xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt_sriov.c (revision d6296cb65320be16dbf20f2fd584ddc25f3437cd)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/ethtool.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/etherdevice.h>
18 #include "bnxt_hsi.h"
19 #include "bnxt.h"
20 #include "bnxt_hwrm.h"
21 #include "bnxt_ulp.h"
22 #include "bnxt_sriov.h"
23 #include "bnxt_vfr.h"
24 #include "bnxt_ethtool.h"
25 
26 #ifdef CONFIG_BNXT_SRIOV
27 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
28 					  struct bnxt_vf_info *vf, u16 event_id)
29 {
30 	struct hwrm_fwd_async_event_cmpl_input *req;
31 	struct hwrm_async_event_cmpl *async_cmpl;
32 	int rc = 0;
33 
34 	rc = hwrm_req_init(bp, req, HWRM_FWD_ASYNC_EVENT_CMPL);
35 	if (rc)
36 		goto exit;
37 
38 	if (vf)
39 		req->encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
40 	else
41 		/* broadcast this async event to all VFs */
42 		req->encap_async_event_target_id = cpu_to_le16(0xffff);
43 	async_cmpl =
44 		(struct hwrm_async_event_cmpl *)req->encap_async_event_cmpl;
45 	async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
46 	async_cmpl->event_id = cpu_to_le16(event_id);
47 
48 	rc = hwrm_req_send(bp, req);
49 exit:
50 	if (rc)
51 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
52 			   rc);
53 	return rc;
54 }
55 
56 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
57 {
58 	if (!bp->pf.active_vfs) {
59 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
60 		return -EINVAL;
61 	}
62 	if (vf_id >= bp->pf.active_vfs) {
63 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
64 		return -EINVAL;
65 	}
66 	return 0;
67 }
68 
69 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
70 {
71 	struct bnxt *bp = netdev_priv(dev);
72 	struct hwrm_func_cfg_input *req;
73 	bool old_setting = false;
74 	struct bnxt_vf_info *vf;
75 	u32 func_flags;
76 	int rc;
77 
78 	if (bp->hwrm_spec_code < 0x10701)
79 		return -ENOTSUPP;
80 
81 	rc = bnxt_vf_ndo_prep(bp, vf_id);
82 	if (rc)
83 		return rc;
84 
85 	vf = &bp->pf.vf[vf_id];
86 	if (vf->flags & BNXT_VF_SPOOFCHK)
87 		old_setting = true;
88 	if (old_setting == setting)
89 		return 0;
90 
91 	if (setting)
92 		func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
93 	else
94 		func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
95 	/*TODO: if the driver supports VLAN filter on guest VLAN,
96 	 * the spoof check should also include vlan anti-spoofing
97 	 */
98 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
99 	if (!rc) {
100 		req->fid = cpu_to_le16(vf->fw_fid);
101 		req->flags = cpu_to_le32(func_flags);
102 		rc = hwrm_req_send(bp, req);
103 		if (!rc) {
104 			if (setting)
105 				vf->flags |= BNXT_VF_SPOOFCHK;
106 			else
107 				vf->flags &= ~BNXT_VF_SPOOFCHK;
108 		}
109 	}
110 	return rc;
111 }
112 
113 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf)
114 {
115 	struct hwrm_func_qcfg_output *resp;
116 	struct hwrm_func_qcfg_input *req;
117 	int rc;
118 
119 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
120 	if (rc)
121 		return rc;
122 
123 	req->fid = cpu_to_le16(BNXT_PF(bp) ? vf->fw_fid : 0xffff);
124 	resp = hwrm_req_hold(bp, req);
125 	rc = hwrm_req_send(bp, req);
126 	if (!rc)
127 		vf->func_qcfg_flags = le16_to_cpu(resp->flags);
128 	hwrm_req_drop(bp, req);
129 	return rc;
130 }
131 
132 bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
133 {
134 	if (BNXT_PF(bp) && !(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
135 		return !!(vf->flags & BNXT_VF_TRUST);
136 
137 	bnxt_hwrm_func_qcfg_flags(bp, vf);
138 	return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF);
139 }
140 
141 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
142 {
143 	struct hwrm_func_cfg_input *req;
144 	int rc;
145 
146 	if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
147 		return 0;
148 
149 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
150 	if (rc)
151 		return rc;
152 
153 	req->fid = cpu_to_le16(vf->fw_fid);
154 	if (vf->flags & BNXT_VF_TRUST)
155 		req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
156 	else
157 		req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE);
158 	return hwrm_req_send(bp, req);
159 }
160 
161 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
162 {
163 	struct bnxt *bp = netdev_priv(dev);
164 	struct bnxt_vf_info *vf;
165 
166 	if (bnxt_vf_ndo_prep(bp, vf_id))
167 		return -EINVAL;
168 
169 	vf = &bp->pf.vf[vf_id];
170 	if (trusted)
171 		vf->flags |= BNXT_VF_TRUST;
172 	else
173 		vf->flags &= ~BNXT_VF_TRUST;
174 
175 	bnxt_hwrm_set_trusted_vf(bp, vf);
176 	return 0;
177 }
178 
179 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
180 		       struct ifla_vf_info *ivi)
181 {
182 	struct bnxt *bp = netdev_priv(dev);
183 	struct bnxt_vf_info *vf;
184 	int rc;
185 
186 	rc = bnxt_vf_ndo_prep(bp, vf_id);
187 	if (rc)
188 		return rc;
189 
190 	ivi->vf = vf_id;
191 	vf = &bp->pf.vf[vf_id];
192 
193 	if (is_valid_ether_addr(vf->mac_addr))
194 		memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
195 	else
196 		memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
197 	ivi->max_tx_rate = vf->max_tx_rate;
198 	ivi->min_tx_rate = vf->min_tx_rate;
199 	ivi->vlan = vf->vlan;
200 	if (vf->flags & BNXT_VF_QOS)
201 		ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
202 	else
203 		ivi->qos = 0;
204 	ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
205 	ivi->trusted = bnxt_is_trusted_vf(bp, vf);
206 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
207 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
208 	else if (vf->flags & BNXT_VF_LINK_UP)
209 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
210 	else
211 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
212 
213 	return 0;
214 }
215 
216 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
217 {
218 	struct bnxt *bp = netdev_priv(dev);
219 	struct hwrm_func_cfg_input *req;
220 	struct bnxt_vf_info *vf;
221 	int rc;
222 
223 	rc = bnxt_vf_ndo_prep(bp, vf_id);
224 	if (rc)
225 		return rc;
226 	/* reject bc or mc mac addr, zero mac addr means allow
227 	 * VF to use its own mac addr
228 	 */
229 	if (is_multicast_ether_addr(mac)) {
230 		netdev_err(dev, "Invalid VF ethernet address\n");
231 		return -EINVAL;
232 	}
233 	vf = &bp->pf.vf[vf_id];
234 
235 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
236 	if (rc)
237 		return rc;
238 
239 	memcpy(vf->mac_addr, mac, ETH_ALEN);
240 
241 	req->fid = cpu_to_le16(vf->fw_fid);
242 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
243 	memcpy(req->dflt_mac_addr, mac, ETH_ALEN);
244 	return hwrm_req_send(bp, req);
245 }
246 
247 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
248 		     __be16 vlan_proto)
249 {
250 	struct bnxt *bp = netdev_priv(dev);
251 	struct hwrm_func_cfg_input *req;
252 	struct bnxt_vf_info *vf;
253 	u16 vlan_tag;
254 	int rc;
255 
256 	if (bp->hwrm_spec_code < 0x10201)
257 		return -ENOTSUPP;
258 
259 	if (vlan_proto != htons(ETH_P_8021Q))
260 		return -EPROTONOSUPPORT;
261 
262 	rc = bnxt_vf_ndo_prep(bp, vf_id);
263 	if (rc)
264 		return rc;
265 
266 	/* TODO: needed to implement proper handling of user priority,
267 	 * currently fail the command if there is valid priority
268 	 */
269 	if (vlan_id > 4095 || qos)
270 		return -EINVAL;
271 
272 	vf = &bp->pf.vf[vf_id];
273 	vlan_tag = vlan_id;
274 	if (vlan_tag == vf->vlan)
275 		return 0;
276 
277 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
278 	if (!rc) {
279 		req->fid = cpu_to_le16(vf->fw_fid);
280 		req->dflt_vlan = cpu_to_le16(vlan_tag);
281 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
282 		rc = hwrm_req_send(bp, req);
283 		if (!rc)
284 			vf->vlan = vlan_tag;
285 	}
286 	return rc;
287 }
288 
289 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
290 		   int max_tx_rate)
291 {
292 	struct bnxt *bp = netdev_priv(dev);
293 	struct hwrm_func_cfg_input *req;
294 	struct bnxt_vf_info *vf;
295 	u32 pf_link_speed;
296 	int rc;
297 
298 	rc = bnxt_vf_ndo_prep(bp, vf_id);
299 	if (rc)
300 		return rc;
301 
302 	vf = &bp->pf.vf[vf_id];
303 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
304 	if (max_tx_rate > pf_link_speed) {
305 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
306 			    max_tx_rate, vf_id);
307 		return -EINVAL;
308 	}
309 
310 	if (min_tx_rate > pf_link_speed) {
311 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
312 			    min_tx_rate, vf_id);
313 		return -EINVAL;
314 	}
315 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
316 		return 0;
317 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
318 	if (!rc) {
319 		req->fid = cpu_to_le16(vf->fw_fid);
320 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW |
321 					   FUNC_CFG_REQ_ENABLES_MIN_BW);
322 		req->max_bw = cpu_to_le32(max_tx_rate);
323 		req->min_bw = cpu_to_le32(min_tx_rate);
324 		rc = hwrm_req_send(bp, req);
325 		if (!rc) {
326 			vf->min_tx_rate = min_tx_rate;
327 			vf->max_tx_rate = max_tx_rate;
328 		}
329 	}
330 	return rc;
331 }
332 
333 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
334 {
335 	struct bnxt *bp = netdev_priv(dev);
336 	struct bnxt_vf_info *vf;
337 	int rc;
338 
339 	rc = bnxt_vf_ndo_prep(bp, vf_id);
340 	if (rc)
341 		return rc;
342 
343 	vf = &bp->pf.vf[vf_id];
344 
345 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
346 	switch (link) {
347 	case IFLA_VF_LINK_STATE_AUTO:
348 		vf->flags |= BNXT_VF_LINK_UP;
349 		break;
350 	case IFLA_VF_LINK_STATE_DISABLE:
351 		vf->flags |= BNXT_VF_LINK_FORCED;
352 		break;
353 	case IFLA_VF_LINK_STATE_ENABLE:
354 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
355 		break;
356 	default:
357 		netdev_err(bp->dev, "Invalid link option\n");
358 		rc = -EINVAL;
359 		break;
360 	}
361 	if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
362 		rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
363 			ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
364 	return rc;
365 }
366 
367 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
368 {
369 	int i;
370 	struct bnxt_vf_info *vf;
371 
372 	for (i = 0; i < num_vfs; i++) {
373 		vf = &bp->pf.vf[i];
374 		memset(vf, 0, sizeof(*vf));
375 	}
376 	return 0;
377 }
378 
379 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
380 {
381 	struct hwrm_func_vf_resc_free_input *req;
382 	struct bnxt_pf_info *pf = &bp->pf;
383 	int i, rc;
384 
385 	rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESC_FREE);
386 	if (rc)
387 		return rc;
388 
389 	hwrm_req_hold(bp, req);
390 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
391 		req->vf_id = cpu_to_le16(i);
392 		rc = hwrm_req_send(bp, req);
393 		if (rc)
394 			break;
395 	}
396 	hwrm_req_drop(bp, req);
397 	return rc;
398 }
399 
400 static void bnxt_free_vf_resources(struct bnxt *bp)
401 {
402 	struct pci_dev *pdev = bp->pdev;
403 	int i;
404 
405 	kfree(bp->pf.vf_event_bmap);
406 	bp->pf.vf_event_bmap = NULL;
407 
408 	for (i = 0; i < 4; i++) {
409 		if (bp->pf.hwrm_cmd_req_addr[i]) {
410 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
411 					  bp->pf.hwrm_cmd_req_addr[i],
412 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
413 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
414 		}
415 	}
416 
417 	bp->pf.active_vfs = 0;
418 	kfree(bp->pf.vf);
419 	bp->pf.vf = NULL;
420 }
421 
422 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
423 {
424 	struct pci_dev *pdev = bp->pdev;
425 	u32 nr_pages, size, i, j, k = 0;
426 
427 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
428 	if (!bp->pf.vf)
429 		return -ENOMEM;
430 
431 	bnxt_set_vf_attr(bp, num_vfs);
432 
433 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
434 	nr_pages = size / BNXT_PAGE_SIZE;
435 	if (size & (BNXT_PAGE_SIZE - 1))
436 		nr_pages++;
437 
438 	for (i = 0; i < nr_pages; i++) {
439 		bp->pf.hwrm_cmd_req_addr[i] =
440 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
441 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
442 					   GFP_KERNEL);
443 
444 		if (!bp->pf.hwrm_cmd_req_addr[i])
445 			return -ENOMEM;
446 
447 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
448 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
449 
450 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
451 						j * BNXT_HWRM_REQ_MAX_SIZE;
452 			vf->hwrm_cmd_req_dma_addr =
453 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
454 				BNXT_HWRM_REQ_MAX_SIZE;
455 			k++;
456 		}
457 	}
458 
459 	/* Max 128 VF's */
460 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
461 	if (!bp->pf.vf_event_bmap)
462 		return -ENOMEM;
463 
464 	bp->pf.hwrm_cmd_req_pages = nr_pages;
465 	return 0;
466 }
467 
468 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
469 {
470 	struct hwrm_func_buf_rgtr_input *req;
471 	int rc;
472 
473 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BUF_RGTR);
474 	if (rc)
475 		return rc;
476 
477 	req->req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
478 	req->req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
479 	req->req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
480 	req->req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
481 	req->req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
482 	req->req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
483 	req->req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
484 
485 	return hwrm_req_send(bp, req);
486 }
487 
488 static int __bnxt_set_vf_params(struct bnxt *bp, int vf_id)
489 {
490 	struct hwrm_func_cfg_input *req;
491 	struct bnxt_vf_info *vf;
492 	int rc;
493 
494 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
495 	if (rc)
496 		return rc;
497 
498 	vf = &bp->pf.vf[vf_id];
499 	req->fid = cpu_to_le16(vf->fw_fid);
500 
501 	if (is_valid_ether_addr(vf->mac_addr)) {
502 		req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
503 		memcpy(req->dflt_mac_addr, vf->mac_addr, ETH_ALEN);
504 	}
505 	if (vf->vlan) {
506 		req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
507 		req->dflt_vlan = cpu_to_le16(vf->vlan);
508 	}
509 	if (vf->max_tx_rate) {
510 		req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW |
511 					    FUNC_CFG_REQ_ENABLES_MIN_BW);
512 		req->max_bw = cpu_to_le32(vf->max_tx_rate);
513 		req->min_bw = cpu_to_le32(vf->min_tx_rate);
514 	}
515 	if (vf->flags & BNXT_VF_TRUST)
516 		req->flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
517 
518 	return hwrm_req_send(bp, req);
519 }
520 
521 /* Only called by PF to reserve resources for VFs, returns actual number of
522  * VFs configured, or < 0 on error.
523  */
524 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset)
525 {
526 	struct hwrm_func_vf_resource_cfg_input *req;
527 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
528 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
529 	u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
530 	struct bnxt_pf_info *pf = &bp->pf;
531 	int i, rc = 0, min = 1;
532 	u16 vf_msix = 0;
533 	u16 vf_rss;
534 
535 	rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESOURCE_CFG);
536 	if (rc)
537 		return rc;
538 
539 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
540 		vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp);
541 		vf_ring_grps = 0;
542 	} else {
543 		vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
544 	}
545 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp);
546 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp);
547 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
548 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
549 	else
550 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
551 	vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
552 	vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
553 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
554 	vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs;
555 
556 	req->min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
557 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
558 		min = 0;
559 		req->min_rsscos_ctx = cpu_to_le16(min);
560 	}
561 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL ||
562 	    pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
563 		req->min_cmpl_rings = cpu_to_le16(min);
564 		req->min_tx_rings = cpu_to_le16(min);
565 		req->min_rx_rings = cpu_to_le16(min);
566 		req->min_l2_ctxs = cpu_to_le16(min);
567 		req->min_vnics = cpu_to_le16(min);
568 		req->min_stat_ctx = cpu_to_le16(min);
569 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
570 			req->min_hw_ring_grps = cpu_to_le16(min);
571 	} else {
572 		vf_cp_rings /= num_vfs;
573 		vf_tx_rings /= num_vfs;
574 		vf_rx_rings /= num_vfs;
575 		vf_vnics /= num_vfs;
576 		vf_stat_ctx /= num_vfs;
577 		vf_ring_grps /= num_vfs;
578 		vf_rss /= num_vfs;
579 
580 		req->min_cmpl_rings = cpu_to_le16(vf_cp_rings);
581 		req->min_tx_rings = cpu_to_le16(vf_tx_rings);
582 		req->min_rx_rings = cpu_to_le16(vf_rx_rings);
583 		req->min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
584 		req->min_vnics = cpu_to_le16(vf_vnics);
585 		req->min_stat_ctx = cpu_to_le16(vf_stat_ctx);
586 		req->min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
587 		req->min_rsscos_ctx = cpu_to_le16(vf_rss);
588 	}
589 	req->max_cmpl_rings = cpu_to_le16(vf_cp_rings);
590 	req->max_tx_rings = cpu_to_le16(vf_tx_rings);
591 	req->max_rx_rings = cpu_to_le16(vf_rx_rings);
592 	req->max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
593 	req->max_vnics = cpu_to_le16(vf_vnics);
594 	req->max_stat_ctx = cpu_to_le16(vf_stat_ctx);
595 	req->max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
596 	req->max_rsscos_ctx = cpu_to_le16(vf_rss);
597 	if (bp->flags & BNXT_FLAG_CHIP_P5)
598 		req->max_msix = cpu_to_le16(vf_msix / num_vfs);
599 
600 	hwrm_req_hold(bp, req);
601 	for (i = 0; i < num_vfs; i++) {
602 		if (reset)
603 			__bnxt_set_vf_params(bp, i);
604 
605 		req->vf_id = cpu_to_le16(pf->first_vf_id + i);
606 		rc = hwrm_req_send(bp, req);
607 		if (rc)
608 			break;
609 		pf->active_vfs = i + 1;
610 		pf->vf[i].fw_fid = pf->first_vf_id + i;
611 	}
612 
613 	if (pf->active_vfs) {
614 		u16 n = pf->active_vfs;
615 
616 		hw_resc->max_tx_rings -= le16_to_cpu(req->min_tx_rings) * n;
617 		hw_resc->max_rx_rings -= le16_to_cpu(req->min_rx_rings) * n;
618 		hw_resc->max_hw_ring_grps -=
619 			le16_to_cpu(req->min_hw_ring_grps) * n;
620 		hw_resc->max_cp_rings -= le16_to_cpu(req->min_cmpl_rings) * n;
621 		hw_resc->max_rsscos_ctxs -=
622 			le16_to_cpu(req->min_rsscos_ctx) * n;
623 		hw_resc->max_stat_ctxs -= le16_to_cpu(req->min_stat_ctx) * n;
624 		hw_resc->max_vnics -= le16_to_cpu(req->min_vnics) * n;
625 		if (bp->flags & BNXT_FLAG_CHIP_P5)
626 			hw_resc->max_nqs -= vf_msix;
627 
628 		rc = pf->active_vfs;
629 	}
630 	hwrm_req_drop(bp, req);
631 	return rc;
632 }
633 
634 /* Only called by PF to reserve resources for VFs, returns actual number of
635  * VFs configured, or < 0 on error.
636  */
637 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
638 {
639 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
640 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
641 	struct bnxt_pf_info *pf = &bp->pf;
642 	struct hwrm_func_cfg_input *req;
643 	int total_vf_tx_rings = 0;
644 	u16 vf_ring_grps;
645 	u32 mtu, i;
646 	int rc;
647 
648 	rc = hwrm_req_init(bp, req, HWRM_FUNC_CFG);
649 	if (rc)
650 		return rc;
651 
652 	/* Remaining rings are distributed equally amongs VF's for now */
653 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs;
654 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs;
655 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
656 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
657 			      num_vfs;
658 	else
659 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
660 			      num_vfs;
661 	vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
662 	vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
663 	vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
664 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
665 
666 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ADMIN_MTU |
667 				   FUNC_CFG_REQ_ENABLES_MRU |
668 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
669 				   FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
670 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
671 				   FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
672 				   FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
673 				   FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
674 				   FUNC_CFG_REQ_ENABLES_NUM_VNICS |
675 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
676 
677 	mtu = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
678 	req->mru = cpu_to_le16(mtu);
679 	req->admin_mtu = cpu_to_le16(mtu);
680 
681 	req->num_rsscos_ctxs = cpu_to_le16(1);
682 	req->num_cmpl_rings = cpu_to_le16(vf_cp_rings);
683 	req->num_tx_rings = cpu_to_le16(vf_tx_rings);
684 	req->num_rx_rings = cpu_to_le16(vf_rx_rings);
685 	req->num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
686 	req->num_l2_ctxs = cpu_to_le16(4);
687 
688 	req->num_vnics = cpu_to_le16(vf_vnics);
689 	/* FIXME spec currently uses 1 bit for stats ctx */
690 	req->num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
691 
692 	hwrm_req_hold(bp, req);
693 	for (i = 0; i < num_vfs; i++) {
694 		int vf_tx_rsvd = vf_tx_rings;
695 
696 		req->fid = cpu_to_le16(pf->first_vf_id + i);
697 		rc = hwrm_req_send(bp, req);
698 		if (rc)
699 			break;
700 		pf->active_vfs = i + 1;
701 		pf->vf[i].fw_fid = le16_to_cpu(req->fid);
702 		rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
703 					      &vf_tx_rsvd);
704 		if (rc)
705 			break;
706 		total_vf_tx_rings += vf_tx_rsvd;
707 	}
708 	hwrm_req_drop(bp, req);
709 	if (pf->active_vfs) {
710 		hw_resc->max_tx_rings -= total_vf_tx_rings;
711 		hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
712 		hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
713 		hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
714 		hw_resc->max_rsscos_ctxs -= num_vfs;
715 		hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
716 		hw_resc->max_vnics -= vf_vnics * num_vfs;
717 		rc = pf->active_vfs;
718 	}
719 	return rc;
720 }
721 
722 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset)
723 {
724 	if (BNXT_NEW_RM(bp))
725 		return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset);
726 	else
727 		return bnxt_hwrm_func_cfg(bp, num_vfs);
728 }
729 
730 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
731 {
732 	int rc;
733 
734 	/* Register buffers for VFs */
735 	rc = bnxt_hwrm_func_buf_rgtr(bp);
736 	if (rc)
737 		return rc;
738 
739 	/* Reserve resources for VFs */
740 	rc = bnxt_func_cfg(bp, *num_vfs, reset);
741 	if (rc != *num_vfs) {
742 		if (rc <= 0) {
743 			netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
744 			*num_vfs = 0;
745 			return rc;
746 		}
747 		netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n",
748 			    rc);
749 		*num_vfs = rc;
750 	}
751 
752 	return 0;
753 }
754 
755 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
756 {
757 	int rc = 0, vfs_supported;
758 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
759 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
760 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
761 	int avail_cp, avail_stat;
762 
763 	/* Check if we can enable requested num of vf's. At a mininum
764 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
765 	 * features like TPA will not be available.
766 	 */
767 	vfs_supported = *num_vfs;
768 
769 	avail_cp = bnxt_get_avail_cp_rings_for_en(bp);
770 	avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp);
771 	avail_cp = min_t(int, avail_cp, avail_stat);
772 
773 	while (vfs_supported) {
774 		min_rx_rings = vfs_supported;
775 		min_tx_rings = vfs_supported;
776 		min_rss_ctxs = vfs_supported;
777 
778 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
779 			if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
780 			    min_rx_rings)
781 				rx_ok = 1;
782 		} else {
783 			if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
784 			    min_rx_rings)
785 				rx_ok = 1;
786 		}
787 		if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
788 		    avail_cp < min_rx_rings)
789 			rx_ok = 0;
790 
791 		if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
792 		    avail_cp >= min_tx_rings)
793 			tx_ok = 1;
794 
795 		if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
796 		    min_rss_ctxs)
797 			rss_ok = 1;
798 
799 		if (tx_ok && rx_ok && rss_ok)
800 			break;
801 
802 		vfs_supported--;
803 	}
804 
805 	if (!vfs_supported) {
806 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
807 		return -EINVAL;
808 	}
809 
810 	if (vfs_supported != *num_vfs) {
811 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
812 			    *num_vfs, vfs_supported);
813 		*num_vfs = vfs_supported;
814 	}
815 
816 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
817 	if (rc)
818 		goto err_out1;
819 
820 	rc = bnxt_cfg_hw_sriov(bp, num_vfs, false);
821 	if (rc)
822 		goto err_out2;
823 
824 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
825 	if (rc)
826 		goto err_out2;
827 
828 	return 0;
829 
830 err_out2:
831 	/* Free the resources reserved for various VF's */
832 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
833 
834 	/* Restore the max resources */
835 	bnxt_hwrm_func_qcaps(bp);
836 
837 err_out1:
838 	bnxt_free_vf_resources(bp);
839 
840 	return rc;
841 }
842 
843 void bnxt_sriov_disable(struct bnxt *bp)
844 {
845 	u16 num_vfs = pci_num_vf(bp->pdev);
846 
847 	if (!num_vfs)
848 		return;
849 
850 	/* synchronize VF and VF-rep create and destroy */
851 	devl_lock(bp->dl);
852 	bnxt_vf_reps_destroy(bp);
853 
854 	if (pci_vfs_assigned(bp->pdev)) {
855 		bnxt_hwrm_fwd_async_event_cmpl(
856 			bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
857 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
858 			    num_vfs);
859 	} else {
860 		pci_disable_sriov(bp->pdev);
861 		/* Free the HW resources reserved for various VF's */
862 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
863 	}
864 	devl_unlock(bp->dl);
865 
866 	bnxt_free_vf_resources(bp);
867 
868 	/* Reclaim all resources for the PF. */
869 	rtnl_lock();
870 	bnxt_restore_pf_fw_resources(bp);
871 	rtnl_unlock();
872 }
873 
874 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
875 {
876 	struct net_device *dev = pci_get_drvdata(pdev);
877 	struct bnxt *bp = netdev_priv(dev);
878 
879 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
880 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
881 		return 0;
882 	}
883 
884 	rtnl_lock();
885 	if (!netif_running(dev)) {
886 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
887 		rtnl_unlock();
888 		return 0;
889 	}
890 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
891 		netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n");
892 		rtnl_unlock();
893 		return 0;
894 	}
895 	bp->sriov_cfg = true;
896 	rtnl_unlock();
897 
898 	if (pci_vfs_assigned(bp->pdev)) {
899 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
900 		num_vfs = 0;
901 		goto sriov_cfg_exit;
902 	}
903 
904 	/* Check if enabled VFs is same as requested */
905 	if (num_vfs && num_vfs == bp->pf.active_vfs)
906 		goto sriov_cfg_exit;
907 
908 	/* if there are previous existing VFs, clean them up */
909 	bnxt_sriov_disable(bp);
910 	if (!num_vfs)
911 		goto sriov_cfg_exit;
912 
913 	bnxt_sriov_enable(bp, &num_vfs);
914 
915 sriov_cfg_exit:
916 	bp->sriov_cfg = false;
917 	wake_up(&bp->sriov_cfg_wait);
918 
919 	return num_vfs;
920 }
921 
922 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
923 			      void *encap_resp, __le64 encap_resp_addr,
924 			      __le16 encap_resp_cpr, u32 msg_size)
925 {
926 	struct hwrm_fwd_resp_input *req;
927 	int rc;
928 
929 	if (BNXT_FWD_RESP_SIZE_ERR(msg_size))
930 		return -EINVAL;
931 
932 	rc = hwrm_req_init(bp, req, HWRM_FWD_RESP);
933 	if (!rc) {
934 		/* Set the new target id */
935 		req->target_id = cpu_to_le16(vf->fw_fid);
936 		req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
937 		req->encap_resp_len = cpu_to_le16(msg_size);
938 		req->encap_resp_addr = encap_resp_addr;
939 		req->encap_resp_cmpl_ring = encap_resp_cpr;
940 		memcpy(req->encap_resp, encap_resp, msg_size);
941 
942 		rc = hwrm_req_send(bp, req);
943 	}
944 	if (rc)
945 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
946 	return rc;
947 }
948 
949 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
950 				  u32 msg_size)
951 {
952 	struct hwrm_reject_fwd_resp_input *req;
953 	int rc;
954 
955 	if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
956 		return -EINVAL;
957 
958 	rc = hwrm_req_init(bp, req, HWRM_REJECT_FWD_RESP);
959 	if (!rc) {
960 		/* Set the new target id */
961 		req->target_id = cpu_to_le16(vf->fw_fid);
962 		req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
963 		memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size);
964 
965 		rc = hwrm_req_send(bp, req);
966 	}
967 	if (rc)
968 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
969 	return rc;
970 }
971 
972 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
973 				   u32 msg_size)
974 {
975 	struct hwrm_exec_fwd_resp_input *req;
976 	int rc;
977 
978 	if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
979 		return -EINVAL;
980 
981 	rc = hwrm_req_init(bp, req, HWRM_EXEC_FWD_RESP);
982 	if (!rc) {
983 		/* Set the new target id */
984 		req->target_id = cpu_to_le16(vf->fw_fid);
985 		req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
986 		memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size);
987 
988 		rc = hwrm_req_send(bp, req);
989 	}
990 	if (rc)
991 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
992 	return rc;
993 }
994 
995 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
996 {
997 	u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
998 	struct hwrm_func_vf_cfg_input *req =
999 		(struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
1000 
1001 	/* Allow VF to set a valid MAC address, if trust is set to on or
1002 	 * if the PF assigned MAC address is zero
1003 	 */
1004 	if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
1005 		bool trust = bnxt_is_trusted_vf(bp, vf);
1006 
1007 		if (is_valid_ether_addr(req->dflt_mac_addr) &&
1008 		    (trust || !is_valid_ether_addr(vf->mac_addr) ||
1009 		     ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
1010 			ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
1011 			return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1012 		}
1013 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1014 	}
1015 	return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1016 }
1017 
1018 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
1019 {
1020 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
1021 	struct hwrm_cfa_l2_filter_alloc_input *req =
1022 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
1023 	bool mac_ok = false;
1024 
1025 	if (!is_valid_ether_addr((const u8 *)req->l2_addr))
1026 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1027 
1028 	/* Allow VF to set a valid MAC address, if trust is set to on.
1029 	 * Or VF MAC address must first match MAC address in PF's context.
1030 	 * Otherwise, it must match the VF MAC address if firmware spec >=
1031 	 * 1.2.2
1032 	 */
1033 	if (bnxt_is_trusted_vf(bp, vf)) {
1034 		mac_ok = true;
1035 	} else if (is_valid_ether_addr(vf->mac_addr)) {
1036 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
1037 			mac_ok = true;
1038 	} else if (is_valid_ether_addr(vf->vf_mac_addr)) {
1039 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
1040 			mac_ok = true;
1041 	} else {
1042 		/* There are two cases:
1043 		 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded
1044 		 *   to the PF and so it doesn't have to match
1045 		 * 2.Allow VF to modify it's own MAC when PF has not assigned a
1046 		 *   valid MAC address and firmware spec >= 0x10202
1047 		 */
1048 		mac_ok = true;
1049 	}
1050 	if (mac_ok)
1051 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1052 	return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1053 }
1054 
1055 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
1056 {
1057 	int rc = 0;
1058 
1059 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
1060 		/* real link */
1061 		rc = bnxt_hwrm_exec_fwd_resp(
1062 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
1063 	} else {
1064 		struct hwrm_port_phy_qcfg_output phy_qcfg_resp = {0};
1065 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
1066 
1067 		phy_qcfg_req =
1068 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
1069 		mutex_lock(&bp->link_lock);
1070 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
1071 		       sizeof(phy_qcfg_resp));
1072 		mutex_unlock(&bp->link_lock);
1073 		phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
1074 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
1075 		phy_qcfg_resp.valid = 1;
1076 
1077 		if (vf->flags & BNXT_VF_LINK_UP) {
1078 			/* if physical link is down, force link up on VF */
1079 			if (phy_qcfg_resp.link !=
1080 			    PORT_PHY_QCFG_RESP_LINK_LINK) {
1081 				phy_qcfg_resp.link =
1082 					PORT_PHY_QCFG_RESP_LINK_LINK;
1083 				phy_qcfg_resp.link_speed = cpu_to_le16(
1084 					PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
1085 				phy_qcfg_resp.duplex_cfg =
1086 					PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
1087 				phy_qcfg_resp.duplex_state =
1088 					PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
1089 				phy_qcfg_resp.pause =
1090 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
1091 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
1092 			}
1093 		} else {
1094 			/* force link down */
1095 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
1096 			phy_qcfg_resp.link_speed = 0;
1097 			phy_qcfg_resp.duplex_state =
1098 				PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
1099 			phy_qcfg_resp.pause = 0;
1100 		}
1101 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
1102 					phy_qcfg_req->resp_addr,
1103 					phy_qcfg_req->cmpl_ring,
1104 					sizeof(phy_qcfg_resp));
1105 	}
1106 	return rc;
1107 }
1108 
1109 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
1110 {
1111 	int rc = 0;
1112 	struct input *encap_req = vf->hwrm_cmd_req_addr;
1113 	u32 req_type = le16_to_cpu(encap_req->req_type);
1114 
1115 	switch (req_type) {
1116 	case HWRM_FUNC_VF_CFG:
1117 		rc = bnxt_vf_configure_mac(bp, vf);
1118 		break;
1119 	case HWRM_CFA_L2_FILTER_ALLOC:
1120 		rc = bnxt_vf_validate_set_mac(bp, vf);
1121 		break;
1122 	case HWRM_FUNC_CFG:
1123 		/* TODO Validate if VF is allowed to change mac address,
1124 		 * mtu, num of rings etc
1125 		 */
1126 		rc = bnxt_hwrm_exec_fwd_resp(
1127 			bp, vf, sizeof(struct hwrm_func_cfg_input));
1128 		break;
1129 	case HWRM_PORT_PHY_QCFG:
1130 		rc = bnxt_vf_set_link(bp, vf);
1131 		break;
1132 	default:
1133 		break;
1134 	}
1135 	return rc;
1136 }
1137 
1138 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1139 {
1140 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1141 
1142 	/* Scan through VF's and process commands */
1143 	while (1) {
1144 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1145 		if (vf_id >= active_vfs)
1146 			break;
1147 
1148 		clear_bit(vf_id, bp->pf.vf_event_bmap);
1149 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1150 		i = vf_id + 1;
1151 	}
1152 }
1153 
1154 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict)
1155 {
1156 	struct hwrm_func_vf_cfg_input *req;
1157 	int rc = 0;
1158 
1159 	if (!BNXT_VF(bp))
1160 		return 0;
1161 
1162 	if (bp->hwrm_spec_code < 0x10202) {
1163 		if (is_valid_ether_addr(bp->vf.mac_addr))
1164 			rc = -EADDRNOTAVAIL;
1165 		goto mac_done;
1166 	}
1167 
1168 	rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
1169 	if (rc)
1170 		goto mac_done;
1171 
1172 	req->enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1173 	memcpy(req->dflt_mac_addr, mac, ETH_ALEN);
1174 	if (!strict)
1175 		hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT);
1176 	rc = hwrm_req_send(bp, req);
1177 mac_done:
1178 	if (rc && strict) {
1179 		rc = -EADDRNOTAVAIL;
1180 		netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1181 			    mac);
1182 		return rc;
1183 	}
1184 	return 0;
1185 }
1186 
1187 void bnxt_update_vf_mac(struct bnxt *bp)
1188 {
1189 	struct hwrm_func_qcaps_output *resp;
1190 	struct hwrm_func_qcaps_input *req;
1191 	bool inform_pf = false;
1192 
1193 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCAPS))
1194 		return;
1195 
1196 	req->fid = cpu_to_le16(0xffff);
1197 
1198 	resp = hwrm_req_hold(bp, req);
1199 	if (hwrm_req_send(bp, req))
1200 		goto update_vf_mac_exit;
1201 
1202 	/* Store MAC address from the firmware.  There are 2 cases:
1203 	 * 1. MAC address is valid.  It is assigned from the PF and we
1204 	 *    need to override the current VF MAC address with it.
1205 	 * 2. MAC address is zero.  The VF will use a random MAC address by
1206 	 *    default but the stored zero MAC will allow the VF user to change
1207 	 *    the random MAC address using ndo_set_mac_address() if he wants.
1208 	 */
1209 	if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) {
1210 		memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1211 		/* This means we are now using our own MAC address, let
1212 		 * the PF know about this MAC address.
1213 		 */
1214 		if (!is_valid_ether_addr(bp->vf.mac_addr))
1215 			inform_pf = true;
1216 	}
1217 
1218 	/* overwrite netdev dev_addr with admin VF MAC */
1219 	if (is_valid_ether_addr(bp->vf.mac_addr))
1220 		eth_hw_addr_set(bp->dev, bp->vf.mac_addr);
1221 update_vf_mac_exit:
1222 	hwrm_req_drop(bp, req);
1223 	if (inform_pf)
1224 		bnxt_approve_mac(bp, bp->dev->dev_addr, false);
1225 }
1226 
1227 #else
1228 
1229 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
1230 {
1231 	if (*num_vfs)
1232 		return -EOPNOTSUPP;
1233 	return 0;
1234 }
1235 
1236 void bnxt_sriov_disable(struct bnxt *bp)
1237 {
1238 }
1239 
1240 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1241 {
1242 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1243 }
1244 
1245 void bnxt_update_vf_mac(struct bnxt *bp)
1246 {
1247 }
1248 
1249 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict)
1250 {
1251 	return 0;
1252 }
1253 #endif
1254