 2676 return ret; 2677 } 2678 2679 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv) 2680 { 2681 unsigned int i; 2682 struct bcmgenet_tx_ring *ring; 2683 2684 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2685 ring = &priv->tx_rings[i]; 2686 napi_enable(&ring->napi); 2687 ring->int_enable(ring); 2688 } 2689 2690 ring = &priv->tx_rings[DESC_INDEX]; 2691 napi_enable(&ring->napi); 2692 ring->int_enable(ring); 2693 } 2694 2695 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv) 2696 { 2697 unsigned int i; 2698 struct bcmgenet_tx_ring *ring; 2699 2700 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2701 ring = &priv->tx_rings[i]; 2702 napi_disable(&ring->napi); 2703 } 2704 2705 ring = &priv->tx_rings[DESC_INDEX]; 2706 napi_disable(&ring->napi); 2707 } 2708 2709 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv) 2710 { 2711 unsigned int i; 2712 struct bcmgenet_tx_ring *ring; 2713 2714 for (i = 0; i < priv->hw_params->tx_queues; ++i) { 2715 ring = &priv->tx_rings[i]; 2716 netif_napi_del(&ring->napi); 2717 } 2718 2719 ring = &priv->tx_rings[DESC_INDEX]; 2720 netif_napi_del(&ring->napi); 2721 } 2722 2723 /* Initialize Tx queues 2724 * 2725 * Queues 0-3 are priority-based, each one has 32 descriptors, 2726 * with queue 0 being the highest priority queue. 2727 * 2728 * Queue 16 is the default Tx queue with 2729 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors. 2730 * 2731 * The transmit control block pool is then partitioned as follows: 2732 * - Tx queue 0 uses tx_cbs[0..31] 2733 * - Tx queue 1 uses tx_cbs[32..63] 2734 * - Tx queue 2 uses tx_cbs[64..95] 2735 * - Tx queue 3 uses tx_cbs[96..127] 2736 * - Tx queue 16 uses tx_cbs[128..255] 2737 */ 2738 static void bcmgenet_init_tx_queues(struct net_device *dev) 2739 { 2740 struct bcmgenet_priv *priv = netdev_priv(dev); 2741 u32 i, dma_enable; 2742 u32 dma_ctrl, ring_cfg; 2743 u32 dma_priority[3] = {0, 0, 0}; 2744 2745 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); 2746 dma_enable = dma_ctrl & DMA_EN; 2747 dma_ctrl &= ~DMA_EN; 2748 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2749 2750 dma_ctrl = 0; 2751 ring_cfg = 0; 2752 2753 /* Enable strict priority arbiter mode */ 2754 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); 2755 2756 /* Initialize Tx priority queues */ 2757 for (i = 0; i < priv->hw_params->tx_queues; i++) { 2758 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q, 2759 i * priv->hw_params->tx_bds_per_q, 2760 (i + 1) * priv->hw_params->tx_bds_per_q); 2761 ring_cfg |= (1 << i); 2762 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2763 dma_priority[DMA_PRIO_REG_INDEX(i)] |= 2764 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i)); 2765 } 2766 2767 /* Initialize Tx default queue 16 */ 2768 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT, 2769 priv->hw_params->tx_queues * 2770 priv->hw_params->tx_bds_per_q, 2771 TOTAL_DESC); 2772 ring_cfg |= (1 << DESC_INDEX); 2773 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2774 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |= 2775 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << 2776 DMA_PRIO_REG_SHIFT(DESC_INDEX)); 2777 2778 /* Set Tx queue priorities */ 2779 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0); 2780 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1); 2781 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2); 2782 2783 /* Enable Tx queues */ 2784 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG); 2785 2786 /* Enable Tx DMA */ 2787 if (dma_enable) 2788 dma_ctrl |= DMA_EN; 2789 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); 2790 } 2791 2792 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv) 2793 { 2794 unsigned int i; 2795 struct bcmgenet_rx_ring *ring; 2796 2797 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2798 ring = &priv->rx_rings[i]; 2799 napi_enable(&ring->napi); 2800 ring->int_enable(ring); 2801 } 2802 2803 ring = &priv->rx_rings[DESC_INDEX]; 2804 napi_enable(&ring->napi); 2805 ring->int_enable(ring); 2806 } 2807 2808 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv) 2809 { 2810 unsigned int i; 2811 struct bcmgenet_rx_ring *ring; 2812 2813 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2814 ring = &priv->rx_rings[i]; 2815 napi_disable(&ring->napi); 2816 cancel_work_sync(&ring->dim.dim.work); 2817 } 2818 2819 ring = &priv->rx_rings[DESC_INDEX]; 2820 napi_disable(&ring->napi); 2821 cancel_work_sync(&ring->dim.dim.work); 2822 } 2823 2824 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv) 2825 { 2826 unsigned int i; 2827 struct bcmgenet_rx_ring *ring; 2828 2829 for (i = 0; i < priv->hw_params->rx_queues; ++i) { 2830 ring = &priv->rx_rings[i]; 2831 netif_napi_del(&ring->napi); 2832 } 2833 2834 ring = &priv->rx_rings[DESC_INDEX]; 2835 netif_napi_del(&ring->napi); 2836 } 2837 2838 /* Initialize Rx queues 2839 * 2840 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be 2841 * used to direct traffic to these queues. 2842 * 2843 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors. 2844 */ 2845 static int bcmgenet_init_rx_queues(struct net_device *dev) 2846 { 2847 struct bcmgenet_priv *priv = netdev_priv(dev); 2848 u32 i; 2849 u32 dma_enable; 2850 u32 dma_ctrl; 2851 u32 ring_cfg; 2852 int ret; 2853 2854 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL); 2855 dma_enable = dma_ctrl & DMA_EN; 2856 dma_ctrl &= ~DMA_EN; 2857 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2858 2859 dma_ctrl = 0; 2860 ring_cfg = 0; 2861 2862 /* Initialize Rx priority queues */ 2863 for (i = 0; i < priv->hw_params->rx_queues; i++) { 2864 ret = bcmgenet_init_rx_ring(priv, i, 2865 priv->hw_params->rx_bds_per_q, 2866 i * priv->hw_params->rx_bds_per_q, 2867 (i + 1) * 2868 priv->hw_params->rx_bds_per_q); 2869 if (ret) 2870 return ret; 2871 2872 ring_cfg |= (1 << i); 2873 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2874 } 2875 2876 /* Initialize Rx default queue 16 */ 2877 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT, 2878 priv->hw_params->rx_queues * 2879 priv->hw_params->rx_bds_per_q, 2880 TOTAL_DESC); 2881 if (ret) 2882 return ret; 2883 2884 ring_cfg |= (1 << DESC_INDEX); 2885 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); 2886 2887 /* Enable rings */ 2888 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG); 2889 2890 /* Configure ring as descriptor ring and re-enable DMA if enabled */ 2891 if (dma_enable) 2892 dma_ctrl |= DMA_EN; 2893 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); 2894 2895 return 0; 2896 } 2897 2898 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) 2899 { 2900 int ret = 0; 2901 int timeout = 0; 2902 u32 reg; 2903 u32 dma_ctrl; 2904 int i; 2905 2906 /* Disable TDMA to stop add more frames in TX DMA */ 2907 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2908 reg &= ~DMA_EN; 2909 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2910 2911 /* Check TDMA status register to confirm TDMA is disabled */ 2912 while (timeout++ < DMA_TIMEOUT_VAL) { 2913 reg = bcmgenet_tdma_readl(priv, DMA_STATUS); 2914 if (reg & DMA_DISABLED) 2915 break; 2916 2917 udelay(1); 2918 } 2919 2920 if (timeout == DMA_TIMEOUT_VAL) { 2921 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); 2922 ret = -ETIMEDOUT; 2923 } 2924 2925 /* Wait 10ms for packet drain in both tx and rx dma */ 2926 usleep_range(10000, 20000); 2927 2928 /* Disable RDMA */ 2929 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2930 reg &= ~DMA_EN; 2931 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2932 2933 timeout = 0; 2934 /* Check RDMA status register to confirm RDMA is disabled */ 2935 while (timeout++ < DMA_TIMEOUT_VAL) { 2936 reg = bcmgenet_rdma_readl(priv, DMA_STATUS); 2937 if (reg & DMA_DISABLED) 2938 break; 2939 2940 udelay(1); 2941 } 2942 2943 if (timeout == DMA_TIMEOUT_VAL) { 2944 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); 2945 ret = -ETIMEDOUT; 2946 } 2947 2948 dma_ctrl = 0; 2949 for (i = 0; i < priv->hw_params->rx_queues; i++) 2950 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2951 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 2952 reg &= ~dma_ctrl; 2953 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 2954 2955 dma_ctrl = 0; 2956 for (i = 0; i < priv->hw_params->tx_queues; i++) 2957 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); 2958 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 2959 reg &= ~dma_ctrl; 2960 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 2961 2962 return ret; 2963 } 2964 2965 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) 2966 { 2967 struct netdev_queue *txq; 2968 int i; 2969 2970 bcmgenet_fini_rx_napi(priv); 2971 bcmgenet_fini_tx_napi(priv); 2972 2973 for (i = 0; i < priv->num_tx_bds; i++) 2974 dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev, 2975 priv->tx_cbs + i)); 2976 2977 for (i = 0; i < priv->hw_params->tx_queues; i++) { 2978 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue); 2979 netdev_tx_reset_queue(txq); 2980 } 2981 2982 txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue); 2983 netdev_tx_reset_queue(txq); 2984 2985 bcmgenet_free_rx_buffers(priv); 2986 kfree(priv->rx_cbs); 2987 kfree(priv->tx_cbs); 2988 } 2989 2990 /* init_edma: Initialize DMA control register */ 2991 static int bcmgenet_init_dma(struct bcmgenet_priv *priv) 2992 { 2993 int ret; 2994 unsigned int i; 2995 struct enet_cb *cb; 2996 2997 netif_dbg(priv, hw, priv->dev, "%s\n", __func__); 2998 2999 /* Initialize common Rx ring structures */ 3000 priv->rx_bds = priv->base + priv->hw_params->rdma_offset; 3001 priv->num_rx_bds = TOTAL_DESC; 3002 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb), 3003 GFP_KERNEL); 3004 if (!priv->rx_cbs) 3005 return -ENOMEM; 3006 3007 for (i = 0; i < priv->num_rx_bds; i++) { 3008 cb = priv->rx_cbs + i; 3009 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE; 3010 } 3011 3012 /* Initialize common TX ring structures */ 3013 priv->tx_bds = priv->base + priv->hw_params->tdma_offset; 3014 priv->num_tx_bds = TOTAL_DESC; 3015 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb), 3016 GFP_KERNEL); 3017 if (!priv->tx_cbs) { 3018 kfree(priv->rx_cbs); 3019 return -ENOMEM; 3020 } 3021 3022 for (i = 0; i < priv->num_tx_bds; i++) { 3023 cb = priv->tx_cbs + i; 3024 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE; 3025 } 3026 3027 /* Init rDma */ 3028 bcmgenet_rdma_writel(priv, priv->dma_max_burst_length, 3029 DMA_SCB_BURST_SIZE); 3030 3031 /* Initialize Rx queues */ 3032 ret = bcmgenet_init_rx_queues(priv->dev); 3033 if (ret) { 3034 netdev_err(priv->dev, "failed to initialize Rx queues\n"); 3035 bcmgenet_free_rx_buffers(priv); 3036 kfree(priv->rx_cbs); 3037 kfree(priv->tx_cbs); 3038 return ret; 3039 } 3040 3041 /* Init tDma */ 3042 bcmgenet_tdma_writel(priv, priv->dma_max_burst_length, 3043 DMA_SCB_BURST_SIZE); 3044 3045 /* Initialize Tx queues */ 3046 bcmgenet_init_tx_queues(priv->dev); 3047 3048 return 0; 3049 } 3050 3051 /* Interrupt bottom half */ 3052 static void bcmgenet_irq_task(struct work_struct *work) 3053 { 3054 unsigned int status; 3055 struct bcmgenet_priv *priv = container_of( 3056 work, struct bcmgenet_priv, bcmgenet_irq_work); 3057 3058 netif_dbg(priv, intr, priv->dev, "%s\n", __func__); 3059 3060 spin_lock_irq(&priv->lock); 3061 status = priv->irq0_stat; 3062 priv->irq0_stat = 0; 3063 spin_unlock_irq(&priv->lock); 3064 3065 if (status & UMAC_IRQ_PHY_DET_R && 3066 priv->dev->phydev->autoneg != AUTONEG_ENABLE) { 3067 phy_init_hw(priv->dev->phydev); 3068 genphy_config_aneg(priv->dev->phydev); 3069 } 3070 3071 /* Link UP/DOWN event */ 3072 if (status & UMAC_IRQ_LINK_EVENT) 3073 phy_mac_interrupt(priv->dev->phydev); 3074 3075 } 3076 3077 /* bcmgenet_isr1: handle Rx and Tx priority queues */ 3078 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) 3079 { 3080 struct bcmgenet_priv *priv = dev_id; 3081 struct bcmgenet_rx_ring *rx_ring; 3082 struct bcmgenet_tx_ring *tx_ring; 3083 unsigned int index, status; 3084 3085 /* Read irq status */ 3086 status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & 3087 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3088 3089 /* clear interrupts */ 3090 bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR); 3091 3092 netif_dbg(priv, intr, priv->dev, 3093 "%s: IRQ=0x%x\n", __func__, status); 3094 3095 /* Check Rx priority queue interrupts */ 3096 for (index = 0; index < priv->hw_params->rx_queues; index++) { 3097 if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index))) 3098 continue; 3099 3100 rx_ring = &priv->rx_rings[index]; 3101 rx_ring->dim.event_ctr++; 3102 3103 if (likely(napi_schedule_prep(&rx_ring->napi))) { 3104 rx_ring->int_disable(rx_ring); 3105 __napi_schedule_irqoff(&rx_ring->napi); 3106 } 3107 } 3108 3109 /* Check Tx priority queue interrupts */ 3110 for (index = 0; index < priv->hw_params->tx_queues; index++) { 3111 if (!(status & BIT(index))) 3112 continue; 3113 3114 tx_ring = &priv->tx_rings[index]; 3115 3116 if (likely(napi_schedule_prep(&tx_ring->napi))) { 3117 tx_ring->int_disable(tx_ring); 3118 __napi_schedule_irqoff(&tx_ring->napi); 3119 } 3120 } 3121 3122 return IRQ_HANDLED; 3123 } 3124 3125 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */ 3126 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) 3127 { 3128 struct bcmgenet_priv *priv = dev_id; 3129 struct bcmgenet_rx_ring *rx_ring; 3130 struct bcmgenet_tx_ring *tx_ring; 3131 unsigned int status; 3132 unsigned long flags; 3133 3134 /* Read irq status */ 3135 status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & 3136 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3137 3138 /* clear interrupts */ 3139 bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR); 3140 3141 netif_dbg(priv, intr, priv->dev, 3142 "IRQ=0x%x\n", status); 3143 3144 if (status & UMAC_IRQ_RXDMA_DONE) { 3145 rx_ring = &priv->rx_rings[DESC_INDEX]; 3146 rx_ring->dim.event_ctr++; 3147 3148 if (likely(napi_schedule_prep(&rx_ring->napi))) { 3149 rx_ring->int_disable(rx_ring); 3150 __napi_schedule_irqoff(&rx_ring->napi); 3151 } 3152 } 3153 3154 if (status & UMAC_IRQ_TXDMA_DONE) { 3155 tx_ring = &priv->tx_rings[DESC_INDEX]; 3156 3157 if (likely(napi_schedule_prep(&tx_ring->napi))) { 3158 tx_ring->int_disable(tx_ring); 3159 __napi_schedule_irqoff(&tx_ring->napi); 3160 } 3161 } 3162 3163 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && 3164 status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { 3165 wake_up(&priv->wq); 3166 } 3167 3168 /* all other interested interrupts handled in bottom half */ 3169 status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R); 3170 if (status) { 3171 /* Save irq status for bottom-half processing. */ 3172 spin_lock_irqsave(&priv->lock, flags); 3173 priv->irq0_stat |= status; 3174 spin_unlock_irqrestore(&priv->lock, flags); 3175 3176 schedule_work(&priv->bcmgenet_irq_work); 3177 } 3178 3179 return IRQ_HANDLED; 3180 } 3181 3182 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id) 3183 { 3184 /* Acknowledge the interrupt */ 3185 return IRQ_HANDLED; 3186 } 3187 3188 #ifdef CONFIG_NET_POLL_CONTROLLER 3189 static void bcmgenet_poll_controller(struct net_device *dev) 3190 { 3191 struct bcmgenet_priv *priv = netdev_priv(dev); 3192 3193 /* Invoke the main RX/TX interrupt handler */ 3194 disable_irq(priv->irq0); 3195 bcmgenet_isr0(priv->irq0, priv); 3196 enable_irq(priv->irq0); 3197 3198 /* And the interrupt handler for RX/TX priority queues */ 3199 disable_irq(priv->irq1); 3200 bcmgenet_isr1(priv->irq1, priv); 3201 enable_irq(priv->irq1); 3202 } 3203 #endif 3204 3205 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) 3206 { 3207 u32 reg; 3208 3209 reg = bcmgenet_rbuf_ctrl_get(priv); 3210 reg |= BIT(1); 3211 bcmgenet_rbuf_ctrl_set(priv, reg); 3212 udelay(10); 3213 3214 reg &= ~BIT(1); 3215 bcmgenet_rbuf_ctrl_set(priv, reg); 3216 udelay(10); 3217 } 3218 3219 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, 3220 unsigned char *addr) 3221 { 3222 bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0); 3223 bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1); 3224 } 3225 3226 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv, 3227 unsigned char *addr) 3228 { 3229 u32 addr_tmp; 3230 3231 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0); 3232 put_unaligned_be32(addr_tmp, &addr[0]); 3233 addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1); 3234 put_unaligned_be16(addr_tmp, &addr[4]); 3235 } 3236 3237 /* Returns a reusable dma control register value */ 3238 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv) 3239 { 3240 u32 reg; 3241 u32 dma_ctrl; 3242 3243 /* disable DMA */ 3244 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; 3245 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3246 reg &= ~dma_ctrl; 3247 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3248 3249 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3250 reg &= ~dma_ctrl; 3251 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3252 3253 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); 3254 udelay(10); 3255 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); 3256 3257 return dma_ctrl; 3258 } 3259 3260 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) 3261 { 3262 u32 reg; 3263 3264 reg = bcmgenet_rdma_readl(priv, DMA_CTRL); 3265 reg |= dma_ctrl; 3266 bcmgenet_rdma_writel(priv, reg, DMA_CTRL); 3267 3268 reg = bcmgenet_tdma_readl(priv, DMA_CTRL); 3269 reg |= dma_ctrl; 3270 bcmgenet_tdma_writel(priv, reg, DMA_CTRL); 3271 } 3272 3273 static void bcmgenet_netif_start(struct net_device *dev) 3274 { 3275 struct bcmgenet_priv *priv = netdev_priv(dev); 3276 3277 /* Start the network engine */ 3278 bcmgenet_set_rx_mode(dev); 3279 bcmgenet_enable_rx_napi(priv); 3280 3281 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true); 3282 3283 bcmgenet_enable_tx_napi(priv); 3284 3285 /* Monitor link interrupts now */ 3286 bcmgenet_link_intr_enable(priv); 3287 3288 phy_start(dev->phydev); 3289 } 3290 3291 static int bcmgenet_open(struct net_device *dev) 3292 { 3293 struct bcmgenet_priv *priv = netdev_priv(dev); 3294 unsigned long dma_ctrl; 3295 u32 reg; 3296 int ret; 3297 3298 netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); 3299 3300 /* Turn on the clock */ 3301 clk_prepare_enable(priv->clk); 3302 3303 /* If this is an internal GPHY, power it back on now, before UniMAC is 3304 * brought out of reset as absolutely no UniMAC activity is allowed 3305 */ 3306 if (priv->internal_phy) 3307 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 3308 3309 /* take MAC out of reset */ 3310 bcmgenet_umac_reset(priv); 3311 3312 init_umac(priv); 3313 3314 /* Apply features again in case we changed them while interface was 3315 * down 3316 */ 3317 bcmgenet_set_features(dev, dev->features); 3318 3319 bcmgenet_set_hw_addr(priv, dev->dev_addr); 3320 3321 if (priv->internal_phy) { 3322 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 3323 reg |= EXT_ENERGY_DET_MASK; 3324 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 3325 } 3326 3327 /* Disable RX/TX DMA and flush TX queues */ 3328 dma_ctrl = bcmgenet_dma_disable(priv); 3329 3330 /* Reinitialize TDMA and RDMA and SW housekeeping */ 3331 ret = bcmgenet_init_dma(priv); 3332 if (ret) { 3333 netdev_err(dev, "failed to initialize DMA\n"); 3334 goto err_clk_disable; 3335 } 3336 3337 /* Always enable ring 16 - descriptor ring */ 3338 bcmgenet_enable_dma(priv, dma_ctrl); 3339 3340 /* HFB init */ 3341 bcmgenet_hfb_init(priv); 3342 3343 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, 3344 dev->name, priv); 3345 if (ret < 0) { 3346 netdev_err(dev, "can't request IRQ %d\n", priv->irq0); 3347 goto err_fini_dma; 3348 } 3349 3350 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, 3351 dev->name, priv); 3352 if (ret < 0) { 3353 netdev_err(dev, "can't request IRQ %d\n", priv->irq1); 3354 goto err_irq0; 3355 } 3356 3357 ret = bcmgenet_mii_probe(dev); 3358 if (ret) { 3359 netdev_err(dev, "failed to connect to PHY\n"); 3360 goto err_irq1; 3361 } 3362 3363 bcmgenet_netif_start(dev); 3364 3365 netif_tx_start_all_queues(dev); 3366 3367 return 0; 3368 3369 err_irq1: 3370 free_irq(priv->irq1, priv); 3371 err_irq0: 3372 free_irq(priv->irq0, priv); 3373 err_fini_dma: 3374 bcmgenet_dma_teardown(priv); 3375 bcmgenet_fini_dma(priv); 3376 err_clk_disable: 3377 if (priv->internal_phy) 3378 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3379 clk_disable_unprepare(priv->clk); 3380 return ret; 3381 } 3382 3383 static void bcmgenet_netif_stop(struct net_device *dev) 3384 { 3385 struct bcmgenet_priv *priv = netdev_priv(dev); 3386 3387 bcmgenet_disable_tx_napi(priv); 3388 netif_tx_disable(dev); 3389 3390 /* Disable MAC receive */ 3391 umac_enable_set(priv, CMD_RX_EN, false); 3392 3393 bcmgenet_dma_teardown(priv); 3394 3395 /* Disable MAC transmit. TX DMA disabled must be done before this */ 3396 umac_enable_set(priv, CMD_TX_EN, false); 3397 3398 phy_stop(dev->phydev); 3399 bcmgenet_disable_rx_napi(priv); 3400 bcmgenet_intr_disable(priv); 3401 3402 /* Wait for pending work items to complete. Since interrupts are 3403 * disabled no new work will be scheduled. 3404 */ 3405 cancel_work_sync(&priv->bcmgenet_irq_work); 3406 3407 priv->old_link = -1; 3408 priv->old_speed = -1; 3409 priv->old_duplex = -1; 3410 priv->old_pause = -1; 3411 3412 /* tx reclaim */ 3413 bcmgenet_tx_reclaim_all(dev); 3414 bcmgenet_fini_dma(priv); 3415 } 3416 3417 static int bcmgenet_close(struct net_device *dev) 3418 { 3419 struct bcmgenet_priv *priv = netdev_priv(dev); 3420 int ret = 0; 3421 3422 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); 3423 3424 bcmgenet_netif_stop(dev); 3425 3426 /* Really kill the PHY state machine and disconnect from it */ 3427 phy_disconnect(dev->phydev); 3428 3429 free_irq(priv->irq0, priv); 3430 free_irq(priv->irq1, priv); 3431 3432 if (priv->internal_phy) 3433 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 3434 3435 clk_disable_unprepare(priv->clk); 3436 3437 return ret; 3438 } 3439 3440 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring) 3441 { 3442 struct bcmgenet_priv *priv = ring->priv; 3443 u32 p_index, c_index, intsts, intmsk; 3444 struct netdev_queue *txq; 3445 unsigned int free_bds; 3446 bool txq_stopped; 3447 3448 if (!netif_msg_tx_err(priv)) 3449 return; 3450 3451 txq = netdev_get_tx_queue(priv->dev, ring->queue); 3452 3453 spin_lock(&ring->lock); 3454 if (ring->index == DESC_INDEX) { 3455 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); 3456 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE; 3457 } else { 3458 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); 3459 intmsk = 1 << ring->index; 3460 } 3461 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); 3462 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX); 3463 txq_stopped = netif_tx_queue_stopped(txq); 3464 free_bds = ring->free_bds; 3465 spin_unlock(&ring->lock); 3466 3467 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n" 3468 "TX queue status: %s, interrupts: %s\n" 3469 "(sw)free_bds: %d (sw)size: %d\n" 3470 "(sw)p_index: %d (hw)p_index: %d\n" 3471 "(sw)c_index: %d (hw)c_index: %d\n" 3472 "(sw)clean_p: %d (sw)write_p: %d\n" 3473 "(sw)cb_ptr: %d (sw)end_ptr: %d\n", 3474 ring->index, ring->queue, 3475 txq_stopped ? "stopped" : "active", 3476 intsts & intmsk ? "enabled" : "disabled", 3477 free_bds, ring->size, 3478 ring->prod_index, p_index & DMA_P_INDEX_MASK, 3479 ring->c_index, c_index & DMA_C_INDEX_MASK, 3480 ring->clean_ptr, ring->write_ptr, 3481 ring->cb_ptr, ring->end_ptr); 3482 } 3483 3484 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue) 3485 { 3486 struct bcmgenet_priv *priv = netdev_priv(dev); 3487 u32 int0_enable = 0; 3488 u32 int1_enable = 0; 3489 unsigned int q; 3490 3491 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); 3492 3493 for (q = 0; q < priv->hw_params->tx_queues; q++) 3494 bcmgenet_dump_tx_queue(&priv->tx_rings[q]); 3495 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]); 3496 3497 bcmgenet_tx_reclaim_all(dev); 3498 3499 for (q = 0; q < priv->hw_params->tx_queues; q++) 3500 int1_enable |= (1 << q); 3501 3502 int0_enable = UMAC_IRQ_TXDMA_DONE; 3503 3504 /* Re-enable TX interrupts if disabled */ 3505 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); 3506 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); 3507 3508 netif_trans_update(dev); 3509 3510 dev->stats.tx_errors++; 3511 3512 netif_tx_wake_all_queues(dev); 3513 } 3514 3515 #define MAX_MDF_FILTER 17 3516 3517 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, 3518 unsigned char *addr, 3519 int *i) 3520 { 3521 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], 3522 UMAC_MDF_ADDR + (*i * 4)); 3523 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | 3524 addr[4] << 8 | addr[5], 3525 UMAC_MDF_ADDR + ((*i + 1) * 4)); 3526 *i += 2; 3527 } 3528 3529 static void bcmgenet_set_rx_mode(struct net_device *dev) 3530 { 3531 struct bcmgenet_priv *priv = netdev_priv(dev); 3532 struct netdev_hw_addr *ha; 3533 int i, nfilter; 3534 u32 reg; 3535 3536 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); 3537 3538 /* Number of filters needed */ 3539 nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2; 3540 3541 /* 3542 * Turn on promicuous mode for three scenarios 3543 * 1. IFF_PROMISC flag is set 3544 * 2. IFF_ALLMULTI flag is set 3545 * 3. The number of filters needed exceeds the number filters 3546 * supported by the hardware. 3547 */ 3548 reg = bcmgenet_umac_readl(priv, UMAC_CMD); 3549 if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) || 3550 (nfilter > MAX_MDF_FILTER)) { 3551 reg |= CMD_PROMISC; 3552 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3553 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); 3554 return; 3555 } else { 3556 reg &= ~CMD_PROMISC; 3557 bcmgenet_umac_writel(priv, reg, UMAC_CMD); 3558 } 3559 3560 /* update MDF filter */ 3561 i = 0; 3562 /* Broadcast */ 3563 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i); 3564 /* my own address.*/ 3565 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i); 3566 3567 /* Unicast */ 3568 netdev_for_each_uc_addr(ha, dev) 3569 bcmgenet_set_mdf_addr(priv, ha->addr, &i); 3570 3571 /* Multicast */ 3572 netdev_for_each_mc_addr(ha, dev) 3573 bcmgenet_set_mdf_addr(priv, ha->addr, &i); 3574 3575 /* Enable filters */ 3576 reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter); 3577 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); 3578 } 3579 3580 /* Set the hardware MAC address. */ 3581 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) 3582 { 3583 struct sockaddr *addr = p; 3584 3585 /* Setting the MAC address at the hardware level is not possible 3586 * without disabling the UniMAC RX/TX enable bits. 3587 */ 3588 if (netif_running(dev)) 3589 return -EBUSY; 3590 3591 ether_addr_copy(dev->dev_addr, addr->sa_data); 3592 3593 return 0; 3594 } 3595 3596 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev) 3597 { 3598 struct bcmgenet_priv *priv = netdev_priv(dev); 3599 unsigned long tx_bytes = 0, tx_packets = 0; 3600 unsigned long rx_bytes = 0, rx_packets = 0; 3601 unsigned long rx_errors = 0, rx_dropped = 0; 3602 struct bcmgenet_tx_ring *tx_ring; 3603 struct bcmgenet_rx_ring *rx_ring; 3604 unsigned int q; 3605 3606 for (q = 0; q < priv->hw_params->tx_queues; q++) { 3607 tx_ring = &priv->tx_rings[q]; 3608 tx_bytes += tx_ring->bytes; 3609 tx_packets += tx_ring->packets; 3610 } 3611 tx_ring = &priv->tx_rings[DESC_INDEX]; 3612 tx_bytes += tx_ring->bytes; 3613 tx_packets += tx_ring->packets; 3614 3615 for (q = 0; q < priv->hw_params->rx_queues; q++) { 3616 rx_ring = &priv->rx_rings[q]; 3617 3618 rx_bytes += rx_ring->bytes; 3619 rx_packets += rx_ring->packets; 3620 rx_errors += rx_ring->errors; 3621 rx_dropped += rx_ring->dropped; 3622 } 3623 rx_ring = &priv->rx_rings[DESC_INDEX]; 3624 rx_bytes += rx_ring->bytes; 3625 rx_packets += rx_ring->packets; 3626 rx_errors += rx_ring->errors; 3627 rx_dropped += rx_ring->dropped; 3628 3629 dev->stats.tx_bytes = tx_bytes; 3630 dev->stats.tx_packets = tx_packets; 3631 dev->stats.rx_bytes = rx_bytes; 3632 dev->stats.rx_packets = rx_packets; 3633 dev->stats.rx_errors = rx_errors; 3634 dev->stats.rx_missed_errors = rx_errors; 3635 dev->stats.rx_dropped = rx_dropped; 3636 return &dev->stats; 3637 } 3638 3639 static int bcmgenet_change_carrier(struct net_device *dev, bool new_carrier) 3640 { 3641 struct bcmgenet_priv *priv = netdev_priv(dev); 3642 3643 if (!dev->phydev || !phy_is_pseudo_fixed_link(dev->phydev) || 3644 priv->phy_interface != PHY_INTERFACE_MODE_MOCA) 3645 return -EOPNOTSUPP; 3646 3647 if (new_carrier) 3648 netif_carrier_on(dev); 3649 else 3650 netif_carrier_off(dev); 3651 3652 return 0; 3653 } 3654 3655 static const struct net_device_ops bcmgenet_netdev_ops = { 3656 .ndo_open = bcmgenet_open, 3657 .ndo_stop = bcmgenet_close, 3658 .ndo_start_xmit = bcmgenet_xmit, 3659 .ndo_tx_timeout = bcmgenet_timeout, 3660 .ndo_set_rx_mode = bcmgenet_set_rx_mode, 3661 .ndo_set_mac_address = bcmgenet_set_mac_addr, 3662 .ndo_do_ioctl = phy_do_ioctl_running, 3663 .ndo_set_features = bcmgenet_set_features, 3664 #ifdef CONFIG_NET_POLL_CONTROLLER 3665 .ndo_poll_controller = bcmgenet_poll_controller, 3666 #endif 3667 .ndo_get_stats = bcmgenet_get_stats, 3668 .ndo_change_carrier = bcmgenet_change_carrier, 3669 }; 3670 3671 /* Array of GENET hardware parameters/characteristics */ 3672 static struct bcmgenet_hw_params bcmgenet_hw_params[] = { 3673 [GENET_V1] = { 3674 .tx_queues = 0, 3675 .tx_bds_per_q = 0, 3676 .rx_queues = 0, 3677 .rx_bds_per_q = 0, 3678 .bp_in_en_shift = 16, 3679 .bp_in_mask = 0xffff, 3680 .hfb_filter_cnt = 16, 3681 .qtag_mask = 0x1F, 3682 .hfb_offset = 0x1000, 3683 .rdma_offset = 0x2000, 3684 .tdma_offset = 0x3000, 3685 .words_per_bd = 2, 3686 }, 3687 [GENET_V2] = { 3688 .tx_queues = 4, 3689 .tx_bds_per_q = 32, 3690 .rx_queues = 0, 3691 .rx_bds_per_q = 0, 3692 .bp_in_en_shift = 16, 3693 .bp_in_mask = 0xffff, 3694 .hfb_filter_cnt = 16, 3695 .qtag_mask = 0x1F, 3696 .tbuf_offset = 0x0600, 3697 .hfb_offset = 0x1000, 3698 .hfb_reg_offset = 0x2000, 3699 .rdma_offset = 0x3000, 3700 .tdma_offset = 0x4000, 3701 .words_per_bd = 2, 3702 .flags = GENET_HAS_EXT, 3703 }, 3704 [GENET_V3] = { 3705 .tx_queues = 4, 3706 .tx_bds_per_q = 32, 3707 .rx_queues = 0, 3708 .rx_bds_per_q = 0, 3709 .bp_in_en_shift = 17, 3710 .bp_in_mask = 0x1ffff, 3711 .hfb_filter_cnt = 48, 3712 .hfb_filter_size = 128, 3713 .qtag_mask = 0x3F, 3714 .tbuf_offset = 0x0600, 3715 .hfb_offset = 0x8000, 3716 .hfb_reg_offset = 0xfc00, 3717 .rdma_offset = 0x10000, 3718 .tdma_offset = 0x11000, 3719 .words_per_bd = 2, 3720 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR | 3721 GENET_HAS_MOCA_LINK_DET, 3722 }, 3723 [GENET_V4] = { 3724 .tx_queues = 4, 3725 .tx_bds_per_q = 32, 3726 .rx_queues = 0, 3727 .rx_bds_per_q = 0, 3728 .bp_in_en_shift = 17, 3729 .bp_in_mask = 0x1ffff, 3730 .hfb_filter_cnt = 48, 3731 .hfb_filter_size = 128, 3732 .qtag_mask = 0x3F, 3733 .tbuf_offset = 0x0600, 3734 .hfb_offset = 0x8000, 3735 .hfb_reg_offset = 0xfc00, 3736 .rdma_offset = 0x2000, 3737 .tdma_offset = 0x4000, 3738 .words_per_bd = 3, 3739 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3740 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3741 }, 3742 [GENET_V5] = { 3743 .tx_queues = 4, 3744 .tx_bds_per_q = 32, 3745 .rx_queues = 0, 3746 .rx_bds_per_q = 0, 3747 .bp_in_en_shift = 17, 3748 .bp_in_mask = 0x1ffff, 3749 .hfb_filter_cnt = 48, 3750 .hfb_filter_size = 128, 3751 .qtag_mask = 0x3F, 3752 .tbuf_offset = 0x0600, 3753 .hfb_offset = 0x8000, 3754 .hfb_reg_offset = 0xfc00, 3755 .rdma_offset = 0x2000, 3756 .tdma_offset = 0x4000, 3757 .words_per_bd = 3, 3758 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | 3759 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, 3760 }, 3761 }; 3762 3763 /* Infer hardware parameters from the detected GENET version */ 3764 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) 3765 { 3766 struct bcmgenet_hw_params *params; 3767 u32 reg; 3768 u8 major; 3769 u16 gphy_rev; 3770 3771 if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) { 3772 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3773 genet_dma_ring_regs = genet_dma_ring_regs_v4; 3774 } else if (GENET_IS_V3(priv)) { 3775 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; 3776 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3777 } else if (GENET_IS_V2(priv)) { 3778 bcmgenet_dma_regs = bcmgenet_dma_regs_v2; 3779 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3780 } else if (GENET_IS_V1(priv)) { 3781 bcmgenet_dma_regs = bcmgenet_dma_regs_v1; 3782 genet_dma_ring_regs = genet_dma_ring_regs_v123; 3783 } 3784 3785 /* enum genet_version starts at 1 */ 3786 priv->hw_params = &bcmgenet_hw_params[priv->version]; 3787 params = priv->hw_params; 3788 3789 /* Read GENET HW version */ 3790 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); 3791 major = (reg >> 24 & 0x0f); 3792 if (major == 6) 3793 major = 5; 3794 else if (major == 5) 3795 major = 4; 3796 else if (major == 0) 3797 major = 1; 3798 if (major != priv->version) { 3799 dev_err(&priv->pdev->dev, 3800 "GENET version mismatch, got: %d, configured for: %d\n", 3801 major, priv->version); 3802 } 3803 3804 /* Print the GENET core version */ 3805 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, 3806 major, (reg >> 16) & 0x0f, reg & 0xffff); 3807 3808 /* Store the integrated PHY revision for the MDIO probing function 3809 * to pass this information to the PHY driver. The PHY driver expects 3810 * to find the PHY major revision in bits 15:8 while the GENET register 3811 * stores that information in bits 7:0, account for that. 3812 * 3813 * On newer chips, starting with PHY revision G0, a new scheme is 3814 * deployed similar to the Starfighter 2 switch with GPHY major 3815 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0 3816 * is reserved as well as special value 0x01ff, we have a small 3817 * heuristic to check for the new GPHY revision and re-arrange things 3818 * so the GPHY driver is happy. 3819 */ 3820 gphy_rev = reg & 0xffff; 3821 3822 if (GENET_IS_V5(priv)) { 3823 /* The EPHY revision should come from the MDIO registers of 3824 * the PHY not from GENET. 3825 */ 3826 if (gphy_rev != 0) { 3827 pr_warn("GENET is reporting EPHY revision: 0x%04x\n", 3828 gphy_rev); 3829 } 3830 /* This is reserved so should require special treatment */ 3831 } else if (gphy_rev == 0 || gphy_rev == 0x01ff) { 3832 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev); 3833 return; 3834 /* This is the good old scheme, just GPHY major, no minor nor patch */ 3835 } else if ((gphy_rev & 0xf0) != 0) { 3836 priv->gphy_rev = gphy_rev << 8; 3837 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */ 3838 } else if ((gphy_rev & 0xff00) != 0) { 3839 priv->gphy_rev = gphy_rev; 3840 } 3841 3842 #ifdef CONFIG_PHYS_ADDR_T_64BIT 3843 if (!(params->flags & GENET_HAS_40BITS)) 3844 pr_warn("GENET does not support 40-bits PA\n"); 3845 #endif 3846 3847 pr_debug("Configuration for version: %d\n" 3848 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n" 3849 "BP << en: %2d, BP msk: 0x%05x\n" 3850 "HFB count: %2d, QTAQ msk: 0x%05x\n" 3851 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" 3852 "RDMA: 0x%05x, TDMA: 0x%05x\n" 3853 "Words/BD: %d\n", 3854 priv->version, 3855 params->tx_queues, params->tx_bds_per_q, 3856 params->rx_queues, params->rx_bds_per_q, 3857 params->bp_in_en_shift, params->bp_in_mask, 3858 params->hfb_filter_cnt, params->qtag_mask, 3859 params->tbuf_offset, params->hfb_offset, 3860 params->hfb_reg_offset, 3861 params->rdma_offset, params->tdma_offset, 3862 params->words_per_bd); 3863 } 3864 3865 struct bcmgenet_plat_data { 3866 enum bcmgenet_version version; 3867 u32 dma_max_burst_length; 3868 }; 3869 3870 static const struct bcmgenet_plat_data v1_plat_data = { 3871 .version = GENET_V1, 3872 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3873 }; 3874 3875 static const struct bcmgenet_plat_data v2_plat_data = { 3876 .version = GENET_V2, 3877 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3878 }; 3879 3880 static const struct bcmgenet_plat_data v3_plat_data = { 3881 .version = GENET_V3, 3882 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3883 }; 3884 3885 static const struct bcmgenet_plat_data v4_plat_data = { 3886 .version = GENET_V4, 3887 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3888 }; 3889 3890 static const struct bcmgenet_plat_data v5_plat_data = { 3891 .version = GENET_V5, 3892 .dma_max_burst_length = DMA_MAX_BURST_LENGTH, 3893 }; 3894 3895 static const struct bcmgenet_plat_data bcm2711_plat_data = { 3896 .version = GENET_V5, 3897 .dma_max_burst_length = 0x08, 3898 }; 3899 3900 static const struct of_device_id bcmgenet_match[] = { 3901 { .compatible = "brcm,genet-v1", .data = &v1_plat_data }, 3902 { .compatible = "brcm,genet-v2", .data = &v2_plat_data }, 3903 { .compatible = "brcm,genet-v3", .data = &v3_plat_data }, 3904 { .compatible = "brcm,genet-v4", .data = &v4_plat_data }, 3905 { .compatible = "brcm,genet-v5", .data = &v5_plat_data }, 3906 { .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data }, 3907 { }, 3908 }; 3909 MODULE_DEVICE_TABLE(of, bcmgenet_match); 3910 3911 static int bcmgenet_probe(struct platform_device *pdev) 3912 { 3913 struct bcmgenet_platform_data *pd = pdev->dev.platform_data; 3914 const struct bcmgenet_plat_data *pdata; 3915 struct bcmgenet_priv *priv; 3916 struct net_device *dev; 3917 unsigned int i; 3918 int err = -EIO; 3919 3920 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */ 3921 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, 3922 GENET_MAX_MQ_CNT + 1); 3923 if (!dev) { 3924 dev_err(&pdev->dev, "can't allocate net device\n"); 3925 return -ENOMEM; 3926 } 3927 3928 priv = netdev_priv(dev); 3929 priv->irq0 = platform_get_irq(pdev, 0); 3930 if (priv->irq0 < 0) { 3931 err = priv->irq0; 3932 goto err; 3933 } 3934 priv->irq1 = platform_get_irq(pdev, 1); 3935 if (priv->irq1 < 0) { 3936 err = priv->irq1; 3937 goto err; 3938 } 3939 priv->wol_irq = platform_get_irq_optional(pdev, 2); 3940 3941 priv->base = devm_platform_ioremap_resource(pdev, 0); 3942 if (IS_ERR(priv->base)) { 3943 err = PTR_ERR(priv->base); 3944 goto err; 3945 } 3946 3947 spin_lock_init(&priv->lock); 3948 3949 SET_NETDEV_DEV(dev, &pdev->dev); 3950 dev_set_drvdata(&pdev->dev, dev); 3951 dev->watchdog_timeo = 2 * HZ; 3952 dev->ethtool_ops = &bcmgenet_ethtool_ops; 3953 dev->netdev_ops = &bcmgenet_netdev_ops; 3954 3955 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); 3956 3957 /* Set default features */ 3958 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM | 3959 NETIF_F_RXCSUM; 3960 dev->hw_features |= dev->features; 3961 dev->vlan_features |= dev->features; 3962 3963 /* Request the WOL interrupt and advertise suspend if available */ 3964 priv->wol_irq_disabled = true; 3965 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0, 3966 dev->name, priv); 3967 if (!err) 3968 device_set_wakeup_capable(&pdev->dev, 1); 3969 3970 /* Set the needed headroom to account for any possible 3971 * features enabling/disabling at runtime 3972 */ 3973 dev->needed_headroom += 64; 3974 3975 netdev_boot_setup_check(dev); 3976 3977 priv->dev = dev; 3978 priv->pdev = pdev; 3979 3980 pdata = device_get_match_data(&pdev->dev); 3981 if (pdata) { 3982 priv->version = pdata->version; 3983 priv->dma_max_burst_length = pdata->dma_max_burst_length; 3984 } else { 3985 priv->version = pd->genet_version; 3986 priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH; 3987 } 3988 3989 priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet"); 3990 if (IS_ERR(priv->clk)) { 3991 dev_dbg(&priv->pdev->dev, "failed to get enet clock\n"); 3992 err = PTR_ERR(priv->clk); 3993 goto err; 3994 } 3995 3996 err = clk_prepare_enable(priv->clk); 3997 if (err) 3998 goto err; 3999 4000 bcmgenet_set_hw_params(priv); 4001 4002 err = -EIO; 4003 if (priv->hw_params->flags & GENET_HAS_40BITS) 4004 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); 4005 if (err) 4006 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4007 if (err) 4008 goto err_clk_disable; 4009 4010 /* Mii wait queue */ 4011 init_waitqueue_head(&priv->wq); 4012 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ 4013 priv->rx_buf_len = RX_BUF_LENGTH; 4014 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); 4015 4016 priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol"); 4017 if (IS_ERR(priv->clk_wol)) { 4018 dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n"); 4019 err = PTR_ERR(priv->clk_wol); 4020 goto err_clk_disable; 4021 } 4022 4023 priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee"); 4024 if (IS_ERR(priv->clk_eee)) { 4025 dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n"); 4026 err = PTR_ERR(priv->clk_eee); 4027 goto err_clk_disable; 4028 } 4029 4030 /* If this is an internal GPHY, power it on now, before UniMAC is 4031 * brought out of reset as absolutely no UniMAC activity is allowed 4032 */ 4033 if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL) 4034 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 4035 4036 if (pd && !IS_ERR_OR_NULL(pd->mac_address)) 4037 ether_addr_copy(dev->dev_addr, pd->mac_address); 4038 else 4039 if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN)) 4040 if (has_acpi_companion(&pdev->dev)) 4041 bcmgenet_get_hw_addr(priv, dev->dev_addr); 4042 4043 if (!is_valid_ether_addr(dev->dev_addr)) { 4044 dev_warn(&pdev->dev, "using random Ethernet MAC\n"); 4045 eth_hw_addr_random(dev); 4046 } 4047 4048 reset_umac(priv); 4049 4050 err = bcmgenet_mii_init(dev); 4051 if (err) 4052 goto err_clk_disable; 4053 4054 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues 4055 * just the ring 16 descriptor based TX 4056 */ 4057 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); 4058 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); 4059 4060 /* Set default coalescing parameters */ 4061 for (i = 0; i < priv->hw_params->rx_queues; i++) 4062 priv->rx_rings[i].rx_max_coalesced_frames = 1; 4063 priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1; 4064 4065 /* libphy will determine the link state */ 4066 netif_carrier_off(dev); 4067 4068 /* Turn off the main clock, WOL clock is handled separately */ 4069 clk_disable_unprepare(priv->clk); 4070 4071 err = register_netdev(dev); 4072 if (err) 4073 goto err; 4074 4075 return err; 4076 4077 err_clk_disable: 4078 clk_disable_unprepare(priv->clk); 4079 err: 4080 free_netdev(dev); 4081 return err; 4082 } 4083 4084 static int bcmgenet_remove(struct platform_device *pdev) 4085 { 4086 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); 4087 4088 dev_set_drvdata(&pdev->dev, NULL); 4089 unregister_netdev(priv->dev); 4090 bcmgenet_mii_exit(priv->dev); 4091 free_netdev(priv->dev); 4092 4093 return 0; 4094 } 4095 4096 static void bcmgenet_shutdown(struct platform_device *pdev) 4097 { 4098 bcmgenet_remove(pdev); 4099 } 4100 4101 #ifdef CONFIG_PM_SLEEP 4102 static int bcmgenet_resume_noirq(struct device *d) 4103 { 4104 struct net_device *dev = dev_get_drvdata(d); 4105 struct bcmgenet_priv *priv = netdev_priv(dev); 4106 int ret; 4107 u32 reg; 4108 4109 if (!netif_running(dev)) 4110 return 0; 4111 4112 /* Turn on the clock */ 4113 ret = clk_prepare_enable(priv->clk); 4114 if (ret) 4115 return ret; 4116 4117 if (device_may_wakeup(d) && priv->wolopts) { 4118 /* Account for Wake-on-LAN events and clear those events 4119 * (Some devices need more time between enabling the clocks 4120 * and the interrupt register reflecting the wake event so 4121 * read the register twice) 4122 */ 4123 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT); 4124 reg = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT); 4125 if (reg & UMAC_IRQ_WAKE_EVENT) 4126 pm_wakeup_event(&priv->pdev->dev, 0); 4127 } 4128 4129 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_WAKE_EVENT, INTRL2_CPU_CLEAR); 4130 4131 return 0; 4132 } 4133 4134 static int bcmgenet_resume(struct device *d) 4135 { 4136 struct net_device *dev = dev_get_drvdata(d); 4137 struct bcmgenet_priv *priv = netdev_priv(dev); 4138 struct bcmgenet_rxnfc_rule *rule; 4139 unsigned long dma_ctrl; 4140 u32 reg; 4141 int ret; 4142 4143 if (!netif_running(dev)) 4144 return 0; 4145 4146 /* From WOL-enabled suspend, switch to regular clock */ 4147 if (device_may_wakeup(d) && priv->wolopts) 4148 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); 4149 4150 /* If this is an internal GPHY, power it back on now, before UniMAC is 4151 * brought out of reset as absolutely no UniMAC activity is allowed 4152 */ 4153 if (priv->internal_phy) 4154 bcmgenet_power_up(priv, GENET_POWER_PASSIVE); 4155 4156 bcmgenet_umac_reset(priv); 4157 4158 init_umac(priv); 4159 4160 phy_init_hw(dev->phydev); 4161 4162 /* Speed settings must be restored */ 4163 genphy_config_aneg(dev->phydev); 4164 bcmgenet_mii_config(priv->dev, false); 4165 4166 /* Restore enabled features */ 4167 bcmgenet_set_features(dev, dev->features); 4168 4169 bcmgenet_set_hw_addr(priv, dev->dev_addr); 4170 4171 /* Restore hardware filters */ 4172 bcmgenet_hfb_clear(priv); 4173 list_for_each_entry(rule, &priv->rxnfc_list, list) 4174 if (rule->state != BCMGENET_RXNFC_STATE_UNUSED) 4175 bcmgenet_hfb_create_rxnfc_filter(priv, rule); 4176 4177 if (priv->internal_phy) { 4178 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); 4179 reg |= EXT_ENERGY_DET_MASK; 4180 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); 4181 } 4182 4183 /* Disable RX/TX DMA and flush TX queues */ 4184 dma_ctrl = bcmgenet_dma_disable(priv); 4185 4186 /* Reinitialize TDMA and RDMA and SW housekeeping */ 4187 ret = bcmgenet_init_dma(priv); 4188 if (ret) { 4189 netdev_err(dev, "failed to initialize DMA\n"); 4190 goto out_clk_disable; 4191 } 4192 4193 /* Always enable ring 16 - descriptor ring */ 4194 bcmgenet_enable_dma(priv, dma_ctrl); 4195 4196 if (!device_may_wakeup(d)) 4197 phy_resume(dev->phydev); 4198 4199 if (priv->eee.eee_enabled) 4200 bcmgenet_eee_enable_set(dev, true); 4201 4202 bcmgenet_netif_start(dev); 4203 4204 netif_device_attach(dev); 4205 4206 return 0; 4207 4208 out_clk_disable: 4209 if (priv->internal_phy) 4210 bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 4211 clk_disable_unprepare(priv->clk); 4212 return ret; 4213 } 4214 4215 static int bcmgenet_suspend(struct device *d) 4216 { 4217 struct net_device *dev = dev_get_drvdata(d); 4218 struct bcmgenet_priv *priv = netdev_priv(dev); 4219 4220 if (!netif_running(dev)) 4221 return 0; 4222 4223 netif_device_detach(dev); 4224 4225 bcmgenet_netif_stop(dev); 4226 4227 if (!device_may_wakeup(d)) 4228 phy_suspend(dev->phydev); 4229 4230 /* Disable filtering */ 4231 bcmgenet_hfb_reg_writel(priv, 0, HFB_CTRL); 4232 4233 return 0; 4234 } 4235 4236 static int bcmgenet_suspend_noirq(struct device *d) 4237 { 4238 struct net_device *dev = dev_get_drvdata(d); 4239 struct bcmgenet_priv *priv = netdev_priv(dev); 4240 int ret = 0; 4241 4242 if (!netif_running(dev)) 4243 return 0; 4244 4245 /* Prepare the device for Wake-on-LAN and switch to the slow clock */ 4246 if (device_may_wakeup(d) && priv->wolopts) 4247 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC); 4248 else if (priv->internal_phy) 4249 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); 4250 4251 /* Let the framework handle resumption and leave the clocks on */ 4252 if (ret) 4253 return ret; 4254 4255 /* Turn off the clocks */ 4256 clk_disable_unprepare(priv->clk); 4257 4258 return 0; 4259 } 4260 #else 4261 #define bcmgenet_suspend NULL 4262 #define bcmgenet_suspend_noirq NULL 4263 #define bcmgenet_resume NULL 4264 #define bcmgenet_resume_noirq NULL 4265 #endif /* CONFIG_PM_SLEEP */ 4266 4267 static const struct dev_pm_ops bcmgenet_pm_ops = { 4268 .suspend = bcmgenet_suspend, 4269 .suspend_noirq = bcmgenet_suspend_noirq, 4270 .resume = bcmgenet_resume, 4271 .resume_noirq = bcmgenet_resume_noirq, 4272 }; 4273 4274 static const struct acpi_device_id genet_acpi_match[] = { 4275 { "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data }, 4276 { }, 4277 }; 4278 MODULE_DEVICE_TABLE(acpi, genet_acpi_match); 4279 4280 static struct platform_driver bcmgenet_driver = { 4281 .probe = bcmgenet_probe, 4282 .remove = bcmgenet_remove, 4283 .shutdown = bcmgenet_shutdown, 4284 .driver = { 4285 .name = "bcmgenet", 4286 .of_match_table = bcmgenet_match, 4287 .pm = &bcmgenet_pm_ops, 4288 .acpi_match_table = genet_acpi_match, 4289 }, 4290 }; 4291 module_platform_driver(bcmgenet_driver); 4292 4293 MODULE_AUTHOR("Broadcom Corporation"); 4294 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); 4295 MODULE_ALIAS("platform:bcmgenet"); 4296 MODULE_LICENSE("GPL"); 4297