1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2018 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/ethtool.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/if_vlan.h> 16 #include <linux/interrupt.h> 17 #include <linux/etherdevice.h> 18 #include <net/dcbnl.h> 19 #include <linux/bnxt/hsi.h> 20 #include "bnxt.h" 21 #include "bnxt_hwrm.h" 22 #include "bnxt_ulp.h" 23 #include "bnxt_sriov.h" 24 #include "bnxt_vfr.h" 25 #include "bnxt_ethtool.h" 26 27 #ifdef CONFIG_BNXT_SRIOV 28 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 29 struct bnxt_vf_info *vf, u16 event_id) 30 { 31 struct hwrm_fwd_async_event_cmpl_input *req; 32 struct hwrm_async_event_cmpl *async_cmpl; 33 int rc = 0; 34 35 rc = hwrm_req_init(bp, req, HWRM_FWD_ASYNC_EVENT_CMPL); 36 if (rc) 37 goto exit; 38 39 if (vf) 40 req->encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 41 else 42 /* broadcast this async event to all VFs */ 43 req->encap_async_event_target_id = cpu_to_le16(0xffff); 44 async_cmpl = 45 (struct hwrm_async_event_cmpl *)req->encap_async_event_cmpl; 46 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 47 async_cmpl->event_id = cpu_to_le16(event_id); 48 49 rc = hwrm_req_send(bp, req); 50 exit: 51 if (rc) 52 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 53 rc); 54 return rc; 55 } 56 57 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 58 { 59 if (!bp->pf.active_vfs) { 60 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 61 return -EINVAL; 62 } 63 if (vf_id >= bp->pf.active_vfs) { 64 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 65 return -EINVAL; 66 } 67 return 0; 68 } 69 70 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 71 { 72 struct bnxt *bp = netdev_priv(dev); 73 struct hwrm_func_cfg_input *req; 74 bool old_setting = false; 75 struct bnxt_vf_info *vf; 76 u32 func_flags; 77 int rc; 78 79 if (bp->hwrm_spec_code < 0x10701) 80 return -ENOTSUPP; 81 82 rc = bnxt_vf_ndo_prep(bp, vf_id); 83 if (rc) 84 return rc; 85 86 vf = &bp->pf.vf[vf_id]; 87 if (vf->flags & BNXT_VF_SPOOFCHK) 88 old_setting = true; 89 if (old_setting == setting) 90 return 0; 91 92 if (setting) 93 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; 94 else 95 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; 96 /*TODO: if the driver supports VLAN filter on guest VLAN, 97 * the spoof check should also include vlan anti-spoofing 98 */ 99 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 100 if (!rc) { 101 req->fid = cpu_to_le16(vf->fw_fid); 102 req->flags = cpu_to_le32(func_flags); 103 rc = hwrm_req_send(bp, req); 104 if (!rc) { 105 if (setting) 106 vf->flags |= BNXT_VF_SPOOFCHK; 107 else 108 vf->flags &= ~BNXT_VF_SPOOFCHK; 109 } 110 } 111 return rc; 112 } 113 114 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf) 115 { 116 struct hwrm_func_qcfg_output *resp; 117 struct hwrm_func_qcfg_input *req; 118 int rc; 119 120 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 121 if (rc) 122 return rc; 123 124 req->fid = cpu_to_le16(BNXT_PF(bp) ? vf->fw_fid : 0xffff); 125 resp = hwrm_req_hold(bp, req); 126 rc = hwrm_req_send(bp, req); 127 if (!rc) 128 vf->func_qcfg_flags = le16_to_cpu(resp->flags); 129 hwrm_req_drop(bp, req); 130 return rc; 131 } 132 133 bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 134 { 135 if (BNXT_PF(bp) && !(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 136 return !!(vf->flags & BNXT_VF_TRUST); 137 138 bnxt_hwrm_func_qcfg_flags(bp, vf); 139 return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF); 140 } 141 142 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 143 { 144 struct hwrm_func_cfg_input *req; 145 int rc; 146 147 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 148 return 0; 149 150 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 151 if (rc) 152 return rc; 153 154 req->fid = cpu_to_le16(vf->fw_fid); 155 if (vf->flags & BNXT_VF_TRUST) 156 req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 157 else 158 req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE); 159 return hwrm_req_send(bp, req); 160 } 161 162 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) 163 { 164 struct bnxt *bp = netdev_priv(dev); 165 struct bnxt_vf_info *vf; 166 167 if (bnxt_vf_ndo_prep(bp, vf_id)) 168 return -EINVAL; 169 170 vf = &bp->pf.vf[vf_id]; 171 if (trusted) 172 vf->flags |= BNXT_VF_TRUST; 173 else 174 vf->flags &= ~BNXT_VF_TRUST; 175 176 bnxt_hwrm_set_trusted_vf(bp, vf); 177 return 0; 178 } 179 180 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 181 struct ifla_vf_info *ivi) 182 { 183 struct bnxt *bp = netdev_priv(dev); 184 struct bnxt_vf_info *vf; 185 int rc; 186 187 rc = bnxt_vf_ndo_prep(bp, vf_id); 188 if (rc) 189 return rc; 190 191 ivi->vf = vf_id; 192 vf = &bp->pf.vf[vf_id]; 193 194 if (is_valid_ether_addr(vf->mac_addr)) 195 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 196 else 197 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); 198 ivi->max_tx_rate = vf->max_tx_rate; 199 ivi->min_tx_rate = vf->min_tx_rate; 200 ivi->vlan = vf->vlan & VLAN_VID_MASK; 201 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; 202 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); 203 ivi->trusted = bnxt_is_trusted_vf(bp, vf); 204 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 205 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 206 else if (vf->flags & BNXT_VF_LINK_UP) 207 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 208 else 209 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 210 211 return 0; 212 } 213 214 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 215 { 216 struct bnxt *bp = netdev_priv(dev); 217 struct hwrm_func_cfg_input *req; 218 struct bnxt_vf_info *vf; 219 int rc; 220 221 rc = bnxt_vf_ndo_prep(bp, vf_id); 222 if (rc) 223 return rc; 224 /* reject bc or mc mac addr, zero mac addr means allow 225 * VF to use its own mac addr 226 */ 227 if (is_multicast_ether_addr(mac)) { 228 netdev_err(dev, "Invalid VF ethernet address\n"); 229 return -EINVAL; 230 } 231 vf = &bp->pf.vf[vf_id]; 232 233 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 234 if (rc) 235 return rc; 236 237 memcpy(vf->mac_addr, mac, ETH_ALEN); 238 239 req->fid = cpu_to_le16(vf->fw_fid); 240 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 241 memcpy(req->dflt_mac_addr, mac, ETH_ALEN); 242 return hwrm_req_send(bp, req); 243 } 244 245 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 246 __be16 vlan_proto) 247 { 248 struct bnxt *bp = netdev_priv(dev); 249 struct hwrm_func_cfg_input *req; 250 struct bnxt_vf_info *vf; 251 u16 vlan_tag; 252 int rc; 253 254 if (bp->hwrm_spec_code < 0x10201) 255 return -ENOTSUPP; 256 257 if (vlan_proto != htons(ETH_P_8021Q) && 258 (vlan_proto != htons(ETH_P_8021AD) || 259 !(bp->fw_cap & BNXT_FW_CAP_DFLT_VLAN_TPID_PCP))) 260 return -EPROTONOSUPPORT; 261 262 rc = bnxt_vf_ndo_prep(bp, vf_id); 263 if (rc) 264 return rc; 265 266 if (vlan_id >= VLAN_N_VID || qos >= IEEE_8021Q_MAX_PRIORITIES || 267 (!vlan_id && qos)) 268 return -EINVAL; 269 270 vf = &bp->pf.vf[vf_id]; 271 vlan_tag = vlan_id | (u16)qos << VLAN_PRIO_SHIFT; 272 if (vlan_tag == vf->vlan) 273 return 0; 274 275 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 276 if (!rc) { 277 req->fid = cpu_to_le16(vf->fw_fid); 278 req->dflt_vlan = cpu_to_le16(vlan_tag); 279 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 280 if (bp->fw_cap & BNXT_FW_CAP_DFLT_VLAN_TPID_PCP) { 281 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_TPID); 282 req->tpid = vlan_proto; 283 } 284 rc = hwrm_req_send(bp, req); 285 if (!rc) 286 vf->vlan = vlan_tag; 287 } 288 return rc; 289 } 290 291 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 292 int max_tx_rate) 293 { 294 struct bnxt *bp = netdev_priv(dev); 295 struct hwrm_func_cfg_input *req; 296 struct bnxt_vf_info *vf; 297 u32 pf_link_speed; 298 int rc; 299 300 rc = bnxt_vf_ndo_prep(bp, vf_id); 301 if (rc) 302 return rc; 303 304 vf = &bp->pf.vf[vf_id]; 305 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 306 if (max_tx_rate > pf_link_speed) { 307 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 308 max_tx_rate, vf_id); 309 return -EINVAL; 310 } 311 312 if (min_tx_rate > pf_link_speed) { 313 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 314 min_tx_rate, vf_id); 315 return -EINVAL; 316 } 317 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 318 return 0; 319 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 320 if (!rc) { 321 req->fid = cpu_to_le16(vf->fw_fid); 322 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW | 323 FUNC_CFG_REQ_ENABLES_MIN_BW); 324 req->max_bw = cpu_to_le32(max_tx_rate); 325 req->min_bw = cpu_to_le32(min_tx_rate); 326 rc = hwrm_req_send(bp, req); 327 if (!rc) { 328 vf->min_tx_rate = min_tx_rate; 329 vf->max_tx_rate = max_tx_rate; 330 } 331 } 332 return rc; 333 } 334 335 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 336 { 337 struct bnxt *bp = netdev_priv(dev); 338 struct bnxt_vf_info *vf; 339 int rc; 340 341 rc = bnxt_vf_ndo_prep(bp, vf_id); 342 if (rc) 343 return rc; 344 345 vf = &bp->pf.vf[vf_id]; 346 347 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 348 switch (link) { 349 case IFLA_VF_LINK_STATE_AUTO: 350 vf->flags |= BNXT_VF_LINK_UP; 351 break; 352 case IFLA_VF_LINK_STATE_DISABLE: 353 vf->flags |= BNXT_VF_LINK_FORCED; 354 break; 355 case IFLA_VF_LINK_STATE_ENABLE: 356 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 357 break; 358 default: 359 netdev_err(bp->dev, "Invalid link option\n"); 360 rc = -EINVAL; 361 break; 362 } 363 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 364 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 365 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 366 return rc; 367 } 368 369 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 370 { 371 int i; 372 struct bnxt_vf_info *vf; 373 374 for (i = 0; i < num_vfs; i++) { 375 vf = &bp->pf.vf[i]; 376 memset(vf, 0, sizeof(*vf)); 377 } 378 return 0; 379 } 380 381 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 382 { 383 struct hwrm_func_vf_resc_free_input *req; 384 struct bnxt_pf_info *pf = &bp->pf; 385 int i, rc; 386 387 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESC_FREE); 388 if (rc) 389 return rc; 390 391 hwrm_req_hold(bp, req); 392 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 393 req->vf_id = cpu_to_le16(i); 394 rc = hwrm_req_send(bp, req); 395 if (rc) 396 break; 397 } 398 hwrm_req_drop(bp, req); 399 return rc; 400 } 401 402 static void bnxt_free_vf_resources(struct bnxt *bp) 403 { 404 struct pci_dev *pdev = bp->pdev; 405 int i; 406 407 kfree(bp->pf.vf_event_bmap); 408 bp->pf.vf_event_bmap = NULL; 409 410 for (i = 0; i < 4; i++) { 411 if (bp->pf.hwrm_cmd_req_addr[i]) { 412 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 413 bp->pf.hwrm_cmd_req_addr[i], 414 bp->pf.hwrm_cmd_req_dma_addr[i]); 415 bp->pf.hwrm_cmd_req_addr[i] = NULL; 416 } 417 } 418 419 bp->pf.active_vfs = 0; 420 kfree(bp->pf.vf); 421 bp->pf.vf = NULL; 422 } 423 424 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 425 { 426 struct pci_dev *pdev = bp->pdev; 427 u32 nr_pages, size, i, j, k = 0; 428 429 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 430 if (!bp->pf.vf) 431 return -ENOMEM; 432 433 bnxt_set_vf_attr(bp, num_vfs); 434 435 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 436 nr_pages = size / BNXT_PAGE_SIZE; 437 if (size & (BNXT_PAGE_SIZE - 1)) 438 nr_pages++; 439 440 for (i = 0; i < nr_pages; i++) { 441 bp->pf.hwrm_cmd_req_addr[i] = 442 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 443 &bp->pf.hwrm_cmd_req_dma_addr[i], 444 GFP_KERNEL); 445 446 if (!bp->pf.hwrm_cmd_req_addr[i]) 447 return -ENOMEM; 448 449 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 450 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 451 452 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 453 j * BNXT_HWRM_REQ_MAX_SIZE; 454 vf->hwrm_cmd_req_dma_addr = 455 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 456 BNXT_HWRM_REQ_MAX_SIZE; 457 k++; 458 } 459 } 460 461 /* Max 128 VF's */ 462 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 463 if (!bp->pf.vf_event_bmap) 464 return -ENOMEM; 465 466 bp->pf.hwrm_cmd_req_pages = nr_pages; 467 return 0; 468 } 469 470 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 471 { 472 struct hwrm_func_buf_rgtr_input *req; 473 int rc; 474 475 rc = hwrm_req_init(bp, req, HWRM_FUNC_BUF_RGTR); 476 if (rc) 477 return rc; 478 479 req->req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 480 req->req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 481 req->req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 482 req->req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 483 req->req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 484 req->req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 485 req->req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 486 487 return hwrm_req_send(bp, req); 488 } 489 490 static int __bnxt_set_vf_params(struct bnxt *bp, int vf_id) 491 { 492 struct hwrm_func_cfg_input *req; 493 struct bnxt_vf_info *vf; 494 int rc; 495 496 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 497 if (rc) 498 return rc; 499 500 vf = &bp->pf.vf[vf_id]; 501 req->fid = cpu_to_le16(vf->fw_fid); 502 503 if (is_valid_ether_addr(vf->mac_addr)) { 504 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 505 memcpy(req->dflt_mac_addr, vf->mac_addr, ETH_ALEN); 506 } 507 if (vf->vlan) { 508 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 509 req->dflt_vlan = cpu_to_le16(vf->vlan); 510 } 511 if (vf->max_tx_rate) { 512 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW | 513 FUNC_CFG_REQ_ENABLES_MIN_BW); 514 req->max_bw = cpu_to_le32(vf->max_tx_rate); 515 req->min_bw = cpu_to_le32(vf->min_tx_rate); 516 } 517 if (vf->flags & BNXT_VF_TRUST) 518 req->flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 519 520 return hwrm_req_send(bp, req); 521 } 522 523 static void bnxt_hwrm_roce_sriov_cfg(struct bnxt *bp, int num_vfs) 524 { 525 struct hwrm_func_qcaps_output *resp; 526 struct hwrm_func_cfg_input *cfg_req; 527 struct hwrm_func_qcaps_input *req; 528 int rc; 529 530 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 531 if (rc) 532 return; 533 534 req->fid = cpu_to_le16(0xffff); 535 resp = hwrm_req_hold(bp, req); 536 rc = hwrm_req_send(bp, req); 537 if (rc) 538 goto err; 539 540 rc = hwrm_req_init(bp, cfg_req, HWRM_FUNC_CFG); 541 if (rc) 542 goto err; 543 544 /* In case of VF Dynamic resource allocation, driver will provision 545 * maximum resources to all the VFs. FW will dynamically allocate 546 * resources to VFs on the fly, so always divide the resources by 1. 547 */ 548 if (BNXT_ROCE_VF_DYN_ALLOC_CAP(bp)) 549 num_vfs = 1; 550 551 cfg_req->fid = cpu_to_le16(0xffff); 552 cfg_req->enables2 = 553 cpu_to_le32(FUNC_CFG_REQ_ENABLES2_ROCE_MAX_AV_PER_VF | 554 FUNC_CFG_REQ_ENABLES2_ROCE_MAX_CQ_PER_VF | 555 FUNC_CFG_REQ_ENABLES2_ROCE_MAX_MRW_PER_VF | 556 FUNC_CFG_REQ_ENABLES2_ROCE_MAX_QP_PER_VF | 557 FUNC_CFG_REQ_ENABLES2_ROCE_MAX_SRQ_PER_VF | 558 FUNC_CFG_REQ_ENABLES2_ROCE_MAX_GID_PER_VF); 559 cfg_req->roce_max_av_per_vf = 560 cpu_to_le32(le32_to_cpu(resp->roce_vf_max_av) / num_vfs); 561 cfg_req->roce_max_cq_per_vf = 562 cpu_to_le32(le32_to_cpu(resp->roce_vf_max_cq) / num_vfs); 563 cfg_req->roce_max_mrw_per_vf = 564 cpu_to_le32(le32_to_cpu(resp->roce_vf_max_mrw) / num_vfs); 565 cfg_req->roce_max_qp_per_vf = 566 cpu_to_le32(le32_to_cpu(resp->roce_vf_max_qp) / num_vfs); 567 cfg_req->roce_max_srq_per_vf = 568 cpu_to_le32(le32_to_cpu(resp->roce_vf_max_srq) / num_vfs); 569 cfg_req->roce_max_gid_per_vf = 570 cpu_to_le32(le32_to_cpu(resp->roce_vf_max_gid) / num_vfs); 571 572 rc = hwrm_req_send(bp, cfg_req); 573 574 err: 575 hwrm_req_drop(bp, req); 576 if (rc) 577 netdev_err(bp->dev, "RoCE sriov configuration failed\n"); 578 } 579 580 /* Only called by PF to reserve resources for VFs, returns actual number of 581 * VFs configured, or < 0 on error. 582 */ 583 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset) 584 { 585 struct hwrm_func_vf_resource_cfg_input *req; 586 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 587 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; 588 u16 vf_stat_ctx, vf_vnics, vf_ring_grps; 589 struct bnxt_pf_info *pf = &bp->pf; 590 int i, rc = 0, min = 1; 591 u16 vf_msix = 0; 592 u16 vf_rss; 593 594 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESOURCE_CFG); 595 if (rc) 596 return rc; 597 598 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 599 vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp); 600 vf_ring_grps = 0; 601 } else { 602 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; 603 } 604 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp); 605 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp); 606 if (bp->flags & BNXT_FLAG_AGG_RINGS) 607 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; 608 else 609 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; 610 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; 611 vf_vnics = hw_resc->max_vnics - bp->nr_vnics; 612 vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs; 613 614 req->min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX); 615 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 616 min = 0; 617 req->min_rsscos_ctx = cpu_to_le16(min); 618 } 619 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL || 620 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 621 req->min_cmpl_rings = cpu_to_le16(min); 622 req->min_tx_rings = cpu_to_le16(min); 623 req->min_rx_rings = cpu_to_le16(min); 624 req->min_l2_ctxs = cpu_to_le16(min); 625 req->min_vnics = cpu_to_le16(min); 626 req->min_stat_ctx = cpu_to_le16(min); 627 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 628 req->min_hw_ring_grps = cpu_to_le16(min); 629 } else { 630 vf_cp_rings /= num_vfs; 631 vf_tx_rings /= num_vfs; 632 vf_rx_rings /= num_vfs; 633 if ((bp->fw_cap & BNXT_FW_CAP_PRE_RESV_VNICS) && 634 vf_vnics >= pf->max_vfs) { 635 /* Take into account that FW has pre-reserved 1 VNIC for 636 * each pf->max_vfs. 637 */ 638 vf_vnics = (vf_vnics - pf->max_vfs + num_vfs) / num_vfs; 639 } else { 640 vf_vnics /= num_vfs; 641 } 642 vf_stat_ctx /= num_vfs; 643 vf_ring_grps /= num_vfs; 644 vf_rss /= num_vfs; 645 646 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 647 req->min_cmpl_rings = cpu_to_le16(vf_cp_rings); 648 req->min_tx_rings = cpu_to_le16(vf_tx_rings); 649 req->min_rx_rings = cpu_to_le16(vf_rx_rings); 650 req->min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 651 req->min_vnics = cpu_to_le16(vf_vnics); 652 req->min_stat_ctx = cpu_to_le16(vf_stat_ctx); 653 req->min_hw_ring_grps = cpu_to_le16(vf_ring_grps); 654 req->min_rsscos_ctx = cpu_to_le16(vf_rss); 655 } 656 req->max_cmpl_rings = cpu_to_le16(vf_cp_rings); 657 req->max_tx_rings = cpu_to_le16(vf_tx_rings); 658 req->max_rx_rings = cpu_to_le16(vf_rx_rings); 659 req->max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 660 req->max_vnics = cpu_to_le16(vf_vnics); 661 req->max_stat_ctx = cpu_to_le16(vf_stat_ctx); 662 req->max_hw_ring_grps = cpu_to_le16(vf_ring_grps); 663 req->max_rsscos_ctx = cpu_to_le16(vf_rss); 664 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 665 req->max_msix = cpu_to_le16(vf_msix / num_vfs); 666 667 hwrm_req_hold(bp, req); 668 for (i = 0; i < num_vfs; i++) { 669 if (reset) 670 __bnxt_set_vf_params(bp, i); 671 672 req->vf_id = cpu_to_le16(pf->first_vf_id + i); 673 rc = hwrm_req_send(bp, req); 674 if (rc) 675 break; 676 pf->active_vfs = i + 1; 677 pf->vf[i].fw_fid = pf->first_vf_id + i; 678 } 679 680 if (pf->active_vfs) { 681 u16 n = pf->active_vfs; 682 683 hw_resc->max_tx_rings -= le16_to_cpu(req->min_tx_rings) * n; 684 hw_resc->max_rx_rings -= le16_to_cpu(req->min_rx_rings) * n; 685 hw_resc->max_hw_ring_grps -= 686 le16_to_cpu(req->min_hw_ring_grps) * n; 687 hw_resc->max_cp_rings -= le16_to_cpu(req->min_cmpl_rings) * n; 688 hw_resc->max_rsscos_ctxs -= 689 le16_to_cpu(req->min_rsscos_ctx) * n; 690 hw_resc->max_stat_ctxs -= le16_to_cpu(req->min_stat_ctx) * n; 691 hw_resc->max_vnics -= le16_to_cpu(req->min_vnics) * n; 692 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 693 hw_resc->max_nqs -= vf_msix; 694 695 rc = pf->active_vfs; 696 } 697 hwrm_req_drop(bp, req); 698 return rc; 699 } 700 701 /* Only called by PF to reserve resources for VFs, returns actual number of 702 * VFs configured, or < 0 on error. 703 */ 704 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 705 { 706 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 707 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 708 struct bnxt_pf_info *pf = &bp->pf; 709 struct hwrm_func_cfg_input *req; 710 int total_vf_tx_rings = 0; 711 u16 vf_ring_grps; 712 u32 mtu, i; 713 int rc; 714 715 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 716 if (rc) 717 return rc; 718 719 /* Remaining rings are distributed equally amongs VF's for now */ 720 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs; 721 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs; 722 if (bp->flags & BNXT_FLAG_AGG_RINGS) 723 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / 724 num_vfs; 725 else 726 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / 727 num_vfs; 728 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 729 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; 730 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; 731 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 732 733 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ADMIN_MTU | 734 FUNC_CFG_REQ_ENABLES_MRU | 735 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 736 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 737 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 738 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 739 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 740 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 741 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 742 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 743 744 mtu = bp->dev->mtu + VLAN_ETH_HLEN; 745 req->mru = cpu_to_le16(mtu); 746 req->admin_mtu = cpu_to_le16(mtu); 747 748 req->num_rsscos_ctxs = cpu_to_le16(1); 749 req->num_cmpl_rings = cpu_to_le16(vf_cp_rings); 750 req->num_tx_rings = cpu_to_le16(vf_tx_rings); 751 req->num_rx_rings = cpu_to_le16(vf_rx_rings); 752 req->num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 753 req->num_l2_ctxs = cpu_to_le16(4); 754 755 req->num_vnics = cpu_to_le16(vf_vnics); 756 /* FIXME spec currently uses 1 bit for stats ctx */ 757 req->num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 758 759 hwrm_req_hold(bp, req); 760 for (i = 0; i < num_vfs; i++) { 761 int vf_tx_rsvd = vf_tx_rings; 762 763 req->fid = cpu_to_le16(pf->first_vf_id + i); 764 rc = hwrm_req_send(bp, req); 765 if (rc) 766 break; 767 pf->active_vfs = i + 1; 768 pf->vf[i].fw_fid = le16_to_cpu(req->fid); 769 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, 770 &vf_tx_rsvd); 771 if (rc) 772 break; 773 total_vf_tx_rings += vf_tx_rsvd; 774 } 775 hwrm_req_drop(bp, req); 776 if (pf->active_vfs) { 777 hw_resc->max_tx_rings -= total_vf_tx_rings; 778 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; 779 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; 780 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; 781 hw_resc->max_rsscos_ctxs -= num_vfs; 782 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; 783 hw_resc->max_vnics -= vf_vnics * num_vfs; 784 rc = pf->active_vfs; 785 } 786 return rc; 787 } 788 789 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset) 790 { 791 if (BNXT_NEW_RM(bp)) 792 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset); 793 else 794 return bnxt_hwrm_func_cfg(bp, num_vfs); 795 } 796 797 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 798 { 799 int rc; 800 801 /* Register buffers for VFs */ 802 rc = bnxt_hwrm_func_buf_rgtr(bp); 803 if (rc) 804 return rc; 805 806 /* Reserve resources for VFs */ 807 rc = bnxt_func_cfg(bp, *num_vfs, reset); 808 if (rc != *num_vfs) { 809 if (rc <= 0) { 810 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); 811 *num_vfs = 0; 812 return rc; 813 } 814 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", 815 rc); 816 *num_vfs = rc; 817 } 818 819 if (BNXT_RDMA_SRIOV_EN(bp) && BNXT_ROCE_VF_RESC_CAP(bp)) 820 bnxt_hwrm_roce_sriov_cfg(bp, *num_vfs); 821 822 return 0; 823 } 824 825 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 826 { 827 int rc = 0, vfs_supported; 828 int min_rx_rings, min_tx_rings, min_rss_ctxs; 829 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 830 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 831 int avail_cp, avail_stat; 832 833 /* Check if we can enable requested num of vf's. At a minimum 834 * we require 1 RX 1 TX rings for each VF. In this minimum conf 835 * features like TPA will not be available. 836 */ 837 vfs_supported = *num_vfs; 838 839 avail_cp = bnxt_get_avail_cp_rings_for_en(bp); 840 avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp); 841 avail_cp = min_t(int, avail_cp, avail_stat); 842 843 while (vfs_supported) { 844 min_rx_rings = vfs_supported; 845 min_tx_rings = vfs_supported; 846 min_rss_ctxs = vfs_supported; 847 848 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 849 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= 850 min_rx_rings) 851 rx_ok = 1; 852 } else { 853 if (hw_resc->max_rx_rings - bp->rx_nr_rings >= 854 min_rx_rings) 855 rx_ok = 1; 856 } 857 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || 858 avail_cp < min_rx_rings) 859 rx_ok = 0; 860 861 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && 862 avail_cp >= min_tx_rings) 863 tx_ok = 1; 864 865 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= 866 min_rss_ctxs) 867 rss_ok = 1; 868 869 if (tx_ok && rx_ok && rss_ok) 870 break; 871 872 vfs_supported--; 873 } 874 875 if (!vfs_supported) { 876 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 877 return -EINVAL; 878 } 879 880 if (vfs_supported != *num_vfs) { 881 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 882 *num_vfs, vfs_supported); 883 *num_vfs = vfs_supported; 884 } 885 886 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 887 if (rc) 888 goto err_out1; 889 890 rc = bnxt_cfg_hw_sriov(bp, num_vfs, false); 891 if (rc) 892 goto err_out2; 893 894 rc = pci_enable_sriov(bp->pdev, *num_vfs); 895 if (rc) 896 goto err_out2; 897 898 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 899 return 0; 900 901 /* Create representors for VFs in switchdev mode */ 902 devl_lock(bp->dl); 903 rc = bnxt_vf_reps_create(bp); 904 devl_unlock(bp->dl); 905 if (rc) { 906 netdev_info(bp->dev, "Cannot enable VFS as representors cannot be created\n"); 907 goto err_out3; 908 } 909 910 return 0; 911 912 err_out3: 913 /* Disable SR-IOV */ 914 pci_disable_sriov(bp->pdev); 915 916 err_out2: 917 /* Free the resources reserved for various VF's */ 918 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 919 920 /* Restore the max resources */ 921 bnxt_hwrm_func_qcaps(bp); 922 923 err_out1: 924 bnxt_free_vf_resources(bp); 925 926 return rc; 927 } 928 929 void __bnxt_sriov_disable(struct bnxt *bp) 930 { 931 u16 num_vfs = pci_num_vf(bp->pdev); 932 933 if (!num_vfs) 934 return; 935 936 /* synchronize VF and VF-rep create and destroy */ 937 devl_lock(bp->dl); 938 bnxt_vf_reps_destroy(bp); 939 940 if (pci_vfs_assigned(bp->pdev)) { 941 bnxt_hwrm_fwd_async_event_cmpl( 942 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 943 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 944 num_vfs); 945 } else { 946 pci_disable_sriov(bp->pdev); 947 /* Free the HW resources reserved for various VF's */ 948 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 949 } 950 devl_unlock(bp->dl); 951 952 bnxt_free_vf_resources(bp); 953 } 954 955 static void bnxt_sriov_disable(struct bnxt *bp) 956 { 957 if (!pci_num_vf(bp->pdev)) 958 return; 959 960 __bnxt_sriov_disable(bp); 961 962 /* Reclaim all resources for the PF. */ 963 rtnl_lock(); 964 netdev_lock(bp->dev); 965 bnxt_restore_pf_fw_resources(bp); 966 netdev_unlock(bp->dev); 967 rtnl_unlock(); 968 } 969 970 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 971 { 972 struct net_device *dev = pci_get_drvdata(pdev); 973 struct bnxt *bp = netdev_priv(dev); 974 975 rtnl_lock(); 976 netdev_lock(dev); 977 if (!netif_running(dev)) { 978 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 979 netdev_unlock(dev); 980 rtnl_unlock(); 981 return 0; 982 } 983 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 984 netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n"); 985 netdev_unlock(dev); 986 rtnl_unlock(); 987 return 0; 988 } 989 bp->sriov_cfg = true; 990 netdev_unlock(dev); 991 rtnl_unlock(); 992 993 if (pci_vfs_assigned(bp->pdev)) { 994 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 995 num_vfs = 0; 996 goto sriov_cfg_exit; 997 } 998 999 /* Check if enabled VFs is same as requested */ 1000 if (num_vfs && num_vfs == bp->pf.active_vfs) 1001 goto sriov_cfg_exit; 1002 1003 /* if there are previous existing VFs, clean them up */ 1004 bnxt_sriov_disable(bp); 1005 if (!num_vfs) 1006 goto sriov_cfg_exit; 1007 1008 bnxt_sriov_enable(bp, &num_vfs); 1009 1010 sriov_cfg_exit: 1011 bp->sriov_cfg = false; 1012 wake_up(&bp->sriov_cfg_wait); 1013 1014 return num_vfs; 1015 } 1016 1017 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 1018 void *encap_resp, __le64 encap_resp_addr, 1019 __le16 encap_resp_cpr, u32 msg_size) 1020 { 1021 struct hwrm_fwd_resp_input *req; 1022 int rc; 1023 1024 if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) { 1025 netdev_warn_once(bp->dev, "HWRM fwd response too big (%d bytes)\n", 1026 msg_size); 1027 return -EINVAL; 1028 } 1029 1030 rc = hwrm_req_init(bp, req, HWRM_FWD_RESP); 1031 if (!rc) { 1032 /* Set the new target id */ 1033 req->target_id = cpu_to_le16(vf->fw_fid); 1034 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid); 1035 req->encap_resp_len = cpu_to_le16(msg_size); 1036 req->encap_resp_addr = encap_resp_addr; 1037 req->encap_resp_cmpl_ring = encap_resp_cpr; 1038 memcpy(req->encap_resp, encap_resp, msg_size); 1039 1040 rc = hwrm_req_send(bp, req); 1041 } 1042 if (rc) 1043 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 1044 return rc; 1045 } 1046 1047 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 1048 u32 msg_size) 1049 { 1050 struct hwrm_reject_fwd_resp_input *req; 1051 int rc; 1052 1053 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size)) 1054 return -EINVAL; 1055 1056 rc = hwrm_req_init(bp, req, HWRM_REJECT_FWD_RESP); 1057 if (!rc) { 1058 /* Set the new target id */ 1059 req->target_id = cpu_to_le16(vf->fw_fid); 1060 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid); 1061 memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size); 1062 1063 rc = hwrm_req_send(bp, req); 1064 } 1065 if (rc) 1066 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 1067 return rc; 1068 } 1069 1070 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 1071 u32 msg_size) 1072 { 1073 struct hwrm_exec_fwd_resp_input *req; 1074 int rc; 1075 1076 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size)) 1077 return -EINVAL; 1078 1079 rc = hwrm_req_init(bp, req, HWRM_EXEC_FWD_RESP); 1080 if (!rc) { 1081 /* Set the new target id */ 1082 req->target_id = cpu_to_le16(vf->fw_fid); 1083 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid); 1084 memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size); 1085 1086 rc = hwrm_req_send(bp, req); 1087 } 1088 if (rc) 1089 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 1090 return rc; 1091 } 1092 1093 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 1094 { 1095 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); 1096 struct hwrm_func_vf_cfg_input *req = 1097 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; 1098 1099 /* Allow VF to set a valid MAC address, if trust is set to on or 1100 * if the PF assigned MAC address is zero 1101 */ 1102 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { 1103 bool trust = bnxt_is_trusted_vf(bp, vf); 1104 1105 if (is_valid_ether_addr(req->dflt_mac_addr) && 1106 (trust || !is_valid_ether_addr(vf->mac_addr) || 1107 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) { 1108 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); 1109 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1110 } 1111 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1112 } 1113 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1114 } 1115 1116 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 1117 { 1118 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 1119 struct hwrm_cfa_l2_filter_alloc_input *req = 1120 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 1121 bool mac_ok = false; 1122 1123 if (!is_valid_ether_addr((const u8 *)req->l2_addr)) 1124 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1125 1126 /* Allow VF to set a valid MAC address, if trust is set to on. 1127 * Or VF MAC address must first match MAC address in PF's context. 1128 * Otherwise, it must match the VF MAC address if firmware spec >= 1129 * 1.2.2 1130 */ 1131 if (bnxt_is_trusted_vf(bp, vf)) { 1132 mac_ok = true; 1133 } else if (is_valid_ether_addr(vf->mac_addr)) { 1134 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 1135 mac_ok = true; 1136 } else if (is_valid_ether_addr(vf->vf_mac_addr)) { 1137 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) 1138 mac_ok = true; 1139 } else { 1140 /* There are two cases: 1141 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded 1142 * to the PF and so it doesn't have to match 1143 * 2.Allow VF to modify its own MAC when PF has not assigned a 1144 * valid MAC address and firmware spec >= 0x10202 1145 */ 1146 mac_ok = true; 1147 } 1148 if (mac_ok) 1149 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1150 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1151 } 1152 1153 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 1154 { 1155 int rc = 0; 1156 1157 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 1158 /* real link */ 1159 rc = bnxt_hwrm_exec_fwd_resp( 1160 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 1161 } else { 1162 struct hwrm_port_phy_qcfg_output_compat phy_qcfg_resp = {}; 1163 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 1164 1165 phy_qcfg_req = 1166 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 1167 mutex_lock(&bp->link_lock); 1168 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 1169 sizeof(phy_qcfg_resp)); 1170 mutex_unlock(&bp->link_lock); 1171 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); 1172 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 1173 /* New SPEEDS2 fields are beyond the legacy structure, so 1174 * clear the SPEEDS2_SUPPORTED flag. 1175 */ 1176 phy_qcfg_resp.option_flags &= 1177 ~PORT_PHY_QCAPS_RESP_FLAGS2_SPEEDS2_SUPPORTED; 1178 phy_qcfg_resp.valid = 1; 1179 1180 if (vf->flags & BNXT_VF_LINK_UP) { 1181 /* if physical link is down, force link up on VF */ 1182 if (phy_qcfg_resp.link != 1183 PORT_PHY_QCFG_RESP_LINK_LINK) { 1184 phy_qcfg_resp.link = 1185 PORT_PHY_QCFG_RESP_LINK_LINK; 1186 phy_qcfg_resp.link_speed = cpu_to_le16( 1187 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 1188 phy_qcfg_resp.duplex_cfg = 1189 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; 1190 phy_qcfg_resp.duplex_state = 1191 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; 1192 phy_qcfg_resp.pause = 1193 (PORT_PHY_QCFG_RESP_PAUSE_TX | 1194 PORT_PHY_QCFG_RESP_PAUSE_RX); 1195 } 1196 } else { 1197 /* force link down */ 1198 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 1199 phy_qcfg_resp.link_speed = 0; 1200 phy_qcfg_resp.duplex_state = 1201 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; 1202 phy_qcfg_resp.pause = 0; 1203 } 1204 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 1205 phy_qcfg_req->resp_addr, 1206 phy_qcfg_req->cmpl_ring, 1207 sizeof(phy_qcfg_resp)); 1208 } 1209 return rc; 1210 } 1211 1212 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 1213 { 1214 int rc = 0; 1215 struct input *encap_req = vf->hwrm_cmd_req_addr; 1216 u32 req_type = le16_to_cpu(encap_req->req_type); 1217 1218 switch (req_type) { 1219 case HWRM_FUNC_VF_CFG: 1220 rc = bnxt_vf_configure_mac(bp, vf); 1221 break; 1222 case HWRM_CFA_L2_FILTER_ALLOC: 1223 rc = bnxt_vf_validate_set_mac(bp, vf); 1224 break; 1225 case HWRM_FUNC_CFG: 1226 /* TODO Validate if VF is allowed to change mac address, 1227 * mtu, num of rings etc 1228 */ 1229 rc = bnxt_hwrm_exec_fwd_resp( 1230 bp, vf, sizeof(struct hwrm_func_cfg_input)); 1231 break; 1232 case HWRM_PORT_PHY_QCFG: 1233 rc = bnxt_vf_set_link(bp, vf); 1234 break; 1235 default: 1236 break; 1237 } 1238 return rc; 1239 } 1240 1241 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1242 { 1243 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 1244 1245 /* Scan through VF's and process commands */ 1246 while (1) { 1247 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 1248 if (vf_id >= active_vfs) 1249 break; 1250 1251 clear_bit(vf_id, bp->pf.vf_event_bmap); 1252 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 1253 i = vf_id + 1; 1254 } 1255 } 1256 1257 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict) 1258 { 1259 struct hwrm_func_vf_cfg_input *req; 1260 int rc = 0; 1261 1262 if (!BNXT_VF(bp)) 1263 return 0; 1264 1265 if (bp->hwrm_spec_code < 0x10202) { 1266 if (is_valid_ether_addr(bp->vf.mac_addr)) 1267 rc = -EADDRNOTAVAIL; 1268 goto mac_done; 1269 } 1270 1271 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 1272 if (rc) 1273 goto mac_done; 1274 1275 req->enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 1276 memcpy(req->dflt_mac_addr, mac, ETH_ALEN); 1277 if (!strict) 1278 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT); 1279 rc = hwrm_req_send(bp, req); 1280 mac_done: 1281 if (rc && strict) { 1282 rc = -EADDRNOTAVAIL; 1283 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 1284 mac); 1285 return rc; 1286 } 1287 return 0; 1288 } 1289 1290 void bnxt_update_vf_mac(struct bnxt *bp) 1291 { 1292 struct hwrm_func_qcaps_output *resp; 1293 struct hwrm_func_qcaps_input *req; 1294 bool inform_pf = false; 1295 1296 if (hwrm_req_init(bp, req, HWRM_FUNC_QCAPS)) 1297 return; 1298 1299 req->fid = cpu_to_le16(0xffff); 1300 1301 resp = hwrm_req_hold(bp, req); 1302 if (hwrm_req_send(bp, req)) 1303 goto update_vf_mac_exit; 1304 1305 /* Store MAC address from the firmware. There are 2 cases: 1306 * 1. MAC address is valid. It is assigned from the PF and we 1307 * need to override the current VF MAC address with it. 1308 * 2. MAC address is zero. The VF will use a random MAC address by 1309 * default but the stored zero MAC will allow the VF user to change 1310 * the random MAC address using ndo_set_mac_address() if he wants. 1311 */ 1312 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) { 1313 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 1314 /* This means we are now using our own MAC address, let 1315 * the PF know about this MAC address. 1316 */ 1317 if (!is_valid_ether_addr(bp->vf.mac_addr)) 1318 inform_pf = true; 1319 } 1320 1321 /* overwrite netdev dev_addr with admin VF MAC */ 1322 if (is_valid_ether_addr(bp->vf.mac_addr)) 1323 eth_hw_addr_set(bp->dev, bp->vf.mac_addr); 1324 update_vf_mac_exit: 1325 hwrm_req_drop(bp, req); 1326 if (inform_pf) 1327 bnxt_approve_mac(bp, bp->dev->dev_addr, false); 1328 } 1329 1330 #else 1331 1332 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 1333 { 1334 if (*num_vfs) 1335 return -EOPNOTSUPP; 1336 return 0; 1337 } 1338 1339 void __bnxt_sriov_disable(struct bnxt *bp) 1340 { 1341 } 1342 1343 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1344 { 1345 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 1346 } 1347 1348 void bnxt_update_vf_mac(struct bnxt *bp) 1349 { 1350 } 1351 1352 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict) 1353 { 1354 return 0; 1355 } 1356 #endif 1357