xref: /linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision 402cb8dda949d9b8c0df20ad2527d139faad7ca1)
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014-2017 Broadcom
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
76 {
77 	/* MIPS chips strapped for BE will automagically configure the
78 	 * peripheral registers for CPU-native byte order.
79 	 */
80 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
81 		__raw_writel(value, offset);
82 	else
83 		writel_relaxed(value, offset);
84 }
85 
86 static inline u32 bcmgenet_readl(void __iomem *offset)
87 {
88 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
89 		return __raw_readl(offset);
90 	else
91 		return readl_relaxed(offset);
92 }
93 
94 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
95 					     void __iomem *d, u32 value)
96 {
97 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
98 }
99 
100 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
101 					    void __iomem *d)
102 {
103 	return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
104 }
105 
106 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
107 				    void __iomem *d,
108 				    dma_addr_t addr)
109 {
110 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
111 
112 	/* Register writes to GISB bus can take couple hundred nanoseconds
113 	 * and are done for each packet, save these expensive writes unless
114 	 * the platform is explicitly configured for 64-bits/LPAE.
115 	 */
116 #ifdef CONFIG_PHYS_ADDR_T_64BIT
117 	if (priv->hw_params->flags & GENET_HAS_40BITS)
118 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
119 #endif
120 }
121 
122 /* Combined address + length/status setter */
123 static inline void dmadesc_set(struct bcmgenet_priv *priv,
124 			       void __iomem *d, dma_addr_t addr, u32 val)
125 {
126 	dmadesc_set_addr(priv, d, addr);
127 	dmadesc_set_length_status(priv, d, val);
128 }
129 
130 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
131 					  void __iomem *d)
132 {
133 	dma_addr_t addr;
134 
135 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
136 
137 	/* Register writes to GISB bus can take couple hundred nanoseconds
138 	 * and are done for each packet, save these expensive writes unless
139 	 * the platform is explicitly configured for 64-bits/LPAE.
140 	 */
141 #ifdef CONFIG_PHYS_ADDR_T_64BIT
142 	if (priv->hw_params->flags & GENET_HAS_40BITS)
143 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
144 #endif
145 	return addr;
146 }
147 
148 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
149 
150 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
151 				NETIF_MSG_LINK)
152 
153 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
154 {
155 	if (GENET_IS_V1(priv))
156 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
157 	else
158 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
159 }
160 
161 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
162 {
163 	if (GENET_IS_V1(priv))
164 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
165 	else
166 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
167 }
168 
169 /* These macros are defined to deal with register map change
170  * between GENET1.1 and GENET2. Only those currently being used
171  * by driver are defined.
172  */
173 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
174 {
175 	if (GENET_IS_V1(priv))
176 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
177 	else
178 		return bcmgenet_readl(priv->base +
179 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
180 }
181 
182 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
183 {
184 	if (GENET_IS_V1(priv))
185 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
186 	else
187 		bcmgenet_writel(val, priv->base +
188 				priv->hw_params->tbuf_offset + TBUF_CTRL);
189 }
190 
191 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
192 {
193 	if (GENET_IS_V1(priv))
194 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
195 	else
196 		return bcmgenet_readl(priv->base +
197 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
198 }
199 
200 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
201 {
202 	if (GENET_IS_V1(priv))
203 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
204 	else
205 		bcmgenet_writel(val, priv->base +
206 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
207 }
208 
209 /* RX/TX DMA register accessors */
210 enum dma_reg {
211 	DMA_RING_CFG = 0,
212 	DMA_CTRL,
213 	DMA_STATUS,
214 	DMA_SCB_BURST_SIZE,
215 	DMA_ARB_CTRL,
216 	DMA_PRIORITY_0,
217 	DMA_PRIORITY_1,
218 	DMA_PRIORITY_2,
219 	DMA_INDEX2RING_0,
220 	DMA_INDEX2RING_1,
221 	DMA_INDEX2RING_2,
222 	DMA_INDEX2RING_3,
223 	DMA_INDEX2RING_4,
224 	DMA_INDEX2RING_5,
225 	DMA_INDEX2RING_6,
226 	DMA_INDEX2RING_7,
227 	DMA_RING0_TIMEOUT,
228 	DMA_RING1_TIMEOUT,
229 	DMA_RING2_TIMEOUT,
230 	DMA_RING3_TIMEOUT,
231 	DMA_RING4_TIMEOUT,
232 	DMA_RING5_TIMEOUT,
233 	DMA_RING6_TIMEOUT,
234 	DMA_RING7_TIMEOUT,
235 	DMA_RING8_TIMEOUT,
236 	DMA_RING9_TIMEOUT,
237 	DMA_RING10_TIMEOUT,
238 	DMA_RING11_TIMEOUT,
239 	DMA_RING12_TIMEOUT,
240 	DMA_RING13_TIMEOUT,
241 	DMA_RING14_TIMEOUT,
242 	DMA_RING15_TIMEOUT,
243 	DMA_RING16_TIMEOUT,
244 };
245 
246 static const u8 bcmgenet_dma_regs_v3plus[] = {
247 	[DMA_RING_CFG]		= 0x00,
248 	[DMA_CTRL]		= 0x04,
249 	[DMA_STATUS]		= 0x08,
250 	[DMA_SCB_BURST_SIZE]	= 0x0C,
251 	[DMA_ARB_CTRL]		= 0x2C,
252 	[DMA_PRIORITY_0]	= 0x30,
253 	[DMA_PRIORITY_1]	= 0x34,
254 	[DMA_PRIORITY_2]	= 0x38,
255 	[DMA_RING0_TIMEOUT]	= 0x2C,
256 	[DMA_RING1_TIMEOUT]	= 0x30,
257 	[DMA_RING2_TIMEOUT]	= 0x34,
258 	[DMA_RING3_TIMEOUT]	= 0x38,
259 	[DMA_RING4_TIMEOUT]	= 0x3c,
260 	[DMA_RING5_TIMEOUT]	= 0x40,
261 	[DMA_RING6_TIMEOUT]	= 0x44,
262 	[DMA_RING7_TIMEOUT]	= 0x48,
263 	[DMA_RING8_TIMEOUT]	= 0x4c,
264 	[DMA_RING9_TIMEOUT]	= 0x50,
265 	[DMA_RING10_TIMEOUT]	= 0x54,
266 	[DMA_RING11_TIMEOUT]	= 0x58,
267 	[DMA_RING12_TIMEOUT]	= 0x5c,
268 	[DMA_RING13_TIMEOUT]	= 0x60,
269 	[DMA_RING14_TIMEOUT]	= 0x64,
270 	[DMA_RING15_TIMEOUT]	= 0x68,
271 	[DMA_RING16_TIMEOUT]	= 0x6C,
272 	[DMA_INDEX2RING_0]	= 0x70,
273 	[DMA_INDEX2RING_1]	= 0x74,
274 	[DMA_INDEX2RING_2]	= 0x78,
275 	[DMA_INDEX2RING_3]	= 0x7C,
276 	[DMA_INDEX2RING_4]	= 0x80,
277 	[DMA_INDEX2RING_5]	= 0x84,
278 	[DMA_INDEX2RING_6]	= 0x88,
279 	[DMA_INDEX2RING_7]	= 0x8C,
280 };
281 
282 static const u8 bcmgenet_dma_regs_v2[] = {
283 	[DMA_RING_CFG]		= 0x00,
284 	[DMA_CTRL]		= 0x04,
285 	[DMA_STATUS]		= 0x08,
286 	[DMA_SCB_BURST_SIZE]	= 0x0C,
287 	[DMA_ARB_CTRL]		= 0x30,
288 	[DMA_PRIORITY_0]	= 0x34,
289 	[DMA_PRIORITY_1]	= 0x38,
290 	[DMA_PRIORITY_2]	= 0x3C,
291 	[DMA_RING0_TIMEOUT]	= 0x2C,
292 	[DMA_RING1_TIMEOUT]	= 0x30,
293 	[DMA_RING2_TIMEOUT]	= 0x34,
294 	[DMA_RING3_TIMEOUT]	= 0x38,
295 	[DMA_RING4_TIMEOUT]	= 0x3c,
296 	[DMA_RING5_TIMEOUT]	= 0x40,
297 	[DMA_RING6_TIMEOUT]	= 0x44,
298 	[DMA_RING7_TIMEOUT]	= 0x48,
299 	[DMA_RING8_TIMEOUT]	= 0x4c,
300 	[DMA_RING9_TIMEOUT]	= 0x50,
301 	[DMA_RING10_TIMEOUT]	= 0x54,
302 	[DMA_RING11_TIMEOUT]	= 0x58,
303 	[DMA_RING12_TIMEOUT]	= 0x5c,
304 	[DMA_RING13_TIMEOUT]	= 0x60,
305 	[DMA_RING14_TIMEOUT]	= 0x64,
306 	[DMA_RING15_TIMEOUT]	= 0x68,
307 	[DMA_RING16_TIMEOUT]	= 0x6C,
308 };
309 
310 static const u8 bcmgenet_dma_regs_v1[] = {
311 	[DMA_CTRL]		= 0x00,
312 	[DMA_STATUS]		= 0x04,
313 	[DMA_SCB_BURST_SIZE]	= 0x0C,
314 	[DMA_ARB_CTRL]		= 0x30,
315 	[DMA_PRIORITY_0]	= 0x34,
316 	[DMA_PRIORITY_1]	= 0x38,
317 	[DMA_PRIORITY_2]	= 0x3C,
318 	[DMA_RING0_TIMEOUT]	= 0x2C,
319 	[DMA_RING1_TIMEOUT]	= 0x30,
320 	[DMA_RING2_TIMEOUT]	= 0x34,
321 	[DMA_RING3_TIMEOUT]	= 0x38,
322 	[DMA_RING4_TIMEOUT]	= 0x3c,
323 	[DMA_RING5_TIMEOUT]	= 0x40,
324 	[DMA_RING6_TIMEOUT]	= 0x44,
325 	[DMA_RING7_TIMEOUT]	= 0x48,
326 	[DMA_RING8_TIMEOUT]	= 0x4c,
327 	[DMA_RING9_TIMEOUT]	= 0x50,
328 	[DMA_RING10_TIMEOUT]	= 0x54,
329 	[DMA_RING11_TIMEOUT]	= 0x58,
330 	[DMA_RING12_TIMEOUT]	= 0x5c,
331 	[DMA_RING13_TIMEOUT]	= 0x60,
332 	[DMA_RING14_TIMEOUT]	= 0x64,
333 	[DMA_RING15_TIMEOUT]	= 0x68,
334 	[DMA_RING16_TIMEOUT]	= 0x6C,
335 };
336 
337 /* Set at runtime once bcmgenet version is known */
338 static const u8 *bcmgenet_dma_regs;
339 
340 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
341 {
342 	return netdev_priv(dev_get_drvdata(dev));
343 }
344 
345 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
346 				      enum dma_reg r)
347 {
348 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
349 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
350 }
351 
352 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
353 					u32 val, enum dma_reg r)
354 {
355 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
356 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
357 }
358 
359 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
360 				      enum dma_reg r)
361 {
362 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
363 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
364 }
365 
366 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
367 					u32 val, enum dma_reg r)
368 {
369 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
370 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
371 }
372 
373 /* RDMA/TDMA ring registers and accessors
374  * we merge the common fields and just prefix with T/D the registers
375  * having different meaning depending on the direction
376  */
377 enum dma_ring_reg {
378 	TDMA_READ_PTR = 0,
379 	RDMA_WRITE_PTR = TDMA_READ_PTR,
380 	TDMA_READ_PTR_HI,
381 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
382 	TDMA_CONS_INDEX,
383 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
384 	TDMA_PROD_INDEX,
385 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
386 	DMA_RING_BUF_SIZE,
387 	DMA_START_ADDR,
388 	DMA_START_ADDR_HI,
389 	DMA_END_ADDR,
390 	DMA_END_ADDR_HI,
391 	DMA_MBUF_DONE_THRESH,
392 	TDMA_FLOW_PERIOD,
393 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
394 	TDMA_WRITE_PTR,
395 	RDMA_READ_PTR = TDMA_WRITE_PTR,
396 	TDMA_WRITE_PTR_HI,
397 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
398 };
399 
400 /* GENET v4 supports 40-bits pointer addressing
401  * for obvious reasons the LO and HI word parts
402  * are contiguous, but this offsets the other
403  * registers.
404  */
405 static const u8 genet_dma_ring_regs_v4[] = {
406 	[TDMA_READ_PTR]			= 0x00,
407 	[TDMA_READ_PTR_HI]		= 0x04,
408 	[TDMA_CONS_INDEX]		= 0x08,
409 	[TDMA_PROD_INDEX]		= 0x0C,
410 	[DMA_RING_BUF_SIZE]		= 0x10,
411 	[DMA_START_ADDR]		= 0x14,
412 	[DMA_START_ADDR_HI]		= 0x18,
413 	[DMA_END_ADDR]			= 0x1C,
414 	[DMA_END_ADDR_HI]		= 0x20,
415 	[DMA_MBUF_DONE_THRESH]		= 0x24,
416 	[TDMA_FLOW_PERIOD]		= 0x28,
417 	[TDMA_WRITE_PTR]		= 0x2C,
418 	[TDMA_WRITE_PTR_HI]		= 0x30,
419 };
420 
421 static const u8 genet_dma_ring_regs_v123[] = {
422 	[TDMA_READ_PTR]			= 0x00,
423 	[TDMA_CONS_INDEX]		= 0x04,
424 	[TDMA_PROD_INDEX]		= 0x08,
425 	[DMA_RING_BUF_SIZE]		= 0x0C,
426 	[DMA_START_ADDR]		= 0x10,
427 	[DMA_END_ADDR]			= 0x14,
428 	[DMA_MBUF_DONE_THRESH]		= 0x18,
429 	[TDMA_FLOW_PERIOD]		= 0x1C,
430 	[TDMA_WRITE_PTR]		= 0x20,
431 };
432 
433 /* Set at runtime once GENET version is known */
434 static const u8 *genet_dma_ring_regs;
435 
436 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
437 					   unsigned int ring,
438 					   enum dma_ring_reg r)
439 {
440 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
441 			      (DMA_RING_SIZE * ring) +
442 			      genet_dma_ring_regs[r]);
443 }
444 
445 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
446 					     unsigned int ring, u32 val,
447 					     enum dma_ring_reg r)
448 {
449 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
450 			(DMA_RING_SIZE * ring) +
451 			genet_dma_ring_regs[r]);
452 }
453 
454 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
455 					   unsigned int ring,
456 					   enum dma_ring_reg r)
457 {
458 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
459 			      (DMA_RING_SIZE * ring) +
460 			      genet_dma_ring_regs[r]);
461 }
462 
463 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
464 					     unsigned int ring, u32 val,
465 					     enum dma_ring_reg r)
466 {
467 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
468 			(DMA_RING_SIZE * ring) +
469 			genet_dma_ring_regs[r]);
470 }
471 
472 static int bcmgenet_begin(struct net_device *dev)
473 {
474 	struct bcmgenet_priv *priv = netdev_priv(dev);
475 
476 	/* Turn on the clock */
477 	return clk_prepare_enable(priv->clk);
478 }
479 
480 static void bcmgenet_complete(struct net_device *dev)
481 {
482 	struct bcmgenet_priv *priv = netdev_priv(dev);
483 
484 	/* Turn off the clock */
485 	clk_disable_unprepare(priv->clk);
486 }
487 
488 static int bcmgenet_get_link_ksettings(struct net_device *dev,
489 				       struct ethtool_link_ksettings *cmd)
490 {
491 	if (!netif_running(dev))
492 		return -EINVAL;
493 
494 	if (!dev->phydev)
495 		return -ENODEV;
496 
497 	phy_ethtool_ksettings_get(dev->phydev, cmd);
498 
499 	return 0;
500 }
501 
502 static int bcmgenet_set_link_ksettings(struct net_device *dev,
503 				       const struct ethtool_link_ksettings *cmd)
504 {
505 	if (!netif_running(dev))
506 		return -EINVAL;
507 
508 	if (!dev->phydev)
509 		return -ENODEV;
510 
511 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
512 }
513 
514 static int bcmgenet_set_rx_csum(struct net_device *dev,
515 				netdev_features_t wanted)
516 {
517 	struct bcmgenet_priv *priv = netdev_priv(dev);
518 	u32 rbuf_chk_ctrl;
519 	bool rx_csum_en;
520 
521 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
522 
523 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
524 
525 	/* enable rx checksumming */
526 	if (rx_csum_en)
527 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
528 	else
529 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
530 	priv->desc_rxchk_en = rx_csum_en;
531 
532 	/* If UniMAC forwards CRC, we need to skip over it to get
533 	 * a valid CHK bit to be set in the per-packet status word
534 	*/
535 	if (rx_csum_en && priv->crc_fwd_en)
536 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
537 	else
538 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
539 
540 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
541 
542 	return 0;
543 }
544 
545 static int bcmgenet_set_tx_csum(struct net_device *dev,
546 				netdev_features_t wanted)
547 {
548 	struct bcmgenet_priv *priv = netdev_priv(dev);
549 	bool desc_64b_en;
550 	u32 tbuf_ctrl, rbuf_ctrl;
551 
552 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
553 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
554 
555 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
556 
557 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
558 	if (desc_64b_en) {
559 		tbuf_ctrl |= RBUF_64B_EN;
560 		rbuf_ctrl |= RBUF_64B_EN;
561 	} else {
562 		tbuf_ctrl &= ~RBUF_64B_EN;
563 		rbuf_ctrl &= ~RBUF_64B_EN;
564 	}
565 	priv->desc_64b_en = desc_64b_en;
566 
567 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
568 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
569 
570 	return 0;
571 }
572 
573 static int bcmgenet_set_features(struct net_device *dev,
574 				 netdev_features_t features)
575 {
576 	netdev_features_t changed = features ^ dev->features;
577 	netdev_features_t wanted = dev->wanted_features;
578 	int ret = 0;
579 
580 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
581 		ret = bcmgenet_set_tx_csum(dev, wanted);
582 	if (changed & (NETIF_F_RXCSUM))
583 		ret = bcmgenet_set_rx_csum(dev, wanted);
584 
585 	return ret;
586 }
587 
588 static u32 bcmgenet_get_msglevel(struct net_device *dev)
589 {
590 	struct bcmgenet_priv *priv = netdev_priv(dev);
591 
592 	return priv->msg_enable;
593 }
594 
595 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
596 {
597 	struct bcmgenet_priv *priv = netdev_priv(dev);
598 
599 	priv->msg_enable = level;
600 }
601 
602 static int bcmgenet_get_coalesce(struct net_device *dev,
603 				 struct ethtool_coalesce *ec)
604 {
605 	struct bcmgenet_priv *priv = netdev_priv(dev);
606 	struct bcmgenet_rx_ring *ring;
607 	unsigned int i;
608 
609 	ec->tx_max_coalesced_frames =
610 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
611 					 DMA_MBUF_DONE_THRESH);
612 	ec->rx_max_coalesced_frames =
613 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
614 					 DMA_MBUF_DONE_THRESH);
615 	ec->rx_coalesce_usecs =
616 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
617 
618 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
619 		ring = &priv->rx_rings[i];
620 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
621 	}
622 	ring = &priv->rx_rings[DESC_INDEX];
623 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
624 
625 	return 0;
626 }
627 
628 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
629 				     u32 usecs, u32 pkts)
630 {
631 	struct bcmgenet_priv *priv = ring->priv;
632 	unsigned int i = ring->index;
633 	u32 reg;
634 
635 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
636 
637 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
638 	reg &= ~DMA_TIMEOUT_MASK;
639 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
640 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
641 }
642 
643 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
644 					  struct ethtool_coalesce *ec)
645 {
646 	struct net_dim_cq_moder moder;
647 	u32 usecs, pkts;
648 
649 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
650 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
651 	usecs = ring->rx_coalesce_usecs;
652 	pkts = ring->rx_max_coalesced_frames;
653 
654 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
655 		moder = net_dim_get_def_profile(ring->dim.dim.mode);
656 		usecs = moder.usec;
657 		pkts = moder.pkts;
658 	}
659 
660 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
661 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
662 }
663 
664 static int bcmgenet_set_coalesce(struct net_device *dev,
665 				 struct ethtool_coalesce *ec)
666 {
667 	struct bcmgenet_priv *priv = netdev_priv(dev);
668 	unsigned int i;
669 
670 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
671 	 * divided by 1024, which yields roughly 8.192us, our maximum value
672 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
673 	 */
674 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
675 	    ec->tx_max_coalesced_frames == 0 ||
676 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
677 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
678 		return -EINVAL;
679 
680 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
681 		return -EINVAL;
682 
683 	/* GENET TDMA hardware does not support a configurable timeout, but will
684 	 * always generate an interrupt either after MBDONE packets have been
685 	 * transmitted, or when the ring is empty.
686 	 */
687 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
688 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
689 	    ec->use_adaptive_tx_coalesce)
690 		return -EOPNOTSUPP;
691 
692 	/* Program all TX queues with the same values, as there is no
693 	 * ethtool knob to do coalescing on a per-queue basis
694 	 */
695 	for (i = 0; i < priv->hw_params->tx_queues; i++)
696 		bcmgenet_tdma_ring_writel(priv, i,
697 					  ec->tx_max_coalesced_frames,
698 					  DMA_MBUF_DONE_THRESH);
699 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
700 				  ec->tx_max_coalesced_frames,
701 				  DMA_MBUF_DONE_THRESH);
702 
703 	for (i = 0; i < priv->hw_params->rx_queues; i++)
704 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
705 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
706 
707 	return 0;
708 }
709 
710 /* standard ethtool support functions. */
711 enum bcmgenet_stat_type {
712 	BCMGENET_STAT_NETDEV = -1,
713 	BCMGENET_STAT_MIB_RX,
714 	BCMGENET_STAT_MIB_TX,
715 	BCMGENET_STAT_RUNT,
716 	BCMGENET_STAT_MISC,
717 	BCMGENET_STAT_SOFT,
718 };
719 
720 struct bcmgenet_stats {
721 	char stat_string[ETH_GSTRING_LEN];
722 	int stat_sizeof;
723 	int stat_offset;
724 	enum bcmgenet_stat_type type;
725 	/* reg offset from UMAC base for misc counters */
726 	u16 reg_offset;
727 };
728 
729 #define STAT_NETDEV(m) { \
730 	.stat_string = __stringify(m), \
731 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
732 	.stat_offset = offsetof(struct net_device_stats, m), \
733 	.type = BCMGENET_STAT_NETDEV, \
734 }
735 
736 #define STAT_GENET_MIB(str, m, _type) { \
737 	.stat_string = str, \
738 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
739 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
740 	.type = _type, \
741 }
742 
743 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
744 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
745 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
746 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
747 
748 #define STAT_GENET_MISC(str, m, offset) { \
749 	.stat_string = str, \
750 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
751 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
752 	.type = BCMGENET_STAT_MISC, \
753 	.reg_offset = offset, \
754 }
755 
756 #define STAT_GENET_Q(num) \
757 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
758 			tx_rings[num].packets), \
759 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
760 			tx_rings[num].bytes), \
761 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
762 			rx_rings[num].bytes),	 \
763 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
764 			rx_rings[num].packets), \
765 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
766 			rx_rings[num].errors), \
767 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
768 			rx_rings[num].dropped)
769 
770 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
771  * between the end of TX stats and the beginning of the RX RUNT
772  */
773 #define BCMGENET_STAT_OFFSET	0xc
774 
775 /* Hardware counters must be kept in sync because the order/offset
776  * is important here (order in structure declaration = order in hardware)
777  */
778 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
779 	/* general stats */
780 	STAT_NETDEV(rx_packets),
781 	STAT_NETDEV(tx_packets),
782 	STAT_NETDEV(rx_bytes),
783 	STAT_NETDEV(tx_bytes),
784 	STAT_NETDEV(rx_errors),
785 	STAT_NETDEV(tx_errors),
786 	STAT_NETDEV(rx_dropped),
787 	STAT_NETDEV(tx_dropped),
788 	STAT_NETDEV(multicast),
789 	/* UniMAC RSV counters */
790 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
791 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
792 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
793 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
794 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
795 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
796 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
797 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
798 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
799 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
800 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
801 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
802 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
803 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
804 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
805 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
806 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
807 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
808 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
809 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
810 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
811 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
812 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
813 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
814 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
815 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
816 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
817 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
818 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
819 	/* UniMAC TSV counters */
820 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
821 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
822 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
823 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
824 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
825 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
826 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
827 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
828 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
829 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
830 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
831 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
832 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
833 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
834 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
835 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
836 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
837 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
838 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
839 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
840 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
841 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
842 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
843 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
844 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
845 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
846 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
847 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
848 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
849 	/* UniMAC RUNT counters */
850 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
851 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
852 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
853 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
854 	/* Misc UniMAC counters */
855 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
856 			UMAC_RBUF_OVFL_CNT_V1),
857 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
858 			UMAC_RBUF_ERR_CNT_V1),
859 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
860 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
861 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
862 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
863 	/* Per TX queues */
864 	STAT_GENET_Q(0),
865 	STAT_GENET_Q(1),
866 	STAT_GENET_Q(2),
867 	STAT_GENET_Q(3),
868 	STAT_GENET_Q(16),
869 };
870 
871 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
872 
873 static void bcmgenet_get_drvinfo(struct net_device *dev,
874 				 struct ethtool_drvinfo *info)
875 {
876 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
877 	strlcpy(info->version, "v2.0", sizeof(info->version));
878 }
879 
880 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
881 {
882 	switch (string_set) {
883 	case ETH_SS_STATS:
884 		return BCMGENET_STATS_LEN;
885 	default:
886 		return -EOPNOTSUPP;
887 	}
888 }
889 
890 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
891 				 u8 *data)
892 {
893 	int i;
894 
895 	switch (stringset) {
896 	case ETH_SS_STATS:
897 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
898 			memcpy(data + i * ETH_GSTRING_LEN,
899 			       bcmgenet_gstrings_stats[i].stat_string,
900 			       ETH_GSTRING_LEN);
901 		}
902 		break;
903 	}
904 }
905 
906 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
907 {
908 	u16 new_offset;
909 	u32 val;
910 
911 	switch (offset) {
912 	case UMAC_RBUF_OVFL_CNT_V1:
913 		if (GENET_IS_V2(priv))
914 			new_offset = RBUF_OVFL_CNT_V2;
915 		else
916 			new_offset = RBUF_OVFL_CNT_V3PLUS;
917 
918 		val = bcmgenet_rbuf_readl(priv,	new_offset);
919 		/* clear if overflowed */
920 		if (val == ~0)
921 			bcmgenet_rbuf_writel(priv, 0, new_offset);
922 		break;
923 	case UMAC_RBUF_ERR_CNT_V1:
924 		if (GENET_IS_V2(priv))
925 			new_offset = RBUF_ERR_CNT_V2;
926 		else
927 			new_offset = RBUF_ERR_CNT_V3PLUS;
928 
929 		val = bcmgenet_rbuf_readl(priv,	new_offset);
930 		/* clear if overflowed */
931 		if (val == ~0)
932 			bcmgenet_rbuf_writel(priv, 0, new_offset);
933 		break;
934 	default:
935 		val = bcmgenet_umac_readl(priv, offset);
936 		/* clear if overflowed */
937 		if (val == ~0)
938 			bcmgenet_umac_writel(priv, 0, offset);
939 		break;
940 	}
941 
942 	return val;
943 }
944 
945 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
946 {
947 	int i, j = 0;
948 
949 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
950 		const struct bcmgenet_stats *s;
951 		u8 offset = 0;
952 		u32 val = 0;
953 		char *p;
954 
955 		s = &bcmgenet_gstrings_stats[i];
956 		switch (s->type) {
957 		case BCMGENET_STAT_NETDEV:
958 		case BCMGENET_STAT_SOFT:
959 			continue;
960 		case BCMGENET_STAT_RUNT:
961 			offset += BCMGENET_STAT_OFFSET;
962 			/* fall through */
963 		case BCMGENET_STAT_MIB_TX:
964 			offset += BCMGENET_STAT_OFFSET;
965 			/* fall through */
966 		case BCMGENET_STAT_MIB_RX:
967 			val = bcmgenet_umac_readl(priv,
968 						  UMAC_MIB_START + j + offset);
969 			offset = 0;	/* Reset Offset */
970 			break;
971 		case BCMGENET_STAT_MISC:
972 			if (GENET_IS_V1(priv)) {
973 				val = bcmgenet_umac_readl(priv, s->reg_offset);
974 				/* clear if overflowed */
975 				if (val == ~0)
976 					bcmgenet_umac_writel(priv, 0,
977 							     s->reg_offset);
978 			} else {
979 				val = bcmgenet_update_stat_misc(priv,
980 								s->reg_offset);
981 			}
982 			break;
983 		}
984 
985 		j += s->stat_sizeof;
986 		p = (char *)priv + s->stat_offset;
987 		*(u32 *)p = val;
988 	}
989 }
990 
991 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
992 				       struct ethtool_stats *stats,
993 				       u64 *data)
994 {
995 	struct bcmgenet_priv *priv = netdev_priv(dev);
996 	int i;
997 
998 	if (netif_running(dev))
999 		bcmgenet_update_mib_counters(priv);
1000 
1001 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1002 		const struct bcmgenet_stats *s;
1003 		char *p;
1004 
1005 		s = &bcmgenet_gstrings_stats[i];
1006 		if (s->type == BCMGENET_STAT_NETDEV)
1007 			p = (char *)&dev->stats;
1008 		else
1009 			p = (char *)priv;
1010 		p += s->stat_offset;
1011 		if (sizeof(unsigned long) != sizeof(u32) &&
1012 		    s->stat_sizeof == sizeof(unsigned long))
1013 			data[i] = *(unsigned long *)p;
1014 		else
1015 			data[i] = *(u32 *)p;
1016 	}
1017 }
1018 
1019 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1020 {
1021 	struct bcmgenet_priv *priv = netdev_priv(dev);
1022 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1023 	u32 reg;
1024 
1025 	if (enable && !priv->clk_eee_enabled) {
1026 		clk_prepare_enable(priv->clk_eee);
1027 		priv->clk_eee_enabled = true;
1028 	}
1029 
1030 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1031 	if (enable)
1032 		reg |= EEE_EN;
1033 	else
1034 		reg &= ~EEE_EN;
1035 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1036 
1037 	/* Enable EEE and switch to a 27Mhz clock automatically */
1038 	reg = bcmgenet_readl(priv->base + off);
1039 	if (enable)
1040 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1041 	else
1042 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1043 	bcmgenet_writel(reg, priv->base + off);
1044 
1045 	/* Do the same for thing for RBUF */
1046 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1047 	if (enable)
1048 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1049 	else
1050 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1051 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1052 
1053 	if (!enable && priv->clk_eee_enabled) {
1054 		clk_disable_unprepare(priv->clk_eee);
1055 		priv->clk_eee_enabled = false;
1056 	}
1057 
1058 	priv->eee.eee_enabled = enable;
1059 	priv->eee.eee_active = enable;
1060 }
1061 
1062 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1063 {
1064 	struct bcmgenet_priv *priv = netdev_priv(dev);
1065 	struct ethtool_eee *p = &priv->eee;
1066 
1067 	if (GENET_IS_V1(priv))
1068 		return -EOPNOTSUPP;
1069 
1070 	if (!dev->phydev)
1071 		return -ENODEV;
1072 
1073 	e->eee_enabled = p->eee_enabled;
1074 	e->eee_active = p->eee_active;
1075 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1076 
1077 	return phy_ethtool_get_eee(dev->phydev, e);
1078 }
1079 
1080 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1081 {
1082 	struct bcmgenet_priv *priv = netdev_priv(dev);
1083 	struct ethtool_eee *p = &priv->eee;
1084 	int ret = 0;
1085 
1086 	if (GENET_IS_V1(priv))
1087 		return -EOPNOTSUPP;
1088 
1089 	if (!dev->phydev)
1090 		return -ENODEV;
1091 
1092 	p->eee_enabled = e->eee_enabled;
1093 
1094 	if (!p->eee_enabled) {
1095 		bcmgenet_eee_enable_set(dev, false);
1096 	} else {
1097 		ret = phy_init_eee(dev->phydev, 0);
1098 		if (ret) {
1099 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1100 			return ret;
1101 		}
1102 
1103 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1104 		bcmgenet_eee_enable_set(dev, true);
1105 	}
1106 
1107 	return phy_ethtool_set_eee(dev->phydev, e);
1108 }
1109 
1110 /* standard ethtool support functions. */
1111 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1112 	.begin			= bcmgenet_begin,
1113 	.complete		= bcmgenet_complete,
1114 	.get_strings		= bcmgenet_get_strings,
1115 	.get_sset_count		= bcmgenet_get_sset_count,
1116 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1117 	.get_drvinfo		= bcmgenet_get_drvinfo,
1118 	.get_link		= ethtool_op_get_link,
1119 	.get_msglevel		= bcmgenet_get_msglevel,
1120 	.set_msglevel		= bcmgenet_set_msglevel,
1121 	.get_wol		= bcmgenet_get_wol,
1122 	.set_wol		= bcmgenet_set_wol,
1123 	.get_eee		= bcmgenet_get_eee,
1124 	.set_eee		= bcmgenet_set_eee,
1125 	.nway_reset		= phy_ethtool_nway_reset,
1126 	.get_coalesce		= bcmgenet_get_coalesce,
1127 	.set_coalesce		= bcmgenet_set_coalesce,
1128 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1129 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1130 };
1131 
1132 /* Power down the unimac, based on mode. */
1133 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1134 				enum bcmgenet_power_mode mode)
1135 {
1136 	int ret = 0;
1137 	u32 reg;
1138 
1139 	switch (mode) {
1140 	case GENET_POWER_CABLE_SENSE:
1141 		phy_detach(priv->dev->phydev);
1142 		break;
1143 
1144 	case GENET_POWER_WOL_MAGIC:
1145 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1146 		break;
1147 
1148 	case GENET_POWER_PASSIVE:
1149 		/* Power down LED */
1150 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1151 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1152 			if (GENET_IS_V5(priv))
1153 				reg |= EXT_PWR_DOWN_PHY_EN |
1154 				       EXT_PWR_DOWN_PHY_RD |
1155 				       EXT_PWR_DOWN_PHY_SD |
1156 				       EXT_PWR_DOWN_PHY_RX |
1157 				       EXT_PWR_DOWN_PHY_TX |
1158 				       EXT_IDDQ_GLBL_PWR;
1159 			else
1160 				reg |= EXT_PWR_DOWN_PHY;
1161 
1162 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1163 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1164 
1165 			bcmgenet_phy_power_set(priv->dev, false);
1166 		}
1167 		break;
1168 	default:
1169 		break;
1170 	}
1171 
1172 	return 0;
1173 }
1174 
1175 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1176 			      enum bcmgenet_power_mode mode)
1177 {
1178 	u32 reg;
1179 
1180 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1181 		return;
1182 
1183 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1184 
1185 	switch (mode) {
1186 	case GENET_POWER_PASSIVE:
1187 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1188 		if (GENET_IS_V5(priv)) {
1189 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1190 				 EXT_PWR_DOWN_PHY_RD |
1191 				 EXT_PWR_DOWN_PHY_SD |
1192 				 EXT_PWR_DOWN_PHY_RX |
1193 				 EXT_PWR_DOWN_PHY_TX |
1194 				 EXT_IDDQ_GLBL_PWR);
1195 			reg |=   EXT_PHY_RESET;
1196 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1197 			mdelay(1);
1198 
1199 			reg &=  ~EXT_PHY_RESET;
1200 		} else {
1201 			reg &= ~EXT_PWR_DOWN_PHY;
1202 			reg |= EXT_PWR_DN_EN_LD;
1203 		}
1204 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1205 		bcmgenet_phy_power_set(priv->dev, true);
1206 		break;
1207 
1208 	case GENET_POWER_CABLE_SENSE:
1209 		/* enable APD */
1210 		if (!GENET_IS_V5(priv)) {
1211 			reg |= EXT_PWR_DN_EN_LD;
1212 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1213 		}
1214 		break;
1215 	case GENET_POWER_WOL_MAGIC:
1216 		bcmgenet_wol_power_up_cfg(priv, mode);
1217 		return;
1218 	default:
1219 		break;
1220 	}
1221 }
1222 
1223 /* ioctl handle special commands that are not present in ethtool. */
1224 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1225 {
1226 	if (!netif_running(dev))
1227 		return -EINVAL;
1228 
1229 	if (!dev->phydev)
1230 		return -ENODEV;
1231 
1232 	return phy_mii_ioctl(dev->phydev, rq, cmd);
1233 }
1234 
1235 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1236 					 struct bcmgenet_tx_ring *ring)
1237 {
1238 	struct enet_cb *tx_cb_ptr;
1239 
1240 	tx_cb_ptr = ring->cbs;
1241 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1242 
1243 	/* Advancing local write pointer */
1244 	if (ring->write_ptr == ring->end_ptr)
1245 		ring->write_ptr = ring->cb_ptr;
1246 	else
1247 		ring->write_ptr++;
1248 
1249 	return tx_cb_ptr;
1250 }
1251 
1252 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1253 					 struct bcmgenet_tx_ring *ring)
1254 {
1255 	struct enet_cb *tx_cb_ptr;
1256 
1257 	tx_cb_ptr = ring->cbs;
1258 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1259 
1260 	/* Rewinding local write pointer */
1261 	if (ring->write_ptr == ring->cb_ptr)
1262 		ring->write_ptr = ring->end_ptr;
1263 	else
1264 		ring->write_ptr--;
1265 
1266 	return tx_cb_ptr;
1267 }
1268 
1269 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1270 {
1271 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1272 				 INTRL2_CPU_MASK_SET);
1273 }
1274 
1275 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1276 {
1277 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1278 				 INTRL2_CPU_MASK_CLEAR);
1279 }
1280 
1281 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1282 {
1283 	bcmgenet_intrl2_1_writel(ring->priv,
1284 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1285 				 INTRL2_CPU_MASK_SET);
1286 }
1287 
1288 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1289 {
1290 	bcmgenet_intrl2_1_writel(ring->priv,
1291 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1292 				 INTRL2_CPU_MASK_CLEAR);
1293 }
1294 
1295 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1296 {
1297 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1298 				 INTRL2_CPU_MASK_SET);
1299 }
1300 
1301 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1302 {
1303 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1304 				 INTRL2_CPU_MASK_CLEAR);
1305 }
1306 
1307 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1308 {
1309 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1310 				 INTRL2_CPU_MASK_CLEAR);
1311 }
1312 
1313 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1314 {
1315 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1316 				 INTRL2_CPU_MASK_SET);
1317 }
1318 
1319 /* Simple helper to free a transmit control block's resources
1320  * Returns an skb when the last transmit control block associated with the
1321  * skb is freed.  The skb should be freed by the caller if necessary.
1322  */
1323 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1324 					   struct enet_cb *cb)
1325 {
1326 	struct sk_buff *skb;
1327 
1328 	skb = cb->skb;
1329 
1330 	if (skb) {
1331 		cb->skb = NULL;
1332 		if (cb == GENET_CB(skb)->first_cb)
1333 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1334 					 dma_unmap_len(cb, dma_len),
1335 					 DMA_TO_DEVICE);
1336 		else
1337 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1338 				       dma_unmap_len(cb, dma_len),
1339 				       DMA_TO_DEVICE);
1340 		dma_unmap_addr_set(cb, dma_addr, 0);
1341 
1342 		if (cb == GENET_CB(skb)->last_cb)
1343 			return skb;
1344 
1345 	} else if (dma_unmap_addr(cb, dma_addr)) {
1346 		dma_unmap_page(dev,
1347 			       dma_unmap_addr(cb, dma_addr),
1348 			       dma_unmap_len(cb, dma_len),
1349 			       DMA_TO_DEVICE);
1350 		dma_unmap_addr_set(cb, dma_addr, 0);
1351 	}
1352 
1353 	return NULL;
1354 }
1355 
1356 /* Simple helper to free a receive control block's resources */
1357 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1358 					   struct enet_cb *cb)
1359 {
1360 	struct sk_buff *skb;
1361 
1362 	skb = cb->skb;
1363 	cb->skb = NULL;
1364 
1365 	if (dma_unmap_addr(cb, dma_addr)) {
1366 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1367 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1368 		dma_unmap_addr_set(cb, dma_addr, 0);
1369 	}
1370 
1371 	return skb;
1372 }
1373 
1374 /* Unlocked version of the reclaim routine */
1375 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1376 					  struct bcmgenet_tx_ring *ring)
1377 {
1378 	struct bcmgenet_priv *priv = netdev_priv(dev);
1379 	unsigned int txbds_processed = 0;
1380 	unsigned int bytes_compl = 0;
1381 	unsigned int pkts_compl = 0;
1382 	unsigned int txbds_ready;
1383 	unsigned int c_index;
1384 	struct sk_buff *skb;
1385 
1386 	/* Clear status before servicing to reduce spurious interrupts */
1387 	if (ring->index == DESC_INDEX)
1388 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1389 					 INTRL2_CPU_CLEAR);
1390 	else
1391 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1392 					 INTRL2_CPU_CLEAR);
1393 
1394 	/* Compute how many buffers are transmitted since last xmit call */
1395 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1396 		& DMA_C_INDEX_MASK;
1397 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1398 
1399 	netif_dbg(priv, tx_done, dev,
1400 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1401 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1402 
1403 	/* Reclaim transmitted buffers */
1404 	while (txbds_processed < txbds_ready) {
1405 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1406 					  &priv->tx_cbs[ring->clean_ptr]);
1407 		if (skb) {
1408 			pkts_compl++;
1409 			bytes_compl += GENET_CB(skb)->bytes_sent;
1410 			dev_consume_skb_any(skb);
1411 		}
1412 
1413 		txbds_processed++;
1414 		if (likely(ring->clean_ptr < ring->end_ptr))
1415 			ring->clean_ptr++;
1416 		else
1417 			ring->clean_ptr = ring->cb_ptr;
1418 	}
1419 
1420 	ring->free_bds += txbds_processed;
1421 	ring->c_index = c_index;
1422 
1423 	ring->packets += pkts_compl;
1424 	ring->bytes += bytes_compl;
1425 
1426 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1427 				  pkts_compl, bytes_compl);
1428 
1429 	return txbds_processed;
1430 }
1431 
1432 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1433 				struct bcmgenet_tx_ring *ring)
1434 {
1435 	unsigned int released;
1436 
1437 	spin_lock_bh(&ring->lock);
1438 	released = __bcmgenet_tx_reclaim(dev, ring);
1439 	spin_unlock_bh(&ring->lock);
1440 
1441 	return released;
1442 }
1443 
1444 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1445 {
1446 	struct bcmgenet_tx_ring *ring =
1447 		container_of(napi, struct bcmgenet_tx_ring, napi);
1448 	unsigned int work_done = 0;
1449 	struct netdev_queue *txq;
1450 
1451 	spin_lock(&ring->lock);
1452 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1453 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1454 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1455 		netif_tx_wake_queue(txq);
1456 	}
1457 	spin_unlock(&ring->lock);
1458 
1459 	if (work_done == 0) {
1460 		napi_complete(napi);
1461 		ring->int_enable(ring);
1462 
1463 		return 0;
1464 	}
1465 
1466 	return budget;
1467 }
1468 
1469 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1470 {
1471 	struct bcmgenet_priv *priv = netdev_priv(dev);
1472 	int i;
1473 
1474 	if (netif_is_multiqueue(dev)) {
1475 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1476 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1477 	}
1478 
1479 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1480 }
1481 
1482 /* Reallocate the SKB to put enough headroom in front of it and insert
1483  * the transmit checksum offsets in the descriptors
1484  */
1485 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1486 					    struct sk_buff *skb)
1487 {
1488 	struct status_64 *status = NULL;
1489 	struct sk_buff *new_skb;
1490 	u16 offset;
1491 	u8 ip_proto;
1492 	u16 ip_ver;
1493 	u32 tx_csum_info;
1494 
1495 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1496 		/* If 64 byte status block enabled, must make sure skb has
1497 		 * enough headroom for us to insert 64B status block.
1498 		 */
1499 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1500 		dev_kfree_skb(skb);
1501 		if (!new_skb) {
1502 			dev->stats.tx_dropped++;
1503 			return NULL;
1504 		}
1505 		skb = new_skb;
1506 	}
1507 
1508 	skb_push(skb, sizeof(*status));
1509 	status = (struct status_64 *)skb->data;
1510 
1511 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1512 		ip_ver = htons(skb->protocol);
1513 		switch (ip_ver) {
1514 		case ETH_P_IP:
1515 			ip_proto = ip_hdr(skb)->protocol;
1516 			break;
1517 		case ETH_P_IPV6:
1518 			ip_proto = ipv6_hdr(skb)->nexthdr;
1519 			break;
1520 		default:
1521 			return skb;
1522 		}
1523 
1524 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1525 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1526 				(offset + skb->csum_offset);
1527 
1528 		/* Set the length valid bit for TCP and UDP and just set
1529 		 * the special UDP flag for IPv4, else just set to 0.
1530 		 */
1531 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1532 			tx_csum_info |= STATUS_TX_CSUM_LV;
1533 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1534 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1535 		} else {
1536 			tx_csum_info = 0;
1537 		}
1538 
1539 		status->tx_csum_info = tx_csum_info;
1540 	}
1541 
1542 	return skb;
1543 }
1544 
1545 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1546 {
1547 	struct bcmgenet_priv *priv = netdev_priv(dev);
1548 	struct device *kdev = &priv->pdev->dev;
1549 	struct bcmgenet_tx_ring *ring = NULL;
1550 	struct enet_cb *tx_cb_ptr;
1551 	struct netdev_queue *txq;
1552 	int nr_frags, index;
1553 	dma_addr_t mapping;
1554 	unsigned int size;
1555 	skb_frag_t *frag;
1556 	u32 len_stat;
1557 	int ret;
1558 	int i;
1559 
1560 	index = skb_get_queue_mapping(skb);
1561 	/* Mapping strategy:
1562 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1563 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1564 	 * queue_mapping = 2, goes to ring 1.
1565 	 * queue_mapping = 3, goes to ring 2.
1566 	 * queue_mapping = 4, goes to ring 3.
1567 	 */
1568 	if (index == 0)
1569 		index = DESC_INDEX;
1570 	else
1571 		index -= 1;
1572 
1573 	ring = &priv->tx_rings[index];
1574 	txq = netdev_get_tx_queue(dev, ring->queue);
1575 
1576 	nr_frags = skb_shinfo(skb)->nr_frags;
1577 
1578 	spin_lock(&ring->lock);
1579 	if (ring->free_bds <= (nr_frags + 1)) {
1580 		if (!netif_tx_queue_stopped(txq)) {
1581 			netif_tx_stop_queue(txq);
1582 			netdev_err(dev,
1583 				   "%s: tx ring %d full when queue %d awake\n",
1584 				   __func__, index, ring->queue);
1585 		}
1586 		ret = NETDEV_TX_BUSY;
1587 		goto out;
1588 	}
1589 
1590 	if (skb_padto(skb, ETH_ZLEN)) {
1591 		ret = NETDEV_TX_OK;
1592 		goto out;
1593 	}
1594 
1595 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1596 	 * by transmit checksum offload
1597 	 */
1598 	GENET_CB(skb)->bytes_sent = skb->len;
1599 
1600 	/* set the SKB transmit checksum */
1601 	if (priv->desc_64b_en) {
1602 		skb = bcmgenet_put_tx_csum(dev, skb);
1603 		if (!skb) {
1604 			ret = NETDEV_TX_OK;
1605 			goto out;
1606 		}
1607 	}
1608 
1609 	for (i = 0; i <= nr_frags; i++) {
1610 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1611 
1612 		BUG_ON(!tx_cb_ptr);
1613 
1614 		if (!i) {
1615 			/* Transmit single SKB or head of fragment list */
1616 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1617 			size = skb_headlen(skb);
1618 			mapping = dma_map_single(kdev, skb->data, size,
1619 						 DMA_TO_DEVICE);
1620 		} else {
1621 			/* xmit fragment */
1622 			frag = &skb_shinfo(skb)->frags[i - 1];
1623 			size = skb_frag_size(frag);
1624 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1625 						   DMA_TO_DEVICE);
1626 		}
1627 
1628 		ret = dma_mapping_error(kdev, mapping);
1629 		if (ret) {
1630 			priv->mib.tx_dma_failed++;
1631 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1632 			ret = NETDEV_TX_OK;
1633 			goto out_unmap_frags;
1634 		}
1635 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1636 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1637 
1638 		tx_cb_ptr->skb = skb;
1639 
1640 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1641 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1642 
1643 		if (!i) {
1644 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1645 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1646 				len_stat |= DMA_TX_DO_CSUM;
1647 		}
1648 		if (i == nr_frags)
1649 			len_stat |= DMA_EOP;
1650 
1651 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1652 	}
1653 
1654 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1655 	skb_tx_timestamp(skb);
1656 
1657 	/* Decrement total BD count and advance our write pointer */
1658 	ring->free_bds -= nr_frags + 1;
1659 	ring->prod_index += nr_frags + 1;
1660 	ring->prod_index &= DMA_P_INDEX_MASK;
1661 
1662 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1663 
1664 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1665 		netif_tx_stop_queue(txq);
1666 
1667 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1668 		/* Packets are ready, update producer index */
1669 		bcmgenet_tdma_ring_writel(priv, ring->index,
1670 					  ring->prod_index, TDMA_PROD_INDEX);
1671 out:
1672 	spin_unlock(&ring->lock);
1673 
1674 	return ret;
1675 
1676 out_unmap_frags:
1677 	/* Back up for failed control block mapping */
1678 	bcmgenet_put_txcb(priv, ring);
1679 
1680 	/* Unmap successfully mapped control blocks */
1681 	while (i-- > 0) {
1682 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1683 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1684 	}
1685 
1686 	dev_kfree_skb(skb);
1687 	goto out;
1688 }
1689 
1690 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1691 					  struct enet_cb *cb)
1692 {
1693 	struct device *kdev = &priv->pdev->dev;
1694 	struct sk_buff *skb;
1695 	struct sk_buff *rx_skb;
1696 	dma_addr_t mapping;
1697 
1698 	/* Allocate a new Rx skb */
1699 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1700 	if (!skb) {
1701 		priv->mib.alloc_rx_buff_failed++;
1702 		netif_err(priv, rx_err, priv->dev,
1703 			  "%s: Rx skb allocation failed\n", __func__);
1704 		return NULL;
1705 	}
1706 
1707 	/* DMA-map the new Rx skb */
1708 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1709 				 DMA_FROM_DEVICE);
1710 	if (dma_mapping_error(kdev, mapping)) {
1711 		priv->mib.rx_dma_failed++;
1712 		dev_kfree_skb_any(skb);
1713 		netif_err(priv, rx_err, priv->dev,
1714 			  "%s: Rx skb DMA mapping failed\n", __func__);
1715 		return NULL;
1716 	}
1717 
1718 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1719 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1720 
1721 	/* Put the new Rx skb on the ring */
1722 	cb->skb = skb;
1723 	dma_unmap_addr_set(cb, dma_addr, mapping);
1724 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1725 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1726 
1727 	/* Return the current Rx skb to caller */
1728 	return rx_skb;
1729 }
1730 
1731 /* bcmgenet_desc_rx - descriptor based rx process.
1732  * this could be called from bottom half, or from NAPI polling method.
1733  */
1734 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1735 				     unsigned int budget)
1736 {
1737 	struct bcmgenet_priv *priv = ring->priv;
1738 	struct net_device *dev = priv->dev;
1739 	struct enet_cb *cb;
1740 	struct sk_buff *skb;
1741 	u32 dma_length_status;
1742 	unsigned long dma_flag;
1743 	int len;
1744 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1745 	unsigned int bytes_processed = 0;
1746 	unsigned int p_index, mask;
1747 	unsigned int discards;
1748 	unsigned int chksum_ok = 0;
1749 
1750 	/* Clear status before servicing to reduce spurious interrupts */
1751 	if (ring->index == DESC_INDEX) {
1752 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1753 					 INTRL2_CPU_CLEAR);
1754 	} else {
1755 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1756 		bcmgenet_intrl2_1_writel(priv,
1757 					 mask,
1758 					 INTRL2_CPU_CLEAR);
1759 	}
1760 
1761 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1762 
1763 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1764 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1765 	if (discards > ring->old_discards) {
1766 		discards = discards - ring->old_discards;
1767 		ring->errors += discards;
1768 		ring->old_discards += discards;
1769 
1770 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1771 		if (ring->old_discards >= 0xC000) {
1772 			ring->old_discards = 0;
1773 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1774 						  RDMA_PROD_INDEX);
1775 		}
1776 	}
1777 
1778 	p_index &= DMA_P_INDEX_MASK;
1779 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1780 
1781 	netif_dbg(priv, rx_status, dev,
1782 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1783 
1784 	while ((rxpktprocessed < rxpkttoprocess) &&
1785 	       (rxpktprocessed < budget)) {
1786 		cb = &priv->rx_cbs[ring->read_ptr];
1787 		skb = bcmgenet_rx_refill(priv, cb);
1788 
1789 		if (unlikely(!skb)) {
1790 			ring->dropped++;
1791 			goto next;
1792 		}
1793 
1794 		if (!priv->desc_64b_en) {
1795 			dma_length_status =
1796 				dmadesc_get_length_status(priv, cb->bd_addr);
1797 		} else {
1798 			struct status_64 *status;
1799 
1800 			status = (struct status_64 *)skb->data;
1801 			dma_length_status = status->length_status;
1802 		}
1803 
1804 		/* DMA flags and length are still valid no matter how
1805 		 * we got the Receive Status Vector (64B RSB or register)
1806 		 */
1807 		dma_flag = dma_length_status & 0xffff;
1808 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1809 
1810 		netif_dbg(priv, rx_status, dev,
1811 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1812 			  __func__, p_index, ring->c_index,
1813 			  ring->read_ptr, dma_length_status);
1814 
1815 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1816 			netif_err(priv, rx_status, dev,
1817 				  "dropping fragmented packet!\n");
1818 			ring->errors++;
1819 			dev_kfree_skb_any(skb);
1820 			goto next;
1821 		}
1822 
1823 		/* report errors */
1824 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1825 						DMA_RX_OV |
1826 						DMA_RX_NO |
1827 						DMA_RX_LG |
1828 						DMA_RX_RXER))) {
1829 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1830 				  (unsigned int)dma_flag);
1831 			if (dma_flag & DMA_RX_CRC_ERROR)
1832 				dev->stats.rx_crc_errors++;
1833 			if (dma_flag & DMA_RX_OV)
1834 				dev->stats.rx_over_errors++;
1835 			if (dma_flag & DMA_RX_NO)
1836 				dev->stats.rx_frame_errors++;
1837 			if (dma_flag & DMA_RX_LG)
1838 				dev->stats.rx_length_errors++;
1839 			dev->stats.rx_errors++;
1840 			dev_kfree_skb_any(skb);
1841 			goto next;
1842 		} /* error packet */
1843 
1844 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1845 			     priv->desc_rxchk_en;
1846 
1847 		skb_put(skb, len);
1848 		if (priv->desc_64b_en) {
1849 			skb_pull(skb, 64);
1850 			len -= 64;
1851 		}
1852 
1853 		if (likely(chksum_ok))
1854 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1855 
1856 		/* remove hardware 2bytes added for IP alignment */
1857 		skb_pull(skb, 2);
1858 		len -= 2;
1859 
1860 		if (priv->crc_fwd_en) {
1861 			skb_trim(skb, len - ETH_FCS_LEN);
1862 			len -= ETH_FCS_LEN;
1863 		}
1864 
1865 		bytes_processed += len;
1866 
1867 		/*Finish setting up the received SKB and send it to the kernel*/
1868 		skb->protocol = eth_type_trans(skb, priv->dev);
1869 		ring->packets++;
1870 		ring->bytes += len;
1871 		if (dma_flag & DMA_RX_MULT)
1872 			dev->stats.multicast++;
1873 
1874 		/* Notify kernel */
1875 		napi_gro_receive(&ring->napi, skb);
1876 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1877 
1878 next:
1879 		rxpktprocessed++;
1880 		if (likely(ring->read_ptr < ring->end_ptr))
1881 			ring->read_ptr++;
1882 		else
1883 			ring->read_ptr = ring->cb_ptr;
1884 
1885 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1886 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1887 	}
1888 
1889 	ring->dim.bytes = bytes_processed;
1890 	ring->dim.packets = rxpktprocessed;
1891 
1892 	return rxpktprocessed;
1893 }
1894 
1895 /* Rx NAPI polling method */
1896 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1897 {
1898 	struct bcmgenet_rx_ring *ring = container_of(napi,
1899 			struct bcmgenet_rx_ring, napi);
1900 	struct net_dim_sample dim_sample;
1901 	unsigned int work_done;
1902 
1903 	work_done = bcmgenet_desc_rx(ring, budget);
1904 
1905 	if (work_done < budget) {
1906 		napi_complete_done(napi, work_done);
1907 		ring->int_enable(ring);
1908 	}
1909 
1910 	if (ring->dim.use_dim) {
1911 		net_dim_sample(ring->dim.event_ctr, ring->dim.packets,
1912 			       ring->dim.bytes, &dim_sample);
1913 		net_dim(&ring->dim.dim, dim_sample);
1914 	}
1915 
1916 	return work_done;
1917 }
1918 
1919 static void bcmgenet_dim_work(struct work_struct *work)
1920 {
1921 	struct net_dim *dim = container_of(work, struct net_dim, work);
1922 	struct bcmgenet_net_dim *ndim =
1923 			container_of(dim, struct bcmgenet_net_dim, dim);
1924 	struct bcmgenet_rx_ring *ring =
1925 			container_of(ndim, struct bcmgenet_rx_ring, dim);
1926 	struct net_dim_cq_moder cur_profile =
1927 			net_dim_get_profile(dim->mode, dim->profile_ix);
1928 
1929 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1930 	dim->state = NET_DIM_START_MEASURE;
1931 }
1932 
1933 /* Assign skb to RX DMA descriptor. */
1934 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1935 				     struct bcmgenet_rx_ring *ring)
1936 {
1937 	struct enet_cb *cb;
1938 	struct sk_buff *skb;
1939 	int i;
1940 
1941 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1942 
1943 	/* loop here for each buffer needing assign */
1944 	for (i = 0; i < ring->size; i++) {
1945 		cb = ring->cbs + i;
1946 		skb = bcmgenet_rx_refill(priv, cb);
1947 		if (skb)
1948 			dev_consume_skb_any(skb);
1949 		if (!cb->skb)
1950 			return -ENOMEM;
1951 	}
1952 
1953 	return 0;
1954 }
1955 
1956 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1957 {
1958 	struct sk_buff *skb;
1959 	struct enet_cb *cb;
1960 	int i;
1961 
1962 	for (i = 0; i < priv->num_rx_bds; i++) {
1963 		cb = &priv->rx_cbs[i];
1964 
1965 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1966 		if (skb)
1967 			dev_consume_skb_any(skb);
1968 	}
1969 }
1970 
1971 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1972 {
1973 	u32 reg;
1974 
1975 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1976 	if (enable)
1977 		reg |= mask;
1978 	else
1979 		reg &= ~mask;
1980 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1981 
1982 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1983 	 * to be processed
1984 	 */
1985 	if (enable == 0)
1986 		usleep_range(1000, 2000);
1987 }
1988 
1989 static void reset_umac(struct bcmgenet_priv *priv)
1990 {
1991 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1992 	bcmgenet_rbuf_ctrl_set(priv, 0);
1993 	udelay(10);
1994 
1995 	/* disable MAC while updating its registers */
1996 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1997 
1998 	/* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1999 	bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
2000 	udelay(2);
2001 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
2002 }
2003 
2004 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
2005 {
2006 	/* Mask all interrupts.*/
2007 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2008 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2009 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2010 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2011 }
2012 
2013 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2014 {
2015 	u32 int0_enable = 0;
2016 
2017 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2018 	 * and MoCA PHY
2019 	 */
2020 	if (priv->internal_phy) {
2021 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2022 	} else if (priv->ext_phy) {
2023 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2024 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2025 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2026 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2027 	}
2028 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2029 }
2030 
2031 static void init_umac(struct bcmgenet_priv *priv)
2032 {
2033 	struct device *kdev = &priv->pdev->dev;
2034 	u32 reg;
2035 	u32 int0_enable = 0;
2036 
2037 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2038 
2039 	reset_umac(priv);
2040 
2041 	/* clear tx/rx counter */
2042 	bcmgenet_umac_writel(priv,
2043 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2044 			     UMAC_MIB_CTRL);
2045 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2046 
2047 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2048 
2049 	/* init rx registers, enable ip header optimization */
2050 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2051 	reg |= RBUF_ALIGN_2B;
2052 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2053 
2054 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2055 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2056 
2057 	bcmgenet_intr_disable(priv);
2058 
2059 	/* Configure backpressure vectors for MoCA */
2060 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2061 		reg = bcmgenet_bp_mc_get(priv);
2062 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2063 
2064 		/* bp_mask: back pressure mask */
2065 		if (netif_is_multiqueue(priv->dev))
2066 			reg |= priv->hw_params->bp_in_mask;
2067 		else
2068 			reg &= ~priv->hw_params->bp_in_mask;
2069 		bcmgenet_bp_mc_set(priv, reg);
2070 	}
2071 
2072 	/* Enable MDIO interrupts on GENET v3+ */
2073 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2074 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2075 
2076 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2077 
2078 	dev_dbg(kdev, "done init umac\n");
2079 }
2080 
2081 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2082 			      void (*cb)(struct work_struct *work))
2083 {
2084 	struct bcmgenet_net_dim *dim = &ring->dim;
2085 
2086 	INIT_WORK(&dim->dim.work, cb);
2087 	dim->dim.mode = NET_DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2088 	dim->event_ctr = 0;
2089 	dim->packets = 0;
2090 	dim->bytes = 0;
2091 }
2092 
2093 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2094 {
2095 	struct bcmgenet_net_dim *dim = &ring->dim;
2096 	struct net_dim_cq_moder moder;
2097 	u32 usecs, pkts;
2098 
2099 	usecs = ring->rx_coalesce_usecs;
2100 	pkts = ring->rx_max_coalesced_frames;
2101 
2102 	/* If DIM was enabled, re-apply default parameters */
2103 	if (dim->use_dim) {
2104 		moder = net_dim_get_def_profile(dim->dim.mode);
2105 		usecs = moder.usec;
2106 		pkts = moder.pkts;
2107 	}
2108 
2109 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2110 }
2111 
2112 /* Initialize a Tx ring along with corresponding hardware registers */
2113 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2114 				  unsigned int index, unsigned int size,
2115 				  unsigned int start_ptr, unsigned int end_ptr)
2116 {
2117 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2118 	u32 words_per_bd = WORDS_PER_BD(priv);
2119 	u32 flow_period_val = 0;
2120 
2121 	spin_lock_init(&ring->lock);
2122 	ring->priv = priv;
2123 	ring->index = index;
2124 	if (index == DESC_INDEX) {
2125 		ring->queue = 0;
2126 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2127 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2128 	} else {
2129 		ring->queue = index + 1;
2130 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2131 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2132 	}
2133 	ring->cbs = priv->tx_cbs + start_ptr;
2134 	ring->size = size;
2135 	ring->clean_ptr = start_ptr;
2136 	ring->c_index = 0;
2137 	ring->free_bds = size;
2138 	ring->write_ptr = start_ptr;
2139 	ring->cb_ptr = start_ptr;
2140 	ring->end_ptr = end_ptr - 1;
2141 	ring->prod_index = 0;
2142 
2143 	/* Set flow period for ring != 16 */
2144 	if (index != DESC_INDEX)
2145 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2146 
2147 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2148 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2149 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2150 	/* Disable rate control for now */
2151 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2152 				  TDMA_FLOW_PERIOD);
2153 	bcmgenet_tdma_ring_writel(priv, index,
2154 				  ((size << DMA_RING_SIZE_SHIFT) |
2155 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2156 
2157 	/* Set start and end address, read and write pointers */
2158 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2159 				  DMA_START_ADDR);
2160 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2161 				  TDMA_READ_PTR);
2162 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2163 				  TDMA_WRITE_PTR);
2164 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2165 				  DMA_END_ADDR);
2166 
2167 	/* Initialize Tx NAPI */
2168 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2169 		       NAPI_POLL_WEIGHT);
2170 }
2171 
2172 /* Initialize a RDMA ring */
2173 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2174 				 unsigned int index, unsigned int size,
2175 				 unsigned int start_ptr, unsigned int end_ptr)
2176 {
2177 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2178 	u32 words_per_bd = WORDS_PER_BD(priv);
2179 	int ret;
2180 
2181 	ring->priv = priv;
2182 	ring->index = index;
2183 	if (index == DESC_INDEX) {
2184 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2185 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2186 	} else {
2187 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2188 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2189 	}
2190 	ring->cbs = priv->rx_cbs + start_ptr;
2191 	ring->size = size;
2192 	ring->c_index = 0;
2193 	ring->read_ptr = start_ptr;
2194 	ring->cb_ptr = start_ptr;
2195 	ring->end_ptr = end_ptr - 1;
2196 
2197 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2198 	if (ret)
2199 		return ret;
2200 
2201 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2202 	bcmgenet_init_rx_coalesce(ring);
2203 
2204 	/* Initialize Rx NAPI */
2205 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2206 		       NAPI_POLL_WEIGHT);
2207 
2208 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2209 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2210 	bcmgenet_rdma_ring_writel(priv, index,
2211 				  ((size << DMA_RING_SIZE_SHIFT) |
2212 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2213 	bcmgenet_rdma_ring_writel(priv, index,
2214 				  (DMA_FC_THRESH_LO <<
2215 				   DMA_XOFF_THRESHOLD_SHIFT) |
2216 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2217 
2218 	/* Set start and end address, read and write pointers */
2219 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2220 				  DMA_START_ADDR);
2221 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2222 				  RDMA_READ_PTR);
2223 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2224 				  RDMA_WRITE_PTR);
2225 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2226 				  DMA_END_ADDR);
2227 
2228 	return ret;
2229 }
2230 
2231 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2232 {
2233 	unsigned int i;
2234 	struct bcmgenet_tx_ring *ring;
2235 
2236 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2237 		ring = &priv->tx_rings[i];
2238 		napi_enable(&ring->napi);
2239 		ring->int_enable(ring);
2240 	}
2241 
2242 	ring = &priv->tx_rings[DESC_INDEX];
2243 	napi_enable(&ring->napi);
2244 	ring->int_enable(ring);
2245 }
2246 
2247 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2248 {
2249 	unsigned int i;
2250 	struct bcmgenet_tx_ring *ring;
2251 
2252 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2253 		ring = &priv->tx_rings[i];
2254 		napi_disable(&ring->napi);
2255 	}
2256 
2257 	ring = &priv->tx_rings[DESC_INDEX];
2258 	napi_disable(&ring->napi);
2259 }
2260 
2261 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2262 {
2263 	unsigned int i;
2264 	struct bcmgenet_tx_ring *ring;
2265 
2266 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2267 		ring = &priv->tx_rings[i];
2268 		netif_napi_del(&ring->napi);
2269 	}
2270 
2271 	ring = &priv->tx_rings[DESC_INDEX];
2272 	netif_napi_del(&ring->napi);
2273 }
2274 
2275 /* Initialize Tx queues
2276  *
2277  * Queues 0-3 are priority-based, each one has 32 descriptors,
2278  * with queue 0 being the highest priority queue.
2279  *
2280  * Queue 16 is the default Tx queue with
2281  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2282  *
2283  * The transmit control block pool is then partitioned as follows:
2284  * - Tx queue 0 uses tx_cbs[0..31]
2285  * - Tx queue 1 uses tx_cbs[32..63]
2286  * - Tx queue 2 uses tx_cbs[64..95]
2287  * - Tx queue 3 uses tx_cbs[96..127]
2288  * - Tx queue 16 uses tx_cbs[128..255]
2289  */
2290 static void bcmgenet_init_tx_queues(struct net_device *dev)
2291 {
2292 	struct bcmgenet_priv *priv = netdev_priv(dev);
2293 	u32 i, dma_enable;
2294 	u32 dma_ctrl, ring_cfg;
2295 	u32 dma_priority[3] = {0, 0, 0};
2296 
2297 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2298 	dma_enable = dma_ctrl & DMA_EN;
2299 	dma_ctrl &= ~DMA_EN;
2300 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2301 
2302 	dma_ctrl = 0;
2303 	ring_cfg = 0;
2304 
2305 	/* Enable strict priority arbiter mode */
2306 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2307 
2308 	/* Initialize Tx priority queues */
2309 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2310 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2311 				      i * priv->hw_params->tx_bds_per_q,
2312 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2313 		ring_cfg |= (1 << i);
2314 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2315 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2316 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2317 	}
2318 
2319 	/* Initialize Tx default queue 16 */
2320 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2321 			      priv->hw_params->tx_queues *
2322 			      priv->hw_params->tx_bds_per_q,
2323 			      TOTAL_DESC);
2324 	ring_cfg |= (1 << DESC_INDEX);
2325 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2326 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2327 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2328 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2329 
2330 	/* Set Tx queue priorities */
2331 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2332 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2333 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2334 
2335 	/* Enable Tx queues */
2336 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2337 
2338 	/* Enable Tx DMA */
2339 	if (dma_enable)
2340 		dma_ctrl |= DMA_EN;
2341 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2342 }
2343 
2344 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2345 {
2346 	unsigned int i;
2347 	struct bcmgenet_rx_ring *ring;
2348 
2349 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2350 		ring = &priv->rx_rings[i];
2351 		napi_enable(&ring->napi);
2352 		ring->int_enable(ring);
2353 	}
2354 
2355 	ring = &priv->rx_rings[DESC_INDEX];
2356 	napi_enable(&ring->napi);
2357 	ring->int_enable(ring);
2358 }
2359 
2360 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2361 {
2362 	unsigned int i;
2363 	struct bcmgenet_rx_ring *ring;
2364 
2365 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2366 		ring = &priv->rx_rings[i];
2367 		napi_disable(&ring->napi);
2368 		cancel_work_sync(&ring->dim.dim.work);
2369 	}
2370 
2371 	ring = &priv->rx_rings[DESC_INDEX];
2372 	napi_disable(&ring->napi);
2373 	cancel_work_sync(&ring->dim.dim.work);
2374 }
2375 
2376 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2377 {
2378 	unsigned int i;
2379 	struct bcmgenet_rx_ring *ring;
2380 
2381 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2382 		ring = &priv->rx_rings[i];
2383 		netif_napi_del(&ring->napi);
2384 	}
2385 
2386 	ring = &priv->rx_rings[DESC_INDEX];
2387 	netif_napi_del(&ring->napi);
2388 }
2389 
2390 /* Initialize Rx queues
2391  *
2392  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2393  * used to direct traffic to these queues.
2394  *
2395  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2396  */
2397 static int bcmgenet_init_rx_queues(struct net_device *dev)
2398 {
2399 	struct bcmgenet_priv *priv = netdev_priv(dev);
2400 	u32 i;
2401 	u32 dma_enable;
2402 	u32 dma_ctrl;
2403 	u32 ring_cfg;
2404 	int ret;
2405 
2406 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2407 	dma_enable = dma_ctrl & DMA_EN;
2408 	dma_ctrl &= ~DMA_EN;
2409 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2410 
2411 	dma_ctrl = 0;
2412 	ring_cfg = 0;
2413 
2414 	/* Initialize Rx priority queues */
2415 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2416 		ret = bcmgenet_init_rx_ring(priv, i,
2417 					    priv->hw_params->rx_bds_per_q,
2418 					    i * priv->hw_params->rx_bds_per_q,
2419 					    (i + 1) *
2420 					    priv->hw_params->rx_bds_per_q);
2421 		if (ret)
2422 			return ret;
2423 
2424 		ring_cfg |= (1 << i);
2425 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2426 	}
2427 
2428 	/* Initialize Rx default queue 16 */
2429 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2430 				    priv->hw_params->rx_queues *
2431 				    priv->hw_params->rx_bds_per_q,
2432 				    TOTAL_DESC);
2433 	if (ret)
2434 		return ret;
2435 
2436 	ring_cfg |= (1 << DESC_INDEX);
2437 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2438 
2439 	/* Enable rings */
2440 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2441 
2442 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2443 	if (dma_enable)
2444 		dma_ctrl |= DMA_EN;
2445 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2446 
2447 	return 0;
2448 }
2449 
2450 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2451 {
2452 	int ret = 0;
2453 	int timeout = 0;
2454 	u32 reg;
2455 	u32 dma_ctrl;
2456 	int i;
2457 
2458 	/* Disable TDMA to stop add more frames in TX DMA */
2459 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2460 	reg &= ~DMA_EN;
2461 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2462 
2463 	/* Check TDMA status register to confirm TDMA is disabled */
2464 	while (timeout++ < DMA_TIMEOUT_VAL) {
2465 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2466 		if (reg & DMA_DISABLED)
2467 			break;
2468 
2469 		udelay(1);
2470 	}
2471 
2472 	if (timeout == DMA_TIMEOUT_VAL) {
2473 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2474 		ret = -ETIMEDOUT;
2475 	}
2476 
2477 	/* Wait 10ms for packet drain in both tx and rx dma */
2478 	usleep_range(10000, 20000);
2479 
2480 	/* Disable RDMA */
2481 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2482 	reg &= ~DMA_EN;
2483 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2484 
2485 	timeout = 0;
2486 	/* Check RDMA status register to confirm RDMA is disabled */
2487 	while (timeout++ < DMA_TIMEOUT_VAL) {
2488 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2489 		if (reg & DMA_DISABLED)
2490 			break;
2491 
2492 		udelay(1);
2493 	}
2494 
2495 	if (timeout == DMA_TIMEOUT_VAL) {
2496 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2497 		ret = -ETIMEDOUT;
2498 	}
2499 
2500 	dma_ctrl = 0;
2501 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2502 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2503 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2504 	reg &= ~dma_ctrl;
2505 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2506 
2507 	dma_ctrl = 0;
2508 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2509 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2510 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2511 	reg &= ~dma_ctrl;
2512 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2513 
2514 	return ret;
2515 }
2516 
2517 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2518 {
2519 	struct netdev_queue *txq;
2520 	struct sk_buff *skb;
2521 	struct enet_cb *cb;
2522 	int i;
2523 
2524 	bcmgenet_fini_rx_napi(priv);
2525 	bcmgenet_fini_tx_napi(priv);
2526 
2527 	for (i = 0; i < priv->num_tx_bds; i++) {
2528 		cb = priv->tx_cbs + i;
2529 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev, cb);
2530 		if (skb)
2531 			dev_kfree_skb(skb);
2532 	}
2533 
2534 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2535 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2536 		netdev_tx_reset_queue(txq);
2537 	}
2538 
2539 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2540 	netdev_tx_reset_queue(txq);
2541 
2542 	bcmgenet_free_rx_buffers(priv);
2543 	kfree(priv->rx_cbs);
2544 	kfree(priv->tx_cbs);
2545 }
2546 
2547 /* init_edma: Initialize DMA control register */
2548 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2549 {
2550 	int ret;
2551 	unsigned int i;
2552 	struct enet_cb *cb;
2553 
2554 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2555 
2556 	/* Initialize common Rx ring structures */
2557 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2558 	priv->num_rx_bds = TOTAL_DESC;
2559 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2560 			       GFP_KERNEL);
2561 	if (!priv->rx_cbs)
2562 		return -ENOMEM;
2563 
2564 	for (i = 0; i < priv->num_rx_bds; i++) {
2565 		cb = priv->rx_cbs + i;
2566 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2567 	}
2568 
2569 	/* Initialize common TX ring structures */
2570 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2571 	priv->num_tx_bds = TOTAL_DESC;
2572 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2573 			       GFP_KERNEL);
2574 	if (!priv->tx_cbs) {
2575 		kfree(priv->rx_cbs);
2576 		return -ENOMEM;
2577 	}
2578 
2579 	for (i = 0; i < priv->num_tx_bds; i++) {
2580 		cb = priv->tx_cbs + i;
2581 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2582 	}
2583 
2584 	/* Init rDma */
2585 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2586 
2587 	/* Initialize Rx queues */
2588 	ret = bcmgenet_init_rx_queues(priv->dev);
2589 	if (ret) {
2590 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2591 		bcmgenet_free_rx_buffers(priv);
2592 		kfree(priv->rx_cbs);
2593 		kfree(priv->tx_cbs);
2594 		return ret;
2595 	}
2596 
2597 	/* Init tDma */
2598 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2599 
2600 	/* Initialize Tx queues */
2601 	bcmgenet_init_tx_queues(priv->dev);
2602 
2603 	return 0;
2604 }
2605 
2606 /* Interrupt bottom half */
2607 static void bcmgenet_irq_task(struct work_struct *work)
2608 {
2609 	unsigned int status;
2610 	struct bcmgenet_priv *priv = container_of(
2611 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2612 
2613 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2614 
2615 	spin_lock_irq(&priv->lock);
2616 	status = priv->irq0_stat;
2617 	priv->irq0_stat = 0;
2618 	spin_unlock_irq(&priv->lock);
2619 
2620 	/* Link UP/DOWN event */
2621 	if (status & UMAC_IRQ_LINK_EVENT) {
2622 		priv->dev->phydev->link = !!(status & UMAC_IRQ_LINK_UP);
2623 		phy_mac_interrupt(priv->dev->phydev);
2624 	}
2625 }
2626 
2627 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2628 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2629 {
2630 	struct bcmgenet_priv *priv = dev_id;
2631 	struct bcmgenet_rx_ring *rx_ring;
2632 	struct bcmgenet_tx_ring *tx_ring;
2633 	unsigned int index, status;
2634 
2635 	/* Read irq status */
2636 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2637 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2638 
2639 	/* clear interrupts */
2640 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2641 
2642 	netif_dbg(priv, intr, priv->dev,
2643 		  "%s: IRQ=0x%x\n", __func__, status);
2644 
2645 	/* Check Rx priority queue interrupts */
2646 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2647 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2648 			continue;
2649 
2650 		rx_ring = &priv->rx_rings[index];
2651 		rx_ring->dim.event_ctr++;
2652 
2653 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2654 			rx_ring->int_disable(rx_ring);
2655 			__napi_schedule_irqoff(&rx_ring->napi);
2656 		}
2657 	}
2658 
2659 	/* Check Tx priority queue interrupts */
2660 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2661 		if (!(status & BIT(index)))
2662 			continue;
2663 
2664 		tx_ring = &priv->tx_rings[index];
2665 
2666 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2667 			tx_ring->int_disable(tx_ring);
2668 			__napi_schedule_irqoff(&tx_ring->napi);
2669 		}
2670 	}
2671 
2672 	return IRQ_HANDLED;
2673 }
2674 
2675 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2676 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2677 {
2678 	struct bcmgenet_priv *priv = dev_id;
2679 	struct bcmgenet_rx_ring *rx_ring;
2680 	struct bcmgenet_tx_ring *tx_ring;
2681 	unsigned int status;
2682 	unsigned long flags;
2683 
2684 	/* Read irq status */
2685 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2686 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2687 
2688 	/* clear interrupts */
2689 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2690 
2691 	netif_dbg(priv, intr, priv->dev,
2692 		  "IRQ=0x%x\n", status);
2693 
2694 	if (status & UMAC_IRQ_RXDMA_DONE) {
2695 		rx_ring = &priv->rx_rings[DESC_INDEX];
2696 		rx_ring->dim.event_ctr++;
2697 
2698 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2699 			rx_ring->int_disable(rx_ring);
2700 			__napi_schedule_irqoff(&rx_ring->napi);
2701 		}
2702 	}
2703 
2704 	if (status & UMAC_IRQ_TXDMA_DONE) {
2705 		tx_ring = &priv->tx_rings[DESC_INDEX];
2706 
2707 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2708 			tx_ring->int_disable(tx_ring);
2709 			__napi_schedule_irqoff(&tx_ring->napi);
2710 		}
2711 	}
2712 
2713 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2714 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2715 		wake_up(&priv->wq);
2716 	}
2717 
2718 	/* all other interested interrupts handled in bottom half */
2719 	status &= UMAC_IRQ_LINK_EVENT;
2720 	if (status) {
2721 		/* Save irq status for bottom-half processing. */
2722 		spin_lock_irqsave(&priv->lock, flags);
2723 		priv->irq0_stat |= status;
2724 		spin_unlock_irqrestore(&priv->lock, flags);
2725 
2726 		schedule_work(&priv->bcmgenet_irq_work);
2727 	}
2728 
2729 	return IRQ_HANDLED;
2730 }
2731 
2732 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2733 {
2734 	struct bcmgenet_priv *priv = dev_id;
2735 
2736 	pm_wakeup_event(&priv->pdev->dev, 0);
2737 
2738 	return IRQ_HANDLED;
2739 }
2740 
2741 #ifdef CONFIG_NET_POLL_CONTROLLER
2742 static void bcmgenet_poll_controller(struct net_device *dev)
2743 {
2744 	struct bcmgenet_priv *priv = netdev_priv(dev);
2745 
2746 	/* Invoke the main RX/TX interrupt handler */
2747 	disable_irq(priv->irq0);
2748 	bcmgenet_isr0(priv->irq0, priv);
2749 	enable_irq(priv->irq0);
2750 
2751 	/* And the interrupt handler for RX/TX priority queues */
2752 	disable_irq(priv->irq1);
2753 	bcmgenet_isr1(priv->irq1, priv);
2754 	enable_irq(priv->irq1);
2755 }
2756 #endif
2757 
2758 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2759 {
2760 	u32 reg;
2761 
2762 	reg = bcmgenet_rbuf_ctrl_get(priv);
2763 	reg |= BIT(1);
2764 	bcmgenet_rbuf_ctrl_set(priv, reg);
2765 	udelay(10);
2766 
2767 	reg &= ~BIT(1);
2768 	bcmgenet_rbuf_ctrl_set(priv, reg);
2769 	udelay(10);
2770 }
2771 
2772 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2773 				 unsigned char *addr)
2774 {
2775 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2776 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2777 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2778 }
2779 
2780 /* Returns a reusable dma control register value */
2781 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2782 {
2783 	u32 reg;
2784 	u32 dma_ctrl;
2785 
2786 	/* disable DMA */
2787 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2788 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2789 	reg &= ~dma_ctrl;
2790 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2791 
2792 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2793 	reg &= ~dma_ctrl;
2794 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2795 
2796 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2797 	udelay(10);
2798 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2799 
2800 	return dma_ctrl;
2801 }
2802 
2803 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2804 {
2805 	u32 reg;
2806 
2807 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2808 	reg |= dma_ctrl;
2809 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2810 
2811 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2812 	reg |= dma_ctrl;
2813 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2814 }
2815 
2816 /* bcmgenet_hfb_clear
2817  *
2818  * Clear Hardware Filter Block and disable all filtering.
2819  */
2820 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2821 {
2822 	u32 i;
2823 
2824 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2825 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2826 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2827 
2828 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2829 		bcmgenet_rdma_writel(priv, 0x0, i);
2830 
2831 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2832 		bcmgenet_hfb_reg_writel(priv, 0x0,
2833 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2834 
2835 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2836 			priv->hw_params->hfb_filter_size; i++)
2837 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2838 }
2839 
2840 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2841 {
2842 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2843 		return;
2844 
2845 	bcmgenet_hfb_clear(priv);
2846 }
2847 
2848 static void bcmgenet_netif_start(struct net_device *dev)
2849 {
2850 	struct bcmgenet_priv *priv = netdev_priv(dev);
2851 
2852 	/* Start the network engine */
2853 	bcmgenet_enable_rx_napi(priv);
2854 
2855 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2856 
2857 	netif_tx_start_all_queues(dev);
2858 	bcmgenet_enable_tx_napi(priv);
2859 
2860 	/* Monitor link interrupts now */
2861 	bcmgenet_link_intr_enable(priv);
2862 
2863 	phy_start(dev->phydev);
2864 }
2865 
2866 static int bcmgenet_open(struct net_device *dev)
2867 {
2868 	struct bcmgenet_priv *priv = netdev_priv(dev);
2869 	unsigned long dma_ctrl;
2870 	u32 reg;
2871 	int ret;
2872 
2873 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2874 
2875 	/* Turn on the clock */
2876 	clk_prepare_enable(priv->clk);
2877 
2878 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2879 	 * brought out of reset as absolutely no UniMAC activity is allowed
2880 	 */
2881 	if (priv->internal_phy)
2882 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2883 
2884 	/* take MAC out of reset */
2885 	bcmgenet_umac_reset(priv);
2886 
2887 	init_umac(priv);
2888 
2889 	/* Make sure we reflect the value of CRC_CMD_FWD */
2890 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2891 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2892 
2893 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2894 
2895 	if (priv->internal_phy) {
2896 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2897 		reg |= EXT_ENERGY_DET_MASK;
2898 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2899 	}
2900 
2901 	/* Disable RX/TX DMA and flush TX queues */
2902 	dma_ctrl = bcmgenet_dma_disable(priv);
2903 
2904 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2905 	ret = bcmgenet_init_dma(priv);
2906 	if (ret) {
2907 		netdev_err(dev, "failed to initialize DMA\n");
2908 		goto err_clk_disable;
2909 	}
2910 
2911 	/* Always enable ring 16 - descriptor ring */
2912 	bcmgenet_enable_dma(priv, dma_ctrl);
2913 
2914 	/* HFB init */
2915 	bcmgenet_hfb_init(priv);
2916 
2917 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2918 			  dev->name, priv);
2919 	if (ret < 0) {
2920 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2921 		goto err_fini_dma;
2922 	}
2923 
2924 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2925 			  dev->name, priv);
2926 	if (ret < 0) {
2927 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2928 		goto err_irq0;
2929 	}
2930 
2931 	ret = bcmgenet_mii_probe(dev);
2932 	if (ret) {
2933 		netdev_err(dev, "failed to connect to PHY\n");
2934 		goto err_irq1;
2935 	}
2936 
2937 	bcmgenet_netif_start(dev);
2938 
2939 	return 0;
2940 
2941 err_irq1:
2942 	free_irq(priv->irq1, priv);
2943 err_irq0:
2944 	free_irq(priv->irq0, priv);
2945 err_fini_dma:
2946 	bcmgenet_dma_teardown(priv);
2947 	bcmgenet_fini_dma(priv);
2948 err_clk_disable:
2949 	if (priv->internal_phy)
2950 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2951 	clk_disable_unprepare(priv->clk);
2952 	return ret;
2953 }
2954 
2955 static void bcmgenet_netif_stop(struct net_device *dev)
2956 {
2957 	struct bcmgenet_priv *priv = netdev_priv(dev);
2958 
2959 	bcmgenet_disable_tx_napi(priv);
2960 	netif_tx_stop_all_queues(dev);
2961 
2962 	/* Disable MAC receive */
2963 	umac_enable_set(priv, CMD_RX_EN, false);
2964 
2965 	bcmgenet_dma_teardown(priv);
2966 
2967 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2968 	umac_enable_set(priv, CMD_TX_EN, false);
2969 
2970 	phy_stop(dev->phydev);
2971 	bcmgenet_disable_rx_napi(priv);
2972 	bcmgenet_intr_disable(priv);
2973 
2974 	/* Wait for pending work items to complete. Since interrupts are
2975 	 * disabled no new work will be scheduled.
2976 	 */
2977 	cancel_work_sync(&priv->bcmgenet_irq_work);
2978 
2979 	priv->old_link = -1;
2980 	priv->old_speed = -1;
2981 	priv->old_duplex = -1;
2982 	priv->old_pause = -1;
2983 
2984 	/* tx reclaim */
2985 	bcmgenet_tx_reclaim_all(dev);
2986 	bcmgenet_fini_dma(priv);
2987 }
2988 
2989 static int bcmgenet_close(struct net_device *dev)
2990 {
2991 	struct bcmgenet_priv *priv = netdev_priv(dev);
2992 	int ret = 0;
2993 
2994 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2995 
2996 	bcmgenet_netif_stop(dev);
2997 
2998 	/* Really kill the PHY state machine and disconnect from it */
2999 	phy_disconnect(dev->phydev);
3000 
3001 	free_irq(priv->irq0, priv);
3002 	free_irq(priv->irq1, priv);
3003 
3004 	if (priv->internal_phy)
3005 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3006 
3007 	clk_disable_unprepare(priv->clk);
3008 
3009 	return ret;
3010 }
3011 
3012 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3013 {
3014 	struct bcmgenet_priv *priv = ring->priv;
3015 	u32 p_index, c_index, intsts, intmsk;
3016 	struct netdev_queue *txq;
3017 	unsigned int free_bds;
3018 	bool txq_stopped;
3019 
3020 	if (!netif_msg_tx_err(priv))
3021 		return;
3022 
3023 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3024 
3025 	spin_lock(&ring->lock);
3026 	if (ring->index == DESC_INDEX) {
3027 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3028 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3029 	} else {
3030 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3031 		intmsk = 1 << ring->index;
3032 	}
3033 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3034 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3035 	txq_stopped = netif_tx_queue_stopped(txq);
3036 	free_bds = ring->free_bds;
3037 	spin_unlock(&ring->lock);
3038 
3039 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3040 		  "TX queue status: %s, interrupts: %s\n"
3041 		  "(sw)free_bds: %d (sw)size: %d\n"
3042 		  "(sw)p_index: %d (hw)p_index: %d\n"
3043 		  "(sw)c_index: %d (hw)c_index: %d\n"
3044 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3045 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3046 		  ring->index, ring->queue,
3047 		  txq_stopped ? "stopped" : "active",
3048 		  intsts & intmsk ? "enabled" : "disabled",
3049 		  free_bds, ring->size,
3050 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3051 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3052 		  ring->clean_ptr, ring->write_ptr,
3053 		  ring->cb_ptr, ring->end_ptr);
3054 }
3055 
3056 static void bcmgenet_timeout(struct net_device *dev)
3057 {
3058 	struct bcmgenet_priv *priv = netdev_priv(dev);
3059 	u32 int0_enable = 0;
3060 	u32 int1_enable = 0;
3061 	unsigned int q;
3062 
3063 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3064 
3065 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3066 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3067 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3068 
3069 	bcmgenet_tx_reclaim_all(dev);
3070 
3071 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3072 		int1_enable |= (1 << q);
3073 
3074 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3075 
3076 	/* Re-enable TX interrupts if disabled */
3077 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3078 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3079 
3080 	netif_trans_update(dev);
3081 
3082 	dev->stats.tx_errors++;
3083 
3084 	netif_tx_wake_all_queues(dev);
3085 }
3086 
3087 #define MAX_MC_COUNT	16
3088 
3089 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3090 					 unsigned char *addr,
3091 					 int *i,
3092 					 int *mc)
3093 {
3094 	u32 reg;
3095 
3096 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3097 			     UMAC_MDF_ADDR + (*i * 4));
3098 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3099 			     addr[4] << 8 | addr[5],
3100 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3101 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3102 	reg |= (1 << (MAX_MC_COUNT - *mc));
3103 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3104 	*i += 2;
3105 	(*mc)++;
3106 }
3107 
3108 static void bcmgenet_set_rx_mode(struct net_device *dev)
3109 {
3110 	struct bcmgenet_priv *priv = netdev_priv(dev);
3111 	struct netdev_hw_addr *ha;
3112 	int i, mc;
3113 	u32 reg;
3114 
3115 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3116 
3117 	/* Promiscuous mode */
3118 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3119 	if (dev->flags & IFF_PROMISC) {
3120 		reg |= CMD_PROMISC;
3121 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3122 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3123 		return;
3124 	} else {
3125 		reg &= ~CMD_PROMISC;
3126 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3127 	}
3128 
3129 	/* UniMac doesn't support ALLMULTI */
3130 	if (dev->flags & IFF_ALLMULTI) {
3131 		netdev_warn(dev, "ALLMULTI is not supported\n");
3132 		return;
3133 	}
3134 
3135 	/* update MDF filter */
3136 	i = 0;
3137 	mc = 0;
3138 	/* Broadcast */
3139 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3140 	/* my own address.*/
3141 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3142 	/* Unicast list*/
3143 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3144 		return;
3145 
3146 	if (!netdev_uc_empty(dev))
3147 		netdev_for_each_uc_addr(ha, dev)
3148 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3149 	/* Multicast */
3150 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3151 		return;
3152 
3153 	netdev_for_each_mc_addr(ha, dev)
3154 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3155 }
3156 
3157 /* Set the hardware MAC address. */
3158 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3159 {
3160 	struct sockaddr *addr = p;
3161 
3162 	/* Setting the MAC address at the hardware level is not possible
3163 	 * without disabling the UniMAC RX/TX enable bits.
3164 	 */
3165 	if (netif_running(dev))
3166 		return -EBUSY;
3167 
3168 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3169 
3170 	return 0;
3171 }
3172 
3173 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3174 {
3175 	struct bcmgenet_priv *priv = netdev_priv(dev);
3176 	unsigned long tx_bytes = 0, tx_packets = 0;
3177 	unsigned long rx_bytes = 0, rx_packets = 0;
3178 	unsigned long rx_errors = 0, rx_dropped = 0;
3179 	struct bcmgenet_tx_ring *tx_ring;
3180 	struct bcmgenet_rx_ring *rx_ring;
3181 	unsigned int q;
3182 
3183 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3184 		tx_ring = &priv->tx_rings[q];
3185 		tx_bytes += tx_ring->bytes;
3186 		tx_packets += tx_ring->packets;
3187 	}
3188 	tx_ring = &priv->tx_rings[DESC_INDEX];
3189 	tx_bytes += tx_ring->bytes;
3190 	tx_packets += tx_ring->packets;
3191 
3192 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3193 		rx_ring = &priv->rx_rings[q];
3194 
3195 		rx_bytes += rx_ring->bytes;
3196 		rx_packets += rx_ring->packets;
3197 		rx_errors += rx_ring->errors;
3198 		rx_dropped += rx_ring->dropped;
3199 	}
3200 	rx_ring = &priv->rx_rings[DESC_INDEX];
3201 	rx_bytes += rx_ring->bytes;
3202 	rx_packets += rx_ring->packets;
3203 	rx_errors += rx_ring->errors;
3204 	rx_dropped += rx_ring->dropped;
3205 
3206 	dev->stats.tx_bytes = tx_bytes;
3207 	dev->stats.tx_packets = tx_packets;
3208 	dev->stats.rx_bytes = rx_bytes;
3209 	dev->stats.rx_packets = rx_packets;
3210 	dev->stats.rx_errors = rx_errors;
3211 	dev->stats.rx_missed_errors = rx_errors;
3212 	return &dev->stats;
3213 }
3214 
3215 static const struct net_device_ops bcmgenet_netdev_ops = {
3216 	.ndo_open		= bcmgenet_open,
3217 	.ndo_stop		= bcmgenet_close,
3218 	.ndo_start_xmit		= bcmgenet_xmit,
3219 	.ndo_tx_timeout		= bcmgenet_timeout,
3220 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3221 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3222 	.ndo_do_ioctl		= bcmgenet_ioctl,
3223 	.ndo_set_features	= bcmgenet_set_features,
3224 #ifdef CONFIG_NET_POLL_CONTROLLER
3225 	.ndo_poll_controller	= bcmgenet_poll_controller,
3226 #endif
3227 	.ndo_get_stats		= bcmgenet_get_stats,
3228 };
3229 
3230 /* Array of GENET hardware parameters/characteristics */
3231 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3232 	[GENET_V1] = {
3233 		.tx_queues = 0,
3234 		.tx_bds_per_q = 0,
3235 		.rx_queues = 0,
3236 		.rx_bds_per_q = 0,
3237 		.bp_in_en_shift = 16,
3238 		.bp_in_mask = 0xffff,
3239 		.hfb_filter_cnt = 16,
3240 		.qtag_mask = 0x1F,
3241 		.hfb_offset = 0x1000,
3242 		.rdma_offset = 0x2000,
3243 		.tdma_offset = 0x3000,
3244 		.words_per_bd = 2,
3245 	},
3246 	[GENET_V2] = {
3247 		.tx_queues = 4,
3248 		.tx_bds_per_q = 32,
3249 		.rx_queues = 0,
3250 		.rx_bds_per_q = 0,
3251 		.bp_in_en_shift = 16,
3252 		.bp_in_mask = 0xffff,
3253 		.hfb_filter_cnt = 16,
3254 		.qtag_mask = 0x1F,
3255 		.tbuf_offset = 0x0600,
3256 		.hfb_offset = 0x1000,
3257 		.hfb_reg_offset = 0x2000,
3258 		.rdma_offset = 0x3000,
3259 		.tdma_offset = 0x4000,
3260 		.words_per_bd = 2,
3261 		.flags = GENET_HAS_EXT,
3262 	},
3263 	[GENET_V3] = {
3264 		.tx_queues = 4,
3265 		.tx_bds_per_q = 32,
3266 		.rx_queues = 0,
3267 		.rx_bds_per_q = 0,
3268 		.bp_in_en_shift = 17,
3269 		.bp_in_mask = 0x1ffff,
3270 		.hfb_filter_cnt = 48,
3271 		.hfb_filter_size = 128,
3272 		.qtag_mask = 0x3F,
3273 		.tbuf_offset = 0x0600,
3274 		.hfb_offset = 0x8000,
3275 		.hfb_reg_offset = 0xfc00,
3276 		.rdma_offset = 0x10000,
3277 		.tdma_offset = 0x11000,
3278 		.words_per_bd = 2,
3279 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3280 			 GENET_HAS_MOCA_LINK_DET,
3281 	},
3282 	[GENET_V4] = {
3283 		.tx_queues = 4,
3284 		.tx_bds_per_q = 32,
3285 		.rx_queues = 0,
3286 		.rx_bds_per_q = 0,
3287 		.bp_in_en_shift = 17,
3288 		.bp_in_mask = 0x1ffff,
3289 		.hfb_filter_cnt = 48,
3290 		.hfb_filter_size = 128,
3291 		.qtag_mask = 0x3F,
3292 		.tbuf_offset = 0x0600,
3293 		.hfb_offset = 0x8000,
3294 		.hfb_reg_offset = 0xfc00,
3295 		.rdma_offset = 0x2000,
3296 		.tdma_offset = 0x4000,
3297 		.words_per_bd = 3,
3298 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3299 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3300 	},
3301 	[GENET_V5] = {
3302 		.tx_queues = 4,
3303 		.tx_bds_per_q = 32,
3304 		.rx_queues = 0,
3305 		.rx_bds_per_q = 0,
3306 		.bp_in_en_shift = 17,
3307 		.bp_in_mask = 0x1ffff,
3308 		.hfb_filter_cnt = 48,
3309 		.hfb_filter_size = 128,
3310 		.qtag_mask = 0x3F,
3311 		.tbuf_offset = 0x0600,
3312 		.hfb_offset = 0x8000,
3313 		.hfb_reg_offset = 0xfc00,
3314 		.rdma_offset = 0x2000,
3315 		.tdma_offset = 0x4000,
3316 		.words_per_bd = 3,
3317 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3318 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3319 	},
3320 };
3321 
3322 /* Infer hardware parameters from the detected GENET version */
3323 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3324 {
3325 	struct bcmgenet_hw_params *params;
3326 	u32 reg;
3327 	u8 major;
3328 	u16 gphy_rev;
3329 
3330 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3331 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3332 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3333 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3334 	} else if (GENET_IS_V3(priv)) {
3335 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3336 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3337 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3338 	} else if (GENET_IS_V2(priv)) {
3339 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3340 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3341 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3342 	} else if (GENET_IS_V1(priv)) {
3343 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3344 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3345 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3346 	}
3347 
3348 	/* enum genet_version starts at 1 */
3349 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3350 	params = priv->hw_params;
3351 
3352 	/* Read GENET HW version */
3353 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3354 	major = (reg >> 24 & 0x0f);
3355 	if (major == 6)
3356 		major = 5;
3357 	else if (major == 5)
3358 		major = 4;
3359 	else if (major == 0)
3360 		major = 1;
3361 	if (major != priv->version) {
3362 		dev_err(&priv->pdev->dev,
3363 			"GENET version mismatch, got: %d, configured for: %d\n",
3364 			major, priv->version);
3365 	}
3366 
3367 	/* Print the GENET core version */
3368 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3369 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3370 
3371 	/* Store the integrated PHY revision for the MDIO probing function
3372 	 * to pass this information to the PHY driver. The PHY driver expects
3373 	 * to find the PHY major revision in bits 15:8 while the GENET register
3374 	 * stores that information in bits 7:0, account for that.
3375 	 *
3376 	 * On newer chips, starting with PHY revision G0, a new scheme is
3377 	 * deployed similar to the Starfighter 2 switch with GPHY major
3378 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3379 	 * is reserved as well as special value 0x01ff, we have a small
3380 	 * heuristic to check for the new GPHY revision and re-arrange things
3381 	 * so the GPHY driver is happy.
3382 	 */
3383 	gphy_rev = reg & 0xffff;
3384 
3385 	if (GENET_IS_V5(priv)) {
3386 		/* The EPHY revision should come from the MDIO registers of
3387 		 * the PHY not from GENET.
3388 		 */
3389 		if (gphy_rev != 0) {
3390 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3391 				gphy_rev);
3392 		}
3393 	/* This is reserved so should require special treatment */
3394 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3395 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3396 		return;
3397 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3398 	} else if ((gphy_rev & 0xf0) != 0) {
3399 		priv->gphy_rev = gphy_rev << 8;
3400 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3401 	} else if ((gphy_rev & 0xff00) != 0) {
3402 		priv->gphy_rev = gphy_rev;
3403 	}
3404 
3405 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3406 	if (!(params->flags & GENET_HAS_40BITS))
3407 		pr_warn("GENET does not support 40-bits PA\n");
3408 #endif
3409 
3410 	pr_debug("Configuration for version: %d\n"
3411 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3412 		"BP << en: %2d, BP msk: 0x%05x\n"
3413 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3414 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3415 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3416 		"Words/BD: %d\n",
3417 		priv->version,
3418 		params->tx_queues, params->tx_bds_per_q,
3419 		params->rx_queues, params->rx_bds_per_q,
3420 		params->bp_in_en_shift, params->bp_in_mask,
3421 		params->hfb_filter_cnt, params->qtag_mask,
3422 		params->tbuf_offset, params->hfb_offset,
3423 		params->hfb_reg_offset,
3424 		params->rdma_offset, params->tdma_offset,
3425 		params->words_per_bd);
3426 }
3427 
3428 static const struct of_device_id bcmgenet_match[] = {
3429 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3430 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3431 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3432 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3433 	{ .compatible = "brcm,genet-v5", .data = (void *)GENET_V5 },
3434 	{ },
3435 };
3436 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3437 
3438 static int bcmgenet_probe(struct platform_device *pdev)
3439 {
3440 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3441 	struct device_node *dn = pdev->dev.of_node;
3442 	const struct of_device_id *of_id = NULL;
3443 	struct bcmgenet_priv *priv;
3444 	struct net_device *dev;
3445 	const void *macaddr;
3446 	struct resource *r;
3447 	unsigned int i;
3448 	int err = -EIO;
3449 	const char *phy_mode_str;
3450 
3451 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3452 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3453 				 GENET_MAX_MQ_CNT + 1);
3454 	if (!dev) {
3455 		dev_err(&pdev->dev, "can't allocate net device\n");
3456 		return -ENOMEM;
3457 	}
3458 
3459 	if (dn) {
3460 		of_id = of_match_node(bcmgenet_match, dn);
3461 		if (!of_id)
3462 			return -EINVAL;
3463 	}
3464 
3465 	priv = netdev_priv(dev);
3466 	priv->irq0 = platform_get_irq(pdev, 0);
3467 	priv->irq1 = platform_get_irq(pdev, 1);
3468 	priv->wol_irq = platform_get_irq(pdev, 2);
3469 	if (!priv->irq0 || !priv->irq1) {
3470 		dev_err(&pdev->dev, "can't find IRQs\n");
3471 		err = -EINVAL;
3472 		goto err;
3473 	}
3474 
3475 	if (dn) {
3476 		macaddr = of_get_mac_address(dn);
3477 		if (!macaddr) {
3478 			dev_err(&pdev->dev, "can't find MAC address\n");
3479 			err = -EINVAL;
3480 			goto err;
3481 		}
3482 	} else {
3483 		macaddr = pd->mac_address;
3484 	}
3485 
3486 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3487 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3488 	if (IS_ERR(priv->base)) {
3489 		err = PTR_ERR(priv->base);
3490 		goto err;
3491 	}
3492 
3493 	spin_lock_init(&priv->lock);
3494 
3495 	SET_NETDEV_DEV(dev, &pdev->dev);
3496 	dev_set_drvdata(&pdev->dev, dev);
3497 	ether_addr_copy(dev->dev_addr, macaddr);
3498 	dev->watchdog_timeo = 2 * HZ;
3499 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3500 	dev->netdev_ops = &bcmgenet_netdev_ops;
3501 
3502 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3503 
3504 	/* Set hardware features */
3505 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3506 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3507 
3508 	/* Request the WOL interrupt and advertise suspend if available */
3509 	priv->wol_irq_disabled = true;
3510 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3511 			       dev->name, priv);
3512 	if (!err)
3513 		device_set_wakeup_capable(&pdev->dev, 1);
3514 
3515 	/* Set the needed headroom to account for any possible
3516 	 * features enabling/disabling at runtime
3517 	 */
3518 	dev->needed_headroom += 64;
3519 
3520 	netdev_boot_setup_check(dev);
3521 
3522 	priv->dev = dev;
3523 	priv->pdev = pdev;
3524 	if (of_id)
3525 		priv->version = (enum bcmgenet_version)of_id->data;
3526 	else
3527 		priv->version = pd->genet_version;
3528 
3529 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3530 	if (IS_ERR(priv->clk)) {
3531 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3532 		priv->clk = NULL;
3533 	}
3534 
3535 	clk_prepare_enable(priv->clk);
3536 
3537 	bcmgenet_set_hw_params(priv);
3538 
3539 	/* Mii wait queue */
3540 	init_waitqueue_head(&priv->wq);
3541 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3542 	priv->rx_buf_len = RX_BUF_LENGTH;
3543 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3544 
3545 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3546 	if (IS_ERR(priv->clk_wol)) {
3547 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3548 		priv->clk_wol = NULL;
3549 	}
3550 
3551 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3552 	if (IS_ERR(priv->clk_eee)) {
3553 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3554 		priv->clk_eee = NULL;
3555 	}
3556 
3557 	/* If this is an internal GPHY, power it on now, before UniMAC is
3558 	 * brought out of reset as absolutely no UniMAC activity is allowed
3559 	 */
3560 	if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) &&
3561 	    !strcasecmp(phy_mode_str, "internal"))
3562 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3563 
3564 	reset_umac(priv);
3565 
3566 	err = bcmgenet_mii_init(dev);
3567 	if (err)
3568 		goto err_clk_disable;
3569 
3570 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3571 	 * just the ring 16 descriptor based TX
3572 	 */
3573 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3574 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3575 
3576 	/* Set default coalescing parameters */
3577 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3578 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
3579 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3580 
3581 	/* libphy will determine the link state */
3582 	netif_carrier_off(dev);
3583 
3584 	/* Turn off the main clock, WOL clock is handled separately */
3585 	clk_disable_unprepare(priv->clk);
3586 
3587 	err = register_netdev(dev);
3588 	if (err)
3589 		goto err;
3590 
3591 	return err;
3592 
3593 err_clk_disable:
3594 	clk_disable_unprepare(priv->clk);
3595 err:
3596 	free_netdev(dev);
3597 	return err;
3598 }
3599 
3600 static int bcmgenet_remove(struct platform_device *pdev)
3601 {
3602 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3603 
3604 	dev_set_drvdata(&pdev->dev, NULL);
3605 	unregister_netdev(priv->dev);
3606 	bcmgenet_mii_exit(priv->dev);
3607 	free_netdev(priv->dev);
3608 
3609 	return 0;
3610 }
3611 
3612 #ifdef CONFIG_PM_SLEEP
3613 static int bcmgenet_suspend(struct device *d)
3614 {
3615 	struct net_device *dev = dev_get_drvdata(d);
3616 	struct bcmgenet_priv *priv = netdev_priv(dev);
3617 	int ret = 0;
3618 
3619 	if (!netif_running(dev))
3620 		return 0;
3621 
3622 	bcmgenet_netif_stop(dev);
3623 
3624 	if (!device_may_wakeup(d))
3625 		phy_suspend(dev->phydev);
3626 
3627 	netif_device_detach(dev);
3628 
3629 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3630 	if (device_may_wakeup(d) && priv->wolopts) {
3631 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3632 		clk_prepare_enable(priv->clk_wol);
3633 	} else if (priv->internal_phy) {
3634 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3635 	}
3636 
3637 	/* Turn off the clocks */
3638 	clk_disable_unprepare(priv->clk);
3639 
3640 	return ret;
3641 }
3642 
3643 static int bcmgenet_resume(struct device *d)
3644 {
3645 	struct net_device *dev = dev_get_drvdata(d);
3646 	struct bcmgenet_priv *priv = netdev_priv(dev);
3647 	unsigned long dma_ctrl;
3648 	int ret;
3649 	u32 reg;
3650 
3651 	if (!netif_running(dev))
3652 		return 0;
3653 
3654 	/* Turn on the clock */
3655 	ret = clk_prepare_enable(priv->clk);
3656 	if (ret)
3657 		return ret;
3658 
3659 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3660 	 * brought out of reset as absolutely no UniMAC activity is allowed
3661 	 */
3662 	if (priv->internal_phy)
3663 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3664 
3665 	bcmgenet_umac_reset(priv);
3666 
3667 	init_umac(priv);
3668 
3669 	/* From WOL-enabled suspend, switch to regular clock */
3670 	if (priv->wolopts)
3671 		clk_disable_unprepare(priv->clk_wol);
3672 
3673 	phy_init_hw(dev->phydev);
3674 
3675 	/* Speed settings must be restored */
3676 	bcmgenet_mii_config(priv->dev, false);
3677 
3678 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3679 
3680 	if (priv->internal_phy) {
3681 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3682 		reg |= EXT_ENERGY_DET_MASK;
3683 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3684 	}
3685 
3686 	if (priv->wolopts)
3687 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3688 
3689 	/* Disable RX/TX DMA and flush TX queues */
3690 	dma_ctrl = bcmgenet_dma_disable(priv);
3691 
3692 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3693 	ret = bcmgenet_init_dma(priv);
3694 	if (ret) {
3695 		netdev_err(dev, "failed to initialize DMA\n");
3696 		goto out_clk_disable;
3697 	}
3698 
3699 	/* Always enable ring 16 - descriptor ring */
3700 	bcmgenet_enable_dma(priv, dma_ctrl);
3701 
3702 	netif_device_attach(dev);
3703 
3704 	if (!device_may_wakeup(d))
3705 		phy_resume(dev->phydev);
3706 
3707 	if (priv->eee.eee_enabled)
3708 		bcmgenet_eee_enable_set(dev, true);
3709 
3710 	bcmgenet_netif_start(dev);
3711 
3712 	return 0;
3713 
3714 out_clk_disable:
3715 	if (priv->internal_phy)
3716 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3717 	clk_disable_unprepare(priv->clk);
3718 	return ret;
3719 }
3720 #endif /* CONFIG_PM_SLEEP */
3721 
3722 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3723 
3724 static struct platform_driver bcmgenet_driver = {
3725 	.probe	= bcmgenet_probe,
3726 	.remove	= bcmgenet_remove,
3727 	.driver	= {
3728 		.name	= "bcmgenet",
3729 		.of_match_table = bcmgenet_match,
3730 		.pm	= &bcmgenet_pm_ops,
3731 	},
3732 };
3733 module_platform_driver(bcmgenet_driver);
3734 
3735 MODULE_AUTHOR("Broadcom Corporation");
3736 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3737 MODULE_ALIAS("platform:bcmgenet");
3738 MODULE_LICENSE("GPL");
3739