xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt_sriov.c (revision 9d106c6dd81bb26ad7fc3ee89cb1d62557c8e2c9)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/if_vlan.h>
15 #include <linux/interrupt.h>
16 #include <linux/etherdevice.h>
17 #include "bnxt_hsi.h"
18 #include "bnxt.h"
19 #include "bnxt_ulp.h"
20 #include "bnxt_sriov.h"
21 #include "bnxt_vfr.h"
22 #include "bnxt_ethtool.h"
23 
24 #ifdef CONFIG_BNXT_SRIOV
25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
26 					  struct bnxt_vf_info *vf, u16 event_id)
27 {
28 	struct hwrm_fwd_async_event_cmpl_input req = {0};
29 	struct hwrm_async_event_cmpl *async_cmpl;
30 	int rc = 0;
31 
32 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
33 	if (vf)
34 		req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
35 	else
36 		/* broadcast this async event to all VFs */
37 		req.encap_async_event_target_id = cpu_to_le16(0xffff);
38 	async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
39 	async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
40 	async_cmpl->event_id = cpu_to_le16(event_id);
41 
42 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
43 	if (rc)
44 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
45 			   rc);
46 	return rc;
47 }
48 
49 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
50 {
51 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
52 		netdev_err(bp->dev, "vf ndo called though PF is down\n");
53 		return -EINVAL;
54 	}
55 	if (!bp->pf.active_vfs) {
56 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
57 		return -EINVAL;
58 	}
59 	if (vf_id >= bp->pf.active_vfs) {
60 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
61 		return -EINVAL;
62 	}
63 	return 0;
64 }
65 
66 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
67 {
68 	struct hwrm_func_cfg_input req = {0};
69 	struct bnxt *bp = netdev_priv(dev);
70 	struct bnxt_vf_info *vf;
71 	bool old_setting = false;
72 	u32 func_flags;
73 	int rc;
74 
75 	if (bp->hwrm_spec_code < 0x10701)
76 		return -ENOTSUPP;
77 
78 	rc = bnxt_vf_ndo_prep(bp, vf_id);
79 	if (rc)
80 		return rc;
81 
82 	vf = &bp->pf.vf[vf_id];
83 	if (vf->flags & BNXT_VF_SPOOFCHK)
84 		old_setting = true;
85 	if (old_setting == setting)
86 		return 0;
87 
88 	func_flags = vf->func_flags;
89 	if (setting)
90 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
91 	else
92 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
93 	/*TODO: if the driver supports VLAN filter on guest VLAN,
94 	 * the spoof check should also include vlan anti-spoofing
95 	 */
96 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
97 	req.fid = cpu_to_le16(vf->fw_fid);
98 	req.flags = cpu_to_le32(func_flags);
99 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
100 	if (!rc) {
101 		vf->func_flags = func_flags;
102 		if (setting)
103 			vf->flags |= BNXT_VF_SPOOFCHK;
104 		else
105 			vf->flags &= ~BNXT_VF_SPOOFCHK;
106 	}
107 	return rc;
108 }
109 
110 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf)
111 {
112 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
113 	struct hwrm_func_qcfg_input req = {0};
114 	int rc;
115 
116 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
117 	req.fid = cpu_to_le16(vf->fw_fid);
118 	mutex_lock(&bp->hwrm_cmd_lock);
119 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
120 	if (rc) {
121 		mutex_unlock(&bp->hwrm_cmd_lock);
122 		return rc;
123 	}
124 	vf->func_qcfg_flags = le16_to_cpu(resp->flags);
125 	mutex_unlock(&bp->hwrm_cmd_lock);
126 	return 0;
127 }
128 
129 static bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
130 {
131 	if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
132 		return !!(vf->flags & BNXT_VF_TRUST);
133 
134 	bnxt_hwrm_func_qcfg_flags(bp, vf);
135 	return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF);
136 }
137 
138 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
139 {
140 	struct hwrm_func_cfg_input req = {0};
141 
142 	if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
143 		return 0;
144 
145 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
146 	req.fid = cpu_to_le16(vf->fw_fid);
147 	if (vf->flags & BNXT_VF_TRUST)
148 		req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
149 	else
150 		req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE);
151 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
152 }
153 
154 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
155 {
156 	struct bnxt *bp = netdev_priv(dev);
157 	struct bnxt_vf_info *vf;
158 
159 	if (bnxt_vf_ndo_prep(bp, vf_id))
160 		return -EINVAL;
161 
162 	vf = &bp->pf.vf[vf_id];
163 	if (trusted)
164 		vf->flags |= BNXT_VF_TRUST;
165 	else
166 		vf->flags &= ~BNXT_VF_TRUST;
167 
168 	bnxt_hwrm_set_trusted_vf(bp, vf);
169 	return 0;
170 }
171 
172 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
173 		       struct ifla_vf_info *ivi)
174 {
175 	struct bnxt *bp = netdev_priv(dev);
176 	struct bnxt_vf_info *vf;
177 	int rc;
178 
179 	rc = bnxt_vf_ndo_prep(bp, vf_id);
180 	if (rc)
181 		return rc;
182 
183 	ivi->vf = vf_id;
184 	vf = &bp->pf.vf[vf_id];
185 
186 	if (is_valid_ether_addr(vf->mac_addr))
187 		memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
188 	else
189 		memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
190 	ivi->max_tx_rate = vf->max_tx_rate;
191 	ivi->min_tx_rate = vf->min_tx_rate;
192 	ivi->vlan = vf->vlan;
193 	if (vf->flags & BNXT_VF_QOS)
194 		ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
195 	else
196 		ivi->qos = 0;
197 	ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
198 	ivi->trusted = bnxt_is_trusted_vf(bp, vf);
199 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
200 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
201 	else if (vf->flags & BNXT_VF_LINK_UP)
202 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
203 	else
204 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
205 
206 	return 0;
207 }
208 
209 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
210 {
211 	struct hwrm_func_cfg_input req = {0};
212 	struct bnxt *bp = netdev_priv(dev);
213 	struct bnxt_vf_info *vf;
214 	int rc;
215 
216 	rc = bnxt_vf_ndo_prep(bp, vf_id);
217 	if (rc)
218 		return rc;
219 	/* reject bc or mc mac addr, zero mac addr means allow
220 	 * VF to use its own mac addr
221 	 */
222 	if (is_multicast_ether_addr(mac)) {
223 		netdev_err(dev, "Invalid VF ethernet address\n");
224 		return -EINVAL;
225 	}
226 	vf = &bp->pf.vf[vf_id];
227 
228 	memcpy(vf->mac_addr, mac, ETH_ALEN);
229 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
230 	req.fid = cpu_to_le16(vf->fw_fid);
231 	req.flags = cpu_to_le32(vf->func_flags);
232 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
233 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
234 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
235 }
236 
237 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
238 		     __be16 vlan_proto)
239 {
240 	struct hwrm_func_cfg_input req = {0};
241 	struct bnxt *bp = netdev_priv(dev);
242 	struct bnxt_vf_info *vf;
243 	u16 vlan_tag;
244 	int rc;
245 
246 	if (bp->hwrm_spec_code < 0x10201)
247 		return -ENOTSUPP;
248 
249 	if (vlan_proto != htons(ETH_P_8021Q))
250 		return -EPROTONOSUPPORT;
251 
252 	rc = bnxt_vf_ndo_prep(bp, vf_id);
253 	if (rc)
254 		return rc;
255 
256 	/* TODO: needed to implement proper handling of user priority,
257 	 * currently fail the command if there is valid priority
258 	 */
259 	if (vlan_id > 4095 || qos)
260 		return -EINVAL;
261 
262 	vf = &bp->pf.vf[vf_id];
263 	vlan_tag = vlan_id;
264 	if (vlan_tag == vf->vlan)
265 		return 0;
266 
267 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
268 	req.fid = cpu_to_le16(vf->fw_fid);
269 	req.flags = cpu_to_le32(vf->func_flags);
270 	req.dflt_vlan = cpu_to_le16(vlan_tag);
271 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
272 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
273 	if (!rc)
274 		vf->vlan = vlan_tag;
275 	return rc;
276 }
277 
278 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
279 		   int max_tx_rate)
280 {
281 	struct hwrm_func_cfg_input req = {0};
282 	struct bnxt *bp = netdev_priv(dev);
283 	struct bnxt_vf_info *vf;
284 	u32 pf_link_speed;
285 	int rc;
286 
287 	rc = bnxt_vf_ndo_prep(bp, vf_id);
288 	if (rc)
289 		return rc;
290 
291 	vf = &bp->pf.vf[vf_id];
292 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
293 	if (max_tx_rate > pf_link_speed) {
294 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
295 			    max_tx_rate, vf_id);
296 		return -EINVAL;
297 	}
298 
299 	if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
300 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
301 			    min_tx_rate, vf_id);
302 		return -EINVAL;
303 	}
304 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
305 		return 0;
306 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
307 	req.fid = cpu_to_le16(vf->fw_fid);
308 	req.flags = cpu_to_le32(vf->func_flags);
309 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
310 	req.max_bw = cpu_to_le32(max_tx_rate);
311 	req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
312 	req.min_bw = cpu_to_le32(min_tx_rate);
313 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
314 	if (!rc) {
315 		vf->min_tx_rate = min_tx_rate;
316 		vf->max_tx_rate = max_tx_rate;
317 	}
318 	return rc;
319 }
320 
321 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
322 {
323 	struct bnxt *bp = netdev_priv(dev);
324 	struct bnxt_vf_info *vf;
325 	int rc;
326 
327 	rc = bnxt_vf_ndo_prep(bp, vf_id);
328 	if (rc)
329 		return rc;
330 
331 	vf = &bp->pf.vf[vf_id];
332 
333 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
334 	switch (link) {
335 	case IFLA_VF_LINK_STATE_AUTO:
336 		vf->flags |= BNXT_VF_LINK_UP;
337 		break;
338 	case IFLA_VF_LINK_STATE_DISABLE:
339 		vf->flags |= BNXT_VF_LINK_FORCED;
340 		break;
341 	case IFLA_VF_LINK_STATE_ENABLE:
342 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
343 		break;
344 	default:
345 		netdev_err(bp->dev, "Invalid link option\n");
346 		rc = -EINVAL;
347 		break;
348 	}
349 	if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
350 		rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
351 			ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
352 	return rc;
353 }
354 
355 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
356 {
357 	int i;
358 	struct bnxt_vf_info *vf;
359 
360 	for (i = 0; i < num_vfs; i++) {
361 		vf = &bp->pf.vf[i];
362 		memset(vf, 0, sizeof(*vf));
363 	}
364 	return 0;
365 }
366 
367 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
368 {
369 	int i, rc = 0;
370 	struct bnxt_pf_info *pf = &bp->pf;
371 	struct hwrm_func_vf_resc_free_input req = {0};
372 
373 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
374 
375 	mutex_lock(&bp->hwrm_cmd_lock);
376 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
377 		req.vf_id = cpu_to_le16(i);
378 		rc = _hwrm_send_message(bp, &req, sizeof(req),
379 					HWRM_CMD_TIMEOUT);
380 		if (rc)
381 			break;
382 	}
383 	mutex_unlock(&bp->hwrm_cmd_lock);
384 	return rc;
385 }
386 
387 static void bnxt_free_vf_resources(struct bnxt *bp)
388 {
389 	struct pci_dev *pdev = bp->pdev;
390 	int i;
391 
392 	kfree(bp->pf.vf_event_bmap);
393 	bp->pf.vf_event_bmap = NULL;
394 
395 	for (i = 0; i < 4; i++) {
396 		if (bp->pf.hwrm_cmd_req_addr[i]) {
397 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
398 					  bp->pf.hwrm_cmd_req_addr[i],
399 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
400 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
401 		}
402 	}
403 
404 	kfree(bp->pf.vf);
405 	bp->pf.vf = NULL;
406 }
407 
408 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
409 {
410 	struct pci_dev *pdev = bp->pdev;
411 	u32 nr_pages, size, i, j, k = 0;
412 
413 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
414 	if (!bp->pf.vf)
415 		return -ENOMEM;
416 
417 	bnxt_set_vf_attr(bp, num_vfs);
418 
419 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
420 	nr_pages = size / BNXT_PAGE_SIZE;
421 	if (size & (BNXT_PAGE_SIZE - 1))
422 		nr_pages++;
423 
424 	for (i = 0; i < nr_pages; i++) {
425 		bp->pf.hwrm_cmd_req_addr[i] =
426 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
427 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
428 					   GFP_KERNEL);
429 
430 		if (!bp->pf.hwrm_cmd_req_addr[i])
431 			return -ENOMEM;
432 
433 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
434 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
435 
436 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
437 						j * BNXT_HWRM_REQ_MAX_SIZE;
438 			vf->hwrm_cmd_req_dma_addr =
439 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
440 				BNXT_HWRM_REQ_MAX_SIZE;
441 			k++;
442 		}
443 	}
444 
445 	/* Max 128 VF's */
446 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
447 	if (!bp->pf.vf_event_bmap)
448 		return -ENOMEM;
449 
450 	bp->pf.hwrm_cmd_req_pages = nr_pages;
451 	return 0;
452 }
453 
454 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
455 {
456 	struct hwrm_func_buf_rgtr_input req = {0};
457 
458 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
459 
460 	req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
461 	req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
462 	req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
463 	req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
464 	req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
465 	req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
466 	req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
467 
468 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
469 }
470 
471 /* Caller holds bp->hwrm_cmd_lock mutex lock */
472 static void __bnxt_set_vf_params(struct bnxt *bp, int vf_id)
473 {
474 	struct hwrm_func_cfg_input req = {0};
475 	struct bnxt_vf_info *vf;
476 
477 	vf = &bp->pf.vf[vf_id];
478 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
479 	req.fid = cpu_to_le16(vf->fw_fid);
480 	req.flags = cpu_to_le32(vf->func_flags);
481 
482 	if (is_valid_ether_addr(vf->mac_addr)) {
483 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
484 		memcpy(req.dflt_mac_addr, vf->mac_addr, ETH_ALEN);
485 	}
486 	if (vf->vlan) {
487 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
488 		req.dflt_vlan = cpu_to_le16(vf->vlan);
489 	}
490 	if (vf->max_tx_rate) {
491 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
492 		req.max_bw = cpu_to_le32(vf->max_tx_rate);
493 #ifdef HAVE_IFLA_TX_RATE
494 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
495 		req.min_bw = cpu_to_le32(vf->min_tx_rate);
496 #endif
497 	}
498 	if (vf->flags & BNXT_VF_TRUST)
499 		req.flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
500 
501 	_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
502 }
503 
504 /* Only called by PF to reserve resources for VFs, returns actual number of
505  * VFs configured, or < 0 on error.
506  */
507 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset)
508 {
509 	struct hwrm_func_vf_resource_cfg_input req = {0};
510 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
511 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
512 	u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
513 	struct bnxt_pf_info *pf = &bp->pf;
514 	int i, rc = 0, min = 1;
515 	u16 vf_msix = 0;
516 	u16 vf_rss;
517 
518 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1);
519 
520 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
521 		vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp);
522 		vf_ring_grps = 0;
523 	} else {
524 		vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
525 	}
526 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp);
527 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp);
528 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
529 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
530 	else
531 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
532 	vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
533 	vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
534 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
535 	vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs;
536 
537 	req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
538 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
539 		min = 0;
540 		req.min_rsscos_ctx = cpu_to_le16(min);
541 	}
542 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL ||
543 	    pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
544 		req.min_cmpl_rings = cpu_to_le16(min);
545 		req.min_tx_rings = cpu_to_le16(min);
546 		req.min_rx_rings = cpu_to_le16(min);
547 		req.min_l2_ctxs = cpu_to_le16(min);
548 		req.min_vnics = cpu_to_le16(min);
549 		req.min_stat_ctx = cpu_to_le16(min);
550 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
551 			req.min_hw_ring_grps = cpu_to_le16(min);
552 	} else {
553 		vf_cp_rings /= num_vfs;
554 		vf_tx_rings /= num_vfs;
555 		vf_rx_rings /= num_vfs;
556 		vf_vnics /= num_vfs;
557 		vf_stat_ctx /= num_vfs;
558 		vf_ring_grps /= num_vfs;
559 		vf_rss /= num_vfs;
560 
561 		req.min_cmpl_rings = cpu_to_le16(vf_cp_rings);
562 		req.min_tx_rings = cpu_to_le16(vf_tx_rings);
563 		req.min_rx_rings = cpu_to_le16(vf_rx_rings);
564 		req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
565 		req.min_vnics = cpu_to_le16(vf_vnics);
566 		req.min_stat_ctx = cpu_to_le16(vf_stat_ctx);
567 		req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
568 		req.min_rsscos_ctx = cpu_to_le16(vf_rss);
569 	}
570 	req.max_cmpl_rings = cpu_to_le16(vf_cp_rings);
571 	req.max_tx_rings = cpu_to_le16(vf_tx_rings);
572 	req.max_rx_rings = cpu_to_le16(vf_rx_rings);
573 	req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
574 	req.max_vnics = cpu_to_le16(vf_vnics);
575 	req.max_stat_ctx = cpu_to_le16(vf_stat_ctx);
576 	req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
577 	req.max_rsscos_ctx = cpu_to_le16(vf_rss);
578 	if (bp->flags & BNXT_FLAG_CHIP_P5)
579 		req.max_msix = cpu_to_le16(vf_msix / num_vfs);
580 
581 	mutex_lock(&bp->hwrm_cmd_lock);
582 	for (i = 0; i < num_vfs; i++) {
583 		if (reset)
584 			__bnxt_set_vf_params(bp, i);
585 
586 		req.vf_id = cpu_to_le16(pf->first_vf_id + i);
587 		rc = _hwrm_send_message(bp, &req, sizeof(req),
588 					HWRM_CMD_TIMEOUT);
589 		if (rc)
590 			break;
591 		pf->active_vfs = i + 1;
592 		pf->vf[i].fw_fid = pf->first_vf_id + i;
593 	}
594 	mutex_unlock(&bp->hwrm_cmd_lock);
595 	if (pf->active_vfs) {
596 		u16 n = pf->active_vfs;
597 
598 		hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n;
599 		hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n;
600 		hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) *
601 					     n;
602 		hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n;
603 		hw_resc->max_rsscos_ctxs -= le16_to_cpu(req.min_rsscos_ctx) * n;
604 		hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n;
605 		hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n;
606 		if (bp->flags & BNXT_FLAG_CHIP_P5)
607 			hw_resc->max_irqs -= vf_msix * n;
608 
609 		rc = pf->active_vfs;
610 	}
611 	return rc;
612 }
613 
614 /* Only called by PF to reserve resources for VFs, returns actual number of
615  * VFs configured, or < 0 on error.
616  */
617 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
618 {
619 	u32 rc = 0, mtu, i;
620 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
621 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
622 	struct hwrm_func_cfg_input req = {0};
623 	struct bnxt_pf_info *pf = &bp->pf;
624 	int total_vf_tx_rings = 0;
625 	u16 vf_ring_grps;
626 
627 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
628 
629 	/* Remaining rings are distributed equally amongs VF's for now */
630 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs;
631 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs;
632 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
633 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
634 			      num_vfs;
635 	else
636 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
637 			      num_vfs;
638 	vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
639 	vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
640 	vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
641 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
642 
643 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
644 				  FUNC_CFG_REQ_ENABLES_MRU |
645 				  FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
646 				  FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
647 				  FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
648 				  FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
649 				  FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
650 				  FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
651 				  FUNC_CFG_REQ_ENABLES_NUM_VNICS |
652 				  FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
653 
654 	mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
655 	req.mru = cpu_to_le16(mtu);
656 	req.mtu = cpu_to_le16(mtu);
657 
658 	req.num_rsscos_ctxs = cpu_to_le16(1);
659 	req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
660 	req.num_tx_rings = cpu_to_le16(vf_tx_rings);
661 	req.num_rx_rings = cpu_to_le16(vf_rx_rings);
662 	req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
663 	req.num_l2_ctxs = cpu_to_le16(4);
664 
665 	req.num_vnics = cpu_to_le16(vf_vnics);
666 	/* FIXME spec currently uses 1 bit for stats ctx */
667 	req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
668 
669 	mutex_lock(&bp->hwrm_cmd_lock);
670 	for (i = 0; i < num_vfs; i++) {
671 		int vf_tx_rsvd = vf_tx_rings;
672 
673 		req.fid = cpu_to_le16(pf->first_vf_id + i);
674 		rc = _hwrm_send_message(bp, &req, sizeof(req),
675 					HWRM_CMD_TIMEOUT);
676 		if (rc)
677 			break;
678 		pf->active_vfs = i + 1;
679 		pf->vf[i].fw_fid = le16_to_cpu(req.fid);
680 		rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
681 					      &vf_tx_rsvd);
682 		if (rc)
683 			break;
684 		total_vf_tx_rings += vf_tx_rsvd;
685 	}
686 	mutex_unlock(&bp->hwrm_cmd_lock);
687 	if (pf->active_vfs) {
688 		hw_resc->max_tx_rings -= total_vf_tx_rings;
689 		hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
690 		hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
691 		hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
692 		hw_resc->max_rsscos_ctxs -= num_vfs;
693 		hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
694 		hw_resc->max_vnics -= vf_vnics * num_vfs;
695 		rc = pf->active_vfs;
696 	}
697 	return rc;
698 }
699 
700 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset)
701 {
702 	if (BNXT_NEW_RM(bp))
703 		return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset);
704 	else
705 		return bnxt_hwrm_func_cfg(bp, num_vfs);
706 }
707 
708 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
709 {
710 	int rc;
711 
712 	/* Register buffers for VFs */
713 	rc = bnxt_hwrm_func_buf_rgtr(bp);
714 	if (rc)
715 		return rc;
716 
717 	/* Reserve resources for VFs */
718 	rc = bnxt_func_cfg(bp, *num_vfs, reset);
719 	if (rc != *num_vfs) {
720 		if (rc <= 0) {
721 			netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
722 			*num_vfs = 0;
723 			return rc;
724 		}
725 		netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n",
726 			    rc);
727 		*num_vfs = rc;
728 	}
729 
730 	bnxt_ulp_sriov_cfg(bp, *num_vfs);
731 	return 0;
732 }
733 
734 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
735 {
736 	int rc = 0, vfs_supported;
737 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
738 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
739 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
740 	int avail_cp, avail_stat;
741 
742 	/* Check if we can enable requested num of vf's. At a mininum
743 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
744 	 * features like TPA will not be available.
745 	 */
746 	vfs_supported = *num_vfs;
747 
748 	avail_cp = bnxt_get_avail_cp_rings_for_en(bp);
749 	avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp);
750 	avail_cp = min_t(int, avail_cp, avail_stat);
751 
752 	while (vfs_supported) {
753 		min_rx_rings = vfs_supported;
754 		min_tx_rings = vfs_supported;
755 		min_rss_ctxs = vfs_supported;
756 
757 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
758 			if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
759 			    min_rx_rings)
760 				rx_ok = 1;
761 		} else {
762 			if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
763 			    min_rx_rings)
764 				rx_ok = 1;
765 		}
766 		if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
767 		    avail_cp < min_rx_rings)
768 			rx_ok = 0;
769 
770 		if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
771 		    avail_cp >= min_tx_rings)
772 			tx_ok = 1;
773 
774 		if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
775 		    min_rss_ctxs)
776 			rss_ok = 1;
777 
778 		if (tx_ok && rx_ok && rss_ok)
779 			break;
780 
781 		vfs_supported--;
782 	}
783 
784 	if (!vfs_supported) {
785 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
786 		return -EINVAL;
787 	}
788 
789 	if (vfs_supported != *num_vfs) {
790 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
791 			    *num_vfs, vfs_supported);
792 		*num_vfs = vfs_supported;
793 	}
794 
795 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
796 	if (rc)
797 		goto err_out1;
798 
799 	rc = bnxt_cfg_hw_sriov(bp, num_vfs, false);
800 	if (rc)
801 		goto err_out2;
802 
803 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
804 	if (rc)
805 		goto err_out2;
806 
807 	return 0;
808 
809 err_out2:
810 	/* Free the resources reserved for various VF's */
811 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
812 
813 err_out1:
814 	bnxt_free_vf_resources(bp);
815 
816 	return rc;
817 }
818 
819 void bnxt_sriov_disable(struct bnxt *bp)
820 {
821 	u16 num_vfs = pci_num_vf(bp->pdev);
822 
823 	if (!num_vfs)
824 		return;
825 
826 	/* synchronize VF and VF-rep create and destroy */
827 	mutex_lock(&bp->sriov_lock);
828 	bnxt_vf_reps_destroy(bp);
829 
830 	if (pci_vfs_assigned(bp->pdev)) {
831 		bnxt_hwrm_fwd_async_event_cmpl(
832 			bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
833 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
834 			    num_vfs);
835 	} else {
836 		pci_disable_sriov(bp->pdev);
837 		/* Free the HW resources reserved for various VF's */
838 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
839 	}
840 	mutex_unlock(&bp->sriov_lock);
841 
842 	bnxt_free_vf_resources(bp);
843 
844 	bp->pf.active_vfs = 0;
845 	/* Reclaim all resources for the PF. */
846 	rtnl_lock();
847 	bnxt_restore_pf_fw_resources(bp);
848 	rtnl_unlock();
849 
850 	bnxt_ulp_sriov_cfg(bp, 0);
851 }
852 
853 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
854 {
855 	struct net_device *dev = pci_get_drvdata(pdev);
856 	struct bnxt *bp = netdev_priv(dev);
857 
858 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
859 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
860 		return 0;
861 	}
862 
863 	rtnl_lock();
864 	if (!netif_running(dev)) {
865 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
866 		rtnl_unlock();
867 		return 0;
868 	}
869 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
870 		netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n");
871 		rtnl_unlock();
872 		return 0;
873 	}
874 	bp->sriov_cfg = true;
875 	rtnl_unlock();
876 
877 	if (pci_vfs_assigned(bp->pdev)) {
878 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
879 		num_vfs = 0;
880 		goto sriov_cfg_exit;
881 	}
882 
883 	/* Check if enabled VFs is same as requested */
884 	if (num_vfs && num_vfs == bp->pf.active_vfs)
885 		goto sriov_cfg_exit;
886 
887 	/* if there are previous existing VFs, clean them up */
888 	bnxt_sriov_disable(bp);
889 	if (!num_vfs)
890 		goto sriov_cfg_exit;
891 
892 	bnxt_sriov_enable(bp, &num_vfs);
893 
894 sriov_cfg_exit:
895 	bp->sriov_cfg = false;
896 	wake_up(&bp->sriov_cfg_wait);
897 
898 	return num_vfs;
899 }
900 
901 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
902 			      void *encap_resp, __le64 encap_resp_addr,
903 			      __le16 encap_resp_cpr, u32 msg_size)
904 {
905 	int rc = 0;
906 	struct hwrm_fwd_resp_input req = {0};
907 
908 	if (BNXT_FWD_RESP_SIZE_ERR(msg_size))
909 		return -EINVAL;
910 
911 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
912 
913 	/* Set the new target id */
914 	req.target_id = cpu_to_le16(vf->fw_fid);
915 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
916 	req.encap_resp_len = cpu_to_le16(msg_size);
917 	req.encap_resp_addr = encap_resp_addr;
918 	req.encap_resp_cmpl_ring = encap_resp_cpr;
919 	memcpy(req.encap_resp, encap_resp, msg_size);
920 
921 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
922 	if (rc)
923 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
924 	return rc;
925 }
926 
927 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
928 				  u32 msg_size)
929 {
930 	int rc = 0;
931 	struct hwrm_reject_fwd_resp_input req = {0};
932 
933 	if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
934 		return -EINVAL;
935 
936 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
937 	/* Set the new target id */
938 	req.target_id = cpu_to_le16(vf->fw_fid);
939 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
940 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
941 
942 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
943 	if (rc)
944 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
945 	return rc;
946 }
947 
948 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
949 				   u32 msg_size)
950 {
951 	int rc = 0;
952 	struct hwrm_exec_fwd_resp_input req = {0};
953 
954 	if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
955 		return -EINVAL;
956 
957 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
958 	/* Set the new target id */
959 	req.target_id = cpu_to_le16(vf->fw_fid);
960 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
961 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
962 
963 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
964 	if (rc)
965 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
966 	return rc;
967 }
968 
969 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
970 {
971 	u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
972 	struct hwrm_func_vf_cfg_input *req =
973 		(struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
974 
975 	/* Allow VF to set a valid MAC address, if trust is set to on or
976 	 * if the PF assigned MAC address is zero
977 	 */
978 	if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
979 		bool trust = bnxt_is_trusted_vf(bp, vf);
980 
981 		if (is_valid_ether_addr(req->dflt_mac_addr) &&
982 		    (trust || !is_valid_ether_addr(vf->mac_addr) ||
983 		     ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
984 			ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
985 			return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
986 		}
987 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
988 	}
989 	return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
990 }
991 
992 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
993 {
994 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
995 	struct hwrm_cfa_l2_filter_alloc_input *req =
996 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
997 	bool mac_ok = false;
998 
999 	if (!is_valid_ether_addr((const u8 *)req->l2_addr))
1000 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1001 
1002 	/* Allow VF to set a valid MAC address, if trust is set to on.
1003 	 * Or VF MAC address must first match MAC address in PF's context.
1004 	 * Otherwise, it must match the VF MAC address if firmware spec >=
1005 	 * 1.2.2
1006 	 */
1007 	if (bnxt_is_trusted_vf(bp, vf)) {
1008 		mac_ok = true;
1009 	} else if (is_valid_ether_addr(vf->mac_addr)) {
1010 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
1011 			mac_ok = true;
1012 	} else if (is_valid_ether_addr(vf->vf_mac_addr)) {
1013 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
1014 			mac_ok = true;
1015 	} else {
1016 		/* There are two cases:
1017 		 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded
1018 		 *   to the PF and so it doesn't have to match
1019 		 * 2.Allow VF to modify it's own MAC when PF has not assigned a
1020 		 *   valid MAC address and firmware spec >= 0x10202
1021 		 */
1022 		mac_ok = true;
1023 	}
1024 	if (mac_ok)
1025 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1026 	return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1027 }
1028 
1029 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
1030 {
1031 	int rc = 0;
1032 
1033 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
1034 		/* real link */
1035 		rc = bnxt_hwrm_exec_fwd_resp(
1036 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
1037 	} else {
1038 		struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
1039 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
1040 
1041 		phy_qcfg_req =
1042 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
1043 		mutex_lock(&bp->hwrm_cmd_lock);
1044 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
1045 		       sizeof(phy_qcfg_resp));
1046 		mutex_unlock(&bp->hwrm_cmd_lock);
1047 		phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
1048 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
1049 		phy_qcfg_resp.valid = 1;
1050 
1051 		if (vf->flags & BNXT_VF_LINK_UP) {
1052 			/* if physical link is down, force link up on VF */
1053 			if (phy_qcfg_resp.link !=
1054 			    PORT_PHY_QCFG_RESP_LINK_LINK) {
1055 				phy_qcfg_resp.link =
1056 					PORT_PHY_QCFG_RESP_LINK_LINK;
1057 				phy_qcfg_resp.link_speed = cpu_to_le16(
1058 					PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
1059 				phy_qcfg_resp.duplex_cfg =
1060 					PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
1061 				phy_qcfg_resp.duplex_state =
1062 					PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
1063 				phy_qcfg_resp.pause =
1064 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
1065 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
1066 			}
1067 		} else {
1068 			/* force link down */
1069 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
1070 			phy_qcfg_resp.link_speed = 0;
1071 			phy_qcfg_resp.duplex_state =
1072 				PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
1073 			phy_qcfg_resp.pause = 0;
1074 		}
1075 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
1076 					phy_qcfg_req->resp_addr,
1077 					phy_qcfg_req->cmpl_ring,
1078 					sizeof(phy_qcfg_resp));
1079 	}
1080 	return rc;
1081 }
1082 
1083 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
1084 {
1085 	int rc = 0;
1086 	struct input *encap_req = vf->hwrm_cmd_req_addr;
1087 	u32 req_type = le16_to_cpu(encap_req->req_type);
1088 
1089 	switch (req_type) {
1090 	case HWRM_FUNC_VF_CFG:
1091 		rc = bnxt_vf_configure_mac(bp, vf);
1092 		break;
1093 	case HWRM_CFA_L2_FILTER_ALLOC:
1094 		rc = bnxt_vf_validate_set_mac(bp, vf);
1095 		break;
1096 	case HWRM_FUNC_CFG:
1097 		/* TODO Validate if VF is allowed to change mac address,
1098 		 * mtu, num of rings etc
1099 		 */
1100 		rc = bnxt_hwrm_exec_fwd_resp(
1101 			bp, vf, sizeof(struct hwrm_func_cfg_input));
1102 		break;
1103 	case HWRM_PORT_PHY_QCFG:
1104 		rc = bnxt_vf_set_link(bp, vf);
1105 		break;
1106 	default:
1107 		break;
1108 	}
1109 	return rc;
1110 }
1111 
1112 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1113 {
1114 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1115 
1116 	/* Scan through VF's and process commands */
1117 	while (1) {
1118 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1119 		if (vf_id >= active_vfs)
1120 			break;
1121 
1122 		clear_bit(vf_id, bp->pf.vf_event_bmap);
1123 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1124 		i = vf_id + 1;
1125 	}
1126 }
1127 
1128 void bnxt_update_vf_mac(struct bnxt *bp)
1129 {
1130 	struct hwrm_func_qcaps_input req = {0};
1131 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
1132 
1133 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
1134 	req.fid = cpu_to_le16(0xffff);
1135 
1136 	mutex_lock(&bp->hwrm_cmd_lock);
1137 	if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
1138 		goto update_vf_mac_exit;
1139 
1140 	/* Store MAC address from the firmware.  There are 2 cases:
1141 	 * 1. MAC address is valid.  It is assigned from the PF and we
1142 	 *    need to override the current VF MAC address with it.
1143 	 * 2. MAC address is zero.  The VF will use a random MAC address by
1144 	 *    default but the stored zero MAC will allow the VF user to change
1145 	 *    the random MAC address using ndo_set_mac_address() if he wants.
1146 	 */
1147 	if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
1148 		memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1149 
1150 	/* overwrite netdev dev_addr with admin VF MAC */
1151 	if (is_valid_ether_addr(bp->vf.mac_addr))
1152 		memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
1153 update_vf_mac_exit:
1154 	mutex_unlock(&bp->hwrm_cmd_lock);
1155 }
1156 
1157 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1158 {
1159 	struct hwrm_func_vf_cfg_input req = {0};
1160 	int rc = 0;
1161 
1162 	if (!BNXT_VF(bp))
1163 		return 0;
1164 
1165 	if (bp->hwrm_spec_code < 0x10202) {
1166 		if (is_valid_ether_addr(bp->vf.mac_addr))
1167 			rc = -EADDRNOTAVAIL;
1168 		goto mac_done;
1169 	}
1170 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
1171 	req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1172 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
1173 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
1174 mac_done:
1175 	if (rc && strict) {
1176 		rc = -EADDRNOTAVAIL;
1177 		netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1178 			    mac);
1179 		return rc;
1180 	}
1181 	return 0;
1182 }
1183 #else
1184 
1185 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
1186 {
1187 	if (*num_vfs)
1188 		return -EOPNOTSUPP;
1189 	return 0;
1190 }
1191 
1192 void bnxt_sriov_disable(struct bnxt *bp)
1193 {
1194 }
1195 
1196 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1197 {
1198 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1199 }
1200 
1201 void bnxt_update_vf_mac(struct bnxt *bp)
1202 {
1203 }
1204 
1205 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1206 {
1207 	return 0;
1208 }
1209 #endif
1210