xref: /linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision 5d085ad2e68cceec8332b23ea8f630a28b506366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2019 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <net/arp.h>
27 
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/netdevice.h>
31 #include <linux/inetdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/in.h>
35 #include <linux/ip.h>
36 #include <linux/ipv6.h>
37 #include <linux/phy.h>
38 #include <linux/platform_data/bcmgenet.h>
39 
40 #include <asm/unaligned.h>
41 
42 #include "bcmgenet.h"
43 
44 /* Maximum number of hardware queues, downsized if needed */
45 #define GENET_MAX_MQ_CNT	4
46 
47 /* Default highest priority queue for multi queue support */
48 #define GENET_Q0_PRIORITY	0
49 
50 #define GENET_Q16_RX_BD_CNT	\
51 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
52 #define GENET_Q16_TX_BD_CNT	\
53 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
54 
55 #define RX_BUF_LENGTH		2048
56 #define SKB_ALIGNMENT		32
57 
58 /* Tx/Rx DMA register offset, skip 256 descriptors */
59 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
60 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
61 
62 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
63 				TOTAL_DESC * DMA_DESC_SIZE)
64 
65 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
66 				TOTAL_DESC * DMA_DESC_SIZE)
67 
68 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
69 {
70 	/* MIPS chips strapped for BE will automagically configure the
71 	 * peripheral registers for CPU-native byte order.
72 	 */
73 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
74 		__raw_writel(value, offset);
75 	else
76 		writel_relaxed(value, offset);
77 }
78 
79 static inline u32 bcmgenet_readl(void __iomem *offset)
80 {
81 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
82 		return __raw_readl(offset);
83 	else
84 		return readl_relaxed(offset);
85 }
86 
87 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
88 					     void __iomem *d, u32 value)
89 {
90 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
91 }
92 
93 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
94 				    void __iomem *d,
95 				    dma_addr_t addr)
96 {
97 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
98 
99 	/* Register writes to GISB bus can take couple hundred nanoseconds
100 	 * and are done for each packet, save these expensive writes unless
101 	 * the platform is explicitly configured for 64-bits/LPAE.
102 	 */
103 #ifdef CONFIG_PHYS_ADDR_T_64BIT
104 	if (priv->hw_params->flags & GENET_HAS_40BITS)
105 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
106 #endif
107 }
108 
109 /* Combined address + length/status setter */
110 static inline void dmadesc_set(struct bcmgenet_priv *priv,
111 			       void __iomem *d, dma_addr_t addr, u32 val)
112 {
113 	dmadesc_set_addr(priv, d, addr);
114 	dmadesc_set_length_status(priv, d, val);
115 }
116 
117 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
118 					  void __iomem *d)
119 {
120 	dma_addr_t addr;
121 
122 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
123 
124 	/* Register writes to GISB bus can take couple hundred nanoseconds
125 	 * and are done for each packet, save these expensive writes unless
126 	 * the platform is explicitly configured for 64-bits/LPAE.
127 	 */
128 #ifdef CONFIG_PHYS_ADDR_T_64BIT
129 	if (priv->hw_params->flags & GENET_HAS_40BITS)
130 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
131 #endif
132 	return addr;
133 }
134 
135 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
136 
137 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
138 				NETIF_MSG_LINK)
139 
140 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
141 {
142 	if (GENET_IS_V1(priv))
143 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
144 	else
145 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
146 }
147 
148 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
149 {
150 	if (GENET_IS_V1(priv))
151 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
152 	else
153 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
154 }
155 
156 /* These macros are defined to deal with register map change
157  * between GENET1.1 and GENET2. Only those currently being used
158  * by driver are defined.
159  */
160 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
161 {
162 	if (GENET_IS_V1(priv))
163 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
164 	else
165 		return bcmgenet_readl(priv->base +
166 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
167 }
168 
169 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
170 {
171 	if (GENET_IS_V1(priv))
172 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
173 	else
174 		bcmgenet_writel(val, priv->base +
175 				priv->hw_params->tbuf_offset + TBUF_CTRL);
176 }
177 
178 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
179 {
180 	if (GENET_IS_V1(priv))
181 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
182 	else
183 		return bcmgenet_readl(priv->base +
184 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
185 }
186 
187 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
188 {
189 	if (GENET_IS_V1(priv))
190 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
191 	else
192 		bcmgenet_writel(val, priv->base +
193 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
194 }
195 
196 /* RX/TX DMA register accessors */
197 enum dma_reg {
198 	DMA_RING_CFG = 0,
199 	DMA_CTRL,
200 	DMA_STATUS,
201 	DMA_SCB_BURST_SIZE,
202 	DMA_ARB_CTRL,
203 	DMA_PRIORITY_0,
204 	DMA_PRIORITY_1,
205 	DMA_PRIORITY_2,
206 	DMA_INDEX2RING_0,
207 	DMA_INDEX2RING_1,
208 	DMA_INDEX2RING_2,
209 	DMA_INDEX2RING_3,
210 	DMA_INDEX2RING_4,
211 	DMA_INDEX2RING_5,
212 	DMA_INDEX2RING_6,
213 	DMA_INDEX2RING_7,
214 	DMA_RING0_TIMEOUT,
215 	DMA_RING1_TIMEOUT,
216 	DMA_RING2_TIMEOUT,
217 	DMA_RING3_TIMEOUT,
218 	DMA_RING4_TIMEOUT,
219 	DMA_RING5_TIMEOUT,
220 	DMA_RING6_TIMEOUT,
221 	DMA_RING7_TIMEOUT,
222 	DMA_RING8_TIMEOUT,
223 	DMA_RING9_TIMEOUT,
224 	DMA_RING10_TIMEOUT,
225 	DMA_RING11_TIMEOUT,
226 	DMA_RING12_TIMEOUT,
227 	DMA_RING13_TIMEOUT,
228 	DMA_RING14_TIMEOUT,
229 	DMA_RING15_TIMEOUT,
230 	DMA_RING16_TIMEOUT,
231 };
232 
233 static const u8 bcmgenet_dma_regs_v3plus[] = {
234 	[DMA_RING_CFG]		= 0x00,
235 	[DMA_CTRL]		= 0x04,
236 	[DMA_STATUS]		= 0x08,
237 	[DMA_SCB_BURST_SIZE]	= 0x0C,
238 	[DMA_ARB_CTRL]		= 0x2C,
239 	[DMA_PRIORITY_0]	= 0x30,
240 	[DMA_PRIORITY_1]	= 0x34,
241 	[DMA_PRIORITY_2]	= 0x38,
242 	[DMA_RING0_TIMEOUT]	= 0x2C,
243 	[DMA_RING1_TIMEOUT]	= 0x30,
244 	[DMA_RING2_TIMEOUT]	= 0x34,
245 	[DMA_RING3_TIMEOUT]	= 0x38,
246 	[DMA_RING4_TIMEOUT]	= 0x3c,
247 	[DMA_RING5_TIMEOUT]	= 0x40,
248 	[DMA_RING6_TIMEOUT]	= 0x44,
249 	[DMA_RING7_TIMEOUT]	= 0x48,
250 	[DMA_RING8_TIMEOUT]	= 0x4c,
251 	[DMA_RING9_TIMEOUT]	= 0x50,
252 	[DMA_RING10_TIMEOUT]	= 0x54,
253 	[DMA_RING11_TIMEOUT]	= 0x58,
254 	[DMA_RING12_TIMEOUT]	= 0x5c,
255 	[DMA_RING13_TIMEOUT]	= 0x60,
256 	[DMA_RING14_TIMEOUT]	= 0x64,
257 	[DMA_RING15_TIMEOUT]	= 0x68,
258 	[DMA_RING16_TIMEOUT]	= 0x6C,
259 	[DMA_INDEX2RING_0]	= 0x70,
260 	[DMA_INDEX2RING_1]	= 0x74,
261 	[DMA_INDEX2RING_2]	= 0x78,
262 	[DMA_INDEX2RING_3]	= 0x7C,
263 	[DMA_INDEX2RING_4]	= 0x80,
264 	[DMA_INDEX2RING_5]	= 0x84,
265 	[DMA_INDEX2RING_6]	= 0x88,
266 	[DMA_INDEX2RING_7]	= 0x8C,
267 };
268 
269 static const u8 bcmgenet_dma_regs_v2[] = {
270 	[DMA_RING_CFG]		= 0x00,
271 	[DMA_CTRL]		= 0x04,
272 	[DMA_STATUS]		= 0x08,
273 	[DMA_SCB_BURST_SIZE]	= 0x0C,
274 	[DMA_ARB_CTRL]		= 0x30,
275 	[DMA_PRIORITY_0]	= 0x34,
276 	[DMA_PRIORITY_1]	= 0x38,
277 	[DMA_PRIORITY_2]	= 0x3C,
278 	[DMA_RING0_TIMEOUT]	= 0x2C,
279 	[DMA_RING1_TIMEOUT]	= 0x30,
280 	[DMA_RING2_TIMEOUT]	= 0x34,
281 	[DMA_RING3_TIMEOUT]	= 0x38,
282 	[DMA_RING4_TIMEOUT]	= 0x3c,
283 	[DMA_RING5_TIMEOUT]	= 0x40,
284 	[DMA_RING6_TIMEOUT]	= 0x44,
285 	[DMA_RING7_TIMEOUT]	= 0x48,
286 	[DMA_RING8_TIMEOUT]	= 0x4c,
287 	[DMA_RING9_TIMEOUT]	= 0x50,
288 	[DMA_RING10_TIMEOUT]	= 0x54,
289 	[DMA_RING11_TIMEOUT]	= 0x58,
290 	[DMA_RING12_TIMEOUT]	= 0x5c,
291 	[DMA_RING13_TIMEOUT]	= 0x60,
292 	[DMA_RING14_TIMEOUT]	= 0x64,
293 	[DMA_RING15_TIMEOUT]	= 0x68,
294 	[DMA_RING16_TIMEOUT]	= 0x6C,
295 };
296 
297 static const u8 bcmgenet_dma_regs_v1[] = {
298 	[DMA_CTRL]		= 0x00,
299 	[DMA_STATUS]		= 0x04,
300 	[DMA_SCB_BURST_SIZE]	= 0x0C,
301 	[DMA_ARB_CTRL]		= 0x30,
302 	[DMA_PRIORITY_0]	= 0x34,
303 	[DMA_PRIORITY_1]	= 0x38,
304 	[DMA_PRIORITY_2]	= 0x3C,
305 	[DMA_RING0_TIMEOUT]	= 0x2C,
306 	[DMA_RING1_TIMEOUT]	= 0x30,
307 	[DMA_RING2_TIMEOUT]	= 0x34,
308 	[DMA_RING3_TIMEOUT]	= 0x38,
309 	[DMA_RING4_TIMEOUT]	= 0x3c,
310 	[DMA_RING5_TIMEOUT]	= 0x40,
311 	[DMA_RING6_TIMEOUT]	= 0x44,
312 	[DMA_RING7_TIMEOUT]	= 0x48,
313 	[DMA_RING8_TIMEOUT]	= 0x4c,
314 	[DMA_RING9_TIMEOUT]	= 0x50,
315 	[DMA_RING10_TIMEOUT]	= 0x54,
316 	[DMA_RING11_TIMEOUT]	= 0x58,
317 	[DMA_RING12_TIMEOUT]	= 0x5c,
318 	[DMA_RING13_TIMEOUT]	= 0x60,
319 	[DMA_RING14_TIMEOUT]	= 0x64,
320 	[DMA_RING15_TIMEOUT]	= 0x68,
321 	[DMA_RING16_TIMEOUT]	= 0x6C,
322 };
323 
324 /* Set at runtime once bcmgenet version is known */
325 static const u8 *bcmgenet_dma_regs;
326 
327 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
328 {
329 	return netdev_priv(dev_get_drvdata(dev));
330 }
331 
332 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
333 				      enum dma_reg r)
334 {
335 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
336 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
337 }
338 
339 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
340 					u32 val, enum dma_reg r)
341 {
342 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
343 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
344 }
345 
346 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
347 				      enum dma_reg r)
348 {
349 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
350 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
351 }
352 
353 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
354 					u32 val, enum dma_reg r)
355 {
356 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
357 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
358 }
359 
360 /* RDMA/TDMA ring registers and accessors
361  * we merge the common fields and just prefix with T/D the registers
362  * having different meaning depending on the direction
363  */
364 enum dma_ring_reg {
365 	TDMA_READ_PTR = 0,
366 	RDMA_WRITE_PTR = TDMA_READ_PTR,
367 	TDMA_READ_PTR_HI,
368 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
369 	TDMA_CONS_INDEX,
370 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
371 	TDMA_PROD_INDEX,
372 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
373 	DMA_RING_BUF_SIZE,
374 	DMA_START_ADDR,
375 	DMA_START_ADDR_HI,
376 	DMA_END_ADDR,
377 	DMA_END_ADDR_HI,
378 	DMA_MBUF_DONE_THRESH,
379 	TDMA_FLOW_PERIOD,
380 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
381 	TDMA_WRITE_PTR,
382 	RDMA_READ_PTR = TDMA_WRITE_PTR,
383 	TDMA_WRITE_PTR_HI,
384 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
385 };
386 
387 /* GENET v4 supports 40-bits pointer addressing
388  * for obvious reasons the LO and HI word parts
389  * are contiguous, but this offsets the other
390  * registers.
391  */
392 static const u8 genet_dma_ring_regs_v4[] = {
393 	[TDMA_READ_PTR]			= 0x00,
394 	[TDMA_READ_PTR_HI]		= 0x04,
395 	[TDMA_CONS_INDEX]		= 0x08,
396 	[TDMA_PROD_INDEX]		= 0x0C,
397 	[DMA_RING_BUF_SIZE]		= 0x10,
398 	[DMA_START_ADDR]		= 0x14,
399 	[DMA_START_ADDR_HI]		= 0x18,
400 	[DMA_END_ADDR]			= 0x1C,
401 	[DMA_END_ADDR_HI]		= 0x20,
402 	[DMA_MBUF_DONE_THRESH]		= 0x24,
403 	[TDMA_FLOW_PERIOD]		= 0x28,
404 	[TDMA_WRITE_PTR]		= 0x2C,
405 	[TDMA_WRITE_PTR_HI]		= 0x30,
406 };
407 
408 static const u8 genet_dma_ring_regs_v123[] = {
409 	[TDMA_READ_PTR]			= 0x00,
410 	[TDMA_CONS_INDEX]		= 0x04,
411 	[TDMA_PROD_INDEX]		= 0x08,
412 	[DMA_RING_BUF_SIZE]		= 0x0C,
413 	[DMA_START_ADDR]		= 0x10,
414 	[DMA_END_ADDR]			= 0x14,
415 	[DMA_MBUF_DONE_THRESH]		= 0x18,
416 	[TDMA_FLOW_PERIOD]		= 0x1C,
417 	[TDMA_WRITE_PTR]		= 0x20,
418 };
419 
420 /* Set at runtime once GENET version is known */
421 static const u8 *genet_dma_ring_regs;
422 
423 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
424 					   unsigned int ring,
425 					   enum dma_ring_reg r)
426 {
427 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
428 			      (DMA_RING_SIZE * ring) +
429 			      genet_dma_ring_regs[r]);
430 }
431 
432 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
433 					     unsigned int ring, u32 val,
434 					     enum dma_ring_reg r)
435 {
436 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
437 			(DMA_RING_SIZE * ring) +
438 			genet_dma_ring_regs[r]);
439 }
440 
441 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
442 					   unsigned int ring,
443 					   enum dma_ring_reg r)
444 {
445 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
446 			      (DMA_RING_SIZE * ring) +
447 			      genet_dma_ring_regs[r]);
448 }
449 
450 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
451 					     unsigned int ring, u32 val,
452 					     enum dma_ring_reg r)
453 {
454 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
455 			(DMA_RING_SIZE * ring) +
456 			genet_dma_ring_regs[r]);
457 }
458 
459 static int bcmgenet_begin(struct net_device *dev)
460 {
461 	struct bcmgenet_priv *priv = netdev_priv(dev);
462 
463 	/* Turn on the clock */
464 	return clk_prepare_enable(priv->clk);
465 }
466 
467 static void bcmgenet_complete(struct net_device *dev)
468 {
469 	struct bcmgenet_priv *priv = netdev_priv(dev);
470 
471 	/* Turn off the clock */
472 	clk_disable_unprepare(priv->clk);
473 }
474 
475 static int bcmgenet_get_link_ksettings(struct net_device *dev,
476 				       struct ethtool_link_ksettings *cmd)
477 {
478 	if (!netif_running(dev))
479 		return -EINVAL;
480 
481 	if (!dev->phydev)
482 		return -ENODEV;
483 
484 	phy_ethtool_ksettings_get(dev->phydev, cmd);
485 
486 	return 0;
487 }
488 
489 static int bcmgenet_set_link_ksettings(struct net_device *dev,
490 				       const struct ethtool_link_ksettings *cmd)
491 {
492 	if (!netif_running(dev))
493 		return -EINVAL;
494 
495 	if (!dev->phydev)
496 		return -ENODEV;
497 
498 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
499 }
500 
501 static int bcmgenet_set_features(struct net_device *dev,
502 				 netdev_features_t features)
503 {
504 	struct bcmgenet_priv *priv = netdev_priv(dev);
505 	u32 reg;
506 	int ret;
507 
508 	ret = clk_prepare_enable(priv->clk);
509 	if (ret)
510 		return ret;
511 
512 	/* Make sure we reflect the value of CRC_CMD_FWD */
513 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
514 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
515 
516 	clk_disable_unprepare(priv->clk);
517 
518 	return ret;
519 }
520 
521 static u32 bcmgenet_get_msglevel(struct net_device *dev)
522 {
523 	struct bcmgenet_priv *priv = netdev_priv(dev);
524 
525 	return priv->msg_enable;
526 }
527 
528 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
529 {
530 	struct bcmgenet_priv *priv = netdev_priv(dev);
531 
532 	priv->msg_enable = level;
533 }
534 
535 static int bcmgenet_get_coalesce(struct net_device *dev,
536 				 struct ethtool_coalesce *ec)
537 {
538 	struct bcmgenet_priv *priv = netdev_priv(dev);
539 	struct bcmgenet_rx_ring *ring;
540 	unsigned int i;
541 
542 	ec->tx_max_coalesced_frames =
543 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
544 					 DMA_MBUF_DONE_THRESH);
545 	ec->rx_max_coalesced_frames =
546 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
547 					 DMA_MBUF_DONE_THRESH);
548 	ec->rx_coalesce_usecs =
549 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
550 
551 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
552 		ring = &priv->rx_rings[i];
553 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
554 	}
555 	ring = &priv->rx_rings[DESC_INDEX];
556 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
557 
558 	return 0;
559 }
560 
561 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
562 				     u32 usecs, u32 pkts)
563 {
564 	struct bcmgenet_priv *priv = ring->priv;
565 	unsigned int i = ring->index;
566 	u32 reg;
567 
568 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
569 
570 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
571 	reg &= ~DMA_TIMEOUT_MASK;
572 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
573 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
574 }
575 
576 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
577 					  struct ethtool_coalesce *ec)
578 {
579 	struct dim_cq_moder moder;
580 	u32 usecs, pkts;
581 
582 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
583 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
584 	usecs = ring->rx_coalesce_usecs;
585 	pkts = ring->rx_max_coalesced_frames;
586 
587 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
588 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
589 		usecs = moder.usec;
590 		pkts = moder.pkts;
591 	}
592 
593 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
594 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
595 }
596 
597 static int bcmgenet_set_coalesce(struct net_device *dev,
598 				 struct ethtool_coalesce *ec)
599 {
600 	struct bcmgenet_priv *priv = netdev_priv(dev);
601 	unsigned int i;
602 
603 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
604 	 * divided by 1024, which yields roughly 8.192us, our maximum value
605 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
606 	 */
607 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
608 	    ec->tx_max_coalesced_frames == 0 ||
609 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
610 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
611 		return -EINVAL;
612 
613 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
614 		return -EINVAL;
615 
616 	/* GENET TDMA hardware does not support a configurable timeout, but will
617 	 * always generate an interrupt either after MBDONE packets have been
618 	 * transmitted, or when the ring is empty.
619 	 */
620 
621 	/* Program all TX queues with the same values, as there is no
622 	 * ethtool knob to do coalescing on a per-queue basis
623 	 */
624 	for (i = 0; i < priv->hw_params->tx_queues; i++)
625 		bcmgenet_tdma_ring_writel(priv, i,
626 					  ec->tx_max_coalesced_frames,
627 					  DMA_MBUF_DONE_THRESH);
628 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
629 				  ec->tx_max_coalesced_frames,
630 				  DMA_MBUF_DONE_THRESH);
631 
632 	for (i = 0; i < priv->hw_params->rx_queues; i++)
633 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
634 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
635 
636 	return 0;
637 }
638 
639 /* standard ethtool support functions. */
640 enum bcmgenet_stat_type {
641 	BCMGENET_STAT_NETDEV = -1,
642 	BCMGENET_STAT_MIB_RX,
643 	BCMGENET_STAT_MIB_TX,
644 	BCMGENET_STAT_RUNT,
645 	BCMGENET_STAT_MISC,
646 	BCMGENET_STAT_SOFT,
647 };
648 
649 struct bcmgenet_stats {
650 	char stat_string[ETH_GSTRING_LEN];
651 	int stat_sizeof;
652 	int stat_offset;
653 	enum bcmgenet_stat_type type;
654 	/* reg offset from UMAC base for misc counters */
655 	u16 reg_offset;
656 };
657 
658 #define STAT_NETDEV(m) { \
659 	.stat_string = __stringify(m), \
660 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
661 	.stat_offset = offsetof(struct net_device_stats, m), \
662 	.type = BCMGENET_STAT_NETDEV, \
663 }
664 
665 #define STAT_GENET_MIB(str, m, _type) { \
666 	.stat_string = str, \
667 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
668 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
669 	.type = _type, \
670 }
671 
672 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
673 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
674 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
675 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
676 
677 #define STAT_GENET_MISC(str, m, offset) { \
678 	.stat_string = str, \
679 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
680 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
681 	.type = BCMGENET_STAT_MISC, \
682 	.reg_offset = offset, \
683 }
684 
685 #define STAT_GENET_Q(num) \
686 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
687 			tx_rings[num].packets), \
688 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
689 			tx_rings[num].bytes), \
690 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
691 			rx_rings[num].bytes),	 \
692 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
693 			rx_rings[num].packets), \
694 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
695 			rx_rings[num].errors), \
696 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
697 			rx_rings[num].dropped)
698 
699 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
700  * between the end of TX stats and the beginning of the RX RUNT
701  */
702 #define BCMGENET_STAT_OFFSET	0xc
703 
704 /* Hardware counters must be kept in sync because the order/offset
705  * is important here (order in structure declaration = order in hardware)
706  */
707 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
708 	/* general stats */
709 	STAT_NETDEV(rx_packets),
710 	STAT_NETDEV(tx_packets),
711 	STAT_NETDEV(rx_bytes),
712 	STAT_NETDEV(tx_bytes),
713 	STAT_NETDEV(rx_errors),
714 	STAT_NETDEV(tx_errors),
715 	STAT_NETDEV(rx_dropped),
716 	STAT_NETDEV(tx_dropped),
717 	STAT_NETDEV(multicast),
718 	/* UniMAC RSV counters */
719 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
720 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
721 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
722 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
723 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
724 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
725 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
726 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
727 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
728 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
729 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
730 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
731 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
732 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
733 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
734 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
735 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
736 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
737 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
738 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
739 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
740 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
741 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
742 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
743 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
744 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
745 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
746 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
747 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
748 	/* UniMAC TSV counters */
749 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
750 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
751 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
752 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
753 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
754 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
755 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
756 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
757 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
758 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
759 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
760 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
761 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
762 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
763 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
764 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
765 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
766 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
767 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
768 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
769 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
770 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
771 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
772 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
773 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
774 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
775 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
776 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
777 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
778 	/* UniMAC RUNT counters */
779 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
780 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
781 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
782 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
783 	/* Misc UniMAC counters */
784 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
785 			UMAC_RBUF_OVFL_CNT_V1),
786 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
787 			UMAC_RBUF_ERR_CNT_V1),
788 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
789 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
790 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
791 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
792 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
793 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
794 			    mib.tx_realloc_tsb_failed),
795 	/* Per TX queues */
796 	STAT_GENET_Q(0),
797 	STAT_GENET_Q(1),
798 	STAT_GENET_Q(2),
799 	STAT_GENET_Q(3),
800 	STAT_GENET_Q(16),
801 };
802 
803 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
804 
805 static void bcmgenet_get_drvinfo(struct net_device *dev,
806 				 struct ethtool_drvinfo *info)
807 {
808 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
809 }
810 
811 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
812 {
813 	switch (string_set) {
814 	case ETH_SS_STATS:
815 		return BCMGENET_STATS_LEN;
816 	default:
817 		return -EOPNOTSUPP;
818 	}
819 }
820 
821 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
822 				 u8 *data)
823 {
824 	int i;
825 
826 	switch (stringset) {
827 	case ETH_SS_STATS:
828 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
829 			memcpy(data + i * ETH_GSTRING_LEN,
830 			       bcmgenet_gstrings_stats[i].stat_string,
831 			       ETH_GSTRING_LEN);
832 		}
833 		break;
834 	}
835 }
836 
837 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
838 {
839 	u16 new_offset;
840 	u32 val;
841 
842 	switch (offset) {
843 	case UMAC_RBUF_OVFL_CNT_V1:
844 		if (GENET_IS_V2(priv))
845 			new_offset = RBUF_OVFL_CNT_V2;
846 		else
847 			new_offset = RBUF_OVFL_CNT_V3PLUS;
848 
849 		val = bcmgenet_rbuf_readl(priv,	new_offset);
850 		/* clear if overflowed */
851 		if (val == ~0)
852 			bcmgenet_rbuf_writel(priv, 0, new_offset);
853 		break;
854 	case UMAC_RBUF_ERR_CNT_V1:
855 		if (GENET_IS_V2(priv))
856 			new_offset = RBUF_ERR_CNT_V2;
857 		else
858 			new_offset = RBUF_ERR_CNT_V3PLUS;
859 
860 		val = bcmgenet_rbuf_readl(priv,	new_offset);
861 		/* clear if overflowed */
862 		if (val == ~0)
863 			bcmgenet_rbuf_writel(priv, 0, new_offset);
864 		break;
865 	default:
866 		val = bcmgenet_umac_readl(priv, offset);
867 		/* clear if overflowed */
868 		if (val == ~0)
869 			bcmgenet_umac_writel(priv, 0, offset);
870 		break;
871 	}
872 
873 	return val;
874 }
875 
876 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
877 {
878 	int i, j = 0;
879 
880 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
881 		const struct bcmgenet_stats *s;
882 		u8 offset = 0;
883 		u32 val = 0;
884 		char *p;
885 
886 		s = &bcmgenet_gstrings_stats[i];
887 		switch (s->type) {
888 		case BCMGENET_STAT_NETDEV:
889 		case BCMGENET_STAT_SOFT:
890 			continue;
891 		case BCMGENET_STAT_RUNT:
892 			offset += BCMGENET_STAT_OFFSET;
893 			/* fall through */
894 		case BCMGENET_STAT_MIB_TX:
895 			offset += BCMGENET_STAT_OFFSET;
896 			/* fall through */
897 		case BCMGENET_STAT_MIB_RX:
898 			val = bcmgenet_umac_readl(priv,
899 						  UMAC_MIB_START + j + offset);
900 			offset = 0;	/* Reset Offset */
901 			break;
902 		case BCMGENET_STAT_MISC:
903 			if (GENET_IS_V1(priv)) {
904 				val = bcmgenet_umac_readl(priv, s->reg_offset);
905 				/* clear if overflowed */
906 				if (val == ~0)
907 					bcmgenet_umac_writel(priv, 0,
908 							     s->reg_offset);
909 			} else {
910 				val = bcmgenet_update_stat_misc(priv,
911 								s->reg_offset);
912 			}
913 			break;
914 		}
915 
916 		j += s->stat_sizeof;
917 		p = (char *)priv + s->stat_offset;
918 		*(u32 *)p = val;
919 	}
920 }
921 
922 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
923 				       struct ethtool_stats *stats,
924 				       u64 *data)
925 {
926 	struct bcmgenet_priv *priv = netdev_priv(dev);
927 	int i;
928 
929 	if (netif_running(dev))
930 		bcmgenet_update_mib_counters(priv);
931 
932 	dev->netdev_ops->ndo_get_stats(dev);
933 
934 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
935 		const struct bcmgenet_stats *s;
936 		char *p;
937 
938 		s = &bcmgenet_gstrings_stats[i];
939 		if (s->type == BCMGENET_STAT_NETDEV)
940 			p = (char *)&dev->stats;
941 		else
942 			p = (char *)priv;
943 		p += s->stat_offset;
944 		if (sizeof(unsigned long) != sizeof(u32) &&
945 		    s->stat_sizeof == sizeof(unsigned long))
946 			data[i] = *(unsigned long *)p;
947 		else
948 			data[i] = *(u32 *)p;
949 	}
950 }
951 
952 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
953 {
954 	struct bcmgenet_priv *priv = netdev_priv(dev);
955 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
956 	u32 reg;
957 
958 	if (enable && !priv->clk_eee_enabled) {
959 		clk_prepare_enable(priv->clk_eee);
960 		priv->clk_eee_enabled = true;
961 	}
962 
963 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
964 	if (enable)
965 		reg |= EEE_EN;
966 	else
967 		reg &= ~EEE_EN;
968 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
969 
970 	/* Enable EEE and switch to a 27Mhz clock automatically */
971 	reg = bcmgenet_readl(priv->base + off);
972 	if (enable)
973 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
974 	else
975 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
976 	bcmgenet_writel(reg, priv->base + off);
977 
978 	/* Do the same for thing for RBUF */
979 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
980 	if (enable)
981 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
982 	else
983 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
984 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
985 
986 	if (!enable && priv->clk_eee_enabled) {
987 		clk_disable_unprepare(priv->clk_eee);
988 		priv->clk_eee_enabled = false;
989 	}
990 
991 	priv->eee.eee_enabled = enable;
992 	priv->eee.eee_active = enable;
993 }
994 
995 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
996 {
997 	struct bcmgenet_priv *priv = netdev_priv(dev);
998 	struct ethtool_eee *p = &priv->eee;
999 
1000 	if (GENET_IS_V1(priv))
1001 		return -EOPNOTSUPP;
1002 
1003 	if (!dev->phydev)
1004 		return -ENODEV;
1005 
1006 	e->eee_enabled = p->eee_enabled;
1007 	e->eee_active = p->eee_active;
1008 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1009 
1010 	return phy_ethtool_get_eee(dev->phydev, e);
1011 }
1012 
1013 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1014 {
1015 	struct bcmgenet_priv *priv = netdev_priv(dev);
1016 	struct ethtool_eee *p = &priv->eee;
1017 	int ret = 0;
1018 
1019 	if (GENET_IS_V1(priv))
1020 		return -EOPNOTSUPP;
1021 
1022 	if (!dev->phydev)
1023 		return -ENODEV;
1024 
1025 	p->eee_enabled = e->eee_enabled;
1026 
1027 	if (!p->eee_enabled) {
1028 		bcmgenet_eee_enable_set(dev, false);
1029 	} else {
1030 		ret = phy_init_eee(dev->phydev, 0);
1031 		if (ret) {
1032 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1033 			return ret;
1034 		}
1035 
1036 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1037 		bcmgenet_eee_enable_set(dev, true);
1038 	}
1039 
1040 	return phy_ethtool_set_eee(dev->phydev, e);
1041 }
1042 
1043 /* standard ethtool support functions. */
1044 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1045 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
1046 				     ETHTOOL_COALESCE_MAX_FRAMES |
1047 				     ETHTOOL_COALESCE_USE_ADAPTIVE_RX,
1048 	.begin			= bcmgenet_begin,
1049 	.complete		= bcmgenet_complete,
1050 	.get_strings		= bcmgenet_get_strings,
1051 	.get_sset_count		= bcmgenet_get_sset_count,
1052 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1053 	.get_drvinfo		= bcmgenet_get_drvinfo,
1054 	.get_link		= ethtool_op_get_link,
1055 	.get_msglevel		= bcmgenet_get_msglevel,
1056 	.set_msglevel		= bcmgenet_set_msglevel,
1057 	.get_wol		= bcmgenet_get_wol,
1058 	.set_wol		= bcmgenet_set_wol,
1059 	.get_eee		= bcmgenet_get_eee,
1060 	.set_eee		= bcmgenet_set_eee,
1061 	.nway_reset		= phy_ethtool_nway_reset,
1062 	.get_coalesce		= bcmgenet_get_coalesce,
1063 	.set_coalesce		= bcmgenet_set_coalesce,
1064 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1065 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1066 	.get_ts_info		= ethtool_op_get_ts_info,
1067 };
1068 
1069 /* Power down the unimac, based on mode. */
1070 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1071 				enum bcmgenet_power_mode mode)
1072 {
1073 	int ret = 0;
1074 	u32 reg;
1075 
1076 	switch (mode) {
1077 	case GENET_POWER_CABLE_SENSE:
1078 		phy_detach(priv->dev->phydev);
1079 		break;
1080 
1081 	case GENET_POWER_WOL_MAGIC:
1082 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1083 		break;
1084 
1085 	case GENET_POWER_PASSIVE:
1086 		/* Power down LED */
1087 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1088 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1089 			if (GENET_IS_V5(priv))
1090 				reg |= EXT_PWR_DOWN_PHY_EN |
1091 				       EXT_PWR_DOWN_PHY_RD |
1092 				       EXT_PWR_DOWN_PHY_SD |
1093 				       EXT_PWR_DOWN_PHY_RX |
1094 				       EXT_PWR_DOWN_PHY_TX |
1095 				       EXT_IDDQ_GLBL_PWR;
1096 			else
1097 				reg |= EXT_PWR_DOWN_PHY;
1098 
1099 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1100 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1101 
1102 			bcmgenet_phy_power_set(priv->dev, false);
1103 		}
1104 		break;
1105 	default:
1106 		break;
1107 	}
1108 
1109 	return ret;
1110 }
1111 
1112 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1113 			      enum bcmgenet_power_mode mode)
1114 {
1115 	u32 reg;
1116 
1117 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1118 		return;
1119 
1120 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1121 
1122 	switch (mode) {
1123 	case GENET_POWER_PASSIVE:
1124 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1125 		if (GENET_IS_V5(priv)) {
1126 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1127 				 EXT_PWR_DOWN_PHY_RD |
1128 				 EXT_PWR_DOWN_PHY_SD |
1129 				 EXT_PWR_DOWN_PHY_RX |
1130 				 EXT_PWR_DOWN_PHY_TX |
1131 				 EXT_IDDQ_GLBL_PWR);
1132 			reg |=   EXT_PHY_RESET;
1133 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1134 			mdelay(1);
1135 
1136 			reg &=  ~EXT_PHY_RESET;
1137 		} else {
1138 			reg &= ~EXT_PWR_DOWN_PHY;
1139 			reg |= EXT_PWR_DN_EN_LD;
1140 		}
1141 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1142 		bcmgenet_phy_power_set(priv->dev, true);
1143 		break;
1144 
1145 	case GENET_POWER_CABLE_SENSE:
1146 		/* enable APD */
1147 		if (!GENET_IS_V5(priv)) {
1148 			reg |= EXT_PWR_DN_EN_LD;
1149 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1150 		}
1151 		break;
1152 	case GENET_POWER_WOL_MAGIC:
1153 		bcmgenet_wol_power_up_cfg(priv, mode);
1154 		return;
1155 	default:
1156 		break;
1157 	}
1158 }
1159 
1160 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1161 					 struct bcmgenet_tx_ring *ring)
1162 {
1163 	struct enet_cb *tx_cb_ptr;
1164 
1165 	tx_cb_ptr = ring->cbs;
1166 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1167 
1168 	/* Advancing local write pointer */
1169 	if (ring->write_ptr == ring->end_ptr)
1170 		ring->write_ptr = ring->cb_ptr;
1171 	else
1172 		ring->write_ptr++;
1173 
1174 	return tx_cb_ptr;
1175 }
1176 
1177 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1178 					 struct bcmgenet_tx_ring *ring)
1179 {
1180 	struct enet_cb *tx_cb_ptr;
1181 
1182 	tx_cb_ptr = ring->cbs;
1183 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1184 
1185 	/* Rewinding local write pointer */
1186 	if (ring->write_ptr == ring->cb_ptr)
1187 		ring->write_ptr = ring->end_ptr;
1188 	else
1189 		ring->write_ptr--;
1190 
1191 	return tx_cb_ptr;
1192 }
1193 
1194 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1195 {
1196 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1197 				 INTRL2_CPU_MASK_SET);
1198 }
1199 
1200 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1201 {
1202 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1203 				 INTRL2_CPU_MASK_CLEAR);
1204 }
1205 
1206 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1207 {
1208 	bcmgenet_intrl2_1_writel(ring->priv,
1209 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1210 				 INTRL2_CPU_MASK_SET);
1211 }
1212 
1213 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1214 {
1215 	bcmgenet_intrl2_1_writel(ring->priv,
1216 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1217 				 INTRL2_CPU_MASK_CLEAR);
1218 }
1219 
1220 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1221 {
1222 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1223 				 INTRL2_CPU_MASK_SET);
1224 }
1225 
1226 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1227 {
1228 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1229 				 INTRL2_CPU_MASK_CLEAR);
1230 }
1231 
1232 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1233 {
1234 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1235 				 INTRL2_CPU_MASK_CLEAR);
1236 }
1237 
1238 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1239 {
1240 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1241 				 INTRL2_CPU_MASK_SET);
1242 }
1243 
1244 /* Simple helper to free a transmit control block's resources
1245  * Returns an skb when the last transmit control block associated with the
1246  * skb is freed.  The skb should be freed by the caller if necessary.
1247  */
1248 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1249 					   struct enet_cb *cb)
1250 {
1251 	struct sk_buff *skb;
1252 
1253 	skb = cb->skb;
1254 
1255 	if (skb) {
1256 		cb->skb = NULL;
1257 		if (cb == GENET_CB(skb)->first_cb)
1258 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1259 					 dma_unmap_len(cb, dma_len),
1260 					 DMA_TO_DEVICE);
1261 		else
1262 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1263 				       dma_unmap_len(cb, dma_len),
1264 				       DMA_TO_DEVICE);
1265 		dma_unmap_addr_set(cb, dma_addr, 0);
1266 
1267 		if (cb == GENET_CB(skb)->last_cb)
1268 			return skb;
1269 
1270 	} else if (dma_unmap_addr(cb, dma_addr)) {
1271 		dma_unmap_page(dev,
1272 			       dma_unmap_addr(cb, dma_addr),
1273 			       dma_unmap_len(cb, dma_len),
1274 			       DMA_TO_DEVICE);
1275 		dma_unmap_addr_set(cb, dma_addr, 0);
1276 	}
1277 
1278 	return NULL;
1279 }
1280 
1281 /* Simple helper to free a receive control block's resources */
1282 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1283 					   struct enet_cb *cb)
1284 {
1285 	struct sk_buff *skb;
1286 
1287 	skb = cb->skb;
1288 	cb->skb = NULL;
1289 
1290 	if (dma_unmap_addr(cb, dma_addr)) {
1291 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1292 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1293 		dma_unmap_addr_set(cb, dma_addr, 0);
1294 	}
1295 
1296 	return skb;
1297 }
1298 
1299 /* Unlocked version of the reclaim routine */
1300 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1301 					  struct bcmgenet_tx_ring *ring)
1302 {
1303 	struct bcmgenet_priv *priv = netdev_priv(dev);
1304 	unsigned int txbds_processed = 0;
1305 	unsigned int bytes_compl = 0;
1306 	unsigned int pkts_compl = 0;
1307 	unsigned int txbds_ready;
1308 	unsigned int c_index;
1309 	struct sk_buff *skb;
1310 
1311 	/* Clear status before servicing to reduce spurious interrupts */
1312 	if (ring->index == DESC_INDEX)
1313 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1314 					 INTRL2_CPU_CLEAR);
1315 	else
1316 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1317 					 INTRL2_CPU_CLEAR);
1318 
1319 	/* Compute how many buffers are transmitted since last xmit call */
1320 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1321 		& DMA_C_INDEX_MASK;
1322 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1323 
1324 	netif_dbg(priv, tx_done, dev,
1325 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1326 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1327 
1328 	/* Reclaim transmitted buffers */
1329 	while (txbds_processed < txbds_ready) {
1330 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1331 					  &priv->tx_cbs[ring->clean_ptr]);
1332 		if (skb) {
1333 			pkts_compl++;
1334 			bytes_compl += GENET_CB(skb)->bytes_sent;
1335 			dev_consume_skb_any(skb);
1336 		}
1337 
1338 		txbds_processed++;
1339 		if (likely(ring->clean_ptr < ring->end_ptr))
1340 			ring->clean_ptr++;
1341 		else
1342 			ring->clean_ptr = ring->cb_ptr;
1343 	}
1344 
1345 	ring->free_bds += txbds_processed;
1346 	ring->c_index = c_index;
1347 
1348 	ring->packets += pkts_compl;
1349 	ring->bytes += bytes_compl;
1350 
1351 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1352 				  pkts_compl, bytes_compl);
1353 
1354 	return txbds_processed;
1355 }
1356 
1357 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1358 				struct bcmgenet_tx_ring *ring)
1359 {
1360 	unsigned int released;
1361 
1362 	spin_lock_bh(&ring->lock);
1363 	released = __bcmgenet_tx_reclaim(dev, ring);
1364 	spin_unlock_bh(&ring->lock);
1365 
1366 	return released;
1367 }
1368 
1369 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1370 {
1371 	struct bcmgenet_tx_ring *ring =
1372 		container_of(napi, struct bcmgenet_tx_ring, napi);
1373 	unsigned int work_done = 0;
1374 	struct netdev_queue *txq;
1375 
1376 	spin_lock(&ring->lock);
1377 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1378 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1379 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1380 		netif_tx_wake_queue(txq);
1381 	}
1382 	spin_unlock(&ring->lock);
1383 
1384 	if (work_done == 0) {
1385 		napi_complete(napi);
1386 		ring->int_enable(ring);
1387 
1388 		return 0;
1389 	}
1390 
1391 	return budget;
1392 }
1393 
1394 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1395 {
1396 	struct bcmgenet_priv *priv = netdev_priv(dev);
1397 	int i;
1398 
1399 	if (netif_is_multiqueue(dev)) {
1400 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1401 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1402 	}
1403 
1404 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1405 }
1406 
1407 /* Reallocate the SKB to put enough headroom in front of it and insert
1408  * the transmit checksum offsets in the descriptors
1409  */
1410 static struct sk_buff *bcmgenet_add_tsb(struct net_device *dev,
1411 					struct sk_buff *skb)
1412 {
1413 	struct bcmgenet_priv *priv = netdev_priv(dev);
1414 	struct status_64 *status = NULL;
1415 	struct sk_buff *new_skb;
1416 	u16 offset;
1417 	u8 ip_proto;
1418 	__be16 ip_ver;
1419 	u32 tx_csum_info;
1420 
1421 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1422 		/* If 64 byte status block enabled, must make sure skb has
1423 		 * enough headroom for us to insert 64B status block.
1424 		 */
1425 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1426 		if (!new_skb) {
1427 			dev_kfree_skb_any(skb);
1428 			priv->mib.tx_realloc_tsb_failed++;
1429 			dev->stats.tx_dropped++;
1430 			return NULL;
1431 		}
1432 		dev_consume_skb_any(skb);
1433 		skb = new_skb;
1434 		priv->mib.tx_realloc_tsb++;
1435 	}
1436 
1437 	skb_push(skb, sizeof(*status));
1438 	status = (struct status_64 *)skb->data;
1439 
1440 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1441 		ip_ver = skb->protocol;
1442 		switch (ip_ver) {
1443 		case htons(ETH_P_IP):
1444 			ip_proto = ip_hdr(skb)->protocol;
1445 			break;
1446 		case htons(ETH_P_IPV6):
1447 			ip_proto = ipv6_hdr(skb)->nexthdr;
1448 			break;
1449 		default:
1450 			/* don't use UDP flag */
1451 			ip_proto = 0;
1452 			break;
1453 		}
1454 
1455 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1456 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1457 				(offset + skb->csum_offset) |
1458 				STATUS_TX_CSUM_LV;
1459 
1460 		/* Set the special UDP flag for UDP */
1461 		if (ip_proto == IPPROTO_UDP)
1462 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1463 
1464 		status->tx_csum_info = tx_csum_info;
1465 	}
1466 
1467 	return skb;
1468 }
1469 
1470 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1471 {
1472 	struct bcmgenet_priv *priv = netdev_priv(dev);
1473 	struct device *kdev = &priv->pdev->dev;
1474 	struct bcmgenet_tx_ring *ring = NULL;
1475 	struct enet_cb *tx_cb_ptr;
1476 	struct netdev_queue *txq;
1477 	int nr_frags, index;
1478 	dma_addr_t mapping;
1479 	unsigned int size;
1480 	skb_frag_t *frag;
1481 	u32 len_stat;
1482 	int ret;
1483 	int i;
1484 
1485 	index = skb_get_queue_mapping(skb);
1486 	/* Mapping strategy:
1487 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1488 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1489 	 * queue_mapping = 2, goes to ring 1.
1490 	 * queue_mapping = 3, goes to ring 2.
1491 	 * queue_mapping = 4, goes to ring 3.
1492 	 */
1493 	if (index == 0)
1494 		index = DESC_INDEX;
1495 	else
1496 		index -= 1;
1497 
1498 	ring = &priv->tx_rings[index];
1499 	txq = netdev_get_tx_queue(dev, ring->queue);
1500 
1501 	nr_frags = skb_shinfo(skb)->nr_frags;
1502 
1503 	spin_lock(&ring->lock);
1504 	if (ring->free_bds <= (nr_frags + 1)) {
1505 		if (!netif_tx_queue_stopped(txq)) {
1506 			netif_tx_stop_queue(txq);
1507 			netdev_err(dev,
1508 				   "%s: tx ring %d full when queue %d awake\n",
1509 				   __func__, index, ring->queue);
1510 		}
1511 		ret = NETDEV_TX_BUSY;
1512 		goto out;
1513 	}
1514 
1515 	if (skb_padto(skb, ETH_ZLEN)) {
1516 		ret = NETDEV_TX_OK;
1517 		goto out;
1518 	}
1519 
1520 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1521 	 * by transmit checksum offload
1522 	 */
1523 	GENET_CB(skb)->bytes_sent = skb->len;
1524 
1525 	/* add the Transmit Status Block */
1526 	skb = bcmgenet_add_tsb(dev, skb);
1527 	if (!skb) {
1528 		ret = NETDEV_TX_OK;
1529 		goto out;
1530 	}
1531 
1532 	for (i = 0; i <= nr_frags; i++) {
1533 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1534 
1535 		BUG_ON(!tx_cb_ptr);
1536 
1537 		if (!i) {
1538 			/* Transmit single SKB or head of fragment list */
1539 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1540 			size = skb_headlen(skb);
1541 			mapping = dma_map_single(kdev, skb->data, size,
1542 						 DMA_TO_DEVICE);
1543 		} else {
1544 			/* xmit fragment */
1545 			frag = &skb_shinfo(skb)->frags[i - 1];
1546 			size = skb_frag_size(frag);
1547 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1548 						   DMA_TO_DEVICE);
1549 		}
1550 
1551 		ret = dma_mapping_error(kdev, mapping);
1552 		if (ret) {
1553 			priv->mib.tx_dma_failed++;
1554 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1555 			ret = NETDEV_TX_OK;
1556 			goto out_unmap_frags;
1557 		}
1558 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1559 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1560 
1561 		tx_cb_ptr->skb = skb;
1562 
1563 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1564 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1565 
1566 		if (!i) {
1567 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1568 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1569 				len_stat |= DMA_TX_DO_CSUM;
1570 		}
1571 		if (i == nr_frags)
1572 			len_stat |= DMA_EOP;
1573 
1574 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1575 	}
1576 
1577 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1578 	skb_tx_timestamp(skb);
1579 
1580 	/* Decrement total BD count and advance our write pointer */
1581 	ring->free_bds -= nr_frags + 1;
1582 	ring->prod_index += nr_frags + 1;
1583 	ring->prod_index &= DMA_P_INDEX_MASK;
1584 
1585 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1586 
1587 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1588 		netif_tx_stop_queue(txq);
1589 
1590 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1591 		/* Packets are ready, update producer index */
1592 		bcmgenet_tdma_ring_writel(priv, ring->index,
1593 					  ring->prod_index, TDMA_PROD_INDEX);
1594 out:
1595 	spin_unlock(&ring->lock);
1596 
1597 	return ret;
1598 
1599 out_unmap_frags:
1600 	/* Back up for failed control block mapping */
1601 	bcmgenet_put_txcb(priv, ring);
1602 
1603 	/* Unmap successfully mapped control blocks */
1604 	while (i-- > 0) {
1605 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1606 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1607 	}
1608 
1609 	dev_kfree_skb(skb);
1610 	goto out;
1611 }
1612 
1613 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1614 					  struct enet_cb *cb)
1615 {
1616 	struct device *kdev = &priv->pdev->dev;
1617 	struct sk_buff *skb;
1618 	struct sk_buff *rx_skb;
1619 	dma_addr_t mapping;
1620 
1621 	/* Allocate a new Rx skb */
1622 	skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT,
1623 				 GFP_ATOMIC | __GFP_NOWARN);
1624 	if (!skb) {
1625 		priv->mib.alloc_rx_buff_failed++;
1626 		netif_err(priv, rx_err, priv->dev,
1627 			  "%s: Rx skb allocation failed\n", __func__);
1628 		return NULL;
1629 	}
1630 
1631 	/* DMA-map the new Rx skb */
1632 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1633 				 DMA_FROM_DEVICE);
1634 	if (dma_mapping_error(kdev, mapping)) {
1635 		priv->mib.rx_dma_failed++;
1636 		dev_kfree_skb_any(skb);
1637 		netif_err(priv, rx_err, priv->dev,
1638 			  "%s: Rx skb DMA mapping failed\n", __func__);
1639 		return NULL;
1640 	}
1641 
1642 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1643 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1644 
1645 	/* Put the new Rx skb on the ring */
1646 	cb->skb = skb;
1647 	dma_unmap_addr_set(cb, dma_addr, mapping);
1648 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1649 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1650 
1651 	/* Return the current Rx skb to caller */
1652 	return rx_skb;
1653 }
1654 
1655 /* bcmgenet_desc_rx - descriptor based rx process.
1656  * this could be called from bottom half, or from NAPI polling method.
1657  */
1658 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1659 				     unsigned int budget)
1660 {
1661 	struct bcmgenet_priv *priv = ring->priv;
1662 	struct net_device *dev = priv->dev;
1663 	struct enet_cb *cb;
1664 	struct sk_buff *skb;
1665 	u32 dma_length_status;
1666 	unsigned long dma_flag;
1667 	int len;
1668 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1669 	unsigned int bytes_processed = 0;
1670 	unsigned int p_index, mask;
1671 	unsigned int discards;
1672 
1673 	/* Clear status before servicing to reduce spurious interrupts */
1674 	if (ring->index == DESC_INDEX) {
1675 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1676 					 INTRL2_CPU_CLEAR);
1677 	} else {
1678 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1679 		bcmgenet_intrl2_1_writel(priv,
1680 					 mask,
1681 					 INTRL2_CPU_CLEAR);
1682 	}
1683 
1684 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1685 
1686 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1687 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1688 	if (discards > ring->old_discards) {
1689 		discards = discards - ring->old_discards;
1690 		ring->errors += discards;
1691 		ring->old_discards += discards;
1692 
1693 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1694 		if (ring->old_discards >= 0xC000) {
1695 			ring->old_discards = 0;
1696 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1697 						  RDMA_PROD_INDEX);
1698 		}
1699 	}
1700 
1701 	p_index &= DMA_P_INDEX_MASK;
1702 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1703 
1704 	netif_dbg(priv, rx_status, dev,
1705 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1706 
1707 	while ((rxpktprocessed < rxpkttoprocess) &&
1708 	       (rxpktprocessed < budget)) {
1709 		struct status_64 *status;
1710 		__be16 rx_csum;
1711 
1712 		cb = &priv->rx_cbs[ring->read_ptr];
1713 		skb = bcmgenet_rx_refill(priv, cb);
1714 
1715 		if (unlikely(!skb)) {
1716 			ring->dropped++;
1717 			goto next;
1718 		}
1719 
1720 		status = (struct status_64 *)skb->data;
1721 		dma_length_status = status->length_status;
1722 		if (dev->features & NETIF_F_RXCSUM) {
1723 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1724 			skb->csum = (__force __wsum)ntohs(rx_csum);
1725 			skb->ip_summed = CHECKSUM_COMPLETE;
1726 		}
1727 
1728 		/* DMA flags and length are still valid no matter how
1729 		 * we got the Receive Status Vector (64B RSB or register)
1730 		 */
1731 		dma_flag = dma_length_status & 0xffff;
1732 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1733 
1734 		netif_dbg(priv, rx_status, dev,
1735 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1736 			  __func__, p_index, ring->c_index,
1737 			  ring->read_ptr, dma_length_status);
1738 
1739 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1740 			netif_err(priv, rx_status, dev,
1741 				  "dropping fragmented packet!\n");
1742 			ring->errors++;
1743 			dev_kfree_skb_any(skb);
1744 			goto next;
1745 		}
1746 
1747 		/* report errors */
1748 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1749 						DMA_RX_OV |
1750 						DMA_RX_NO |
1751 						DMA_RX_LG |
1752 						DMA_RX_RXER))) {
1753 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1754 				  (unsigned int)dma_flag);
1755 			if (dma_flag & DMA_RX_CRC_ERROR)
1756 				dev->stats.rx_crc_errors++;
1757 			if (dma_flag & DMA_RX_OV)
1758 				dev->stats.rx_over_errors++;
1759 			if (dma_flag & DMA_RX_NO)
1760 				dev->stats.rx_frame_errors++;
1761 			if (dma_flag & DMA_RX_LG)
1762 				dev->stats.rx_length_errors++;
1763 			dev->stats.rx_errors++;
1764 			dev_kfree_skb_any(skb);
1765 			goto next;
1766 		} /* error packet */
1767 
1768 		skb_put(skb, len);
1769 
1770 		/* remove RSB and hardware 2bytes added for IP alignment */
1771 		skb_pull(skb, 66);
1772 		len -= 66;
1773 
1774 		if (priv->crc_fwd_en) {
1775 			skb_trim(skb, len - ETH_FCS_LEN);
1776 			len -= ETH_FCS_LEN;
1777 		}
1778 
1779 		bytes_processed += len;
1780 
1781 		/*Finish setting up the received SKB and send it to the kernel*/
1782 		skb->protocol = eth_type_trans(skb, priv->dev);
1783 		ring->packets++;
1784 		ring->bytes += len;
1785 		if (dma_flag & DMA_RX_MULT)
1786 			dev->stats.multicast++;
1787 
1788 		/* Notify kernel */
1789 		napi_gro_receive(&ring->napi, skb);
1790 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1791 
1792 next:
1793 		rxpktprocessed++;
1794 		if (likely(ring->read_ptr < ring->end_ptr))
1795 			ring->read_ptr++;
1796 		else
1797 			ring->read_ptr = ring->cb_ptr;
1798 
1799 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1800 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1801 	}
1802 
1803 	ring->dim.bytes = bytes_processed;
1804 	ring->dim.packets = rxpktprocessed;
1805 
1806 	return rxpktprocessed;
1807 }
1808 
1809 /* Rx NAPI polling method */
1810 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1811 {
1812 	struct bcmgenet_rx_ring *ring = container_of(napi,
1813 			struct bcmgenet_rx_ring, napi);
1814 	struct dim_sample dim_sample = {};
1815 	unsigned int work_done;
1816 
1817 	work_done = bcmgenet_desc_rx(ring, budget);
1818 
1819 	if (work_done < budget) {
1820 		napi_complete_done(napi, work_done);
1821 		ring->int_enable(ring);
1822 	}
1823 
1824 	if (ring->dim.use_dim) {
1825 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1826 				  ring->dim.bytes, &dim_sample);
1827 		net_dim(&ring->dim.dim, dim_sample);
1828 	}
1829 
1830 	return work_done;
1831 }
1832 
1833 static void bcmgenet_dim_work(struct work_struct *work)
1834 {
1835 	struct dim *dim = container_of(work, struct dim, work);
1836 	struct bcmgenet_net_dim *ndim =
1837 			container_of(dim, struct bcmgenet_net_dim, dim);
1838 	struct bcmgenet_rx_ring *ring =
1839 			container_of(ndim, struct bcmgenet_rx_ring, dim);
1840 	struct dim_cq_moder cur_profile =
1841 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1842 
1843 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1844 	dim->state = DIM_START_MEASURE;
1845 }
1846 
1847 /* Assign skb to RX DMA descriptor. */
1848 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1849 				     struct bcmgenet_rx_ring *ring)
1850 {
1851 	struct enet_cb *cb;
1852 	struct sk_buff *skb;
1853 	int i;
1854 
1855 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1856 
1857 	/* loop here for each buffer needing assign */
1858 	for (i = 0; i < ring->size; i++) {
1859 		cb = ring->cbs + i;
1860 		skb = bcmgenet_rx_refill(priv, cb);
1861 		if (skb)
1862 			dev_consume_skb_any(skb);
1863 		if (!cb->skb)
1864 			return -ENOMEM;
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1871 {
1872 	struct sk_buff *skb;
1873 	struct enet_cb *cb;
1874 	int i;
1875 
1876 	for (i = 0; i < priv->num_rx_bds; i++) {
1877 		cb = &priv->rx_cbs[i];
1878 
1879 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1880 		if (skb)
1881 			dev_consume_skb_any(skb);
1882 	}
1883 }
1884 
1885 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1886 {
1887 	u32 reg;
1888 
1889 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1890 	if (reg & CMD_SW_RESET)
1891 		return;
1892 	if (enable)
1893 		reg |= mask;
1894 	else
1895 		reg &= ~mask;
1896 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1897 
1898 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1899 	 * to be processed
1900 	 */
1901 	if (enable == 0)
1902 		usleep_range(1000, 2000);
1903 }
1904 
1905 static void reset_umac(struct bcmgenet_priv *priv)
1906 {
1907 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1908 	bcmgenet_rbuf_ctrl_set(priv, 0);
1909 	udelay(10);
1910 
1911 	/* issue soft reset and disable MAC while updating its registers */
1912 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1913 	udelay(2);
1914 }
1915 
1916 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1917 {
1918 	/* Mask all interrupts.*/
1919 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1920 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1921 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1922 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1923 }
1924 
1925 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1926 {
1927 	u32 int0_enable = 0;
1928 
1929 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1930 	 * and MoCA PHY
1931 	 */
1932 	if (priv->internal_phy) {
1933 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1934 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
1935 			int0_enable |= UMAC_IRQ_PHY_DET_R;
1936 	} else if (priv->ext_phy) {
1937 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1938 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1939 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1940 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1941 	}
1942 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1943 }
1944 
1945 static void init_umac(struct bcmgenet_priv *priv)
1946 {
1947 	struct device *kdev = &priv->pdev->dev;
1948 	u32 reg;
1949 	u32 int0_enable = 0;
1950 
1951 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1952 
1953 	reset_umac(priv);
1954 
1955 	/* clear tx/rx counter */
1956 	bcmgenet_umac_writel(priv,
1957 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1958 			     UMAC_MIB_CTRL);
1959 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1960 
1961 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1962 
1963 	/* init tx registers, enable TSB */
1964 	reg = bcmgenet_tbuf_ctrl_get(priv);
1965 	reg |= TBUF_64B_EN;
1966 	bcmgenet_tbuf_ctrl_set(priv, reg);
1967 
1968 	/* init rx registers, enable ip header optimization and RSB */
1969 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1970 	reg |= RBUF_ALIGN_2B | RBUF_64B_EN;
1971 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1972 
1973 	/* enable rx checksumming */
1974 	reg = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
1975 	reg |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
1976 	/* If UniMAC forwards CRC, we need to skip over it to get
1977 	 * a valid CHK bit to be set in the per-packet status word
1978 	 */
1979 	if (priv->crc_fwd_en)
1980 		reg |= RBUF_SKIP_FCS;
1981 	else
1982 		reg &= ~RBUF_SKIP_FCS;
1983 	bcmgenet_rbuf_writel(priv, reg, RBUF_CHK_CTRL);
1984 
1985 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1986 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1987 
1988 	bcmgenet_intr_disable(priv);
1989 
1990 	/* Configure backpressure vectors for MoCA */
1991 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1992 		reg = bcmgenet_bp_mc_get(priv);
1993 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1994 
1995 		/* bp_mask: back pressure mask */
1996 		if (netif_is_multiqueue(priv->dev))
1997 			reg |= priv->hw_params->bp_in_mask;
1998 		else
1999 			reg &= ~priv->hw_params->bp_in_mask;
2000 		bcmgenet_bp_mc_set(priv, reg);
2001 	}
2002 
2003 	/* Enable MDIO interrupts on GENET v3+ */
2004 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2005 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2006 
2007 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2008 
2009 	dev_dbg(kdev, "done init umac\n");
2010 }
2011 
2012 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2013 			      void (*cb)(struct work_struct *work))
2014 {
2015 	struct bcmgenet_net_dim *dim = &ring->dim;
2016 
2017 	INIT_WORK(&dim->dim.work, cb);
2018 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2019 	dim->event_ctr = 0;
2020 	dim->packets = 0;
2021 	dim->bytes = 0;
2022 }
2023 
2024 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2025 {
2026 	struct bcmgenet_net_dim *dim = &ring->dim;
2027 	struct dim_cq_moder moder;
2028 	u32 usecs, pkts;
2029 
2030 	usecs = ring->rx_coalesce_usecs;
2031 	pkts = ring->rx_max_coalesced_frames;
2032 
2033 	/* If DIM was enabled, re-apply default parameters */
2034 	if (dim->use_dim) {
2035 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2036 		usecs = moder.usec;
2037 		pkts = moder.pkts;
2038 	}
2039 
2040 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2041 }
2042 
2043 /* Initialize a Tx ring along with corresponding hardware registers */
2044 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2045 				  unsigned int index, unsigned int size,
2046 				  unsigned int start_ptr, unsigned int end_ptr)
2047 {
2048 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2049 	u32 words_per_bd = WORDS_PER_BD(priv);
2050 	u32 flow_period_val = 0;
2051 
2052 	spin_lock_init(&ring->lock);
2053 	ring->priv = priv;
2054 	ring->index = index;
2055 	if (index == DESC_INDEX) {
2056 		ring->queue = 0;
2057 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2058 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2059 	} else {
2060 		ring->queue = index + 1;
2061 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2062 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2063 	}
2064 	ring->cbs = priv->tx_cbs + start_ptr;
2065 	ring->size = size;
2066 	ring->clean_ptr = start_ptr;
2067 	ring->c_index = 0;
2068 	ring->free_bds = size;
2069 	ring->write_ptr = start_ptr;
2070 	ring->cb_ptr = start_ptr;
2071 	ring->end_ptr = end_ptr - 1;
2072 	ring->prod_index = 0;
2073 
2074 	/* Set flow period for ring != 16 */
2075 	if (index != DESC_INDEX)
2076 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2077 
2078 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2079 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2080 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2081 	/* Disable rate control for now */
2082 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2083 				  TDMA_FLOW_PERIOD);
2084 	bcmgenet_tdma_ring_writel(priv, index,
2085 				  ((size << DMA_RING_SIZE_SHIFT) |
2086 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2087 
2088 	/* Set start and end address, read and write pointers */
2089 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2090 				  DMA_START_ADDR);
2091 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2092 				  TDMA_READ_PTR);
2093 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2094 				  TDMA_WRITE_PTR);
2095 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2096 				  DMA_END_ADDR);
2097 
2098 	/* Initialize Tx NAPI */
2099 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2100 			  NAPI_POLL_WEIGHT);
2101 }
2102 
2103 /* Initialize a RDMA ring */
2104 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2105 				 unsigned int index, unsigned int size,
2106 				 unsigned int start_ptr, unsigned int end_ptr)
2107 {
2108 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2109 	u32 words_per_bd = WORDS_PER_BD(priv);
2110 	int ret;
2111 
2112 	ring->priv = priv;
2113 	ring->index = index;
2114 	if (index == DESC_INDEX) {
2115 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2116 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2117 	} else {
2118 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2119 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2120 	}
2121 	ring->cbs = priv->rx_cbs + start_ptr;
2122 	ring->size = size;
2123 	ring->c_index = 0;
2124 	ring->read_ptr = start_ptr;
2125 	ring->cb_ptr = start_ptr;
2126 	ring->end_ptr = end_ptr - 1;
2127 
2128 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2129 	if (ret)
2130 		return ret;
2131 
2132 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2133 	bcmgenet_init_rx_coalesce(ring);
2134 
2135 	/* Initialize Rx NAPI */
2136 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2137 		       NAPI_POLL_WEIGHT);
2138 
2139 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2140 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2141 	bcmgenet_rdma_ring_writel(priv, index,
2142 				  ((size << DMA_RING_SIZE_SHIFT) |
2143 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2144 	bcmgenet_rdma_ring_writel(priv, index,
2145 				  (DMA_FC_THRESH_LO <<
2146 				   DMA_XOFF_THRESHOLD_SHIFT) |
2147 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2148 
2149 	/* Set start and end address, read and write pointers */
2150 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2151 				  DMA_START_ADDR);
2152 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2153 				  RDMA_READ_PTR);
2154 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2155 				  RDMA_WRITE_PTR);
2156 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2157 				  DMA_END_ADDR);
2158 
2159 	return ret;
2160 }
2161 
2162 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2163 {
2164 	unsigned int i;
2165 	struct bcmgenet_tx_ring *ring;
2166 
2167 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2168 		ring = &priv->tx_rings[i];
2169 		napi_enable(&ring->napi);
2170 		ring->int_enable(ring);
2171 	}
2172 
2173 	ring = &priv->tx_rings[DESC_INDEX];
2174 	napi_enable(&ring->napi);
2175 	ring->int_enable(ring);
2176 }
2177 
2178 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2179 {
2180 	unsigned int i;
2181 	struct bcmgenet_tx_ring *ring;
2182 
2183 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2184 		ring = &priv->tx_rings[i];
2185 		napi_disable(&ring->napi);
2186 	}
2187 
2188 	ring = &priv->tx_rings[DESC_INDEX];
2189 	napi_disable(&ring->napi);
2190 }
2191 
2192 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2193 {
2194 	unsigned int i;
2195 	struct bcmgenet_tx_ring *ring;
2196 
2197 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2198 		ring = &priv->tx_rings[i];
2199 		netif_napi_del(&ring->napi);
2200 	}
2201 
2202 	ring = &priv->tx_rings[DESC_INDEX];
2203 	netif_napi_del(&ring->napi);
2204 }
2205 
2206 /* Initialize Tx queues
2207  *
2208  * Queues 0-3 are priority-based, each one has 32 descriptors,
2209  * with queue 0 being the highest priority queue.
2210  *
2211  * Queue 16 is the default Tx queue with
2212  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2213  *
2214  * The transmit control block pool is then partitioned as follows:
2215  * - Tx queue 0 uses tx_cbs[0..31]
2216  * - Tx queue 1 uses tx_cbs[32..63]
2217  * - Tx queue 2 uses tx_cbs[64..95]
2218  * - Tx queue 3 uses tx_cbs[96..127]
2219  * - Tx queue 16 uses tx_cbs[128..255]
2220  */
2221 static void bcmgenet_init_tx_queues(struct net_device *dev)
2222 {
2223 	struct bcmgenet_priv *priv = netdev_priv(dev);
2224 	u32 i, dma_enable;
2225 	u32 dma_ctrl, ring_cfg;
2226 	u32 dma_priority[3] = {0, 0, 0};
2227 
2228 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2229 	dma_enable = dma_ctrl & DMA_EN;
2230 	dma_ctrl &= ~DMA_EN;
2231 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2232 
2233 	dma_ctrl = 0;
2234 	ring_cfg = 0;
2235 
2236 	/* Enable strict priority arbiter mode */
2237 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2238 
2239 	/* Initialize Tx priority queues */
2240 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2241 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2242 				      i * priv->hw_params->tx_bds_per_q,
2243 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2244 		ring_cfg |= (1 << i);
2245 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2246 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2247 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2248 	}
2249 
2250 	/* Initialize Tx default queue 16 */
2251 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2252 			      priv->hw_params->tx_queues *
2253 			      priv->hw_params->tx_bds_per_q,
2254 			      TOTAL_DESC);
2255 	ring_cfg |= (1 << DESC_INDEX);
2256 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2257 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2258 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2259 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2260 
2261 	/* Set Tx queue priorities */
2262 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2263 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2264 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2265 
2266 	/* Enable Tx queues */
2267 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2268 
2269 	/* Enable Tx DMA */
2270 	if (dma_enable)
2271 		dma_ctrl |= DMA_EN;
2272 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2273 }
2274 
2275 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2276 {
2277 	unsigned int i;
2278 	struct bcmgenet_rx_ring *ring;
2279 
2280 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2281 		ring = &priv->rx_rings[i];
2282 		napi_enable(&ring->napi);
2283 		ring->int_enable(ring);
2284 	}
2285 
2286 	ring = &priv->rx_rings[DESC_INDEX];
2287 	napi_enable(&ring->napi);
2288 	ring->int_enable(ring);
2289 }
2290 
2291 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2292 {
2293 	unsigned int i;
2294 	struct bcmgenet_rx_ring *ring;
2295 
2296 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2297 		ring = &priv->rx_rings[i];
2298 		napi_disable(&ring->napi);
2299 		cancel_work_sync(&ring->dim.dim.work);
2300 	}
2301 
2302 	ring = &priv->rx_rings[DESC_INDEX];
2303 	napi_disable(&ring->napi);
2304 	cancel_work_sync(&ring->dim.dim.work);
2305 }
2306 
2307 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2308 {
2309 	unsigned int i;
2310 	struct bcmgenet_rx_ring *ring;
2311 
2312 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2313 		ring = &priv->rx_rings[i];
2314 		netif_napi_del(&ring->napi);
2315 	}
2316 
2317 	ring = &priv->rx_rings[DESC_INDEX];
2318 	netif_napi_del(&ring->napi);
2319 }
2320 
2321 /* Initialize Rx queues
2322  *
2323  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2324  * used to direct traffic to these queues.
2325  *
2326  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2327  */
2328 static int bcmgenet_init_rx_queues(struct net_device *dev)
2329 {
2330 	struct bcmgenet_priv *priv = netdev_priv(dev);
2331 	u32 i;
2332 	u32 dma_enable;
2333 	u32 dma_ctrl;
2334 	u32 ring_cfg;
2335 	int ret;
2336 
2337 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2338 	dma_enable = dma_ctrl & DMA_EN;
2339 	dma_ctrl &= ~DMA_EN;
2340 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2341 
2342 	dma_ctrl = 0;
2343 	ring_cfg = 0;
2344 
2345 	/* Initialize Rx priority queues */
2346 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2347 		ret = bcmgenet_init_rx_ring(priv, i,
2348 					    priv->hw_params->rx_bds_per_q,
2349 					    i * priv->hw_params->rx_bds_per_q,
2350 					    (i + 1) *
2351 					    priv->hw_params->rx_bds_per_q);
2352 		if (ret)
2353 			return ret;
2354 
2355 		ring_cfg |= (1 << i);
2356 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2357 	}
2358 
2359 	/* Initialize Rx default queue 16 */
2360 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2361 				    priv->hw_params->rx_queues *
2362 				    priv->hw_params->rx_bds_per_q,
2363 				    TOTAL_DESC);
2364 	if (ret)
2365 		return ret;
2366 
2367 	ring_cfg |= (1 << DESC_INDEX);
2368 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2369 
2370 	/* Enable rings */
2371 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2372 
2373 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2374 	if (dma_enable)
2375 		dma_ctrl |= DMA_EN;
2376 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2377 
2378 	return 0;
2379 }
2380 
2381 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2382 {
2383 	int ret = 0;
2384 	int timeout = 0;
2385 	u32 reg;
2386 	u32 dma_ctrl;
2387 	int i;
2388 
2389 	/* Disable TDMA to stop add more frames in TX DMA */
2390 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2391 	reg &= ~DMA_EN;
2392 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2393 
2394 	/* Check TDMA status register to confirm TDMA is disabled */
2395 	while (timeout++ < DMA_TIMEOUT_VAL) {
2396 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2397 		if (reg & DMA_DISABLED)
2398 			break;
2399 
2400 		udelay(1);
2401 	}
2402 
2403 	if (timeout == DMA_TIMEOUT_VAL) {
2404 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2405 		ret = -ETIMEDOUT;
2406 	}
2407 
2408 	/* Wait 10ms for packet drain in both tx and rx dma */
2409 	usleep_range(10000, 20000);
2410 
2411 	/* Disable RDMA */
2412 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2413 	reg &= ~DMA_EN;
2414 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2415 
2416 	timeout = 0;
2417 	/* Check RDMA status register to confirm RDMA is disabled */
2418 	while (timeout++ < DMA_TIMEOUT_VAL) {
2419 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2420 		if (reg & DMA_DISABLED)
2421 			break;
2422 
2423 		udelay(1);
2424 	}
2425 
2426 	if (timeout == DMA_TIMEOUT_VAL) {
2427 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2428 		ret = -ETIMEDOUT;
2429 	}
2430 
2431 	dma_ctrl = 0;
2432 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2433 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2434 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2435 	reg &= ~dma_ctrl;
2436 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2437 
2438 	dma_ctrl = 0;
2439 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2440 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2441 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2442 	reg &= ~dma_ctrl;
2443 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2444 
2445 	return ret;
2446 }
2447 
2448 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2449 {
2450 	struct netdev_queue *txq;
2451 	int i;
2452 
2453 	bcmgenet_fini_rx_napi(priv);
2454 	bcmgenet_fini_tx_napi(priv);
2455 
2456 	for (i = 0; i < priv->num_tx_bds; i++)
2457 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2458 						  priv->tx_cbs + i));
2459 
2460 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2461 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2462 		netdev_tx_reset_queue(txq);
2463 	}
2464 
2465 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2466 	netdev_tx_reset_queue(txq);
2467 
2468 	bcmgenet_free_rx_buffers(priv);
2469 	kfree(priv->rx_cbs);
2470 	kfree(priv->tx_cbs);
2471 }
2472 
2473 /* init_edma: Initialize DMA control register */
2474 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2475 {
2476 	int ret;
2477 	unsigned int i;
2478 	struct enet_cb *cb;
2479 
2480 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2481 
2482 	/* Initialize common Rx ring structures */
2483 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2484 	priv->num_rx_bds = TOTAL_DESC;
2485 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2486 			       GFP_KERNEL);
2487 	if (!priv->rx_cbs)
2488 		return -ENOMEM;
2489 
2490 	for (i = 0; i < priv->num_rx_bds; i++) {
2491 		cb = priv->rx_cbs + i;
2492 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2493 	}
2494 
2495 	/* Initialize common TX ring structures */
2496 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2497 	priv->num_tx_bds = TOTAL_DESC;
2498 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2499 			       GFP_KERNEL);
2500 	if (!priv->tx_cbs) {
2501 		kfree(priv->rx_cbs);
2502 		return -ENOMEM;
2503 	}
2504 
2505 	for (i = 0; i < priv->num_tx_bds; i++) {
2506 		cb = priv->tx_cbs + i;
2507 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2508 	}
2509 
2510 	/* Init rDma */
2511 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2512 			     DMA_SCB_BURST_SIZE);
2513 
2514 	/* Initialize Rx queues */
2515 	ret = bcmgenet_init_rx_queues(priv->dev);
2516 	if (ret) {
2517 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2518 		bcmgenet_free_rx_buffers(priv);
2519 		kfree(priv->rx_cbs);
2520 		kfree(priv->tx_cbs);
2521 		return ret;
2522 	}
2523 
2524 	/* Init tDma */
2525 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2526 			     DMA_SCB_BURST_SIZE);
2527 
2528 	/* Initialize Tx queues */
2529 	bcmgenet_init_tx_queues(priv->dev);
2530 
2531 	return 0;
2532 }
2533 
2534 /* Interrupt bottom half */
2535 static void bcmgenet_irq_task(struct work_struct *work)
2536 {
2537 	unsigned int status;
2538 	struct bcmgenet_priv *priv = container_of(
2539 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2540 
2541 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2542 
2543 	spin_lock_irq(&priv->lock);
2544 	status = priv->irq0_stat;
2545 	priv->irq0_stat = 0;
2546 	spin_unlock_irq(&priv->lock);
2547 
2548 	if (status & UMAC_IRQ_PHY_DET_R &&
2549 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2550 		phy_init_hw(priv->dev->phydev);
2551 		genphy_config_aneg(priv->dev->phydev);
2552 	}
2553 
2554 	/* Link UP/DOWN event */
2555 	if (status & UMAC_IRQ_LINK_EVENT)
2556 		phy_mac_interrupt(priv->dev->phydev);
2557 
2558 }
2559 
2560 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2561 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2562 {
2563 	struct bcmgenet_priv *priv = dev_id;
2564 	struct bcmgenet_rx_ring *rx_ring;
2565 	struct bcmgenet_tx_ring *tx_ring;
2566 	unsigned int index, status;
2567 
2568 	/* Read irq status */
2569 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2570 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2571 
2572 	/* clear interrupts */
2573 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2574 
2575 	netif_dbg(priv, intr, priv->dev,
2576 		  "%s: IRQ=0x%x\n", __func__, status);
2577 
2578 	/* Check Rx priority queue interrupts */
2579 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2580 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2581 			continue;
2582 
2583 		rx_ring = &priv->rx_rings[index];
2584 		rx_ring->dim.event_ctr++;
2585 
2586 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2587 			rx_ring->int_disable(rx_ring);
2588 			__napi_schedule_irqoff(&rx_ring->napi);
2589 		}
2590 	}
2591 
2592 	/* Check Tx priority queue interrupts */
2593 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2594 		if (!(status & BIT(index)))
2595 			continue;
2596 
2597 		tx_ring = &priv->tx_rings[index];
2598 
2599 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2600 			tx_ring->int_disable(tx_ring);
2601 			__napi_schedule_irqoff(&tx_ring->napi);
2602 		}
2603 	}
2604 
2605 	return IRQ_HANDLED;
2606 }
2607 
2608 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2609 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2610 {
2611 	struct bcmgenet_priv *priv = dev_id;
2612 	struct bcmgenet_rx_ring *rx_ring;
2613 	struct bcmgenet_tx_ring *tx_ring;
2614 	unsigned int status;
2615 	unsigned long flags;
2616 
2617 	/* Read irq status */
2618 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2619 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2620 
2621 	/* clear interrupts */
2622 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2623 
2624 	netif_dbg(priv, intr, priv->dev,
2625 		  "IRQ=0x%x\n", status);
2626 
2627 	if (status & UMAC_IRQ_RXDMA_DONE) {
2628 		rx_ring = &priv->rx_rings[DESC_INDEX];
2629 		rx_ring->dim.event_ctr++;
2630 
2631 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2632 			rx_ring->int_disable(rx_ring);
2633 			__napi_schedule_irqoff(&rx_ring->napi);
2634 		}
2635 	}
2636 
2637 	if (status & UMAC_IRQ_TXDMA_DONE) {
2638 		tx_ring = &priv->tx_rings[DESC_INDEX];
2639 
2640 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2641 			tx_ring->int_disable(tx_ring);
2642 			__napi_schedule_irqoff(&tx_ring->napi);
2643 		}
2644 	}
2645 
2646 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2647 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2648 		wake_up(&priv->wq);
2649 	}
2650 
2651 	/* all other interested interrupts handled in bottom half */
2652 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2653 	if (status) {
2654 		/* Save irq status for bottom-half processing. */
2655 		spin_lock_irqsave(&priv->lock, flags);
2656 		priv->irq0_stat |= status;
2657 		spin_unlock_irqrestore(&priv->lock, flags);
2658 
2659 		schedule_work(&priv->bcmgenet_irq_work);
2660 	}
2661 
2662 	return IRQ_HANDLED;
2663 }
2664 
2665 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2666 {
2667 	struct bcmgenet_priv *priv = dev_id;
2668 
2669 	pm_wakeup_event(&priv->pdev->dev, 0);
2670 
2671 	return IRQ_HANDLED;
2672 }
2673 
2674 #ifdef CONFIG_NET_POLL_CONTROLLER
2675 static void bcmgenet_poll_controller(struct net_device *dev)
2676 {
2677 	struct bcmgenet_priv *priv = netdev_priv(dev);
2678 
2679 	/* Invoke the main RX/TX interrupt handler */
2680 	disable_irq(priv->irq0);
2681 	bcmgenet_isr0(priv->irq0, priv);
2682 	enable_irq(priv->irq0);
2683 
2684 	/* And the interrupt handler for RX/TX priority queues */
2685 	disable_irq(priv->irq1);
2686 	bcmgenet_isr1(priv->irq1, priv);
2687 	enable_irq(priv->irq1);
2688 }
2689 #endif
2690 
2691 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2692 {
2693 	u32 reg;
2694 
2695 	reg = bcmgenet_rbuf_ctrl_get(priv);
2696 	reg |= BIT(1);
2697 	bcmgenet_rbuf_ctrl_set(priv, reg);
2698 	udelay(10);
2699 
2700 	reg &= ~BIT(1);
2701 	bcmgenet_rbuf_ctrl_set(priv, reg);
2702 	udelay(10);
2703 }
2704 
2705 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2706 				 unsigned char *addr)
2707 {
2708 	bcmgenet_umac_writel(priv, get_unaligned_be32(&addr[0]), UMAC_MAC0);
2709 	bcmgenet_umac_writel(priv, get_unaligned_be16(&addr[4]), UMAC_MAC1);
2710 }
2711 
2712 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
2713 				 unsigned char *addr)
2714 {
2715 	u32 addr_tmp;
2716 
2717 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
2718 	put_unaligned_be32(addr_tmp, &addr[0]);
2719 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
2720 	put_unaligned_be16(addr_tmp, &addr[4]);
2721 }
2722 
2723 /* Returns a reusable dma control register value */
2724 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2725 {
2726 	u32 reg;
2727 	u32 dma_ctrl;
2728 
2729 	/* disable DMA */
2730 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2731 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2732 	reg &= ~dma_ctrl;
2733 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2734 
2735 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2736 	reg &= ~dma_ctrl;
2737 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2738 
2739 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2740 	udelay(10);
2741 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2742 
2743 	return dma_ctrl;
2744 }
2745 
2746 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2747 {
2748 	u32 reg;
2749 
2750 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2751 	reg |= dma_ctrl;
2752 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2753 
2754 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2755 	reg |= dma_ctrl;
2756 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2757 }
2758 
2759 /* bcmgenet_hfb_clear
2760  *
2761  * Clear Hardware Filter Block and disable all filtering.
2762  */
2763 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2764 {
2765 	u32 i;
2766 
2767 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2768 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2769 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2770 
2771 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2772 		bcmgenet_rdma_writel(priv, 0x0, i);
2773 
2774 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2775 		bcmgenet_hfb_reg_writel(priv, 0x0,
2776 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2777 
2778 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2779 			priv->hw_params->hfb_filter_size; i++)
2780 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2781 }
2782 
2783 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2784 {
2785 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2786 		return;
2787 
2788 	bcmgenet_hfb_clear(priv);
2789 }
2790 
2791 static void bcmgenet_netif_start(struct net_device *dev)
2792 {
2793 	struct bcmgenet_priv *priv = netdev_priv(dev);
2794 
2795 	/* Start the network engine */
2796 	bcmgenet_enable_rx_napi(priv);
2797 
2798 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2799 
2800 	bcmgenet_enable_tx_napi(priv);
2801 
2802 	/* Monitor link interrupts now */
2803 	bcmgenet_link_intr_enable(priv);
2804 
2805 	phy_start(dev->phydev);
2806 }
2807 
2808 static int bcmgenet_open(struct net_device *dev)
2809 {
2810 	struct bcmgenet_priv *priv = netdev_priv(dev);
2811 	unsigned long dma_ctrl;
2812 	u32 reg;
2813 	int ret;
2814 
2815 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2816 
2817 	/* Turn on the clock */
2818 	clk_prepare_enable(priv->clk);
2819 
2820 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2821 	 * brought out of reset as absolutely no UniMAC activity is allowed
2822 	 */
2823 	if (priv->internal_phy)
2824 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2825 
2826 	/* take MAC out of reset */
2827 	bcmgenet_umac_reset(priv);
2828 
2829 	init_umac(priv);
2830 
2831 	/* Apply features again in case we changed them while interface was
2832 	 * down
2833 	 */
2834 	bcmgenet_set_features(dev, dev->features);
2835 
2836 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2837 
2838 	if (priv->internal_phy) {
2839 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2840 		reg |= EXT_ENERGY_DET_MASK;
2841 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2842 	}
2843 
2844 	/* Disable RX/TX DMA and flush TX queues */
2845 	dma_ctrl = bcmgenet_dma_disable(priv);
2846 
2847 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2848 	ret = bcmgenet_init_dma(priv);
2849 	if (ret) {
2850 		netdev_err(dev, "failed to initialize DMA\n");
2851 		goto err_clk_disable;
2852 	}
2853 
2854 	/* Always enable ring 16 - descriptor ring */
2855 	bcmgenet_enable_dma(priv, dma_ctrl);
2856 
2857 	/* HFB init */
2858 	bcmgenet_hfb_init(priv);
2859 
2860 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2861 			  dev->name, priv);
2862 	if (ret < 0) {
2863 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2864 		goto err_fini_dma;
2865 	}
2866 
2867 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2868 			  dev->name, priv);
2869 	if (ret < 0) {
2870 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2871 		goto err_irq0;
2872 	}
2873 
2874 	ret = bcmgenet_mii_probe(dev);
2875 	if (ret) {
2876 		netdev_err(dev, "failed to connect to PHY\n");
2877 		goto err_irq1;
2878 	}
2879 
2880 	bcmgenet_netif_start(dev);
2881 
2882 	netif_tx_start_all_queues(dev);
2883 
2884 	return 0;
2885 
2886 err_irq1:
2887 	free_irq(priv->irq1, priv);
2888 err_irq0:
2889 	free_irq(priv->irq0, priv);
2890 err_fini_dma:
2891 	bcmgenet_dma_teardown(priv);
2892 	bcmgenet_fini_dma(priv);
2893 err_clk_disable:
2894 	if (priv->internal_phy)
2895 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2896 	clk_disable_unprepare(priv->clk);
2897 	return ret;
2898 }
2899 
2900 static void bcmgenet_netif_stop(struct net_device *dev)
2901 {
2902 	struct bcmgenet_priv *priv = netdev_priv(dev);
2903 
2904 	bcmgenet_disable_tx_napi(priv);
2905 	netif_tx_disable(dev);
2906 
2907 	/* Disable MAC receive */
2908 	umac_enable_set(priv, CMD_RX_EN, false);
2909 
2910 	bcmgenet_dma_teardown(priv);
2911 
2912 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2913 	umac_enable_set(priv, CMD_TX_EN, false);
2914 
2915 	phy_stop(dev->phydev);
2916 	bcmgenet_disable_rx_napi(priv);
2917 	bcmgenet_intr_disable(priv);
2918 
2919 	/* Wait for pending work items to complete. Since interrupts are
2920 	 * disabled no new work will be scheduled.
2921 	 */
2922 	cancel_work_sync(&priv->bcmgenet_irq_work);
2923 
2924 	priv->old_link = -1;
2925 	priv->old_speed = -1;
2926 	priv->old_duplex = -1;
2927 	priv->old_pause = -1;
2928 
2929 	/* tx reclaim */
2930 	bcmgenet_tx_reclaim_all(dev);
2931 	bcmgenet_fini_dma(priv);
2932 }
2933 
2934 static int bcmgenet_close(struct net_device *dev)
2935 {
2936 	struct bcmgenet_priv *priv = netdev_priv(dev);
2937 	int ret = 0;
2938 
2939 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2940 
2941 	bcmgenet_netif_stop(dev);
2942 
2943 	/* Really kill the PHY state machine and disconnect from it */
2944 	phy_disconnect(dev->phydev);
2945 
2946 	free_irq(priv->irq0, priv);
2947 	free_irq(priv->irq1, priv);
2948 
2949 	if (priv->internal_phy)
2950 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2951 
2952 	clk_disable_unprepare(priv->clk);
2953 
2954 	return ret;
2955 }
2956 
2957 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2958 {
2959 	struct bcmgenet_priv *priv = ring->priv;
2960 	u32 p_index, c_index, intsts, intmsk;
2961 	struct netdev_queue *txq;
2962 	unsigned int free_bds;
2963 	bool txq_stopped;
2964 
2965 	if (!netif_msg_tx_err(priv))
2966 		return;
2967 
2968 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
2969 
2970 	spin_lock(&ring->lock);
2971 	if (ring->index == DESC_INDEX) {
2972 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2973 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2974 	} else {
2975 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2976 		intmsk = 1 << ring->index;
2977 	}
2978 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2979 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2980 	txq_stopped = netif_tx_queue_stopped(txq);
2981 	free_bds = ring->free_bds;
2982 	spin_unlock(&ring->lock);
2983 
2984 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2985 		  "TX queue status: %s, interrupts: %s\n"
2986 		  "(sw)free_bds: %d (sw)size: %d\n"
2987 		  "(sw)p_index: %d (hw)p_index: %d\n"
2988 		  "(sw)c_index: %d (hw)c_index: %d\n"
2989 		  "(sw)clean_p: %d (sw)write_p: %d\n"
2990 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2991 		  ring->index, ring->queue,
2992 		  txq_stopped ? "stopped" : "active",
2993 		  intsts & intmsk ? "enabled" : "disabled",
2994 		  free_bds, ring->size,
2995 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
2996 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
2997 		  ring->clean_ptr, ring->write_ptr,
2998 		  ring->cb_ptr, ring->end_ptr);
2999 }
3000 
3001 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3002 {
3003 	struct bcmgenet_priv *priv = netdev_priv(dev);
3004 	u32 int0_enable = 0;
3005 	u32 int1_enable = 0;
3006 	unsigned int q;
3007 
3008 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3009 
3010 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3011 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3012 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3013 
3014 	bcmgenet_tx_reclaim_all(dev);
3015 
3016 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3017 		int1_enable |= (1 << q);
3018 
3019 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3020 
3021 	/* Re-enable TX interrupts if disabled */
3022 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3023 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3024 
3025 	netif_trans_update(dev);
3026 
3027 	dev->stats.tx_errors++;
3028 
3029 	netif_tx_wake_all_queues(dev);
3030 }
3031 
3032 #define MAX_MDF_FILTER	17
3033 
3034 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3035 					 unsigned char *addr,
3036 					 int *i)
3037 {
3038 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3039 			     UMAC_MDF_ADDR + (*i * 4));
3040 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3041 			     addr[4] << 8 | addr[5],
3042 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3043 	*i += 2;
3044 }
3045 
3046 static void bcmgenet_set_rx_mode(struct net_device *dev)
3047 {
3048 	struct bcmgenet_priv *priv = netdev_priv(dev);
3049 	struct netdev_hw_addr *ha;
3050 	int i, nfilter;
3051 	u32 reg;
3052 
3053 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3054 
3055 	/* Number of filters needed */
3056 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3057 
3058 	/*
3059 	 * Turn on promicuous mode for three scenarios
3060 	 * 1. IFF_PROMISC flag is set
3061 	 * 2. IFF_ALLMULTI flag is set
3062 	 * 3. The number of filters needed exceeds the number filters
3063 	 *    supported by the hardware.
3064 	*/
3065 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3066 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3067 	    (nfilter > MAX_MDF_FILTER)) {
3068 		reg |= CMD_PROMISC;
3069 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3070 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3071 		return;
3072 	} else {
3073 		reg &= ~CMD_PROMISC;
3074 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3075 	}
3076 
3077 	/* update MDF filter */
3078 	i = 0;
3079 	/* Broadcast */
3080 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3081 	/* my own address.*/
3082 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3083 
3084 	/* Unicast */
3085 	netdev_for_each_uc_addr(ha, dev)
3086 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3087 
3088 	/* Multicast */
3089 	netdev_for_each_mc_addr(ha, dev)
3090 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3091 
3092 	/* Enable filters */
3093 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3094 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3095 }
3096 
3097 /* Set the hardware MAC address. */
3098 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3099 {
3100 	struct sockaddr *addr = p;
3101 
3102 	/* Setting the MAC address at the hardware level is not possible
3103 	 * without disabling the UniMAC RX/TX enable bits.
3104 	 */
3105 	if (netif_running(dev))
3106 		return -EBUSY;
3107 
3108 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3109 
3110 	return 0;
3111 }
3112 
3113 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3114 {
3115 	struct bcmgenet_priv *priv = netdev_priv(dev);
3116 	unsigned long tx_bytes = 0, tx_packets = 0;
3117 	unsigned long rx_bytes = 0, rx_packets = 0;
3118 	unsigned long rx_errors = 0, rx_dropped = 0;
3119 	struct bcmgenet_tx_ring *tx_ring;
3120 	struct bcmgenet_rx_ring *rx_ring;
3121 	unsigned int q;
3122 
3123 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3124 		tx_ring = &priv->tx_rings[q];
3125 		tx_bytes += tx_ring->bytes;
3126 		tx_packets += tx_ring->packets;
3127 	}
3128 	tx_ring = &priv->tx_rings[DESC_INDEX];
3129 	tx_bytes += tx_ring->bytes;
3130 	tx_packets += tx_ring->packets;
3131 
3132 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3133 		rx_ring = &priv->rx_rings[q];
3134 
3135 		rx_bytes += rx_ring->bytes;
3136 		rx_packets += rx_ring->packets;
3137 		rx_errors += rx_ring->errors;
3138 		rx_dropped += rx_ring->dropped;
3139 	}
3140 	rx_ring = &priv->rx_rings[DESC_INDEX];
3141 	rx_bytes += rx_ring->bytes;
3142 	rx_packets += rx_ring->packets;
3143 	rx_errors += rx_ring->errors;
3144 	rx_dropped += rx_ring->dropped;
3145 
3146 	dev->stats.tx_bytes = tx_bytes;
3147 	dev->stats.tx_packets = tx_packets;
3148 	dev->stats.rx_bytes = rx_bytes;
3149 	dev->stats.rx_packets = rx_packets;
3150 	dev->stats.rx_errors = rx_errors;
3151 	dev->stats.rx_missed_errors = rx_errors;
3152 	dev->stats.rx_dropped = rx_dropped;
3153 	return &dev->stats;
3154 }
3155 
3156 static const struct net_device_ops bcmgenet_netdev_ops = {
3157 	.ndo_open		= bcmgenet_open,
3158 	.ndo_stop		= bcmgenet_close,
3159 	.ndo_start_xmit		= bcmgenet_xmit,
3160 	.ndo_tx_timeout		= bcmgenet_timeout,
3161 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3162 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3163 	.ndo_do_ioctl		= phy_do_ioctl_running,
3164 	.ndo_set_features	= bcmgenet_set_features,
3165 #ifdef CONFIG_NET_POLL_CONTROLLER
3166 	.ndo_poll_controller	= bcmgenet_poll_controller,
3167 #endif
3168 	.ndo_get_stats		= bcmgenet_get_stats,
3169 };
3170 
3171 /* Array of GENET hardware parameters/characteristics */
3172 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3173 	[GENET_V1] = {
3174 		.tx_queues = 0,
3175 		.tx_bds_per_q = 0,
3176 		.rx_queues = 0,
3177 		.rx_bds_per_q = 0,
3178 		.bp_in_en_shift = 16,
3179 		.bp_in_mask = 0xffff,
3180 		.hfb_filter_cnt = 16,
3181 		.qtag_mask = 0x1F,
3182 		.hfb_offset = 0x1000,
3183 		.rdma_offset = 0x2000,
3184 		.tdma_offset = 0x3000,
3185 		.words_per_bd = 2,
3186 	},
3187 	[GENET_V2] = {
3188 		.tx_queues = 4,
3189 		.tx_bds_per_q = 32,
3190 		.rx_queues = 0,
3191 		.rx_bds_per_q = 0,
3192 		.bp_in_en_shift = 16,
3193 		.bp_in_mask = 0xffff,
3194 		.hfb_filter_cnt = 16,
3195 		.qtag_mask = 0x1F,
3196 		.tbuf_offset = 0x0600,
3197 		.hfb_offset = 0x1000,
3198 		.hfb_reg_offset = 0x2000,
3199 		.rdma_offset = 0x3000,
3200 		.tdma_offset = 0x4000,
3201 		.words_per_bd = 2,
3202 		.flags = GENET_HAS_EXT,
3203 	},
3204 	[GENET_V3] = {
3205 		.tx_queues = 4,
3206 		.tx_bds_per_q = 32,
3207 		.rx_queues = 0,
3208 		.rx_bds_per_q = 0,
3209 		.bp_in_en_shift = 17,
3210 		.bp_in_mask = 0x1ffff,
3211 		.hfb_filter_cnt = 48,
3212 		.hfb_filter_size = 128,
3213 		.qtag_mask = 0x3F,
3214 		.tbuf_offset = 0x0600,
3215 		.hfb_offset = 0x8000,
3216 		.hfb_reg_offset = 0xfc00,
3217 		.rdma_offset = 0x10000,
3218 		.tdma_offset = 0x11000,
3219 		.words_per_bd = 2,
3220 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3221 			 GENET_HAS_MOCA_LINK_DET,
3222 	},
3223 	[GENET_V4] = {
3224 		.tx_queues = 4,
3225 		.tx_bds_per_q = 32,
3226 		.rx_queues = 0,
3227 		.rx_bds_per_q = 0,
3228 		.bp_in_en_shift = 17,
3229 		.bp_in_mask = 0x1ffff,
3230 		.hfb_filter_cnt = 48,
3231 		.hfb_filter_size = 128,
3232 		.qtag_mask = 0x3F,
3233 		.tbuf_offset = 0x0600,
3234 		.hfb_offset = 0x8000,
3235 		.hfb_reg_offset = 0xfc00,
3236 		.rdma_offset = 0x2000,
3237 		.tdma_offset = 0x4000,
3238 		.words_per_bd = 3,
3239 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3240 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3241 	},
3242 	[GENET_V5] = {
3243 		.tx_queues = 4,
3244 		.tx_bds_per_q = 32,
3245 		.rx_queues = 0,
3246 		.rx_bds_per_q = 0,
3247 		.bp_in_en_shift = 17,
3248 		.bp_in_mask = 0x1ffff,
3249 		.hfb_filter_cnt = 48,
3250 		.hfb_filter_size = 128,
3251 		.qtag_mask = 0x3F,
3252 		.tbuf_offset = 0x0600,
3253 		.hfb_offset = 0x8000,
3254 		.hfb_reg_offset = 0xfc00,
3255 		.rdma_offset = 0x2000,
3256 		.tdma_offset = 0x4000,
3257 		.words_per_bd = 3,
3258 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3259 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3260 	},
3261 };
3262 
3263 /* Infer hardware parameters from the detected GENET version */
3264 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3265 {
3266 	struct bcmgenet_hw_params *params;
3267 	u32 reg;
3268 	u8 major;
3269 	u16 gphy_rev;
3270 
3271 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3272 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3273 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3274 	} else if (GENET_IS_V3(priv)) {
3275 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3276 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3277 	} else if (GENET_IS_V2(priv)) {
3278 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3279 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3280 	} else if (GENET_IS_V1(priv)) {
3281 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3282 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3283 	}
3284 
3285 	/* enum genet_version starts at 1 */
3286 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3287 	params = priv->hw_params;
3288 
3289 	/* Read GENET HW version */
3290 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3291 	major = (reg >> 24 & 0x0f);
3292 	if (major == 6)
3293 		major = 5;
3294 	else if (major == 5)
3295 		major = 4;
3296 	else if (major == 0)
3297 		major = 1;
3298 	if (major != priv->version) {
3299 		dev_err(&priv->pdev->dev,
3300 			"GENET version mismatch, got: %d, configured for: %d\n",
3301 			major, priv->version);
3302 	}
3303 
3304 	/* Print the GENET core version */
3305 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3306 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3307 
3308 	/* Store the integrated PHY revision for the MDIO probing function
3309 	 * to pass this information to the PHY driver. The PHY driver expects
3310 	 * to find the PHY major revision in bits 15:8 while the GENET register
3311 	 * stores that information in bits 7:0, account for that.
3312 	 *
3313 	 * On newer chips, starting with PHY revision G0, a new scheme is
3314 	 * deployed similar to the Starfighter 2 switch with GPHY major
3315 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3316 	 * is reserved as well as special value 0x01ff, we have a small
3317 	 * heuristic to check for the new GPHY revision and re-arrange things
3318 	 * so the GPHY driver is happy.
3319 	 */
3320 	gphy_rev = reg & 0xffff;
3321 
3322 	if (GENET_IS_V5(priv)) {
3323 		/* The EPHY revision should come from the MDIO registers of
3324 		 * the PHY not from GENET.
3325 		 */
3326 		if (gphy_rev != 0) {
3327 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3328 				gphy_rev);
3329 		}
3330 	/* This is reserved so should require special treatment */
3331 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3332 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3333 		return;
3334 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3335 	} else if ((gphy_rev & 0xf0) != 0) {
3336 		priv->gphy_rev = gphy_rev << 8;
3337 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3338 	} else if ((gphy_rev & 0xff00) != 0) {
3339 		priv->gphy_rev = gphy_rev;
3340 	}
3341 
3342 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3343 	if (!(params->flags & GENET_HAS_40BITS))
3344 		pr_warn("GENET does not support 40-bits PA\n");
3345 #endif
3346 
3347 	pr_debug("Configuration for version: %d\n"
3348 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3349 		"BP << en: %2d, BP msk: 0x%05x\n"
3350 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3351 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3352 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3353 		"Words/BD: %d\n",
3354 		priv->version,
3355 		params->tx_queues, params->tx_bds_per_q,
3356 		params->rx_queues, params->rx_bds_per_q,
3357 		params->bp_in_en_shift, params->bp_in_mask,
3358 		params->hfb_filter_cnt, params->qtag_mask,
3359 		params->tbuf_offset, params->hfb_offset,
3360 		params->hfb_reg_offset,
3361 		params->rdma_offset, params->tdma_offset,
3362 		params->words_per_bd);
3363 }
3364 
3365 struct bcmgenet_plat_data {
3366 	enum bcmgenet_version version;
3367 	u32 dma_max_burst_length;
3368 };
3369 
3370 static const struct bcmgenet_plat_data v1_plat_data = {
3371 	.version = GENET_V1,
3372 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3373 };
3374 
3375 static const struct bcmgenet_plat_data v2_plat_data = {
3376 	.version = GENET_V2,
3377 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3378 };
3379 
3380 static const struct bcmgenet_plat_data v3_plat_data = {
3381 	.version = GENET_V3,
3382 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3383 };
3384 
3385 static const struct bcmgenet_plat_data v4_plat_data = {
3386 	.version = GENET_V4,
3387 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3388 };
3389 
3390 static const struct bcmgenet_plat_data v5_plat_data = {
3391 	.version = GENET_V5,
3392 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3393 };
3394 
3395 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3396 	.version = GENET_V5,
3397 	.dma_max_burst_length = 0x08,
3398 };
3399 
3400 static const struct of_device_id bcmgenet_match[] = {
3401 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3402 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3403 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3404 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3405 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3406 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3407 	{ },
3408 };
3409 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3410 
3411 static int bcmgenet_probe(struct platform_device *pdev)
3412 {
3413 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3414 	const struct bcmgenet_plat_data *pdata;
3415 	struct bcmgenet_priv *priv;
3416 	struct net_device *dev;
3417 	unsigned int i;
3418 	int err = -EIO;
3419 
3420 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3421 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3422 				 GENET_MAX_MQ_CNT + 1);
3423 	if (!dev) {
3424 		dev_err(&pdev->dev, "can't allocate net device\n");
3425 		return -ENOMEM;
3426 	}
3427 
3428 	priv = netdev_priv(dev);
3429 	priv->irq0 = platform_get_irq(pdev, 0);
3430 	if (priv->irq0 < 0) {
3431 		err = priv->irq0;
3432 		goto err;
3433 	}
3434 	priv->irq1 = platform_get_irq(pdev, 1);
3435 	if (priv->irq1 < 0) {
3436 		err = priv->irq1;
3437 		goto err;
3438 	}
3439 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3440 
3441 	priv->base = devm_platform_ioremap_resource(pdev, 0);
3442 	if (IS_ERR(priv->base)) {
3443 		err = PTR_ERR(priv->base);
3444 		goto err;
3445 	}
3446 
3447 	spin_lock_init(&priv->lock);
3448 
3449 	SET_NETDEV_DEV(dev, &pdev->dev);
3450 	dev_set_drvdata(&pdev->dev, dev);
3451 	dev->watchdog_timeo = 2 * HZ;
3452 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3453 	dev->netdev_ops = &bcmgenet_netdev_ops;
3454 
3455 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3456 
3457 	/* Set default features */
3458 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3459 			 NETIF_F_RXCSUM;
3460 	dev->hw_features |= dev->features;
3461 	dev->vlan_features |= dev->features;
3462 
3463 	/* Request the WOL interrupt and advertise suspend if available */
3464 	priv->wol_irq_disabled = true;
3465 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3466 			       dev->name, priv);
3467 	if (!err)
3468 		device_set_wakeup_capable(&pdev->dev, 1);
3469 
3470 	/* Set the needed headroom to account for any possible
3471 	 * features enabling/disabling at runtime
3472 	 */
3473 	dev->needed_headroom += 64;
3474 
3475 	netdev_boot_setup_check(dev);
3476 
3477 	priv->dev = dev;
3478 	priv->pdev = pdev;
3479 
3480 	pdata = device_get_match_data(&pdev->dev);
3481 	if (pdata) {
3482 		priv->version = pdata->version;
3483 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
3484 	} else {
3485 		priv->version = pd->genet_version;
3486 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3487 	}
3488 
3489 	priv->clk = devm_clk_get_optional(&priv->pdev->dev, "enet");
3490 	if (IS_ERR(priv->clk)) {
3491 		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3492 		err = PTR_ERR(priv->clk);
3493 		goto err;
3494 	}
3495 
3496 	err = clk_prepare_enable(priv->clk);
3497 	if (err)
3498 		goto err;
3499 
3500 	bcmgenet_set_hw_params(priv);
3501 
3502 	err = -EIO;
3503 	if (priv->hw_params->flags & GENET_HAS_40BITS)
3504 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3505 	if (err)
3506 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3507 	if (err)
3508 		goto err;
3509 
3510 	/* Mii wait queue */
3511 	init_waitqueue_head(&priv->wq);
3512 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3513 	priv->rx_buf_len = RX_BUF_LENGTH;
3514 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3515 
3516 	priv->clk_wol = devm_clk_get_optional(&priv->pdev->dev, "enet-wol");
3517 	if (IS_ERR(priv->clk_wol)) {
3518 		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
3519 		err = PTR_ERR(priv->clk_wol);
3520 		goto err;
3521 	}
3522 
3523 	priv->clk_eee = devm_clk_get_optional(&priv->pdev->dev, "enet-eee");
3524 	if (IS_ERR(priv->clk_eee)) {
3525 		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
3526 		err = PTR_ERR(priv->clk_eee);
3527 		goto err;
3528 	}
3529 
3530 	/* If this is an internal GPHY, power it on now, before UniMAC is
3531 	 * brought out of reset as absolutely no UniMAC activity is allowed
3532 	 */
3533 	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
3534 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3535 
3536 	if (pd && !IS_ERR_OR_NULL(pd->mac_address))
3537 		ether_addr_copy(dev->dev_addr, pd->mac_address);
3538 	else
3539 		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
3540 			if (has_acpi_companion(&pdev->dev))
3541 				bcmgenet_get_hw_addr(priv, dev->dev_addr);
3542 
3543 	if (!is_valid_ether_addr(dev->dev_addr)) {
3544 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3545 		eth_hw_addr_random(dev);
3546 	}
3547 
3548 	reset_umac(priv);
3549 
3550 	err = bcmgenet_mii_init(dev);
3551 	if (err)
3552 		goto err_clk_disable;
3553 
3554 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3555 	 * just the ring 16 descriptor based TX
3556 	 */
3557 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3558 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3559 
3560 	/* Set default coalescing parameters */
3561 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3562 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
3563 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3564 
3565 	/* libphy will determine the link state */
3566 	netif_carrier_off(dev);
3567 
3568 	/* Turn off the main clock, WOL clock is handled separately */
3569 	clk_disable_unprepare(priv->clk);
3570 
3571 	err = register_netdev(dev);
3572 	if (err)
3573 		goto err;
3574 
3575 	return err;
3576 
3577 err_clk_disable:
3578 	clk_disable_unprepare(priv->clk);
3579 err:
3580 	free_netdev(dev);
3581 	return err;
3582 }
3583 
3584 static int bcmgenet_remove(struct platform_device *pdev)
3585 {
3586 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3587 
3588 	dev_set_drvdata(&pdev->dev, NULL);
3589 	unregister_netdev(priv->dev);
3590 	bcmgenet_mii_exit(priv->dev);
3591 	free_netdev(priv->dev);
3592 
3593 	return 0;
3594 }
3595 
3596 static void bcmgenet_shutdown(struct platform_device *pdev)
3597 {
3598 	bcmgenet_remove(pdev);
3599 }
3600 
3601 #ifdef CONFIG_PM_SLEEP
3602 static int bcmgenet_resume(struct device *d)
3603 {
3604 	struct net_device *dev = dev_get_drvdata(d);
3605 	struct bcmgenet_priv *priv = netdev_priv(dev);
3606 	unsigned long dma_ctrl;
3607 	int ret;
3608 	u32 reg;
3609 
3610 	if (!netif_running(dev))
3611 		return 0;
3612 
3613 	/* Turn on the clock */
3614 	ret = clk_prepare_enable(priv->clk);
3615 	if (ret)
3616 		return ret;
3617 
3618 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3619 	 * brought out of reset as absolutely no UniMAC activity is allowed
3620 	 */
3621 	if (priv->internal_phy)
3622 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3623 
3624 	bcmgenet_umac_reset(priv);
3625 
3626 	init_umac(priv);
3627 
3628 	/* From WOL-enabled suspend, switch to regular clock */
3629 	if (priv->wolopts)
3630 		clk_disable_unprepare(priv->clk_wol);
3631 
3632 	phy_init_hw(dev->phydev);
3633 
3634 	/* Speed settings must be restored */
3635 	genphy_config_aneg(dev->phydev);
3636 	bcmgenet_mii_config(priv->dev, false);
3637 
3638 	/* Restore enabled features */
3639 	bcmgenet_set_features(dev, dev->features);
3640 
3641 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3642 
3643 	if (priv->internal_phy) {
3644 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3645 		reg |= EXT_ENERGY_DET_MASK;
3646 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3647 	}
3648 
3649 	if (priv->wolopts)
3650 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3651 
3652 	/* Disable RX/TX DMA and flush TX queues */
3653 	dma_ctrl = bcmgenet_dma_disable(priv);
3654 
3655 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3656 	ret = bcmgenet_init_dma(priv);
3657 	if (ret) {
3658 		netdev_err(dev, "failed to initialize DMA\n");
3659 		goto out_clk_disable;
3660 	}
3661 
3662 	/* Always enable ring 16 - descriptor ring */
3663 	bcmgenet_enable_dma(priv, dma_ctrl);
3664 
3665 	if (!device_may_wakeup(d))
3666 		phy_resume(dev->phydev);
3667 
3668 	if (priv->eee.eee_enabled)
3669 		bcmgenet_eee_enable_set(dev, true);
3670 
3671 	bcmgenet_netif_start(dev);
3672 
3673 	netif_device_attach(dev);
3674 
3675 	return 0;
3676 
3677 out_clk_disable:
3678 	if (priv->internal_phy)
3679 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3680 	clk_disable_unprepare(priv->clk);
3681 	return ret;
3682 }
3683 
3684 static int bcmgenet_suspend(struct device *d)
3685 {
3686 	struct net_device *dev = dev_get_drvdata(d);
3687 	struct bcmgenet_priv *priv = netdev_priv(dev);
3688 	int ret = 0;
3689 
3690 	if (!netif_running(dev))
3691 		return 0;
3692 
3693 	netif_device_detach(dev);
3694 
3695 	bcmgenet_netif_stop(dev);
3696 
3697 	if (!device_may_wakeup(d))
3698 		phy_suspend(dev->phydev);
3699 
3700 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3701 	if (device_may_wakeup(d) && priv->wolopts) {
3702 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3703 		clk_prepare_enable(priv->clk_wol);
3704 	} else if (priv->internal_phy) {
3705 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3706 	}
3707 
3708 	/* Turn off the clocks */
3709 	clk_disable_unprepare(priv->clk);
3710 
3711 	if (ret)
3712 		bcmgenet_resume(d);
3713 
3714 	return ret;
3715 }
3716 #endif /* CONFIG_PM_SLEEP */
3717 
3718 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3719 
3720 static const struct acpi_device_id genet_acpi_match[] = {
3721 	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
3722 	{ },
3723 };
3724 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
3725 
3726 static struct platform_driver bcmgenet_driver = {
3727 	.probe	= bcmgenet_probe,
3728 	.remove	= bcmgenet_remove,
3729 	.shutdown = bcmgenet_shutdown,
3730 	.driver	= {
3731 		.name	= "bcmgenet",
3732 		.of_match_table = bcmgenet_match,
3733 		.pm	= &bcmgenet_pm_ops,
3734 		.acpi_match_table = genet_acpi_match,
3735 	},
3736 };
3737 module_platform_driver(bcmgenet_driver);
3738 
3739 MODULE_AUTHOR("Broadcom Corporation");
3740 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3741 MODULE_ALIAS("platform:bcmgenet");
3742 MODULE_LICENSE("GPL");
3743