xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt_tc.c (revision 83a37b3292f4aca799b355179ad6fbdd78a08e10)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2017 Broadcom Limited
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  */
9 
10 #include <linux/netdevice.h>
11 #include <linux/inetdevice.h>
12 #include <linux/if_vlan.h>
13 #include <net/flow_dissector.h>
14 #include <net/pkt_cls.h>
15 #include <net/tc_act/tc_gact.h>
16 #include <net/tc_act/tc_skbedit.h>
17 #include <net/tc_act/tc_mirred.h>
18 #include <net/tc_act/tc_vlan.h>
19 
20 #include "bnxt_hsi.h"
21 #include "bnxt.h"
22 #include "bnxt_sriov.h"
23 #include "bnxt_tc.h"
24 #include "bnxt_vfr.h"
25 
26 #define BNXT_FID_INVALID			0xffff
27 #define VLAN_TCI(vid, prio)	((vid) | ((prio) << VLAN_PRIO_SHIFT))
28 
29 /* Return the dst fid of the func for flow forwarding
30  * For PFs: src_fid is the fid of the PF
31  * For VF-reps: src_fid the fid of the VF
32  */
33 static u16 bnxt_flow_get_dst_fid(struct bnxt *pf_bp, struct net_device *dev)
34 {
35 	struct bnxt *bp;
36 
37 	/* check if dev belongs to the same switch */
38 	if (!switchdev_port_same_parent_id(pf_bp->dev, dev)) {
39 		netdev_info(pf_bp->dev, "dev(ifindex=%d) not on same switch",
40 			    dev->ifindex);
41 		return BNXT_FID_INVALID;
42 	}
43 
44 	/* Is dev a VF-rep? */
45 	if (dev != pf_bp->dev)
46 		return bnxt_vf_rep_get_fid(dev);
47 
48 	bp = netdev_priv(dev);
49 	return bp->pf.fw_fid;
50 }
51 
52 static int bnxt_tc_parse_redir(struct bnxt *bp,
53 			       struct bnxt_tc_actions *actions,
54 			       const struct tc_action *tc_act)
55 {
56 	int ifindex = tcf_mirred_ifindex(tc_act);
57 	struct net_device *dev;
58 	u16 dst_fid;
59 
60 	dev = __dev_get_by_index(dev_net(bp->dev), ifindex);
61 	if (!dev) {
62 		netdev_info(bp->dev, "no dev for ifindex=%d", ifindex);
63 		return -EINVAL;
64 	}
65 
66 	/* find the FID from dev */
67 	dst_fid = bnxt_flow_get_dst_fid(bp, dev);
68 	if (dst_fid == BNXT_FID_INVALID) {
69 		netdev_info(bp->dev, "can't get fid for ifindex=%d", ifindex);
70 		return -EINVAL;
71 	}
72 
73 	actions->flags |= BNXT_TC_ACTION_FLAG_FWD;
74 	actions->dst_fid = dst_fid;
75 	actions->dst_dev = dev;
76 	return 0;
77 }
78 
79 static void bnxt_tc_parse_vlan(struct bnxt *bp,
80 			       struct bnxt_tc_actions *actions,
81 			       const struct tc_action *tc_act)
82 {
83 	if (tcf_vlan_action(tc_act) == TCA_VLAN_ACT_POP) {
84 		actions->flags |= BNXT_TC_ACTION_FLAG_POP_VLAN;
85 	} else if (tcf_vlan_action(tc_act) == TCA_VLAN_ACT_PUSH) {
86 		actions->flags |= BNXT_TC_ACTION_FLAG_PUSH_VLAN;
87 		actions->push_vlan_tci = htons(tcf_vlan_push_vid(tc_act));
88 		actions->push_vlan_tpid = tcf_vlan_push_proto(tc_act);
89 	}
90 }
91 
92 static int bnxt_tc_parse_actions(struct bnxt *bp,
93 				 struct bnxt_tc_actions *actions,
94 				 struct tcf_exts *tc_exts)
95 {
96 	const struct tc_action *tc_act;
97 	LIST_HEAD(tc_actions);
98 	int rc;
99 
100 	if (!tcf_exts_has_actions(tc_exts)) {
101 		netdev_info(bp->dev, "no actions");
102 		return -EINVAL;
103 	}
104 
105 	tcf_exts_to_list(tc_exts, &tc_actions);
106 	list_for_each_entry(tc_act, &tc_actions, list) {
107 		/* Drop action */
108 		if (is_tcf_gact_shot(tc_act)) {
109 			actions->flags |= BNXT_TC_ACTION_FLAG_DROP;
110 			return 0; /* don't bother with other actions */
111 		}
112 
113 		/* Redirect action */
114 		if (is_tcf_mirred_egress_redirect(tc_act)) {
115 			rc = bnxt_tc_parse_redir(bp, actions, tc_act);
116 			if (rc)
117 				return rc;
118 			continue;
119 		}
120 
121 		/* Push/pop VLAN */
122 		if (is_tcf_vlan(tc_act)) {
123 			bnxt_tc_parse_vlan(bp, actions, tc_act);
124 			continue;
125 		}
126 	}
127 
128 	return 0;
129 }
130 
131 #define GET_KEY(flow_cmd, key_type)					\
132 		skb_flow_dissector_target((flow_cmd)->dissector, key_type,\
133 					  (flow_cmd)->key)
134 #define GET_MASK(flow_cmd, key_type)					\
135 		skb_flow_dissector_target((flow_cmd)->dissector, key_type,\
136 					  (flow_cmd)->mask)
137 
138 static int bnxt_tc_parse_flow(struct bnxt *bp,
139 			      struct tc_cls_flower_offload *tc_flow_cmd,
140 			      struct bnxt_tc_flow *flow)
141 {
142 	struct flow_dissector *dissector = tc_flow_cmd->dissector;
143 	u16 addr_type = 0;
144 
145 	/* KEY_CONTROL and KEY_BASIC are needed for forming a meaningful key */
146 	if ((dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CONTROL)) == 0 ||
147 	    (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_BASIC)) == 0) {
148 		netdev_info(bp->dev, "cannot form TC key: used_keys = 0x%x",
149 			    dissector->used_keys);
150 		return -EOPNOTSUPP;
151 	}
152 
153 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_CONTROL)) {
154 		struct flow_dissector_key_control *key =
155 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_CONTROL);
156 
157 		addr_type = key->addr_type;
158 	}
159 
160 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC)) {
161 		struct flow_dissector_key_basic *key =
162 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_BASIC);
163 		struct flow_dissector_key_basic *mask =
164 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_BASIC);
165 
166 		flow->l2_key.ether_type = key->n_proto;
167 		flow->l2_mask.ether_type = mask->n_proto;
168 
169 		if (key->n_proto == htons(ETH_P_IP) ||
170 		    key->n_proto == htons(ETH_P_IPV6)) {
171 			flow->l4_key.ip_proto = key->ip_proto;
172 			flow->l4_mask.ip_proto = mask->ip_proto;
173 		}
174 	}
175 
176 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
177 		struct flow_dissector_key_eth_addrs *key =
178 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_ETH_ADDRS);
179 		struct flow_dissector_key_eth_addrs *mask =
180 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_ETH_ADDRS);
181 
182 		flow->flags |= BNXT_TC_FLOW_FLAGS_ETH_ADDRS;
183 		ether_addr_copy(flow->l2_key.dmac, key->dst);
184 		ether_addr_copy(flow->l2_mask.dmac, mask->dst);
185 		ether_addr_copy(flow->l2_key.smac, key->src);
186 		ether_addr_copy(flow->l2_mask.smac, mask->src);
187 	}
188 
189 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_VLAN)) {
190 		struct flow_dissector_key_vlan *key =
191 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_VLAN);
192 		struct flow_dissector_key_vlan *mask =
193 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_VLAN);
194 
195 		flow->l2_key.inner_vlan_tci =
196 		   cpu_to_be16(VLAN_TCI(key->vlan_id, key->vlan_priority));
197 		flow->l2_mask.inner_vlan_tci =
198 		   cpu_to_be16((VLAN_TCI(mask->vlan_id, mask->vlan_priority)));
199 		flow->l2_key.inner_vlan_tpid = htons(ETH_P_8021Q);
200 		flow->l2_mask.inner_vlan_tpid = htons(0xffff);
201 		flow->l2_key.num_vlans = 1;
202 	}
203 
204 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
205 		struct flow_dissector_key_ipv4_addrs *key =
206 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV4_ADDRS);
207 		struct flow_dissector_key_ipv4_addrs *mask =
208 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV4_ADDRS);
209 
210 		flow->flags |= BNXT_TC_FLOW_FLAGS_IPV4_ADDRS;
211 		flow->l3_key.ipv4.daddr.s_addr = key->dst;
212 		flow->l3_mask.ipv4.daddr.s_addr = mask->dst;
213 		flow->l3_key.ipv4.saddr.s_addr = key->src;
214 		flow->l3_mask.ipv4.saddr.s_addr = mask->src;
215 	} else if (dissector_uses_key(dissector,
216 				      FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
217 		struct flow_dissector_key_ipv6_addrs *key =
218 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV6_ADDRS);
219 		struct flow_dissector_key_ipv6_addrs *mask =
220 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_IPV6_ADDRS);
221 
222 		flow->flags |= BNXT_TC_FLOW_FLAGS_IPV6_ADDRS;
223 		flow->l3_key.ipv6.daddr = key->dst;
224 		flow->l3_mask.ipv6.daddr = mask->dst;
225 		flow->l3_key.ipv6.saddr = key->src;
226 		flow->l3_mask.ipv6.saddr = mask->src;
227 	}
228 
229 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_PORTS)) {
230 		struct flow_dissector_key_ports *key =
231 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_PORTS);
232 		struct flow_dissector_key_ports *mask =
233 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_PORTS);
234 
235 		flow->flags |= BNXT_TC_FLOW_FLAGS_PORTS;
236 		flow->l4_key.ports.dport = key->dst;
237 		flow->l4_mask.ports.dport = mask->dst;
238 		flow->l4_key.ports.sport = key->src;
239 		flow->l4_mask.ports.sport = mask->src;
240 	}
241 
242 	if (dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_ICMP)) {
243 		struct flow_dissector_key_icmp *key =
244 			GET_KEY(tc_flow_cmd, FLOW_DISSECTOR_KEY_ICMP);
245 		struct flow_dissector_key_icmp *mask =
246 			GET_MASK(tc_flow_cmd, FLOW_DISSECTOR_KEY_ICMP);
247 
248 		flow->flags |= BNXT_TC_FLOW_FLAGS_ICMP;
249 		flow->l4_key.icmp.type = key->type;
250 		flow->l4_key.icmp.code = key->code;
251 		flow->l4_mask.icmp.type = mask->type;
252 		flow->l4_mask.icmp.code = mask->code;
253 	}
254 
255 	return bnxt_tc_parse_actions(bp, &flow->actions, tc_flow_cmd->exts);
256 }
257 
258 static int bnxt_hwrm_cfa_flow_free(struct bnxt *bp, __le16 flow_handle)
259 {
260 	struct hwrm_cfa_flow_free_input req = { 0 };
261 	int rc;
262 
263 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_FREE, -1, -1);
264 	req.flow_handle = flow_handle;
265 
266 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
267 	if (rc)
268 		netdev_info(bp->dev, "Error: %s: flow_handle=0x%x rc=%d",
269 			    __func__, flow_handle, rc);
270 	return rc;
271 }
272 
273 static int ipv6_mask_len(struct in6_addr *mask)
274 {
275 	int mask_len = 0, i;
276 
277 	for (i = 0; i < 4; i++)
278 		mask_len += inet_mask_len(mask->s6_addr32[i]);
279 
280 	return mask_len;
281 }
282 
283 static bool is_wildcard(void *mask, int len)
284 {
285 	const u8 *p = mask;
286 	int i;
287 
288 	for (i = 0; i < len; i++) {
289 		if (p[i] != 0)
290 			return false;
291 	}
292 	return true;
293 }
294 
295 static int bnxt_hwrm_cfa_flow_alloc(struct bnxt *bp, struct bnxt_tc_flow *flow,
296 				    __le16 ref_flow_handle, __le16 *flow_handle)
297 {
298 	struct hwrm_cfa_flow_alloc_output *resp = bp->hwrm_cmd_resp_addr;
299 	struct bnxt_tc_actions *actions = &flow->actions;
300 	struct bnxt_tc_l3_key *l3_mask = &flow->l3_mask;
301 	struct bnxt_tc_l3_key *l3_key = &flow->l3_key;
302 	struct hwrm_cfa_flow_alloc_input req = { 0 };
303 	u16 flow_flags = 0, action_flags = 0;
304 	int rc;
305 
306 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_ALLOC, -1, -1);
307 
308 	req.src_fid = cpu_to_le16(flow->src_fid);
309 	req.ref_flow_handle = ref_flow_handle;
310 	req.ethertype = flow->l2_key.ether_type;
311 	req.ip_proto = flow->l4_key.ip_proto;
312 
313 	if (flow->flags & BNXT_TC_FLOW_FLAGS_ETH_ADDRS) {
314 		memcpy(req.dmac, flow->l2_key.dmac, ETH_ALEN);
315 		memcpy(req.smac, flow->l2_key.smac, ETH_ALEN);
316 	}
317 
318 	if (flow->l2_key.num_vlans > 0) {
319 		flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_NUM_VLAN_ONE;
320 		/* FW expects the inner_vlan_tci value to be set
321 		 * in outer_vlan_tci when num_vlans is 1 (which is
322 		 * always the case in TC.)
323 		 */
324 		req.outer_vlan_tci = flow->l2_key.inner_vlan_tci;
325 	}
326 
327 	/* If all IP and L4 fields are wildcarded then this is an L2 flow */
328 	if (is_wildcard(&l3_mask, sizeof(l3_mask)) &&
329 	    is_wildcard(&flow->l4_mask, sizeof(flow->l4_mask))) {
330 		flow_flags |= CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_L2;
331 	} else {
332 		flow_flags |= flow->l2_key.ether_type == htons(ETH_P_IP) ?
333 				CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV4 :
334 				CFA_FLOW_ALLOC_REQ_FLAGS_FLOWTYPE_IPV6;
335 
336 		if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV4_ADDRS) {
337 			req.ip_dst[0] = l3_key->ipv4.daddr.s_addr;
338 			req.ip_dst_mask_len =
339 				inet_mask_len(l3_mask->ipv4.daddr.s_addr);
340 			req.ip_src[0] = l3_key->ipv4.saddr.s_addr;
341 			req.ip_src_mask_len =
342 				inet_mask_len(l3_mask->ipv4.saddr.s_addr);
343 		} else if (flow->flags & BNXT_TC_FLOW_FLAGS_IPV6_ADDRS) {
344 			memcpy(req.ip_dst, l3_key->ipv6.daddr.s6_addr32,
345 			       sizeof(req.ip_dst));
346 			req.ip_dst_mask_len =
347 					ipv6_mask_len(&l3_mask->ipv6.daddr);
348 			memcpy(req.ip_src, l3_key->ipv6.saddr.s6_addr32,
349 			       sizeof(req.ip_src));
350 			req.ip_src_mask_len =
351 					ipv6_mask_len(&l3_mask->ipv6.saddr);
352 		}
353 	}
354 
355 	if (flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) {
356 		req.l4_src_port = flow->l4_key.ports.sport;
357 		req.l4_src_port_mask = flow->l4_mask.ports.sport;
358 		req.l4_dst_port = flow->l4_key.ports.dport;
359 		req.l4_dst_port_mask = flow->l4_mask.ports.dport;
360 	} else if (flow->flags & BNXT_TC_FLOW_FLAGS_ICMP) {
361 		/* l4 ports serve as type/code when ip_proto is ICMP */
362 		req.l4_src_port = htons(flow->l4_key.icmp.type);
363 		req.l4_src_port_mask = htons(flow->l4_mask.icmp.type);
364 		req.l4_dst_port = htons(flow->l4_key.icmp.code);
365 		req.l4_dst_port_mask = htons(flow->l4_mask.icmp.code);
366 	}
367 	req.flags = cpu_to_le16(flow_flags);
368 
369 	if (actions->flags & BNXT_TC_ACTION_FLAG_DROP) {
370 		action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_DROP;
371 	} else {
372 		if (actions->flags & BNXT_TC_ACTION_FLAG_FWD) {
373 			action_flags |= CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_FWD;
374 			req.dst_fid = cpu_to_le16(actions->dst_fid);
375 		}
376 		if (actions->flags & BNXT_TC_ACTION_FLAG_PUSH_VLAN) {
377 			action_flags |=
378 			    CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
379 			req.l2_rewrite_vlan_tpid = actions->push_vlan_tpid;
380 			req.l2_rewrite_vlan_tci = actions->push_vlan_tci;
381 			memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
382 			memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
383 		}
384 		if (actions->flags & BNXT_TC_ACTION_FLAG_POP_VLAN) {
385 			action_flags |=
386 			    CFA_FLOW_ALLOC_REQ_ACTION_FLAGS_L2_HEADER_REWRITE;
387 			/* Rewrite config with tpid = 0 implies vlan pop */
388 			req.l2_rewrite_vlan_tpid = 0;
389 			memcpy(&req.l2_rewrite_dmac, &req.dmac, ETH_ALEN);
390 			memcpy(&req.l2_rewrite_smac, &req.smac, ETH_ALEN);
391 		}
392 	}
393 	req.action_flags = cpu_to_le16(action_flags);
394 
395 	mutex_lock(&bp->hwrm_cmd_lock);
396 
397 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
398 	if (!rc)
399 		*flow_handle = resp->flow_handle;
400 
401 	mutex_unlock(&bp->hwrm_cmd_lock);
402 
403 	return rc;
404 }
405 
406 /* Add val to accum while handling a possible wraparound
407  * of val. Eventhough val is of type u64, its actual width
408  * is denoted by mask and will wrap-around beyond that width.
409  */
410 static void accumulate_val(u64 *accum, u64 val, u64 mask)
411 {
412 #define low_bits(x, mask)		((x) & (mask))
413 #define high_bits(x, mask)		((x) & ~(mask))
414 	bool wrapped = val < low_bits(*accum, mask);
415 
416 	*accum = high_bits(*accum, mask) + val;
417 	if (wrapped)
418 		*accum += (mask + 1);
419 }
420 
421 /* The HW counters' width is much less than 64bits.
422  * Handle possible wrap-around while updating the stat counters
423  */
424 static void bnxt_flow_stats_fix_wraparound(struct bnxt_tc_info *tc_info,
425 					   struct bnxt_tc_flow_stats *stats,
426 					   struct bnxt_tc_flow_stats *hw_stats)
427 {
428 	accumulate_val(&stats->bytes, hw_stats->bytes, tc_info->bytes_mask);
429 	accumulate_val(&stats->packets, hw_stats->packets,
430 		       tc_info->packets_mask);
431 }
432 
433 /* Fix possible wraparound of the stats queried from HW, calculate
434  * the delta from prev_stats, and also update the prev_stats.
435  * The HW flow stats are fetched under the hwrm_cmd_lock mutex.
436  * This routine is best called while under the mutex so that the
437  * stats processing happens atomically.
438  */
439 static void bnxt_flow_stats_calc(struct bnxt_tc_info *tc_info,
440 				 struct bnxt_tc_flow *flow,
441 				 struct bnxt_tc_flow_stats *stats)
442 {
443 	struct bnxt_tc_flow_stats *acc_stats, *prev_stats;
444 
445 	acc_stats = &flow->stats;
446 	bnxt_flow_stats_fix_wraparound(tc_info, acc_stats, stats);
447 
448 	prev_stats = &flow->prev_stats;
449 	stats->bytes = acc_stats->bytes - prev_stats->bytes;
450 	stats->packets = acc_stats->packets - prev_stats->packets;
451 	*prev_stats = *acc_stats;
452 }
453 
454 static int bnxt_hwrm_cfa_flow_stats_get(struct bnxt *bp,
455 					__le16 flow_handle,
456 					struct bnxt_tc_flow *flow,
457 					struct bnxt_tc_flow_stats *stats)
458 {
459 	struct hwrm_cfa_flow_stats_output *resp = bp->hwrm_cmd_resp_addr;
460 	struct hwrm_cfa_flow_stats_input req = { 0 };
461 	int rc;
462 
463 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_FLOW_STATS, -1, -1);
464 	req.num_flows = cpu_to_le16(1);
465 	req.flow_handle_0 = flow_handle;
466 
467 	mutex_lock(&bp->hwrm_cmd_lock);
468 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
469 	if (!rc) {
470 		stats->packets = le64_to_cpu(resp->packet_0);
471 		stats->bytes = le64_to_cpu(resp->byte_0);
472 		bnxt_flow_stats_calc(&bp->tc_info, flow, stats);
473 	} else {
474 		netdev_info(bp->dev, "error rc=%d", rc);
475 	}
476 
477 	mutex_unlock(&bp->hwrm_cmd_lock);
478 	return rc;
479 }
480 
481 static int bnxt_tc_put_l2_node(struct bnxt *bp,
482 			       struct bnxt_tc_flow_node *flow_node)
483 {
484 	struct bnxt_tc_l2_node *l2_node = flow_node->l2_node;
485 	struct bnxt_tc_info *tc_info = &bp->tc_info;
486 	int rc;
487 
488 	/* remove flow_node from the L2 shared flow list */
489 	list_del(&flow_node->l2_list_node);
490 	if (--l2_node->refcount == 0) {
491 		rc =  rhashtable_remove_fast(&tc_info->l2_table, &l2_node->node,
492 					     tc_info->l2_ht_params);
493 		if (rc)
494 			netdev_err(bp->dev,
495 				   "Error: %s: rhashtable_remove_fast: %d",
496 				   __func__, rc);
497 		kfree_rcu(l2_node, rcu);
498 	}
499 	return 0;
500 }
501 
502 static struct bnxt_tc_l2_node *
503 bnxt_tc_get_l2_node(struct bnxt *bp, struct rhashtable *l2_table,
504 		    struct rhashtable_params ht_params,
505 		    struct bnxt_tc_l2_key *l2_key)
506 {
507 	struct bnxt_tc_l2_node *l2_node;
508 	int rc;
509 
510 	l2_node = rhashtable_lookup_fast(l2_table, l2_key, ht_params);
511 	if (!l2_node) {
512 		l2_node = kzalloc(sizeof(*l2_node), GFP_KERNEL);
513 		if (!l2_node) {
514 			rc = -ENOMEM;
515 			return NULL;
516 		}
517 
518 		l2_node->key = *l2_key;
519 		rc = rhashtable_insert_fast(l2_table, &l2_node->node,
520 					    ht_params);
521 		if (rc) {
522 			kfree(l2_node);
523 			netdev_err(bp->dev,
524 				   "Error: %s: rhashtable_insert_fast: %d",
525 				   __func__, rc);
526 			return NULL;
527 		}
528 		INIT_LIST_HEAD(&l2_node->common_l2_flows);
529 	}
530 	return l2_node;
531 }
532 
533 /* Get the ref_flow_handle for a flow by checking if there are any other
534  * flows that share the same L2 key as this flow.
535  */
536 static int
537 bnxt_tc_get_ref_flow_handle(struct bnxt *bp, struct bnxt_tc_flow *flow,
538 			    struct bnxt_tc_flow_node *flow_node,
539 			    __le16 *ref_flow_handle)
540 {
541 	struct bnxt_tc_info *tc_info = &bp->tc_info;
542 	struct bnxt_tc_flow_node *ref_flow_node;
543 	struct bnxt_tc_l2_node *l2_node;
544 
545 	l2_node = bnxt_tc_get_l2_node(bp, &tc_info->l2_table,
546 				      tc_info->l2_ht_params,
547 				      &flow->l2_key);
548 	if (!l2_node)
549 		return -1;
550 
551 	/* If any other flow is using this l2_node, use it's flow_handle
552 	 * as the ref_flow_handle
553 	 */
554 	if (l2_node->refcount > 0) {
555 		ref_flow_node = list_first_entry(&l2_node->common_l2_flows,
556 						 struct bnxt_tc_flow_node,
557 						 l2_list_node);
558 		*ref_flow_handle = ref_flow_node->flow_handle;
559 	} else {
560 		*ref_flow_handle = cpu_to_le16(0xffff);
561 	}
562 
563 	/* Insert the l2_node into the flow_node so that subsequent flows
564 	 * with a matching l2 key can use the flow_handle of this flow
565 	 * as their ref_flow_handle
566 	 */
567 	flow_node->l2_node = l2_node;
568 	list_add(&flow_node->l2_list_node, &l2_node->common_l2_flows);
569 	l2_node->refcount++;
570 	return 0;
571 }
572 
573 /* After the flow parsing is done, this routine is used for checking
574  * if there are any aspects of the flow that prevent it from being
575  * offloaded.
576  */
577 static bool bnxt_tc_can_offload(struct bnxt *bp, struct bnxt_tc_flow *flow)
578 {
579 	/* If L4 ports are specified then ip_proto must be TCP or UDP */
580 	if ((flow->flags & BNXT_TC_FLOW_FLAGS_PORTS) &&
581 	    (flow->l4_key.ip_proto != IPPROTO_TCP &&
582 	     flow->l4_key.ip_proto != IPPROTO_UDP)) {
583 		netdev_info(bp->dev, "Cannot offload non-TCP/UDP (%d) ports",
584 			    flow->l4_key.ip_proto);
585 		return false;
586 	}
587 
588 	return true;
589 }
590 
591 static int __bnxt_tc_del_flow(struct bnxt *bp,
592 			      struct bnxt_tc_flow_node *flow_node)
593 {
594 	struct bnxt_tc_info *tc_info = &bp->tc_info;
595 	int rc;
596 
597 	/* send HWRM cmd to free the flow-id */
598 	bnxt_hwrm_cfa_flow_free(bp, flow_node->flow_handle);
599 
600 	mutex_lock(&tc_info->lock);
601 
602 	/* release reference to l2 node */
603 	bnxt_tc_put_l2_node(bp, flow_node);
604 
605 	mutex_unlock(&tc_info->lock);
606 
607 	rc = rhashtable_remove_fast(&tc_info->flow_table, &flow_node->node,
608 				    tc_info->flow_ht_params);
609 	if (rc)
610 		netdev_err(bp->dev, "Error: %s: rhashtable_remove_fast rc=%d",
611 			   __func__, rc);
612 
613 	kfree_rcu(flow_node, rcu);
614 	return 0;
615 }
616 
617 /* Add a new flow or replace an existing flow.
618  * Notes on locking:
619  * There are essentially two critical sections here.
620  * 1. while adding a new flow
621  *    a) lookup l2-key
622  *    b) issue HWRM cmd and get flow_handle
623  *    c) link l2-key with flow
624  * 2. while deleting a flow
625  *    a) unlinking l2-key from flow
626  * A lock is needed to protect these two critical sections.
627  *
628  * The hash-tables are already protected by the rhashtable API.
629  */
630 static int bnxt_tc_add_flow(struct bnxt *bp, u16 src_fid,
631 			    struct tc_cls_flower_offload *tc_flow_cmd)
632 {
633 	struct bnxt_tc_flow_node *new_node, *old_node;
634 	struct bnxt_tc_info *tc_info = &bp->tc_info;
635 	struct bnxt_tc_flow *flow;
636 	__le16 ref_flow_handle;
637 	int rc;
638 
639 	/* allocate memory for the new flow and it's node */
640 	new_node = kzalloc(sizeof(*new_node), GFP_KERNEL);
641 	if (!new_node) {
642 		rc = -ENOMEM;
643 		goto done;
644 	}
645 	new_node->cookie = tc_flow_cmd->cookie;
646 	flow = &new_node->flow;
647 
648 	rc = bnxt_tc_parse_flow(bp, tc_flow_cmd, flow);
649 	if (rc)
650 		goto free_node;
651 	flow->src_fid = src_fid;
652 
653 	if (!bnxt_tc_can_offload(bp, flow)) {
654 		rc = -ENOSPC;
655 		goto free_node;
656 	}
657 
658 	/* If a flow exists with the same cookie, delete it */
659 	old_node = rhashtable_lookup_fast(&tc_info->flow_table,
660 					  &tc_flow_cmd->cookie,
661 					  tc_info->flow_ht_params);
662 	if (old_node)
663 		__bnxt_tc_del_flow(bp, old_node);
664 
665 	/* Check if the L2 part of the flow has been offloaded already.
666 	 * If so, bump up it's refcnt and get it's reference handle.
667 	 */
668 	mutex_lock(&tc_info->lock);
669 	rc = bnxt_tc_get_ref_flow_handle(bp, flow, new_node, &ref_flow_handle);
670 	if (rc)
671 		goto unlock;
672 
673 	/* send HWRM cmd to alloc the flow */
674 	rc = bnxt_hwrm_cfa_flow_alloc(bp, flow, ref_flow_handle,
675 				      &new_node->flow_handle);
676 	if (rc)
677 		goto put_l2;
678 
679 	/* add new flow to flow-table */
680 	rc = rhashtable_insert_fast(&tc_info->flow_table, &new_node->node,
681 				    tc_info->flow_ht_params);
682 	if (rc)
683 		goto hwrm_flow_free;
684 
685 	mutex_unlock(&tc_info->lock);
686 	return 0;
687 
688 hwrm_flow_free:
689 	bnxt_hwrm_cfa_flow_free(bp, new_node->flow_handle);
690 put_l2:
691 	bnxt_tc_put_l2_node(bp, new_node);
692 unlock:
693 	mutex_unlock(&tc_info->lock);
694 free_node:
695 	kfree(new_node);
696 done:
697 	netdev_err(bp->dev, "Error: %s: cookie=0x%lx error=%d",
698 		   __func__, tc_flow_cmd->cookie, rc);
699 	return rc;
700 }
701 
702 static int bnxt_tc_del_flow(struct bnxt *bp,
703 			    struct tc_cls_flower_offload *tc_flow_cmd)
704 {
705 	struct bnxt_tc_info *tc_info = &bp->tc_info;
706 	struct bnxt_tc_flow_node *flow_node;
707 
708 	flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
709 					   &tc_flow_cmd->cookie,
710 					   tc_info->flow_ht_params);
711 	if (!flow_node) {
712 		netdev_info(bp->dev, "ERROR: no flow_node for cookie %lx",
713 			    tc_flow_cmd->cookie);
714 		return -EINVAL;
715 	}
716 
717 	return __bnxt_tc_del_flow(bp, flow_node);
718 }
719 
720 static int bnxt_tc_get_flow_stats(struct bnxt *bp,
721 				  struct tc_cls_flower_offload *tc_flow_cmd)
722 {
723 	struct bnxt_tc_info *tc_info = &bp->tc_info;
724 	struct bnxt_tc_flow_node *flow_node;
725 	struct bnxt_tc_flow_stats stats;
726 	int rc;
727 
728 	flow_node = rhashtable_lookup_fast(&tc_info->flow_table,
729 					   &tc_flow_cmd->cookie,
730 					   tc_info->flow_ht_params);
731 	if (!flow_node) {
732 		netdev_info(bp->dev, "Error: no flow_node for cookie %lx",
733 			    tc_flow_cmd->cookie);
734 		return -1;
735 	}
736 
737 	rc = bnxt_hwrm_cfa_flow_stats_get(bp, flow_node->flow_handle,
738 					  &flow_node->flow, &stats);
739 	if (rc)
740 		return rc;
741 
742 	tcf_exts_stats_update(tc_flow_cmd->exts, stats.bytes, stats.packets, 0);
743 	return 0;
744 }
745 
746 int bnxt_tc_setup_flower(struct bnxt *bp, u16 src_fid,
747 			 struct tc_cls_flower_offload *cls_flower)
748 {
749 	int rc = 0;
750 
751 	if (!is_classid_clsact_ingress(cls_flower->common.classid) ||
752 	    cls_flower->common.chain_index)
753 		return -EOPNOTSUPP;
754 
755 	switch (cls_flower->command) {
756 	case TC_CLSFLOWER_REPLACE:
757 		rc = bnxt_tc_add_flow(bp, src_fid, cls_flower);
758 		break;
759 
760 	case TC_CLSFLOWER_DESTROY:
761 		rc = bnxt_tc_del_flow(bp, cls_flower);
762 		break;
763 
764 	case TC_CLSFLOWER_STATS:
765 		rc = bnxt_tc_get_flow_stats(bp, cls_flower);
766 		break;
767 	}
768 	return rc;
769 }
770 
771 static const struct rhashtable_params bnxt_tc_flow_ht_params = {
772 	.head_offset = offsetof(struct bnxt_tc_flow_node, node),
773 	.key_offset = offsetof(struct bnxt_tc_flow_node, cookie),
774 	.key_len = sizeof(((struct bnxt_tc_flow_node *)0)->cookie),
775 	.automatic_shrinking = true
776 };
777 
778 static const struct rhashtable_params bnxt_tc_l2_ht_params = {
779 	.head_offset = offsetof(struct bnxt_tc_l2_node, node),
780 	.key_offset = offsetof(struct bnxt_tc_l2_node, key),
781 	.key_len = BNXT_TC_L2_KEY_LEN,
782 	.automatic_shrinking = true
783 };
784 
785 /* convert counter width in bits to a mask */
786 #define mask(width)		((u64)~0 >> (64 - (width)))
787 
788 int bnxt_init_tc(struct bnxt *bp)
789 {
790 	struct bnxt_tc_info *tc_info = &bp->tc_info;
791 	int rc;
792 
793 	if (bp->hwrm_spec_code < 0x10800) {
794 		netdev_warn(bp->dev,
795 			    "Firmware does not support TC flower offload.\n");
796 		return -ENOTSUPP;
797 	}
798 	mutex_init(&tc_info->lock);
799 
800 	/* Counter widths are programmed by FW */
801 	tc_info->bytes_mask = mask(36);
802 	tc_info->packets_mask = mask(28);
803 
804 	tc_info->flow_ht_params = bnxt_tc_flow_ht_params;
805 	rc = rhashtable_init(&tc_info->flow_table, &tc_info->flow_ht_params);
806 	if (rc)
807 		return rc;
808 
809 	tc_info->l2_ht_params = bnxt_tc_l2_ht_params;
810 	rc = rhashtable_init(&tc_info->l2_table, &tc_info->l2_ht_params);
811 	if (rc)
812 		goto destroy_flow_table;
813 
814 	tc_info->enabled = true;
815 	bp->dev->hw_features |= NETIF_F_HW_TC;
816 	bp->dev->features |= NETIF_F_HW_TC;
817 	return 0;
818 
819 destroy_flow_table:
820 	rhashtable_destroy(&tc_info->flow_table);
821 	return rc;
822 }
823 
824 void bnxt_shutdown_tc(struct bnxt *bp)
825 {
826 	struct bnxt_tc_info *tc_info = &bp->tc_info;
827 
828 	if (!tc_info->enabled)
829 		return;
830 
831 	rhashtable_destroy(&tc_info->flow_table);
832 	rhashtable_destroy(&tc_info->l2_table);
833 }
834