xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt_sriov.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/if_vlan.h>
15 #include <linux/interrupt.h>
16 #include <linux/etherdevice.h>
17 #include "bnxt_hsi.h"
18 #include "bnxt.h"
19 #include "bnxt_ulp.h"
20 #include "bnxt_sriov.h"
21 #include "bnxt_vfr.h"
22 #include "bnxt_ethtool.h"
23 
24 #ifdef CONFIG_BNXT_SRIOV
25 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
26 					  struct bnxt_vf_info *vf, u16 event_id)
27 {
28 	struct hwrm_fwd_async_event_cmpl_input req = {0};
29 	struct hwrm_async_event_cmpl *async_cmpl;
30 	int rc = 0;
31 
32 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1);
33 	if (vf)
34 		req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
35 	else
36 		/* broadcast this async event to all VFs */
37 		req.encap_async_event_target_id = cpu_to_le16(0xffff);
38 	async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl;
39 	async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
40 	async_cmpl->event_id = cpu_to_le16(event_id);
41 
42 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
43 	if (rc)
44 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
45 			   rc);
46 	return rc;
47 }
48 
49 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
50 {
51 	if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
52 		netdev_err(bp->dev, "vf ndo called though PF is down\n");
53 		return -EINVAL;
54 	}
55 	if (!bp->pf.active_vfs) {
56 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
57 		return -EINVAL;
58 	}
59 	if (vf_id >= bp->pf.active_vfs) {
60 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
61 		return -EINVAL;
62 	}
63 	return 0;
64 }
65 
66 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
67 {
68 	struct hwrm_func_cfg_input req = {0};
69 	struct bnxt *bp = netdev_priv(dev);
70 	struct bnxt_vf_info *vf;
71 	bool old_setting = false;
72 	u32 func_flags;
73 	int rc;
74 
75 	if (bp->hwrm_spec_code < 0x10701)
76 		return -ENOTSUPP;
77 
78 	rc = bnxt_vf_ndo_prep(bp, vf_id);
79 	if (rc)
80 		return rc;
81 
82 	vf = &bp->pf.vf[vf_id];
83 	if (vf->flags & BNXT_VF_SPOOFCHK)
84 		old_setting = true;
85 	if (old_setting == setting)
86 		return 0;
87 
88 	func_flags = vf->func_flags;
89 	if (setting)
90 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
91 	else
92 		func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
93 	/*TODO: if the driver supports VLAN filter on guest VLAN,
94 	 * the spoof check should also include vlan anti-spoofing
95 	 */
96 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
97 	req.fid = cpu_to_le16(vf->fw_fid);
98 	req.flags = cpu_to_le32(func_flags);
99 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
100 	if (!rc) {
101 		vf->func_flags = func_flags;
102 		if (setting)
103 			vf->flags |= BNXT_VF_SPOOFCHK;
104 		else
105 			vf->flags &= ~BNXT_VF_SPOOFCHK;
106 	}
107 	return rc;
108 }
109 
110 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf)
111 {
112 	struct hwrm_func_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
113 	struct hwrm_func_qcfg_input req = {0};
114 	int rc;
115 
116 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCFG, -1, -1);
117 	req.fid = cpu_to_le16(vf->fw_fid);
118 	mutex_lock(&bp->hwrm_cmd_lock);
119 	rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
120 	if (rc) {
121 		mutex_unlock(&bp->hwrm_cmd_lock);
122 		return rc;
123 	}
124 	vf->func_qcfg_flags = le16_to_cpu(resp->flags);
125 	mutex_unlock(&bp->hwrm_cmd_lock);
126 	return 0;
127 }
128 
129 static bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
130 {
131 	if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
132 		return !!(vf->flags & BNXT_VF_TRUST);
133 
134 	bnxt_hwrm_func_qcfg_flags(bp, vf);
135 	return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF);
136 }
137 
138 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
139 {
140 	struct hwrm_func_cfg_input req = {0};
141 	int rc;
142 
143 	if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
144 		return 0;
145 
146 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
147 	req.fid = cpu_to_le16(vf->fw_fid);
148 	if (vf->flags & BNXT_VF_TRUST)
149 		req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
150 	else
151 		req.flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE);
152 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
153 	return rc;
154 }
155 
156 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
157 {
158 	struct bnxt *bp = netdev_priv(dev);
159 	struct bnxt_vf_info *vf;
160 
161 	if (bnxt_vf_ndo_prep(bp, vf_id))
162 		return -EINVAL;
163 
164 	vf = &bp->pf.vf[vf_id];
165 	if (trusted)
166 		vf->flags |= BNXT_VF_TRUST;
167 	else
168 		vf->flags &= ~BNXT_VF_TRUST;
169 
170 	bnxt_hwrm_set_trusted_vf(bp, vf);
171 	return 0;
172 }
173 
174 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
175 		       struct ifla_vf_info *ivi)
176 {
177 	struct bnxt *bp = netdev_priv(dev);
178 	struct bnxt_vf_info *vf;
179 	int rc;
180 
181 	rc = bnxt_vf_ndo_prep(bp, vf_id);
182 	if (rc)
183 		return rc;
184 
185 	ivi->vf = vf_id;
186 	vf = &bp->pf.vf[vf_id];
187 
188 	if (is_valid_ether_addr(vf->mac_addr))
189 		memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
190 	else
191 		memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
192 	ivi->max_tx_rate = vf->max_tx_rate;
193 	ivi->min_tx_rate = vf->min_tx_rate;
194 	ivi->vlan = vf->vlan;
195 	if (vf->flags & BNXT_VF_QOS)
196 		ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
197 	else
198 		ivi->qos = 0;
199 	ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
200 	ivi->trusted = bnxt_is_trusted_vf(bp, vf);
201 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
202 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
203 	else if (vf->flags & BNXT_VF_LINK_UP)
204 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
205 	else
206 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
207 
208 	return 0;
209 }
210 
211 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
212 {
213 	struct hwrm_func_cfg_input req = {0};
214 	struct bnxt *bp = netdev_priv(dev);
215 	struct bnxt_vf_info *vf;
216 	int rc;
217 
218 	rc = bnxt_vf_ndo_prep(bp, vf_id);
219 	if (rc)
220 		return rc;
221 	/* reject bc or mc mac addr, zero mac addr means allow
222 	 * VF to use its own mac addr
223 	 */
224 	if (is_multicast_ether_addr(mac)) {
225 		netdev_err(dev, "Invalid VF ethernet address\n");
226 		return -EINVAL;
227 	}
228 	vf = &bp->pf.vf[vf_id];
229 
230 	memcpy(vf->mac_addr, mac, ETH_ALEN);
231 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
232 	req.fid = cpu_to_le16(vf->fw_fid);
233 	req.flags = cpu_to_le32(vf->func_flags);
234 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
235 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
236 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
237 }
238 
239 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
240 		     __be16 vlan_proto)
241 {
242 	struct hwrm_func_cfg_input req = {0};
243 	struct bnxt *bp = netdev_priv(dev);
244 	struct bnxt_vf_info *vf;
245 	u16 vlan_tag;
246 	int rc;
247 
248 	if (bp->hwrm_spec_code < 0x10201)
249 		return -ENOTSUPP;
250 
251 	if (vlan_proto != htons(ETH_P_8021Q))
252 		return -EPROTONOSUPPORT;
253 
254 	rc = bnxt_vf_ndo_prep(bp, vf_id);
255 	if (rc)
256 		return rc;
257 
258 	/* TODO: needed to implement proper handling of user priority,
259 	 * currently fail the command if there is valid priority
260 	 */
261 	if (vlan_id > 4095 || qos)
262 		return -EINVAL;
263 
264 	vf = &bp->pf.vf[vf_id];
265 	vlan_tag = vlan_id;
266 	if (vlan_tag == vf->vlan)
267 		return 0;
268 
269 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
270 	req.fid = cpu_to_le16(vf->fw_fid);
271 	req.flags = cpu_to_le32(vf->func_flags);
272 	req.dflt_vlan = cpu_to_le16(vlan_tag);
273 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
274 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
275 	if (!rc)
276 		vf->vlan = vlan_tag;
277 	return rc;
278 }
279 
280 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
281 		   int max_tx_rate)
282 {
283 	struct hwrm_func_cfg_input req = {0};
284 	struct bnxt *bp = netdev_priv(dev);
285 	struct bnxt_vf_info *vf;
286 	u32 pf_link_speed;
287 	int rc;
288 
289 	rc = bnxt_vf_ndo_prep(bp, vf_id);
290 	if (rc)
291 		return rc;
292 
293 	vf = &bp->pf.vf[vf_id];
294 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
295 	if (max_tx_rate > pf_link_speed) {
296 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
297 			    max_tx_rate, vf_id);
298 		return -EINVAL;
299 	}
300 
301 	if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) {
302 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
303 			    min_tx_rate, vf_id);
304 		return -EINVAL;
305 	}
306 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
307 		return 0;
308 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
309 	req.fid = cpu_to_le16(vf->fw_fid);
310 	req.flags = cpu_to_le32(vf->func_flags);
311 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
312 	req.max_bw = cpu_to_le32(max_tx_rate);
313 	req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
314 	req.min_bw = cpu_to_le32(min_tx_rate);
315 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
316 	if (!rc) {
317 		vf->min_tx_rate = min_tx_rate;
318 		vf->max_tx_rate = max_tx_rate;
319 	}
320 	return rc;
321 }
322 
323 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
324 {
325 	struct bnxt *bp = netdev_priv(dev);
326 	struct bnxt_vf_info *vf;
327 	int rc;
328 
329 	rc = bnxt_vf_ndo_prep(bp, vf_id);
330 	if (rc)
331 		return rc;
332 
333 	vf = &bp->pf.vf[vf_id];
334 
335 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
336 	switch (link) {
337 	case IFLA_VF_LINK_STATE_AUTO:
338 		vf->flags |= BNXT_VF_LINK_UP;
339 		break;
340 	case IFLA_VF_LINK_STATE_DISABLE:
341 		vf->flags |= BNXT_VF_LINK_FORCED;
342 		break;
343 	case IFLA_VF_LINK_STATE_ENABLE:
344 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
345 		break;
346 	default:
347 		netdev_err(bp->dev, "Invalid link option\n");
348 		rc = -EINVAL;
349 		break;
350 	}
351 	if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
352 		rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
353 			ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
354 	return rc;
355 }
356 
357 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
358 {
359 	int i;
360 	struct bnxt_vf_info *vf;
361 
362 	for (i = 0; i < num_vfs; i++) {
363 		vf = &bp->pf.vf[i];
364 		memset(vf, 0, sizeof(*vf));
365 	}
366 	return 0;
367 }
368 
369 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
370 {
371 	int i, rc = 0;
372 	struct bnxt_pf_info *pf = &bp->pf;
373 	struct hwrm_func_vf_resc_free_input req = {0};
374 
375 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1);
376 
377 	mutex_lock(&bp->hwrm_cmd_lock);
378 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
379 		req.vf_id = cpu_to_le16(i);
380 		rc = _hwrm_send_message(bp, &req, sizeof(req),
381 					HWRM_CMD_TIMEOUT);
382 		if (rc)
383 			break;
384 	}
385 	mutex_unlock(&bp->hwrm_cmd_lock);
386 	return rc;
387 }
388 
389 static void bnxt_free_vf_resources(struct bnxt *bp)
390 {
391 	struct pci_dev *pdev = bp->pdev;
392 	int i;
393 
394 	kfree(bp->pf.vf_event_bmap);
395 	bp->pf.vf_event_bmap = NULL;
396 
397 	for (i = 0; i < 4; i++) {
398 		if (bp->pf.hwrm_cmd_req_addr[i]) {
399 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
400 					  bp->pf.hwrm_cmd_req_addr[i],
401 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
402 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
403 		}
404 	}
405 
406 	kfree(bp->pf.vf);
407 	bp->pf.vf = NULL;
408 }
409 
410 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
411 {
412 	struct pci_dev *pdev = bp->pdev;
413 	u32 nr_pages, size, i, j, k = 0;
414 
415 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
416 	if (!bp->pf.vf)
417 		return -ENOMEM;
418 
419 	bnxt_set_vf_attr(bp, num_vfs);
420 
421 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
422 	nr_pages = size / BNXT_PAGE_SIZE;
423 	if (size & (BNXT_PAGE_SIZE - 1))
424 		nr_pages++;
425 
426 	for (i = 0; i < nr_pages; i++) {
427 		bp->pf.hwrm_cmd_req_addr[i] =
428 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
429 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
430 					   GFP_KERNEL);
431 
432 		if (!bp->pf.hwrm_cmd_req_addr[i])
433 			return -ENOMEM;
434 
435 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
436 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
437 
438 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
439 						j * BNXT_HWRM_REQ_MAX_SIZE;
440 			vf->hwrm_cmd_req_dma_addr =
441 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
442 				BNXT_HWRM_REQ_MAX_SIZE;
443 			k++;
444 		}
445 	}
446 
447 	/* Max 128 VF's */
448 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
449 	if (!bp->pf.vf_event_bmap)
450 		return -ENOMEM;
451 
452 	bp->pf.hwrm_cmd_req_pages = nr_pages;
453 	return 0;
454 }
455 
456 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
457 {
458 	struct hwrm_func_buf_rgtr_input req = {0};
459 
460 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1);
461 
462 	req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
463 	req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
464 	req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
465 	req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
466 	req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
467 	req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
468 	req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
469 
470 	return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
471 }
472 
473 /* Caller holds bp->hwrm_cmd_lock mutex lock */
474 static void __bnxt_set_vf_params(struct bnxt *bp, int vf_id)
475 {
476 	struct hwrm_func_cfg_input req = {0};
477 	struct bnxt_vf_info *vf;
478 
479 	vf = &bp->pf.vf[vf_id];
480 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
481 	req.fid = cpu_to_le16(vf->fw_fid);
482 	req.flags = cpu_to_le32(vf->func_flags);
483 
484 	if (is_valid_ether_addr(vf->mac_addr)) {
485 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
486 		memcpy(req.dflt_mac_addr, vf->mac_addr, ETH_ALEN);
487 	}
488 	if (vf->vlan) {
489 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
490 		req.dflt_vlan = cpu_to_le16(vf->vlan);
491 	}
492 	if (vf->max_tx_rate) {
493 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW);
494 		req.max_bw = cpu_to_le32(vf->max_tx_rate);
495 #ifdef HAVE_IFLA_TX_RATE
496 		req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW);
497 		req.min_bw = cpu_to_le32(vf->min_tx_rate);
498 #endif
499 	}
500 	if (vf->flags & BNXT_VF_TRUST)
501 		req.flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
502 
503 	_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
504 }
505 
506 /* Only called by PF to reserve resources for VFs, returns actual number of
507  * VFs configured, or < 0 on error.
508  */
509 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset)
510 {
511 	struct hwrm_func_vf_resource_cfg_input req = {0};
512 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
513 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
514 	u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
515 	struct bnxt_pf_info *pf = &bp->pf;
516 	int i, rc = 0, min = 1;
517 	u16 vf_msix = 0;
518 	u16 vf_rss;
519 
520 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESOURCE_CFG, -1, -1);
521 
522 	if (bp->flags & BNXT_FLAG_CHIP_P5) {
523 		vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp);
524 		vf_ring_grps = 0;
525 	} else {
526 		vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
527 	}
528 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp);
529 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp);
530 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
531 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
532 	else
533 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
534 	vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
535 	vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
536 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
537 	vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs;
538 
539 	req.min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
540 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
541 		min = 0;
542 		req.min_rsscos_ctx = cpu_to_le16(min);
543 	}
544 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL ||
545 	    pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
546 		req.min_cmpl_rings = cpu_to_le16(min);
547 		req.min_tx_rings = cpu_to_le16(min);
548 		req.min_rx_rings = cpu_to_le16(min);
549 		req.min_l2_ctxs = cpu_to_le16(min);
550 		req.min_vnics = cpu_to_le16(min);
551 		req.min_stat_ctx = cpu_to_le16(min);
552 		if (!(bp->flags & BNXT_FLAG_CHIP_P5))
553 			req.min_hw_ring_grps = cpu_to_le16(min);
554 	} else {
555 		vf_cp_rings /= num_vfs;
556 		vf_tx_rings /= num_vfs;
557 		vf_rx_rings /= num_vfs;
558 		vf_vnics /= num_vfs;
559 		vf_stat_ctx /= num_vfs;
560 		vf_ring_grps /= num_vfs;
561 		vf_rss /= num_vfs;
562 
563 		req.min_cmpl_rings = cpu_to_le16(vf_cp_rings);
564 		req.min_tx_rings = cpu_to_le16(vf_tx_rings);
565 		req.min_rx_rings = cpu_to_le16(vf_rx_rings);
566 		req.min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
567 		req.min_vnics = cpu_to_le16(vf_vnics);
568 		req.min_stat_ctx = cpu_to_le16(vf_stat_ctx);
569 		req.min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
570 		req.min_rsscos_ctx = cpu_to_le16(vf_rss);
571 	}
572 	req.max_cmpl_rings = cpu_to_le16(vf_cp_rings);
573 	req.max_tx_rings = cpu_to_le16(vf_tx_rings);
574 	req.max_rx_rings = cpu_to_le16(vf_rx_rings);
575 	req.max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
576 	req.max_vnics = cpu_to_le16(vf_vnics);
577 	req.max_stat_ctx = cpu_to_le16(vf_stat_ctx);
578 	req.max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
579 	req.max_rsscos_ctx = cpu_to_le16(vf_rss);
580 	if (bp->flags & BNXT_FLAG_CHIP_P5)
581 		req.max_msix = cpu_to_le16(vf_msix / num_vfs);
582 
583 	mutex_lock(&bp->hwrm_cmd_lock);
584 	for (i = 0; i < num_vfs; i++) {
585 		if (reset)
586 			__bnxt_set_vf_params(bp, i);
587 
588 		req.vf_id = cpu_to_le16(pf->first_vf_id + i);
589 		rc = _hwrm_send_message(bp, &req, sizeof(req),
590 					HWRM_CMD_TIMEOUT);
591 		if (rc)
592 			break;
593 		pf->active_vfs = i + 1;
594 		pf->vf[i].fw_fid = pf->first_vf_id + i;
595 	}
596 	mutex_unlock(&bp->hwrm_cmd_lock);
597 	if (pf->active_vfs) {
598 		u16 n = pf->active_vfs;
599 
600 		hw_resc->max_tx_rings -= le16_to_cpu(req.min_tx_rings) * n;
601 		hw_resc->max_rx_rings -= le16_to_cpu(req.min_rx_rings) * n;
602 		hw_resc->max_hw_ring_grps -= le16_to_cpu(req.min_hw_ring_grps) *
603 					     n;
604 		hw_resc->max_cp_rings -= le16_to_cpu(req.min_cmpl_rings) * n;
605 		hw_resc->max_rsscos_ctxs -= le16_to_cpu(req.min_rsscos_ctx) * n;
606 		hw_resc->max_stat_ctxs -= le16_to_cpu(req.min_stat_ctx) * n;
607 		hw_resc->max_vnics -= le16_to_cpu(req.min_vnics) * n;
608 		if (bp->flags & BNXT_FLAG_CHIP_P5)
609 			hw_resc->max_irqs -= vf_msix * n;
610 
611 		rc = pf->active_vfs;
612 	}
613 	return rc;
614 }
615 
616 /* Only called by PF to reserve resources for VFs, returns actual number of
617  * VFs configured, or < 0 on error.
618  */
619 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
620 {
621 	u32 rc = 0, mtu, i;
622 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
623 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
624 	struct hwrm_func_cfg_input req = {0};
625 	struct bnxt_pf_info *pf = &bp->pf;
626 	int total_vf_tx_rings = 0;
627 	u16 vf_ring_grps;
628 
629 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1);
630 
631 	/* Remaining rings are distributed equally amongs VF's for now */
632 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs;
633 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs;
634 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
635 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
636 			      num_vfs;
637 	else
638 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
639 			      num_vfs;
640 	vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
641 	vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
642 	vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
643 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
644 
645 	req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU |
646 				  FUNC_CFG_REQ_ENABLES_MRU |
647 				  FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
648 				  FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
649 				  FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
650 				  FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
651 				  FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
652 				  FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
653 				  FUNC_CFG_REQ_ENABLES_NUM_VNICS |
654 				  FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
655 
656 	mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
657 	req.mru = cpu_to_le16(mtu);
658 	req.mtu = cpu_to_le16(mtu);
659 
660 	req.num_rsscos_ctxs = cpu_to_le16(1);
661 	req.num_cmpl_rings = cpu_to_le16(vf_cp_rings);
662 	req.num_tx_rings = cpu_to_le16(vf_tx_rings);
663 	req.num_rx_rings = cpu_to_le16(vf_rx_rings);
664 	req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
665 	req.num_l2_ctxs = cpu_to_le16(4);
666 
667 	req.num_vnics = cpu_to_le16(vf_vnics);
668 	/* FIXME spec currently uses 1 bit for stats ctx */
669 	req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
670 
671 	mutex_lock(&bp->hwrm_cmd_lock);
672 	for (i = 0; i < num_vfs; i++) {
673 		int vf_tx_rsvd = vf_tx_rings;
674 
675 		req.fid = cpu_to_le16(pf->first_vf_id + i);
676 		rc = _hwrm_send_message(bp, &req, sizeof(req),
677 					HWRM_CMD_TIMEOUT);
678 		if (rc)
679 			break;
680 		pf->active_vfs = i + 1;
681 		pf->vf[i].fw_fid = le16_to_cpu(req.fid);
682 		rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
683 					      &vf_tx_rsvd);
684 		if (rc)
685 			break;
686 		total_vf_tx_rings += vf_tx_rsvd;
687 	}
688 	mutex_unlock(&bp->hwrm_cmd_lock);
689 	if (pf->active_vfs) {
690 		hw_resc->max_tx_rings -= total_vf_tx_rings;
691 		hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
692 		hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
693 		hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
694 		hw_resc->max_rsscos_ctxs -= num_vfs;
695 		hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
696 		hw_resc->max_vnics -= vf_vnics * num_vfs;
697 		rc = pf->active_vfs;
698 	}
699 	return rc;
700 }
701 
702 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset)
703 {
704 	if (BNXT_NEW_RM(bp))
705 		return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset);
706 	else
707 		return bnxt_hwrm_func_cfg(bp, num_vfs);
708 }
709 
710 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
711 {
712 	int rc;
713 
714 	/* Register buffers for VFs */
715 	rc = bnxt_hwrm_func_buf_rgtr(bp);
716 	if (rc)
717 		return rc;
718 
719 	/* Reserve resources for VFs */
720 	rc = bnxt_func_cfg(bp, *num_vfs, reset);
721 	if (rc != *num_vfs) {
722 		if (rc <= 0) {
723 			netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
724 			*num_vfs = 0;
725 			return rc;
726 		}
727 		netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n",
728 			    rc);
729 		*num_vfs = rc;
730 	}
731 
732 	bnxt_ulp_sriov_cfg(bp, *num_vfs);
733 	return 0;
734 }
735 
736 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
737 {
738 	int rc = 0, vfs_supported;
739 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
740 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
741 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
742 	int avail_cp, avail_stat;
743 
744 	/* Check if we can enable requested num of vf's. At a mininum
745 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
746 	 * features like TPA will not be available.
747 	 */
748 	vfs_supported = *num_vfs;
749 
750 	avail_cp = bnxt_get_avail_cp_rings_for_en(bp);
751 	avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp);
752 	avail_cp = min_t(int, avail_cp, avail_stat);
753 
754 	while (vfs_supported) {
755 		min_rx_rings = vfs_supported;
756 		min_tx_rings = vfs_supported;
757 		min_rss_ctxs = vfs_supported;
758 
759 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
760 			if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
761 			    min_rx_rings)
762 				rx_ok = 1;
763 		} else {
764 			if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
765 			    min_rx_rings)
766 				rx_ok = 1;
767 		}
768 		if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
769 		    avail_cp < min_rx_rings)
770 			rx_ok = 0;
771 
772 		if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
773 		    avail_cp >= min_tx_rings)
774 			tx_ok = 1;
775 
776 		if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
777 		    min_rss_ctxs)
778 			rss_ok = 1;
779 
780 		if (tx_ok && rx_ok && rss_ok)
781 			break;
782 
783 		vfs_supported--;
784 	}
785 
786 	if (!vfs_supported) {
787 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
788 		return -EINVAL;
789 	}
790 
791 	if (vfs_supported != *num_vfs) {
792 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
793 			    *num_vfs, vfs_supported);
794 		*num_vfs = vfs_supported;
795 	}
796 
797 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
798 	if (rc)
799 		goto err_out1;
800 
801 	rc = bnxt_cfg_hw_sriov(bp, num_vfs, false);
802 	if (rc)
803 		goto err_out2;
804 
805 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
806 	if (rc)
807 		goto err_out2;
808 
809 	return 0;
810 
811 err_out2:
812 	/* Free the resources reserved for various VF's */
813 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
814 
815 err_out1:
816 	bnxt_free_vf_resources(bp);
817 
818 	return rc;
819 }
820 
821 void bnxt_sriov_disable(struct bnxt *bp)
822 {
823 	u16 num_vfs = pci_num_vf(bp->pdev);
824 
825 	if (!num_vfs)
826 		return;
827 
828 	/* synchronize VF and VF-rep create and destroy */
829 	mutex_lock(&bp->sriov_lock);
830 	bnxt_vf_reps_destroy(bp);
831 
832 	if (pci_vfs_assigned(bp->pdev)) {
833 		bnxt_hwrm_fwd_async_event_cmpl(
834 			bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
835 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
836 			    num_vfs);
837 	} else {
838 		pci_disable_sriov(bp->pdev);
839 		/* Free the HW resources reserved for various VF's */
840 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
841 	}
842 	mutex_unlock(&bp->sriov_lock);
843 
844 	bnxt_free_vf_resources(bp);
845 
846 	bp->pf.active_vfs = 0;
847 	/* Reclaim all resources for the PF. */
848 	rtnl_lock();
849 	bnxt_restore_pf_fw_resources(bp);
850 	rtnl_unlock();
851 
852 	bnxt_ulp_sriov_cfg(bp, 0);
853 }
854 
855 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
856 {
857 	struct net_device *dev = pci_get_drvdata(pdev);
858 	struct bnxt *bp = netdev_priv(dev);
859 
860 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
861 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
862 		return 0;
863 	}
864 
865 	rtnl_lock();
866 	if (!netif_running(dev)) {
867 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
868 		rtnl_unlock();
869 		return 0;
870 	}
871 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
872 		netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n");
873 		rtnl_unlock();
874 		return 0;
875 	}
876 	bp->sriov_cfg = true;
877 	rtnl_unlock();
878 
879 	if (pci_vfs_assigned(bp->pdev)) {
880 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
881 		num_vfs = 0;
882 		goto sriov_cfg_exit;
883 	}
884 
885 	/* Check if enabled VFs is same as requested */
886 	if (num_vfs && num_vfs == bp->pf.active_vfs)
887 		goto sriov_cfg_exit;
888 
889 	/* if there are previous existing VFs, clean them up */
890 	bnxt_sriov_disable(bp);
891 	if (!num_vfs)
892 		goto sriov_cfg_exit;
893 
894 	bnxt_sriov_enable(bp, &num_vfs);
895 
896 sriov_cfg_exit:
897 	bp->sriov_cfg = false;
898 	wake_up(&bp->sriov_cfg_wait);
899 
900 	return num_vfs;
901 }
902 
903 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
904 			      void *encap_resp, __le64 encap_resp_addr,
905 			      __le16 encap_resp_cpr, u32 msg_size)
906 {
907 	int rc = 0;
908 	struct hwrm_fwd_resp_input req = {0};
909 
910 	if (BNXT_FWD_RESP_SIZE_ERR(msg_size))
911 		return -EINVAL;
912 
913 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1);
914 
915 	/* Set the new target id */
916 	req.target_id = cpu_to_le16(vf->fw_fid);
917 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
918 	req.encap_resp_len = cpu_to_le16(msg_size);
919 	req.encap_resp_addr = encap_resp_addr;
920 	req.encap_resp_cmpl_ring = encap_resp_cpr;
921 	memcpy(req.encap_resp, encap_resp, msg_size);
922 
923 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
924 	if (rc)
925 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
926 	return rc;
927 }
928 
929 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
930 				  u32 msg_size)
931 {
932 	int rc = 0;
933 	struct hwrm_reject_fwd_resp_input req = {0};
934 
935 	if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
936 		return -EINVAL;
937 
938 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1);
939 	/* Set the new target id */
940 	req.target_id = cpu_to_le16(vf->fw_fid);
941 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
942 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
943 
944 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
945 	if (rc)
946 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
947 	return rc;
948 }
949 
950 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
951 				   u32 msg_size)
952 {
953 	int rc = 0;
954 	struct hwrm_exec_fwd_resp_input req = {0};
955 
956 	if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
957 		return -EINVAL;
958 
959 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1);
960 	/* Set the new target id */
961 	req.target_id = cpu_to_le16(vf->fw_fid);
962 	req.encap_resp_target_id = cpu_to_le16(vf->fw_fid);
963 	memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size);
964 
965 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
966 	if (rc)
967 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
968 	return rc;
969 }
970 
971 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
972 {
973 	u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
974 	struct hwrm_func_vf_cfg_input *req =
975 		(struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
976 
977 	/* Allow VF to set a valid MAC address, if trust is set to on or
978 	 * if the PF assigned MAC address is zero
979 	 */
980 	if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
981 		bool trust = bnxt_is_trusted_vf(bp, vf);
982 
983 		if (is_valid_ether_addr(req->dflt_mac_addr) &&
984 		    (trust || !is_valid_ether_addr(vf->mac_addr) ||
985 		     ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
986 			ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
987 			return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
988 		}
989 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
990 	}
991 	return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
992 }
993 
994 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
995 {
996 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
997 	struct hwrm_cfa_l2_filter_alloc_input *req =
998 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
999 	bool mac_ok = false;
1000 
1001 	if (!is_valid_ether_addr((const u8 *)req->l2_addr))
1002 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1003 
1004 	/* Allow VF to set a valid MAC address, if trust is set to on.
1005 	 * Or VF MAC address must first match MAC address in PF's context.
1006 	 * Otherwise, it must match the VF MAC address if firmware spec >=
1007 	 * 1.2.2
1008 	 */
1009 	if (bnxt_is_trusted_vf(bp, vf)) {
1010 		mac_ok = true;
1011 	} else if (is_valid_ether_addr(vf->mac_addr)) {
1012 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
1013 			mac_ok = true;
1014 	} else if (is_valid_ether_addr(vf->vf_mac_addr)) {
1015 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
1016 			mac_ok = true;
1017 	} else {
1018 		/* There are two cases:
1019 		 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded
1020 		 *   to the PF and so it doesn't have to match
1021 		 * 2.Allow VF to modify it's own MAC when PF has not assigned a
1022 		 *   valid MAC address and firmware spec >= 0x10202
1023 		 */
1024 		mac_ok = true;
1025 	}
1026 	if (mac_ok)
1027 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1028 	return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1029 }
1030 
1031 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
1032 {
1033 	int rc = 0;
1034 
1035 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
1036 		/* real link */
1037 		rc = bnxt_hwrm_exec_fwd_resp(
1038 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
1039 	} else {
1040 		struct hwrm_port_phy_qcfg_output phy_qcfg_resp;
1041 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
1042 
1043 		phy_qcfg_req =
1044 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
1045 		mutex_lock(&bp->hwrm_cmd_lock);
1046 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
1047 		       sizeof(phy_qcfg_resp));
1048 		mutex_unlock(&bp->hwrm_cmd_lock);
1049 		phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
1050 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
1051 		phy_qcfg_resp.valid = 1;
1052 
1053 		if (vf->flags & BNXT_VF_LINK_UP) {
1054 			/* if physical link is down, force link up on VF */
1055 			if (phy_qcfg_resp.link !=
1056 			    PORT_PHY_QCFG_RESP_LINK_LINK) {
1057 				phy_qcfg_resp.link =
1058 					PORT_PHY_QCFG_RESP_LINK_LINK;
1059 				phy_qcfg_resp.link_speed = cpu_to_le16(
1060 					PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
1061 				phy_qcfg_resp.duplex_cfg =
1062 					PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
1063 				phy_qcfg_resp.duplex_state =
1064 					PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
1065 				phy_qcfg_resp.pause =
1066 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
1067 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
1068 			}
1069 		} else {
1070 			/* force link down */
1071 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
1072 			phy_qcfg_resp.link_speed = 0;
1073 			phy_qcfg_resp.duplex_state =
1074 				PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
1075 			phy_qcfg_resp.pause = 0;
1076 		}
1077 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
1078 					phy_qcfg_req->resp_addr,
1079 					phy_qcfg_req->cmpl_ring,
1080 					sizeof(phy_qcfg_resp));
1081 	}
1082 	return rc;
1083 }
1084 
1085 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
1086 {
1087 	int rc = 0;
1088 	struct input *encap_req = vf->hwrm_cmd_req_addr;
1089 	u32 req_type = le16_to_cpu(encap_req->req_type);
1090 
1091 	switch (req_type) {
1092 	case HWRM_FUNC_VF_CFG:
1093 		rc = bnxt_vf_configure_mac(bp, vf);
1094 		break;
1095 	case HWRM_CFA_L2_FILTER_ALLOC:
1096 		rc = bnxt_vf_validate_set_mac(bp, vf);
1097 		break;
1098 	case HWRM_FUNC_CFG:
1099 		/* TODO Validate if VF is allowed to change mac address,
1100 		 * mtu, num of rings etc
1101 		 */
1102 		rc = bnxt_hwrm_exec_fwd_resp(
1103 			bp, vf, sizeof(struct hwrm_func_cfg_input));
1104 		break;
1105 	case HWRM_PORT_PHY_QCFG:
1106 		rc = bnxt_vf_set_link(bp, vf);
1107 		break;
1108 	default:
1109 		break;
1110 	}
1111 	return rc;
1112 }
1113 
1114 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1115 {
1116 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1117 
1118 	/* Scan through VF's and process commands */
1119 	while (1) {
1120 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1121 		if (vf_id >= active_vfs)
1122 			break;
1123 
1124 		clear_bit(vf_id, bp->pf.vf_event_bmap);
1125 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1126 		i = vf_id + 1;
1127 	}
1128 }
1129 
1130 void bnxt_update_vf_mac(struct bnxt *bp)
1131 {
1132 	struct hwrm_func_qcaps_input req = {0};
1133 	struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
1134 
1135 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
1136 	req.fid = cpu_to_le16(0xffff);
1137 
1138 	mutex_lock(&bp->hwrm_cmd_lock);
1139 	if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT))
1140 		goto update_vf_mac_exit;
1141 
1142 	/* Store MAC address from the firmware.  There are 2 cases:
1143 	 * 1. MAC address is valid.  It is assigned from the PF and we
1144 	 *    need to override the current VF MAC address with it.
1145 	 * 2. MAC address is zero.  The VF will use a random MAC address by
1146 	 *    default but the stored zero MAC will allow the VF user to change
1147 	 *    the random MAC address using ndo_set_mac_address() if he wants.
1148 	 */
1149 	if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr))
1150 		memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1151 
1152 	/* overwrite netdev dev_addr with admin VF MAC */
1153 	if (is_valid_ether_addr(bp->vf.mac_addr))
1154 		memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN);
1155 update_vf_mac_exit:
1156 	mutex_unlock(&bp->hwrm_cmd_lock);
1157 }
1158 
1159 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1160 {
1161 	struct hwrm_func_vf_cfg_input req = {0};
1162 	int rc = 0;
1163 
1164 	if (!BNXT_VF(bp))
1165 		return 0;
1166 
1167 	if (bp->hwrm_spec_code < 0x10202) {
1168 		if (is_valid_ether_addr(bp->vf.mac_addr))
1169 			rc = -EADDRNOTAVAIL;
1170 		goto mac_done;
1171 	}
1172 	bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1);
1173 	req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1174 	memcpy(req.dflt_mac_addr, mac, ETH_ALEN);
1175 	rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
1176 mac_done:
1177 	if (rc && strict) {
1178 		rc = -EADDRNOTAVAIL;
1179 		netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1180 			    mac);
1181 		return rc;
1182 	}
1183 	return 0;
1184 }
1185 #else
1186 
1187 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
1188 {
1189 	if (*num_vfs)
1190 		return -EOPNOTSUPP;
1191 	return 0;
1192 }
1193 
1194 void bnxt_sriov_disable(struct bnxt *bp)
1195 {
1196 }
1197 
1198 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1199 {
1200 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1201 }
1202 
1203 void bnxt_update_vf_mac(struct bnxt *bp)
1204 {
1205 }
1206 
1207 int bnxt_approve_mac(struct bnxt *bp, u8 *mac, bool strict)
1208 {
1209 	return 0;
1210 }
1211 #endif
1212