xref: /linux/drivers/net/ethernet/broadcom/genet/bcmgenet.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Broadcom GENET (Gigabit Ethernet) controller driver
3  *
4  * Copyright (c) 2014 Broadcom Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt)				"bcmgenet: " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34 
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46 
47 #include <asm/unaligned.h>
48 
49 #include "bcmgenet.h"
50 
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT	4
53 
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY	0
56 
57 #define GENET_Q16_RX_BD_CNT	\
58 	(TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT	\
60 	(TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61 
62 #define RX_BUF_LENGTH		2048
63 #define SKB_ALIGNMENT		32
64 
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p)		(p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE		(WORDS_PER_BD(priv) * sizeof(u32))
68 
69 #define GENET_TDMA_REG_OFF	(priv->hw_params->tdma_offset + \
70 				TOTAL_DESC * DMA_DESC_SIZE)
71 
72 #define GENET_RDMA_REG_OFF	(priv->hw_params->rdma_offset + \
73 				TOTAL_DESC * DMA_DESC_SIZE)
74 
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 					     void __iomem *d, u32 value)
77 {
78 	__raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80 
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 					    void __iomem *d)
83 {
84 	return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86 
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 				    void __iomem *d,
89 				    dma_addr_t addr)
90 {
91 	__raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92 
93 	/* Register writes to GISB bus can take couple hundred nanoseconds
94 	 * and are done for each packet, save these expensive writes unless
95 	 * the platform is explicitly configured for 64-bits/LPAE.
96 	 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 	if (priv->hw_params->flags & GENET_HAS_40BITS)
99 		__raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102 
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 			       void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 	dmadesc_set_addr(priv, d, addr);
108 	dmadesc_set_length_status(priv, d, val);
109 }
110 
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 					  void __iomem *d)
113 {
114 	dma_addr_t addr;
115 
116 	addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117 
118 	/* Register writes to GISB bus can take couple hundred nanoseconds
119 	 * and are done for each packet, save these expensive writes unless
120 	 * the platform is explicitly configured for 64-bits/LPAE.
121 	 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 	if (priv->hw_params->flags & GENET_HAS_40BITS)
124 		addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 	return addr;
127 }
128 
129 #define GENET_VER_FMT	"%1d.%1d EPHY: 0x%04x"
130 
131 #define GENET_MSG_DEFAULT	(NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 				NETIF_MSG_LINK)
133 
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 	if (GENET_IS_V1(priv))
137 		return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 	else
139 		return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141 
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 	if (GENET_IS_V1(priv))
145 		bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 	else
147 		bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149 
150 /* These macros are defined to deal with register map change
151  * between GENET1.1 and GENET2. Only those currently being used
152  * by driver are defined.
153  */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 	if (GENET_IS_V1(priv))
157 		return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 	else
159 		return __raw_readl(priv->base +
160 				priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162 
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 	if (GENET_IS_V1(priv))
166 		bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 	else
168 		__raw_writel(val, priv->base +
169 				priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171 
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 	if (GENET_IS_V1(priv))
175 		return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 	else
177 		return __raw_readl(priv->base +
178 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180 
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 	if (GENET_IS_V1(priv))
184 		bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 	else
186 		__raw_writel(val, priv->base +
187 				priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189 
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 	DMA_RING_CFG = 0,
193 	DMA_CTRL,
194 	DMA_STATUS,
195 	DMA_SCB_BURST_SIZE,
196 	DMA_ARB_CTRL,
197 	DMA_PRIORITY_0,
198 	DMA_PRIORITY_1,
199 	DMA_PRIORITY_2,
200 	DMA_INDEX2RING_0,
201 	DMA_INDEX2RING_1,
202 	DMA_INDEX2RING_2,
203 	DMA_INDEX2RING_3,
204 	DMA_INDEX2RING_4,
205 	DMA_INDEX2RING_5,
206 	DMA_INDEX2RING_6,
207 	DMA_INDEX2RING_7,
208 	DMA_RING0_TIMEOUT,
209 	DMA_RING1_TIMEOUT,
210 	DMA_RING2_TIMEOUT,
211 	DMA_RING3_TIMEOUT,
212 	DMA_RING4_TIMEOUT,
213 	DMA_RING5_TIMEOUT,
214 	DMA_RING6_TIMEOUT,
215 	DMA_RING7_TIMEOUT,
216 	DMA_RING8_TIMEOUT,
217 	DMA_RING9_TIMEOUT,
218 	DMA_RING10_TIMEOUT,
219 	DMA_RING11_TIMEOUT,
220 	DMA_RING12_TIMEOUT,
221 	DMA_RING13_TIMEOUT,
222 	DMA_RING14_TIMEOUT,
223 	DMA_RING15_TIMEOUT,
224 	DMA_RING16_TIMEOUT,
225 };
226 
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 	[DMA_RING_CFG]		= 0x00,
229 	[DMA_CTRL]		= 0x04,
230 	[DMA_STATUS]		= 0x08,
231 	[DMA_SCB_BURST_SIZE]	= 0x0C,
232 	[DMA_ARB_CTRL]		= 0x2C,
233 	[DMA_PRIORITY_0]	= 0x30,
234 	[DMA_PRIORITY_1]	= 0x34,
235 	[DMA_PRIORITY_2]	= 0x38,
236 	[DMA_RING0_TIMEOUT]	= 0x2C,
237 	[DMA_RING1_TIMEOUT]	= 0x30,
238 	[DMA_RING2_TIMEOUT]	= 0x34,
239 	[DMA_RING3_TIMEOUT]	= 0x38,
240 	[DMA_RING4_TIMEOUT]	= 0x3c,
241 	[DMA_RING5_TIMEOUT]	= 0x40,
242 	[DMA_RING6_TIMEOUT]	= 0x44,
243 	[DMA_RING7_TIMEOUT]	= 0x48,
244 	[DMA_RING8_TIMEOUT]	= 0x4c,
245 	[DMA_RING9_TIMEOUT]	= 0x50,
246 	[DMA_RING10_TIMEOUT]	= 0x54,
247 	[DMA_RING11_TIMEOUT]	= 0x58,
248 	[DMA_RING12_TIMEOUT]	= 0x5c,
249 	[DMA_RING13_TIMEOUT]	= 0x60,
250 	[DMA_RING14_TIMEOUT]	= 0x64,
251 	[DMA_RING15_TIMEOUT]	= 0x68,
252 	[DMA_RING16_TIMEOUT]	= 0x6C,
253 	[DMA_INDEX2RING_0]	= 0x70,
254 	[DMA_INDEX2RING_1]	= 0x74,
255 	[DMA_INDEX2RING_2]	= 0x78,
256 	[DMA_INDEX2RING_3]	= 0x7C,
257 	[DMA_INDEX2RING_4]	= 0x80,
258 	[DMA_INDEX2RING_5]	= 0x84,
259 	[DMA_INDEX2RING_6]	= 0x88,
260 	[DMA_INDEX2RING_7]	= 0x8C,
261 };
262 
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 	[DMA_RING_CFG]		= 0x00,
265 	[DMA_CTRL]		= 0x04,
266 	[DMA_STATUS]		= 0x08,
267 	[DMA_SCB_BURST_SIZE]	= 0x0C,
268 	[DMA_ARB_CTRL]		= 0x30,
269 	[DMA_PRIORITY_0]	= 0x34,
270 	[DMA_PRIORITY_1]	= 0x38,
271 	[DMA_PRIORITY_2]	= 0x3C,
272 	[DMA_RING0_TIMEOUT]	= 0x2C,
273 	[DMA_RING1_TIMEOUT]	= 0x30,
274 	[DMA_RING2_TIMEOUT]	= 0x34,
275 	[DMA_RING3_TIMEOUT]	= 0x38,
276 	[DMA_RING4_TIMEOUT]	= 0x3c,
277 	[DMA_RING5_TIMEOUT]	= 0x40,
278 	[DMA_RING6_TIMEOUT]	= 0x44,
279 	[DMA_RING7_TIMEOUT]	= 0x48,
280 	[DMA_RING8_TIMEOUT]	= 0x4c,
281 	[DMA_RING9_TIMEOUT]	= 0x50,
282 	[DMA_RING10_TIMEOUT]	= 0x54,
283 	[DMA_RING11_TIMEOUT]	= 0x58,
284 	[DMA_RING12_TIMEOUT]	= 0x5c,
285 	[DMA_RING13_TIMEOUT]	= 0x60,
286 	[DMA_RING14_TIMEOUT]	= 0x64,
287 	[DMA_RING15_TIMEOUT]	= 0x68,
288 	[DMA_RING16_TIMEOUT]	= 0x6C,
289 };
290 
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 	[DMA_CTRL]		= 0x00,
293 	[DMA_STATUS]		= 0x04,
294 	[DMA_SCB_BURST_SIZE]	= 0x0C,
295 	[DMA_ARB_CTRL]		= 0x30,
296 	[DMA_PRIORITY_0]	= 0x34,
297 	[DMA_PRIORITY_1]	= 0x38,
298 	[DMA_PRIORITY_2]	= 0x3C,
299 	[DMA_RING0_TIMEOUT]	= 0x2C,
300 	[DMA_RING1_TIMEOUT]	= 0x30,
301 	[DMA_RING2_TIMEOUT]	= 0x34,
302 	[DMA_RING3_TIMEOUT]	= 0x38,
303 	[DMA_RING4_TIMEOUT]	= 0x3c,
304 	[DMA_RING5_TIMEOUT]	= 0x40,
305 	[DMA_RING6_TIMEOUT]	= 0x44,
306 	[DMA_RING7_TIMEOUT]	= 0x48,
307 	[DMA_RING8_TIMEOUT]	= 0x4c,
308 	[DMA_RING9_TIMEOUT]	= 0x50,
309 	[DMA_RING10_TIMEOUT]	= 0x54,
310 	[DMA_RING11_TIMEOUT]	= 0x58,
311 	[DMA_RING12_TIMEOUT]	= 0x5c,
312 	[DMA_RING13_TIMEOUT]	= 0x60,
313 	[DMA_RING14_TIMEOUT]	= 0x64,
314 	[DMA_RING15_TIMEOUT]	= 0x68,
315 	[DMA_RING16_TIMEOUT]	= 0x6C,
316 };
317 
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320 
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 	return netdev_priv(dev_get_drvdata(dev));
324 }
325 
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 				      enum dma_reg r)
328 {
329 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332 
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 					u32 val, enum dma_reg r)
335 {
336 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339 
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 				      enum dma_reg r)
342 {
343 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346 
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 					u32 val, enum dma_reg r)
349 {
350 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 			DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353 
354 /* RDMA/TDMA ring registers and accessors
355  * we merge the common fields and just prefix with T/D the registers
356  * having different meaning depending on the direction
357  */
358 enum dma_ring_reg {
359 	TDMA_READ_PTR = 0,
360 	RDMA_WRITE_PTR = TDMA_READ_PTR,
361 	TDMA_READ_PTR_HI,
362 	RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 	TDMA_CONS_INDEX,
364 	RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 	TDMA_PROD_INDEX,
366 	RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 	DMA_RING_BUF_SIZE,
368 	DMA_START_ADDR,
369 	DMA_START_ADDR_HI,
370 	DMA_END_ADDR,
371 	DMA_END_ADDR_HI,
372 	DMA_MBUF_DONE_THRESH,
373 	TDMA_FLOW_PERIOD,
374 	RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 	TDMA_WRITE_PTR,
376 	RDMA_READ_PTR = TDMA_WRITE_PTR,
377 	TDMA_WRITE_PTR_HI,
378 	RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380 
381 /* GENET v4 supports 40-bits pointer addressing
382  * for obvious reasons the LO and HI word parts
383  * are contiguous, but this offsets the other
384  * registers.
385  */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 	[TDMA_READ_PTR]			= 0x00,
388 	[TDMA_READ_PTR_HI]		= 0x04,
389 	[TDMA_CONS_INDEX]		= 0x08,
390 	[TDMA_PROD_INDEX]		= 0x0C,
391 	[DMA_RING_BUF_SIZE]		= 0x10,
392 	[DMA_START_ADDR]		= 0x14,
393 	[DMA_START_ADDR_HI]		= 0x18,
394 	[DMA_END_ADDR]			= 0x1C,
395 	[DMA_END_ADDR_HI]		= 0x20,
396 	[DMA_MBUF_DONE_THRESH]		= 0x24,
397 	[TDMA_FLOW_PERIOD]		= 0x28,
398 	[TDMA_WRITE_PTR]		= 0x2C,
399 	[TDMA_WRITE_PTR_HI]		= 0x30,
400 };
401 
402 static const u8 genet_dma_ring_regs_v123[] = {
403 	[TDMA_READ_PTR]			= 0x00,
404 	[TDMA_CONS_INDEX]		= 0x04,
405 	[TDMA_PROD_INDEX]		= 0x08,
406 	[DMA_RING_BUF_SIZE]		= 0x0C,
407 	[DMA_START_ADDR]		= 0x10,
408 	[DMA_END_ADDR]			= 0x14,
409 	[DMA_MBUF_DONE_THRESH]		= 0x18,
410 	[TDMA_FLOW_PERIOD]		= 0x1C,
411 	[TDMA_WRITE_PTR]		= 0x20,
412 };
413 
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416 
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 					   unsigned int ring,
419 					   enum dma_ring_reg r)
420 {
421 	return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 			(DMA_RING_SIZE * ring) +
423 			genet_dma_ring_regs[r]);
424 }
425 
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 					     unsigned int ring, u32 val,
428 					     enum dma_ring_reg r)
429 {
430 	__raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 			(DMA_RING_SIZE * ring) +
432 			genet_dma_ring_regs[r]);
433 }
434 
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 					   unsigned int ring,
437 					   enum dma_ring_reg r)
438 {
439 	return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 			(DMA_RING_SIZE * ring) +
441 			genet_dma_ring_regs[r]);
442 }
443 
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 					     unsigned int ring, u32 val,
446 					     enum dma_ring_reg r)
447 {
448 	__raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 			(DMA_RING_SIZE * ring) +
450 			genet_dma_ring_regs[r]);
451 }
452 
453 static int bcmgenet_get_settings(struct net_device *dev,
454 				 struct ethtool_cmd *cmd)
455 {
456 	if (!netif_running(dev))
457 		return -EINVAL;
458 
459 	if (!dev->phydev)
460 		return -ENODEV;
461 
462 	return phy_ethtool_gset(dev->phydev, cmd);
463 }
464 
465 static int bcmgenet_set_settings(struct net_device *dev,
466 				 struct ethtool_cmd *cmd)
467 {
468 	if (!netif_running(dev))
469 		return -EINVAL;
470 
471 	if (!dev->phydev)
472 		return -ENODEV;
473 
474 	return phy_ethtool_sset(dev->phydev, cmd);
475 }
476 
477 static int bcmgenet_set_rx_csum(struct net_device *dev,
478 				netdev_features_t wanted)
479 {
480 	struct bcmgenet_priv *priv = netdev_priv(dev);
481 	u32 rbuf_chk_ctrl;
482 	bool rx_csum_en;
483 
484 	rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
485 
486 	rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
487 
488 	/* enable rx checksumming */
489 	if (rx_csum_en)
490 		rbuf_chk_ctrl |= RBUF_RXCHK_EN;
491 	else
492 		rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
493 	priv->desc_rxchk_en = rx_csum_en;
494 
495 	/* If UniMAC forwards CRC, we need to skip over it to get
496 	 * a valid CHK bit to be set in the per-packet status word
497 	*/
498 	if (rx_csum_en && priv->crc_fwd_en)
499 		rbuf_chk_ctrl |= RBUF_SKIP_FCS;
500 	else
501 		rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
502 
503 	bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
504 
505 	return 0;
506 }
507 
508 static int bcmgenet_set_tx_csum(struct net_device *dev,
509 				netdev_features_t wanted)
510 {
511 	struct bcmgenet_priv *priv = netdev_priv(dev);
512 	bool desc_64b_en;
513 	u32 tbuf_ctrl, rbuf_ctrl;
514 
515 	tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
516 	rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
517 
518 	desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
519 
520 	/* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
521 	if (desc_64b_en) {
522 		tbuf_ctrl |= RBUF_64B_EN;
523 		rbuf_ctrl |= RBUF_64B_EN;
524 	} else {
525 		tbuf_ctrl &= ~RBUF_64B_EN;
526 		rbuf_ctrl &= ~RBUF_64B_EN;
527 	}
528 	priv->desc_64b_en = desc_64b_en;
529 
530 	bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
531 	bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
532 
533 	return 0;
534 }
535 
536 static int bcmgenet_set_features(struct net_device *dev,
537 				 netdev_features_t features)
538 {
539 	netdev_features_t changed = features ^ dev->features;
540 	netdev_features_t wanted = dev->wanted_features;
541 	int ret = 0;
542 
543 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
544 		ret = bcmgenet_set_tx_csum(dev, wanted);
545 	if (changed & (NETIF_F_RXCSUM))
546 		ret = bcmgenet_set_rx_csum(dev, wanted);
547 
548 	return ret;
549 }
550 
551 static u32 bcmgenet_get_msglevel(struct net_device *dev)
552 {
553 	struct bcmgenet_priv *priv = netdev_priv(dev);
554 
555 	return priv->msg_enable;
556 }
557 
558 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
559 {
560 	struct bcmgenet_priv *priv = netdev_priv(dev);
561 
562 	priv->msg_enable = level;
563 }
564 
565 static int bcmgenet_get_coalesce(struct net_device *dev,
566 				 struct ethtool_coalesce *ec)
567 {
568 	struct bcmgenet_priv *priv = netdev_priv(dev);
569 
570 	ec->tx_max_coalesced_frames =
571 		bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
572 					 DMA_MBUF_DONE_THRESH);
573 	ec->rx_max_coalesced_frames =
574 		bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
575 					 DMA_MBUF_DONE_THRESH);
576 	ec->rx_coalesce_usecs =
577 		bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
578 
579 	return 0;
580 }
581 
582 static int bcmgenet_set_coalesce(struct net_device *dev,
583 				 struct ethtool_coalesce *ec)
584 {
585 	struct bcmgenet_priv *priv = netdev_priv(dev);
586 	unsigned int i;
587 	u32 reg;
588 
589 	/* Base system clock is 125Mhz, DMA timeout is this reference clock
590 	 * divided by 1024, which yields roughly 8.192us, our maximum value
591 	 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
592 	 */
593 	if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
594 	    ec->tx_max_coalesced_frames == 0 ||
595 	    ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
596 	    ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
597 		return -EINVAL;
598 
599 	if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
600 		return -EINVAL;
601 
602 	/* GENET TDMA hardware does not support a configurable timeout, but will
603 	 * always generate an interrupt either after MBDONE packets have been
604 	 * transmitted, or when the ring is emtpy.
605 	 */
606 	if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
607 	    ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low)
608 		return -EOPNOTSUPP;
609 
610 	/* Program all TX queues with the same values, as there is no
611 	 * ethtool knob to do coalescing on a per-queue basis
612 	 */
613 	for (i = 0; i < priv->hw_params->tx_queues; i++)
614 		bcmgenet_tdma_ring_writel(priv, i,
615 					  ec->tx_max_coalesced_frames,
616 					  DMA_MBUF_DONE_THRESH);
617 	bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
618 				  ec->tx_max_coalesced_frames,
619 				  DMA_MBUF_DONE_THRESH);
620 
621 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
622 		bcmgenet_rdma_ring_writel(priv, i,
623 					  ec->rx_max_coalesced_frames,
624 					  DMA_MBUF_DONE_THRESH);
625 
626 		reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
627 		reg &= ~DMA_TIMEOUT_MASK;
628 		reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
629 		bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
630 	}
631 
632 	bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
633 				  ec->rx_max_coalesced_frames,
634 				  DMA_MBUF_DONE_THRESH);
635 
636 	reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
637 	reg &= ~DMA_TIMEOUT_MASK;
638 	reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
639 	bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
640 
641 	return 0;
642 }
643 
644 /* standard ethtool support functions. */
645 enum bcmgenet_stat_type {
646 	BCMGENET_STAT_NETDEV = -1,
647 	BCMGENET_STAT_MIB_RX,
648 	BCMGENET_STAT_MIB_TX,
649 	BCMGENET_STAT_RUNT,
650 	BCMGENET_STAT_MISC,
651 	BCMGENET_STAT_SOFT,
652 };
653 
654 struct bcmgenet_stats {
655 	char stat_string[ETH_GSTRING_LEN];
656 	int stat_sizeof;
657 	int stat_offset;
658 	enum bcmgenet_stat_type type;
659 	/* reg offset from UMAC base for misc counters */
660 	u16 reg_offset;
661 };
662 
663 #define STAT_NETDEV(m) { \
664 	.stat_string = __stringify(m), \
665 	.stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
666 	.stat_offset = offsetof(struct net_device_stats, m), \
667 	.type = BCMGENET_STAT_NETDEV, \
668 }
669 
670 #define STAT_GENET_MIB(str, m, _type) { \
671 	.stat_string = str, \
672 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
673 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
674 	.type = _type, \
675 }
676 
677 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
678 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
679 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
680 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
681 
682 #define STAT_GENET_MISC(str, m, offset) { \
683 	.stat_string = str, \
684 	.stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
685 	.stat_offset = offsetof(struct bcmgenet_priv, m), \
686 	.type = BCMGENET_STAT_MISC, \
687 	.reg_offset = offset, \
688 }
689 
690 
691 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
692  * between the end of TX stats and the beginning of the RX RUNT
693  */
694 #define BCMGENET_STAT_OFFSET	0xc
695 
696 /* Hardware counters must be kept in sync because the order/offset
697  * is important here (order in structure declaration = order in hardware)
698  */
699 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
700 	/* general stats */
701 	STAT_NETDEV(rx_packets),
702 	STAT_NETDEV(tx_packets),
703 	STAT_NETDEV(rx_bytes),
704 	STAT_NETDEV(tx_bytes),
705 	STAT_NETDEV(rx_errors),
706 	STAT_NETDEV(tx_errors),
707 	STAT_NETDEV(rx_dropped),
708 	STAT_NETDEV(tx_dropped),
709 	STAT_NETDEV(multicast),
710 	/* UniMAC RSV counters */
711 	STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
712 	STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
713 	STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
714 	STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
715 	STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
716 	STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
717 	STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
718 	STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
719 	STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
720 	STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
721 	STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
722 	STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
723 	STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
724 	STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
725 	STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
726 	STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
727 	STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
728 	STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
729 	STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
730 	STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
731 	STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
732 	STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
733 	STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
734 	STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
735 	STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
736 	STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
737 	STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
738 	STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
739 	STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
740 	/* UniMAC TSV counters */
741 	STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
742 	STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
743 	STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
744 	STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
745 	STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
746 	STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
747 	STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
748 	STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
749 	STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
750 	STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
751 	STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
752 	STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
753 	STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
754 	STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
755 	STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
756 	STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
757 	STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
758 	STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
759 	STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
760 	STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
761 	STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
762 	STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
763 	STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
764 	STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
765 	STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
766 	STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
767 	STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
768 	STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
769 	STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
770 	/* UniMAC RUNT counters */
771 	STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
772 	STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
773 	STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
774 	STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
775 	/* Misc UniMAC counters */
776 	STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
777 			UMAC_RBUF_OVFL_CNT),
778 	STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
779 	STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
780 	STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
781 	STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
782 	STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
783 };
784 
785 #define BCMGENET_STATS_LEN	ARRAY_SIZE(bcmgenet_gstrings_stats)
786 
787 static void bcmgenet_get_drvinfo(struct net_device *dev,
788 				 struct ethtool_drvinfo *info)
789 {
790 	strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
791 	strlcpy(info->version, "v2.0", sizeof(info->version));
792 }
793 
794 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
795 {
796 	switch (string_set) {
797 	case ETH_SS_STATS:
798 		return BCMGENET_STATS_LEN;
799 	default:
800 		return -EOPNOTSUPP;
801 	}
802 }
803 
804 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
805 				 u8 *data)
806 {
807 	int i;
808 
809 	switch (stringset) {
810 	case ETH_SS_STATS:
811 		for (i = 0; i < BCMGENET_STATS_LEN; i++) {
812 			memcpy(data + i * ETH_GSTRING_LEN,
813 			       bcmgenet_gstrings_stats[i].stat_string,
814 			       ETH_GSTRING_LEN);
815 		}
816 		break;
817 	}
818 }
819 
820 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
821 {
822 	int i, j = 0;
823 
824 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
825 		const struct bcmgenet_stats *s;
826 		u8 offset = 0;
827 		u32 val = 0;
828 		char *p;
829 
830 		s = &bcmgenet_gstrings_stats[i];
831 		switch (s->type) {
832 		case BCMGENET_STAT_NETDEV:
833 		case BCMGENET_STAT_SOFT:
834 			continue;
835 		case BCMGENET_STAT_MIB_RX:
836 		case BCMGENET_STAT_MIB_TX:
837 		case BCMGENET_STAT_RUNT:
838 			if (s->type != BCMGENET_STAT_MIB_RX)
839 				offset = BCMGENET_STAT_OFFSET;
840 			val = bcmgenet_umac_readl(priv,
841 						  UMAC_MIB_START + j + offset);
842 			break;
843 		case BCMGENET_STAT_MISC:
844 			val = bcmgenet_umac_readl(priv, s->reg_offset);
845 			/* clear if overflowed */
846 			if (val == ~0)
847 				bcmgenet_umac_writel(priv, 0, s->reg_offset);
848 			break;
849 		}
850 
851 		j += s->stat_sizeof;
852 		p = (char *)priv + s->stat_offset;
853 		*(u32 *)p = val;
854 	}
855 }
856 
857 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
858 				       struct ethtool_stats *stats,
859 				       u64 *data)
860 {
861 	struct bcmgenet_priv *priv = netdev_priv(dev);
862 	int i;
863 
864 	if (netif_running(dev))
865 		bcmgenet_update_mib_counters(priv);
866 
867 	for (i = 0; i < BCMGENET_STATS_LEN; i++) {
868 		const struct bcmgenet_stats *s;
869 		char *p;
870 
871 		s = &bcmgenet_gstrings_stats[i];
872 		if (s->type == BCMGENET_STAT_NETDEV)
873 			p = (char *)&dev->stats;
874 		else
875 			p = (char *)priv;
876 		p += s->stat_offset;
877 		if (sizeof(unsigned long) != sizeof(u32) &&
878 		    s->stat_sizeof == sizeof(unsigned long))
879 			data[i] = *(unsigned long *)p;
880 		else
881 			data[i] = *(u32 *)p;
882 	}
883 }
884 
885 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
886 {
887 	struct bcmgenet_priv *priv = netdev_priv(dev);
888 	u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
889 	u32 reg;
890 
891 	if (enable && !priv->clk_eee_enabled) {
892 		clk_prepare_enable(priv->clk_eee);
893 		priv->clk_eee_enabled = true;
894 	}
895 
896 	reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
897 	if (enable)
898 		reg |= EEE_EN;
899 	else
900 		reg &= ~EEE_EN;
901 	bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
902 
903 	/* Enable EEE and switch to a 27Mhz clock automatically */
904 	reg = __raw_readl(priv->base + off);
905 	if (enable)
906 		reg |= TBUF_EEE_EN | TBUF_PM_EN;
907 	else
908 		reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
909 	__raw_writel(reg, priv->base + off);
910 
911 	/* Do the same for thing for RBUF */
912 	reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
913 	if (enable)
914 		reg |= RBUF_EEE_EN | RBUF_PM_EN;
915 	else
916 		reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
917 	bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
918 
919 	if (!enable && priv->clk_eee_enabled) {
920 		clk_disable_unprepare(priv->clk_eee);
921 		priv->clk_eee_enabled = false;
922 	}
923 
924 	priv->eee.eee_enabled = enable;
925 	priv->eee.eee_active = enable;
926 }
927 
928 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
929 {
930 	struct bcmgenet_priv *priv = netdev_priv(dev);
931 	struct ethtool_eee *p = &priv->eee;
932 
933 	if (GENET_IS_V1(priv))
934 		return -EOPNOTSUPP;
935 
936 	e->eee_enabled = p->eee_enabled;
937 	e->eee_active = p->eee_active;
938 	e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
939 
940 	return phy_ethtool_get_eee(dev->phydev, e);
941 }
942 
943 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
944 {
945 	struct bcmgenet_priv *priv = netdev_priv(dev);
946 	struct ethtool_eee *p = &priv->eee;
947 	int ret = 0;
948 
949 	if (GENET_IS_V1(priv))
950 		return -EOPNOTSUPP;
951 
952 	p->eee_enabled = e->eee_enabled;
953 
954 	if (!p->eee_enabled) {
955 		bcmgenet_eee_enable_set(dev, false);
956 	} else {
957 		ret = phy_init_eee(dev->phydev, 0);
958 		if (ret) {
959 			netif_err(priv, hw, dev, "EEE initialization failed\n");
960 			return ret;
961 		}
962 
963 		bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
964 		bcmgenet_eee_enable_set(dev, true);
965 	}
966 
967 	return phy_ethtool_set_eee(dev->phydev, e);
968 }
969 
970 static int bcmgenet_nway_reset(struct net_device *dev)
971 {
972 	return genphy_restart_aneg(dev->phydev);
973 }
974 
975 /* standard ethtool support functions. */
976 static struct ethtool_ops bcmgenet_ethtool_ops = {
977 	.get_strings		= bcmgenet_get_strings,
978 	.get_sset_count		= bcmgenet_get_sset_count,
979 	.get_ethtool_stats	= bcmgenet_get_ethtool_stats,
980 	.get_settings		= bcmgenet_get_settings,
981 	.set_settings		= bcmgenet_set_settings,
982 	.get_drvinfo		= bcmgenet_get_drvinfo,
983 	.get_link		= ethtool_op_get_link,
984 	.get_msglevel		= bcmgenet_get_msglevel,
985 	.set_msglevel		= bcmgenet_set_msglevel,
986 	.get_wol		= bcmgenet_get_wol,
987 	.set_wol		= bcmgenet_set_wol,
988 	.get_eee		= bcmgenet_get_eee,
989 	.set_eee		= bcmgenet_set_eee,
990 	.nway_reset		= bcmgenet_nway_reset,
991 	.get_coalesce		= bcmgenet_get_coalesce,
992 	.set_coalesce		= bcmgenet_set_coalesce,
993 };
994 
995 /* Power down the unimac, based on mode. */
996 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
997 				enum bcmgenet_power_mode mode)
998 {
999 	struct net_device *ndev = priv->dev;
1000 	int ret = 0;
1001 	u32 reg;
1002 
1003 	switch (mode) {
1004 	case GENET_POWER_CABLE_SENSE:
1005 		phy_detach(ndev->phydev);
1006 		break;
1007 
1008 	case GENET_POWER_WOL_MAGIC:
1009 		ret = bcmgenet_wol_power_down_cfg(priv, mode);
1010 		break;
1011 
1012 	case GENET_POWER_PASSIVE:
1013 		/* Power down LED */
1014 		if (priv->hw_params->flags & GENET_HAS_EXT) {
1015 			reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1016 			reg |= (EXT_PWR_DOWN_PHY |
1017 				EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1018 			bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1019 
1020 			bcmgenet_phy_power_set(priv->dev, false);
1021 		}
1022 		break;
1023 	default:
1024 		break;
1025 	}
1026 
1027 	return 0;
1028 }
1029 
1030 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1031 			      enum bcmgenet_power_mode mode)
1032 {
1033 	u32 reg;
1034 
1035 	if (!(priv->hw_params->flags & GENET_HAS_EXT))
1036 		return;
1037 
1038 	reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1039 
1040 	switch (mode) {
1041 	case GENET_POWER_PASSIVE:
1042 		reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1043 				EXT_PWR_DOWN_BIAS);
1044 		/* fallthrough */
1045 	case GENET_POWER_CABLE_SENSE:
1046 		/* enable APD */
1047 		reg |= EXT_PWR_DN_EN_LD;
1048 		break;
1049 	case GENET_POWER_WOL_MAGIC:
1050 		bcmgenet_wol_power_up_cfg(priv, mode);
1051 		return;
1052 	default:
1053 		break;
1054 	}
1055 
1056 	bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1057 	if (mode == GENET_POWER_PASSIVE) {
1058 		bcmgenet_phy_power_set(priv->dev, true);
1059 		bcmgenet_mii_reset(priv->dev);
1060 	}
1061 }
1062 
1063 /* ioctl handle special commands that are not present in ethtool. */
1064 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1065 {
1066 	int val = 0;
1067 
1068 	if (!netif_running(dev))
1069 		return -EINVAL;
1070 
1071 	switch (cmd) {
1072 	case SIOCGMIIPHY:
1073 	case SIOCGMIIREG:
1074 	case SIOCSMIIREG:
1075 		if (!dev->phydev)
1076 			val = -ENODEV;
1077 		else
1078 			val = phy_mii_ioctl(dev->phydev, rq, cmd);
1079 		break;
1080 
1081 	default:
1082 		val = -EINVAL;
1083 		break;
1084 	}
1085 
1086 	return val;
1087 }
1088 
1089 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1090 					 struct bcmgenet_tx_ring *ring)
1091 {
1092 	struct enet_cb *tx_cb_ptr;
1093 
1094 	tx_cb_ptr = ring->cbs;
1095 	tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1096 
1097 	/* Advancing local write pointer */
1098 	if (ring->write_ptr == ring->end_ptr)
1099 		ring->write_ptr = ring->cb_ptr;
1100 	else
1101 		ring->write_ptr++;
1102 
1103 	return tx_cb_ptr;
1104 }
1105 
1106 /* Simple helper to free a control block's resources */
1107 static void bcmgenet_free_cb(struct enet_cb *cb)
1108 {
1109 	dev_kfree_skb_any(cb->skb);
1110 	cb->skb = NULL;
1111 	dma_unmap_addr_set(cb, dma_addr, 0);
1112 }
1113 
1114 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1115 {
1116 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1117 				 INTRL2_CPU_MASK_SET);
1118 }
1119 
1120 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1121 {
1122 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1123 				 INTRL2_CPU_MASK_CLEAR);
1124 }
1125 
1126 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1127 {
1128 	bcmgenet_intrl2_1_writel(ring->priv,
1129 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1130 				 INTRL2_CPU_MASK_SET);
1131 }
1132 
1133 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1134 {
1135 	bcmgenet_intrl2_1_writel(ring->priv,
1136 				 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1137 				 INTRL2_CPU_MASK_CLEAR);
1138 }
1139 
1140 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1141 {
1142 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1143 				 INTRL2_CPU_MASK_SET);
1144 }
1145 
1146 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1147 {
1148 	bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1149 				 INTRL2_CPU_MASK_CLEAR);
1150 }
1151 
1152 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1153 {
1154 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1155 				 INTRL2_CPU_MASK_CLEAR);
1156 }
1157 
1158 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1159 {
1160 	bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1161 				 INTRL2_CPU_MASK_SET);
1162 }
1163 
1164 /* Unlocked version of the reclaim routine */
1165 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1166 					  struct bcmgenet_tx_ring *ring)
1167 {
1168 	struct bcmgenet_priv *priv = netdev_priv(dev);
1169 	struct enet_cb *tx_cb_ptr;
1170 	struct netdev_queue *txq;
1171 	unsigned int pkts_compl = 0;
1172 	unsigned int bytes_compl = 0;
1173 	unsigned int c_index;
1174 	unsigned int txbds_ready;
1175 	unsigned int txbds_processed = 0;
1176 
1177 	/* Compute how many buffers are transmitted since last xmit call */
1178 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1179 	c_index &= DMA_C_INDEX_MASK;
1180 
1181 	if (likely(c_index >= ring->c_index))
1182 		txbds_ready = c_index - ring->c_index;
1183 	else
1184 		txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1185 
1186 	netif_dbg(priv, tx_done, dev,
1187 		  "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1188 		  __func__, ring->index, ring->c_index, c_index, txbds_ready);
1189 
1190 	/* Reclaim transmitted buffers */
1191 	while (txbds_processed < txbds_ready) {
1192 		tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1193 		if (tx_cb_ptr->skb) {
1194 			pkts_compl++;
1195 			bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent;
1196 			dma_unmap_single(&dev->dev,
1197 					 dma_unmap_addr(tx_cb_ptr, dma_addr),
1198 					 dma_unmap_len(tx_cb_ptr, dma_len),
1199 					 DMA_TO_DEVICE);
1200 			bcmgenet_free_cb(tx_cb_ptr);
1201 		} else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1202 			dma_unmap_page(&dev->dev,
1203 				       dma_unmap_addr(tx_cb_ptr, dma_addr),
1204 				       dma_unmap_len(tx_cb_ptr, dma_len),
1205 				       DMA_TO_DEVICE);
1206 			dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1207 		}
1208 
1209 		txbds_processed++;
1210 		if (likely(ring->clean_ptr < ring->end_ptr))
1211 			ring->clean_ptr++;
1212 		else
1213 			ring->clean_ptr = ring->cb_ptr;
1214 	}
1215 
1216 	ring->free_bds += txbds_processed;
1217 	ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1218 
1219 	dev->stats.tx_packets += pkts_compl;
1220 	dev->stats.tx_bytes += bytes_compl;
1221 
1222 	txq = netdev_get_tx_queue(dev, ring->queue);
1223 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
1224 
1225 	if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1226 		if (netif_tx_queue_stopped(txq))
1227 			netif_tx_wake_queue(txq);
1228 	}
1229 
1230 	return pkts_compl;
1231 }
1232 
1233 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1234 				struct bcmgenet_tx_ring *ring)
1235 {
1236 	unsigned int released;
1237 	unsigned long flags;
1238 
1239 	spin_lock_irqsave(&ring->lock, flags);
1240 	released = __bcmgenet_tx_reclaim(dev, ring);
1241 	spin_unlock_irqrestore(&ring->lock, flags);
1242 
1243 	return released;
1244 }
1245 
1246 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1247 {
1248 	struct bcmgenet_tx_ring *ring =
1249 		container_of(napi, struct bcmgenet_tx_ring, napi);
1250 	unsigned int work_done = 0;
1251 
1252 	work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1253 
1254 	if (work_done == 0) {
1255 		napi_complete(napi);
1256 		ring->int_enable(ring);
1257 
1258 		return 0;
1259 	}
1260 
1261 	return budget;
1262 }
1263 
1264 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1265 {
1266 	struct bcmgenet_priv *priv = netdev_priv(dev);
1267 	int i;
1268 
1269 	if (netif_is_multiqueue(dev)) {
1270 		for (i = 0; i < priv->hw_params->tx_queues; i++)
1271 			bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1272 	}
1273 
1274 	bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1275 }
1276 
1277 /* Transmits a single SKB (either head of a fragment or a single SKB)
1278  * caller must hold priv->lock
1279  */
1280 static int bcmgenet_xmit_single(struct net_device *dev,
1281 				struct sk_buff *skb,
1282 				u16 dma_desc_flags,
1283 				struct bcmgenet_tx_ring *ring)
1284 {
1285 	struct bcmgenet_priv *priv = netdev_priv(dev);
1286 	struct device *kdev = &priv->pdev->dev;
1287 	struct enet_cb *tx_cb_ptr;
1288 	unsigned int skb_len;
1289 	dma_addr_t mapping;
1290 	u32 length_status;
1291 	int ret;
1292 
1293 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1294 
1295 	if (unlikely(!tx_cb_ptr))
1296 		BUG();
1297 
1298 	tx_cb_ptr->skb = skb;
1299 
1300 	skb_len = skb_headlen(skb);
1301 
1302 	mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1303 	ret = dma_mapping_error(kdev, mapping);
1304 	if (ret) {
1305 		priv->mib.tx_dma_failed++;
1306 		netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1307 		dev_kfree_skb(skb);
1308 		return ret;
1309 	}
1310 
1311 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1312 	dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len);
1313 	length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1314 			(priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1315 			DMA_TX_APPEND_CRC;
1316 
1317 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1318 		length_status |= DMA_TX_DO_CSUM;
1319 
1320 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1321 
1322 	return 0;
1323 }
1324 
1325 /* Transmit a SKB fragment */
1326 static int bcmgenet_xmit_frag(struct net_device *dev,
1327 			      skb_frag_t *frag,
1328 			      u16 dma_desc_flags,
1329 			      struct bcmgenet_tx_ring *ring)
1330 {
1331 	struct bcmgenet_priv *priv = netdev_priv(dev);
1332 	struct device *kdev = &priv->pdev->dev;
1333 	struct enet_cb *tx_cb_ptr;
1334 	unsigned int frag_size;
1335 	dma_addr_t mapping;
1336 	int ret;
1337 
1338 	tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1339 
1340 	if (unlikely(!tx_cb_ptr))
1341 		BUG();
1342 
1343 	tx_cb_ptr->skb = NULL;
1344 
1345 	frag_size = skb_frag_size(frag);
1346 
1347 	mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE);
1348 	ret = dma_mapping_error(kdev, mapping);
1349 	if (ret) {
1350 		priv->mib.tx_dma_failed++;
1351 		netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1352 			  __func__);
1353 		return ret;
1354 	}
1355 
1356 	dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1357 	dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size);
1358 
1359 	dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1360 		    (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1361 		    (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1362 
1363 	return 0;
1364 }
1365 
1366 /* Reallocate the SKB to put enough headroom in front of it and insert
1367  * the transmit checksum offsets in the descriptors
1368  */
1369 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1370 					    struct sk_buff *skb)
1371 {
1372 	struct status_64 *status = NULL;
1373 	struct sk_buff *new_skb;
1374 	u16 offset;
1375 	u8 ip_proto;
1376 	u16 ip_ver;
1377 	u32 tx_csum_info;
1378 
1379 	if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1380 		/* If 64 byte status block enabled, must make sure skb has
1381 		 * enough headroom for us to insert 64B status block.
1382 		 */
1383 		new_skb = skb_realloc_headroom(skb, sizeof(*status));
1384 		dev_kfree_skb(skb);
1385 		if (!new_skb) {
1386 			dev->stats.tx_dropped++;
1387 			return NULL;
1388 		}
1389 		skb = new_skb;
1390 	}
1391 
1392 	skb_push(skb, sizeof(*status));
1393 	status = (struct status_64 *)skb->data;
1394 
1395 	if (skb->ip_summed  == CHECKSUM_PARTIAL) {
1396 		ip_ver = htons(skb->protocol);
1397 		switch (ip_ver) {
1398 		case ETH_P_IP:
1399 			ip_proto = ip_hdr(skb)->protocol;
1400 			break;
1401 		case ETH_P_IPV6:
1402 			ip_proto = ipv6_hdr(skb)->nexthdr;
1403 			break;
1404 		default:
1405 			return skb;
1406 		}
1407 
1408 		offset = skb_checksum_start_offset(skb) - sizeof(*status);
1409 		tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1410 				(offset + skb->csum_offset);
1411 
1412 		/* Set the length valid bit for TCP and UDP and just set
1413 		 * the special UDP flag for IPv4, else just set to 0.
1414 		 */
1415 		if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1416 			tx_csum_info |= STATUS_TX_CSUM_LV;
1417 			if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1418 				tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1419 		} else {
1420 			tx_csum_info = 0;
1421 		}
1422 
1423 		status->tx_csum_info = tx_csum_info;
1424 	}
1425 
1426 	return skb;
1427 }
1428 
1429 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1430 {
1431 	struct bcmgenet_priv *priv = netdev_priv(dev);
1432 	struct bcmgenet_tx_ring *ring = NULL;
1433 	struct netdev_queue *txq;
1434 	unsigned long flags = 0;
1435 	int nr_frags, index;
1436 	u16 dma_desc_flags;
1437 	int ret;
1438 	int i;
1439 
1440 	index = skb_get_queue_mapping(skb);
1441 	/* Mapping strategy:
1442 	 * queue_mapping = 0, unclassified, packet xmited through ring16
1443 	 * queue_mapping = 1, goes to ring 0. (highest priority queue
1444 	 * queue_mapping = 2, goes to ring 1.
1445 	 * queue_mapping = 3, goes to ring 2.
1446 	 * queue_mapping = 4, goes to ring 3.
1447 	 */
1448 	if (index == 0)
1449 		index = DESC_INDEX;
1450 	else
1451 		index -= 1;
1452 
1453 	ring = &priv->tx_rings[index];
1454 	txq = netdev_get_tx_queue(dev, ring->queue);
1455 
1456 	nr_frags = skb_shinfo(skb)->nr_frags;
1457 
1458 	spin_lock_irqsave(&ring->lock, flags);
1459 	if (ring->free_bds <= (nr_frags + 1)) {
1460 		if (!netif_tx_queue_stopped(txq)) {
1461 			netif_tx_stop_queue(txq);
1462 			netdev_err(dev,
1463 				   "%s: tx ring %d full when queue %d awake\n",
1464 				   __func__, index, ring->queue);
1465 		}
1466 		ret = NETDEV_TX_BUSY;
1467 		goto out;
1468 	}
1469 
1470 	if (skb_padto(skb, ETH_ZLEN)) {
1471 		ret = NETDEV_TX_OK;
1472 		goto out;
1473 	}
1474 
1475 	/* Retain how many bytes will be sent on the wire, without TSB inserted
1476 	 * by transmit checksum offload
1477 	 */
1478 	GENET_CB(skb)->bytes_sent = skb->len;
1479 
1480 	/* set the SKB transmit checksum */
1481 	if (priv->desc_64b_en) {
1482 		skb = bcmgenet_put_tx_csum(dev, skb);
1483 		if (!skb) {
1484 			ret = NETDEV_TX_OK;
1485 			goto out;
1486 		}
1487 	}
1488 
1489 	dma_desc_flags = DMA_SOP;
1490 	if (nr_frags == 0)
1491 		dma_desc_flags |= DMA_EOP;
1492 
1493 	/* Transmit single SKB or head of fragment list */
1494 	ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1495 	if (ret) {
1496 		ret = NETDEV_TX_OK;
1497 		goto out;
1498 	}
1499 
1500 	/* xmit fragment */
1501 	for (i = 0; i < nr_frags; i++) {
1502 		ret = bcmgenet_xmit_frag(dev,
1503 					 &skb_shinfo(skb)->frags[i],
1504 					 (i == nr_frags - 1) ? DMA_EOP : 0,
1505 					 ring);
1506 		if (ret) {
1507 			ret = NETDEV_TX_OK;
1508 			goto out;
1509 		}
1510 	}
1511 
1512 	skb_tx_timestamp(skb);
1513 
1514 	/* Decrement total BD count and advance our write pointer */
1515 	ring->free_bds -= nr_frags + 1;
1516 	ring->prod_index += nr_frags + 1;
1517 	ring->prod_index &= DMA_P_INDEX_MASK;
1518 
1519 	netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent);
1520 
1521 	if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1522 		netif_tx_stop_queue(txq);
1523 
1524 	if (!skb->xmit_more || netif_xmit_stopped(txq))
1525 		/* Packets are ready, update producer index */
1526 		bcmgenet_tdma_ring_writel(priv, ring->index,
1527 					  ring->prod_index, TDMA_PROD_INDEX);
1528 out:
1529 	spin_unlock_irqrestore(&ring->lock, flags);
1530 
1531 	return ret;
1532 }
1533 
1534 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1535 					  struct enet_cb *cb)
1536 {
1537 	struct device *kdev = &priv->pdev->dev;
1538 	struct sk_buff *skb;
1539 	struct sk_buff *rx_skb;
1540 	dma_addr_t mapping;
1541 
1542 	/* Allocate a new Rx skb */
1543 	skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1544 	if (!skb) {
1545 		priv->mib.alloc_rx_buff_failed++;
1546 		netif_err(priv, rx_err, priv->dev,
1547 			  "%s: Rx skb allocation failed\n", __func__);
1548 		return NULL;
1549 	}
1550 
1551 	/* DMA-map the new Rx skb */
1552 	mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1553 				 DMA_FROM_DEVICE);
1554 	if (dma_mapping_error(kdev, mapping)) {
1555 		priv->mib.rx_dma_failed++;
1556 		dev_kfree_skb_any(skb);
1557 		netif_err(priv, rx_err, priv->dev,
1558 			  "%s: Rx skb DMA mapping failed\n", __func__);
1559 		return NULL;
1560 	}
1561 
1562 	/* Grab the current Rx skb from the ring and DMA-unmap it */
1563 	rx_skb = cb->skb;
1564 	if (likely(rx_skb))
1565 		dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1566 				 priv->rx_buf_len, DMA_FROM_DEVICE);
1567 
1568 	/* Put the new Rx skb on the ring */
1569 	cb->skb = skb;
1570 	dma_unmap_addr_set(cb, dma_addr, mapping);
1571 	dmadesc_set_addr(priv, cb->bd_addr, mapping);
1572 
1573 	/* Return the current Rx skb to caller */
1574 	return rx_skb;
1575 }
1576 
1577 /* bcmgenet_desc_rx - descriptor based rx process.
1578  * this could be called from bottom half, or from NAPI polling method.
1579  */
1580 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1581 				     unsigned int budget)
1582 {
1583 	struct bcmgenet_priv *priv = ring->priv;
1584 	struct net_device *dev = priv->dev;
1585 	struct enet_cb *cb;
1586 	struct sk_buff *skb;
1587 	u32 dma_length_status;
1588 	unsigned long dma_flag;
1589 	int len;
1590 	unsigned int rxpktprocessed = 0, rxpkttoprocess;
1591 	unsigned int p_index;
1592 	unsigned int discards;
1593 	unsigned int chksum_ok = 0;
1594 
1595 	p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1596 
1597 	discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1598 		   DMA_P_INDEX_DISCARD_CNT_MASK;
1599 	if (discards > ring->old_discards) {
1600 		discards = discards - ring->old_discards;
1601 		dev->stats.rx_missed_errors += discards;
1602 		dev->stats.rx_errors += discards;
1603 		ring->old_discards += discards;
1604 
1605 		/* Clear HW register when we reach 75% of maximum 0xFFFF */
1606 		if (ring->old_discards >= 0xC000) {
1607 			ring->old_discards = 0;
1608 			bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1609 						  RDMA_PROD_INDEX);
1610 		}
1611 	}
1612 
1613 	p_index &= DMA_P_INDEX_MASK;
1614 
1615 	if (likely(p_index >= ring->c_index))
1616 		rxpkttoprocess = p_index - ring->c_index;
1617 	else
1618 		rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1619 				 p_index;
1620 
1621 	netif_dbg(priv, rx_status, dev,
1622 		  "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1623 
1624 	while ((rxpktprocessed < rxpkttoprocess) &&
1625 	       (rxpktprocessed < budget)) {
1626 		cb = &priv->rx_cbs[ring->read_ptr];
1627 		skb = bcmgenet_rx_refill(priv, cb);
1628 
1629 		if (unlikely(!skb)) {
1630 			dev->stats.rx_dropped++;
1631 			goto next;
1632 		}
1633 
1634 		if (!priv->desc_64b_en) {
1635 			dma_length_status =
1636 				dmadesc_get_length_status(priv, cb->bd_addr);
1637 		} else {
1638 			struct status_64 *status;
1639 
1640 			status = (struct status_64 *)skb->data;
1641 			dma_length_status = status->length_status;
1642 		}
1643 
1644 		/* DMA flags and length are still valid no matter how
1645 		 * we got the Receive Status Vector (64B RSB or register)
1646 		 */
1647 		dma_flag = dma_length_status & 0xffff;
1648 		len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1649 
1650 		netif_dbg(priv, rx_status, dev,
1651 			  "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1652 			  __func__, p_index, ring->c_index,
1653 			  ring->read_ptr, dma_length_status);
1654 
1655 		if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1656 			netif_err(priv, rx_status, dev,
1657 				  "dropping fragmented packet!\n");
1658 			dev->stats.rx_errors++;
1659 			dev_kfree_skb_any(skb);
1660 			goto next;
1661 		}
1662 
1663 		/* report errors */
1664 		if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1665 						DMA_RX_OV |
1666 						DMA_RX_NO |
1667 						DMA_RX_LG |
1668 						DMA_RX_RXER))) {
1669 			netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1670 				  (unsigned int)dma_flag);
1671 			if (dma_flag & DMA_RX_CRC_ERROR)
1672 				dev->stats.rx_crc_errors++;
1673 			if (dma_flag & DMA_RX_OV)
1674 				dev->stats.rx_over_errors++;
1675 			if (dma_flag & DMA_RX_NO)
1676 				dev->stats.rx_frame_errors++;
1677 			if (dma_flag & DMA_RX_LG)
1678 				dev->stats.rx_length_errors++;
1679 			dev->stats.rx_errors++;
1680 			dev_kfree_skb_any(skb);
1681 			goto next;
1682 		} /* error packet */
1683 
1684 		chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1685 			     priv->desc_rxchk_en;
1686 
1687 		skb_put(skb, len);
1688 		if (priv->desc_64b_en) {
1689 			skb_pull(skb, 64);
1690 			len -= 64;
1691 		}
1692 
1693 		if (likely(chksum_ok))
1694 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1695 
1696 		/* remove hardware 2bytes added for IP alignment */
1697 		skb_pull(skb, 2);
1698 		len -= 2;
1699 
1700 		if (priv->crc_fwd_en) {
1701 			skb_trim(skb, len - ETH_FCS_LEN);
1702 			len -= ETH_FCS_LEN;
1703 		}
1704 
1705 		/*Finish setting up the received SKB and send it to the kernel*/
1706 		skb->protocol = eth_type_trans(skb, priv->dev);
1707 		dev->stats.rx_packets++;
1708 		dev->stats.rx_bytes += len;
1709 		if (dma_flag & DMA_RX_MULT)
1710 			dev->stats.multicast++;
1711 
1712 		/* Notify kernel */
1713 		napi_gro_receive(&ring->napi, skb);
1714 		netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1715 
1716 next:
1717 		rxpktprocessed++;
1718 		if (likely(ring->read_ptr < ring->end_ptr))
1719 			ring->read_ptr++;
1720 		else
1721 			ring->read_ptr = ring->cb_ptr;
1722 
1723 		ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1724 		bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1725 	}
1726 
1727 	return rxpktprocessed;
1728 }
1729 
1730 /* Rx NAPI polling method */
1731 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1732 {
1733 	struct bcmgenet_rx_ring *ring = container_of(napi,
1734 			struct bcmgenet_rx_ring, napi);
1735 	unsigned int work_done;
1736 
1737 	work_done = bcmgenet_desc_rx(ring, budget);
1738 
1739 	if (work_done < budget) {
1740 		napi_complete_done(napi, work_done);
1741 		ring->int_enable(ring);
1742 	}
1743 
1744 	return work_done;
1745 }
1746 
1747 /* Assign skb to RX DMA descriptor. */
1748 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1749 				     struct bcmgenet_rx_ring *ring)
1750 {
1751 	struct enet_cb *cb;
1752 	struct sk_buff *skb;
1753 	int i;
1754 
1755 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1756 
1757 	/* loop here for each buffer needing assign */
1758 	for (i = 0; i < ring->size; i++) {
1759 		cb = ring->cbs + i;
1760 		skb = bcmgenet_rx_refill(priv, cb);
1761 		if (skb)
1762 			dev_kfree_skb_any(skb);
1763 		if (!cb->skb)
1764 			return -ENOMEM;
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1771 {
1772 	struct enet_cb *cb;
1773 	int i;
1774 
1775 	for (i = 0; i < priv->num_rx_bds; i++) {
1776 		cb = &priv->rx_cbs[i];
1777 
1778 		if (dma_unmap_addr(cb, dma_addr)) {
1779 			dma_unmap_single(&priv->dev->dev,
1780 					 dma_unmap_addr(cb, dma_addr),
1781 					 priv->rx_buf_len, DMA_FROM_DEVICE);
1782 			dma_unmap_addr_set(cb, dma_addr, 0);
1783 		}
1784 
1785 		if (cb->skb)
1786 			bcmgenet_free_cb(cb);
1787 	}
1788 }
1789 
1790 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1791 {
1792 	u32 reg;
1793 
1794 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1795 	if (enable)
1796 		reg |= mask;
1797 	else
1798 		reg &= ~mask;
1799 	bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1800 
1801 	/* UniMAC stops on a packet boundary, wait for a full-size packet
1802 	 * to be processed
1803 	 */
1804 	if (enable == 0)
1805 		usleep_range(1000, 2000);
1806 }
1807 
1808 static int reset_umac(struct bcmgenet_priv *priv)
1809 {
1810 	struct device *kdev = &priv->pdev->dev;
1811 	unsigned int timeout = 0;
1812 	u32 reg;
1813 
1814 	/* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1815 	bcmgenet_rbuf_ctrl_set(priv, 0);
1816 	udelay(10);
1817 
1818 	/* disable MAC while updating its registers */
1819 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1820 
1821 	/* issue soft reset, wait for it to complete */
1822 	bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1823 	while (timeout++ < 1000) {
1824 		reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1825 		if (!(reg & CMD_SW_RESET))
1826 			return 0;
1827 
1828 		udelay(1);
1829 	}
1830 
1831 	if (timeout == 1000) {
1832 		dev_err(kdev,
1833 			"timeout waiting for MAC to come out of reset\n");
1834 		return -ETIMEDOUT;
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1841 {
1842 	/* Mask all interrupts.*/
1843 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1844 	bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1845 	bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1846 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1847 	bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1848 	bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1849 }
1850 
1851 static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv)
1852 {
1853 	u32 int0_enable = 0;
1854 
1855 	/* Monitor cable plug/unplugged event for internal PHY, external PHY
1856 	 * and MoCA PHY
1857 	 */
1858 	if (priv->internal_phy) {
1859 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1860 	} else if (priv->ext_phy) {
1861 		int0_enable |= UMAC_IRQ_LINK_EVENT;
1862 	} else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1863 		if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1864 			int0_enable |= UMAC_IRQ_LINK_EVENT;
1865 	}
1866 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1867 }
1868 
1869 static int init_umac(struct bcmgenet_priv *priv)
1870 {
1871 	struct device *kdev = &priv->pdev->dev;
1872 	int ret;
1873 	u32 reg;
1874 	u32 int0_enable = 0;
1875 	u32 int1_enable = 0;
1876 	int i;
1877 
1878 	dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1879 
1880 	ret = reset_umac(priv);
1881 	if (ret)
1882 		return ret;
1883 
1884 	bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1885 	/* clear tx/rx counter */
1886 	bcmgenet_umac_writel(priv,
1887 			     MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1888 			     UMAC_MIB_CTRL);
1889 	bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1890 
1891 	bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1892 
1893 	/* init rx registers, enable ip header optimization */
1894 	reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1895 	reg |= RBUF_ALIGN_2B;
1896 	bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1897 
1898 	if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1899 		bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1900 
1901 	bcmgenet_intr_disable(priv);
1902 
1903 	/* Enable Rx default queue 16 interrupts */
1904 	int0_enable |= UMAC_IRQ_RXDMA_DONE;
1905 
1906 	/* Enable Tx default queue 16 interrupts */
1907 	int0_enable |= UMAC_IRQ_TXDMA_DONE;
1908 
1909 	/* Configure backpressure vectors for MoCA */
1910 	if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1911 		reg = bcmgenet_bp_mc_get(priv);
1912 		reg |= BIT(priv->hw_params->bp_in_en_shift);
1913 
1914 		/* bp_mask: back pressure mask */
1915 		if (netif_is_multiqueue(priv->dev))
1916 			reg |= priv->hw_params->bp_in_mask;
1917 		else
1918 			reg &= ~priv->hw_params->bp_in_mask;
1919 		bcmgenet_bp_mc_set(priv, reg);
1920 	}
1921 
1922 	/* Enable MDIO interrupts on GENET v3+ */
1923 	if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1924 		int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1925 
1926 	/* Enable Rx priority queue interrupts */
1927 	for (i = 0; i < priv->hw_params->rx_queues; ++i)
1928 		int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1929 
1930 	/* Enable Tx priority queue interrupts */
1931 	for (i = 0; i < priv->hw_params->tx_queues; ++i)
1932 		int1_enable |= (1 << i);
1933 
1934 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1935 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1936 
1937 	/* Enable rx/tx engine.*/
1938 	dev_dbg(kdev, "done init umac\n");
1939 
1940 	return 0;
1941 }
1942 
1943 /* Initialize a Tx ring along with corresponding hardware registers */
1944 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1945 				  unsigned int index, unsigned int size,
1946 				  unsigned int start_ptr, unsigned int end_ptr)
1947 {
1948 	struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1949 	u32 words_per_bd = WORDS_PER_BD(priv);
1950 	u32 flow_period_val = 0;
1951 
1952 	spin_lock_init(&ring->lock);
1953 	ring->priv = priv;
1954 	ring->index = index;
1955 	if (index == DESC_INDEX) {
1956 		ring->queue = 0;
1957 		ring->int_enable = bcmgenet_tx_ring16_int_enable;
1958 		ring->int_disable = bcmgenet_tx_ring16_int_disable;
1959 	} else {
1960 		ring->queue = index + 1;
1961 		ring->int_enable = bcmgenet_tx_ring_int_enable;
1962 		ring->int_disable = bcmgenet_tx_ring_int_disable;
1963 	}
1964 	ring->cbs = priv->tx_cbs + start_ptr;
1965 	ring->size = size;
1966 	ring->clean_ptr = start_ptr;
1967 	ring->c_index = 0;
1968 	ring->free_bds = size;
1969 	ring->write_ptr = start_ptr;
1970 	ring->cb_ptr = start_ptr;
1971 	ring->end_ptr = end_ptr - 1;
1972 	ring->prod_index = 0;
1973 
1974 	/* Set flow period for ring != 16 */
1975 	if (index != DESC_INDEX)
1976 		flow_period_val = ENET_MAX_MTU_SIZE << 16;
1977 
1978 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1979 	bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1980 	bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1981 	/* Disable rate control for now */
1982 	bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1983 				  TDMA_FLOW_PERIOD);
1984 	bcmgenet_tdma_ring_writel(priv, index,
1985 				  ((size << DMA_RING_SIZE_SHIFT) |
1986 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1987 
1988 	/* Set start and end address, read and write pointers */
1989 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1990 				  DMA_START_ADDR);
1991 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1992 				  TDMA_READ_PTR);
1993 	bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1994 				  TDMA_WRITE_PTR);
1995 	bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1996 				  DMA_END_ADDR);
1997 }
1998 
1999 /* Initialize a RDMA ring */
2000 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
2001 				 unsigned int index, unsigned int size,
2002 				 unsigned int start_ptr, unsigned int end_ptr)
2003 {
2004 	struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
2005 	u32 words_per_bd = WORDS_PER_BD(priv);
2006 	int ret;
2007 
2008 	ring->priv = priv;
2009 	ring->index = index;
2010 	if (index == DESC_INDEX) {
2011 		ring->int_enable = bcmgenet_rx_ring16_int_enable;
2012 		ring->int_disable = bcmgenet_rx_ring16_int_disable;
2013 	} else {
2014 		ring->int_enable = bcmgenet_rx_ring_int_enable;
2015 		ring->int_disable = bcmgenet_rx_ring_int_disable;
2016 	}
2017 	ring->cbs = priv->rx_cbs + start_ptr;
2018 	ring->size = size;
2019 	ring->c_index = 0;
2020 	ring->read_ptr = start_ptr;
2021 	ring->cb_ptr = start_ptr;
2022 	ring->end_ptr = end_ptr - 1;
2023 
2024 	ret = bcmgenet_alloc_rx_buffers(priv, ring);
2025 	if (ret)
2026 		return ret;
2027 
2028 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2029 	bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2030 	bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2031 	bcmgenet_rdma_ring_writel(priv, index,
2032 				  ((size << DMA_RING_SIZE_SHIFT) |
2033 				   RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2034 	bcmgenet_rdma_ring_writel(priv, index,
2035 				  (DMA_FC_THRESH_LO <<
2036 				   DMA_XOFF_THRESHOLD_SHIFT) |
2037 				   DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2038 
2039 	/* Set start and end address, read and write pointers */
2040 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2041 				  DMA_START_ADDR);
2042 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2043 				  RDMA_READ_PTR);
2044 	bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2045 				  RDMA_WRITE_PTR);
2046 	bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2047 				  DMA_END_ADDR);
2048 
2049 	return ret;
2050 }
2051 
2052 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2053 {
2054 	unsigned int i;
2055 	struct bcmgenet_tx_ring *ring;
2056 
2057 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2058 		ring = &priv->tx_rings[i];
2059 		netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2060 	}
2061 
2062 	ring = &priv->tx_rings[DESC_INDEX];
2063 	netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2064 }
2065 
2066 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2067 {
2068 	unsigned int i;
2069 	struct bcmgenet_tx_ring *ring;
2070 
2071 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2072 		ring = &priv->tx_rings[i];
2073 		napi_enable(&ring->napi);
2074 	}
2075 
2076 	ring = &priv->tx_rings[DESC_INDEX];
2077 	napi_enable(&ring->napi);
2078 }
2079 
2080 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2081 {
2082 	unsigned int i;
2083 	struct bcmgenet_tx_ring *ring;
2084 
2085 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2086 		ring = &priv->tx_rings[i];
2087 		napi_disable(&ring->napi);
2088 	}
2089 
2090 	ring = &priv->tx_rings[DESC_INDEX];
2091 	napi_disable(&ring->napi);
2092 }
2093 
2094 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2095 {
2096 	unsigned int i;
2097 	struct bcmgenet_tx_ring *ring;
2098 
2099 	for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2100 		ring = &priv->tx_rings[i];
2101 		netif_napi_del(&ring->napi);
2102 	}
2103 
2104 	ring = &priv->tx_rings[DESC_INDEX];
2105 	netif_napi_del(&ring->napi);
2106 }
2107 
2108 /* Initialize Tx queues
2109  *
2110  * Queues 0-3 are priority-based, each one has 32 descriptors,
2111  * with queue 0 being the highest priority queue.
2112  *
2113  * Queue 16 is the default Tx queue with
2114  * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2115  *
2116  * The transmit control block pool is then partitioned as follows:
2117  * - Tx queue 0 uses tx_cbs[0..31]
2118  * - Tx queue 1 uses tx_cbs[32..63]
2119  * - Tx queue 2 uses tx_cbs[64..95]
2120  * - Tx queue 3 uses tx_cbs[96..127]
2121  * - Tx queue 16 uses tx_cbs[128..255]
2122  */
2123 static void bcmgenet_init_tx_queues(struct net_device *dev)
2124 {
2125 	struct bcmgenet_priv *priv = netdev_priv(dev);
2126 	u32 i, dma_enable;
2127 	u32 dma_ctrl, ring_cfg;
2128 	u32 dma_priority[3] = {0, 0, 0};
2129 
2130 	dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2131 	dma_enable = dma_ctrl & DMA_EN;
2132 	dma_ctrl &= ~DMA_EN;
2133 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2134 
2135 	dma_ctrl = 0;
2136 	ring_cfg = 0;
2137 
2138 	/* Enable strict priority arbiter mode */
2139 	bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2140 
2141 	/* Initialize Tx priority queues */
2142 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2143 		bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2144 				      i * priv->hw_params->tx_bds_per_q,
2145 				      (i + 1) * priv->hw_params->tx_bds_per_q);
2146 		ring_cfg |= (1 << i);
2147 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2148 		dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2149 			((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2150 	}
2151 
2152 	/* Initialize Tx default queue 16 */
2153 	bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2154 			      priv->hw_params->tx_queues *
2155 			      priv->hw_params->tx_bds_per_q,
2156 			      TOTAL_DESC);
2157 	ring_cfg |= (1 << DESC_INDEX);
2158 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2159 	dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2160 		((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2161 		 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2162 
2163 	/* Set Tx queue priorities */
2164 	bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2165 	bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2166 	bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2167 
2168 	/* Initialize Tx NAPI */
2169 	bcmgenet_init_tx_napi(priv);
2170 
2171 	/* Enable Tx queues */
2172 	bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2173 
2174 	/* Enable Tx DMA */
2175 	if (dma_enable)
2176 		dma_ctrl |= DMA_EN;
2177 	bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2178 }
2179 
2180 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2181 {
2182 	unsigned int i;
2183 	struct bcmgenet_rx_ring *ring;
2184 
2185 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2186 		ring = &priv->rx_rings[i];
2187 		netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2188 	}
2189 
2190 	ring = &priv->rx_rings[DESC_INDEX];
2191 	netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2192 }
2193 
2194 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2195 {
2196 	unsigned int i;
2197 	struct bcmgenet_rx_ring *ring;
2198 
2199 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2200 		ring = &priv->rx_rings[i];
2201 		napi_enable(&ring->napi);
2202 	}
2203 
2204 	ring = &priv->rx_rings[DESC_INDEX];
2205 	napi_enable(&ring->napi);
2206 }
2207 
2208 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2209 {
2210 	unsigned int i;
2211 	struct bcmgenet_rx_ring *ring;
2212 
2213 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2214 		ring = &priv->rx_rings[i];
2215 		napi_disable(&ring->napi);
2216 	}
2217 
2218 	ring = &priv->rx_rings[DESC_INDEX];
2219 	napi_disable(&ring->napi);
2220 }
2221 
2222 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2223 {
2224 	unsigned int i;
2225 	struct bcmgenet_rx_ring *ring;
2226 
2227 	for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2228 		ring = &priv->rx_rings[i];
2229 		netif_napi_del(&ring->napi);
2230 	}
2231 
2232 	ring = &priv->rx_rings[DESC_INDEX];
2233 	netif_napi_del(&ring->napi);
2234 }
2235 
2236 /* Initialize Rx queues
2237  *
2238  * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2239  * used to direct traffic to these queues.
2240  *
2241  * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2242  */
2243 static int bcmgenet_init_rx_queues(struct net_device *dev)
2244 {
2245 	struct bcmgenet_priv *priv = netdev_priv(dev);
2246 	u32 i;
2247 	u32 dma_enable;
2248 	u32 dma_ctrl;
2249 	u32 ring_cfg;
2250 	int ret;
2251 
2252 	dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2253 	dma_enable = dma_ctrl & DMA_EN;
2254 	dma_ctrl &= ~DMA_EN;
2255 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2256 
2257 	dma_ctrl = 0;
2258 	ring_cfg = 0;
2259 
2260 	/* Initialize Rx priority queues */
2261 	for (i = 0; i < priv->hw_params->rx_queues; i++) {
2262 		ret = bcmgenet_init_rx_ring(priv, i,
2263 					    priv->hw_params->rx_bds_per_q,
2264 					    i * priv->hw_params->rx_bds_per_q,
2265 					    (i + 1) *
2266 					    priv->hw_params->rx_bds_per_q);
2267 		if (ret)
2268 			return ret;
2269 
2270 		ring_cfg |= (1 << i);
2271 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2272 	}
2273 
2274 	/* Initialize Rx default queue 16 */
2275 	ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2276 				    priv->hw_params->rx_queues *
2277 				    priv->hw_params->rx_bds_per_q,
2278 				    TOTAL_DESC);
2279 	if (ret)
2280 		return ret;
2281 
2282 	ring_cfg |= (1 << DESC_INDEX);
2283 	dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2284 
2285 	/* Initialize Rx NAPI */
2286 	bcmgenet_init_rx_napi(priv);
2287 
2288 	/* Enable rings */
2289 	bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2290 
2291 	/* Configure ring as descriptor ring and re-enable DMA if enabled */
2292 	if (dma_enable)
2293 		dma_ctrl |= DMA_EN;
2294 	bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2295 
2296 	return 0;
2297 }
2298 
2299 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2300 {
2301 	int ret = 0;
2302 	int timeout = 0;
2303 	u32 reg;
2304 	u32 dma_ctrl;
2305 	int i;
2306 
2307 	/* Disable TDMA to stop add more frames in TX DMA */
2308 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2309 	reg &= ~DMA_EN;
2310 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2311 
2312 	/* Check TDMA status register to confirm TDMA is disabled */
2313 	while (timeout++ < DMA_TIMEOUT_VAL) {
2314 		reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2315 		if (reg & DMA_DISABLED)
2316 			break;
2317 
2318 		udelay(1);
2319 	}
2320 
2321 	if (timeout == DMA_TIMEOUT_VAL) {
2322 		netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2323 		ret = -ETIMEDOUT;
2324 	}
2325 
2326 	/* Wait 10ms for packet drain in both tx and rx dma */
2327 	usleep_range(10000, 20000);
2328 
2329 	/* Disable RDMA */
2330 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2331 	reg &= ~DMA_EN;
2332 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2333 
2334 	timeout = 0;
2335 	/* Check RDMA status register to confirm RDMA is disabled */
2336 	while (timeout++ < DMA_TIMEOUT_VAL) {
2337 		reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2338 		if (reg & DMA_DISABLED)
2339 			break;
2340 
2341 		udelay(1);
2342 	}
2343 
2344 	if (timeout == DMA_TIMEOUT_VAL) {
2345 		netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2346 		ret = -ETIMEDOUT;
2347 	}
2348 
2349 	dma_ctrl = 0;
2350 	for (i = 0; i < priv->hw_params->rx_queues; i++)
2351 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2352 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2353 	reg &= ~dma_ctrl;
2354 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2355 
2356 	dma_ctrl = 0;
2357 	for (i = 0; i < priv->hw_params->tx_queues; i++)
2358 		dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2359 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2360 	reg &= ~dma_ctrl;
2361 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2362 
2363 	return ret;
2364 }
2365 
2366 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2367 {
2368 	int i;
2369 	struct netdev_queue *txq;
2370 
2371 	bcmgenet_fini_rx_napi(priv);
2372 	bcmgenet_fini_tx_napi(priv);
2373 
2374 	/* disable DMA */
2375 	bcmgenet_dma_teardown(priv);
2376 
2377 	for (i = 0; i < priv->num_tx_bds; i++) {
2378 		if (priv->tx_cbs[i].skb != NULL) {
2379 			dev_kfree_skb(priv->tx_cbs[i].skb);
2380 			priv->tx_cbs[i].skb = NULL;
2381 		}
2382 	}
2383 
2384 	for (i = 0; i < priv->hw_params->tx_queues; i++) {
2385 		txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue);
2386 		netdev_tx_reset_queue(txq);
2387 	}
2388 
2389 	txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue);
2390 	netdev_tx_reset_queue(txq);
2391 
2392 	bcmgenet_free_rx_buffers(priv);
2393 	kfree(priv->rx_cbs);
2394 	kfree(priv->tx_cbs);
2395 }
2396 
2397 /* init_edma: Initialize DMA control register */
2398 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2399 {
2400 	int ret;
2401 	unsigned int i;
2402 	struct enet_cb *cb;
2403 
2404 	netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2405 
2406 	/* Initialize common Rx ring structures */
2407 	priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2408 	priv->num_rx_bds = TOTAL_DESC;
2409 	priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2410 			       GFP_KERNEL);
2411 	if (!priv->rx_cbs)
2412 		return -ENOMEM;
2413 
2414 	for (i = 0; i < priv->num_rx_bds; i++) {
2415 		cb = priv->rx_cbs + i;
2416 		cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2417 	}
2418 
2419 	/* Initialize common TX ring structures */
2420 	priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2421 	priv->num_tx_bds = TOTAL_DESC;
2422 	priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2423 			       GFP_KERNEL);
2424 	if (!priv->tx_cbs) {
2425 		kfree(priv->rx_cbs);
2426 		return -ENOMEM;
2427 	}
2428 
2429 	for (i = 0; i < priv->num_tx_bds; i++) {
2430 		cb = priv->tx_cbs + i;
2431 		cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2432 	}
2433 
2434 	/* Init rDma */
2435 	bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2436 
2437 	/* Initialize Rx queues */
2438 	ret = bcmgenet_init_rx_queues(priv->dev);
2439 	if (ret) {
2440 		netdev_err(priv->dev, "failed to initialize Rx queues\n");
2441 		bcmgenet_free_rx_buffers(priv);
2442 		kfree(priv->rx_cbs);
2443 		kfree(priv->tx_cbs);
2444 		return ret;
2445 	}
2446 
2447 	/* Init tDma */
2448 	bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2449 
2450 	/* Initialize Tx queues */
2451 	bcmgenet_init_tx_queues(priv->dev);
2452 
2453 	return 0;
2454 }
2455 
2456 /* Interrupt bottom half */
2457 static void bcmgenet_irq_task(struct work_struct *work)
2458 {
2459 	struct bcmgenet_priv *priv = container_of(
2460 			work, struct bcmgenet_priv, bcmgenet_irq_work);
2461 	struct net_device *ndev = priv->dev;
2462 
2463 	netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2464 
2465 	if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2466 		priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2467 		netif_dbg(priv, wol, priv->dev,
2468 			  "magic packet detected, waking up\n");
2469 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2470 	}
2471 
2472 	/* Link UP/DOWN event */
2473 	if (priv->irq0_stat & UMAC_IRQ_LINK_EVENT) {
2474 		phy_mac_interrupt(ndev->phydev,
2475 				  !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2476 		priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2477 	}
2478 }
2479 
2480 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2481 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2482 {
2483 	struct bcmgenet_priv *priv = dev_id;
2484 	struct bcmgenet_rx_ring *rx_ring;
2485 	struct bcmgenet_tx_ring *tx_ring;
2486 	unsigned int index;
2487 
2488 	/* Save irq status for bottom-half processing. */
2489 	priv->irq1_stat =
2490 		bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2491 		~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2492 
2493 	/* clear interrupts */
2494 	bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2495 
2496 	netif_dbg(priv, intr, priv->dev,
2497 		  "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2498 
2499 	/* Check Rx priority queue interrupts */
2500 	for (index = 0; index < priv->hw_params->rx_queues; index++) {
2501 		if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2502 			continue;
2503 
2504 		rx_ring = &priv->rx_rings[index];
2505 
2506 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2507 			rx_ring->int_disable(rx_ring);
2508 			__napi_schedule_irqoff(&rx_ring->napi);
2509 		}
2510 	}
2511 
2512 	/* Check Tx priority queue interrupts */
2513 	for (index = 0; index < priv->hw_params->tx_queues; index++) {
2514 		if (!(priv->irq1_stat & BIT(index)))
2515 			continue;
2516 
2517 		tx_ring = &priv->tx_rings[index];
2518 
2519 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2520 			tx_ring->int_disable(tx_ring);
2521 			__napi_schedule_irqoff(&tx_ring->napi);
2522 		}
2523 	}
2524 
2525 	return IRQ_HANDLED;
2526 }
2527 
2528 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2529 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2530 {
2531 	struct bcmgenet_priv *priv = dev_id;
2532 	struct bcmgenet_rx_ring *rx_ring;
2533 	struct bcmgenet_tx_ring *tx_ring;
2534 
2535 	/* Save irq status for bottom-half processing. */
2536 	priv->irq0_stat =
2537 		bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2538 		~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2539 
2540 	/* clear interrupts */
2541 	bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2542 
2543 	netif_dbg(priv, intr, priv->dev,
2544 		  "IRQ=0x%x\n", priv->irq0_stat);
2545 
2546 	if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2547 		rx_ring = &priv->rx_rings[DESC_INDEX];
2548 
2549 		if (likely(napi_schedule_prep(&rx_ring->napi))) {
2550 			rx_ring->int_disable(rx_ring);
2551 			__napi_schedule_irqoff(&rx_ring->napi);
2552 		}
2553 	}
2554 
2555 	if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2556 		tx_ring = &priv->tx_rings[DESC_INDEX];
2557 
2558 		if (likely(napi_schedule_prep(&tx_ring->napi))) {
2559 			tx_ring->int_disable(tx_ring);
2560 			__napi_schedule_irqoff(&tx_ring->napi);
2561 		}
2562 	}
2563 
2564 	if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2565 				UMAC_IRQ_PHY_DET_F |
2566 				UMAC_IRQ_LINK_EVENT |
2567 				UMAC_IRQ_HFB_SM |
2568 				UMAC_IRQ_HFB_MM |
2569 				UMAC_IRQ_MPD_R)) {
2570 		/* all other interested interrupts handled in bottom half */
2571 		schedule_work(&priv->bcmgenet_irq_work);
2572 	}
2573 
2574 	if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2575 	    priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2576 		priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2577 		wake_up(&priv->wq);
2578 	}
2579 
2580 	return IRQ_HANDLED;
2581 }
2582 
2583 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2584 {
2585 	struct bcmgenet_priv *priv = dev_id;
2586 
2587 	pm_wakeup_event(&priv->pdev->dev, 0);
2588 
2589 	return IRQ_HANDLED;
2590 }
2591 
2592 #ifdef CONFIG_NET_POLL_CONTROLLER
2593 static void bcmgenet_poll_controller(struct net_device *dev)
2594 {
2595 	struct bcmgenet_priv *priv = netdev_priv(dev);
2596 
2597 	/* Invoke the main RX/TX interrupt handler */
2598 	disable_irq(priv->irq0);
2599 	bcmgenet_isr0(priv->irq0, priv);
2600 	enable_irq(priv->irq0);
2601 
2602 	/* And the interrupt handler for RX/TX priority queues */
2603 	disable_irq(priv->irq1);
2604 	bcmgenet_isr1(priv->irq1, priv);
2605 	enable_irq(priv->irq1);
2606 }
2607 #endif
2608 
2609 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2610 {
2611 	u32 reg;
2612 
2613 	reg = bcmgenet_rbuf_ctrl_get(priv);
2614 	reg |= BIT(1);
2615 	bcmgenet_rbuf_ctrl_set(priv, reg);
2616 	udelay(10);
2617 
2618 	reg &= ~BIT(1);
2619 	bcmgenet_rbuf_ctrl_set(priv, reg);
2620 	udelay(10);
2621 }
2622 
2623 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2624 				 unsigned char *addr)
2625 {
2626 	bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2627 			(addr[2] << 8) | addr[3], UMAC_MAC0);
2628 	bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2629 }
2630 
2631 /* Returns a reusable dma control register value */
2632 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2633 {
2634 	u32 reg;
2635 	u32 dma_ctrl;
2636 
2637 	/* disable DMA */
2638 	dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2639 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2640 	reg &= ~dma_ctrl;
2641 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2642 
2643 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2644 	reg &= ~dma_ctrl;
2645 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2646 
2647 	bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2648 	udelay(10);
2649 	bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2650 
2651 	return dma_ctrl;
2652 }
2653 
2654 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2655 {
2656 	u32 reg;
2657 
2658 	reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2659 	reg |= dma_ctrl;
2660 	bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2661 
2662 	reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2663 	reg |= dma_ctrl;
2664 	bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2665 }
2666 
2667 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2668 					   u32 f_index)
2669 {
2670 	u32 offset;
2671 	u32 reg;
2672 
2673 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2674 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2675 	return !!(reg & (1 << (f_index % 32)));
2676 }
2677 
2678 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2679 {
2680 	u32 offset;
2681 	u32 reg;
2682 
2683 	offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2684 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2685 	reg |= (1 << (f_index % 32));
2686 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2687 }
2688 
2689 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2690 						     u32 f_index, u32 rx_queue)
2691 {
2692 	u32 offset;
2693 	u32 reg;
2694 
2695 	offset = f_index / 8;
2696 	reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2697 	reg &= ~(0xF << (4 * (f_index % 8)));
2698 	reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2699 	bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2700 }
2701 
2702 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2703 					   u32 f_index, u32 f_length)
2704 {
2705 	u32 offset;
2706 	u32 reg;
2707 
2708 	offset = HFB_FLT_LEN_V3PLUS +
2709 		 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2710 		 sizeof(u32);
2711 	reg = bcmgenet_hfb_reg_readl(priv, offset);
2712 	reg &= ~(0xFF << (8 * (f_index % 4)));
2713 	reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2714 	bcmgenet_hfb_reg_writel(priv, reg, offset);
2715 }
2716 
2717 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2718 {
2719 	u32 f_index;
2720 
2721 	for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2722 		if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2723 			return f_index;
2724 
2725 	return -ENOMEM;
2726 }
2727 
2728 /* bcmgenet_hfb_add_filter
2729  *
2730  * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2731  * desired Rx queue.
2732  *
2733  * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2734  * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2735  *
2736  * bits 31:20 - unused
2737  * bit  19    - nibble 0 match enable
2738  * bit  18    - nibble 1 match enable
2739  * bit  17    - nibble 2 match enable
2740  * bit  16    - nibble 3 match enable
2741  * bits 15:12 - nibble 0 data
2742  * bits 11:8  - nibble 1 data
2743  * bits 7:4   - nibble 2 data
2744  * bits 3:0   - nibble 3 data
2745  *
2746  * Example:
2747  * In order to match:
2748  * - Ethernet frame type = 0x0800 (IP)
2749  * - IP version field = 4
2750  * - IP protocol field = 0x11 (UDP)
2751  *
2752  * The following filter is needed:
2753  * u32 hfb_filter_ipv4_udp[] = {
2754  *   Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2755  *   Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2756  *   Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2757  * };
2758  *
2759  * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2760  * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2761  *                         ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2762  */
2763 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2764 			    u32 f_length, u32 rx_queue)
2765 {
2766 	int f_index;
2767 	u32 i;
2768 
2769 	f_index = bcmgenet_hfb_find_unused_filter(priv);
2770 	if (f_index < 0)
2771 		return -ENOMEM;
2772 
2773 	if (f_length > priv->hw_params->hfb_filter_size)
2774 		return -EINVAL;
2775 
2776 	for (i = 0; i < f_length; i++)
2777 		bcmgenet_hfb_writel(priv, f_data[i],
2778 			(f_index * priv->hw_params->hfb_filter_size + i) *
2779 			sizeof(u32));
2780 
2781 	bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2782 	bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2783 	bcmgenet_hfb_enable_filter(priv, f_index);
2784 	bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2785 
2786 	return 0;
2787 }
2788 
2789 /* bcmgenet_hfb_clear
2790  *
2791  * Clear Hardware Filter Block and disable all filtering.
2792  */
2793 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2794 {
2795 	u32 i;
2796 
2797 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2798 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2799 	bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2800 
2801 	for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2802 		bcmgenet_rdma_writel(priv, 0x0, i);
2803 
2804 	for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2805 		bcmgenet_hfb_reg_writel(priv, 0x0,
2806 					HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2807 
2808 	for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2809 			priv->hw_params->hfb_filter_size; i++)
2810 		bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2811 }
2812 
2813 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2814 {
2815 	if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2816 		return;
2817 
2818 	bcmgenet_hfb_clear(priv);
2819 }
2820 
2821 static void bcmgenet_netif_start(struct net_device *dev)
2822 {
2823 	struct bcmgenet_priv *priv = netdev_priv(dev);
2824 
2825 	/* Start the network engine */
2826 	bcmgenet_enable_rx_napi(priv);
2827 	bcmgenet_enable_tx_napi(priv);
2828 
2829 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2830 
2831 	netif_tx_start_all_queues(dev);
2832 
2833 	/* Monitor link interrupts now */
2834 	bcmgenet_link_intr_enable(priv);
2835 
2836 	phy_start(dev->phydev);
2837 }
2838 
2839 static int bcmgenet_open(struct net_device *dev)
2840 {
2841 	struct bcmgenet_priv *priv = netdev_priv(dev);
2842 	unsigned long dma_ctrl;
2843 	u32 reg;
2844 	int ret;
2845 
2846 	netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2847 
2848 	/* Turn on the clock */
2849 	clk_prepare_enable(priv->clk);
2850 
2851 	/* If this is an internal GPHY, power it back on now, before UniMAC is
2852 	 * brought out of reset as absolutely no UniMAC activity is allowed
2853 	 */
2854 	if (priv->internal_phy)
2855 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2856 
2857 	/* take MAC out of reset */
2858 	bcmgenet_umac_reset(priv);
2859 
2860 	ret = init_umac(priv);
2861 	if (ret)
2862 		goto err_clk_disable;
2863 
2864 	/* disable ethernet MAC while updating its registers */
2865 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2866 
2867 	/* Make sure we reflect the value of CRC_CMD_FWD */
2868 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2869 	priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2870 
2871 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
2872 
2873 	if (priv->internal_phy) {
2874 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2875 		reg |= EXT_ENERGY_DET_MASK;
2876 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2877 	}
2878 
2879 	/* Disable RX/TX DMA and flush TX queues */
2880 	dma_ctrl = bcmgenet_dma_disable(priv);
2881 
2882 	/* Reinitialize TDMA and RDMA and SW housekeeping */
2883 	ret = bcmgenet_init_dma(priv);
2884 	if (ret) {
2885 		netdev_err(dev, "failed to initialize DMA\n");
2886 		goto err_clk_disable;
2887 	}
2888 
2889 	/* Always enable ring 16 - descriptor ring */
2890 	bcmgenet_enable_dma(priv, dma_ctrl);
2891 
2892 	/* HFB init */
2893 	bcmgenet_hfb_init(priv);
2894 
2895 	ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2896 			  dev->name, priv);
2897 	if (ret < 0) {
2898 		netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2899 		goto err_fini_dma;
2900 	}
2901 
2902 	ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2903 			  dev->name, priv);
2904 	if (ret < 0) {
2905 		netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2906 		goto err_irq0;
2907 	}
2908 
2909 	ret = bcmgenet_mii_probe(dev);
2910 	if (ret) {
2911 		netdev_err(dev, "failed to connect to PHY\n");
2912 		goto err_irq1;
2913 	}
2914 
2915 	bcmgenet_netif_start(dev);
2916 
2917 	return 0;
2918 
2919 err_irq1:
2920 	free_irq(priv->irq1, priv);
2921 err_irq0:
2922 	free_irq(priv->irq0, priv);
2923 err_fini_dma:
2924 	bcmgenet_fini_dma(priv);
2925 err_clk_disable:
2926 	clk_disable_unprepare(priv->clk);
2927 	return ret;
2928 }
2929 
2930 static void bcmgenet_netif_stop(struct net_device *dev)
2931 {
2932 	struct bcmgenet_priv *priv = netdev_priv(dev);
2933 
2934 	netif_tx_stop_all_queues(dev);
2935 	phy_stop(dev->phydev);
2936 	bcmgenet_intr_disable(priv);
2937 	bcmgenet_disable_rx_napi(priv);
2938 	bcmgenet_disable_tx_napi(priv);
2939 
2940 	/* Wait for pending work items to complete. Since interrupts are
2941 	 * disabled no new work will be scheduled.
2942 	 */
2943 	cancel_work_sync(&priv->bcmgenet_irq_work);
2944 
2945 	priv->old_link = -1;
2946 	priv->old_speed = -1;
2947 	priv->old_duplex = -1;
2948 	priv->old_pause = -1;
2949 }
2950 
2951 static int bcmgenet_close(struct net_device *dev)
2952 {
2953 	struct bcmgenet_priv *priv = netdev_priv(dev);
2954 	int ret;
2955 
2956 	netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2957 
2958 	bcmgenet_netif_stop(dev);
2959 
2960 	/* Really kill the PHY state machine and disconnect from it */
2961 	phy_disconnect(dev->phydev);
2962 
2963 	/* Disable MAC receive */
2964 	umac_enable_set(priv, CMD_RX_EN, false);
2965 
2966 	ret = bcmgenet_dma_teardown(priv);
2967 	if (ret)
2968 		return ret;
2969 
2970 	/* Disable MAC transmit. TX DMA disabled have to done before this */
2971 	umac_enable_set(priv, CMD_TX_EN, false);
2972 
2973 	/* tx reclaim */
2974 	bcmgenet_tx_reclaim_all(dev);
2975 	bcmgenet_fini_dma(priv);
2976 
2977 	free_irq(priv->irq0, priv);
2978 	free_irq(priv->irq1, priv);
2979 
2980 	if (priv->internal_phy)
2981 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2982 
2983 	clk_disable_unprepare(priv->clk);
2984 
2985 	return ret;
2986 }
2987 
2988 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2989 {
2990 	struct bcmgenet_priv *priv = ring->priv;
2991 	u32 p_index, c_index, intsts, intmsk;
2992 	struct netdev_queue *txq;
2993 	unsigned int free_bds;
2994 	unsigned long flags;
2995 	bool txq_stopped;
2996 
2997 	if (!netif_msg_tx_err(priv))
2998 		return;
2999 
3000 	txq = netdev_get_tx_queue(priv->dev, ring->queue);
3001 
3002 	spin_lock_irqsave(&ring->lock, flags);
3003 	if (ring->index == DESC_INDEX) {
3004 		intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
3005 		intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
3006 	} else {
3007 		intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
3008 		intmsk = 1 << ring->index;
3009 	}
3010 	c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
3011 	p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
3012 	txq_stopped = netif_tx_queue_stopped(txq);
3013 	free_bds = ring->free_bds;
3014 	spin_unlock_irqrestore(&ring->lock, flags);
3015 
3016 	netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
3017 		  "TX queue status: %s, interrupts: %s\n"
3018 		  "(sw)free_bds: %d (sw)size: %d\n"
3019 		  "(sw)p_index: %d (hw)p_index: %d\n"
3020 		  "(sw)c_index: %d (hw)c_index: %d\n"
3021 		  "(sw)clean_p: %d (sw)write_p: %d\n"
3022 		  "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
3023 		  ring->index, ring->queue,
3024 		  txq_stopped ? "stopped" : "active",
3025 		  intsts & intmsk ? "enabled" : "disabled",
3026 		  free_bds, ring->size,
3027 		  ring->prod_index, p_index & DMA_P_INDEX_MASK,
3028 		  ring->c_index, c_index & DMA_C_INDEX_MASK,
3029 		  ring->clean_ptr, ring->write_ptr,
3030 		  ring->cb_ptr, ring->end_ptr);
3031 }
3032 
3033 static void bcmgenet_timeout(struct net_device *dev)
3034 {
3035 	struct bcmgenet_priv *priv = netdev_priv(dev);
3036 	u32 int0_enable = 0;
3037 	u32 int1_enable = 0;
3038 	unsigned int q;
3039 
3040 	netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3041 
3042 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3043 		bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3044 	bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3045 
3046 	bcmgenet_tx_reclaim_all(dev);
3047 
3048 	for (q = 0; q < priv->hw_params->tx_queues; q++)
3049 		int1_enable |= (1 << q);
3050 
3051 	int0_enable = UMAC_IRQ_TXDMA_DONE;
3052 
3053 	/* Re-enable TX interrupts if disabled */
3054 	bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3055 	bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3056 
3057 	netif_trans_update(dev);
3058 
3059 	dev->stats.tx_errors++;
3060 
3061 	netif_tx_wake_all_queues(dev);
3062 }
3063 
3064 #define MAX_MC_COUNT	16
3065 
3066 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3067 					 unsigned char *addr,
3068 					 int *i,
3069 					 int *mc)
3070 {
3071 	u32 reg;
3072 
3073 	bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3074 			     UMAC_MDF_ADDR + (*i * 4));
3075 	bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3076 			     addr[4] << 8 | addr[5],
3077 			     UMAC_MDF_ADDR + ((*i + 1) * 4));
3078 	reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3079 	reg |= (1 << (MAX_MC_COUNT - *mc));
3080 	bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3081 	*i += 2;
3082 	(*mc)++;
3083 }
3084 
3085 static void bcmgenet_set_rx_mode(struct net_device *dev)
3086 {
3087 	struct bcmgenet_priv *priv = netdev_priv(dev);
3088 	struct netdev_hw_addr *ha;
3089 	int i, mc;
3090 	u32 reg;
3091 
3092 	netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3093 
3094 	/* Promiscuous mode */
3095 	reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3096 	if (dev->flags & IFF_PROMISC) {
3097 		reg |= CMD_PROMISC;
3098 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3099 		bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3100 		return;
3101 	} else {
3102 		reg &= ~CMD_PROMISC;
3103 		bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3104 	}
3105 
3106 	/* UniMac doesn't support ALLMULTI */
3107 	if (dev->flags & IFF_ALLMULTI) {
3108 		netdev_warn(dev, "ALLMULTI is not supported\n");
3109 		return;
3110 	}
3111 
3112 	/* update MDF filter */
3113 	i = 0;
3114 	mc = 0;
3115 	/* Broadcast */
3116 	bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3117 	/* my own address.*/
3118 	bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3119 	/* Unicast list*/
3120 	if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3121 		return;
3122 
3123 	if (!netdev_uc_empty(dev))
3124 		netdev_for_each_uc_addr(ha, dev)
3125 			bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3126 	/* Multicast */
3127 	if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3128 		return;
3129 
3130 	netdev_for_each_mc_addr(ha, dev)
3131 		bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3132 }
3133 
3134 /* Set the hardware MAC address. */
3135 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3136 {
3137 	struct sockaddr *addr = p;
3138 
3139 	/* Setting the MAC address at the hardware level is not possible
3140 	 * without disabling the UniMAC RX/TX enable bits.
3141 	 */
3142 	if (netif_running(dev))
3143 		return -EBUSY;
3144 
3145 	ether_addr_copy(dev->dev_addr, addr->sa_data);
3146 
3147 	return 0;
3148 }
3149 
3150 static const struct net_device_ops bcmgenet_netdev_ops = {
3151 	.ndo_open		= bcmgenet_open,
3152 	.ndo_stop		= bcmgenet_close,
3153 	.ndo_start_xmit		= bcmgenet_xmit,
3154 	.ndo_tx_timeout		= bcmgenet_timeout,
3155 	.ndo_set_rx_mode	= bcmgenet_set_rx_mode,
3156 	.ndo_set_mac_address	= bcmgenet_set_mac_addr,
3157 	.ndo_do_ioctl		= bcmgenet_ioctl,
3158 	.ndo_set_features	= bcmgenet_set_features,
3159 #ifdef CONFIG_NET_POLL_CONTROLLER
3160 	.ndo_poll_controller	= bcmgenet_poll_controller,
3161 #endif
3162 };
3163 
3164 /* Array of GENET hardware parameters/characteristics */
3165 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3166 	[GENET_V1] = {
3167 		.tx_queues = 0,
3168 		.tx_bds_per_q = 0,
3169 		.rx_queues = 0,
3170 		.rx_bds_per_q = 0,
3171 		.bp_in_en_shift = 16,
3172 		.bp_in_mask = 0xffff,
3173 		.hfb_filter_cnt = 16,
3174 		.qtag_mask = 0x1F,
3175 		.hfb_offset = 0x1000,
3176 		.rdma_offset = 0x2000,
3177 		.tdma_offset = 0x3000,
3178 		.words_per_bd = 2,
3179 	},
3180 	[GENET_V2] = {
3181 		.tx_queues = 4,
3182 		.tx_bds_per_q = 32,
3183 		.rx_queues = 0,
3184 		.rx_bds_per_q = 0,
3185 		.bp_in_en_shift = 16,
3186 		.bp_in_mask = 0xffff,
3187 		.hfb_filter_cnt = 16,
3188 		.qtag_mask = 0x1F,
3189 		.tbuf_offset = 0x0600,
3190 		.hfb_offset = 0x1000,
3191 		.hfb_reg_offset = 0x2000,
3192 		.rdma_offset = 0x3000,
3193 		.tdma_offset = 0x4000,
3194 		.words_per_bd = 2,
3195 		.flags = GENET_HAS_EXT,
3196 	},
3197 	[GENET_V3] = {
3198 		.tx_queues = 4,
3199 		.tx_bds_per_q = 32,
3200 		.rx_queues = 0,
3201 		.rx_bds_per_q = 0,
3202 		.bp_in_en_shift = 17,
3203 		.bp_in_mask = 0x1ffff,
3204 		.hfb_filter_cnt = 48,
3205 		.hfb_filter_size = 128,
3206 		.qtag_mask = 0x3F,
3207 		.tbuf_offset = 0x0600,
3208 		.hfb_offset = 0x8000,
3209 		.hfb_reg_offset = 0xfc00,
3210 		.rdma_offset = 0x10000,
3211 		.tdma_offset = 0x11000,
3212 		.words_per_bd = 2,
3213 		.flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3214 			 GENET_HAS_MOCA_LINK_DET,
3215 	},
3216 	[GENET_V4] = {
3217 		.tx_queues = 4,
3218 		.tx_bds_per_q = 32,
3219 		.rx_queues = 0,
3220 		.rx_bds_per_q = 0,
3221 		.bp_in_en_shift = 17,
3222 		.bp_in_mask = 0x1ffff,
3223 		.hfb_filter_cnt = 48,
3224 		.hfb_filter_size = 128,
3225 		.qtag_mask = 0x3F,
3226 		.tbuf_offset = 0x0600,
3227 		.hfb_offset = 0x8000,
3228 		.hfb_reg_offset = 0xfc00,
3229 		.rdma_offset = 0x2000,
3230 		.tdma_offset = 0x4000,
3231 		.words_per_bd = 3,
3232 		.flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3233 			 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3234 	},
3235 };
3236 
3237 /* Infer hardware parameters from the detected GENET version */
3238 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3239 {
3240 	struct bcmgenet_hw_params *params;
3241 	u32 reg;
3242 	u8 major;
3243 	u16 gphy_rev;
3244 
3245 	if (GENET_IS_V4(priv)) {
3246 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3247 		genet_dma_ring_regs = genet_dma_ring_regs_v4;
3248 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3249 		priv->version = GENET_V4;
3250 	} else if (GENET_IS_V3(priv)) {
3251 		bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3252 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3253 		priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3254 		priv->version = GENET_V3;
3255 	} else if (GENET_IS_V2(priv)) {
3256 		bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3257 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3258 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3259 		priv->version = GENET_V2;
3260 	} else if (GENET_IS_V1(priv)) {
3261 		bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3262 		genet_dma_ring_regs = genet_dma_ring_regs_v123;
3263 		priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3264 		priv->version = GENET_V1;
3265 	}
3266 
3267 	/* enum genet_version starts at 1 */
3268 	priv->hw_params = &bcmgenet_hw_params[priv->version];
3269 	params = priv->hw_params;
3270 
3271 	/* Read GENET HW version */
3272 	reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3273 	major = (reg >> 24 & 0x0f);
3274 	if (major == 5)
3275 		major = 4;
3276 	else if (major == 0)
3277 		major = 1;
3278 	if (major != priv->version) {
3279 		dev_err(&priv->pdev->dev,
3280 			"GENET version mismatch, got: %d, configured for: %d\n",
3281 			major, priv->version);
3282 	}
3283 
3284 	/* Print the GENET core version */
3285 	dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3286 		 major, (reg >> 16) & 0x0f, reg & 0xffff);
3287 
3288 	/* Store the integrated PHY revision for the MDIO probing function
3289 	 * to pass this information to the PHY driver. The PHY driver expects
3290 	 * to find the PHY major revision in bits 15:8 while the GENET register
3291 	 * stores that information in bits 7:0, account for that.
3292 	 *
3293 	 * On newer chips, starting with PHY revision G0, a new scheme is
3294 	 * deployed similar to the Starfighter 2 switch with GPHY major
3295 	 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3296 	 * is reserved as well as special value 0x01ff, we have a small
3297 	 * heuristic to check for the new GPHY revision and re-arrange things
3298 	 * so the GPHY driver is happy.
3299 	 */
3300 	gphy_rev = reg & 0xffff;
3301 
3302 	/* This is the good old scheme, just GPHY major, no minor nor patch */
3303 	if ((gphy_rev & 0xf0) != 0)
3304 		priv->gphy_rev = gphy_rev << 8;
3305 
3306 	/* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3307 	else if ((gphy_rev & 0xff00) != 0)
3308 		priv->gphy_rev = gphy_rev;
3309 
3310 	/* This is reserved so should require special treatment */
3311 	else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3312 		pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3313 		return;
3314 	}
3315 
3316 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3317 	if (!(params->flags & GENET_HAS_40BITS))
3318 		pr_warn("GENET does not support 40-bits PA\n");
3319 #endif
3320 
3321 	pr_debug("Configuration for version: %d\n"
3322 		"TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3323 		"BP << en: %2d, BP msk: 0x%05x\n"
3324 		"HFB count: %2d, QTAQ msk: 0x%05x\n"
3325 		"TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3326 		"RDMA: 0x%05x, TDMA: 0x%05x\n"
3327 		"Words/BD: %d\n",
3328 		priv->version,
3329 		params->tx_queues, params->tx_bds_per_q,
3330 		params->rx_queues, params->rx_bds_per_q,
3331 		params->bp_in_en_shift, params->bp_in_mask,
3332 		params->hfb_filter_cnt, params->qtag_mask,
3333 		params->tbuf_offset, params->hfb_offset,
3334 		params->hfb_reg_offset,
3335 		params->rdma_offset, params->tdma_offset,
3336 		params->words_per_bd);
3337 }
3338 
3339 static const struct of_device_id bcmgenet_match[] = {
3340 	{ .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3341 	{ .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3342 	{ .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3343 	{ .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3344 	{ },
3345 };
3346 MODULE_DEVICE_TABLE(of, bcmgenet_match);
3347 
3348 static int bcmgenet_probe(struct platform_device *pdev)
3349 {
3350 	struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3351 	struct device_node *dn = pdev->dev.of_node;
3352 	const struct of_device_id *of_id = NULL;
3353 	struct bcmgenet_priv *priv;
3354 	struct net_device *dev;
3355 	const void *macaddr;
3356 	struct resource *r;
3357 	int err = -EIO;
3358 
3359 	/* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3360 	dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3361 				 GENET_MAX_MQ_CNT + 1);
3362 	if (!dev) {
3363 		dev_err(&pdev->dev, "can't allocate net device\n");
3364 		return -ENOMEM;
3365 	}
3366 
3367 	if (dn) {
3368 		of_id = of_match_node(bcmgenet_match, dn);
3369 		if (!of_id)
3370 			return -EINVAL;
3371 	}
3372 
3373 	priv = netdev_priv(dev);
3374 	priv->irq0 = platform_get_irq(pdev, 0);
3375 	priv->irq1 = platform_get_irq(pdev, 1);
3376 	priv->wol_irq = platform_get_irq(pdev, 2);
3377 	if (!priv->irq0 || !priv->irq1) {
3378 		dev_err(&pdev->dev, "can't find IRQs\n");
3379 		err = -EINVAL;
3380 		goto err;
3381 	}
3382 
3383 	if (dn) {
3384 		macaddr = of_get_mac_address(dn);
3385 		if (!macaddr) {
3386 			dev_err(&pdev->dev, "can't find MAC address\n");
3387 			err = -EINVAL;
3388 			goto err;
3389 		}
3390 	} else {
3391 		macaddr = pd->mac_address;
3392 	}
3393 
3394 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3395 	priv->base = devm_ioremap_resource(&pdev->dev, r);
3396 	if (IS_ERR(priv->base)) {
3397 		err = PTR_ERR(priv->base);
3398 		goto err;
3399 	}
3400 
3401 	SET_NETDEV_DEV(dev, &pdev->dev);
3402 	dev_set_drvdata(&pdev->dev, dev);
3403 	ether_addr_copy(dev->dev_addr, macaddr);
3404 	dev->watchdog_timeo = 2 * HZ;
3405 	dev->ethtool_ops = &bcmgenet_ethtool_ops;
3406 	dev->netdev_ops = &bcmgenet_netdev_ops;
3407 
3408 	priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3409 
3410 	/* Set hardware features */
3411 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3412 		NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3413 
3414 	/* Request the WOL interrupt and advertise suspend if available */
3415 	priv->wol_irq_disabled = true;
3416 	err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3417 			       dev->name, priv);
3418 	if (!err)
3419 		device_set_wakeup_capable(&pdev->dev, 1);
3420 
3421 	/* Set the needed headroom to account for any possible
3422 	 * features enabling/disabling at runtime
3423 	 */
3424 	dev->needed_headroom += 64;
3425 
3426 	netdev_boot_setup_check(dev);
3427 
3428 	priv->dev = dev;
3429 	priv->pdev = pdev;
3430 	if (of_id)
3431 		priv->version = (enum bcmgenet_version)of_id->data;
3432 	else
3433 		priv->version = pd->genet_version;
3434 
3435 	priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3436 	if (IS_ERR(priv->clk)) {
3437 		dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3438 		priv->clk = NULL;
3439 	}
3440 
3441 	clk_prepare_enable(priv->clk);
3442 
3443 	bcmgenet_set_hw_params(priv);
3444 
3445 	/* Mii wait queue */
3446 	init_waitqueue_head(&priv->wq);
3447 	/* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3448 	priv->rx_buf_len = RX_BUF_LENGTH;
3449 	INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3450 
3451 	priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3452 	if (IS_ERR(priv->clk_wol)) {
3453 		dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3454 		priv->clk_wol = NULL;
3455 	}
3456 
3457 	priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3458 	if (IS_ERR(priv->clk_eee)) {
3459 		dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3460 		priv->clk_eee = NULL;
3461 	}
3462 
3463 	err = reset_umac(priv);
3464 	if (err)
3465 		goto err_clk_disable;
3466 
3467 	err = bcmgenet_mii_init(dev);
3468 	if (err)
3469 		goto err_clk_disable;
3470 
3471 	/* setup number of real queues  + 1 (GENET_V1 has 0 hardware queues
3472 	 * just the ring 16 descriptor based TX
3473 	 */
3474 	netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3475 	netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3476 
3477 	/* libphy will determine the link state */
3478 	netif_carrier_off(dev);
3479 
3480 	/* Turn off the main clock, WOL clock is handled separately */
3481 	clk_disable_unprepare(priv->clk);
3482 
3483 	err = register_netdev(dev);
3484 	if (err)
3485 		goto err;
3486 
3487 	return err;
3488 
3489 err_clk_disable:
3490 	clk_disable_unprepare(priv->clk);
3491 err:
3492 	free_netdev(dev);
3493 	return err;
3494 }
3495 
3496 static int bcmgenet_remove(struct platform_device *pdev)
3497 {
3498 	struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3499 
3500 	dev_set_drvdata(&pdev->dev, NULL);
3501 	unregister_netdev(priv->dev);
3502 	bcmgenet_mii_exit(priv->dev);
3503 	free_netdev(priv->dev);
3504 
3505 	return 0;
3506 }
3507 
3508 #ifdef CONFIG_PM_SLEEP
3509 static int bcmgenet_suspend(struct device *d)
3510 {
3511 	struct net_device *dev = dev_get_drvdata(d);
3512 	struct bcmgenet_priv *priv = netdev_priv(dev);
3513 	int ret;
3514 
3515 	if (!netif_running(dev))
3516 		return 0;
3517 
3518 	bcmgenet_netif_stop(dev);
3519 
3520 	phy_suspend(dev->phydev);
3521 
3522 	netif_device_detach(dev);
3523 
3524 	/* Disable MAC receive */
3525 	umac_enable_set(priv, CMD_RX_EN, false);
3526 
3527 	ret = bcmgenet_dma_teardown(priv);
3528 	if (ret)
3529 		return ret;
3530 
3531 	/* Disable MAC transmit. TX DMA disabled have to done before this */
3532 	umac_enable_set(priv, CMD_TX_EN, false);
3533 
3534 	/* tx reclaim */
3535 	bcmgenet_tx_reclaim_all(dev);
3536 	bcmgenet_fini_dma(priv);
3537 
3538 	/* Prepare the device for Wake-on-LAN and switch to the slow clock */
3539 	if (device_may_wakeup(d) && priv->wolopts) {
3540 		ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3541 		clk_prepare_enable(priv->clk_wol);
3542 	} else if (priv->internal_phy) {
3543 		ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3544 	}
3545 
3546 	/* Turn off the clocks */
3547 	clk_disable_unprepare(priv->clk);
3548 
3549 	return ret;
3550 }
3551 
3552 static int bcmgenet_resume(struct device *d)
3553 {
3554 	struct net_device *dev = dev_get_drvdata(d);
3555 	struct bcmgenet_priv *priv = netdev_priv(dev);
3556 	unsigned long dma_ctrl;
3557 	int ret;
3558 	u32 reg;
3559 
3560 	if (!netif_running(dev))
3561 		return 0;
3562 
3563 	/* Turn on the clock */
3564 	ret = clk_prepare_enable(priv->clk);
3565 	if (ret)
3566 		return ret;
3567 
3568 	/* If this is an internal GPHY, power it back on now, before UniMAC is
3569 	 * brought out of reset as absolutely no UniMAC activity is allowed
3570 	 */
3571 	if (priv->internal_phy)
3572 		bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3573 
3574 	bcmgenet_umac_reset(priv);
3575 
3576 	ret = init_umac(priv);
3577 	if (ret)
3578 		goto out_clk_disable;
3579 
3580 	/* From WOL-enabled suspend, switch to regular clock */
3581 	if (priv->wolopts)
3582 		clk_disable_unprepare(priv->clk_wol);
3583 
3584 	phy_init_hw(dev->phydev);
3585 	/* Speed settings must be restored */
3586 	bcmgenet_mii_config(priv->dev);
3587 
3588 	/* disable ethernet MAC while updating its registers */
3589 	umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3590 
3591 	bcmgenet_set_hw_addr(priv, dev->dev_addr);
3592 
3593 	if (priv->internal_phy) {
3594 		reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3595 		reg |= EXT_ENERGY_DET_MASK;
3596 		bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3597 	}
3598 
3599 	if (priv->wolopts)
3600 		bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3601 
3602 	/* Disable RX/TX DMA and flush TX queues */
3603 	dma_ctrl = bcmgenet_dma_disable(priv);
3604 
3605 	/* Reinitialize TDMA and RDMA and SW housekeeping */
3606 	ret = bcmgenet_init_dma(priv);
3607 	if (ret) {
3608 		netdev_err(dev, "failed to initialize DMA\n");
3609 		goto out_clk_disable;
3610 	}
3611 
3612 	/* Always enable ring 16 - descriptor ring */
3613 	bcmgenet_enable_dma(priv, dma_ctrl);
3614 
3615 	netif_device_attach(dev);
3616 
3617 	phy_resume(dev->phydev);
3618 
3619 	if (priv->eee.eee_enabled)
3620 		bcmgenet_eee_enable_set(dev, true);
3621 
3622 	bcmgenet_netif_start(dev);
3623 
3624 	return 0;
3625 
3626 out_clk_disable:
3627 	clk_disable_unprepare(priv->clk);
3628 	return ret;
3629 }
3630 #endif /* CONFIG_PM_SLEEP */
3631 
3632 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3633 
3634 static struct platform_driver bcmgenet_driver = {
3635 	.probe	= bcmgenet_probe,
3636 	.remove	= bcmgenet_remove,
3637 	.driver	= {
3638 		.name	= "bcmgenet",
3639 		.of_match_table = bcmgenet_match,
3640 		.pm	= &bcmgenet_pm_ops,
3641 	},
3642 };
3643 module_platform_driver(bcmgenet_driver);
3644 
3645 MODULE_AUTHOR("Broadcom Corporation");
3646 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3647 MODULE_ALIAS("platform:bcmgenet");
3648 MODULE_LICENSE("GPL");
3649