xref: /linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision 397692eab35cbbd83681880c6a2dbcdb9fd84386)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Broadcom GENET (Gigabit Ethernet) controller driver
4  *
5  * Copyright (c) 2014-2019 Broadcom
6  */
7 
8 #define pr_fmt(fmt)				"bcmgenet: " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/types.h>
15 #include <linux/fcntl.h>
16 #include <linux/interrupt.h>
17 #include <linux/string.h>
18 #include <linux/if_ether.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/delay.h>
22 #include <linux/platform_device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/pm.h>
25 #include <linux/clk.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_net.h>
30 #include <linux/of_platform.h>
31 #include <net/arp.h>
32 
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/netdevice.h>
36 #include <linux/inetdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/skbuff.h>
39 #include <linux/in.h>
40 #include <linux/ip.h>
41 #include <linux/ipv6.h>
42 #include <linux/phy.h>
43 #include <linux/platform_data/bcmgenet.h>
44 
45 #include <asm/unaligned.h>
46 
47 #include "bcmgenet.h"
48 
49 /* Maximum number of hardware queues, downsized if needed */
50 #define GENET_MAX_MQ_CNT	4
51 
52 /* Default highest priority queue for multi queue support */
53 #define GENET_Q0_PRIORITY	0
54 
55 #define GENET_Q16_RX_BD_CNT	\
56 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
57 #define GENET_Q16_TX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
59 
60 #define RX_BUF_LENGTH		2048
61 #define SKB_ALIGNMENT		32
62 
63 /* Tx/Rx DMA register offset, skip 256 descriptors */
64 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
65 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
66 
67 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
68 				TOTAL_DESC * DMA_DESC_SIZE)
69 
70 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
71 				TOTAL_DESC * DMA_DESC_SIZE)
72 
73 static inline void bcmgenet_writel(u32 value, void __iomem *offset)
74 {
75 	/* MIPS chips strapped for BE will automagically configure the
76 	 * peripheral registers for CPU-native byte order.
77 	 */
78 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
79 		__raw_writel(value, offset);
80 	else
81 		writel_relaxed(value, offset);
82 }
83 
84 static inline u32 bcmgenet_readl(void __iomem *offset)
85 {
86 	if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
87 		return __raw_readl(offset);
88 	else
89 		return readl_relaxed(offset);
90 }
91 
92 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
93 					     void __iomem *d, u32 value)
94 {
95 	bcmgenet_writel(value, d + DMA_DESC_LENGTH_STATUS);
96 }
97 
98 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
99 					    void __iomem *d)
100 {
101 	return bcmgenet_readl(d + DMA_DESC_LENGTH_STATUS);
102 }
103 
104 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
105 				    void __iomem *d,
106 				    dma_addr_t addr)
107 {
108 	bcmgenet_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
109 
110 	/* Register writes to GISB bus can take couple hundred nanoseconds
111 	 * and are done for each packet, save these expensive writes unless
112 	 * the platform is explicitly configured for 64-bits/LPAE.
113 	 */
114 #ifdef CONFIG_PHYS_ADDR_T_64BIT
115 	if (priv->hw_params->flags & GENET_HAS_40BITS)
116 		bcmgenet_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
117 #endif
118 }
119 
120 /* Combined address + length/status setter */
121 static inline void dmadesc_set(struct bcmgenet_priv *priv,
122 			       void __iomem *d, dma_addr_t addr, u32 val)
123 {
124 	dmadesc_set_addr(priv, d, addr);
125 	dmadesc_set_length_status(priv, d, val);
126 }
127 
128 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
129 					  void __iomem *d)
130 {
131 	dma_addr_t addr;
132 
133 	addr = bcmgenet_readl(d + DMA_DESC_ADDRESS_LO);
134 
135 	/* Register writes to GISB bus can take couple hundred nanoseconds
136 	 * and are done for each packet, save these expensive writes unless
137 	 * the platform is explicitly configured for 64-bits/LPAE.
138 	 */
139 #ifdef CONFIG_PHYS_ADDR_T_64BIT
140 	if (priv->hw_params->flags & GENET_HAS_40BITS)
141 		addr |= (u64)bcmgenet_readl(d + DMA_DESC_ADDRESS_HI) << 32;
142 #endif
143 	return addr;
144 }
145 
146 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
147 
148 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
149 				NETIF_MSG_LINK)
150 
151 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
152 {
153 	if (GENET_IS_V1(priv))
154 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
155 	else
156 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
157 }
158 
159 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
160 {
161 	if (GENET_IS_V1(priv))
162 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
163 	else
164 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
165 }
166 
167 /* These macros are defined to deal with register map change
168  * between GENET1.1 and GENET2. Only those currently being used
169  * by driver are defined.
170  */
171 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
172 {
173 	if (GENET_IS_V1(priv))
174 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
175 	else
176 		return bcmgenet_readl(priv->base +
177 				      priv->hw_params->tbuf_offset + TBUF_CTRL);
178 }
179 
180 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
181 {
182 	if (GENET_IS_V1(priv))
183 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
184 	else
185 		bcmgenet_writel(val, priv->base +
186 				priv->hw_params->tbuf_offset + TBUF_CTRL);
187 }
188 
189 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
190 {
191 	if (GENET_IS_V1(priv))
192 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
193 	else
194 		return bcmgenet_readl(priv->base +
195 				      priv->hw_params->tbuf_offset + TBUF_BP_MC);
196 }
197 
198 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
199 {
200 	if (GENET_IS_V1(priv))
201 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
202 	else
203 		bcmgenet_writel(val, priv->base +
204 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
205 }
206 
207 /* RX/TX DMA register accessors */
208 enum dma_reg {
209 	DMA_RING_CFG = 0,
210 	DMA_CTRL,
211 	DMA_STATUS,
212 	DMA_SCB_BURST_SIZE,
213 	DMA_ARB_CTRL,
214 	DMA_PRIORITY_0,
215 	DMA_PRIORITY_1,
216 	DMA_PRIORITY_2,
217 	DMA_INDEX2RING_0,
218 	DMA_INDEX2RING_1,
219 	DMA_INDEX2RING_2,
220 	DMA_INDEX2RING_3,
221 	DMA_INDEX2RING_4,
222 	DMA_INDEX2RING_5,
223 	DMA_INDEX2RING_6,
224 	DMA_INDEX2RING_7,
225 	DMA_RING0_TIMEOUT,
226 	DMA_RING1_TIMEOUT,
227 	DMA_RING2_TIMEOUT,
228 	DMA_RING3_TIMEOUT,
229 	DMA_RING4_TIMEOUT,
230 	DMA_RING5_TIMEOUT,
231 	DMA_RING6_TIMEOUT,
232 	DMA_RING7_TIMEOUT,
233 	DMA_RING8_TIMEOUT,
234 	DMA_RING9_TIMEOUT,
235 	DMA_RING10_TIMEOUT,
236 	DMA_RING11_TIMEOUT,
237 	DMA_RING12_TIMEOUT,
238 	DMA_RING13_TIMEOUT,
239 	DMA_RING14_TIMEOUT,
240 	DMA_RING15_TIMEOUT,
241 	DMA_RING16_TIMEOUT,
242 };
243 
244 static const u8 bcmgenet_dma_regs_v3plus[] = {
245 	[DMA_RING_CFG]		= 0x00,
246 	[DMA_CTRL]		= 0x04,
247 	[DMA_STATUS]		= 0x08,
248 	[DMA_SCB_BURST_SIZE]	= 0x0C,
249 	[DMA_ARB_CTRL]		= 0x2C,
250 	[DMA_PRIORITY_0]	= 0x30,
251 	[DMA_PRIORITY_1]	= 0x34,
252 	[DMA_PRIORITY_2]	= 0x38,
253 	[DMA_RING0_TIMEOUT]	= 0x2C,
254 	[DMA_RING1_TIMEOUT]	= 0x30,
255 	[DMA_RING2_TIMEOUT]	= 0x34,
256 	[DMA_RING3_TIMEOUT]	= 0x38,
257 	[DMA_RING4_TIMEOUT]	= 0x3c,
258 	[DMA_RING5_TIMEOUT]	= 0x40,
259 	[DMA_RING6_TIMEOUT]	= 0x44,
260 	[DMA_RING7_TIMEOUT]	= 0x48,
261 	[DMA_RING8_TIMEOUT]	= 0x4c,
262 	[DMA_RING9_TIMEOUT]	= 0x50,
263 	[DMA_RING10_TIMEOUT]	= 0x54,
264 	[DMA_RING11_TIMEOUT]	= 0x58,
265 	[DMA_RING12_TIMEOUT]	= 0x5c,
266 	[DMA_RING13_TIMEOUT]	= 0x60,
267 	[DMA_RING14_TIMEOUT]	= 0x64,
268 	[DMA_RING15_TIMEOUT]	= 0x68,
269 	[DMA_RING16_TIMEOUT]	= 0x6C,
270 	[DMA_INDEX2RING_0]	= 0x70,
271 	[DMA_INDEX2RING_1]	= 0x74,
272 	[DMA_INDEX2RING_2]	= 0x78,
273 	[DMA_INDEX2RING_3]	= 0x7C,
274 	[DMA_INDEX2RING_4]	= 0x80,
275 	[DMA_INDEX2RING_5]	= 0x84,
276 	[DMA_INDEX2RING_6]	= 0x88,
277 	[DMA_INDEX2RING_7]	= 0x8C,
278 };
279 
280 static const u8 bcmgenet_dma_regs_v2[] = {
281 	[DMA_RING_CFG]		= 0x00,
282 	[DMA_CTRL]		= 0x04,
283 	[DMA_STATUS]		= 0x08,
284 	[DMA_SCB_BURST_SIZE]	= 0x0C,
285 	[DMA_ARB_CTRL]		= 0x30,
286 	[DMA_PRIORITY_0]	= 0x34,
287 	[DMA_PRIORITY_1]	= 0x38,
288 	[DMA_PRIORITY_2]	= 0x3C,
289 	[DMA_RING0_TIMEOUT]	= 0x2C,
290 	[DMA_RING1_TIMEOUT]	= 0x30,
291 	[DMA_RING2_TIMEOUT]	= 0x34,
292 	[DMA_RING3_TIMEOUT]	= 0x38,
293 	[DMA_RING4_TIMEOUT]	= 0x3c,
294 	[DMA_RING5_TIMEOUT]	= 0x40,
295 	[DMA_RING6_TIMEOUT]	= 0x44,
296 	[DMA_RING7_TIMEOUT]	= 0x48,
297 	[DMA_RING8_TIMEOUT]	= 0x4c,
298 	[DMA_RING9_TIMEOUT]	= 0x50,
299 	[DMA_RING10_TIMEOUT]	= 0x54,
300 	[DMA_RING11_TIMEOUT]	= 0x58,
301 	[DMA_RING12_TIMEOUT]	= 0x5c,
302 	[DMA_RING13_TIMEOUT]	= 0x60,
303 	[DMA_RING14_TIMEOUT]	= 0x64,
304 	[DMA_RING15_TIMEOUT]	= 0x68,
305 	[DMA_RING16_TIMEOUT]	= 0x6C,
306 };
307 
308 static const u8 bcmgenet_dma_regs_v1[] = {
309 	[DMA_CTRL]		= 0x00,
310 	[DMA_STATUS]		= 0x04,
311 	[DMA_SCB_BURST_SIZE]	= 0x0C,
312 	[DMA_ARB_CTRL]		= 0x30,
313 	[DMA_PRIORITY_0]	= 0x34,
314 	[DMA_PRIORITY_1]	= 0x38,
315 	[DMA_PRIORITY_2]	= 0x3C,
316 	[DMA_RING0_TIMEOUT]	= 0x2C,
317 	[DMA_RING1_TIMEOUT]	= 0x30,
318 	[DMA_RING2_TIMEOUT]	= 0x34,
319 	[DMA_RING3_TIMEOUT]	= 0x38,
320 	[DMA_RING4_TIMEOUT]	= 0x3c,
321 	[DMA_RING5_TIMEOUT]	= 0x40,
322 	[DMA_RING6_TIMEOUT]	= 0x44,
323 	[DMA_RING7_TIMEOUT]	= 0x48,
324 	[DMA_RING8_TIMEOUT]	= 0x4c,
325 	[DMA_RING9_TIMEOUT]	= 0x50,
326 	[DMA_RING10_TIMEOUT]	= 0x54,
327 	[DMA_RING11_TIMEOUT]	= 0x58,
328 	[DMA_RING12_TIMEOUT]	= 0x5c,
329 	[DMA_RING13_TIMEOUT]	= 0x60,
330 	[DMA_RING14_TIMEOUT]	= 0x64,
331 	[DMA_RING15_TIMEOUT]	= 0x68,
332 	[DMA_RING16_TIMEOUT]	= 0x6C,
333 };
334 
335 /* Set at runtime once bcmgenet version is known */
336 static const u8 *bcmgenet_dma_regs;
337 
338 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
339 {
340 	return netdev_priv(dev_get_drvdata(dev));
341 }
342 
343 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
344 				      enum dma_reg r)
345 {
346 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
347 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
348 }
349 
350 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
351 					u32 val, enum dma_reg r)
352 {
353 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
354 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
355 }
356 
357 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
358 				      enum dma_reg r)
359 {
360 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
361 			      DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
362 }
363 
364 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
365 					u32 val, enum dma_reg r)
366 {
367 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
368 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
369 }
370 
371 /* RDMA/TDMA ring registers and accessors
372  * we merge the common fields and just prefix with T/D the registers
373  * having different meaning depending on the direction
374  */
375 enum dma_ring_reg {
376 	TDMA_READ_PTR = 0,
377 	RDMA_WRITE_PTR = TDMA_READ_PTR,
378 	TDMA_READ_PTR_HI,
379 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
380 	TDMA_CONS_INDEX,
381 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
382 	TDMA_PROD_INDEX,
383 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
384 	DMA_RING_BUF_SIZE,
385 	DMA_START_ADDR,
386 	DMA_START_ADDR_HI,
387 	DMA_END_ADDR,
388 	DMA_END_ADDR_HI,
389 	DMA_MBUF_DONE_THRESH,
390 	TDMA_FLOW_PERIOD,
391 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
392 	TDMA_WRITE_PTR,
393 	RDMA_READ_PTR = TDMA_WRITE_PTR,
394 	TDMA_WRITE_PTR_HI,
395 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
396 };
397 
398 /* GENET v4 supports 40-bits pointer addressing
399  * for obvious reasons the LO and HI word parts
400  * are contiguous, but this offsets the other
401  * registers.
402  */
403 static const u8 genet_dma_ring_regs_v4[] = {
404 	[TDMA_READ_PTR]			= 0x00,
405 	[TDMA_READ_PTR_HI]		= 0x04,
406 	[TDMA_CONS_INDEX]		= 0x08,
407 	[TDMA_PROD_INDEX]		= 0x0C,
408 	[DMA_RING_BUF_SIZE]		= 0x10,
409 	[DMA_START_ADDR]		= 0x14,
410 	[DMA_START_ADDR_HI]		= 0x18,
411 	[DMA_END_ADDR]			= 0x1C,
412 	[DMA_END_ADDR_HI]		= 0x20,
413 	[DMA_MBUF_DONE_THRESH]		= 0x24,
414 	[TDMA_FLOW_PERIOD]		= 0x28,
415 	[TDMA_WRITE_PTR]		= 0x2C,
416 	[TDMA_WRITE_PTR_HI]		= 0x30,
417 };
418 
419 static const u8 genet_dma_ring_regs_v123[] = {
420 	[TDMA_READ_PTR]			= 0x00,
421 	[TDMA_CONS_INDEX]		= 0x04,
422 	[TDMA_PROD_INDEX]		= 0x08,
423 	[DMA_RING_BUF_SIZE]		= 0x0C,
424 	[DMA_START_ADDR]		= 0x10,
425 	[DMA_END_ADDR]			= 0x14,
426 	[DMA_MBUF_DONE_THRESH]		= 0x18,
427 	[TDMA_FLOW_PERIOD]		= 0x1C,
428 	[TDMA_WRITE_PTR]		= 0x20,
429 };
430 
431 /* Set at runtime once GENET version is known */
432 static const u8 *genet_dma_ring_regs;
433 
434 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
435 					   unsigned int ring,
436 					   enum dma_ring_reg r)
437 {
438 	return bcmgenet_readl(priv->base + GENET_TDMA_REG_OFF +
439 			      (DMA_RING_SIZE * ring) +
440 			      genet_dma_ring_regs[r]);
441 }
442 
443 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
444 					     unsigned int ring, u32 val,
445 					     enum dma_ring_reg r)
446 {
447 	bcmgenet_writel(val, priv->base + GENET_TDMA_REG_OFF +
448 			(DMA_RING_SIZE * ring) +
449 			genet_dma_ring_regs[r]);
450 }
451 
452 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
453 					   unsigned int ring,
454 					   enum dma_ring_reg r)
455 {
456 	return bcmgenet_readl(priv->base + GENET_RDMA_REG_OFF +
457 			      (DMA_RING_SIZE * ring) +
458 			      genet_dma_ring_regs[r]);
459 }
460 
461 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
462 					     unsigned int ring, u32 val,
463 					     enum dma_ring_reg r)
464 {
465 	bcmgenet_writel(val, priv->base + GENET_RDMA_REG_OFF +
466 			(DMA_RING_SIZE * ring) +
467 			genet_dma_ring_regs[r]);
468 }
469 
470 static int bcmgenet_begin(struct net_device *dev)
471 {
472 	struct bcmgenet_priv *priv = netdev_priv(dev);
473 
474 	/* Turn on the clock */
475 	return clk_prepare_enable(priv->clk);
476 }
477 
478 static void bcmgenet_complete(struct net_device *dev)
479 {
480 	struct bcmgenet_priv *priv = netdev_priv(dev);
481 
482 	/* Turn off the clock */
483 	clk_disable_unprepare(priv->clk);
484 }
485 
486 static int bcmgenet_get_link_ksettings(struct net_device *dev,
487 				       struct ethtool_link_ksettings *cmd)
488 {
489 	if (!netif_running(dev))
490 		return -EINVAL;
491 
492 	if (!dev->phydev)
493 		return -ENODEV;
494 
495 	phy_ethtool_ksettings_get(dev->phydev, cmd);
496 
497 	return 0;
498 }
499 
500 static int bcmgenet_set_link_ksettings(struct net_device *dev,
501 				       const struct ethtool_link_ksettings *cmd)
502 {
503 	if (!netif_running(dev))
504 		return -EINVAL;
505 
506 	if (!dev->phydev)
507 		return -ENODEV;
508 
509 	return phy_ethtool_ksettings_set(dev->phydev, cmd);
510 }
511 
512 static void bcmgenet_set_rx_csum(struct net_device *dev,
513 				 netdev_features_t wanted)
514 {
515 	struct bcmgenet_priv *priv = netdev_priv(dev);
516 	u32 rbuf_chk_ctrl;
517 	bool rx_csum_en;
518 
519 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
520 
521 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
522 
523 	/* enable rx checksumming */
524 	if (rx_csum_en)
525 		rbuf_chk_ctrl |= RBUF_RXCHK_EN | RBUF_L3_PARSE_DIS;
526 	else
527 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
528 	priv->desc_rxchk_en = rx_csum_en;
529 
530 	/* If UniMAC forwards CRC, we need to skip over it to get
531 	 * a valid CHK bit to be set in the per-packet status word
532 	*/
533 	if (rx_csum_en && priv->crc_fwd_en)
534 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
535 	else
536 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
537 
538 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
539 }
540 
541 static void bcmgenet_set_tx_csum(struct net_device *dev,
542 				 netdev_features_t wanted)
543 {
544 	struct bcmgenet_priv *priv = netdev_priv(dev);
545 	bool desc_64b_en;
546 	u32 tbuf_ctrl, rbuf_ctrl;
547 
548 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
549 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
550 
551 	desc_64b_en = !!(wanted & NETIF_F_HW_CSUM);
552 
553 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
554 	if (desc_64b_en) {
555 		tbuf_ctrl |= RBUF_64B_EN;
556 		rbuf_ctrl |= RBUF_64B_EN;
557 	} else {
558 		tbuf_ctrl &= ~RBUF_64B_EN;
559 		rbuf_ctrl &= ~RBUF_64B_EN;
560 	}
561 	priv->desc_64b_en = desc_64b_en;
562 
563 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
564 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
565 }
566 
567 static int bcmgenet_set_features(struct net_device *dev,
568 				 netdev_features_t features)
569 {
570 	struct bcmgenet_priv *priv = netdev_priv(dev);
571 	u32 reg;
572 	int ret;
573 
574 	ret = clk_prepare_enable(priv->clk);
575 	if (ret)
576 		return ret;
577 
578 	/* Make sure we reflect the value of CRC_CMD_FWD */
579 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
580 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
581 
582 	bcmgenet_set_tx_csum(dev, features);
583 	bcmgenet_set_rx_csum(dev, features);
584 
585 	clk_disable_unprepare(priv->clk);
586 
587 	return ret;
588 }
589 
590 static u32 bcmgenet_get_msglevel(struct net_device *dev)
591 {
592 	struct bcmgenet_priv *priv = netdev_priv(dev);
593 
594 	return priv->msg_enable;
595 }
596 
597 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
598 {
599 	struct bcmgenet_priv *priv = netdev_priv(dev);
600 
601 	priv->msg_enable = level;
602 }
603 
604 static int bcmgenet_get_coalesce(struct net_device *dev,
605 				 struct ethtool_coalesce *ec)
606 {
607 	struct bcmgenet_priv *priv = netdev_priv(dev);
608 	struct bcmgenet_rx_ring *ring;
609 	unsigned int i;
610 
611 	ec->tx_max_coalesced_frames =
612 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
613 					 DMA_MBUF_DONE_THRESH);
614 	ec->rx_max_coalesced_frames =
615 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
616 					 DMA_MBUF_DONE_THRESH);
617 	ec->rx_coalesce_usecs =
618 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
619 
620 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
621 		ring = &priv->rx_rings[i];
622 		ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
623 	}
624 	ring = &priv->rx_rings[DESC_INDEX];
625 	ec->use_adaptive_rx_coalesce |= ring->dim.use_dim;
626 
627 	return 0;
628 }
629 
630 static void bcmgenet_set_rx_coalesce(struct bcmgenet_rx_ring *ring,
631 				     u32 usecs, u32 pkts)
632 {
633 	struct bcmgenet_priv *priv = ring->priv;
634 	unsigned int i = ring->index;
635 	u32 reg;
636 
637 	bcmgenet_rdma_ring_writel(priv, i, pkts, DMA_MBUF_DONE_THRESH);
638 
639 	reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
640 	reg &= ~DMA_TIMEOUT_MASK;
641 	reg |= DIV_ROUND_UP(usecs * 1000, 8192);
642 	bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
643 }
644 
645 static void bcmgenet_set_ring_rx_coalesce(struct bcmgenet_rx_ring *ring,
646 					  struct ethtool_coalesce *ec)
647 {
648 	struct dim_cq_moder moder;
649 	u32 usecs, pkts;
650 
651 	ring->rx_coalesce_usecs = ec->rx_coalesce_usecs;
652 	ring->rx_max_coalesced_frames = ec->rx_max_coalesced_frames;
653 	usecs = ring->rx_coalesce_usecs;
654 	pkts = ring->rx_max_coalesced_frames;
655 
656 	if (ec->use_adaptive_rx_coalesce && !ring->dim.use_dim) {
657 		moder = net_dim_get_def_rx_moderation(ring->dim.dim.mode);
658 		usecs = moder.usec;
659 		pkts = moder.pkts;
660 	}
661 
662 	ring->dim.use_dim = ec->use_adaptive_rx_coalesce;
663 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
664 }
665 
666 static int bcmgenet_set_coalesce(struct net_device *dev,
667 				 struct ethtool_coalesce *ec)
668 {
669 	struct bcmgenet_priv *priv = netdev_priv(dev);
670 	unsigned int i;
671 
672 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
673 	 * divided by 1024, which yields roughly 8.192us, our maximum value
674 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
675 	 */
676 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
677 	    ec->tx_max_coalesced_frames == 0 ||
678 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
679 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
680 		return -EINVAL;
681 
682 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
683 		return -EINVAL;
684 
685 	/* GENET TDMA hardware does not support a configurable timeout, but will
686 	 * always generate an interrupt either after MBDONE packets have been
687 	 * transmitted, or when the ring is empty.
688 	 */
689 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
690 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low ||
691 	    ec->use_adaptive_tx_coalesce)
692 		return -EOPNOTSUPP;
693 
694 	/* Program all TX queues with the same values, as there is no
695 	 * ethtool knob to do coalescing on a per-queue basis
696 	 */
697 	for (i = 0; i < priv->hw_params->tx_queues; i++)
698 		bcmgenet_tdma_ring_writel(priv, i,
699 					  ec->tx_max_coalesced_frames,
700 					  DMA_MBUF_DONE_THRESH);
701 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
702 				  ec->tx_max_coalesced_frames,
703 				  DMA_MBUF_DONE_THRESH);
704 
705 	for (i = 0; i < priv->hw_params->rx_queues; i++)
706 		bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[i], ec);
707 	bcmgenet_set_ring_rx_coalesce(&priv->rx_rings[DESC_INDEX], ec);
708 
709 	return 0;
710 }
711 
712 /* standard ethtool support functions. */
713 enum bcmgenet_stat_type {
714 	BCMGENET_STAT_NETDEV = -1,
715 	BCMGENET_STAT_MIB_RX,
716 	BCMGENET_STAT_MIB_TX,
717 	BCMGENET_STAT_RUNT,
718 	BCMGENET_STAT_MISC,
719 	BCMGENET_STAT_SOFT,
720 };
721 
722 struct bcmgenet_stats {
723 	char stat_string[ETH_GSTRING_LEN];
724 	int stat_sizeof;
725 	int stat_offset;
726 	enum bcmgenet_stat_type type;
727 	/* reg offset from UMAC base for misc counters */
728 	u16 reg_offset;
729 };
730 
731 #define STAT_NETDEV(m) { \
732 	.stat_string = __stringify(m), \
733 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
734 	.stat_offset = offsetof(struct net_device_stats, m), \
735 	.type = BCMGENET_STAT_NETDEV, \
736 }
737 
738 #define STAT_GENET_MIB(str, m, _type) { \
739 	.stat_string = str, \
740 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
741 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
742 	.type = _type, \
743 }
744 
745 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
746 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
747 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
748 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
749 
750 #define STAT_GENET_MISC(str, m, offset) { \
751 	.stat_string = str, \
752 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
753 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
754 	.type = BCMGENET_STAT_MISC, \
755 	.reg_offset = offset, \
756 }
757 
758 #define STAT_GENET_Q(num) \
759 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_packets", \
760 			tx_rings[num].packets), \
761 	STAT_GENET_SOFT_MIB("txq" __stringify(num) "_bytes", \
762 			tx_rings[num].bytes), \
763 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_bytes", \
764 			rx_rings[num].bytes),	 \
765 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_packets", \
766 			rx_rings[num].packets), \
767 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_errors", \
768 			rx_rings[num].errors), \
769 	STAT_GENET_SOFT_MIB("rxq" __stringify(num) "_dropped", \
770 			rx_rings[num].dropped)
771 
772 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
773  * between the end of TX stats and the beginning of the RX RUNT
774  */
775 #define BCMGENET_STAT_OFFSET	0xc
776 
777 /* Hardware counters must be kept in sync because the order/offset
778  * is important here (order in structure declaration = order in hardware)
779  */
780 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
781 	/* general stats */
782 	STAT_NETDEV(rx_packets),
783 	STAT_NETDEV(tx_packets),
784 	STAT_NETDEV(rx_bytes),
785 	STAT_NETDEV(tx_bytes),
786 	STAT_NETDEV(rx_errors),
787 	STAT_NETDEV(tx_errors),
788 	STAT_NETDEV(rx_dropped),
789 	STAT_NETDEV(tx_dropped),
790 	STAT_NETDEV(multicast),
791 	/* UniMAC RSV counters */
792 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
793 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
794 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
795 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
796 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
797 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
798 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
799 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
800 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
801 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
802 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
803 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
804 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
805 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
806 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
807 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
808 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
809 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
810 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
811 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
812 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
813 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
814 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
815 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
816 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
817 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
818 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
819 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
820 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
821 	/* UniMAC TSV counters */
822 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
823 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
824 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
825 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
826 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
827 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
828 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
829 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
830 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
831 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
832 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
833 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
834 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
835 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
836 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
837 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
838 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
839 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
840 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
841 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
842 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
843 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
844 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
845 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
846 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
847 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
848 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
849 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
850 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
851 	/* UniMAC RUNT counters */
852 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
853 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
854 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
855 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
856 	/* Misc UniMAC counters */
857 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
858 			UMAC_RBUF_OVFL_CNT_V1),
859 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt,
860 			UMAC_RBUF_ERR_CNT_V1),
861 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
862 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
863 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
864 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
865 	STAT_GENET_SOFT_MIB("tx_realloc_tsb", mib.tx_realloc_tsb),
866 	STAT_GENET_SOFT_MIB("tx_realloc_tsb_failed",
867 			    mib.tx_realloc_tsb_failed),
868 	/* Per TX queues */
869 	STAT_GENET_Q(0),
870 	STAT_GENET_Q(1),
871 	STAT_GENET_Q(2),
872 	STAT_GENET_Q(3),
873 	STAT_GENET_Q(16),
874 };
875 
876 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
877 
878 static void bcmgenet_get_drvinfo(struct net_device *dev,
879 				 struct ethtool_drvinfo *info)
880 {
881 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
882 	strlcpy(info->version, "v2.0", sizeof(info->version));
883 }
884 
885 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
886 {
887 	switch (string_set) {
888 	case ETH_SS_STATS:
889 		return BCMGENET_STATS_LEN;
890 	default:
891 		return -EOPNOTSUPP;
892 	}
893 }
894 
895 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
896 				 u8 *data)
897 {
898 	int i;
899 
900 	switch (stringset) {
901 	case ETH_SS_STATS:
902 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
903 			memcpy(data + i * ETH_GSTRING_LEN,
904 			       bcmgenet_gstrings_stats[i].stat_string,
905 			       ETH_GSTRING_LEN);
906 		}
907 		break;
908 	}
909 }
910 
911 static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset)
912 {
913 	u16 new_offset;
914 	u32 val;
915 
916 	switch (offset) {
917 	case UMAC_RBUF_OVFL_CNT_V1:
918 		if (GENET_IS_V2(priv))
919 			new_offset = RBUF_OVFL_CNT_V2;
920 		else
921 			new_offset = RBUF_OVFL_CNT_V3PLUS;
922 
923 		val = bcmgenet_rbuf_readl(priv,	new_offset);
924 		/* clear if overflowed */
925 		if (val == ~0)
926 			bcmgenet_rbuf_writel(priv, 0, new_offset);
927 		break;
928 	case UMAC_RBUF_ERR_CNT_V1:
929 		if (GENET_IS_V2(priv))
930 			new_offset = RBUF_ERR_CNT_V2;
931 		else
932 			new_offset = RBUF_ERR_CNT_V3PLUS;
933 
934 		val = bcmgenet_rbuf_readl(priv,	new_offset);
935 		/* clear if overflowed */
936 		if (val == ~0)
937 			bcmgenet_rbuf_writel(priv, 0, new_offset);
938 		break;
939 	default:
940 		val = bcmgenet_umac_readl(priv, offset);
941 		/* clear if overflowed */
942 		if (val == ~0)
943 			bcmgenet_umac_writel(priv, 0, offset);
944 		break;
945 	}
946 
947 	return val;
948 }
949 
950 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
951 {
952 	int i, j = 0;
953 
954 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
955 		const struct bcmgenet_stats *s;
956 		u8 offset = 0;
957 		u32 val = 0;
958 		char *p;
959 
960 		s = &bcmgenet_gstrings_stats[i];
961 		switch (s->type) {
962 		case BCMGENET_STAT_NETDEV:
963 		case BCMGENET_STAT_SOFT:
964 			continue;
965 		case BCMGENET_STAT_RUNT:
966 			offset += BCMGENET_STAT_OFFSET;
967 			/* fall through */
968 		case BCMGENET_STAT_MIB_TX:
969 			offset += BCMGENET_STAT_OFFSET;
970 			/* fall through */
971 		case BCMGENET_STAT_MIB_RX:
972 			val = bcmgenet_umac_readl(priv,
973 						  UMAC_MIB_START + j + offset);
974 			offset = 0;	/* Reset Offset */
975 			break;
976 		case BCMGENET_STAT_MISC:
977 			if (GENET_IS_V1(priv)) {
978 				val = bcmgenet_umac_readl(priv, s->reg_offset);
979 				/* clear if overflowed */
980 				if (val == ~0)
981 					bcmgenet_umac_writel(priv, 0,
982 							     s->reg_offset);
983 			} else {
984 				val = bcmgenet_update_stat_misc(priv,
985 								s->reg_offset);
986 			}
987 			break;
988 		}
989 
990 		j += s->stat_sizeof;
991 		p = (char *)priv + s->stat_offset;
992 		*(u32 *)p = val;
993 	}
994 }
995 
996 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
997 				       struct ethtool_stats *stats,
998 				       u64 *data)
999 {
1000 	struct bcmgenet_priv *priv = netdev_priv(dev);
1001 	int i;
1002 
1003 	if (netif_running(dev))
1004 		bcmgenet_update_mib_counters(priv);
1005 
1006 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
1007 		const struct bcmgenet_stats *s;
1008 		char *p;
1009 
1010 		s = &bcmgenet_gstrings_stats[i];
1011 		if (s->type == BCMGENET_STAT_NETDEV)
1012 			p = (char *)&dev->stats;
1013 		else
1014 			p = (char *)priv;
1015 		p += s->stat_offset;
1016 		if (sizeof(unsigned long) != sizeof(u32) &&
1017 		    s->stat_sizeof == sizeof(unsigned long))
1018 			data[i] = *(unsigned long *)p;
1019 		else
1020 			data[i] = *(u32 *)p;
1021 	}
1022 }
1023 
1024 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
1025 {
1026 	struct bcmgenet_priv *priv = netdev_priv(dev);
1027 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
1028 	u32 reg;
1029 
1030 	if (enable && !priv->clk_eee_enabled) {
1031 		clk_prepare_enable(priv->clk_eee);
1032 		priv->clk_eee_enabled = true;
1033 	}
1034 
1035 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
1036 	if (enable)
1037 		reg |= EEE_EN;
1038 	else
1039 		reg &= ~EEE_EN;
1040 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
1041 
1042 	/* Enable EEE and switch to a 27Mhz clock automatically */
1043 	reg = bcmgenet_readl(priv->base + off);
1044 	if (enable)
1045 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
1046 	else
1047 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
1048 	bcmgenet_writel(reg, priv->base + off);
1049 
1050 	/* Do the same for thing for RBUF */
1051 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
1052 	if (enable)
1053 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
1054 	else
1055 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
1056 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
1057 
1058 	if (!enable && priv->clk_eee_enabled) {
1059 		clk_disable_unprepare(priv->clk_eee);
1060 		priv->clk_eee_enabled = false;
1061 	}
1062 
1063 	priv->eee.eee_enabled = enable;
1064 	priv->eee.eee_active = enable;
1065 }
1066 
1067 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
1068 {
1069 	struct bcmgenet_priv *priv = netdev_priv(dev);
1070 	struct ethtool_eee *p = &priv->eee;
1071 
1072 	if (GENET_IS_V1(priv))
1073 		return -EOPNOTSUPP;
1074 
1075 	if (!dev->phydev)
1076 		return -ENODEV;
1077 
1078 	e->eee_enabled = p->eee_enabled;
1079 	e->eee_active = p->eee_active;
1080 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
1081 
1082 	return phy_ethtool_get_eee(dev->phydev, e);
1083 }
1084 
1085 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
1086 {
1087 	struct bcmgenet_priv *priv = netdev_priv(dev);
1088 	struct ethtool_eee *p = &priv->eee;
1089 	int ret = 0;
1090 
1091 	if (GENET_IS_V1(priv))
1092 		return -EOPNOTSUPP;
1093 
1094 	if (!dev->phydev)
1095 		return -ENODEV;
1096 
1097 	p->eee_enabled = e->eee_enabled;
1098 
1099 	if (!p->eee_enabled) {
1100 		bcmgenet_eee_enable_set(dev, false);
1101 	} else {
1102 		ret = phy_init_eee(dev->phydev, 0);
1103 		if (ret) {
1104 			netif_err(priv, hw, dev, "EEE initialization failed\n");
1105 			return ret;
1106 		}
1107 
1108 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
1109 		bcmgenet_eee_enable_set(dev, true);
1110 	}
1111 
1112 	return phy_ethtool_set_eee(dev->phydev, e);
1113 }
1114 
1115 /* standard ethtool support functions. */
1116 static const struct ethtool_ops bcmgenet_ethtool_ops = {
1117 	.begin			= bcmgenet_begin,
1118 	.complete		= bcmgenet_complete,
1119 	.get_strings		= bcmgenet_get_strings,
1120 	.get_sset_count		= bcmgenet_get_sset_count,
1121 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
1122 	.get_drvinfo		= bcmgenet_get_drvinfo,
1123 	.get_link		= ethtool_op_get_link,
1124 	.get_msglevel		= bcmgenet_get_msglevel,
1125 	.set_msglevel		= bcmgenet_set_msglevel,
1126 	.get_wol		= bcmgenet_get_wol,
1127 	.set_wol		= bcmgenet_set_wol,
1128 	.get_eee		= bcmgenet_get_eee,
1129 	.set_eee		= bcmgenet_set_eee,
1130 	.nway_reset		= phy_ethtool_nway_reset,
1131 	.get_coalesce		= bcmgenet_get_coalesce,
1132 	.set_coalesce		= bcmgenet_set_coalesce,
1133 	.get_link_ksettings	= bcmgenet_get_link_ksettings,
1134 	.set_link_ksettings	= bcmgenet_set_link_ksettings,
1135 	.get_ts_info		= ethtool_op_get_ts_info,
1136 };
1137 
1138 /* Power down the unimac, based on mode. */
1139 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1140 				enum bcmgenet_power_mode mode)
1141 {
1142 	int ret = 0;
1143 	u32 reg;
1144 
1145 	switch (mode) {
1146 	case GENET_POWER_CABLE_SENSE:
1147 		phy_detach(priv->dev->phydev);
1148 		break;
1149 
1150 	case GENET_POWER_WOL_MAGIC:
1151 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1152 		break;
1153 
1154 	case GENET_POWER_PASSIVE:
1155 		/* Power down LED */
1156 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1157 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1158 			if (GENET_IS_V5(priv))
1159 				reg |= EXT_PWR_DOWN_PHY_EN |
1160 				       EXT_PWR_DOWN_PHY_RD |
1161 				       EXT_PWR_DOWN_PHY_SD |
1162 				       EXT_PWR_DOWN_PHY_RX |
1163 				       EXT_PWR_DOWN_PHY_TX |
1164 				       EXT_IDDQ_GLBL_PWR;
1165 			else
1166 				reg |= EXT_PWR_DOWN_PHY;
1167 
1168 			reg |= (EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1169 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1170 
1171 			bcmgenet_phy_power_set(priv->dev, false);
1172 		}
1173 		break;
1174 	default:
1175 		break;
1176 	}
1177 
1178 	return ret;
1179 }
1180 
1181 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1182 			      enum bcmgenet_power_mode mode)
1183 {
1184 	u32 reg;
1185 
1186 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1187 		return;
1188 
1189 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1190 
1191 	switch (mode) {
1192 	case GENET_POWER_PASSIVE:
1193 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1194 		if (GENET_IS_V5(priv)) {
1195 			reg &= ~(EXT_PWR_DOWN_PHY_EN |
1196 				 EXT_PWR_DOWN_PHY_RD |
1197 				 EXT_PWR_DOWN_PHY_SD |
1198 				 EXT_PWR_DOWN_PHY_RX |
1199 				 EXT_PWR_DOWN_PHY_TX |
1200 				 EXT_IDDQ_GLBL_PWR);
1201 			reg |=   EXT_PHY_RESET;
1202 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1203 			mdelay(1);
1204 
1205 			reg &=  ~EXT_PHY_RESET;
1206 		} else {
1207 			reg &= ~EXT_PWR_DOWN_PHY;
1208 			reg |= EXT_PWR_DN_EN_LD;
1209 		}
1210 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1211 		bcmgenet_phy_power_set(priv->dev, true);
1212 		break;
1213 
1214 	case GENET_POWER_CABLE_SENSE:
1215 		/* enable APD */
1216 		if (!GENET_IS_V5(priv)) {
1217 			reg |= EXT_PWR_DN_EN_LD;
1218 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1219 		}
1220 		break;
1221 	case GENET_POWER_WOL_MAGIC:
1222 		bcmgenet_wol_power_up_cfg(priv, mode);
1223 		return;
1224 	default:
1225 		break;
1226 	}
1227 }
1228 
1229 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1230 					 struct bcmgenet_tx_ring *ring)
1231 {
1232 	struct enet_cb *tx_cb_ptr;
1233 
1234 	tx_cb_ptr = ring->cbs;
1235 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1236 
1237 	/* Advancing local write pointer */
1238 	if (ring->write_ptr == ring->end_ptr)
1239 		ring->write_ptr = ring->cb_ptr;
1240 	else
1241 		ring->write_ptr++;
1242 
1243 	return tx_cb_ptr;
1244 }
1245 
1246 static struct enet_cb *bcmgenet_put_txcb(struct bcmgenet_priv *priv,
1247 					 struct bcmgenet_tx_ring *ring)
1248 {
1249 	struct enet_cb *tx_cb_ptr;
1250 
1251 	tx_cb_ptr = ring->cbs;
1252 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1253 
1254 	/* Rewinding local write pointer */
1255 	if (ring->write_ptr == ring->cb_ptr)
1256 		ring->write_ptr = ring->end_ptr;
1257 	else
1258 		ring->write_ptr--;
1259 
1260 	return tx_cb_ptr;
1261 }
1262 
1263 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1264 {
1265 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1266 				 INTRL2_CPU_MASK_SET);
1267 }
1268 
1269 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1270 {
1271 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1272 				 INTRL2_CPU_MASK_CLEAR);
1273 }
1274 
1275 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1276 {
1277 	bcmgenet_intrl2_1_writel(ring->priv,
1278 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1279 				 INTRL2_CPU_MASK_SET);
1280 }
1281 
1282 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1283 {
1284 	bcmgenet_intrl2_1_writel(ring->priv,
1285 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1286 				 INTRL2_CPU_MASK_CLEAR);
1287 }
1288 
1289 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1290 {
1291 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1292 				 INTRL2_CPU_MASK_SET);
1293 }
1294 
1295 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1296 {
1297 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1298 				 INTRL2_CPU_MASK_CLEAR);
1299 }
1300 
1301 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1302 {
1303 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1304 				 INTRL2_CPU_MASK_CLEAR);
1305 }
1306 
1307 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1308 {
1309 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1310 				 INTRL2_CPU_MASK_SET);
1311 }
1312 
1313 /* Simple helper to free a transmit control block's resources
1314  * Returns an skb when the last transmit control block associated with the
1315  * skb is freed.  The skb should be freed by the caller if necessary.
1316  */
1317 static struct sk_buff *bcmgenet_free_tx_cb(struct device *dev,
1318 					   struct enet_cb *cb)
1319 {
1320 	struct sk_buff *skb;
1321 
1322 	skb = cb->skb;
1323 
1324 	if (skb) {
1325 		cb->skb = NULL;
1326 		if (cb == GENET_CB(skb)->first_cb)
1327 			dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1328 					 dma_unmap_len(cb, dma_len),
1329 					 DMA_TO_DEVICE);
1330 		else
1331 			dma_unmap_page(dev, dma_unmap_addr(cb, dma_addr),
1332 				       dma_unmap_len(cb, dma_len),
1333 				       DMA_TO_DEVICE);
1334 		dma_unmap_addr_set(cb, dma_addr, 0);
1335 
1336 		if (cb == GENET_CB(skb)->last_cb)
1337 			return skb;
1338 
1339 	} else if (dma_unmap_addr(cb, dma_addr)) {
1340 		dma_unmap_page(dev,
1341 			       dma_unmap_addr(cb, dma_addr),
1342 			       dma_unmap_len(cb, dma_len),
1343 			       DMA_TO_DEVICE);
1344 		dma_unmap_addr_set(cb, dma_addr, 0);
1345 	}
1346 
1347 	return NULL;
1348 }
1349 
1350 /* Simple helper to free a receive control block's resources */
1351 static struct sk_buff *bcmgenet_free_rx_cb(struct device *dev,
1352 					   struct enet_cb *cb)
1353 {
1354 	struct sk_buff *skb;
1355 
1356 	skb = cb->skb;
1357 	cb->skb = NULL;
1358 
1359 	if (dma_unmap_addr(cb, dma_addr)) {
1360 		dma_unmap_single(dev, dma_unmap_addr(cb, dma_addr),
1361 				 dma_unmap_len(cb, dma_len), DMA_FROM_DEVICE);
1362 		dma_unmap_addr_set(cb, dma_addr, 0);
1363 	}
1364 
1365 	return skb;
1366 }
1367 
1368 /* Unlocked version of the reclaim routine */
1369 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1370 					  struct bcmgenet_tx_ring *ring)
1371 {
1372 	struct bcmgenet_priv *priv = netdev_priv(dev);
1373 	unsigned int txbds_processed = 0;
1374 	unsigned int bytes_compl = 0;
1375 	unsigned int pkts_compl = 0;
1376 	unsigned int txbds_ready;
1377 	unsigned int c_index;
1378 	struct sk_buff *skb;
1379 
1380 	/* Clear status before servicing to reduce spurious interrupts */
1381 	if (ring->index == DESC_INDEX)
1382 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_TXDMA_DONE,
1383 					 INTRL2_CPU_CLEAR);
1384 	else
1385 		bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
1386 					 INTRL2_CPU_CLEAR);
1387 
1388 	/* Compute how many buffers are transmitted since last xmit call */
1389 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX)
1390 		& DMA_C_INDEX_MASK;
1391 	txbds_ready = (c_index - ring->c_index) & DMA_C_INDEX_MASK;
1392 
1393 	netif_dbg(priv, tx_done, dev,
1394 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1395 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1396 
1397 	/* Reclaim transmitted buffers */
1398 	while (txbds_processed < txbds_ready) {
1399 		skb = bcmgenet_free_tx_cb(&priv->pdev->dev,
1400 					  &priv->tx_cbs[ring->clean_ptr]);
1401 		if (skb) {
1402 			pkts_compl++;
1403 			bytes_compl += GENET_CB(skb)->bytes_sent;
1404 			dev_consume_skb_any(skb);
1405 		}
1406 
1407 		txbds_processed++;
1408 		if (likely(ring->clean_ptr < ring->end_ptr))
1409 			ring->clean_ptr++;
1410 		else
1411 			ring->clean_ptr = ring->cb_ptr;
1412 	}
1413 
1414 	ring->free_bds += txbds_processed;
1415 	ring->c_index = c_index;
1416 
1417 	ring->packets += pkts_compl;
1418 	ring->bytes += bytes_compl;
1419 
1420 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, ring->queue),
1421 				  pkts_compl, bytes_compl);
1422 
1423 	return txbds_processed;
1424 }
1425 
1426 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1427 				struct bcmgenet_tx_ring *ring)
1428 {
1429 	unsigned int released;
1430 
1431 	spin_lock_bh(&ring->lock);
1432 	released = __bcmgenet_tx_reclaim(dev, ring);
1433 	spin_unlock_bh(&ring->lock);
1434 
1435 	return released;
1436 }
1437 
1438 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1439 {
1440 	struct bcmgenet_tx_ring *ring =
1441 		container_of(napi, struct bcmgenet_tx_ring, napi);
1442 	unsigned int work_done = 0;
1443 	struct netdev_queue *txq;
1444 
1445 	spin_lock(&ring->lock);
1446 	work_done = __bcmgenet_tx_reclaim(ring->priv->dev, ring);
1447 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1448 		txq = netdev_get_tx_queue(ring->priv->dev, ring->queue);
1449 		netif_tx_wake_queue(txq);
1450 	}
1451 	spin_unlock(&ring->lock);
1452 
1453 	if (work_done == 0) {
1454 		napi_complete(napi);
1455 		ring->int_enable(ring);
1456 
1457 		return 0;
1458 	}
1459 
1460 	return budget;
1461 }
1462 
1463 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1464 {
1465 	struct bcmgenet_priv *priv = netdev_priv(dev);
1466 	int i;
1467 
1468 	if (netif_is_multiqueue(dev)) {
1469 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1470 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1471 	}
1472 
1473 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1474 }
1475 
1476 /* Reallocate the SKB to put enough headroom in front of it and insert
1477  * the transmit checksum offsets in the descriptors
1478  */
1479 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1480 					    struct sk_buff *skb)
1481 {
1482 	struct bcmgenet_priv *priv = netdev_priv(dev);
1483 	struct status_64 *status = NULL;
1484 	struct sk_buff *new_skb;
1485 	u16 offset;
1486 	u8 ip_proto;
1487 	__be16 ip_ver;
1488 	u32 tx_csum_info;
1489 
1490 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1491 		/* If 64 byte status block enabled, must make sure skb has
1492 		 * enough headroom for us to insert 64B status block.
1493 		 */
1494 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1495 		if (!new_skb) {
1496 			dev_kfree_skb_any(skb);
1497 			priv->mib.tx_realloc_tsb_failed++;
1498 			dev->stats.tx_dropped++;
1499 			return NULL;
1500 		}
1501 		dev_consume_skb_any(skb);
1502 		skb = new_skb;
1503 		priv->mib.tx_realloc_tsb++;
1504 	}
1505 
1506 	skb_push(skb, sizeof(*status));
1507 	status = (struct status_64 *)skb->data;
1508 
1509 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1510 		ip_ver = skb->protocol;
1511 		switch (ip_ver) {
1512 		case htons(ETH_P_IP):
1513 			ip_proto = ip_hdr(skb)->protocol;
1514 			break;
1515 		case htons(ETH_P_IPV6):
1516 			ip_proto = ipv6_hdr(skb)->nexthdr;
1517 			break;
1518 		default:
1519 			/* don't use UDP flag */
1520 			ip_proto = 0;
1521 			break;
1522 		}
1523 
1524 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1525 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1526 				(offset + skb->csum_offset) |
1527 				STATUS_TX_CSUM_LV;
1528 
1529 		/* Set the special UDP flag for UDP */
1530 		if (ip_proto == IPPROTO_UDP)
1531 			tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1532 
1533 		status->tx_csum_info = tx_csum_info;
1534 	}
1535 
1536 	return skb;
1537 }
1538 
1539 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1540 {
1541 	struct bcmgenet_priv *priv = netdev_priv(dev);
1542 	struct device *kdev = &priv->pdev->dev;
1543 	struct bcmgenet_tx_ring *ring = NULL;
1544 	struct enet_cb *tx_cb_ptr;
1545 	struct netdev_queue *txq;
1546 	int nr_frags, index;
1547 	dma_addr_t mapping;
1548 	unsigned int size;
1549 	skb_frag_t *frag;
1550 	u32 len_stat;
1551 	int ret;
1552 	int i;
1553 
1554 	index = skb_get_queue_mapping(skb);
1555 	/* Mapping strategy:
1556 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1557 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1558 	 * queue_mapping = 2, goes to ring 1.
1559 	 * queue_mapping = 3, goes to ring 2.
1560 	 * queue_mapping = 4, goes to ring 3.
1561 	 */
1562 	if (index == 0)
1563 		index = DESC_INDEX;
1564 	else
1565 		index -= 1;
1566 
1567 	ring = &priv->tx_rings[index];
1568 	txq = netdev_get_tx_queue(dev, ring->queue);
1569 
1570 	nr_frags = skb_shinfo(skb)->nr_frags;
1571 
1572 	spin_lock(&ring->lock);
1573 	if (ring->free_bds <= (nr_frags + 1)) {
1574 		if (!netif_tx_queue_stopped(txq)) {
1575 			netif_tx_stop_queue(txq);
1576 			netdev_err(dev,
1577 				   "%s: tx ring %d full when queue %d awake\n",
1578 				   __func__, index, ring->queue);
1579 		}
1580 		ret = NETDEV_TX_BUSY;
1581 		goto out;
1582 	}
1583 
1584 	if (skb_padto(skb, ETH_ZLEN)) {
1585 		ret = NETDEV_TX_OK;
1586 		goto out;
1587 	}
1588 
1589 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1590 	 * by transmit checksum offload
1591 	 */
1592 	GENET_CB(skb)->bytes_sent = skb->len;
1593 
1594 	/* set the SKB transmit checksum */
1595 	if (priv->desc_64b_en) {
1596 		skb = bcmgenet_put_tx_csum(dev, skb);
1597 		if (!skb) {
1598 			ret = NETDEV_TX_OK;
1599 			goto out;
1600 		}
1601 	}
1602 
1603 	for (i = 0; i <= nr_frags; i++) {
1604 		tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1605 
1606 		BUG_ON(!tx_cb_ptr);
1607 
1608 		if (!i) {
1609 			/* Transmit single SKB or head of fragment list */
1610 			GENET_CB(skb)->first_cb = tx_cb_ptr;
1611 			size = skb_headlen(skb);
1612 			mapping = dma_map_single(kdev, skb->data, size,
1613 						 DMA_TO_DEVICE);
1614 		} else {
1615 			/* xmit fragment */
1616 			frag = &skb_shinfo(skb)->frags[i - 1];
1617 			size = skb_frag_size(frag);
1618 			mapping = skb_frag_dma_map(kdev, frag, 0, size,
1619 						   DMA_TO_DEVICE);
1620 		}
1621 
1622 		ret = dma_mapping_error(kdev, mapping);
1623 		if (ret) {
1624 			priv->mib.tx_dma_failed++;
1625 			netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1626 			ret = NETDEV_TX_OK;
1627 			goto out_unmap_frags;
1628 		}
1629 		dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1630 		dma_unmap_len_set(tx_cb_ptr, dma_len, size);
1631 
1632 		tx_cb_ptr->skb = skb;
1633 
1634 		len_stat = (size << DMA_BUFLENGTH_SHIFT) |
1635 			   (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT);
1636 
1637 		if (!i) {
1638 			len_stat |= DMA_TX_APPEND_CRC | DMA_SOP;
1639 			if (skb->ip_summed == CHECKSUM_PARTIAL)
1640 				len_stat |= DMA_TX_DO_CSUM;
1641 		}
1642 		if (i == nr_frags)
1643 			len_stat |= DMA_EOP;
1644 
1645 		dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, len_stat);
1646 	}
1647 
1648 	GENET_CB(skb)->last_cb = tx_cb_ptr;
1649 	skb_tx_timestamp(skb);
1650 
1651 	/* Decrement total BD count and advance our write pointer */
1652 	ring->free_bds -= nr_frags + 1;
1653 	ring->prod_index += nr_frags + 1;
1654 	ring->prod_index &= DMA_P_INDEX_MASK;
1655 
1656 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1657 
1658 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1659 		netif_tx_stop_queue(txq);
1660 
1661 	if (!netdev_xmit_more() || netif_xmit_stopped(txq))
1662 		/* Packets are ready, update producer index */
1663 		bcmgenet_tdma_ring_writel(priv, ring->index,
1664 					  ring->prod_index, TDMA_PROD_INDEX);
1665 out:
1666 	spin_unlock(&ring->lock);
1667 
1668 	return ret;
1669 
1670 out_unmap_frags:
1671 	/* Back up for failed control block mapping */
1672 	bcmgenet_put_txcb(priv, ring);
1673 
1674 	/* Unmap successfully mapped control blocks */
1675 	while (i-- > 0) {
1676 		tx_cb_ptr = bcmgenet_put_txcb(priv, ring);
1677 		bcmgenet_free_tx_cb(kdev, tx_cb_ptr);
1678 	}
1679 
1680 	dev_kfree_skb(skb);
1681 	goto out;
1682 }
1683 
1684 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1685 					  struct enet_cb *cb)
1686 {
1687 	struct device *kdev = &priv->pdev->dev;
1688 	struct sk_buff *skb;
1689 	struct sk_buff *rx_skb;
1690 	dma_addr_t mapping;
1691 
1692 	/* Allocate a new Rx skb */
1693 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1694 	if (!skb) {
1695 		priv->mib.alloc_rx_buff_failed++;
1696 		netif_err(priv, rx_err, priv->dev,
1697 			  "%s: Rx skb allocation failed\n", __func__);
1698 		return NULL;
1699 	}
1700 
1701 	/* DMA-map the new Rx skb */
1702 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1703 				 DMA_FROM_DEVICE);
1704 	if (dma_mapping_error(kdev, mapping)) {
1705 		priv->mib.rx_dma_failed++;
1706 		dev_kfree_skb_any(skb);
1707 		netif_err(priv, rx_err, priv->dev,
1708 			  "%s: Rx skb DMA mapping failed\n", __func__);
1709 		return NULL;
1710 	}
1711 
1712 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1713 	rx_skb = bcmgenet_free_rx_cb(kdev, cb);
1714 
1715 	/* Put the new Rx skb on the ring */
1716 	cb->skb = skb;
1717 	dma_unmap_addr_set(cb, dma_addr, mapping);
1718 	dma_unmap_len_set(cb, dma_len, priv->rx_buf_len);
1719 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1720 
1721 	/* Return the current Rx skb to caller */
1722 	return rx_skb;
1723 }
1724 
1725 /* bcmgenet_desc_rx - descriptor based rx process.
1726  * this could be called from bottom half, or from NAPI polling method.
1727  */
1728 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1729 				     unsigned int budget)
1730 {
1731 	struct bcmgenet_priv *priv = ring->priv;
1732 	struct net_device *dev = priv->dev;
1733 	struct enet_cb *cb;
1734 	struct sk_buff *skb;
1735 	u32 dma_length_status;
1736 	unsigned long dma_flag;
1737 	int len;
1738 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1739 	unsigned int bytes_processed = 0;
1740 	unsigned int p_index, mask;
1741 	unsigned int discards;
1742 
1743 	/* Clear status before servicing to reduce spurious interrupts */
1744 	if (ring->index == DESC_INDEX) {
1745 		bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_DONE,
1746 					 INTRL2_CPU_CLEAR);
1747 	} else {
1748 		mask = 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index);
1749 		bcmgenet_intrl2_1_writel(priv,
1750 					 mask,
1751 					 INTRL2_CPU_CLEAR);
1752 	}
1753 
1754 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1755 
1756 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1757 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1758 	if (discards > ring->old_discards) {
1759 		discards = discards - ring->old_discards;
1760 		ring->errors += discards;
1761 		ring->old_discards += discards;
1762 
1763 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1764 		if (ring->old_discards >= 0xC000) {
1765 			ring->old_discards = 0;
1766 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1767 						  RDMA_PROD_INDEX);
1768 		}
1769 	}
1770 
1771 	p_index &= DMA_P_INDEX_MASK;
1772 	rxpkttoprocess = (p_index - ring->c_index) & DMA_C_INDEX_MASK;
1773 
1774 	netif_dbg(priv, rx_status, dev,
1775 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1776 
1777 	while ((rxpktprocessed < rxpkttoprocess) &&
1778 	       (rxpktprocessed < budget)) {
1779 		cb = &priv->rx_cbs[ring->read_ptr];
1780 		skb = bcmgenet_rx_refill(priv, cb);
1781 
1782 		if (unlikely(!skb)) {
1783 			ring->dropped++;
1784 			goto next;
1785 		}
1786 
1787 		if (!priv->desc_64b_en) {
1788 			dma_length_status =
1789 				dmadesc_get_length_status(priv, cb->bd_addr);
1790 		} else {
1791 			struct status_64 *status;
1792 			__be16 rx_csum;
1793 
1794 			status = (struct status_64 *)skb->data;
1795 			dma_length_status = status->length_status;
1796 			rx_csum = (__force __be16)(status->rx_csum & 0xffff);
1797 			if (priv->desc_rxchk_en) {
1798 				skb->csum = (__force __wsum)ntohs(rx_csum);
1799 				skb->ip_summed = CHECKSUM_COMPLETE;
1800 			}
1801 		}
1802 
1803 		/* DMA flags and length are still valid no matter how
1804 		 * we got the Receive Status Vector (64B RSB or register)
1805 		 */
1806 		dma_flag = dma_length_status & 0xffff;
1807 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1808 
1809 		netif_dbg(priv, rx_status, dev,
1810 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1811 			  __func__, p_index, ring->c_index,
1812 			  ring->read_ptr, dma_length_status);
1813 
1814 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1815 			netif_err(priv, rx_status, dev,
1816 				  "dropping fragmented packet!\n");
1817 			ring->errors++;
1818 			dev_kfree_skb_any(skb);
1819 			goto next;
1820 		}
1821 
1822 		/* report errors */
1823 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1824 						DMA_RX_OV |
1825 						DMA_RX_NO |
1826 						DMA_RX_LG |
1827 						DMA_RX_RXER))) {
1828 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1829 				  (unsigned int)dma_flag);
1830 			if (dma_flag & DMA_RX_CRC_ERROR)
1831 				dev->stats.rx_crc_errors++;
1832 			if (dma_flag & DMA_RX_OV)
1833 				dev->stats.rx_over_errors++;
1834 			if (dma_flag & DMA_RX_NO)
1835 				dev->stats.rx_frame_errors++;
1836 			if (dma_flag & DMA_RX_LG)
1837 				dev->stats.rx_length_errors++;
1838 			dev->stats.rx_errors++;
1839 			dev_kfree_skb_any(skb);
1840 			goto next;
1841 		} /* error packet */
1842 
1843 		skb_put(skb, len);
1844 		if (priv->desc_64b_en) {
1845 			skb_pull(skb, 64);
1846 			len -= 64;
1847 		}
1848 
1849 		/* remove hardware 2bytes added for IP alignment */
1850 		skb_pull(skb, 2);
1851 		len -= 2;
1852 
1853 		if (priv->crc_fwd_en) {
1854 			skb_trim(skb, len - ETH_FCS_LEN);
1855 			len -= ETH_FCS_LEN;
1856 		}
1857 
1858 		bytes_processed += len;
1859 
1860 		/*Finish setting up the received SKB and send it to the kernel*/
1861 		skb->protocol = eth_type_trans(skb, priv->dev);
1862 		ring->packets++;
1863 		ring->bytes += len;
1864 		if (dma_flag & DMA_RX_MULT)
1865 			dev->stats.multicast++;
1866 
1867 		/* Notify kernel */
1868 		napi_gro_receive(&ring->napi, skb);
1869 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1870 
1871 next:
1872 		rxpktprocessed++;
1873 		if (likely(ring->read_ptr < ring->end_ptr))
1874 			ring->read_ptr++;
1875 		else
1876 			ring->read_ptr = ring->cb_ptr;
1877 
1878 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1879 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1880 	}
1881 
1882 	ring->dim.bytes = bytes_processed;
1883 	ring->dim.packets = rxpktprocessed;
1884 
1885 	return rxpktprocessed;
1886 }
1887 
1888 /* Rx NAPI polling method */
1889 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1890 {
1891 	struct bcmgenet_rx_ring *ring = container_of(napi,
1892 			struct bcmgenet_rx_ring, napi);
1893 	struct dim_sample dim_sample = {};
1894 	unsigned int work_done;
1895 
1896 	work_done = bcmgenet_desc_rx(ring, budget);
1897 
1898 	if (work_done < budget) {
1899 		napi_complete_done(napi, work_done);
1900 		ring->int_enable(ring);
1901 	}
1902 
1903 	if (ring->dim.use_dim) {
1904 		dim_update_sample(ring->dim.event_ctr, ring->dim.packets,
1905 				  ring->dim.bytes, &dim_sample);
1906 		net_dim(&ring->dim.dim, dim_sample);
1907 	}
1908 
1909 	return work_done;
1910 }
1911 
1912 static void bcmgenet_dim_work(struct work_struct *work)
1913 {
1914 	struct dim *dim = container_of(work, struct dim, work);
1915 	struct bcmgenet_net_dim *ndim =
1916 			container_of(dim, struct bcmgenet_net_dim, dim);
1917 	struct bcmgenet_rx_ring *ring =
1918 			container_of(ndim, struct bcmgenet_rx_ring, dim);
1919 	struct dim_cq_moder cur_profile =
1920 			net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
1921 
1922 	bcmgenet_set_rx_coalesce(ring, cur_profile.usec, cur_profile.pkts);
1923 	dim->state = DIM_START_MEASURE;
1924 }
1925 
1926 /* Assign skb to RX DMA descriptor. */
1927 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1928 				     struct bcmgenet_rx_ring *ring)
1929 {
1930 	struct enet_cb *cb;
1931 	struct sk_buff *skb;
1932 	int i;
1933 
1934 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1935 
1936 	/* loop here for each buffer needing assign */
1937 	for (i = 0; i < ring->size; i++) {
1938 		cb = ring->cbs + i;
1939 		skb = bcmgenet_rx_refill(priv, cb);
1940 		if (skb)
1941 			dev_consume_skb_any(skb);
1942 		if (!cb->skb)
1943 			return -ENOMEM;
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1950 {
1951 	struct sk_buff *skb;
1952 	struct enet_cb *cb;
1953 	int i;
1954 
1955 	for (i = 0; i < priv->num_rx_bds; i++) {
1956 		cb = &priv->rx_cbs[i];
1957 
1958 		skb = bcmgenet_free_rx_cb(&priv->pdev->dev, cb);
1959 		if (skb)
1960 			dev_consume_skb_any(skb);
1961 	}
1962 }
1963 
1964 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1965 {
1966 	u32 reg;
1967 
1968 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1969 	if (enable)
1970 		reg |= mask;
1971 	else
1972 		reg &= ~mask;
1973 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1974 
1975 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1976 	 * to be processed
1977 	 */
1978 	if (enable == 0)
1979 		usleep_range(1000, 2000);
1980 }
1981 
1982 static void reset_umac(struct bcmgenet_priv *priv)
1983 {
1984 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1985 	bcmgenet_rbuf_ctrl_set(priv, 0);
1986 	udelay(10);
1987 
1988 	/* disable MAC while updating its registers */
1989 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1990 
1991 	/* issue soft reset with (rg)mii loopback to ensure a stable rxclk */
1992 	bcmgenet_umac_writel(priv, CMD_SW_RESET | CMD_LCL_LOOP_EN, UMAC_CMD);
1993 }
1994 
1995 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1996 {
1997 	/* Mask all interrupts.*/
1998 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1999 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2000 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
2001 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
2002 }
2003 
2004 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
2005 {
2006 	u32 int0_enable = 0;
2007 
2008 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
2009 	 * and MoCA PHY
2010 	 */
2011 	if (priv->internal_phy) {
2012 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2013 		if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv))
2014 			int0_enable |= UMAC_IRQ_PHY_DET_R;
2015 	} else if (priv->ext_phy) {
2016 		int0_enable |= UMAC_IRQ_LINK_EVENT;
2017 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2018 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
2019 			int0_enable |= UMAC_IRQ_LINK_EVENT;
2020 	}
2021 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2022 }
2023 
2024 static void init_umac(struct bcmgenet_priv *priv)
2025 {
2026 	struct device *kdev = &priv->pdev->dev;
2027 	u32 reg;
2028 	u32 int0_enable = 0;
2029 
2030 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
2031 
2032 	reset_umac(priv);
2033 
2034 	/* clear tx/rx counter */
2035 	bcmgenet_umac_writel(priv,
2036 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
2037 			     UMAC_MIB_CTRL);
2038 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
2039 
2040 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
2041 
2042 	/* init rx registers, enable ip header optimization */
2043 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
2044 	reg |= RBUF_ALIGN_2B;
2045 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
2046 
2047 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
2048 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
2049 
2050 	bcmgenet_intr_disable(priv);
2051 
2052 	/* Configure backpressure vectors for MoCA */
2053 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
2054 		reg = bcmgenet_bp_mc_get(priv);
2055 		reg |= BIT(priv->hw_params->bp_in_en_shift);
2056 
2057 		/* bp_mask: back pressure mask */
2058 		if (netif_is_multiqueue(priv->dev))
2059 			reg |= priv->hw_params->bp_in_mask;
2060 		else
2061 			reg &= ~priv->hw_params->bp_in_mask;
2062 		bcmgenet_bp_mc_set(priv, reg);
2063 	}
2064 
2065 	/* Enable MDIO interrupts on GENET v3+ */
2066 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
2067 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2068 
2069 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
2070 
2071 	dev_dbg(kdev, "done init umac\n");
2072 }
2073 
2074 static void bcmgenet_init_dim(struct bcmgenet_rx_ring *ring,
2075 			      void (*cb)(struct work_struct *work))
2076 {
2077 	struct bcmgenet_net_dim *dim = &ring->dim;
2078 
2079 	INIT_WORK(&dim->dim.work, cb);
2080 	dim->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
2081 	dim->event_ctr = 0;
2082 	dim->packets = 0;
2083 	dim->bytes = 0;
2084 }
2085 
2086 static void bcmgenet_init_rx_coalesce(struct bcmgenet_rx_ring *ring)
2087 {
2088 	struct bcmgenet_net_dim *dim = &ring->dim;
2089 	struct dim_cq_moder moder;
2090 	u32 usecs, pkts;
2091 
2092 	usecs = ring->rx_coalesce_usecs;
2093 	pkts = ring->rx_max_coalesced_frames;
2094 
2095 	/* If DIM was enabled, re-apply default parameters */
2096 	if (dim->use_dim) {
2097 		moder = net_dim_get_def_rx_moderation(dim->dim.mode);
2098 		usecs = moder.usec;
2099 		pkts = moder.pkts;
2100 	}
2101 
2102 	bcmgenet_set_rx_coalesce(ring, usecs, pkts);
2103 }
2104 
2105 /* Initialize a Tx ring along with corresponding hardware registers */
2106 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
2107 				  unsigned int index, unsigned int size,
2108 				  unsigned int start_ptr, unsigned int end_ptr)
2109 {
2110 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
2111 	u32 words_per_bd = WORDS_PER_BD(priv);
2112 	u32 flow_period_val = 0;
2113 
2114 	spin_lock_init(&ring->lock);
2115 	ring->priv = priv;
2116 	ring->index = index;
2117 	if (index == DESC_INDEX) {
2118 		ring->queue = 0;
2119 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
2120 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
2121 	} else {
2122 		ring->queue = index + 1;
2123 		ring->int_enable = bcmgenet_tx_ring_int_enable;
2124 		ring->int_disable = bcmgenet_tx_ring_int_disable;
2125 	}
2126 	ring->cbs = priv->tx_cbs + start_ptr;
2127 	ring->size = size;
2128 	ring->clean_ptr = start_ptr;
2129 	ring->c_index = 0;
2130 	ring->free_bds = size;
2131 	ring->write_ptr = start_ptr;
2132 	ring->cb_ptr = start_ptr;
2133 	ring->end_ptr = end_ptr - 1;
2134 	ring->prod_index = 0;
2135 
2136 	/* Set flow period for ring != 16 */
2137 	if (index != DESC_INDEX)
2138 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
2139 
2140 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
2141 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
2142 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2143 	/* Disable rate control for now */
2144 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
2145 				  TDMA_FLOW_PERIOD);
2146 	bcmgenet_tdma_ring_writel(priv, index,
2147 				  ((size << DMA_RING_SIZE_SHIFT) |
2148 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2149 
2150 	/* Set start and end address, read and write pointers */
2151 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2152 				  DMA_START_ADDR);
2153 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2154 				  TDMA_READ_PTR);
2155 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2156 				  TDMA_WRITE_PTR);
2157 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2158 				  DMA_END_ADDR);
2159 
2160 	/* Initialize Tx NAPI */
2161 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll,
2162 			  NAPI_POLL_WEIGHT);
2163 }
2164 
2165 /* Initialize a RDMA ring */
2166 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2167 				 unsigned int index, unsigned int size,
2168 				 unsigned int start_ptr, unsigned int end_ptr)
2169 {
2170 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2171 	u32 words_per_bd = WORDS_PER_BD(priv);
2172 	int ret;
2173 
2174 	ring->priv = priv;
2175 	ring->index = index;
2176 	if (index == DESC_INDEX) {
2177 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2178 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2179 	} else {
2180 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2181 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2182 	}
2183 	ring->cbs = priv->rx_cbs + start_ptr;
2184 	ring->size = size;
2185 	ring->c_index = 0;
2186 	ring->read_ptr = start_ptr;
2187 	ring->cb_ptr = start_ptr;
2188 	ring->end_ptr = end_ptr - 1;
2189 
2190 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2191 	if (ret)
2192 		return ret;
2193 
2194 	bcmgenet_init_dim(ring, bcmgenet_dim_work);
2195 	bcmgenet_init_rx_coalesce(ring);
2196 
2197 	/* Initialize Rx NAPI */
2198 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll,
2199 		       NAPI_POLL_WEIGHT);
2200 
2201 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2202 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2203 	bcmgenet_rdma_ring_writel(priv, index,
2204 				  ((size << DMA_RING_SIZE_SHIFT) |
2205 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2206 	bcmgenet_rdma_ring_writel(priv, index,
2207 				  (DMA_FC_THRESH_LO <<
2208 				   DMA_XOFF_THRESHOLD_SHIFT) |
2209 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2210 
2211 	/* Set start and end address, read and write pointers */
2212 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2213 				  DMA_START_ADDR);
2214 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2215 				  RDMA_READ_PTR);
2216 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2217 				  RDMA_WRITE_PTR);
2218 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2219 				  DMA_END_ADDR);
2220 
2221 	return ret;
2222 }
2223 
2224 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2225 {
2226 	unsigned int i;
2227 	struct bcmgenet_tx_ring *ring;
2228 
2229 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2230 		ring = &priv->tx_rings[i];
2231 		napi_enable(&ring->napi);
2232 		ring->int_enable(ring);
2233 	}
2234 
2235 	ring = &priv->tx_rings[DESC_INDEX];
2236 	napi_enable(&ring->napi);
2237 	ring->int_enable(ring);
2238 }
2239 
2240 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2241 {
2242 	unsigned int i;
2243 	struct bcmgenet_tx_ring *ring;
2244 
2245 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2246 		ring = &priv->tx_rings[i];
2247 		napi_disable(&ring->napi);
2248 	}
2249 
2250 	ring = &priv->tx_rings[DESC_INDEX];
2251 	napi_disable(&ring->napi);
2252 }
2253 
2254 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2255 {
2256 	unsigned int i;
2257 	struct bcmgenet_tx_ring *ring;
2258 
2259 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2260 		ring = &priv->tx_rings[i];
2261 		netif_napi_del(&ring->napi);
2262 	}
2263 
2264 	ring = &priv->tx_rings[DESC_INDEX];
2265 	netif_napi_del(&ring->napi);
2266 }
2267 
2268 /* Initialize Tx queues
2269  *
2270  * Queues 0-3 are priority-based, each one has 32 descriptors,
2271  * with queue 0 being the highest priority queue.
2272  *
2273  * Queue 16 is the default Tx queue with
2274  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2275  *
2276  * The transmit control block pool is then partitioned as follows:
2277  * - Tx queue 0 uses tx_cbs[0..31]
2278  * - Tx queue 1 uses tx_cbs[32..63]
2279  * - Tx queue 2 uses tx_cbs[64..95]
2280  * - Tx queue 3 uses tx_cbs[96..127]
2281  * - Tx queue 16 uses tx_cbs[128..255]
2282  */
2283 static void bcmgenet_init_tx_queues(struct net_device *dev)
2284 {
2285 	struct bcmgenet_priv *priv = netdev_priv(dev);
2286 	u32 i, dma_enable;
2287 	u32 dma_ctrl, ring_cfg;
2288 	u32 dma_priority[3] = {0, 0, 0};
2289 
2290 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2291 	dma_enable = dma_ctrl & DMA_EN;
2292 	dma_ctrl &= ~DMA_EN;
2293 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2294 
2295 	dma_ctrl = 0;
2296 	ring_cfg = 0;
2297 
2298 	/* Enable strict priority arbiter mode */
2299 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2300 
2301 	/* Initialize Tx priority queues */
2302 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2303 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2304 				      i * priv->hw_params->tx_bds_per_q,
2305 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2306 		ring_cfg |= (1 << i);
2307 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2308 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2309 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2310 	}
2311 
2312 	/* Initialize Tx default queue 16 */
2313 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2314 			      priv->hw_params->tx_queues *
2315 			      priv->hw_params->tx_bds_per_q,
2316 			      TOTAL_DESC);
2317 	ring_cfg |= (1 << DESC_INDEX);
2318 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2319 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2320 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2321 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2322 
2323 	/* Set Tx queue priorities */
2324 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2325 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2326 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2327 
2328 	/* Enable Tx queues */
2329 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2330 
2331 	/* Enable Tx DMA */
2332 	if (dma_enable)
2333 		dma_ctrl |= DMA_EN;
2334 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2335 }
2336 
2337 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2338 {
2339 	unsigned int i;
2340 	struct bcmgenet_rx_ring *ring;
2341 
2342 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2343 		ring = &priv->rx_rings[i];
2344 		napi_enable(&ring->napi);
2345 		ring->int_enable(ring);
2346 	}
2347 
2348 	ring = &priv->rx_rings[DESC_INDEX];
2349 	napi_enable(&ring->napi);
2350 	ring->int_enable(ring);
2351 }
2352 
2353 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2354 {
2355 	unsigned int i;
2356 	struct bcmgenet_rx_ring *ring;
2357 
2358 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2359 		ring = &priv->rx_rings[i];
2360 		napi_disable(&ring->napi);
2361 		cancel_work_sync(&ring->dim.dim.work);
2362 	}
2363 
2364 	ring = &priv->rx_rings[DESC_INDEX];
2365 	napi_disable(&ring->napi);
2366 	cancel_work_sync(&ring->dim.dim.work);
2367 }
2368 
2369 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2370 {
2371 	unsigned int i;
2372 	struct bcmgenet_rx_ring *ring;
2373 
2374 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2375 		ring = &priv->rx_rings[i];
2376 		netif_napi_del(&ring->napi);
2377 	}
2378 
2379 	ring = &priv->rx_rings[DESC_INDEX];
2380 	netif_napi_del(&ring->napi);
2381 }
2382 
2383 /* Initialize Rx queues
2384  *
2385  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2386  * used to direct traffic to these queues.
2387  *
2388  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2389  */
2390 static int bcmgenet_init_rx_queues(struct net_device *dev)
2391 {
2392 	struct bcmgenet_priv *priv = netdev_priv(dev);
2393 	u32 i;
2394 	u32 dma_enable;
2395 	u32 dma_ctrl;
2396 	u32 ring_cfg;
2397 	int ret;
2398 
2399 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2400 	dma_enable = dma_ctrl & DMA_EN;
2401 	dma_ctrl &= ~DMA_EN;
2402 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2403 
2404 	dma_ctrl = 0;
2405 	ring_cfg = 0;
2406 
2407 	/* Initialize Rx priority queues */
2408 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2409 		ret = bcmgenet_init_rx_ring(priv, i,
2410 					    priv->hw_params->rx_bds_per_q,
2411 					    i * priv->hw_params->rx_bds_per_q,
2412 					    (i + 1) *
2413 					    priv->hw_params->rx_bds_per_q);
2414 		if (ret)
2415 			return ret;
2416 
2417 		ring_cfg |= (1 << i);
2418 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2419 	}
2420 
2421 	/* Initialize Rx default queue 16 */
2422 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2423 				    priv->hw_params->rx_queues *
2424 				    priv->hw_params->rx_bds_per_q,
2425 				    TOTAL_DESC);
2426 	if (ret)
2427 		return ret;
2428 
2429 	ring_cfg |= (1 << DESC_INDEX);
2430 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2431 
2432 	/* Enable rings */
2433 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2434 
2435 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2436 	if (dma_enable)
2437 		dma_ctrl |= DMA_EN;
2438 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2439 
2440 	return 0;
2441 }
2442 
2443 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2444 {
2445 	int ret = 0;
2446 	int timeout = 0;
2447 	u32 reg;
2448 	u32 dma_ctrl;
2449 	int i;
2450 
2451 	/* Disable TDMA to stop add more frames in TX DMA */
2452 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2453 	reg &= ~DMA_EN;
2454 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2455 
2456 	/* Check TDMA status register to confirm TDMA is disabled */
2457 	while (timeout++ < DMA_TIMEOUT_VAL) {
2458 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2459 		if (reg & DMA_DISABLED)
2460 			break;
2461 
2462 		udelay(1);
2463 	}
2464 
2465 	if (timeout == DMA_TIMEOUT_VAL) {
2466 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2467 		ret = -ETIMEDOUT;
2468 	}
2469 
2470 	/* Wait 10ms for packet drain in both tx and rx dma */
2471 	usleep_range(10000, 20000);
2472 
2473 	/* Disable RDMA */
2474 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2475 	reg &= ~DMA_EN;
2476 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2477 
2478 	timeout = 0;
2479 	/* Check RDMA status register to confirm RDMA is disabled */
2480 	while (timeout++ < DMA_TIMEOUT_VAL) {
2481 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2482 		if (reg & DMA_DISABLED)
2483 			break;
2484 
2485 		udelay(1);
2486 	}
2487 
2488 	if (timeout == DMA_TIMEOUT_VAL) {
2489 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2490 		ret = -ETIMEDOUT;
2491 	}
2492 
2493 	dma_ctrl = 0;
2494 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2495 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2496 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2497 	reg &= ~dma_ctrl;
2498 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2499 
2500 	dma_ctrl = 0;
2501 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2502 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2503 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2504 	reg &= ~dma_ctrl;
2505 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2506 
2507 	return ret;
2508 }
2509 
2510 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2511 {
2512 	struct netdev_queue *txq;
2513 	int i;
2514 
2515 	bcmgenet_fini_rx_napi(priv);
2516 	bcmgenet_fini_tx_napi(priv);
2517 
2518 	for (i = 0; i < priv->num_tx_bds; i++)
2519 		dev_kfree_skb(bcmgenet_free_tx_cb(&priv->pdev->dev,
2520 						  priv->tx_cbs + i));
2521 
2522 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2523 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2524 		netdev_tx_reset_queue(txq);
2525 	}
2526 
2527 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2528 	netdev_tx_reset_queue(txq);
2529 
2530 	bcmgenet_free_rx_buffers(priv);
2531 	kfree(priv->rx_cbs);
2532 	kfree(priv->tx_cbs);
2533 }
2534 
2535 /* init_edma: Initialize DMA control register */
2536 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2537 {
2538 	int ret;
2539 	unsigned int i;
2540 	struct enet_cb *cb;
2541 
2542 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2543 
2544 	/* Initialize common Rx ring structures */
2545 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2546 	priv->num_rx_bds = TOTAL_DESC;
2547 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2548 			       GFP_KERNEL);
2549 	if (!priv->rx_cbs)
2550 		return -ENOMEM;
2551 
2552 	for (i = 0; i < priv->num_rx_bds; i++) {
2553 		cb = priv->rx_cbs + i;
2554 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2555 	}
2556 
2557 	/* Initialize common TX ring structures */
2558 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2559 	priv->num_tx_bds = TOTAL_DESC;
2560 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2561 			       GFP_KERNEL);
2562 	if (!priv->tx_cbs) {
2563 		kfree(priv->rx_cbs);
2564 		return -ENOMEM;
2565 	}
2566 
2567 	for (i = 0; i < priv->num_tx_bds; i++) {
2568 		cb = priv->tx_cbs + i;
2569 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2570 	}
2571 
2572 	/* Init rDma */
2573 	bcmgenet_rdma_writel(priv, priv->dma_max_burst_length,
2574 			     DMA_SCB_BURST_SIZE);
2575 
2576 	/* Initialize Rx queues */
2577 	ret = bcmgenet_init_rx_queues(priv->dev);
2578 	if (ret) {
2579 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2580 		bcmgenet_free_rx_buffers(priv);
2581 		kfree(priv->rx_cbs);
2582 		kfree(priv->tx_cbs);
2583 		return ret;
2584 	}
2585 
2586 	/* Init tDma */
2587 	bcmgenet_tdma_writel(priv, priv->dma_max_burst_length,
2588 			     DMA_SCB_BURST_SIZE);
2589 
2590 	/* Initialize Tx queues */
2591 	bcmgenet_init_tx_queues(priv->dev);
2592 
2593 	return 0;
2594 }
2595 
2596 /* Interrupt bottom half */
2597 static void bcmgenet_irq_task(struct work_struct *work)
2598 {
2599 	unsigned int status;
2600 	struct bcmgenet_priv *priv = container_of(
2601 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2602 
2603 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2604 
2605 	spin_lock_irq(&priv->lock);
2606 	status = priv->irq0_stat;
2607 	priv->irq0_stat = 0;
2608 	spin_unlock_irq(&priv->lock);
2609 
2610 	if (status & UMAC_IRQ_PHY_DET_R &&
2611 	    priv->dev->phydev->autoneg != AUTONEG_ENABLE) {
2612 		phy_init_hw(priv->dev->phydev);
2613 		genphy_config_aneg(priv->dev->phydev);
2614 	}
2615 
2616 	/* Link UP/DOWN event */
2617 	if (status & UMAC_IRQ_LINK_EVENT)
2618 		phy_mac_interrupt(priv->dev->phydev);
2619 
2620 }
2621 
2622 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2623 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2624 {
2625 	struct bcmgenet_priv *priv = dev_id;
2626 	struct bcmgenet_rx_ring *rx_ring;
2627 	struct bcmgenet_tx_ring *tx_ring;
2628 	unsigned int index, status;
2629 
2630 	/* Read irq status */
2631 	status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2632 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2633 
2634 	/* clear interrupts */
2635 	bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR);
2636 
2637 	netif_dbg(priv, intr, priv->dev,
2638 		  "%s: IRQ=0x%x\n", __func__, status);
2639 
2640 	/* Check Rx priority queue interrupts */
2641 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2642 		if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2643 			continue;
2644 
2645 		rx_ring = &priv->rx_rings[index];
2646 		rx_ring->dim.event_ctr++;
2647 
2648 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2649 			rx_ring->int_disable(rx_ring);
2650 			__napi_schedule_irqoff(&rx_ring->napi);
2651 		}
2652 	}
2653 
2654 	/* Check Tx priority queue interrupts */
2655 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2656 		if (!(status & BIT(index)))
2657 			continue;
2658 
2659 		tx_ring = &priv->tx_rings[index];
2660 
2661 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2662 			tx_ring->int_disable(tx_ring);
2663 			__napi_schedule_irqoff(&tx_ring->napi);
2664 		}
2665 	}
2666 
2667 	return IRQ_HANDLED;
2668 }
2669 
2670 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2671 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2672 {
2673 	struct bcmgenet_priv *priv = dev_id;
2674 	struct bcmgenet_rx_ring *rx_ring;
2675 	struct bcmgenet_tx_ring *tx_ring;
2676 	unsigned int status;
2677 	unsigned long flags;
2678 
2679 	/* Read irq status */
2680 	status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2681 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2682 
2683 	/* clear interrupts */
2684 	bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR);
2685 
2686 	netif_dbg(priv, intr, priv->dev,
2687 		  "IRQ=0x%x\n", status);
2688 
2689 	if (status & UMAC_IRQ_RXDMA_DONE) {
2690 		rx_ring = &priv->rx_rings[DESC_INDEX];
2691 		rx_ring->dim.event_ctr++;
2692 
2693 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2694 			rx_ring->int_disable(rx_ring);
2695 			__napi_schedule_irqoff(&rx_ring->napi);
2696 		}
2697 	}
2698 
2699 	if (status & UMAC_IRQ_TXDMA_DONE) {
2700 		tx_ring = &priv->tx_rings[DESC_INDEX];
2701 
2702 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2703 			tx_ring->int_disable(tx_ring);
2704 			__napi_schedule_irqoff(&tx_ring->napi);
2705 		}
2706 	}
2707 
2708 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2709 		status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2710 		wake_up(&priv->wq);
2711 	}
2712 
2713 	/* all other interested interrupts handled in bottom half */
2714 	status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_PHY_DET_R);
2715 	if (status) {
2716 		/* Save irq status for bottom-half processing. */
2717 		spin_lock_irqsave(&priv->lock, flags);
2718 		priv->irq0_stat |= status;
2719 		spin_unlock_irqrestore(&priv->lock, flags);
2720 
2721 		schedule_work(&priv->bcmgenet_irq_work);
2722 	}
2723 
2724 	return IRQ_HANDLED;
2725 }
2726 
2727 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2728 {
2729 	struct bcmgenet_priv *priv = dev_id;
2730 
2731 	pm_wakeup_event(&priv->pdev->dev, 0);
2732 
2733 	return IRQ_HANDLED;
2734 }
2735 
2736 #ifdef CONFIG_NET_POLL_CONTROLLER
2737 static void bcmgenet_poll_controller(struct net_device *dev)
2738 {
2739 	struct bcmgenet_priv *priv = netdev_priv(dev);
2740 
2741 	/* Invoke the main RX/TX interrupt handler */
2742 	disable_irq(priv->irq0);
2743 	bcmgenet_isr0(priv->irq0, priv);
2744 	enable_irq(priv->irq0);
2745 
2746 	/* And the interrupt handler for RX/TX priority queues */
2747 	disable_irq(priv->irq1);
2748 	bcmgenet_isr1(priv->irq1, priv);
2749 	enable_irq(priv->irq1);
2750 }
2751 #endif
2752 
2753 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2754 {
2755 	u32 reg;
2756 
2757 	reg = bcmgenet_rbuf_ctrl_get(priv);
2758 	reg |= BIT(1);
2759 	bcmgenet_rbuf_ctrl_set(priv, reg);
2760 	udelay(10);
2761 
2762 	reg &= ~BIT(1);
2763 	bcmgenet_rbuf_ctrl_set(priv, reg);
2764 	udelay(10);
2765 }
2766 
2767 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2768 				 unsigned char *addr)
2769 {
2770 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2771 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2772 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2773 }
2774 
2775 static void bcmgenet_get_hw_addr(struct bcmgenet_priv *priv,
2776 				 unsigned char *addr)
2777 {
2778 	u32 addr_tmp;
2779 
2780 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC0);
2781 	addr[0] = addr_tmp >> 24;
2782 	addr[1] = (addr_tmp >> 16) & 0xff;
2783 	addr[2] = (addr_tmp >>	8) & 0xff;
2784 	addr[3] = addr_tmp & 0xff;
2785 	addr_tmp = bcmgenet_umac_readl(priv, UMAC_MAC1);
2786 	addr[4] = (addr_tmp >> 8) & 0xff;
2787 	addr[5] = addr_tmp & 0xff;
2788 }
2789 
2790 /* Returns a reusable dma control register value */
2791 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2792 {
2793 	u32 reg;
2794 	u32 dma_ctrl;
2795 
2796 	/* disable DMA */
2797 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2798 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2799 	reg &= ~dma_ctrl;
2800 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2801 
2802 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2803 	reg &= ~dma_ctrl;
2804 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2805 
2806 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2807 	udelay(10);
2808 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2809 
2810 	return dma_ctrl;
2811 }
2812 
2813 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2814 {
2815 	u32 reg;
2816 
2817 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2818 	reg |= dma_ctrl;
2819 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2820 
2821 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2822 	reg |= dma_ctrl;
2823 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2824 }
2825 
2826 /* bcmgenet_hfb_clear
2827  *
2828  * Clear Hardware Filter Block and disable all filtering.
2829  */
2830 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2831 {
2832 	u32 i;
2833 
2834 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2835 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2836 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2837 
2838 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2839 		bcmgenet_rdma_writel(priv, 0x0, i);
2840 
2841 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2842 		bcmgenet_hfb_reg_writel(priv, 0x0,
2843 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2844 
2845 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2846 			priv->hw_params->hfb_filter_size; i++)
2847 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2848 }
2849 
2850 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2851 {
2852 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2853 		return;
2854 
2855 	bcmgenet_hfb_clear(priv);
2856 }
2857 
2858 static void bcmgenet_netif_start(struct net_device *dev)
2859 {
2860 	struct bcmgenet_priv *priv = netdev_priv(dev);
2861 
2862 	/* Start the network engine */
2863 	bcmgenet_enable_rx_napi(priv);
2864 
2865 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2866 
2867 	bcmgenet_enable_tx_napi(priv);
2868 
2869 	/* Monitor link interrupts now */
2870 	bcmgenet_link_intr_enable(priv);
2871 
2872 	phy_start(dev->phydev);
2873 }
2874 
2875 static int bcmgenet_open(struct net_device *dev)
2876 {
2877 	struct bcmgenet_priv *priv = netdev_priv(dev);
2878 	unsigned long dma_ctrl;
2879 	u32 reg;
2880 	int ret;
2881 
2882 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2883 
2884 	/* Turn on the clock */
2885 	clk_prepare_enable(priv->clk);
2886 
2887 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2888 	 * brought out of reset as absolutely no UniMAC activity is allowed
2889 	 */
2890 	if (priv->internal_phy)
2891 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2892 
2893 	/* take MAC out of reset */
2894 	bcmgenet_umac_reset(priv);
2895 
2896 	init_umac(priv);
2897 
2898 	/* Apply features again in case we changed them while interface was
2899 	 * down
2900 	 */
2901 	bcmgenet_set_features(dev, dev->features);
2902 
2903 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2904 
2905 	if (priv->internal_phy) {
2906 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2907 		reg |= EXT_ENERGY_DET_MASK;
2908 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2909 	}
2910 
2911 	/* Disable RX/TX DMA and flush TX queues */
2912 	dma_ctrl = bcmgenet_dma_disable(priv);
2913 
2914 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2915 	ret = bcmgenet_init_dma(priv);
2916 	if (ret) {
2917 		netdev_err(dev, "failed to initialize DMA\n");
2918 		goto err_clk_disable;
2919 	}
2920 
2921 	/* Always enable ring 16 - descriptor ring */
2922 	bcmgenet_enable_dma(priv, dma_ctrl);
2923 
2924 	/* HFB init */
2925 	bcmgenet_hfb_init(priv);
2926 
2927 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2928 			  dev->name, priv);
2929 	if (ret < 0) {
2930 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2931 		goto err_fini_dma;
2932 	}
2933 
2934 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2935 			  dev->name, priv);
2936 	if (ret < 0) {
2937 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2938 		goto err_irq0;
2939 	}
2940 
2941 	ret = bcmgenet_mii_probe(dev);
2942 	if (ret) {
2943 		netdev_err(dev, "failed to connect to PHY\n");
2944 		goto err_irq1;
2945 	}
2946 
2947 	bcmgenet_netif_start(dev);
2948 
2949 	netif_tx_start_all_queues(dev);
2950 
2951 	return 0;
2952 
2953 err_irq1:
2954 	free_irq(priv->irq1, priv);
2955 err_irq0:
2956 	free_irq(priv->irq0, priv);
2957 err_fini_dma:
2958 	bcmgenet_dma_teardown(priv);
2959 	bcmgenet_fini_dma(priv);
2960 err_clk_disable:
2961 	if (priv->internal_phy)
2962 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2963 	clk_disable_unprepare(priv->clk);
2964 	return ret;
2965 }
2966 
2967 static void bcmgenet_netif_stop(struct net_device *dev)
2968 {
2969 	struct bcmgenet_priv *priv = netdev_priv(dev);
2970 
2971 	bcmgenet_disable_tx_napi(priv);
2972 	netif_tx_disable(dev);
2973 
2974 	/* Disable MAC receive */
2975 	umac_enable_set(priv, CMD_RX_EN, false);
2976 
2977 	bcmgenet_dma_teardown(priv);
2978 
2979 	/* Disable MAC transmit. TX DMA disabled must be done before this */
2980 	umac_enable_set(priv, CMD_TX_EN, false);
2981 
2982 	phy_stop(dev->phydev);
2983 	bcmgenet_disable_rx_napi(priv);
2984 	bcmgenet_intr_disable(priv);
2985 
2986 	/* Wait for pending work items to complete. Since interrupts are
2987 	 * disabled no new work will be scheduled.
2988 	 */
2989 	cancel_work_sync(&priv->bcmgenet_irq_work);
2990 
2991 	priv->old_link = -1;
2992 	priv->old_speed = -1;
2993 	priv->old_duplex = -1;
2994 	priv->old_pause = -1;
2995 
2996 	/* tx reclaim */
2997 	bcmgenet_tx_reclaim_all(dev);
2998 	bcmgenet_fini_dma(priv);
2999 }
3000 
3001 static int bcmgenet_close(struct net_device *dev)
3002 {
3003 	struct bcmgenet_priv *priv = netdev_priv(dev);
3004 	int ret = 0;
3005 
3006 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
3007 
3008 	bcmgenet_netif_stop(dev);
3009 
3010 	/* Really kill the PHY state machine and disconnect from it */
3011 	phy_disconnect(dev->phydev);
3012 
3013 	free_irq(priv->irq0, priv);
3014 	free_irq(priv->irq1, priv);
3015 
3016 	if (priv->internal_phy)
3017 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3018 
3019 	clk_disable_unprepare(priv->clk);
3020 
3021 	return ret;
3022 }
3023 
3024 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
3025 {
3026 	struct bcmgenet_priv *priv = ring->priv;
3027 	u32 p_index, c_index, intsts, intmsk;
3028 	struct netdev_queue *txq;
3029 	unsigned int free_bds;
3030 	bool txq_stopped;
3031 
3032 	if (!netif_msg_tx_err(priv))
3033 		return;
3034 
3035 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3036 
3037 	spin_lock(&ring->lock);
3038 	if (ring->index == DESC_INDEX) {
3039 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3040 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3041 	} else {
3042 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3043 		intmsk = 1 << ring->index;
3044 	}
3045 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3046 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3047 	txq_stopped = netif_tx_queue_stopped(txq);
3048 	free_bds = ring->free_bds;
3049 	spin_unlock(&ring->lock);
3050 
3051 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3052 		  "TX queue status: %s, interrupts: %s\n"
3053 		  "(sw)free_bds: %d (sw)size: %d\n"
3054 		  "(sw)p_index: %d (hw)p_index: %d\n"
3055 		  "(sw)c_index: %d (hw)c_index: %d\n"
3056 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3057 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3058 		  ring->index, ring->queue,
3059 		  txq_stopped ? "stopped" : "active",
3060 		  intsts & intmsk ? "enabled" : "disabled",
3061 		  free_bds, ring->size,
3062 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3063 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3064 		  ring->clean_ptr, ring->write_ptr,
3065 		  ring->cb_ptr, ring->end_ptr);
3066 }
3067 
3068 static void bcmgenet_timeout(struct net_device *dev, unsigned int txqueue)
3069 {
3070 	struct bcmgenet_priv *priv = netdev_priv(dev);
3071 	u32 int0_enable = 0;
3072 	u32 int1_enable = 0;
3073 	unsigned int q;
3074 
3075 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3076 
3077 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3078 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3079 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3080 
3081 	bcmgenet_tx_reclaim_all(dev);
3082 
3083 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3084 		int1_enable |= (1 << q);
3085 
3086 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3087 
3088 	/* Re-enable TX interrupts if disabled */
3089 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3090 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3091 
3092 	netif_trans_update(dev);
3093 
3094 	dev->stats.tx_errors++;
3095 
3096 	netif_tx_wake_all_queues(dev);
3097 }
3098 
3099 #define MAX_MDF_FILTER	17
3100 
3101 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3102 					 unsigned char *addr,
3103 					 int *i)
3104 {
3105 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3106 			     UMAC_MDF_ADDR + (*i * 4));
3107 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3108 			     addr[4] << 8 | addr[5],
3109 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3110 	*i += 2;
3111 }
3112 
3113 static void bcmgenet_set_rx_mode(struct net_device *dev)
3114 {
3115 	struct bcmgenet_priv *priv = netdev_priv(dev);
3116 	struct netdev_hw_addr *ha;
3117 	int i, nfilter;
3118 	u32 reg;
3119 
3120 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3121 
3122 	/* Number of filters needed */
3123 	nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2;
3124 
3125 	/*
3126 	 * Turn on promicuous mode for three scenarios
3127 	 * 1. IFF_PROMISC flag is set
3128 	 * 2. IFF_ALLMULTI flag is set
3129 	 * 3. The number of filters needed exceeds the number filters
3130 	 *    supported by the hardware.
3131 	*/
3132 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3133 	if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) ||
3134 	    (nfilter > MAX_MDF_FILTER)) {
3135 		reg |= CMD_PROMISC;
3136 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3137 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3138 		return;
3139 	} else {
3140 		reg &= ~CMD_PROMISC;
3141 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3142 	}
3143 
3144 	/* update MDF filter */
3145 	i = 0;
3146 	/* Broadcast */
3147 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i);
3148 	/* my own address.*/
3149 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i);
3150 
3151 	/* Unicast */
3152 	netdev_for_each_uc_addr(ha, dev)
3153 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3154 
3155 	/* Multicast */
3156 	netdev_for_each_mc_addr(ha, dev)
3157 		bcmgenet_set_mdf_addr(priv, ha->addr, &i);
3158 
3159 	/* Enable filters */
3160 	reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter);
3161 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3162 }
3163 
3164 /* Set the hardware MAC address. */
3165 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3166 {
3167 	struct sockaddr *addr = p;
3168 
3169 	/* Setting the MAC address at the hardware level is not possible
3170 	 * without disabling the UniMAC RX/TX enable bits.
3171 	 */
3172 	if (netif_running(dev))
3173 		return -EBUSY;
3174 
3175 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3176 
3177 	return 0;
3178 }
3179 
3180 static struct net_device_stats *bcmgenet_get_stats(struct net_device *dev)
3181 {
3182 	struct bcmgenet_priv *priv = netdev_priv(dev);
3183 	unsigned long tx_bytes = 0, tx_packets = 0;
3184 	unsigned long rx_bytes = 0, rx_packets = 0;
3185 	unsigned long rx_errors = 0, rx_dropped = 0;
3186 	struct bcmgenet_tx_ring *tx_ring;
3187 	struct bcmgenet_rx_ring *rx_ring;
3188 	unsigned int q;
3189 
3190 	for (q = 0; q < priv->hw_params->tx_queues; q++) {
3191 		tx_ring = &priv->tx_rings[q];
3192 		tx_bytes += tx_ring->bytes;
3193 		tx_packets += tx_ring->packets;
3194 	}
3195 	tx_ring = &priv->tx_rings[DESC_INDEX];
3196 	tx_bytes += tx_ring->bytes;
3197 	tx_packets += tx_ring->packets;
3198 
3199 	for (q = 0; q < priv->hw_params->rx_queues; q++) {
3200 		rx_ring = &priv->rx_rings[q];
3201 
3202 		rx_bytes += rx_ring->bytes;
3203 		rx_packets += rx_ring->packets;
3204 		rx_errors += rx_ring->errors;
3205 		rx_dropped += rx_ring->dropped;
3206 	}
3207 	rx_ring = &priv->rx_rings[DESC_INDEX];
3208 	rx_bytes += rx_ring->bytes;
3209 	rx_packets += rx_ring->packets;
3210 	rx_errors += rx_ring->errors;
3211 	rx_dropped += rx_ring->dropped;
3212 
3213 	dev->stats.tx_bytes = tx_bytes;
3214 	dev->stats.tx_packets = tx_packets;
3215 	dev->stats.rx_bytes = rx_bytes;
3216 	dev->stats.rx_packets = rx_packets;
3217 	dev->stats.rx_errors = rx_errors;
3218 	dev->stats.rx_missed_errors = rx_errors;
3219 	return &dev->stats;
3220 }
3221 
3222 static const struct net_device_ops bcmgenet_netdev_ops = {
3223 	.ndo_open		= bcmgenet_open,
3224 	.ndo_stop		= bcmgenet_close,
3225 	.ndo_start_xmit		= bcmgenet_xmit,
3226 	.ndo_tx_timeout		= bcmgenet_timeout,
3227 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3228 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3229 	.ndo_do_ioctl		= phy_do_ioctl_running,
3230 	.ndo_set_features	= bcmgenet_set_features,
3231 #ifdef CONFIG_NET_POLL_CONTROLLER
3232 	.ndo_poll_controller	= bcmgenet_poll_controller,
3233 #endif
3234 	.ndo_get_stats		= bcmgenet_get_stats,
3235 };
3236 
3237 /* Array of GENET hardware parameters/characteristics */
3238 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3239 	[GENET_V1] = {
3240 		.tx_queues = 0,
3241 		.tx_bds_per_q = 0,
3242 		.rx_queues = 0,
3243 		.rx_bds_per_q = 0,
3244 		.bp_in_en_shift = 16,
3245 		.bp_in_mask = 0xffff,
3246 		.hfb_filter_cnt = 16,
3247 		.qtag_mask = 0x1F,
3248 		.hfb_offset = 0x1000,
3249 		.rdma_offset = 0x2000,
3250 		.tdma_offset = 0x3000,
3251 		.words_per_bd = 2,
3252 	},
3253 	[GENET_V2] = {
3254 		.tx_queues = 4,
3255 		.tx_bds_per_q = 32,
3256 		.rx_queues = 0,
3257 		.rx_bds_per_q = 0,
3258 		.bp_in_en_shift = 16,
3259 		.bp_in_mask = 0xffff,
3260 		.hfb_filter_cnt = 16,
3261 		.qtag_mask = 0x1F,
3262 		.tbuf_offset = 0x0600,
3263 		.hfb_offset = 0x1000,
3264 		.hfb_reg_offset = 0x2000,
3265 		.rdma_offset = 0x3000,
3266 		.tdma_offset = 0x4000,
3267 		.words_per_bd = 2,
3268 		.flags = GENET_HAS_EXT,
3269 	},
3270 	[GENET_V3] = {
3271 		.tx_queues = 4,
3272 		.tx_bds_per_q = 32,
3273 		.rx_queues = 0,
3274 		.rx_bds_per_q = 0,
3275 		.bp_in_en_shift = 17,
3276 		.bp_in_mask = 0x1ffff,
3277 		.hfb_filter_cnt = 48,
3278 		.hfb_filter_size = 128,
3279 		.qtag_mask = 0x3F,
3280 		.tbuf_offset = 0x0600,
3281 		.hfb_offset = 0x8000,
3282 		.hfb_reg_offset = 0xfc00,
3283 		.rdma_offset = 0x10000,
3284 		.tdma_offset = 0x11000,
3285 		.words_per_bd = 2,
3286 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3287 			 GENET_HAS_MOCA_LINK_DET,
3288 	},
3289 	[GENET_V4] = {
3290 		.tx_queues = 4,
3291 		.tx_bds_per_q = 32,
3292 		.rx_queues = 0,
3293 		.rx_bds_per_q = 0,
3294 		.bp_in_en_shift = 17,
3295 		.bp_in_mask = 0x1ffff,
3296 		.hfb_filter_cnt = 48,
3297 		.hfb_filter_size = 128,
3298 		.qtag_mask = 0x3F,
3299 		.tbuf_offset = 0x0600,
3300 		.hfb_offset = 0x8000,
3301 		.hfb_reg_offset = 0xfc00,
3302 		.rdma_offset = 0x2000,
3303 		.tdma_offset = 0x4000,
3304 		.words_per_bd = 3,
3305 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3306 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3307 	},
3308 	[GENET_V5] = {
3309 		.tx_queues = 4,
3310 		.tx_bds_per_q = 32,
3311 		.rx_queues = 0,
3312 		.rx_bds_per_q = 0,
3313 		.bp_in_en_shift = 17,
3314 		.bp_in_mask = 0x1ffff,
3315 		.hfb_filter_cnt = 48,
3316 		.hfb_filter_size = 128,
3317 		.qtag_mask = 0x3F,
3318 		.tbuf_offset = 0x0600,
3319 		.hfb_offset = 0x8000,
3320 		.hfb_reg_offset = 0xfc00,
3321 		.rdma_offset = 0x2000,
3322 		.tdma_offset = 0x4000,
3323 		.words_per_bd = 3,
3324 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3325 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3326 	},
3327 };
3328 
3329 /* Infer hardware parameters from the detected GENET version */
3330 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3331 {
3332 	struct bcmgenet_hw_params *params;
3333 	u32 reg;
3334 	u8 major;
3335 	u16 gphy_rev;
3336 
3337 	if (GENET_IS_V5(priv) || GENET_IS_V4(priv)) {
3338 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3339 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3340 	} else if (GENET_IS_V3(priv)) {
3341 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3342 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3343 	} else if (GENET_IS_V2(priv)) {
3344 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3345 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3346 	} else if (GENET_IS_V1(priv)) {
3347 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3348 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3349 	}
3350 
3351 	/* enum genet_version starts at 1 */
3352 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3353 	params = priv->hw_params;
3354 
3355 	/* Read GENET HW version */
3356 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3357 	major = (reg >> 24 & 0x0f);
3358 	if (major == 6)
3359 		major = 5;
3360 	else if (major == 5)
3361 		major = 4;
3362 	else if (major == 0)
3363 		major = 1;
3364 	if (major != priv->version) {
3365 		dev_err(&priv->pdev->dev,
3366 			"GENET version mismatch, got: %d, configured for: %d\n",
3367 			major, priv->version);
3368 	}
3369 
3370 	/* Print the GENET core version */
3371 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3372 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3373 
3374 	/* Store the integrated PHY revision for the MDIO probing function
3375 	 * to pass this information to the PHY driver. The PHY driver expects
3376 	 * to find the PHY major revision in bits 15:8 while the GENET register
3377 	 * stores that information in bits 7:0, account for that.
3378 	 *
3379 	 * On newer chips, starting with PHY revision G0, a new scheme is
3380 	 * deployed similar to the Starfighter 2 switch with GPHY major
3381 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3382 	 * is reserved as well as special value 0x01ff, we have a small
3383 	 * heuristic to check for the new GPHY revision and re-arrange things
3384 	 * so the GPHY driver is happy.
3385 	 */
3386 	gphy_rev = reg & 0xffff;
3387 
3388 	if (GENET_IS_V5(priv)) {
3389 		/* The EPHY revision should come from the MDIO registers of
3390 		 * the PHY not from GENET.
3391 		 */
3392 		if (gphy_rev != 0) {
3393 			pr_warn("GENET is reporting EPHY revision: 0x%04x\n",
3394 				gphy_rev);
3395 		}
3396 	/* This is reserved so should require special treatment */
3397 	} else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3398 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3399 		return;
3400 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3401 	} else if ((gphy_rev & 0xf0) != 0) {
3402 		priv->gphy_rev = gphy_rev << 8;
3403 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3404 	} else if ((gphy_rev & 0xff00) != 0) {
3405 		priv->gphy_rev = gphy_rev;
3406 	}
3407 
3408 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3409 	if (!(params->flags & GENET_HAS_40BITS))
3410 		pr_warn("GENET does not support 40-bits PA\n");
3411 #endif
3412 
3413 	pr_debug("Configuration for version: %d\n"
3414 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3415 		"BP << en: %2d, BP msk: 0x%05x\n"
3416 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3417 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3418 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3419 		"Words/BD: %d\n",
3420 		priv->version,
3421 		params->tx_queues, params->tx_bds_per_q,
3422 		params->rx_queues, params->rx_bds_per_q,
3423 		params->bp_in_en_shift, params->bp_in_mask,
3424 		params->hfb_filter_cnt, params->qtag_mask,
3425 		params->tbuf_offset, params->hfb_offset,
3426 		params->hfb_reg_offset,
3427 		params->rdma_offset, params->tdma_offset,
3428 		params->words_per_bd);
3429 }
3430 
3431 struct bcmgenet_plat_data {
3432 	enum bcmgenet_version version;
3433 	u32 dma_max_burst_length;
3434 };
3435 
3436 static const struct bcmgenet_plat_data v1_plat_data = {
3437 	.version = GENET_V1,
3438 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3439 };
3440 
3441 static const struct bcmgenet_plat_data v2_plat_data = {
3442 	.version = GENET_V2,
3443 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3444 };
3445 
3446 static const struct bcmgenet_plat_data v3_plat_data = {
3447 	.version = GENET_V3,
3448 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3449 };
3450 
3451 static const struct bcmgenet_plat_data v4_plat_data = {
3452 	.version = GENET_V4,
3453 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3454 };
3455 
3456 static const struct bcmgenet_plat_data v5_plat_data = {
3457 	.version = GENET_V5,
3458 	.dma_max_burst_length = DMA_MAX_BURST_LENGTH,
3459 };
3460 
3461 static const struct bcmgenet_plat_data bcm2711_plat_data = {
3462 	.version = GENET_V5,
3463 	.dma_max_burst_length = 0x08,
3464 };
3465 
3466 static const struct of_device_id bcmgenet_match[] = {
3467 	{ .compatible = "brcm,genet-v1", .data = &v1_plat_data },
3468 	{ .compatible = "brcm,genet-v2", .data = &v2_plat_data },
3469 	{ .compatible = "brcm,genet-v3", .data = &v3_plat_data },
3470 	{ .compatible = "brcm,genet-v4", .data = &v4_plat_data },
3471 	{ .compatible = "brcm,genet-v5", .data = &v5_plat_data },
3472 	{ .compatible = "brcm,bcm2711-genet-v5", .data = &bcm2711_plat_data },
3473 	{ },
3474 };
3475 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3476 
3477 static int bcmgenet_probe(struct platform_device *pdev)
3478 {
3479 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3480 	struct device_node *dn = pdev->dev.of_node;
3481 	const struct of_device_id *of_id = NULL;
3482 	const struct bcmgenet_plat_data *pdata;
3483 	struct bcmgenet_priv *priv;
3484 	struct net_device *dev;
3485 	unsigned int i;
3486 	int err = -EIO;
3487 
3488 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3489 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3490 				 GENET_MAX_MQ_CNT + 1);
3491 	if (!dev) {
3492 		dev_err(&pdev->dev, "can't allocate net device\n");
3493 		return -ENOMEM;
3494 	}
3495 
3496 	if (dn) {
3497 		of_id = of_match_node(bcmgenet_match, dn);
3498 		if (!of_id)
3499 			return -EINVAL;
3500 	}
3501 
3502 	priv = netdev_priv(dev);
3503 	priv->irq0 = platform_get_irq(pdev, 0);
3504 	if (priv->irq0 < 0) {
3505 		err = priv->irq0;
3506 		goto err;
3507 	}
3508 	priv->irq1 = platform_get_irq(pdev, 1);
3509 	if (priv->irq1 < 0) {
3510 		err = priv->irq1;
3511 		goto err;
3512 	}
3513 	priv->wol_irq = platform_get_irq_optional(pdev, 2);
3514 
3515 	priv->base = devm_platform_ioremap_resource(pdev, 0);
3516 	if (IS_ERR(priv->base)) {
3517 		err = PTR_ERR(priv->base);
3518 		goto err;
3519 	}
3520 
3521 	spin_lock_init(&priv->lock);
3522 
3523 	SET_NETDEV_DEV(dev, &pdev->dev);
3524 	dev_set_drvdata(&pdev->dev, dev);
3525 	dev->watchdog_timeo = 2 * HZ;
3526 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3527 	dev->netdev_ops = &bcmgenet_netdev_ops;
3528 
3529 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3530 
3531 	/* Set default features */
3532 	dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_HW_CSUM |
3533 			 NETIF_F_RXCSUM;
3534 	dev->hw_features |= dev->features;
3535 	dev->vlan_features |= dev->features;
3536 
3537 	/* Request the WOL interrupt and advertise suspend if available */
3538 	priv->wol_irq_disabled = true;
3539 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3540 			       dev->name, priv);
3541 	if (!err)
3542 		device_set_wakeup_capable(&pdev->dev, 1);
3543 
3544 	/* Set the needed headroom to account for any possible
3545 	 * features enabling/disabling at runtime
3546 	 */
3547 	dev->needed_headroom += 64;
3548 
3549 	netdev_boot_setup_check(dev);
3550 
3551 	priv->dev = dev;
3552 	priv->pdev = pdev;
3553 
3554 	pdata = device_get_match_data(&pdev->dev);
3555 	if (pdata) {
3556 		priv->version = pdata->version;
3557 		priv->dma_max_burst_length = pdata->dma_max_burst_length;
3558 	} else {
3559 		priv->version = pd->genet_version;
3560 		priv->dma_max_burst_length = DMA_MAX_BURST_LENGTH;
3561 	}
3562 
3563 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3564 	if (IS_ERR(priv->clk)) {
3565 		dev_dbg(&priv->pdev->dev, "failed to get enet clock\n");
3566 		priv->clk = NULL;
3567 	}
3568 
3569 	clk_prepare_enable(priv->clk);
3570 
3571 	bcmgenet_set_hw_params(priv);
3572 
3573 	err = -EIO;
3574 	if (priv->hw_params->flags & GENET_HAS_40BITS)
3575 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40));
3576 	if (err)
3577 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3578 	if (err)
3579 		goto err;
3580 
3581 	/* Mii wait queue */
3582 	init_waitqueue_head(&priv->wq);
3583 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3584 	priv->rx_buf_len = RX_BUF_LENGTH;
3585 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3586 
3587 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3588 	if (IS_ERR(priv->clk_wol)) {
3589 		dev_dbg(&priv->pdev->dev, "failed to get enet-wol clock\n");
3590 		priv->clk_wol = NULL;
3591 	}
3592 
3593 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3594 	if (IS_ERR(priv->clk_eee)) {
3595 		dev_dbg(&priv->pdev->dev, "failed to get enet-eee clock\n");
3596 		priv->clk_eee = NULL;
3597 	}
3598 
3599 	/* If this is an internal GPHY, power it on now, before UniMAC is
3600 	 * brought out of reset as absolutely no UniMAC activity is allowed
3601 	 */
3602 	if (device_get_phy_mode(&pdev->dev) == PHY_INTERFACE_MODE_INTERNAL)
3603 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3604 
3605 	if ((pd) && (!IS_ERR_OR_NULL(pd->mac_address)))
3606 		ether_addr_copy(dev->dev_addr, pd->mac_address);
3607 	else
3608 		if (!device_get_mac_address(&pdev->dev, dev->dev_addr, ETH_ALEN))
3609 			if (has_acpi_companion(&pdev->dev))
3610 				bcmgenet_get_hw_addr(priv, dev->dev_addr);
3611 
3612 	if (!is_valid_ether_addr(dev->dev_addr)) {
3613 		dev_warn(&pdev->dev, "using random Ethernet MAC\n");
3614 		eth_hw_addr_random(dev);
3615 	}
3616 
3617 	reset_umac(priv);
3618 
3619 	err = bcmgenet_mii_init(dev);
3620 	if (err)
3621 		goto err_clk_disable;
3622 
3623 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3624 	 * just the ring 16 descriptor based TX
3625 	 */
3626 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3627 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3628 
3629 	/* Set default coalescing parameters */
3630 	for (i = 0; i < priv->hw_params->rx_queues; i++)
3631 		priv->rx_rings[i].rx_max_coalesced_frames = 1;
3632 	priv->rx_rings[DESC_INDEX].rx_max_coalesced_frames = 1;
3633 
3634 	/* libphy will determine the link state */
3635 	netif_carrier_off(dev);
3636 
3637 	/* Turn off the main clock, WOL clock is handled separately */
3638 	clk_disable_unprepare(priv->clk);
3639 
3640 	err = register_netdev(dev);
3641 	if (err)
3642 		goto err;
3643 
3644 	return err;
3645 
3646 err_clk_disable:
3647 	clk_disable_unprepare(priv->clk);
3648 err:
3649 	free_netdev(dev);
3650 	return err;
3651 }
3652 
3653 static int bcmgenet_remove(struct platform_device *pdev)
3654 {
3655 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3656 
3657 	dev_set_drvdata(&pdev->dev, NULL);
3658 	unregister_netdev(priv->dev);
3659 	bcmgenet_mii_exit(priv->dev);
3660 	free_netdev(priv->dev);
3661 
3662 	return 0;
3663 }
3664 
3665 static void bcmgenet_shutdown(struct platform_device *pdev)
3666 {
3667 	bcmgenet_remove(pdev);
3668 }
3669 
3670 #ifdef CONFIG_PM_SLEEP
3671 static int bcmgenet_resume(struct device *d)
3672 {
3673 	struct net_device *dev = dev_get_drvdata(d);
3674 	struct bcmgenet_priv *priv = netdev_priv(dev);
3675 	unsigned long dma_ctrl;
3676 	int ret;
3677 	u32 reg;
3678 
3679 	if (!netif_running(dev))
3680 		return 0;
3681 
3682 	/* Turn on the clock */
3683 	ret = clk_prepare_enable(priv->clk);
3684 	if (ret)
3685 		return ret;
3686 
3687 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3688 	 * brought out of reset as absolutely no UniMAC activity is allowed
3689 	 */
3690 	if (priv->internal_phy)
3691 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3692 
3693 	bcmgenet_umac_reset(priv);
3694 
3695 	init_umac(priv);
3696 
3697 	/* From WOL-enabled suspend, switch to regular clock */
3698 	if (priv->wolopts)
3699 		clk_disable_unprepare(priv->clk_wol);
3700 
3701 	phy_init_hw(dev->phydev);
3702 
3703 	/* Speed settings must be restored */
3704 	genphy_config_aneg(dev->phydev);
3705 	bcmgenet_mii_config(priv->dev, false);
3706 
3707 	/* Restore enabled features */
3708 	bcmgenet_set_features(dev, dev->features);
3709 
3710 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3711 
3712 	if (priv->internal_phy) {
3713 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3714 		reg |= EXT_ENERGY_DET_MASK;
3715 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3716 	}
3717 
3718 	if (priv->wolopts)
3719 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3720 
3721 	/* Disable RX/TX DMA and flush TX queues */
3722 	dma_ctrl = bcmgenet_dma_disable(priv);
3723 
3724 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3725 	ret = bcmgenet_init_dma(priv);
3726 	if (ret) {
3727 		netdev_err(dev, "failed to initialize DMA\n");
3728 		goto out_clk_disable;
3729 	}
3730 
3731 	/* Always enable ring 16 - descriptor ring */
3732 	bcmgenet_enable_dma(priv, dma_ctrl);
3733 
3734 	if (!device_may_wakeup(d))
3735 		phy_resume(dev->phydev);
3736 
3737 	if (priv->eee.eee_enabled)
3738 		bcmgenet_eee_enable_set(dev, true);
3739 
3740 	bcmgenet_netif_start(dev);
3741 
3742 	netif_device_attach(dev);
3743 
3744 	return 0;
3745 
3746 out_clk_disable:
3747 	if (priv->internal_phy)
3748 		bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3749 	clk_disable_unprepare(priv->clk);
3750 	return ret;
3751 }
3752 
3753 static int bcmgenet_suspend(struct device *d)
3754 {
3755 	struct net_device *dev = dev_get_drvdata(d);
3756 	struct bcmgenet_priv *priv = netdev_priv(dev);
3757 	int ret = 0;
3758 
3759 	if (!netif_running(dev))
3760 		return 0;
3761 
3762 	netif_device_detach(dev);
3763 
3764 	bcmgenet_netif_stop(dev);
3765 
3766 	if (!device_may_wakeup(d))
3767 		phy_suspend(dev->phydev);
3768 
3769 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3770 	if (device_may_wakeup(d) && priv->wolopts) {
3771 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3772 		clk_prepare_enable(priv->clk_wol);
3773 	} else if (priv->internal_phy) {
3774 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3775 	}
3776 
3777 	/* Turn off the clocks */
3778 	clk_disable_unprepare(priv->clk);
3779 
3780 	if (ret)
3781 		bcmgenet_resume(d);
3782 
3783 	return ret;
3784 }
3785 #endif /* CONFIG_PM_SLEEP */
3786 
3787 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3788 
3789 static const struct acpi_device_id genet_acpi_match[] = {
3790 	{ "BCM6E4E", (kernel_ulong_t)&bcm2711_plat_data },
3791 	{ },
3792 };
3793 MODULE_DEVICE_TABLE(acpi, genet_acpi_match);
3794 
3795 static struct platform_driver bcmgenet_driver = {
3796 	.probe	= bcmgenet_probe,
3797 	.remove	= bcmgenet_remove,
3798 	.shutdown = bcmgenet_shutdown,
3799 	.driver	= {
3800 		.name	= "bcmgenet",
3801 		.of_match_table = bcmgenet_match,
3802 		.pm	= &bcmgenet_pm_ops,
3803 		.acpi_match_table = ACPI_PTR(genet_acpi_match),
3804 	},
3805 };
3806 module_platform_driver(bcmgenet_driver);
3807 
3808 MODULE_AUTHOR("Broadcom Corporation");
3809 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3810 MODULE_ALIAS("platform:bcmgenet");
3811 MODULE_LICENSE("GPL");
3812