xref: /linux/drivers/net/ethernet/broadcom/bnxt/bnxt_sriov.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 /* Broadcom NetXtreme-C/E network driver.
2  *
3  * Copyright (c) 2014-2016 Broadcom Corporation
4  * Copyright (c) 2016-2018 Broadcom Limited
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation.
9  */
10 
11 #include <linux/ethtool.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/if_vlan.h>
16 #include <linux/interrupt.h>
17 #include <linux/etherdevice.h>
18 #include "bnxt_hsi.h"
19 #include "bnxt.h"
20 #include "bnxt_hwrm.h"
21 #include "bnxt_ulp.h"
22 #include "bnxt_sriov.h"
23 #include "bnxt_vfr.h"
24 #include "bnxt_ethtool.h"
25 
26 #ifdef CONFIG_BNXT_SRIOV
27 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp,
28 					  struct bnxt_vf_info *vf, u16 event_id)
29 {
30 	struct hwrm_fwd_async_event_cmpl_input *req;
31 	struct hwrm_async_event_cmpl *async_cmpl;
32 	int rc = 0;
33 
34 	rc = hwrm_req_init(bp, req, HWRM_FWD_ASYNC_EVENT_CMPL);
35 	if (rc)
36 		goto exit;
37 
38 	if (vf)
39 		req->encap_async_event_target_id = cpu_to_le16(vf->fw_fid);
40 	else
41 		/* broadcast this async event to all VFs */
42 		req->encap_async_event_target_id = cpu_to_le16(0xffff);
43 	async_cmpl =
44 		(struct hwrm_async_event_cmpl *)req->encap_async_event_cmpl;
45 	async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT);
46 	async_cmpl->event_id = cpu_to_le16(event_id);
47 
48 	rc = hwrm_req_send(bp, req);
49 exit:
50 	if (rc)
51 		netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n",
52 			   rc);
53 	return rc;
54 }
55 
56 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id)
57 {
58 	if (!bp->pf.active_vfs) {
59 		netdev_err(bp->dev, "vf ndo called though sriov is disabled\n");
60 		return -EINVAL;
61 	}
62 	if (vf_id >= bp->pf.active_vfs) {
63 		netdev_err(bp->dev, "Invalid VF id %d\n", vf_id);
64 		return -EINVAL;
65 	}
66 	return 0;
67 }
68 
69 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting)
70 {
71 	struct bnxt *bp = netdev_priv(dev);
72 	struct hwrm_func_cfg_input *req;
73 	bool old_setting = false;
74 	struct bnxt_vf_info *vf;
75 	u32 func_flags;
76 	int rc;
77 
78 	if (bp->hwrm_spec_code < 0x10701)
79 		return -ENOTSUPP;
80 
81 	rc = bnxt_vf_ndo_prep(bp, vf_id);
82 	if (rc)
83 		return rc;
84 
85 	vf = &bp->pf.vf[vf_id];
86 	if (vf->flags & BNXT_VF_SPOOFCHK)
87 		old_setting = true;
88 	if (old_setting == setting)
89 		return 0;
90 
91 	if (setting)
92 		func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE;
93 	else
94 		func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE;
95 	/*TODO: if the driver supports VLAN filter on guest VLAN,
96 	 * the spoof check should also include vlan anti-spoofing
97 	 */
98 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
99 	if (!rc) {
100 		req->fid = cpu_to_le16(vf->fw_fid);
101 		req->flags = cpu_to_le32(func_flags);
102 		rc = hwrm_req_send(bp, req);
103 		if (!rc) {
104 			if (setting)
105 				vf->flags |= BNXT_VF_SPOOFCHK;
106 			else
107 				vf->flags &= ~BNXT_VF_SPOOFCHK;
108 		}
109 	}
110 	return rc;
111 }
112 
113 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf)
114 {
115 	struct hwrm_func_qcfg_output *resp;
116 	struct hwrm_func_qcfg_input *req;
117 	int rc;
118 
119 	rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG);
120 	if (rc)
121 		return rc;
122 
123 	req->fid = cpu_to_le16(BNXT_PF(bp) ? vf->fw_fid : 0xffff);
124 	resp = hwrm_req_hold(bp, req);
125 	rc = hwrm_req_send(bp, req);
126 	if (!rc)
127 		vf->func_qcfg_flags = le16_to_cpu(resp->flags);
128 	hwrm_req_drop(bp, req);
129 	return rc;
130 }
131 
132 bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
133 {
134 	if (BNXT_PF(bp) && !(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
135 		return !!(vf->flags & BNXT_VF_TRUST);
136 
137 	bnxt_hwrm_func_qcfg_flags(bp, vf);
138 	return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF);
139 }
140 
141 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf)
142 {
143 	struct hwrm_func_cfg_input *req;
144 	int rc;
145 
146 	if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF))
147 		return 0;
148 
149 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
150 	if (rc)
151 		return rc;
152 
153 	req->fid = cpu_to_le16(vf->fw_fid);
154 	if (vf->flags & BNXT_VF_TRUST)
155 		req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
156 	else
157 		req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE);
158 	return hwrm_req_send(bp, req);
159 }
160 
161 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted)
162 {
163 	struct bnxt *bp = netdev_priv(dev);
164 	struct bnxt_vf_info *vf;
165 
166 	if (bnxt_vf_ndo_prep(bp, vf_id))
167 		return -EINVAL;
168 
169 	vf = &bp->pf.vf[vf_id];
170 	if (trusted)
171 		vf->flags |= BNXT_VF_TRUST;
172 	else
173 		vf->flags &= ~BNXT_VF_TRUST;
174 
175 	bnxt_hwrm_set_trusted_vf(bp, vf);
176 	return 0;
177 }
178 
179 int bnxt_get_vf_config(struct net_device *dev, int vf_id,
180 		       struct ifla_vf_info *ivi)
181 {
182 	struct bnxt *bp = netdev_priv(dev);
183 	struct bnxt_vf_info *vf;
184 	int rc;
185 
186 	rc = bnxt_vf_ndo_prep(bp, vf_id);
187 	if (rc)
188 		return rc;
189 
190 	ivi->vf = vf_id;
191 	vf = &bp->pf.vf[vf_id];
192 
193 	if (is_valid_ether_addr(vf->mac_addr))
194 		memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN);
195 	else
196 		memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN);
197 	ivi->max_tx_rate = vf->max_tx_rate;
198 	ivi->min_tx_rate = vf->min_tx_rate;
199 	ivi->vlan = vf->vlan;
200 	if (vf->flags & BNXT_VF_QOS)
201 		ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT;
202 	else
203 		ivi->qos = 0;
204 	ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK);
205 	ivi->trusted = bnxt_is_trusted_vf(bp, vf);
206 	if (!(vf->flags & BNXT_VF_LINK_FORCED))
207 		ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
208 	else if (vf->flags & BNXT_VF_LINK_UP)
209 		ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
210 	else
211 		ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
212 
213 	return 0;
214 }
215 
216 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac)
217 {
218 	struct bnxt *bp = netdev_priv(dev);
219 	struct hwrm_func_cfg_input *req;
220 	struct bnxt_vf_info *vf;
221 	int rc;
222 
223 	rc = bnxt_vf_ndo_prep(bp, vf_id);
224 	if (rc)
225 		return rc;
226 	/* reject bc or mc mac addr, zero mac addr means allow
227 	 * VF to use its own mac addr
228 	 */
229 	if (is_multicast_ether_addr(mac)) {
230 		netdev_err(dev, "Invalid VF ethernet address\n");
231 		return -EINVAL;
232 	}
233 	vf = &bp->pf.vf[vf_id];
234 
235 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
236 	if (rc)
237 		return rc;
238 
239 	memcpy(vf->mac_addr, mac, ETH_ALEN);
240 
241 	req->fid = cpu_to_le16(vf->fw_fid);
242 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
243 	memcpy(req->dflt_mac_addr, mac, ETH_ALEN);
244 	return hwrm_req_send(bp, req);
245 }
246 
247 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos,
248 		     __be16 vlan_proto)
249 {
250 	struct bnxt *bp = netdev_priv(dev);
251 	struct hwrm_func_cfg_input *req;
252 	struct bnxt_vf_info *vf;
253 	u16 vlan_tag;
254 	int rc;
255 
256 	if (bp->hwrm_spec_code < 0x10201)
257 		return -ENOTSUPP;
258 
259 	if (vlan_proto != htons(ETH_P_8021Q))
260 		return -EPROTONOSUPPORT;
261 
262 	rc = bnxt_vf_ndo_prep(bp, vf_id);
263 	if (rc)
264 		return rc;
265 
266 	/* TODO: needed to implement proper handling of user priority,
267 	 * currently fail the command if there is valid priority
268 	 */
269 	if (vlan_id > 4095 || qos)
270 		return -EINVAL;
271 
272 	vf = &bp->pf.vf[vf_id];
273 	vlan_tag = vlan_id;
274 	if (vlan_tag == vf->vlan)
275 		return 0;
276 
277 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
278 	if (!rc) {
279 		req->fid = cpu_to_le16(vf->fw_fid);
280 		req->dflt_vlan = cpu_to_le16(vlan_tag);
281 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
282 		rc = hwrm_req_send(bp, req);
283 		if (!rc)
284 			vf->vlan = vlan_tag;
285 	}
286 	return rc;
287 }
288 
289 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate,
290 		   int max_tx_rate)
291 {
292 	struct bnxt *bp = netdev_priv(dev);
293 	struct hwrm_func_cfg_input *req;
294 	struct bnxt_vf_info *vf;
295 	u32 pf_link_speed;
296 	int rc;
297 
298 	rc = bnxt_vf_ndo_prep(bp, vf_id);
299 	if (rc)
300 		return rc;
301 
302 	vf = &bp->pf.vf[vf_id];
303 	pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
304 	if (max_tx_rate > pf_link_speed) {
305 		netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n",
306 			    max_tx_rate, vf_id);
307 		return -EINVAL;
308 	}
309 
310 	if (min_tx_rate > pf_link_speed) {
311 		netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n",
312 			    min_tx_rate, vf_id);
313 		return -EINVAL;
314 	}
315 	if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate)
316 		return 0;
317 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
318 	if (!rc) {
319 		req->fid = cpu_to_le16(vf->fw_fid);
320 		req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW |
321 					   FUNC_CFG_REQ_ENABLES_MIN_BW);
322 		req->max_bw = cpu_to_le32(max_tx_rate);
323 		req->min_bw = cpu_to_le32(min_tx_rate);
324 		rc = hwrm_req_send(bp, req);
325 		if (!rc) {
326 			vf->min_tx_rate = min_tx_rate;
327 			vf->max_tx_rate = max_tx_rate;
328 		}
329 	}
330 	return rc;
331 }
332 
333 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link)
334 {
335 	struct bnxt *bp = netdev_priv(dev);
336 	struct bnxt_vf_info *vf;
337 	int rc;
338 
339 	rc = bnxt_vf_ndo_prep(bp, vf_id);
340 	if (rc)
341 		return rc;
342 
343 	vf = &bp->pf.vf[vf_id];
344 
345 	vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED);
346 	switch (link) {
347 	case IFLA_VF_LINK_STATE_AUTO:
348 		vf->flags |= BNXT_VF_LINK_UP;
349 		break;
350 	case IFLA_VF_LINK_STATE_DISABLE:
351 		vf->flags |= BNXT_VF_LINK_FORCED;
352 		break;
353 	case IFLA_VF_LINK_STATE_ENABLE:
354 		vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED;
355 		break;
356 	default:
357 		netdev_err(bp->dev, "Invalid link option\n");
358 		rc = -EINVAL;
359 		break;
360 	}
361 	if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED))
362 		rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf,
363 			ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE);
364 	return rc;
365 }
366 
367 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs)
368 {
369 	int i;
370 	struct bnxt_vf_info *vf;
371 
372 	for (i = 0; i < num_vfs; i++) {
373 		vf = &bp->pf.vf[i];
374 		memset(vf, 0, sizeof(*vf));
375 	}
376 	return 0;
377 }
378 
379 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs)
380 {
381 	struct hwrm_func_vf_resc_free_input *req;
382 	struct bnxt_pf_info *pf = &bp->pf;
383 	int i, rc;
384 
385 	rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESC_FREE);
386 	if (rc)
387 		return rc;
388 
389 	hwrm_req_hold(bp, req);
390 	for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) {
391 		req->vf_id = cpu_to_le16(i);
392 		rc = hwrm_req_send(bp, req);
393 		if (rc)
394 			break;
395 	}
396 	hwrm_req_drop(bp, req);
397 	return rc;
398 }
399 
400 static void bnxt_free_vf_resources(struct bnxt *bp)
401 {
402 	struct pci_dev *pdev = bp->pdev;
403 	int i;
404 
405 	kfree(bp->pf.vf_event_bmap);
406 	bp->pf.vf_event_bmap = NULL;
407 
408 	for (i = 0; i < 4; i++) {
409 		if (bp->pf.hwrm_cmd_req_addr[i]) {
410 			dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE,
411 					  bp->pf.hwrm_cmd_req_addr[i],
412 					  bp->pf.hwrm_cmd_req_dma_addr[i]);
413 			bp->pf.hwrm_cmd_req_addr[i] = NULL;
414 		}
415 	}
416 
417 	bp->pf.active_vfs = 0;
418 	kfree(bp->pf.vf);
419 	bp->pf.vf = NULL;
420 }
421 
422 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs)
423 {
424 	struct pci_dev *pdev = bp->pdev;
425 	u32 nr_pages, size, i, j, k = 0;
426 
427 	bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL);
428 	if (!bp->pf.vf)
429 		return -ENOMEM;
430 
431 	bnxt_set_vf_attr(bp, num_vfs);
432 
433 	size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE;
434 	nr_pages = size / BNXT_PAGE_SIZE;
435 	if (size & (BNXT_PAGE_SIZE - 1))
436 		nr_pages++;
437 
438 	for (i = 0; i < nr_pages; i++) {
439 		bp->pf.hwrm_cmd_req_addr[i] =
440 			dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE,
441 					   &bp->pf.hwrm_cmd_req_dma_addr[i],
442 					   GFP_KERNEL);
443 
444 		if (!bp->pf.hwrm_cmd_req_addr[i])
445 			return -ENOMEM;
446 
447 		for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) {
448 			struct bnxt_vf_info *vf = &bp->pf.vf[k];
449 
450 			vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] +
451 						j * BNXT_HWRM_REQ_MAX_SIZE;
452 			vf->hwrm_cmd_req_dma_addr =
453 				bp->pf.hwrm_cmd_req_dma_addr[i] + j *
454 				BNXT_HWRM_REQ_MAX_SIZE;
455 			k++;
456 		}
457 	}
458 
459 	/* Max 128 VF's */
460 	bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL);
461 	if (!bp->pf.vf_event_bmap)
462 		return -ENOMEM;
463 
464 	bp->pf.hwrm_cmd_req_pages = nr_pages;
465 	return 0;
466 }
467 
468 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp)
469 {
470 	struct hwrm_func_buf_rgtr_input *req;
471 	int rc;
472 
473 	rc = hwrm_req_init(bp, req, HWRM_FUNC_BUF_RGTR);
474 	if (rc)
475 		return rc;
476 
477 	req->req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages);
478 	req->req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT);
479 	req->req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE);
480 	req->req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]);
481 	req->req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]);
482 	req->req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]);
483 	req->req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]);
484 
485 	return hwrm_req_send(bp, req);
486 }
487 
488 static int __bnxt_set_vf_params(struct bnxt *bp, int vf_id)
489 {
490 	struct hwrm_func_cfg_input *req;
491 	struct bnxt_vf_info *vf;
492 	int rc;
493 
494 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
495 	if (rc)
496 		return rc;
497 
498 	vf = &bp->pf.vf[vf_id];
499 	req->fid = cpu_to_le16(vf->fw_fid);
500 
501 	if (is_valid_ether_addr(vf->mac_addr)) {
502 		req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
503 		memcpy(req->dflt_mac_addr, vf->mac_addr, ETH_ALEN);
504 	}
505 	if (vf->vlan) {
506 		req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN);
507 		req->dflt_vlan = cpu_to_le16(vf->vlan);
508 	}
509 	if (vf->max_tx_rate) {
510 		req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW |
511 					    FUNC_CFG_REQ_ENABLES_MIN_BW);
512 		req->max_bw = cpu_to_le32(vf->max_tx_rate);
513 		req->min_bw = cpu_to_le32(vf->min_tx_rate);
514 	}
515 	if (vf->flags & BNXT_VF_TRUST)
516 		req->flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE);
517 
518 	return hwrm_req_send(bp, req);
519 }
520 
521 /* Only called by PF to reserve resources for VFs, returns actual number of
522  * VFs configured, or < 0 on error.
523  */
524 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset)
525 {
526 	struct hwrm_func_vf_resource_cfg_input *req;
527 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
528 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings;
529 	u16 vf_stat_ctx, vf_vnics, vf_ring_grps;
530 	struct bnxt_pf_info *pf = &bp->pf;
531 	int i, rc = 0, min = 1;
532 	u16 vf_msix = 0;
533 	u16 vf_rss;
534 
535 	rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESOURCE_CFG);
536 	if (rc)
537 		return rc;
538 
539 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) {
540 		vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp);
541 		vf_ring_grps = 0;
542 	} else {
543 		vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings;
544 	}
545 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp);
546 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp);
547 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
548 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2;
549 	else
550 		vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings;
551 	vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings;
552 	vf_vnics = hw_resc->max_vnics - bp->nr_vnics;
553 	vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs;
554 
555 	req->min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX);
556 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
557 		min = 0;
558 		req->min_rsscos_ctx = cpu_to_le16(min);
559 	}
560 	if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL ||
561 	    pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) {
562 		req->min_cmpl_rings = cpu_to_le16(min);
563 		req->min_tx_rings = cpu_to_le16(min);
564 		req->min_rx_rings = cpu_to_le16(min);
565 		req->min_l2_ctxs = cpu_to_le16(min);
566 		req->min_vnics = cpu_to_le16(min);
567 		req->min_stat_ctx = cpu_to_le16(min);
568 		if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))
569 			req->min_hw_ring_grps = cpu_to_le16(min);
570 	} else {
571 		vf_cp_rings /= num_vfs;
572 		vf_tx_rings /= num_vfs;
573 		vf_rx_rings /= num_vfs;
574 		if ((bp->fw_cap & BNXT_FW_CAP_PRE_RESV_VNICS) &&
575 		    vf_vnics >= pf->max_vfs) {
576 			/* Take into account that FW has pre-reserved 1 VNIC for
577 			 * each pf->max_vfs.
578 			 */
579 			vf_vnics = (vf_vnics - pf->max_vfs + num_vfs) / num_vfs;
580 		} else {
581 			vf_vnics /= num_vfs;
582 		}
583 		vf_stat_ctx /= num_vfs;
584 		vf_ring_grps /= num_vfs;
585 		vf_rss /= num_vfs;
586 
587 		vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
588 		req->min_cmpl_rings = cpu_to_le16(vf_cp_rings);
589 		req->min_tx_rings = cpu_to_le16(vf_tx_rings);
590 		req->min_rx_rings = cpu_to_le16(vf_rx_rings);
591 		req->min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
592 		req->min_vnics = cpu_to_le16(vf_vnics);
593 		req->min_stat_ctx = cpu_to_le16(vf_stat_ctx);
594 		req->min_hw_ring_grps = cpu_to_le16(vf_ring_grps);
595 		req->min_rsscos_ctx = cpu_to_le16(vf_rss);
596 	}
597 	req->max_cmpl_rings = cpu_to_le16(vf_cp_rings);
598 	req->max_tx_rings = cpu_to_le16(vf_tx_rings);
599 	req->max_rx_rings = cpu_to_le16(vf_rx_rings);
600 	req->max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX);
601 	req->max_vnics = cpu_to_le16(vf_vnics);
602 	req->max_stat_ctx = cpu_to_le16(vf_stat_ctx);
603 	req->max_hw_ring_grps = cpu_to_le16(vf_ring_grps);
604 	req->max_rsscos_ctx = cpu_to_le16(vf_rss);
605 	if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
606 		req->max_msix = cpu_to_le16(vf_msix / num_vfs);
607 
608 	hwrm_req_hold(bp, req);
609 	for (i = 0; i < num_vfs; i++) {
610 		if (reset)
611 			__bnxt_set_vf_params(bp, i);
612 
613 		req->vf_id = cpu_to_le16(pf->first_vf_id + i);
614 		rc = hwrm_req_send(bp, req);
615 		if (rc)
616 			break;
617 		pf->active_vfs = i + 1;
618 		pf->vf[i].fw_fid = pf->first_vf_id + i;
619 	}
620 
621 	if (pf->active_vfs) {
622 		u16 n = pf->active_vfs;
623 
624 		hw_resc->max_tx_rings -= le16_to_cpu(req->min_tx_rings) * n;
625 		hw_resc->max_rx_rings -= le16_to_cpu(req->min_rx_rings) * n;
626 		hw_resc->max_hw_ring_grps -=
627 			le16_to_cpu(req->min_hw_ring_grps) * n;
628 		hw_resc->max_cp_rings -= le16_to_cpu(req->min_cmpl_rings) * n;
629 		hw_resc->max_rsscos_ctxs -=
630 			le16_to_cpu(req->min_rsscos_ctx) * n;
631 		hw_resc->max_stat_ctxs -= le16_to_cpu(req->min_stat_ctx) * n;
632 		hw_resc->max_vnics -= le16_to_cpu(req->min_vnics) * n;
633 		if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)
634 			hw_resc->max_nqs -= vf_msix;
635 
636 		rc = pf->active_vfs;
637 	}
638 	hwrm_req_drop(bp, req);
639 	return rc;
640 }
641 
642 /* Only called by PF to reserve resources for VFs, returns actual number of
643  * VFs configured, or < 0 on error.
644  */
645 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs)
646 {
647 	u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics;
648 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
649 	struct bnxt_pf_info *pf = &bp->pf;
650 	struct hwrm_func_cfg_input *req;
651 	int total_vf_tx_rings = 0;
652 	u16 vf_ring_grps;
653 	u32 mtu, i;
654 	int rc;
655 
656 	rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req);
657 	if (rc)
658 		return rc;
659 
660 	/* Remaining rings are distributed equally amongs VF's for now */
661 	vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs;
662 	vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs;
663 	if (bp->flags & BNXT_FLAG_AGG_RINGS)
664 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) /
665 			      num_vfs;
666 	else
667 		vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) /
668 			      num_vfs;
669 	vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs;
670 	vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs;
671 	vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs;
672 	vf_vnics = min_t(u16, vf_vnics, vf_rx_rings);
673 
674 	req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ADMIN_MTU |
675 				   FUNC_CFG_REQ_ENABLES_MRU |
676 				   FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS |
677 				   FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS |
678 				   FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS |
679 				   FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS |
680 				   FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS |
681 				   FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS |
682 				   FUNC_CFG_REQ_ENABLES_NUM_VNICS |
683 				   FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS);
684 
685 	mtu = bp->dev->mtu + ETH_HLEN + VLAN_HLEN;
686 	req->mru = cpu_to_le16(mtu);
687 	req->admin_mtu = cpu_to_le16(mtu);
688 
689 	req->num_rsscos_ctxs = cpu_to_le16(1);
690 	req->num_cmpl_rings = cpu_to_le16(vf_cp_rings);
691 	req->num_tx_rings = cpu_to_le16(vf_tx_rings);
692 	req->num_rx_rings = cpu_to_le16(vf_rx_rings);
693 	req->num_hw_ring_grps = cpu_to_le16(vf_ring_grps);
694 	req->num_l2_ctxs = cpu_to_le16(4);
695 
696 	req->num_vnics = cpu_to_le16(vf_vnics);
697 	/* FIXME spec currently uses 1 bit for stats ctx */
698 	req->num_stat_ctxs = cpu_to_le16(vf_stat_ctx);
699 
700 	hwrm_req_hold(bp, req);
701 	for (i = 0; i < num_vfs; i++) {
702 		int vf_tx_rsvd = vf_tx_rings;
703 
704 		req->fid = cpu_to_le16(pf->first_vf_id + i);
705 		rc = hwrm_req_send(bp, req);
706 		if (rc)
707 			break;
708 		pf->active_vfs = i + 1;
709 		pf->vf[i].fw_fid = le16_to_cpu(req->fid);
710 		rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid,
711 					      &vf_tx_rsvd);
712 		if (rc)
713 			break;
714 		total_vf_tx_rings += vf_tx_rsvd;
715 	}
716 	hwrm_req_drop(bp, req);
717 	if (pf->active_vfs) {
718 		hw_resc->max_tx_rings -= total_vf_tx_rings;
719 		hw_resc->max_rx_rings -= vf_rx_rings * num_vfs;
720 		hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs;
721 		hw_resc->max_cp_rings -= vf_cp_rings * num_vfs;
722 		hw_resc->max_rsscos_ctxs -= num_vfs;
723 		hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs;
724 		hw_resc->max_vnics -= vf_vnics * num_vfs;
725 		rc = pf->active_vfs;
726 	}
727 	return rc;
728 }
729 
730 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset)
731 {
732 	if (BNXT_NEW_RM(bp))
733 		return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset);
734 	else
735 		return bnxt_hwrm_func_cfg(bp, num_vfs);
736 }
737 
738 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
739 {
740 	int rc;
741 
742 	/* Register buffers for VFs */
743 	rc = bnxt_hwrm_func_buf_rgtr(bp);
744 	if (rc)
745 		return rc;
746 
747 	/* Reserve resources for VFs */
748 	rc = bnxt_func_cfg(bp, *num_vfs, reset);
749 	if (rc != *num_vfs) {
750 		if (rc <= 0) {
751 			netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n");
752 			*num_vfs = 0;
753 			return rc;
754 		}
755 		netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n",
756 			    rc);
757 		*num_vfs = rc;
758 	}
759 
760 	return 0;
761 }
762 
763 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs)
764 {
765 	int rc = 0, vfs_supported;
766 	int min_rx_rings, min_tx_rings, min_rss_ctxs;
767 	struct bnxt_hw_resc *hw_resc = &bp->hw_resc;
768 	int tx_ok = 0, rx_ok = 0, rss_ok = 0;
769 	int avail_cp, avail_stat;
770 
771 	/* Check if we can enable requested num of vf's. At a mininum
772 	 * we require 1 RX 1 TX rings for each VF. In this minimum conf
773 	 * features like TPA will not be available.
774 	 */
775 	vfs_supported = *num_vfs;
776 
777 	avail_cp = bnxt_get_avail_cp_rings_for_en(bp);
778 	avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp);
779 	avail_cp = min_t(int, avail_cp, avail_stat);
780 
781 	while (vfs_supported) {
782 		min_rx_rings = vfs_supported;
783 		min_tx_rings = vfs_supported;
784 		min_rss_ctxs = vfs_supported;
785 
786 		if (bp->flags & BNXT_FLAG_AGG_RINGS) {
787 			if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >=
788 			    min_rx_rings)
789 				rx_ok = 1;
790 		} else {
791 			if (hw_resc->max_rx_rings - bp->rx_nr_rings >=
792 			    min_rx_rings)
793 				rx_ok = 1;
794 		}
795 		if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings ||
796 		    avail_cp < min_rx_rings)
797 			rx_ok = 0;
798 
799 		if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings &&
800 		    avail_cp >= min_tx_rings)
801 			tx_ok = 1;
802 
803 		if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >=
804 		    min_rss_ctxs)
805 			rss_ok = 1;
806 
807 		if (tx_ok && rx_ok && rss_ok)
808 			break;
809 
810 		vfs_supported--;
811 	}
812 
813 	if (!vfs_supported) {
814 		netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n");
815 		return -EINVAL;
816 	}
817 
818 	if (vfs_supported != *num_vfs) {
819 		netdev_info(bp->dev, "Requested VFs %d, can enable %d\n",
820 			    *num_vfs, vfs_supported);
821 		*num_vfs = vfs_supported;
822 	}
823 
824 	rc = bnxt_alloc_vf_resources(bp, *num_vfs);
825 	if (rc)
826 		goto err_out1;
827 
828 	rc = bnxt_cfg_hw_sriov(bp, num_vfs, false);
829 	if (rc)
830 		goto err_out2;
831 
832 	rc = pci_enable_sriov(bp->pdev, *num_vfs);
833 	if (rc)
834 		goto err_out2;
835 
836 	if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV)
837 		return 0;
838 
839 	/* Create representors for VFs in switchdev mode */
840 	devl_lock(bp->dl);
841 	rc = bnxt_vf_reps_create(bp);
842 	devl_unlock(bp->dl);
843 	if (rc) {
844 		netdev_info(bp->dev, "Cannot enable VFS as representors cannot be created\n");
845 		goto err_out3;
846 	}
847 
848 	return 0;
849 
850 err_out3:
851 	/* Disable SR-IOV */
852 	pci_disable_sriov(bp->pdev);
853 
854 err_out2:
855 	/* Free the resources reserved for various VF's */
856 	bnxt_hwrm_func_vf_resource_free(bp, *num_vfs);
857 
858 	/* Restore the max resources */
859 	bnxt_hwrm_func_qcaps(bp);
860 
861 err_out1:
862 	bnxt_free_vf_resources(bp);
863 
864 	return rc;
865 }
866 
867 void bnxt_sriov_disable(struct bnxt *bp)
868 {
869 	u16 num_vfs = pci_num_vf(bp->pdev);
870 
871 	if (!num_vfs)
872 		return;
873 
874 	/* synchronize VF and VF-rep create and destroy */
875 	devl_lock(bp->dl);
876 	bnxt_vf_reps_destroy(bp);
877 
878 	if (pci_vfs_assigned(bp->pdev)) {
879 		bnxt_hwrm_fwd_async_event_cmpl(
880 			bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD);
881 		netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n",
882 			    num_vfs);
883 	} else {
884 		pci_disable_sriov(bp->pdev);
885 		/* Free the HW resources reserved for various VF's */
886 		bnxt_hwrm_func_vf_resource_free(bp, num_vfs);
887 	}
888 	devl_unlock(bp->dl);
889 
890 	bnxt_free_vf_resources(bp);
891 
892 	/* Reclaim all resources for the PF. */
893 	rtnl_lock();
894 	bnxt_restore_pf_fw_resources(bp);
895 	rtnl_unlock();
896 }
897 
898 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs)
899 {
900 	struct net_device *dev = pci_get_drvdata(pdev);
901 	struct bnxt *bp = netdev_priv(dev);
902 
903 	if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
904 		netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n");
905 		return 0;
906 	}
907 
908 	rtnl_lock();
909 	if (!netif_running(dev)) {
910 		netdev_warn(dev, "Reject SRIOV config request since if is down!\n");
911 		rtnl_unlock();
912 		return 0;
913 	}
914 	if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) {
915 		netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n");
916 		rtnl_unlock();
917 		return 0;
918 	}
919 	bp->sriov_cfg = true;
920 	rtnl_unlock();
921 
922 	if (pci_vfs_assigned(bp->pdev)) {
923 		netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n");
924 		num_vfs = 0;
925 		goto sriov_cfg_exit;
926 	}
927 
928 	/* Check if enabled VFs is same as requested */
929 	if (num_vfs && num_vfs == bp->pf.active_vfs)
930 		goto sriov_cfg_exit;
931 
932 	/* if there are previous existing VFs, clean them up */
933 	bnxt_sriov_disable(bp);
934 	if (!num_vfs)
935 		goto sriov_cfg_exit;
936 
937 	bnxt_sriov_enable(bp, &num_vfs);
938 
939 sriov_cfg_exit:
940 	bp->sriov_cfg = false;
941 	wake_up(&bp->sriov_cfg_wait);
942 
943 	return num_vfs;
944 }
945 
946 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
947 			      void *encap_resp, __le64 encap_resp_addr,
948 			      __le16 encap_resp_cpr, u32 msg_size)
949 {
950 	struct hwrm_fwd_resp_input *req;
951 	int rc;
952 
953 	if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) {
954 		netdev_warn_once(bp->dev, "HWRM fwd response too big (%d bytes)\n",
955 				 msg_size);
956 		return -EINVAL;
957 	}
958 
959 	rc = hwrm_req_init(bp, req, HWRM_FWD_RESP);
960 	if (!rc) {
961 		/* Set the new target id */
962 		req->target_id = cpu_to_le16(vf->fw_fid);
963 		req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
964 		req->encap_resp_len = cpu_to_le16(msg_size);
965 		req->encap_resp_addr = encap_resp_addr;
966 		req->encap_resp_cmpl_ring = encap_resp_cpr;
967 		memcpy(req->encap_resp, encap_resp, msg_size);
968 
969 		rc = hwrm_req_send(bp, req);
970 	}
971 	if (rc)
972 		netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc);
973 	return rc;
974 }
975 
976 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
977 				  u32 msg_size)
978 {
979 	struct hwrm_reject_fwd_resp_input *req;
980 	int rc;
981 
982 	if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size))
983 		return -EINVAL;
984 
985 	rc = hwrm_req_init(bp, req, HWRM_REJECT_FWD_RESP);
986 	if (!rc) {
987 		/* Set the new target id */
988 		req->target_id = cpu_to_le16(vf->fw_fid);
989 		req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
990 		memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size);
991 
992 		rc = hwrm_req_send(bp, req);
993 	}
994 	if (rc)
995 		netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc);
996 	return rc;
997 }
998 
999 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf,
1000 				   u32 msg_size)
1001 {
1002 	struct hwrm_exec_fwd_resp_input *req;
1003 	int rc;
1004 
1005 	if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size))
1006 		return -EINVAL;
1007 
1008 	rc = hwrm_req_init(bp, req, HWRM_EXEC_FWD_RESP);
1009 	if (!rc) {
1010 		/* Set the new target id */
1011 		req->target_id = cpu_to_le16(vf->fw_fid);
1012 		req->encap_resp_target_id = cpu_to_le16(vf->fw_fid);
1013 		memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size);
1014 
1015 		rc = hwrm_req_send(bp, req);
1016 	}
1017 	if (rc)
1018 		netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc);
1019 	return rc;
1020 }
1021 
1022 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
1023 {
1024 	u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input);
1025 	struct hwrm_func_vf_cfg_input *req =
1026 		(struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr;
1027 
1028 	/* Allow VF to set a valid MAC address, if trust is set to on or
1029 	 * if the PF assigned MAC address is zero
1030 	 */
1031 	if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) {
1032 		bool trust = bnxt_is_trusted_vf(bp, vf);
1033 
1034 		if (is_valid_ether_addr(req->dflt_mac_addr) &&
1035 		    (trust || !is_valid_ether_addr(vf->mac_addr) ||
1036 		     ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) {
1037 			ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr);
1038 			return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1039 		}
1040 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1041 	}
1042 	return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1043 }
1044 
1045 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf)
1046 {
1047 	u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input);
1048 	struct hwrm_cfa_l2_filter_alloc_input *req =
1049 		(struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr;
1050 	bool mac_ok = false;
1051 
1052 	if (!is_valid_ether_addr((const u8 *)req->l2_addr))
1053 		return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1054 
1055 	/* Allow VF to set a valid MAC address, if trust is set to on.
1056 	 * Or VF MAC address must first match MAC address in PF's context.
1057 	 * Otherwise, it must match the VF MAC address if firmware spec >=
1058 	 * 1.2.2
1059 	 */
1060 	if (bnxt_is_trusted_vf(bp, vf)) {
1061 		mac_ok = true;
1062 	} else if (is_valid_ether_addr(vf->mac_addr)) {
1063 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr))
1064 			mac_ok = true;
1065 	} else if (is_valid_ether_addr(vf->vf_mac_addr)) {
1066 		if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr))
1067 			mac_ok = true;
1068 	} else {
1069 		/* There are two cases:
1070 		 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded
1071 		 *   to the PF and so it doesn't have to match
1072 		 * 2.Allow VF to modify it's own MAC when PF has not assigned a
1073 		 *   valid MAC address and firmware spec >= 0x10202
1074 		 */
1075 		mac_ok = true;
1076 	}
1077 	if (mac_ok)
1078 		return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size);
1079 	return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size);
1080 }
1081 
1082 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf)
1083 {
1084 	int rc = 0;
1085 
1086 	if (!(vf->flags & BNXT_VF_LINK_FORCED)) {
1087 		/* real link */
1088 		rc = bnxt_hwrm_exec_fwd_resp(
1089 			bp, vf, sizeof(struct hwrm_port_phy_qcfg_input));
1090 	} else {
1091 		struct hwrm_port_phy_qcfg_output_compat phy_qcfg_resp = {};
1092 		struct hwrm_port_phy_qcfg_input *phy_qcfg_req;
1093 
1094 		phy_qcfg_req =
1095 		(struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr;
1096 		mutex_lock(&bp->link_lock);
1097 		memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp,
1098 		       sizeof(phy_qcfg_resp));
1099 		mutex_unlock(&bp->link_lock);
1100 		phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp));
1101 		phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id;
1102 		/* New SPEEDS2 fields are beyond the legacy structure, so
1103 		 * clear the SPEEDS2_SUPPORTED flag.
1104 		 */
1105 		phy_qcfg_resp.option_flags &=
1106 			~PORT_PHY_QCAPS_RESP_FLAGS2_SPEEDS2_SUPPORTED;
1107 		phy_qcfg_resp.valid = 1;
1108 
1109 		if (vf->flags & BNXT_VF_LINK_UP) {
1110 			/* if physical link is down, force link up on VF */
1111 			if (phy_qcfg_resp.link !=
1112 			    PORT_PHY_QCFG_RESP_LINK_LINK) {
1113 				phy_qcfg_resp.link =
1114 					PORT_PHY_QCFG_RESP_LINK_LINK;
1115 				phy_qcfg_resp.link_speed = cpu_to_le16(
1116 					PORT_PHY_QCFG_RESP_LINK_SPEED_10GB);
1117 				phy_qcfg_resp.duplex_cfg =
1118 					PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL;
1119 				phy_qcfg_resp.duplex_state =
1120 					PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL;
1121 				phy_qcfg_resp.pause =
1122 					(PORT_PHY_QCFG_RESP_PAUSE_TX |
1123 					 PORT_PHY_QCFG_RESP_PAUSE_RX);
1124 			}
1125 		} else {
1126 			/* force link down */
1127 			phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK;
1128 			phy_qcfg_resp.link_speed = 0;
1129 			phy_qcfg_resp.duplex_state =
1130 				PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF;
1131 			phy_qcfg_resp.pause = 0;
1132 		}
1133 		rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp,
1134 					phy_qcfg_req->resp_addr,
1135 					phy_qcfg_req->cmpl_ring,
1136 					sizeof(phy_qcfg_resp));
1137 	}
1138 	return rc;
1139 }
1140 
1141 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf)
1142 {
1143 	int rc = 0;
1144 	struct input *encap_req = vf->hwrm_cmd_req_addr;
1145 	u32 req_type = le16_to_cpu(encap_req->req_type);
1146 
1147 	switch (req_type) {
1148 	case HWRM_FUNC_VF_CFG:
1149 		rc = bnxt_vf_configure_mac(bp, vf);
1150 		break;
1151 	case HWRM_CFA_L2_FILTER_ALLOC:
1152 		rc = bnxt_vf_validate_set_mac(bp, vf);
1153 		break;
1154 	case HWRM_FUNC_CFG:
1155 		/* TODO Validate if VF is allowed to change mac address,
1156 		 * mtu, num of rings etc
1157 		 */
1158 		rc = bnxt_hwrm_exec_fwd_resp(
1159 			bp, vf, sizeof(struct hwrm_func_cfg_input));
1160 		break;
1161 	case HWRM_PORT_PHY_QCFG:
1162 		rc = bnxt_vf_set_link(bp, vf);
1163 		break;
1164 	default:
1165 		break;
1166 	}
1167 	return rc;
1168 }
1169 
1170 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1171 {
1172 	u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id;
1173 
1174 	/* Scan through VF's and process commands */
1175 	while (1) {
1176 		vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i);
1177 		if (vf_id >= active_vfs)
1178 			break;
1179 
1180 		clear_bit(vf_id, bp->pf.vf_event_bmap);
1181 		bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]);
1182 		i = vf_id + 1;
1183 	}
1184 }
1185 
1186 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict)
1187 {
1188 	struct hwrm_func_vf_cfg_input *req;
1189 	int rc = 0;
1190 
1191 	if (!BNXT_VF(bp))
1192 		return 0;
1193 
1194 	if (bp->hwrm_spec_code < 0x10202) {
1195 		if (is_valid_ether_addr(bp->vf.mac_addr))
1196 			rc = -EADDRNOTAVAIL;
1197 		goto mac_done;
1198 	}
1199 
1200 	rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG);
1201 	if (rc)
1202 		goto mac_done;
1203 
1204 	req->enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR);
1205 	memcpy(req->dflt_mac_addr, mac, ETH_ALEN);
1206 	if (!strict)
1207 		hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT);
1208 	rc = hwrm_req_send(bp, req);
1209 mac_done:
1210 	if (rc && strict) {
1211 		rc = -EADDRNOTAVAIL;
1212 		netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n",
1213 			    mac);
1214 		return rc;
1215 	}
1216 	return 0;
1217 }
1218 
1219 void bnxt_update_vf_mac(struct bnxt *bp)
1220 {
1221 	struct hwrm_func_qcaps_output *resp;
1222 	struct hwrm_func_qcaps_input *req;
1223 	bool inform_pf = false;
1224 
1225 	if (hwrm_req_init(bp, req, HWRM_FUNC_QCAPS))
1226 		return;
1227 
1228 	req->fid = cpu_to_le16(0xffff);
1229 
1230 	resp = hwrm_req_hold(bp, req);
1231 	if (hwrm_req_send(bp, req))
1232 		goto update_vf_mac_exit;
1233 
1234 	/* Store MAC address from the firmware.  There are 2 cases:
1235 	 * 1. MAC address is valid.  It is assigned from the PF and we
1236 	 *    need to override the current VF MAC address with it.
1237 	 * 2. MAC address is zero.  The VF will use a random MAC address by
1238 	 *    default but the stored zero MAC will allow the VF user to change
1239 	 *    the random MAC address using ndo_set_mac_address() if he wants.
1240 	 */
1241 	if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) {
1242 		memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN);
1243 		/* This means we are now using our own MAC address, let
1244 		 * the PF know about this MAC address.
1245 		 */
1246 		if (!is_valid_ether_addr(bp->vf.mac_addr))
1247 			inform_pf = true;
1248 	}
1249 
1250 	/* overwrite netdev dev_addr with admin VF MAC */
1251 	if (is_valid_ether_addr(bp->vf.mac_addr))
1252 		eth_hw_addr_set(bp->dev, bp->vf.mac_addr);
1253 update_vf_mac_exit:
1254 	hwrm_req_drop(bp, req);
1255 	if (inform_pf)
1256 		bnxt_approve_mac(bp, bp->dev->dev_addr, false);
1257 }
1258 
1259 #else
1260 
1261 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset)
1262 {
1263 	if (*num_vfs)
1264 		return -EOPNOTSUPP;
1265 	return 0;
1266 }
1267 
1268 void bnxt_sriov_disable(struct bnxt *bp)
1269 {
1270 }
1271 
1272 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp)
1273 {
1274 	netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n");
1275 }
1276 
1277 void bnxt_update_vf_mac(struct bnxt *bp)
1278 {
1279 }
1280 
1281 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict)
1282 {
1283 	return 0;
1284 }
1285 #endif
1286