xref: /linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_addr(priv, d, addr);
108 	dmadesc_set_length_status(priv, d, val);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 	DMA_RING0_TIMEOUT,
209 	DMA_RING1_TIMEOUT,
210 	DMA_RING2_TIMEOUT,
211 	DMA_RING3_TIMEOUT,
212 	DMA_RING4_TIMEOUT,
213 	DMA_RING5_TIMEOUT,
214 	DMA_RING6_TIMEOUT,
215 	DMA_RING7_TIMEOUT,
216 	DMA_RING8_TIMEOUT,
217 	DMA_RING9_TIMEOUT,
218 	DMA_RING10_TIMEOUT,
219 	DMA_RING11_TIMEOUT,
220 	DMA_RING12_TIMEOUT,
221 	DMA_RING13_TIMEOUT,
222 	DMA_RING14_TIMEOUT,
223 	DMA_RING15_TIMEOUT,
224 	DMA_RING16_TIMEOUT,
225 };
226 
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 	[DMA_RING_CFG]		= 0x00,
229 	[DMA_CTRL]		= 0x04,
230 	[DMA_STATUS]		= 0x08,
231 	[DMA_SCB_BURST_SIZE]	= 0x0C,
232 	[DMA_ARB_CTRL]		= 0x2C,
233 	[DMA_PRIORITY_0]	= 0x30,
234 	[DMA_PRIORITY_1]	= 0x34,
235 	[DMA_PRIORITY_2]	= 0x38,
236 	[DMA_RING0_TIMEOUT]	= 0x2C,
237 	[DMA_RING1_TIMEOUT]	= 0x30,
238 	[DMA_RING2_TIMEOUT]	= 0x34,
239 	[DMA_RING3_TIMEOUT]	= 0x38,
240 	[DMA_RING4_TIMEOUT]	= 0x3c,
241 	[DMA_RING5_TIMEOUT]	= 0x40,
242 	[DMA_RING6_TIMEOUT]	= 0x44,
243 	[DMA_RING7_TIMEOUT]	= 0x48,
244 	[DMA_RING8_TIMEOUT]	= 0x4c,
245 	[DMA_RING9_TIMEOUT]	= 0x50,
246 	[DMA_RING10_TIMEOUT]	= 0x54,
247 	[DMA_RING11_TIMEOUT]	= 0x58,
248 	[DMA_RING12_TIMEOUT]	= 0x5c,
249 	[DMA_RING13_TIMEOUT]	= 0x60,
250 	[DMA_RING14_TIMEOUT]	= 0x64,
251 	[DMA_RING15_TIMEOUT]	= 0x68,
252 	[DMA_RING16_TIMEOUT]	= 0x6C,
253 	[DMA_INDEX2RING_0]	= 0x70,
254 	[DMA_INDEX2RING_1]	= 0x74,
255 	[DMA_INDEX2RING_2]	= 0x78,
256 	[DMA_INDEX2RING_3]	= 0x7C,
257 	[DMA_INDEX2RING_4]	= 0x80,
258 	[DMA_INDEX2RING_5]	= 0x84,
259 	[DMA_INDEX2RING_6]	= 0x88,
260 	[DMA_INDEX2RING_7]	= 0x8C,
261 };
262 
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 	[DMA_RING_CFG]		= 0x00,
265 	[DMA_CTRL]		= 0x04,
266 	[DMA_STATUS]		= 0x08,
267 	[DMA_SCB_BURST_SIZE]	= 0x0C,
268 	[DMA_ARB_CTRL]		= 0x30,
269 	[DMA_PRIORITY_0]	= 0x34,
270 	[DMA_PRIORITY_1]	= 0x38,
271 	[DMA_PRIORITY_2]	= 0x3C,
272 	[DMA_RING0_TIMEOUT]	= 0x2C,
273 	[DMA_RING1_TIMEOUT]	= 0x30,
274 	[DMA_RING2_TIMEOUT]	= 0x34,
275 	[DMA_RING3_TIMEOUT]	= 0x38,
276 	[DMA_RING4_TIMEOUT]	= 0x3c,
277 	[DMA_RING5_TIMEOUT]	= 0x40,
278 	[DMA_RING6_TIMEOUT]	= 0x44,
279 	[DMA_RING7_TIMEOUT]	= 0x48,
280 	[DMA_RING8_TIMEOUT]	= 0x4c,
281 	[DMA_RING9_TIMEOUT]	= 0x50,
282 	[DMA_RING10_TIMEOUT]	= 0x54,
283 	[DMA_RING11_TIMEOUT]	= 0x58,
284 	[DMA_RING12_TIMEOUT]	= 0x5c,
285 	[DMA_RING13_TIMEOUT]	= 0x60,
286 	[DMA_RING14_TIMEOUT]	= 0x64,
287 	[DMA_RING15_TIMEOUT]	= 0x68,
288 	[DMA_RING16_TIMEOUT]	= 0x6C,
289 };
290 
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 	[DMA_CTRL]		= 0x00,
293 	[DMA_STATUS]		= 0x04,
294 	[DMA_SCB_BURST_SIZE]	= 0x0C,
295 	[DMA_ARB_CTRL]		= 0x30,
296 	[DMA_PRIORITY_0]	= 0x34,
297 	[DMA_PRIORITY_1]	= 0x38,
298 	[DMA_PRIORITY_2]	= 0x3C,
299 	[DMA_RING0_TIMEOUT]	= 0x2C,
300 	[DMA_RING1_TIMEOUT]	= 0x30,
301 	[DMA_RING2_TIMEOUT]	= 0x34,
302 	[DMA_RING3_TIMEOUT]	= 0x38,
303 	[DMA_RING4_TIMEOUT]	= 0x3c,
304 	[DMA_RING5_TIMEOUT]	= 0x40,
305 	[DMA_RING6_TIMEOUT]	= 0x44,
306 	[DMA_RING7_TIMEOUT]	= 0x48,
307 	[DMA_RING8_TIMEOUT]	= 0x4c,
308 	[DMA_RING9_TIMEOUT]	= 0x50,
309 	[DMA_RING10_TIMEOUT]	= 0x54,
310 	[DMA_RING11_TIMEOUT]	= 0x58,
311 	[DMA_RING12_TIMEOUT]	= 0x5c,
312 	[DMA_RING13_TIMEOUT]	= 0x60,
313 	[DMA_RING14_TIMEOUT]	= 0x64,
314 	[DMA_RING15_TIMEOUT]	= 0x68,
315 	[DMA_RING16_TIMEOUT]	= 0x6C,
316 };
317 
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320 
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 	return netdev_priv(dev_get_drvdata(dev));
324 }
325 
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 				      enum dma_reg r)
328 {
329 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332 
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 					u32 val, enum dma_reg r)
335 {
336 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339 
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 				      enum dma_reg r)
342 {
343 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346 
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 					u32 val, enum dma_reg r)
349 {
350 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353 
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359 	TDMA_READ_PTR = 0,
360 	RDMA_WRITE_PTR = TDMA_READ_PTR,
361 	TDMA_READ_PTR_HI,
362 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 	TDMA_CONS_INDEX,
364 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 	TDMA_PROD_INDEX,
366 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 	DMA_RING_BUF_SIZE,
368 	DMA_START_ADDR,
369 	DMA_START_ADDR_HI,
370 	DMA_END_ADDR,
371 	DMA_END_ADDR_HI,
372 	DMA_MBUF_DONE_THRESH,
373 	TDMA_FLOW_PERIOD,
374 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 	TDMA_WRITE_PTR,
376 	RDMA_READ_PTR = TDMA_WRITE_PTR,
377 	TDMA_WRITE_PTR_HI,
378 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380 
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 	[TDMA_READ_PTR]			= 0x00,
388 	[TDMA_READ_PTR_HI]		= 0x04,
389 	[TDMA_CONS_INDEX]		= 0x08,
390 	[TDMA_PROD_INDEX]		= 0x0C,
391 	[DMA_RING_BUF_SIZE]		= 0x10,
392 	[DMA_START_ADDR]		= 0x14,
393 	[DMA_START_ADDR_HI]		= 0x18,
394 	[DMA_END_ADDR]			= 0x1C,
395 	[DMA_END_ADDR_HI]		= 0x20,
396 	[DMA_MBUF_DONE_THRESH]		= 0x24,
397 	[TDMA_FLOW_PERIOD]		= 0x28,
398 	[TDMA_WRITE_PTR]		= 0x2C,
399 	[TDMA_WRITE_PTR_HI]		= 0x30,
400 };
401 
402 static const u8 genet_dma_ring_regs_v123[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_CONS_INDEX]		= 0x04,
405 	[TDMA_PROD_INDEX]		= 0x08,
406 	[DMA_RING_BUF_SIZE]		= 0x0C,
407 	[DMA_START_ADDR]		= 0x10,
408 	[DMA_END_ADDR]			= 0x14,
409 	[DMA_MBUF_DONE_THRESH]		= 0x18,
410 	[TDMA_FLOW_PERIOD]		= 0x1C,
411 	[TDMA_WRITE_PTR]		= 0x20,
412 };
413 
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416 
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 					   unsigned int ring,
419 					   enum dma_ring_reg r)
420 {
421 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 					     unsigned int ring, u32 val,
428 					     enum dma_ring_reg r)
429 {
430 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 			(DMA_RING_SIZE * ring) +
432 			genet_dma_ring_regs[r]);
433 }
434 
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 					   unsigned int ring,
437 					   enum dma_ring_reg r)
438 {
439 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 					     unsigned int ring, u32 val,
446 					     enum dma_ring_reg r)
447 {
448 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 			(DMA_RING_SIZE * ring) +
450 			genet_dma_ring_regs[r]);
451 }
452 
453 static int bcmgenet_get_settings(struct net_device *dev,
454 				 struct ethtool_cmd *cmd)
455 {
456 	struct bcmgenet_priv *priv = netdev_priv(dev);
457 
458 	if (!netif_running(dev))
459 		return -EINVAL;
460 
461 	if (!priv->phydev)
462 		return -ENODEV;
463 
464 	return phy_ethtool_gset(priv->phydev, cmd);
465 }
466 
467 static int bcmgenet_set_settings(struct net_device *dev,
468 				 struct ethtool_cmd *cmd)
469 {
470 	struct bcmgenet_priv *priv = netdev_priv(dev);
471 
472 	if (!netif_running(dev))
473 		return -EINVAL;
474 
475 	if (!priv->phydev)
476 		return -ENODEV;
477 
478 	return phy_ethtool_sset(priv->phydev, cmd);
479 }
480 
481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482 				netdev_features_t wanted)
483 {
484 	struct bcmgenet_priv *priv = netdev_priv(dev);
485 	u32 rbuf_chk_ctrl;
486 	bool rx_csum_en;
487 
488 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489 
490 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491 
492 	/* enable rx checksumming */
493 	if (rx_csum_en)
494 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495 	else
496 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497 	priv->desc_rxchk_en = rx_csum_en;
498 
499 	/* If UniMAC forwards CRC, we need to skip over it to get
500 	 * a valid CHK bit to be set in the per-packet status word
501 	*/
502 	if (rx_csum_en && priv->crc_fwd_en)
503 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504 	else
505 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506 
507 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508 
509 	return 0;
510 }
511 
512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513 				netdev_features_t wanted)
514 {
515 	struct bcmgenet_priv *priv = netdev_priv(dev);
516 	bool desc_64b_en;
517 	u32 tbuf_ctrl, rbuf_ctrl;
518 
519 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521 
522 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523 
524 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525 	if (desc_64b_en) {
526 		tbuf_ctrl |= RBUF_64B_EN;
527 		rbuf_ctrl |= RBUF_64B_EN;
528 	} else {
529 		tbuf_ctrl &= ~RBUF_64B_EN;
530 		rbuf_ctrl &= ~RBUF_64B_EN;
531 	}
532 	priv->desc_64b_en = desc_64b_en;
533 
534 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536 
537 	return 0;
538 }
539 
540 static int bcmgenet_set_features(struct net_device *dev,
541 				 netdev_features_t features)
542 {
543 	netdev_features_t changed = features ^ dev->features;
544 	netdev_features_t wanted = dev->wanted_features;
545 	int ret = 0;
546 
547 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548 		ret = bcmgenet_set_tx_csum(dev, wanted);
549 	if (changed & (NETIF_F_RXCSUM))
550 		ret = bcmgenet_set_rx_csum(dev, wanted);
551 
552 	return ret;
553 }
554 
555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557 	struct bcmgenet_priv *priv = netdev_priv(dev);
558 
559 	return priv->msg_enable;
560 }
561 
562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564 	struct bcmgenet_priv *priv = netdev_priv(dev);
565 
566 	priv->msg_enable = level;
567 }
568 
569 static int bcmgenet_get_coalesce(struct net_device *dev,
570 				 struct ethtool_coalesce *ec)
571 {
572 	struct bcmgenet_priv *priv = netdev_priv(dev);
573 
574 	ec->tx_max_coalesced_frames =
575 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576 					 DMA_MBUF_DONE_THRESH);
577 	ec->rx_max_coalesced_frames =
578 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579 					 DMA_MBUF_DONE_THRESH);
580 	ec->rx_coalesce_usecs =
581 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582 
583 	return 0;
584 }
585 
586 static int bcmgenet_set_coalesce(struct net_device *dev,
587 				 struct ethtool_coalesce *ec)
588 {
589 	struct bcmgenet_priv *priv = netdev_priv(dev);
590 	unsigned int i;
591 	u32 reg;
592 
593 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
594 	 * divided by 1024, which yields roughly 8.192us, our maximum value
595 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596 	 */
597 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598 	    ec->tx_max_coalesced_frames == 0 ||
599 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601 		return -EINVAL;
602 
603 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604 		return -EINVAL;
605 
606 	/* GENET TDMA hardware does not support a configurable timeout, but will
607 	 * always generate an interrupt either after MBDONE packets have been
608 	 * transmitted, or when the ring is emtpy.
609 	 */
610 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
612 		return -EOPNOTSUPP;
613 
614 	/* Program all TX queues with the same values, as there is no
615 	 * ethtool knob to do coalescing on a per-queue basis
616 	 */
617 	for (i = 0; i < priv->hw_params->tx_queues; i++)
618 		bcmgenet_tdma_ring_writel(priv, i,
619 					  ec->tx_max_coalesced_frames,
620 					  DMA_MBUF_DONE_THRESH);
621 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
622 				  ec->tx_max_coalesced_frames,
623 				  DMA_MBUF_DONE_THRESH);
624 
625 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
626 		bcmgenet_rdma_ring_writel(priv, i,
627 					  ec->rx_max_coalesced_frames,
628 					  DMA_MBUF_DONE_THRESH);
629 
630 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
631 		reg &= ~DMA_TIMEOUT_MASK;
632 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
633 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
634 	}
635 
636 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
637 				  ec->rx_max_coalesced_frames,
638 				  DMA_MBUF_DONE_THRESH);
639 
640 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
641 	reg &= ~DMA_TIMEOUT_MASK;
642 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
643 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
644 
645 	return 0;
646 }
647 
648 /* standard ethtool support functions. */
649 enum bcmgenet_stat_type {
650 	BCMGENET_STAT_NETDEV = -1,
651 	BCMGENET_STAT_MIB_RX,
652 	BCMGENET_STAT_MIB_TX,
653 	BCMGENET_STAT_RUNT,
654 	BCMGENET_STAT_MISC,
655 	BCMGENET_STAT_SOFT,
656 };
657 
658 struct bcmgenet_stats {
659 	char stat_string[ETH_GSTRING_LEN];
660 	int stat_sizeof;
661 	int stat_offset;
662 	enum bcmgenet_stat_type type;
663 	/* reg offset from UMAC base for misc counters */
664 	u16 reg_offset;
665 };
666 
667 #define STAT_NETDEV(m) { \
668 	.stat_string = __stringify(m), \
669 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
670 	.stat_offset = offsetof(struct net_device_stats, m), \
671 	.type = BCMGENET_STAT_NETDEV, \
672 }
673 
674 #define STAT_GENET_MIB(str, m, _type) { \
675 	.stat_string = str, \
676 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
677 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
678 	.type = _type, \
679 }
680 
681 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
682 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
683 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
684 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
685 
686 #define STAT_GENET_MISC(str, m, offset) { \
687 	.stat_string = str, \
688 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
689 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
690 	.type = BCMGENET_STAT_MISC, \
691 	.reg_offset = offset, \
692 }
693 
694 
695 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
696  * between the end of TX stats and the beginning of the RX RUNT
697  */
698 #define BCMGENET_STAT_OFFSET	0xc
699 
700 /* Hardware counters must be kept in sync because the order/offset
701  * is important here (order in structure declaration = order in hardware)
702  */
703 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
704 	/* general stats */
705 	STAT_NETDEV(rx_packets),
706 	STAT_NETDEV(tx_packets),
707 	STAT_NETDEV(rx_bytes),
708 	STAT_NETDEV(tx_bytes),
709 	STAT_NETDEV(rx_errors),
710 	STAT_NETDEV(tx_errors),
711 	STAT_NETDEV(rx_dropped),
712 	STAT_NETDEV(tx_dropped),
713 	STAT_NETDEV(multicast),
714 	/* UniMAC RSV counters */
715 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
716 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
717 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
718 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
719 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
720 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
721 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
722 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
723 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
724 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
725 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
726 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
727 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
728 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
729 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
730 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
731 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
732 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
733 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
734 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
735 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
736 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
737 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
738 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
739 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
740 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
741 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
742 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
743 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
744 	/* UniMAC TSV counters */
745 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
746 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
747 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
748 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
749 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
750 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
751 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
752 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
753 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
754 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
755 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
756 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
757 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
758 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
759 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
760 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
761 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
762 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
763 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
764 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
765 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
766 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
767 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
768 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
769 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
770 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
771 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
772 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
773 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
774 	/* UniMAC RUNT counters */
775 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
776 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
777 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
778 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
779 	/* Misc UniMAC counters */
780 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
781 			UMAC_RBUF_OVFL_CNT),
782 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
783 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
784 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
785 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
786 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
787 };
788 
789 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
790 
791 static void bcmgenet_get_drvinfo(struct net_device *dev,
792 				 struct ethtool_drvinfo *info)
793 {
794 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
795 	strlcpy(info->version, "v2.0", sizeof(info->version));
796 }
797 
798 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
799 {
800 	switch (string_set) {
801 	case ETH_SS_STATS:
802 		return BCMGENET_STATS_LEN;
803 	default:
804 		return -EOPNOTSUPP;
805 	}
806 }
807 
808 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
809 				 u8 *data)
810 {
811 	int i;
812 
813 	switch (stringset) {
814 	case ETH_SS_STATS:
815 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
816 			memcpy(data + i * ETH_GSTRING_LEN,
817 			       bcmgenet_gstrings_stats[i].stat_string,
818 			       ETH_GSTRING_LEN);
819 		}
820 		break;
821 	}
822 }
823 
824 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
825 {
826 	int i, j = 0;
827 
828 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
829 		const struct bcmgenet_stats *s;
830 		u8 offset = 0;
831 		u32 val = 0;
832 		char *p;
833 
834 		s = &bcmgenet_gstrings_stats[i];
835 		switch (s->type) {
836 		case BCMGENET_STAT_NETDEV:
837 		case BCMGENET_STAT_SOFT:
838 			continue;
839 		case BCMGENET_STAT_MIB_RX:
840 		case BCMGENET_STAT_MIB_TX:
841 		case BCMGENET_STAT_RUNT:
842 			if (s->type != BCMGENET_STAT_MIB_RX)
843 				offset = BCMGENET_STAT_OFFSET;
844 			val = bcmgenet_umac_readl(priv,
845 						  UMAC_MIB_START + j + offset);
846 			break;
847 		case BCMGENET_STAT_MISC:
848 			val = bcmgenet_umac_readl(priv, s->reg_offset);
849 			/* clear if overflowed */
850 			if (val == ~0)
851 				bcmgenet_umac_writel(priv, 0, s->reg_offset);
852 			break;
853 		}
854 
855 		j += s->stat_sizeof;
856 		p = (char *)priv + s->stat_offset;
857 		*(u32 *)p = val;
858 	}
859 }
860 
861 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
862 				       struct ethtool_stats *stats,
863 				       u64 *data)
864 {
865 	struct bcmgenet_priv *priv = netdev_priv(dev);
866 	int i;
867 
868 	if (netif_running(dev))
869 		bcmgenet_update_mib_counters(priv);
870 
871 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
872 		const struct bcmgenet_stats *s;
873 		char *p;
874 
875 		s = &bcmgenet_gstrings_stats[i];
876 		if (s->type == BCMGENET_STAT_NETDEV)
877 			p = (char *)&dev->stats;
878 		else
879 			p = (char *)priv;
880 		p += s->stat_offset;
881 		if (sizeof(unsigned long) != sizeof(u32) &&
882 		    s->stat_sizeof == sizeof(unsigned long))
883 			data[i] = *(unsigned long *)p;
884 		else
885 			data[i] = *(u32 *)p;
886 	}
887 }
888 
889 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
890 {
891 	struct bcmgenet_priv *priv = netdev_priv(dev);
892 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
893 	u32 reg;
894 
895 	if (enable && !priv->clk_eee_enabled) {
896 		clk_prepare_enable(priv->clk_eee);
897 		priv->clk_eee_enabled = true;
898 	}
899 
900 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
901 	if (enable)
902 		reg |= EEE_EN;
903 	else
904 		reg &= ~EEE_EN;
905 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
906 
907 	/* Enable EEE and switch to a 27Mhz clock automatically */
908 	reg = __raw_readl(priv->base + off);
909 	if (enable)
910 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
911 	else
912 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
913 	__raw_writel(reg, priv->base + off);
914 
915 	/* Do the same for thing for RBUF */
916 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
917 	if (enable)
918 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
919 	else
920 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
921 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
922 
923 	if (!enable && priv->clk_eee_enabled) {
924 		clk_disable_unprepare(priv->clk_eee);
925 		priv->clk_eee_enabled = false;
926 	}
927 
928 	priv->eee.eee_enabled = enable;
929 	priv->eee.eee_active = enable;
930 }
931 
932 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
933 {
934 	struct bcmgenet_priv *priv = netdev_priv(dev);
935 	struct ethtool_eee *p = &priv->eee;
936 
937 	if (GENET_IS_V1(priv))
938 		return -EOPNOTSUPP;
939 
940 	e->eee_enabled = p->eee_enabled;
941 	e->eee_active = p->eee_active;
942 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
943 
944 	return phy_ethtool_get_eee(priv->phydev, e);
945 }
946 
947 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
948 {
949 	struct bcmgenet_priv *priv = netdev_priv(dev);
950 	struct ethtool_eee *p = &priv->eee;
951 	int ret = 0;
952 
953 	if (GENET_IS_V1(priv))
954 		return -EOPNOTSUPP;
955 
956 	p->eee_enabled = e->eee_enabled;
957 
958 	if (!p->eee_enabled) {
959 		bcmgenet_eee_enable_set(dev, false);
960 	} else {
961 		ret = phy_init_eee(priv->phydev, 0);
962 		if (ret) {
963 			netif_err(priv, hw, dev, "EEE initialization failed\n");
964 			return ret;
965 		}
966 
967 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
968 		bcmgenet_eee_enable_set(dev, true);
969 	}
970 
971 	return phy_ethtool_set_eee(priv->phydev, e);
972 }
973 
974 static int bcmgenet_nway_reset(struct net_device *dev)
975 {
976 	struct bcmgenet_priv *priv = netdev_priv(dev);
977 
978 	return genphy_restart_aneg(priv->phydev);
979 }
980 
981 /* standard ethtool support functions. */
982 static struct ethtool_ops bcmgenet_ethtool_ops = {
983 	.get_strings		= bcmgenet_get_strings,
984 	.get_sset_count		= bcmgenet_get_sset_count,
985 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
986 	.get_settings		= bcmgenet_get_settings,
987 	.set_settings		= bcmgenet_set_settings,
988 	.get_drvinfo		= bcmgenet_get_drvinfo,
989 	.get_link		= ethtool_op_get_link,
990 	.get_msglevel		= bcmgenet_get_msglevel,
991 	.set_msglevel		= bcmgenet_set_msglevel,
992 	.get_wol		= bcmgenet_get_wol,
993 	.set_wol		= bcmgenet_set_wol,
994 	.get_eee		= bcmgenet_get_eee,
995 	.set_eee		= bcmgenet_set_eee,
996 	.nway_reset		= bcmgenet_nway_reset,
997 	.get_coalesce		= bcmgenet_get_coalesce,
998 	.set_coalesce		= bcmgenet_set_coalesce,
999 };
1000 
1001 /* Power down the unimac, based on mode. */
1002 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1003 				enum bcmgenet_power_mode mode)
1004 {
1005 	int ret = 0;
1006 	u32 reg;
1007 
1008 	switch (mode) {
1009 	case GENET_POWER_CABLE_SENSE:
1010 		phy_detach(priv->phydev);
1011 		break;
1012 
1013 	case GENET_POWER_WOL_MAGIC:
1014 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1015 		break;
1016 
1017 	case GENET_POWER_PASSIVE:
1018 		/* Power down LED */
1019 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1020 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1021 			reg |= (EXT_PWR_DOWN_PHY |
1022 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1023 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1024 
1025 			bcmgenet_phy_power_set(priv->dev, false);
1026 		}
1027 		break;
1028 	default:
1029 		break;
1030 	}
1031 
1032 	return 0;
1033 }
1034 
1035 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1036 			      enum bcmgenet_power_mode mode)
1037 {
1038 	u32 reg;
1039 
1040 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1041 		return;
1042 
1043 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1044 
1045 	switch (mode) {
1046 	case GENET_POWER_PASSIVE:
1047 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1048 				EXT_PWR_DOWN_BIAS);
1049 		/* fallthrough */
1050 	case GENET_POWER_CABLE_SENSE:
1051 		/* enable APD */
1052 		reg |= EXT_PWR_DN_EN_LD;
1053 		break;
1054 	case GENET_POWER_WOL_MAGIC:
1055 		bcmgenet_wol_power_up_cfg(priv, mode);
1056 		return;
1057 	default:
1058 		break;
1059 	}
1060 
1061 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1062 	if (mode == GENET_POWER_PASSIVE) {
1063 		bcmgenet_phy_power_set(priv->dev, true);
1064 		bcmgenet_mii_reset(priv->dev);
1065 	}
1066 }
1067 
1068 /* ioctl handle special commands that are not present in ethtool. */
1069 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1070 {
1071 	struct bcmgenet_priv *priv = netdev_priv(dev);
1072 	int val = 0;
1073 
1074 	if (!netif_running(dev))
1075 		return -EINVAL;
1076 
1077 	switch (cmd) {
1078 	case SIOCGMIIPHY:
1079 	case SIOCGMIIREG:
1080 	case SIOCSMIIREG:
1081 		if (!priv->phydev)
1082 			val = -ENODEV;
1083 		else
1084 			val = phy_mii_ioctl(priv->phydev, rq, cmd);
1085 		break;
1086 
1087 	default:
1088 		val = -EINVAL;
1089 		break;
1090 	}
1091 
1092 	return val;
1093 }
1094 
1095 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1096 					 struct bcmgenet_tx_ring *ring)
1097 {
1098 	struct enet_cb *tx_cb_ptr;
1099 
1100 	tx_cb_ptr = ring->cbs;
1101 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1102 
1103 	/* Advancing local write pointer */
1104 	if (ring->write_ptr == ring->end_ptr)
1105 		ring->write_ptr = ring->cb_ptr;
1106 	else
1107 		ring->write_ptr++;
1108 
1109 	return tx_cb_ptr;
1110 }
1111 
1112 /* Simple helper to free a control block's resources */
1113 static void bcmgenet_free_cb(struct enet_cb *cb)
1114 {
1115 	dev_kfree_skb_any(cb->skb);
1116 	cb->skb = NULL;
1117 	dma_unmap_addr_set(cb, dma_addr, 0);
1118 }
1119 
1120 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1121 {
1122 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1123 				 INTRL2_CPU_MASK_SET);
1124 }
1125 
1126 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1127 {
1128 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1129 				 INTRL2_CPU_MASK_CLEAR);
1130 }
1131 
1132 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1133 {
1134 	bcmgenet_intrl2_1_writel(ring->priv,
1135 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1136 				 INTRL2_CPU_MASK_SET);
1137 }
1138 
1139 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1140 {
1141 	bcmgenet_intrl2_1_writel(ring->priv,
1142 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1143 				 INTRL2_CPU_MASK_CLEAR);
1144 }
1145 
1146 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1147 {
1148 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1149 				 INTRL2_CPU_MASK_SET);
1150 }
1151 
1152 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1153 {
1154 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1155 				 INTRL2_CPU_MASK_CLEAR);
1156 }
1157 
1158 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1159 {
1160 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1161 				 INTRL2_CPU_MASK_CLEAR);
1162 }
1163 
1164 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1165 {
1166 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1167 				 INTRL2_CPU_MASK_SET);
1168 }
1169 
1170 /* Unlocked version of the reclaim routine */
1171 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1172 					  struct bcmgenet_tx_ring *ring)
1173 {
1174 	struct bcmgenet_priv *priv = netdev_priv(dev);
1175 	struct enet_cb *tx_cb_ptr;
1176 	struct netdev_queue *txq;
1177 	unsigned int pkts_compl = 0;
1178 	unsigned int bytes_compl = 0;
1179 	unsigned int c_index;
1180 	unsigned int txbds_ready;
1181 	unsigned int txbds_processed = 0;
1182 
1183 	/* Compute how many buffers are transmitted since last xmit call */
1184 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1185 	c_index &= DMA_C_INDEX_MASK;
1186 
1187 	if (likely(c_index >= ring->c_index))
1188 		txbds_ready = c_index - ring->c_index;
1189 	else
1190 		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1191 
1192 	netif_dbg(priv, tx_done, dev,
1193 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1194 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1195 
1196 	/* Reclaim transmitted buffers */
1197 	while (txbds_processed < txbds_ready) {
1198 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1199 		if (tx_cb_ptr->skb) {
1200 			pkts_compl++;
1201 			bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1202 			dma_unmap_single(&dev->dev,
1203 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1204 					 dma_unmap_len(tx_cb_ptr, dma_len),
1205 					 DMA_TO_DEVICE);
1206 			bcmgenet_free_cb(tx_cb_ptr);
1207 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1208 			dma_unmap_page(&dev->dev,
1209 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1210 				       dma_unmap_len(tx_cb_ptr, dma_len),
1211 				       DMA_TO_DEVICE);
1212 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1213 		}
1214 
1215 		txbds_processed++;
1216 		if (likely(ring->clean_ptr < ring->end_ptr))
1217 			ring->clean_ptr++;
1218 		else
1219 			ring->clean_ptr = ring->cb_ptr;
1220 	}
1221 
1222 	ring->free_bds += txbds_processed;
1223 	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1224 
1225 	dev->stats.tx_packets += pkts_compl;
1226 	dev->stats.tx_bytes += bytes_compl;
1227 
1228 	txq = netdev_get_tx_queue(dev, ring->queue);
1229 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
1230 
1231 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1232 		if (netif_tx_queue_stopped(txq))
1233 			netif_tx_wake_queue(txq);
1234 	}
1235 
1236 	return pkts_compl;
1237 }
1238 
1239 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1240 				struct bcmgenet_tx_ring *ring)
1241 {
1242 	unsigned int released;
1243 	unsigned long flags;
1244 
1245 	spin_lock_irqsave(&ring->lock, flags);
1246 	released = __bcmgenet_tx_reclaim(dev, ring);
1247 	spin_unlock_irqrestore(&ring->lock, flags);
1248 
1249 	return released;
1250 }
1251 
1252 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1253 {
1254 	struct bcmgenet_tx_ring *ring =
1255 		container_of(napi, struct bcmgenet_tx_ring, napi);
1256 	unsigned int work_done = 0;
1257 
1258 	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1259 
1260 	if (work_done == 0) {
1261 		napi_complete(napi);
1262 		ring->int_enable(ring);
1263 
1264 		return 0;
1265 	}
1266 
1267 	return budget;
1268 }
1269 
1270 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1271 {
1272 	struct bcmgenet_priv *priv = netdev_priv(dev);
1273 	int i;
1274 
1275 	if (netif_is_multiqueue(dev)) {
1276 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1277 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1278 	}
1279 
1280 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1281 }
1282 
1283 /* Transmits a single SKB (either head of a fragment or a single SKB)
1284  * caller must hold priv->lock
1285  */
1286 static int bcmgenet_xmit_single(struct net_device *dev,
1287 				struct sk_buff *skb,
1288 				u16 dma_desc_flags,
1289 				struct bcmgenet_tx_ring *ring)
1290 {
1291 	struct bcmgenet_priv *priv = netdev_priv(dev);
1292 	struct device *kdev = &priv->pdev->dev;
1293 	struct enet_cb *tx_cb_ptr;
1294 	unsigned int skb_len;
1295 	dma_addr_t mapping;
1296 	u32 length_status;
1297 	int ret;
1298 
1299 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1300 
1301 	if (unlikely(!tx_cb_ptr))
1302 		BUG();
1303 
1304 	tx_cb_ptr->skb = skb;
1305 
1306 	skb_len = skb_headlen(skb);
1307 
1308 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1309 	ret = dma_mapping_error(kdev, mapping);
1310 	if (ret) {
1311 		priv->mib.tx_dma_failed++;
1312 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1313 		dev_kfree_skb(skb);
1314 		return ret;
1315 	}
1316 
1317 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1318 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1319 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1320 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1321 			DMA_TX_APPEND_CRC;
1322 
1323 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1324 		length_status |= DMA_TX_DO_CSUM;
1325 
1326 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1327 
1328 	return 0;
1329 }
1330 
1331 /* Transmit a SKB fragment */
1332 static int bcmgenet_xmit_frag(struct net_device *dev,
1333 			      skb_frag_t *frag,
1334 			      u16 dma_desc_flags,
1335 			      struct bcmgenet_tx_ring *ring)
1336 {
1337 	struct bcmgenet_priv *priv = netdev_priv(dev);
1338 	struct device *kdev = &priv->pdev->dev;
1339 	struct enet_cb *tx_cb_ptr;
1340 	unsigned int frag_size;
1341 	dma_addr_t mapping;
1342 	int ret;
1343 
1344 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1345 
1346 	if (unlikely(!tx_cb_ptr))
1347 		BUG();
1348 
1349 	tx_cb_ptr->skb = NULL;
1350 
1351 	frag_size = skb_frag_size(frag);
1352 
1353 	mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1354 	ret = dma_mapping_error(kdev, mapping);
1355 	if (ret) {
1356 		priv->mib.tx_dma_failed++;
1357 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1358 			  __func__);
1359 		return ret;
1360 	}
1361 
1362 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1363 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1364 
1365 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1366 		    (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1367 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1368 
1369 	return 0;
1370 }
1371 
1372 /* Reallocate the SKB to put enough headroom in front of it and insert
1373  * the transmit checksum offsets in the descriptors
1374  */
1375 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1376 					    struct sk_buff *skb)
1377 {
1378 	struct status_64 *status = NULL;
1379 	struct sk_buff *new_skb;
1380 	u16 offset;
1381 	u8 ip_proto;
1382 	u16 ip_ver;
1383 	u32 tx_csum_info;
1384 
1385 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1386 		/* If 64 byte status block enabled, must make sure skb has
1387 		 * enough headroom for us to insert 64B status block.
1388 		 */
1389 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1390 		dev_kfree_skb(skb);
1391 		if (!new_skb) {
1392 			dev->stats.tx_dropped++;
1393 			return NULL;
1394 		}
1395 		skb = new_skb;
1396 	}
1397 
1398 	skb_push(skb, sizeof(*status));
1399 	status = (struct status_64 *)skb->data;
1400 
1401 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1402 		ip_ver = htons(skb->protocol);
1403 		switch (ip_ver) {
1404 		case ETH_P_IP:
1405 			ip_proto = ip_hdr(skb)->protocol;
1406 			break;
1407 		case ETH_P_IPV6:
1408 			ip_proto = ipv6_hdr(skb)->nexthdr;
1409 			break;
1410 		default:
1411 			return skb;
1412 		}
1413 
1414 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1415 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1416 				(offset + skb->csum_offset);
1417 
1418 		/* Set the length valid bit for TCP and UDP and just set
1419 		 * the special UDP flag for IPv4, else just set to 0.
1420 		 */
1421 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1422 			tx_csum_info |= STATUS_TX_CSUM_LV;
1423 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1424 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1425 		} else {
1426 			tx_csum_info = 0;
1427 		}
1428 
1429 		status->tx_csum_info = tx_csum_info;
1430 	}
1431 
1432 	return skb;
1433 }
1434 
1435 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1436 {
1437 	struct bcmgenet_priv *priv = netdev_priv(dev);
1438 	struct bcmgenet_tx_ring *ring = NULL;
1439 	struct netdev_queue *txq;
1440 	unsigned long flags = 0;
1441 	int nr_frags, index;
1442 	u16 dma_desc_flags;
1443 	int ret;
1444 	int i;
1445 
1446 	index = skb_get_queue_mapping(skb);
1447 	/* Mapping strategy:
1448 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1449 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1450 	 * queue_mapping = 2, goes to ring 1.
1451 	 * queue_mapping = 3, goes to ring 2.
1452 	 * queue_mapping = 4, goes to ring 3.
1453 	 */
1454 	if (index == 0)
1455 		index = DESC_INDEX;
1456 	else
1457 		index -= 1;
1458 
1459 	ring = &priv->tx_rings[index];
1460 	txq = netdev_get_tx_queue(dev, ring->queue);
1461 
1462 	nr_frags = skb_shinfo(skb)->nr_frags;
1463 
1464 	spin_lock_irqsave(&ring->lock, flags);
1465 	if (ring->free_bds <= (nr_frags + 1)) {
1466 		if (!netif_tx_queue_stopped(txq)) {
1467 			netif_tx_stop_queue(txq);
1468 			netdev_err(dev,
1469 				   "%s: tx ring %d full when queue %d awake\n",
1470 				   __func__, index, ring->queue);
1471 		}
1472 		ret = NETDEV_TX_BUSY;
1473 		goto out;
1474 	}
1475 
1476 	if (skb_padto(skb, ETH_ZLEN)) {
1477 		ret = NETDEV_TX_OK;
1478 		goto out;
1479 	}
1480 
1481 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1482 	 * by transmit checksum offload
1483 	 */
1484 	GENET_CB(skb)->bytes_sent = skb->len;
1485 
1486 	/* set the SKB transmit checksum */
1487 	if (priv->desc_64b_en) {
1488 		skb = bcmgenet_put_tx_csum(dev, skb);
1489 		if (!skb) {
1490 			ret = NETDEV_TX_OK;
1491 			goto out;
1492 		}
1493 	}
1494 
1495 	dma_desc_flags = DMA_SOP;
1496 	if (nr_frags == 0)
1497 		dma_desc_flags |= DMA_EOP;
1498 
1499 	/* Transmit single SKB or head of fragment list */
1500 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1501 	if (ret) {
1502 		ret = NETDEV_TX_OK;
1503 		goto out;
1504 	}
1505 
1506 	/* xmit fragment */
1507 	for (i = 0; i < nr_frags; i++) {
1508 		ret = bcmgenet_xmit_frag(dev,
1509 					 &skb_shinfo(skb)->frags[i],
1510 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1511 					 ring);
1512 		if (ret) {
1513 			ret = NETDEV_TX_OK;
1514 			goto out;
1515 		}
1516 	}
1517 
1518 	skb_tx_timestamp(skb);
1519 
1520 	/* Decrement total BD count and advance our write pointer */
1521 	ring->free_bds -= nr_frags + 1;
1522 	ring->prod_index += nr_frags + 1;
1523 	ring->prod_index &= DMA_P_INDEX_MASK;
1524 
1525 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1526 
1527 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1528 		netif_tx_stop_queue(txq);
1529 
1530 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1531 		/* Packets are ready, update producer index */
1532 		bcmgenet_tdma_ring_writel(priv, ring->index,
1533 					  ring->prod_index, TDMA_PROD_INDEX);
1534 out:
1535 	spin_unlock_irqrestore(&ring->lock, flags);
1536 
1537 	return ret;
1538 }
1539 
1540 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1541 					  struct enet_cb *cb)
1542 {
1543 	struct device *kdev = &priv->pdev->dev;
1544 	struct sk_buff *skb;
1545 	struct sk_buff *rx_skb;
1546 	dma_addr_t mapping;
1547 
1548 	/* Allocate a new Rx skb */
1549 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1550 	if (!skb) {
1551 		priv->mib.alloc_rx_buff_failed++;
1552 		netif_err(priv, rx_err, priv->dev,
1553 			  "%s: Rx skb allocation failed\n", __func__);
1554 		return NULL;
1555 	}
1556 
1557 	/* DMA-map the new Rx skb */
1558 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1559 				 DMA_FROM_DEVICE);
1560 	if (dma_mapping_error(kdev, mapping)) {
1561 		priv->mib.rx_dma_failed++;
1562 		dev_kfree_skb_any(skb);
1563 		netif_err(priv, rx_err, priv->dev,
1564 			  "%s: Rx skb DMA mapping failed\n", __func__);
1565 		return NULL;
1566 	}
1567 
1568 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1569 	rx_skb = cb->skb;
1570 	if (likely(rx_skb))
1571 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1572 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1573 
1574 	/* Put the new Rx skb on the ring */
1575 	cb->skb = skb;
1576 	dma_unmap_addr_set(cb, dma_addr, mapping);
1577 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1578 
1579 	/* Return the current Rx skb to caller */
1580 	return rx_skb;
1581 }
1582 
1583 /* bcmgenet_desc_rx - descriptor based rx process.
1584  * this could be called from bottom half, or from NAPI polling method.
1585  */
1586 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1587 				     unsigned int budget)
1588 {
1589 	struct bcmgenet_priv *priv = ring->priv;
1590 	struct net_device *dev = priv->dev;
1591 	struct enet_cb *cb;
1592 	struct sk_buff *skb;
1593 	u32 dma_length_status;
1594 	unsigned long dma_flag;
1595 	int len;
1596 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1597 	unsigned int p_index;
1598 	unsigned int discards;
1599 	unsigned int chksum_ok = 0;
1600 
1601 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1602 
1603 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1604 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1605 	if (discards > ring->old_discards) {
1606 		discards = discards - ring->old_discards;
1607 		dev->stats.rx_missed_errors += discards;
1608 		dev->stats.rx_errors += discards;
1609 		ring->old_discards += discards;
1610 
1611 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1612 		if (ring->old_discards >= 0xC000) {
1613 			ring->old_discards = 0;
1614 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1615 						  RDMA_PROD_INDEX);
1616 		}
1617 	}
1618 
1619 	p_index &= DMA_P_INDEX_MASK;
1620 
1621 	if (likely(p_index >= ring->c_index))
1622 		rxpkttoprocess = p_index - ring->c_index;
1623 	else
1624 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1625 				 p_index;
1626 
1627 	netif_dbg(priv, rx_status, dev,
1628 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1629 
1630 	while ((rxpktprocessed < rxpkttoprocess) &&
1631 	       (rxpktprocessed < budget)) {
1632 		cb = &priv->rx_cbs[ring->read_ptr];
1633 		skb = bcmgenet_rx_refill(priv, cb);
1634 
1635 		if (unlikely(!skb)) {
1636 			dev->stats.rx_dropped++;
1637 			goto next;
1638 		}
1639 
1640 		if (!priv->desc_64b_en) {
1641 			dma_length_status =
1642 				dmadesc_get_length_status(priv, cb->bd_addr);
1643 		} else {
1644 			struct status_64 *status;
1645 
1646 			status = (struct status_64 *)skb->data;
1647 			dma_length_status = status->length_status;
1648 		}
1649 
1650 		/* DMA flags and length are still valid no matter how
1651 		 * we got the Receive Status Vector (64B RSB or register)
1652 		 */
1653 		dma_flag = dma_length_status & 0xffff;
1654 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1655 
1656 		netif_dbg(priv, rx_status, dev,
1657 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1658 			  __func__, p_index, ring->c_index,
1659 			  ring->read_ptr, dma_length_status);
1660 
1661 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1662 			netif_err(priv, rx_status, dev,
1663 				  "dropping fragmented packet!\n");
1664 			dev->stats.rx_errors++;
1665 			dev_kfree_skb_any(skb);
1666 			goto next;
1667 		}
1668 
1669 		/* report errors */
1670 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1671 						DMA_RX_OV |
1672 						DMA_RX_NO |
1673 						DMA_RX_LG |
1674 						DMA_RX_RXER))) {
1675 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1676 				  (unsigned int)dma_flag);
1677 			if (dma_flag & DMA_RX_CRC_ERROR)
1678 				dev->stats.rx_crc_errors++;
1679 			if (dma_flag & DMA_RX_OV)
1680 				dev->stats.rx_over_errors++;
1681 			if (dma_flag & DMA_RX_NO)
1682 				dev->stats.rx_frame_errors++;
1683 			if (dma_flag & DMA_RX_LG)
1684 				dev->stats.rx_length_errors++;
1685 			dev->stats.rx_errors++;
1686 			dev_kfree_skb_any(skb);
1687 			goto next;
1688 		} /* error packet */
1689 
1690 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1691 			     priv->desc_rxchk_en;
1692 
1693 		skb_put(skb, len);
1694 		if (priv->desc_64b_en) {
1695 			skb_pull(skb, 64);
1696 			len -= 64;
1697 		}
1698 
1699 		if (likely(chksum_ok))
1700 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1701 
1702 		/* remove hardware 2bytes added for IP alignment */
1703 		skb_pull(skb, 2);
1704 		len -= 2;
1705 
1706 		if (priv->crc_fwd_en) {
1707 			skb_trim(skb, len - ETH_FCS_LEN);
1708 			len -= ETH_FCS_LEN;
1709 		}
1710 
1711 		/*Finish setting up the received SKB and send it to the kernel*/
1712 		skb->protocol = eth_type_trans(skb, priv->dev);
1713 		dev->stats.rx_packets++;
1714 		dev->stats.rx_bytes += len;
1715 		if (dma_flag & DMA_RX_MULT)
1716 			dev->stats.multicast++;
1717 
1718 		/* Notify kernel */
1719 		napi_gro_receive(&ring->napi, skb);
1720 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1721 
1722 next:
1723 		rxpktprocessed++;
1724 		if (likely(ring->read_ptr < ring->end_ptr))
1725 			ring->read_ptr++;
1726 		else
1727 			ring->read_ptr = ring->cb_ptr;
1728 
1729 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1730 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1731 	}
1732 
1733 	return rxpktprocessed;
1734 }
1735 
1736 /* Rx NAPI polling method */
1737 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1738 {
1739 	struct bcmgenet_rx_ring *ring = container_of(napi,
1740 			struct bcmgenet_rx_ring, napi);
1741 	unsigned int work_done;
1742 
1743 	work_done = bcmgenet_desc_rx(ring, budget);
1744 
1745 	if (work_done < budget) {
1746 		napi_complete_done(napi, work_done);
1747 		ring->int_enable(ring);
1748 	}
1749 
1750 	return work_done;
1751 }
1752 
1753 /* Assign skb to RX DMA descriptor. */
1754 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1755 				     struct bcmgenet_rx_ring *ring)
1756 {
1757 	struct enet_cb *cb;
1758 	struct sk_buff *skb;
1759 	int i;
1760 
1761 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1762 
1763 	/* loop here for each buffer needing assign */
1764 	for (i = 0; i < ring->size; i++) {
1765 		cb = ring->cbs + i;
1766 		skb = bcmgenet_rx_refill(priv, cb);
1767 		if (skb)
1768 			dev_kfree_skb_any(skb);
1769 		if (!cb->skb)
1770 			return -ENOMEM;
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1777 {
1778 	struct enet_cb *cb;
1779 	int i;
1780 
1781 	for (i = 0; i < priv->num_rx_bds; i++) {
1782 		cb = &priv->rx_cbs[i];
1783 
1784 		if (dma_unmap_addr(cb, dma_addr)) {
1785 			dma_unmap_single(&priv->dev->dev,
1786 					 dma_unmap_addr(cb, dma_addr),
1787 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1788 			dma_unmap_addr_set(cb, dma_addr, 0);
1789 		}
1790 
1791 		if (cb->skb)
1792 			bcmgenet_free_cb(cb);
1793 	}
1794 }
1795 
1796 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1797 {
1798 	u32 reg;
1799 
1800 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1801 	if (enable)
1802 		reg |= mask;
1803 	else
1804 		reg &= ~mask;
1805 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1806 
1807 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1808 	 * to be processed
1809 	 */
1810 	if (enable == 0)
1811 		usleep_range(1000, 2000);
1812 }
1813 
1814 static int reset_umac(struct bcmgenet_priv *priv)
1815 {
1816 	struct device *kdev = &priv->pdev->dev;
1817 	unsigned int timeout = 0;
1818 	u32 reg;
1819 
1820 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1821 	bcmgenet_rbuf_ctrl_set(priv, 0);
1822 	udelay(10);
1823 
1824 	/* disable MAC while updating its registers */
1825 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1826 
1827 	/* issue soft reset, wait for it to complete */
1828 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1829 	while (timeout++ < 1000) {
1830 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1831 		if (!(reg & CMD_SW_RESET))
1832 			return 0;
1833 
1834 		udelay(1);
1835 	}
1836 
1837 	if (timeout == 1000) {
1838 		dev_err(kdev,
1839 			"timeout waiting for MAC to come out of reset\n");
1840 		return -ETIMEDOUT;
1841 	}
1842 
1843 	return 0;
1844 }
1845 
1846 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1847 {
1848 	/* Mask all interrupts.*/
1849 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1850 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1851 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1852 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1853 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1854 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1855 }
1856 
1857 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1858 {
1859 	u32 int0_enable = 0;
1860 
1861 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1862 	 * and MoCA PHY
1863 	 */
1864 	if (priv->internal_phy) {
1865 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1866 	} else if (priv->ext_phy) {
1867 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1868 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1869 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1870 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1871 	}
1872 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1873 }
1874 
1875 static int init_umac(struct bcmgenet_priv *priv)
1876 {
1877 	struct device *kdev = &priv->pdev->dev;
1878 	int ret;
1879 	u32 reg;
1880 	u32 int0_enable = 0;
1881 	u32 int1_enable = 0;
1882 	int i;
1883 
1884 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1885 
1886 	ret = reset_umac(priv);
1887 	if (ret)
1888 		return ret;
1889 
1890 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1891 	/* clear tx/rx counter */
1892 	bcmgenet_umac_writel(priv,
1893 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1894 			     UMAC_MIB_CTRL);
1895 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1896 
1897 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1898 
1899 	/* init rx registers, enable ip header optimization */
1900 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1901 	reg |= RBUF_ALIGN_2B;
1902 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1903 
1904 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1905 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1906 
1907 	bcmgenet_intr_disable(priv);
1908 
1909 	/* Enable Rx default queue 16 interrupts */
1910 	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1911 
1912 	/* Enable Tx default queue 16 interrupts */
1913 	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1914 
1915 	/* Configure backpressure vectors for MoCA */
1916 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1917 		reg = bcmgenet_bp_mc_get(priv);
1918 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1919 
1920 		/* bp_mask: back pressure mask */
1921 		if (netif_is_multiqueue(priv->dev))
1922 			reg |= priv->hw_params->bp_in_mask;
1923 		else
1924 			reg &= ~priv->hw_params->bp_in_mask;
1925 		bcmgenet_bp_mc_set(priv, reg);
1926 	}
1927 
1928 	/* Enable MDIO interrupts on GENET v3+ */
1929 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1930 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1931 
1932 	/* Enable Rx priority queue interrupts */
1933 	for (i = 0; i < priv->hw_params->rx_queues; ++i)
1934 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1935 
1936 	/* Enable Tx priority queue interrupts */
1937 	for (i = 0; i < priv->hw_params->tx_queues; ++i)
1938 		int1_enable |= (1 << i);
1939 
1940 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1941 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1942 
1943 	/* Enable rx/tx engine.*/
1944 	dev_dbg(kdev, "done init umac\n");
1945 
1946 	return 0;
1947 }
1948 
1949 /* Initialize a Tx ring along with corresponding hardware registers */
1950 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1951 				  unsigned int index, unsigned int size,
1952 				  unsigned int start_ptr, unsigned int end_ptr)
1953 {
1954 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1955 	u32 words_per_bd = WORDS_PER_BD(priv);
1956 	u32 flow_period_val = 0;
1957 
1958 	spin_lock_init(&ring->lock);
1959 	ring->priv = priv;
1960 	ring->index = index;
1961 	if (index == DESC_INDEX) {
1962 		ring->queue = 0;
1963 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1964 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1965 	} else {
1966 		ring->queue = index + 1;
1967 		ring->int_enable = bcmgenet_tx_ring_int_enable;
1968 		ring->int_disable = bcmgenet_tx_ring_int_disable;
1969 	}
1970 	ring->cbs = priv->tx_cbs + start_ptr;
1971 	ring->size = size;
1972 	ring->clean_ptr = start_ptr;
1973 	ring->c_index = 0;
1974 	ring->free_bds = size;
1975 	ring->write_ptr = start_ptr;
1976 	ring->cb_ptr = start_ptr;
1977 	ring->end_ptr = end_ptr - 1;
1978 	ring->prod_index = 0;
1979 
1980 	/* Set flow period for ring != 16 */
1981 	if (index != DESC_INDEX)
1982 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1983 
1984 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1985 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1986 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1987 	/* Disable rate control for now */
1988 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1989 				  TDMA_FLOW_PERIOD);
1990 	bcmgenet_tdma_ring_writel(priv, index,
1991 				  ((size << DMA_RING_SIZE_SHIFT) |
1992 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1993 
1994 	/* Set start and end address, read and write pointers */
1995 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1996 				  DMA_START_ADDR);
1997 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1998 				  TDMA_READ_PTR);
1999 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
2000 				  TDMA_WRITE_PTR);
2001 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2002 				  DMA_END_ADDR);
2003 }
2004 
2005 /* Initialize a RDMA ring */
2006 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2007 				 unsigned int index, unsigned int size,
2008 				 unsigned int start_ptr, unsigned int end_ptr)
2009 {
2010 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2011 	u32 words_per_bd = WORDS_PER_BD(priv);
2012 	int ret;
2013 
2014 	ring->priv = priv;
2015 	ring->index = index;
2016 	if (index == DESC_INDEX) {
2017 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2018 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2019 	} else {
2020 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2021 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2022 	}
2023 	ring->cbs = priv->rx_cbs + start_ptr;
2024 	ring->size = size;
2025 	ring->c_index = 0;
2026 	ring->read_ptr = start_ptr;
2027 	ring->cb_ptr = start_ptr;
2028 	ring->end_ptr = end_ptr - 1;
2029 
2030 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2031 	if (ret)
2032 		return ret;
2033 
2034 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2035 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2036 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2037 	bcmgenet_rdma_ring_writel(priv, index,
2038 				  ((size << DMA_RING_SIZE_SHIFT) |
2039 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2040 	bcmgenet_rdma_ring_writel(priv, index,
2041 				  (DMA_FC_THRESH_LO <<
2042 				   DMA_XOFF_THRESHOLD_SHIFT) |
2043 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2044 
2045 	/* Set start and end address, read and write pointers */
2046 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2047 				  DMA_START_ADDR);
2048 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2049 				  RDMA_READ_PTR);
2050 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2051 				  RDMA_WRITE_PTR);
2052 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2053 				  DMA_END_ADDR);
2054 
2055 	return ret;
2056 }
2057 
2058 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2059 {
2060 	unsigned int i;
2061 	struct bcmgenet_tx_ring *ring;
2062 
2063 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2064 		ring = &priv->tx_rings[i];
2065 		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2066 	}
2067 
2068 	ring = &priv->tx_rings[DESC_INDEX];
2069 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2070 }
2071 
2072 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2073 {
2074 	unsigned int i;
2075 	struct bcmgenet_tx_ring *ring;
2076 
2077 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2078 		ring = &priv->tx_rings[i];
2079 		napi_enable(&ring->napi);
2080 	}
2081 
2082 	ring = &priv->tx_rings[DESC_INDEX];
2083 	napi_enable(&ring->napi);
2084 }
2085 
2086 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2087 {
2088 	unsigned int i;
2089 	struct bcmgenet_tx_ring *ring;
2090 
2091 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2092 		ring = &priv->tx_rings[i];
2093 		napi_disable(&ring->napi);
2094 	}
2095 
2096 	ring = &priv->tx_rings[DESC_INDEX];
2097 	napi_disable(&ring->napi);
2098 }
2099 
2100 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2101 {
2102 	unsigned int i;
2103 	struct bcmgenet_tx_ring *ring;
2104 
2105 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2106 		ring = &priv->tx_rings[i];
2107 		netif_napi_del(&ring->napi);
2108 	}
2109 
2110 	ring = &priv->tx_rings[DESC_INDEX];
2111 	netif_napi_del(&ring->napi);
2112 }
2113 
2114 /* Initialize Tx queues
2115  *
2116  * Queues 0-3 are priority-based, each one has 32 descriptors,
2117  * with queue 0 being the highest priority queue.
2118  *
2119  * Queue 16 is the default Tx queue with
2120  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2121  *
2122  * The transmit control block pool is then partitioned as follows:
2123  * - Tx queue 0 uses tx_cbs[0..31]
2124  * - Tx queue 1 uses tx_cbs[32..63]
2125  * - Tx queue 2 uses tx_cbs[64..95]
2126  * - Tx queue 3 uses tx_cbs[96..127]
2127  * - Tx queue 16 uses tx_cbs[128..255]
2128  */
2129 static void bcmgenet_init_tx_queues(struct net_device *dev)
2130 {
2131 	struct bcmgenet_priv *priv = netdev_priv(dev);
2132 	u32 i, dma_enable;
2133 	u32 dma_ctrl, ring_cfg;
2134 	u32 dma_priority[3] = {0, 0, 0};
2135 
2136 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2137 	dma_enable = dma_ctrl & DMA_EN;
2138 	dma_ctrl &= ~DMA_EN;
2139 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2140 
2141 	dma_ctrl = 0;
2142 	ring_cfg = 0;
2143 
2144 	/* Enable strict priority arbiter mode */
2145 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2146 
2147 	/* Initialize Tx priority queues */
2148 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2149 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2150 				      i * priv->hw_params->tx_bds_per_q,
2151 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2152 		ring_cfg |= (1 << i);
2153 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2154 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2155 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2156 	}
2157 
2158 	/* Initialize Tx default queue 16 */
2159 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2160 			      priv->hw_params->tx_queues *
2161 			      priv->hw_params->tx_bds_per_q,
2162 			      TOTAL_DESC);
2163 	ring_cfg |= (1 << DESC_INDEX);
2164 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2165 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2166 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2167 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2168 
2169 	/* Set Tx queue priorities */
2170 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2171 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2172 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2173 
2174 	/* Initialize Tx NAPI */
2175 	bcmgenet_init_tx_napi(priv);
2176 
2177 	/* Enable Tx queues */
2178 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2179 
2180 	/* Enable Tx DMA */
2181 	if (dma_enable)
2182 		dma_ctrl |= DMA_EN;
2183 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2184 }
2185 
2186 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2187 {
2188 	unsigned int i;
2189 	struct bcmgenet_rx_ring *ring;
2190 
2191 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2192 		ring = &priv->rx_rings[i];
2193 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2194 	}
2195 
2196 	ring = &priv->rx_rings[DESC_INDEX];
2197 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2198 }
2199 
2200 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2201 {
2202 	unsigned int i;
2203 	struct bcmgenet_rx_ring *ring;
2204 
2205 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2206 		ring = &priv->rx_rings[i];
2207 		napi_enable(&ring->napi);
2208 	}
2209 
2210 	ring = &priv->rx_rings[DESC_INDEX];
2211 	napi_enable(&ring->napi);
2212 }
2213 
2214 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2215 {
2216 	unsigned int i;
2217 	struct bcmgenet_rx_ring *ring;
2218 
2219 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2220 		ring = &priv->rx_rings[i];
2221 		napi_disable(&ring->napi);
2222 	}
2223 
2224 	ring = &priv->rx_rings[DESC_INDEX];
2225 	napi_disable(&ring->napi);
2226 }
2227 
2228 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2229 {
2230 	unsigned int i;
2231 	struct bcmgenet_rx_ring *ring;
2232 
2233 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2234 		ring = &priv->rx_rings[i];
2235 		netif_napi_del(&ring->napi);
2236 	}
2237 
2238 	ring = &priv->rx_rings[DESC_INDEX];
2239 	netif_napi_del(&ring->napi);
2240 }
2241 
2242 /* Initialize Rx queues
2243  *
2244  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2245  * used to direct traffic to these queues.
2246  *
2247  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2248  */
2249 static int bcmgenet_init_rx_queues(struct net_device *dev)
2250 {
2251 	struct bcmgenet_priv *priv = netdev_priv(dev);
2252 	u32 i;
2253 	u32 dma_enable;
2254 	u32 dma_ctrl;
2255 	u32 ring_cfg;
2256 	int ret;
2257 
2258 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2259 	dma_enable = dma_ctrl & DMA_EN;
2260 	dma_ctrl &= ~DMA_EN;
2261 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2262 
2263 	dma_ctrl = 0;
2264 	ring_cfg = 0;
2265 
2266 	/* Initialize Rx priority queues */
2267 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2268 		ret = bcmgenet_init_rx_ring(priv, i,
2269 					    priv->hw_params->rx_bds_per_q,
2270 					    i * priv->hw_params->rx_bds_per_q,
2271 					    (i + 1) *
2272 					    priv->hw_params->rx_bds_per_q);
2273 		if (ret)
2274 			return ret;
2275 
2276 		ring_cfg |= (1 << i);
2277 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2278 	}
2279 
2280 	/* Initialize Rx default queue 16 */
2281 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2282 				    priv->hw_params->rx_queues *
2283 				    priv->hw_params->rx_bds_per_q,
2284 				    TOTAL_DESC);
2285 	if (ret)
2286 		return ret;
2287 
2288 	ring_cfg |= (1 << DESC_INDEX);
2289 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2290 
2291 	/* Initialize Rx NAPI */
2292 	bcmgenet_init_rx_napi(priv);
2293 
2294 	/* Enable rings */
2295 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2296 
2297 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2298 	if (dma_enable)
2299 		dma_ctrl |= DMA_EN;
2300 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2301 
2302 	return 0;
2303 }
2304 
2305 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2306 {
2307 	int ret = 0;
2308 	int timeout = 0;
2309 	u32 reg;
2310 	u32 dma_ctrl;
2311 	int i;
2312 
2313 	/* Disable TDMA to stop add more frames in TX DMA */
2314 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2315 	reg &= ~DMA_EN;
2316 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2317 
2318 	/* Check TDMA status register to confirm TDMA is disabled */
2319 	while (timeout++ < DMA_TIMEOUT_VAL) {
2320 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2321 		if (reg & DMA_DISABLED)
2322 			break;
2323 
2324 		udelay(1);
2325 	}
2326 
2327 	if (timeout == DMA_TIMEOUT_VAL) {
2328 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2329 		ret = -ETIMEDOUT;
2330 	}
2331 
2332 	/* Wait 10ms for packet drain in both tx and rx dma */
2333 	usleep_range(10000, 20000);
2334 
2335 	/* Disable RDMA */
2336 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2337 	reg &= ~DMA_EN;
2338 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2339 
2340 	timeout = 0;
2341 	/* Check RDMA status register to confirm RDMA is disabled */
2342 	while (timeout++ < DMA_TIMEOUT_VAL) {
2343 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2344 		if (reg & DMA_DISABLED)
2345 			break;
2346 
2347 		udelay(1);
2348 	}
2349 
2350 	if (timeout == DMA_TIMEOUT_VAL) {
2351 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2352 		ret = -ETIMEDOUT;
2353 	}
2354 
2355 	dma_ctrl = 0;
2356 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2357 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2358 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2359 	reg &= ~dma_ctrl;
2360 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2361 
2362 	dma_ctrl = 0;
2363 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2364 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2365 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2366 	reg &= ~dma_ctrl;
2367 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2368 
2369 	return ret;
2370 }
2371 
2372 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2373 {
2374 	int i;
2375 	struct netdev_queue *txq;
2376 
2377 	bcmgenet_fini_rx_napi(priv);
2378 	bcmgenet_fini_tx_napi(priv);
2379 
2380 	/* disable DMA */
2381 	bcmgenet_dma_teardown(priv);
2382 
2383 	for (i = 0; i < priv->num_tx_bds; i++) {
2384 		if (priv->tx_cbs[i].skb != NULL) {
2385 			dev_kfree_skb(priv->tx_cbs[i].skb);
2386 			priv->tx_cbs[i].skb = NULL;
2387 		}
2388 	}
2389 
2390 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2391 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2392 		netdev_tx_reset_queue(txq);
2393 	}
2394 
2395 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2396 	netdev_tx_reset_queue(txq);
2397 
2398 	bcmgenet_free_rx_buffers(priv);
2399 	kfree(priv->rx_cbs);
2400 	kfree(priv->tx_cbs);
2401 }
2402 
2403 /* init_edma: Initialize DMA control register */
2404 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2405 {
2406 	int ret;
2407 	unsigned int i;
2408 	struct enet_cb *cb;
2409 
2410 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2411 
2412 	/* Initialize common Rx ring structures */
2413 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2414 	priv->num_rx_bds = TOTAL_DESC;
2415 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2416 			       GFP_KERNEL);
2417 	if (!priv->rx_cbs)
2418 		return -ENOMEM;
2419 
2420 	for (i = 0; i < priv->num_rx_bds; i++) {
2421 		cb = priv->rx_cbs + i;
2422 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2423 	}
2424 
2425 	/* Initialize common TX ring structures */
2426 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2427 	priv->num_tx_bds = TOTAL_DESC;
2428 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2429 			       GFP_KERNEL);
2430 	if (!priv->tx_cbs) {
2431 		kfree(priv->rx_cbs);
2432 		return -ENOMEM;
2433 	}
2434 
2435 	for (i = 0; i < priv->num_tx_bds; i++) {
2436 		cb = priv->tx_cbs + i;
2437 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2438 	}
2439 
2440 	/* Init rDma */
2441 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2442 
2443 	/* Initialize Rx queues */
2444 	ret = bcmgenet_init_rx_queues(priv->dev);
2445 	if (ret) {
2446 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2447 		bcmgenet_free_rx_buffers(priv);
2448 		kfree(priv->rx_cbs);
2449 		kfree(priv->tx_cbs);
2450 		return ret;
2451 	}
2452 
2453 	/* Init tDma */
2454 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2455 
2456 	/* Initialize Tx queues */
2457 	bcmgenet_init_tx_queues(priv->dev);
2458 
2459 	return 0;
2460 }
2461 
2462 /* Interrupt bottom half */
2463 static void bcmgenet_irq_task(struct work_struct *work)
2464 {
2465 	struct bcmgenet_priv *priv = container_of(
2466 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2467 
2468 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2469 
2470 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2471 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2472 		netif_dbg(priv, wol, priv->dev,
2473 			  "magic packet detected, waking up\n");
2474 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2475 	}
2476 
2477 	/* Link UP/DOWN event */
2478 	if (priv->irq0_stat & UMAC_IRQ_LINK_EVENT) {
2479 		phy_mac_interrupt(priv->phydev,
2480 				  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2481 		priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2482 	}
2483 }
2484 
2485 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2486 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2487 {
2488 	struct bcmgenet_priv *priv = dev_id;
2489 	struct bcmgenet_rx_ring *rx_ring;
2490 	struct bcmgenet_tx_ring *tx_ring;
2491 	unsigned int index;
2492 
2493 	/* Save irq status for bottom-half processing. */
2494 	priv->irq1_stat =
2495 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2496 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2497 
2498 	/* clear interrupts */
2499 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2500 
2501 	netif_dbg(priv, intr, priv->dev,
2502 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2503 
2504 	/* Check Rx priority queue interrupts */
2505 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2506 		if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2507 			continue;
2508 
2509 		rx_ring = &priv->rx_rings[index];
2510 
2511 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2512 			rx_ring->int_disable(rx_ring);
2513 			__napi_schedule_irqoff(&rx_ring->napi);
2514 		}
2515 	}
2516 
2517 	/* Check Tx priority queue interrupts */
2518 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2519 		if (!(priv->irq1_stat & BIT(index)))
2520 			continue;
2521 
2522 		tx_ring = &priv->tx_rings[index];
2523 
2524 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2525 			tx_ring->int_disable(tx_ring);
2526 			__napi_schedule_irqoff(&tx_ring->napi);
2527 		}
2528 	}
2529 
2530 	return IRQ_HANDLED;
2531 }
2532 
2533 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2534 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2535 {
2536 	struct bcmgenet_priv *priv = dev_id;
2537 	struct bcmgenet_rx_ring *rx_ring;
2538 	struct bcmgenet_tx_ring *tx_ring;
2539 
2540 	/* Save irq status for bottom-half processing. */
2541 	priv->irq0_stat =
2542 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2543 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2544 
2545 	/* clear interrupts */
2546 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2547 
2548 	netif_dbg(priv, intr, priv->dev,
2549 		  "IRQ=0x%x\n", priv->irq0_stat);
2550 
2551 	if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2552 		rx_ring = &priv->rx_rings[DESC_INDEX];
2553 
2554 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2555 			rx_ring->int_disable(rx_ring);
2556 			__napi_schedule_irqoff(&rx_ring->napi);
2557 		}
2558 	}
2559 
2560 	if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2561 		tx_ring = &priv->tx_rings[DESC_INDEX];
2562 
2563 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2564 			tx_ring->int_disable(tx_ring);
2565 			__napi_schedule_irqoff(&tx_ring->napi);
2566 		}
2567 	}
2568 
2569 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2570 				UMAC_IRQ_PHY_DET_F |
2571 				UMAC_IRQ_LINK_EVENT |
2572 				UMAC_IRQ_HFB_SM |
2573 				UMAC_IRQ_HFB_MM |
2574 				UMAC_IRQ_MPD_R)) {
2575 		/* all other interested interrupts handled in bottom half */
2576 		schedule_work(&priv->bcmgenet_irq_work);
2577 	}
2578 
2579 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2580 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2581 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2582 		wake_up(&priv->wq);
2583 	}
2584 
2585 	return IRQ_HANDLED;
2586 }
2587 
2588 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2589 {
2590 	struct bcmgenet_priv *priv = dev_id;
2591 
2592 	pm_wakeup_event(&priv->pdev->dev, 0);
2593 
2594 	return IRQ_HANDLED;
2595 }
2596 
2597 #ifdef CONFIG_NET_POLL_CONTROLLER
2598 static void bcmgenet_poll_controller(struct net_device *dev)
2599 {
2600 	struct bcmgenet_priv *priv = netdev_priv(dev);
2601 
2602 	/* Invoke the main RX/TX interrupt handler */
2603 	disable_irq(priv->irq0);
2604 	bcmgenet_isr0(priv->irq0, priv);
2605 	enable_irq(priv->irq0);
2606 
2607 	/* And the interrupt handler for RX/TX priority queues */
2608 	disable_irq(priv->irq1);
2609 	bcmgenet_isr1(priv->irq1, priv);
2610 	enable_irq(priv->irq1);
2611 }
2612 #endif
2613 
2614 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2615 {
2616 	u32 reg;
2617 
2618 	reg = bcmgenet_rbuf_ctrl_get(priv);
2619 	reg |= BIT(1);
2620 	bcmgenet_rbuf_ctrl_set(priv, reg);
2621 	udelay(10);
2622 
2623 	reg &= ~BIT(1);
2624 	bcmgenet_rbuf_ctrl_set(priv, reg);
2625 	udelay(10);
2626 }
2627 
2628 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2629 				 unsigned char *addr)
2630 {
2631 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2632 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2633 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2634 }
2635 
2636 /* Returns a reusable dma control register value */
2637 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2638 {
2639 	u32 reg;
2640 	u32 dma_ctrl;
2641 
2642 	/* disable DMA */
2643 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2644 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2645 	reg &= ~dma_ctrl;
2646 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2647 
2648 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2649 	reg &= ~dma_ctrl;
2650 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2651 
2652 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2653 	udelay(10);
2654 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2655 
2656 	return dma_ctrl;
2657 }
2658 
2659 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2660 {
2661 	u32 reg;
2662 
2663 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2664 	reg |= dma_ctrl;
2665 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2666 
2667 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2668 	reg |= dma_ctrl;
2669 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2670 }
2671 
2672 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2673 					   u32 f_index)
2674 {
2675 	u32 offset;
2676 	u32 reg;
2677 
2678 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2679 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2680 	return !!(reg & (1 << (f_index % 32)));
2681 }
2682 
2683 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2684 {
2685 	u32 offset;
2686 	u32 reg;
2687 
2688 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2689 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2690 	reg |= (1 << (f_index % 32));
2691 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2692 }
2693 
2694 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2695 						     u32 f_index, u32 rx_queue)
2696 {
2697 	u32 offset;
2698 	u32 reg;
2699 
2700 	offset = f_index / 8;
2701 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2702 	reg &= ~(0xF << (4 * (f_index % 8)));
2703 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2704 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2705 }
2706 
2707 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2708 					   u32 f_index, u32 f_length)
2709 {
2710 	u32 offset;
2711 	u32 reg;
2712 
2713 	offset = HFB_FLT_LEN_V3PLUS +
2714 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2715 		 sizeof(u32);
2716 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2717 	reg &= ~(0xFF << (8 * (f_index % 4)));
2718 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2719 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2720 }
2721 
2722 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2723 {
2724 	u32 f_index;
2725 
2726 	for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2727 		if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2728 			return f_index;
2729 
2730 	return -ENOMEM;
2731 }
2732 
2733 /* bcmgenet_hfb_add_filter
2734  *
2735  * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2736  * desired Rx queue.
2737  *
2738  * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2739  * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2740  *
2741  * bits 31:20 - unused
2742  * bit  19    - nibble 0 match enable
2743  * bit  18    - nibble 1 match enable
2744  * bit  17    - nibble 2 match enable
2745  * bit  16    - nibble 3 match enable
2746  * bits 15:12 - nibble 0 data
2747  * bits 11:8  - nibble 1 data
2748  * bits 7:4   - nibble 2 data
2749  * bits 3:0   - nibble 3 data
2750  *
2751  * Example:
2752  * In order to match:
2753  * - Ethernet frame type = 0x0800 (IP)
2754  * - IP version field = 4
2755  * - IP protocol field = 0x11 (UDP)
2756  *
2757  * The following filter is needed:
2758  * u32 hfb_filter_ipv4_udp[] = {
2759  *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2760  *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2761  *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2762  * };
2763  *
2764  * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2765  * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2766  *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2767  */
2768 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2769 			    u32 f_length, u32 rx_queue)
2770 {
2771 	int f_index;
2772 	u32 i;
2773 
2774 	f_index = bcmgenet_hfb_find_unused_filter(priv);
2775 	if (f_index < 0)
2776 		return -ENOMEM;
2777 
2778 	if (f_length > priv->hw_params->hfb_filter_size)
2779 		return -EINVAL;
2780 
2781 	for (i = 0; i < f_length; i++)
2782 		bcmgenet_hfb_writel(priv, f_data[i],
2783 			(f_index * priv->hw_params->hfb_filter_size + i) *
2784 			sizeof(u32));
2785 
2786 	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2787 	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2788 	bcmgenet_hfb_enable_filter(priv, f_index);
2789 	bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2790 
2791 	return 0;
2792 }
2793 
2794 /* bcmgenet_hfb_clear
2795  *
2796  * Clear Hardware Filter Block and disable all filtering.
2797  */
2798 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2799 {
2800 	u32 i;
2801 
2802 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2803 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2804 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2805 
2806 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2807 		bcmgenet_rdma_writel(priv, 0x0, i);
2808 
2809 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2810 		bcmgenet_hfb_reg_writel(priv, 0x0,
2811 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2812 
2813 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2814 			priv->hw_params->hfb_filter_size; i++)
2815 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2816 }
2817 
2818 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2819 {
2820 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2821 		return;
2822 
2823 	bcmgenet_hfb_clear(priv);
2824 }
2825 
2826 static void bcmgenet_netif_start(struct net_device *dev)
2827 {
2828 	struct bcmgenet_priv *priv = netdev_priv(dev);
2829 
2830 	/* Start the network engine */
2831 	bcmgenet_enable_rx_napi(priv);
2832 	bcmgenet_enable_tx_napi(priv);
2833 
2834 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2835 
2836 	netif_tx_start_all_queues(dev);
2837 
2838 	/* Monitor link interrupts now */
2839 	bcmgenet_link_intr_enable(priv);
2840 
2841 	phy_start(priv->phydev);
2842 }
2843 
2844 static int bcmgenet_open(struct net_device *dev)
2845 {
2846 	struct bcmgenet_priv *priv = netdev_priv(dev);
2847 	unsigned long dma_ctrl;
2848 	u32 reg;
2849 	int ret;
2850 
2851 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2852 
2853 	/* Turn on the clock */
2854 	clk_prepare_enable(priv->clk);
2855 
2856 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2857 	 * brought out of reset as absolutely no UniMAC activity is allowed
2858 	 */
2859 	if (priv->internal_phy)
2860 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2861 
2862 	/* take MAC out of reset */
2863 	bcmgenet_umac_reset(priv);
2864 
2865 	ret = init_umac(priv);
2866 	if (ret)
2867 		goto err_clk_disable;
2868 
2869 	/* disable ethernet MAC while updating its registers */
2870 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2871 
2872 	/* Make sure we reflect the value of CRC_CMD_FWD */
2873 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2874 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2875 
2876 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2877 
2878 	if (priv->internal_phy) {
2879 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2880 		reg |= EXT_ENERGY_DET_MASK;
2881 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2882 	}
2883 
2884 	/* Disable RX/TX DMA and flush TX queues */
2885 	dma_ctrl = bcmgenet_dma_disable(priv);
2886 
2887 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2888 	ret = bcmgenet_init_dma(priv);
2889 	if (ret) {
2890 		netdev_err(dev, "failed to initialize DMA\n");
2891 		goto err_clk_disable;
2892 	}
2893 
2894 	/* Always enable ring 16 - descriptor ring */
2895 	bcmgenet_enable_dma(priv, dma_ctrl);
2896 
2897 	/* HFB init */
2898 	bcmgenet_hfb_init(priv);
2899 
2900 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2901 			  dev->name, priv);
2902 	if (ret < 0) {
2903 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2904 		goto err_fini_dma;
2905 	}
2906 
2907 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2908 			  dev->name, priv);
2909 	if (ret < 0) {
2910 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2911 		goto err_irq0;
2912 	}
2913 
2914 	ret = bcmgenet_mii_probe(dev);
2915 	if (ret) {
2916 		netdev_err(dev, "failed to connect to PHY\n");
2917 		goto err_irq1;
2918 	}
2919 
2920 	bcmgenet_netif_start(dev);
2921 
2922 	return 0;
2923 
2924 err_irq1:
2925 	free_irq(priv->irq1, priv);
2926 err_irq0:
2927 	free_irq(priv->irq0, priv);
2928 err_fini_dma:
2929 	bcmgenet_fini_dma(priv);
2930 err_clk_disable:
2931 	clk_disable_unprepare(priv->clk);
2932 	return ret;
2933 }
2934 
2935 static void bcmgenet_netif_stop(struct net_device *dev)
2936 {
2937 	struct bcmgenet_priv *priv = netdev_priv(dev);
2938 
2939 	netif_tx_stop_all_queues(dev);
2940 	phy_stop(priv->phydev);
2941 	bcmgenet_intr_disable(priv);
2942 	bcmgenet_disable_rx_napi(priv);
2943 	bcmgenet_disable_tx_napi(priv);
2944 
2945 	/* Wait for pending work items to complete. Since interrupts are
2946 	 * disabled no new work will be scheduled.
2947 	 */
2948 	cancel_work_sync(&priv->bcmgenet_irq_work);
2949 
2950 	priv->old_link = -1;
2951 	priv->old_speed = -1;
2952 	priv->old_duplex = -1;
2953 	priv->old_pause = -1;
2954 }
2955 
2956 static int bcmgenet_close(struct net_device *dev)
2957 {
2958 	struct bcmgenet_priv *priv = netdev_priv(dev);
2959 	int ret;
2960 
2961 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2962 
2963 	bcmgenet_netif_stop(dev);
2964 
2965 	/* Really kill the PHY state machine and disconnect from it */
2966 	phy_disconnect(priv->phydev);
2967 
2968 	/* Disable MAC receive */
2969 	umac_enable_set(priv, CMD_RX_EN, false);
2970 
2971 	ret = bcmgenet_dma_teardown(priv);
2972 	if (ret)
2973 		return ret;
2974 
2975 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2976 	umac_enable_set(priv, CMD_TX_EN, false);
2977 
2978 	/* tx reclaim */
2979 	bcmgenet_tx_reclaim_all(dev);
2980 	bcmgenet_fini_dma(priv);
2981 
2982 	free_irq(priv->irq0, priv);
2983 	free_irq(priv->irq1, priv);
2984 
2985 	if (priv->internal_phy)
2986 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2987 
2988 	clk_disable_unprepare(priv->clk);
2989 
2990 	return ret;
2991 }
2992 
2993 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2994 {
2995 	struct bcmgenet_priv *priv = ring->priv;
2996 	u32 p_index, c_index, intsts, intmsk;
2997 	struct netdev_queue *txq;
2998 	unsigned int free_bds;
2999 	unsigned long flags;
3000 	bool txq_stopped;
3001 
3002 	if (!netif_msg_tx_err(priv))
3003 		return;
3004 
3005 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3006 
3007 	spin_lock_irqsave(&ring->lock, flags);
3008 	if (ring->index == DESC_INDEX) {
3009 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3010 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3011 	} else {
3012 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3013 		intmsk = 1 << ring->index;
3014 	}
3015 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3016 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3017 	txq_stopped = netif_tx_queue_stopped(txq);
3018 	free_bds = ring->free_bds;
3019 	spin_unlock_irqrestore(&ring->lock, flags);
3020 
3021 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3022 		  "TX queue status: %s, interrupts: %s\n"
3023 		  "(sw)free_bds: %d (sw)size: %d\n"
3024 		  "(sw)p_index: %d (hw)p_index: %d\n"
3025 		  "(sw)c_index: %d (hw)c_index: %d\n"
3026 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3027 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3028 		  ring->index, ring->queue,
3029 		  txq_stopped ? "stopped" : "active",
3030 		  intsts & intmsk ? "enabled" : "disabled",
3031 		  free_bds, ring->size,
3032 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3033 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3034 		  ring->clean_ptr, ring->write_ptr,
3035 		  ring->cb_ptr, ring->end_ptr);
3036 }
3037 
3038 static void bcmgenet_timeout(struct net_device *dev)
3039 {
3040 	struct bcmgenet_priv *priv = netdev_priv(dev);
3041 	u32 int0_enable = 0;
3042 	u32 int1_enable = 0;
3043 	unsigned int q;
3044 
3045 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3046 
3047 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3048 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3049 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3050 
3051 	bcmgenet_tx_reclaim_all(dev);
3052 
3053 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3054 		int1_enable |= (1 << q);
3055 
3056 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3057 
3058 	/* Re-enable TX interrupts if disabled */
3059 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3060 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3061 
3062 	netif_trans_update(dev);
3063 
3064 	dev->stats.tx_errors++;
3065 
3066 	netif_tx_wake_all_queues(dev);
3067 }
3068 
3069 #define MAX_MC_COUNT	16
3070 
3071 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3072 					 unsigned char *addr,
3073 					 int *i,
3074 					 int *mc)
3075 {
3076 	u32 reg;
3077 
3078 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3079 			     UMAC_MDF_ADDR + (*i * 4));
3080 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3081 			     addr[4] << 8 | addr[5],
3082 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3083 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3084 	reg |= (1 << (MAX_MC_COUNT - *mc));
3085 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3086 	*i += 2;
3087 	(*mc)++;
3088 }
3089 
3090 static void bcmgenet_set_rx_mode(struct net_device *dev)
3091 {
3092 	struct bcmgenet_priv *priv = netdev_priv(dev);
3093 	struct netdev_hw_addr *ha;
3094 	int i, mc;
3095 	u32 reg;
3096 
3097 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3098 
3099 	/* Promiscuous mode */
3100 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3101 	if (dev->flags & IFF_PROMISC) {
3102 		reg |= CMD_PROMISC;
3103 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3104 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3105 		return;
3106 	} else {
3107 		reg &= ~CMD_PROMISC;
3108 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3109 	}
3110 
3111 	/* UniMac doesn't support ALLMULTI */
3112 	if (dev->flags & IFF_ALLMULTI) {
3113 		netdev_warn(dev, "ALLMULTI is not supported\n");
3114 		return;
3115 	}
3116 
3117 	/* update MDF filter */
3118 	i = 0;
3119 	mc = 0;
3120 	/* Broadcast */
3121 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3122 	/* my own address.*/
3123 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3124 	/* Unicast list*/
3125 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3126 		return;
3127 
3128 	if (!netdev_uc_empty(dev))
3129 		netdev_for_each_uc_addr(ha, dev)
3130 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3131 	/* Multicast */
3132 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3133 		return;
3134 
3135 	netdev_for_each_mc_addr(ha, dev)
3136 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3137 }
3138 
3139 /* Set the hardware MAC address. */
3140 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3141 {
3142 	struct sockaddr *addr = p;
3143 
3144 	/* Setting the MAC address at the hardware level is not possible
3145 	 * without disabling the UniMAC RX/TX enable bits.
3146 	 */
3147 	if (netif_running(dev))
3148 		return -EBUSY;
3149 
3150 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3151 
3152 	return 0;
3153 }
3154 
3155 static const struct net_device_ops bcmgenet_netdev_ops = {
3156 	.ndo_open		= bcmgenet_open,
3157 	.ndo_stop		= bcmgenet_close,
3158 	.ndo_start_xmit		= bcmgenet_xmit,
3159 	.ndo_tx_timeout		= bcmgenet_timeout,
3160 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3161 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3162 	.ndo_do_ioctl		= bcmgenet_ioctl,
3163 	.ndo_set_features	= bcmgenet_set_features,
3164 #ifdef CONFIG_NET_POLL_CONTROLLER
3165 	.ndo_poll_controller	= bcmgenet_poll_controller,
3166 #endif
3167 };
3168 
3169 /* Array of GENET hardware parameters/characteristics */
3170 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3171 	[GENET_V1] = {
3172 		.tx_queues = 0,
3173 		.tx_bds_per_q = 0,
3174 		.rx_queues = 0,
3175 		.rx_bds_per_q = 0,
3176 		.bp_in_en_shift = 16,
3177 		.bp_in_mask = 0xffff,
3178 		.hfb_filter_cnt = 16,
3179 		.qtag_mask = 0x1F,
3180 		.hfb_offset = 0x1000,
3181 		.rdma_offset = 0x2000,
3182 		.tdma_offset = 0x3000,
3183 		.words_per_bd = 2,
3184 	},
3185 	[GENET_V2] = {
3186 		.tx_queues = 4,
3187 		.tx_bds_per_q = 32,
3188 		.rx_queues = 0,
3189 		.rx_bds_per_q = 0,
3190 		.bp_in_en_shift = 16,
3191 		.bp_in_mask = 0xffff,
3192 		.hfb_filter_cnt = 16,
3193 		.qtag_mask = 0x1F,
3194 		.tbuf_offset = 0x0600,
3195 		.hfb_offset = 0x1000,
3196 		.hfb_reg_offset = 0x2000,
3197 		.rdma_offset = 0x3000,
3198 		.tdma_offset = 0x4000,
3199 		.words_per_bd = 2,
3200 		.flags = GENET_HAS_EXT,
3201 	},
3202 	[GENET_V3] = {
3203 		.tx_queues = 4,
3204 		.tx_bds_per_q = 32,
3205 		.rx_queues = 0,
3206 		.rx_bds_per_q = 0,
3207 		.bp_in_en_shift = 17,
3208 		.bp_in_mask = 0x1ffff,
3209 		.hfb_filter_cnt = 48,
3210 		.hfb_filter_size = 128,
3211 		.qtag_mask = 0x3F,
3212 		.tbuf_offset = 0x0600,
3213 		.hfb_offset = 0x8000,
3214 		.hfb_reg_offset = 0xfc00,
3215 		.rdma_offset = 0x10000,
3216 		.tdma_offset = 0x11000,
3217 		.words_per_bd = 2,
3218 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3219 			 GENET_HAS_MOCA_LINK_DET,
3220 	},
3221 	[GENET_V4] = {
3222 		.tx_queues = 4,
3223 		.tx_bds_per_q = 32,
3224 		.rx_queues = 0,
3225 		.rx_bds_per_q = 0,
3226 		.bp_in_en_shift = 17,
3227 		.bp_in_mask = 0x1ffff,
3228 		.hfb_filter_cnt = 48,
3229 		.hfb_filter_size = 128,
3230 		.qtag_mask = 0x3F,
3231 		.tbuf_offset = 0x0600,
3232 		.hfb_offset = 0x8000,
3233 		.hfb_reg_offset = 0xfc00,
3234 		.rdma_offset = 0x2000,
3235 		.tdma_offset = 0x4000,
3236 		.words_per_bd = 3,
3237 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3238 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3239 	},
3240 };
3241 
3242 /* Infer hardware parameters from the detected GENET version */
3243 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3244 {
3245 	struct bcmgenet_hw_params *params;
3246 	u32 reg;
3247 	u8 major;
3248 	u16 gphy_rev;
3249 
3250 	if (GENET_IS_V4(priv)) {
3251 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3252 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3253 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3254 		priv->version = GENET_V4;
3255 	} else if (GENET_IS_V3(priv)) {
3256 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3257 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3258 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3259 		priv->version = GENET_V3;
3260 	} else if (GENET_IS_V2(priv)) {
3261 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3262 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3263 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3264 		priv->version = GENET_V2;
3265 	} else if (GENET_IS_V1(priv)) {
3266 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3267 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3268 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3269 		priv->version = GENET_V1;
3270 	}
3271 
3272 	/* enum genet_version starts at 1 */
3273 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3274 	params = priv->hw_params;
3275 
3276 	/* Read GENET HW version */
3277 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3278 	major = (reg >> 24 & 0x0f);
3279 	if (major == 5)
3280 		major = 4;
3281 	else if (major == 0)
3282 		major = 1;
3283 	if (major != priv->version) {
3284 		dev_err(&priv->pdev->dev,
3285 			"GENET version mismatch, got: %d, configured for: %d\n",
3286 			major, priv->version);
3287 	}
3288 
3289 	/* Print the GENET core version */
3290 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3291 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3292 
3293 	/* Store the integrated PHY revision for the MDIO probing function
3294 	 * to pass this information to the PHY driver. The PHY driver expects
3295 	 * to find the PHY major revision in bits 15:8 while the GENET register
3296 	 * stores that information in bits 7:0, account for that.
3297 	 *
3298 	 * On newer chips, starting with PHY revision G0, a new scheme is
3299 	 * deployed similar to the Starfighter 2 switch with GPHY major
3300 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3301 	 * is reserved as well as special value 0x01ff, we have a small
3302 	 * heuristic to check for the new GPHY revision and re-arrange things
3303 	 * so the GPHY driver is happy.
3304 	 */
3305 	gphy_rev = reg & 0xffff;
3306 
3307 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3308 	if ((gphy_rev & 0xf0) != 0)
3309 		priv->gphy_rev = gphy_rev << 8;
3310 
3311 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3312 	else if ((gphy_rev & 0xff00) != 0)
3313 		priv->gphy_rev = gphy_rev;
3314 
3315 	/* This is reserved so should require special treatment */
3316 	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3317 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3318 		return;
3319 	}
3320 
3321 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3322 	if (!(params->flags & GENET_HAS_40BITS))
3323 		pr_warn("GENET does not support 40-bits PA\n");
3324 #endif
3325 
3326 	pr_debug("Configuration for version: %d\n"
3327 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3328 		"BP << en: %2d, BP msk: 0x%05x\n"
3329 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3330 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3331 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3332 		"Words/BD: %d\n",
3333 		priv->version,
3334 		params->tx_queues, params->tx_bds_per_q,
3335 		params->rx_queues, params->rx_bds_per_q,
3336 		params->bp_in_en_shift, params->bp_in_mask,
3337 		params->hfb_filter_cnt, params->qtag_mask,
3338 		params->tbuf_offset, params->hfb_offset,
3339 		params->hfb_reg_offset,
3340 		params->rdma_offset, params->tdma_offset,
3341 		params->words_per_bd);
3342 }
3343 
3344 static const struct of_device_id bcmgenet_match[] = {
3345 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3346 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3347 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3348 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3349 	{ },
3350 };
3351 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3352 
3353 static int bcmgenet_probe(struct platform_device *pdev)
3354 {
3355 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3356 	struct device_node *dn = pdev->dev.of_node;
3357 	const struct of_device_id *of_id = NULL;
3358 	struct bcmgenet_priv *priv;
3359 	struct net_device *dev;
3360 	const void *macaddr;
3361 	struct resource *r;
3362 	int err = -EIO;
3363 
3364 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3365 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3366 				 GENET_MAX_MQ_CNT + 1);
3367 	if (!dev) {
3368 		dev_err(&pdev->dev, "can't allocate net device\n");
3369 		return -ENOMEM;
3370 	}
3371 
3372 	if (dn) {
3373 		of_id = of_match_node(bcmgenet_match, dn);
3374 		if (!of_id)
3375 			return -EINVAL;
3376 	}
3377 
3378 	priv = netdev_priv(dev);
3379 	priv->irq0 = platform_get_irq(pdev, 0);
3380 	priv->irq1 = platform_get_irq(pdev, 1);
3381 	priv->wol_irq = platform_get_irq(pdev, 2);
3382 	if (!priv->irq0 || !priv->irq1) {
3383 		dev_err(&pdev->dev, "can't find IRQs\n");
3384 		err = -EINVAL;
3385 		goto err;
3386 	}
3387 
3388 	if (dn) {
3389 		macaddr = of_get_mac_address(dn);
3390 		if (!macaddr) {
3391 			dev_err(&pdev->dev, "can't find MAC address\n");
3392 			err = -EINVAL;
3393 			goto err;
3394 		}
3395 	} else {
3396 		macaddr = pd->mac_address;
3397 	}
3398 
3399 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3400 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3401 	if (IS_ERR(priv->base)) {
3402 		err = PTR_ERR(priv->base);
3403 		goto err;
3404 	}
3405 
3406 	SET_NETDEV_DEV(dev, &pdev->dev);
3407 	dev_set_drvdata(&pdev->dev, dev);
3408 	ether_addr_copy(dev->dev_addr, macaddr);
3409 	dev->watchdog_timeo = 2 * HZ;
3410 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3411 	dev->netdev_ops = &bcmgenet_netdev_ops;
3412 
3413 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3414 
3415 	/* Set hardware features */
3416 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3417 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3418 
3419 	/* Request the WOL interrupt and advertise suspend if available */
3420 	priv->wol_irq_disabled = true;
3421 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3422 			       dev->name, priv);
3423 	if (!err)
3424 		device_set_wakeup_capable(&pdev->dev, 1);
3425 
3426 	/* Set the needed headroom to account for any possible
3427 	 * features enabling/disabling at runtime
3428 	 */
3429 	dev->needed_headroom += 64;
3430 
3431 	netdev_boot_setup_check(dev);
3432 
3433 	priv->dev = dev;
3434 	priv->pdev = pdev;
3435 	if (of_id)
3436 		priv->version = (enum bcmgenet_version)of_id->data;
3437 	else
3438 		priv->version = pd->genet_version;
3439 
3440 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3441 	if (IS_ERR(priv->clk)) {
3442 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3443 		priv->clk = NULL;
3444 	}
3445 
3446 	clk_prepare_enable(priv->clk);
3447 
3448 	bcmgenet_set_hw_params(priv);
3449 
3450 	/* Mii wait queue */
3451 	init_waitqueue_head(&priv->wq);
3452 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3453 	priv->rx_buf_len = RX_BUF_LENGTH;
3454 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3455 
3456 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3457 	if (IS_ERR(priv->clk_wol)) {
3458 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3459 		priv->clk_wol = NULL;
3460 	}
3461 
3462 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3463 	if (IS_ERR(priv->clk_eee)) {
3464 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3465 		priv->clk_eee = NULL;
3466 	}
3467 
3468 	err = reset_umac(priv);
3469 	if (err)
3470 		goto err_clk_disable;
3471 
3472 	err = bcmgenet_mii_init(dev);
3473 	if (err)
3474 		goto err_clk_disable;
3475 
3476 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3477 	 * just the ring 16 descriptor based TX
3478 	 */
3479 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3480 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3481 
3482 	/* libphy will determine the link state */
3483 	netif_carrier_off(dev);
3484 
3485 	/* Turn off the main clock, WOL clock is handled separately */
3486 	clk_disable_unprepare(priv->clk);
3487 
3488 	err = register_netdev(dev);
3489 	if (err)
3490 		goto err;
3491 
3492 	return err;
3493 
3494 err_clk_disable:
3495 	clk_disable_unprepare(priv->clk);
3496 err:
3497 	free_netdev(dev);
3498 	return err;
3499 }
3500 
3501 static int bcmgenet_remove(struct platform_device *pdev)
3502 {
3503 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3504 
3505 	dev_set_drvdata(&pdev->dev, NULL);
3506 	unregister_netdev(priv->dev);
3507 	bcmgenet_mii_exit(priv->dev);
3508 	free_netdev(priv->dev);
3509 
3510 	return 0;
3511 }
3512 
3513 #ifdef CONFIG_PM_SLEEP
3514 static int bcmgenet_suspend(struct device *d)
3515 {
3516 	struct net_device *dev = dev_get_drvdata(d);
3517 	struct bcmgenet_priv *priv = netdev_priv(dev);
3518 	int ret;
3519 
3520 	if (!netif_running(dev))
3521 		return 0;
3522 
3523 	bcmgenet_netif_stop(dev);
3524 
3525 	phy_suspend(priv->phydev);
3526 
3527 	netif_device_detach(dev);
3528 
3529 	/* Disable MAC receive */
3530 	umac_enable_set(priv, CMD_RX_EN, false);
3531 
3532 	ret = bcmgenet_dma_teardown(priv);
3533 	if (ret)
3534 		return ret;
3535 
3536 	/* Disable MAC transmit. TX DMA disabled have to done before this */
3537 	umac_enable_set(priv, CMD_TX_EN, false);
3538 
3539 	/* tx reclaim */
3540 	bcmgenet_tx_reclaim_all(dev);
3541 	bcmgenet_fini_dma(priv);
3542 
3543 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3544 	if (device_may_wakeup(d) && priv->wolopts) {
3545 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3546 		clk_prepare_enable(priv->clk_wol);
3547 	} else if (priv->internal_phy) {
3548 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3549 	}
3550 
3551 	/* Turn off the clocks */
3552 	clk_disable_unprepare(priv->clk);
3553 
3554 	return ret;
3555 }
3556 
3557 static int bcmgenet_resume(struct device *d)
3558 {
3559 	struct net_device *dev = dev_get_drvdata(d);
3560 	struct bcmgenet_priv *priv = netdev_priv(dev);
3561 	unsigned long dma_ctrl;
3562 	int ret;
3563 	u32 reg;
3564 
3565 	if (!netif_running(dev))
3566 		return 0;
3567 
3568 	/* Turn on the clock */
3569 	ret = clk_prepare_enable(priv->clk);
3570 	if (ret)
3571 		return ret;
3572 
3573 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3574 	 * brought out of reset as absolutely no UniMAC activity is allowed
3575 	 */
3576 	if (priv->internal_phy)
3577 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3578 
3579 	bcmgenet_umac_reset(priv);
3580 
3581 	ret = init_umac(priv);
3582 	if (ret)
3583 		goto out_clk_disable;
3584 
3585 	/* From WOL-enabled suspend, switch to regular clock */
3586 	if (priv->wolopts)
3587 		clk_disable_unprepare(priv->clk_wol);
3588 
3589 	phy_init_hw(priv->phydev);
3590 	/* Speed settings must be restored */
3591 	bcmgenet_mii_config(priv->dev);
3592 
3593 	/* disable ethernet MAC while updating its registers */
3594 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3595 
3596 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3597 
3598 	if (priv->internal_phy) {
3599 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3600 		reg |= EXT_ENERGY_DET_MASK;
3601 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3602 	}
3603 
3604 	if (priv->wolopts)
3605 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3606 
3607 	/* Disable RX/TX DMA and flush TX queues */
3608 	dma_ctrl = bcmgenet_dma_disable(priv);
3609 
3610 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3611 	ret = bcmgenet_init_dma(priv);
3612 	if (ret) {
3613 		netdev_err(dev, "failed to initialize DMA\n");
3614 		goto out_clk_disable;
3615 	}
3616 
3617 	/* Always enable ring 16 - descriptor ring */
3618 	bcmgenet_enable_dma(priv, dma_ctrl);
3619 
3620 	netif_device_attach(dev);
3621 
3622 	phy_resume(priv->phydev);
3623 
3624 	if (priv->eee.eee_enabled)
3625 		bcmgenet_eee_enable_set(dev, true);
3626 
3627 	bcmgenet_netif_start(dev);
3628 
3629 	return 0;
3630 
3631 out_clk_disable:
3632 	clk_disable_unprepare(priv->clk);
3633 	return ret;
3634 }
3635 #endif /* CONFIG_PM_SLEEP */
3636 
3637 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3638 
3639 static struct platform_driver bcmgenet_driver = {
3640 	.probe	= bcmgenet_probe,
3641 	.remove	= bcmgenet_remove,
3642 	.driver	= {
3643 		.name	= "bcmgenet",
3644 		.of_match_table = bcmgenet_match,
3645 		.pm	= &bcmgenet_pm_ops,
3646 	},
3647 };
3648 module_platform_driver(bcmgenet_driver);
3649 
3650 MODULE_AUTHOR("Broadcom Corporation");
3651 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3652 MODULE_ALIAS("platform:bcmgenet");
3653 MODULE_LICENSE("GPL");
3654