1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2018 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/ethtool.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/if_vlan.h> 16 #include <linux/interrupt.h> 17 #include <linux/etherdevice.h> 18 #include "bnxt_hsi.h" 19 #include "bnxt.h" 20 #include "bnxt_hwrm.h" 21 #include "bnxt_ulp.h" 22 #include "bnxt_sriov.h" 23 #include "bnxt_vfr.h" 24 #include "bnxt_ethtool.h" 25 26 #ifdef CONFIG_BNXT_SRIOV 27 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 28 struct bnxt_vf_info *vf, u16 event_id) 29 { 30 struct hwrm_fwd_async_event_cmpl_input *req; 31 struct hwrm_async_event_cmpl *async_cmpl; 32 int rc = 0; 33 34 rc = hwrm_req_init(bp, req, HWRM_FWD_ASYNC_EVENT_CMPL); 35 if (rc) 36 goto exit; 37 38 if (vf) 39 req->encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 40 else 41 /* broadcast this async event to all VFs */ 42 req->encap_async_event_target_id = cpu_to_le16(0xffff); 43 async_cmpl = 44 (struct hwrm_async_event_cmpl *)req->encap_async_event_cmpl; 45 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 46 async_cmpl->event_id = cpu_to_le16(event_id); 47 48 rc = hwrm_req_send(bp, req); 49 exit: 50 if (rc) 51 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 52 rc); 53 return rc; 54 } 55 56 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 57 { 58 if (!bp->pf.active_vfs) { 59 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 60 return -EINVAL; 61 } 62 if (vf_id >= bp->pf.active_vfs) { 63 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 64 return -EINVAL; 65 } 66 return 0; 67 } 68 69 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 70 { 71 struct bnxt *bp = netdev_priv(dev); 72 struct hwrm_func_cfg_input *req; 73 bool old_setting = false; 74 struct bnxt_vf_info *vf; 75 u32 func_flags; 76 int rc; 77 78 if (bp->hwrm_spec_code < 0x10701) 79 return -ENOTSUPP; 80 81 rc = bnxt_vf_ndo_prep(bp, vf_id); 82 if (rc) 83 return rc; 84 85 vf = &bp->pf.vf[vf_id]; 86 if (vf->flags & BNXT_VF_SPOOFCHK) 87 old_setting = true; 88 if (old_setting == setting) 89 return 0; 90 91 if (setting) 92 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; 93 else 94 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; 95 /*TODO: if the driver supports VLAN filter on guest VLAN, 96 * the spoof check should also include vlan anti-spoofing 97 */ 98 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 99 if (!rc) { 100 req->fid = cpu_to_le16(vf->fw_fid); 101 req->flags = cpu_to_le32(func_flags); 102 rc = hwrm_req_send(bp, req); 103 if (!rc) { 104 if (setting) 105 vf->flags |= BNXT_VF_SPOOFCHK; 106 else 107 vf->flags &= ~BNXT_VF_SPOOFCHK; 108 } 109 } 110 return rc; 111 } 112 113 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf) 114 { 115 struct hwrm_func_qcfg_output *resp; 116 struct hwrm_func_qcfg_input *req; 117 int rc; 118 119 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 120 if (rc) 121 return rc; 122 123 req->fid = cpu_to_le16(BNXT_PF(bp) ? vf->fw_fid : 0xffff); 124 resp = hwrm_req_hold(bp, req); 125 rc = hwrm_req_send(bp, req); 126 if (!rc) 127 vf->func_qcfg_flags = le16_to_cpu(resp->flags); 128 hwrm_req_drop(bp, req); 129 return rc; 130 } 131 132 bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 133 { 134 if (BNXT_PF(bp) && !(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 135 return !!(vf->flags & BNXT_VF_TRUST); 136 137 bnxt_hwrm_func_qcfg_flags(bp, vf); 138 return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF); 139 } 140 141 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 142 { 143 struct hwrm_func_cfg_input *req; 144 int rc; 145 146 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 147 return 0; 148 149 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 150 if (rc) 151 return rc; 152 153 req->fid = cpu_to_le16(vf->fw_fid); 154 if (vf->flags & BNXT_VF_TRUST) 155 req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 156 else 157 req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE); 158 return hwrm_req_send(bp, req); 159 } 160 161 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) 162 { 163 struct bnxt *bp = netdev_priv(dev); 164 struct bnxt_vf_info *vf; 165 166 if (bnxt_vf_ndo_prep(bp, vf_id)) 167 return -EINVAL; 168 169 vf = &bp->pf.vf[vf_id]; 170 if (trusted) 171 vf->flags |= BNXT_VF_TRUST; 172 else 173 vf->flags &= ~BNXT_VF_TRUST; 174 175 bnxt_hwrm_set_trusted_vf(bp, vf); 176 return 0; 177 } 178 179 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 180 struct ifla_vf_info *ivi) 181 { 182 struct bnxt *bp = netdev_priv(dev); 183 struct bnxt_vf_info *vf; 184 int rc; 185 186 rc = bnxt_vf_ndo_prep(bp, vf_id); 187 if (rc) 188 return rc; 189 190 ivi->vf = vf_id; 191 vf = &bp->pf.vf[vf_id]; 192 193 if (is_valid_ether_addr(vf->mac_addr)) 194 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 195 else 196 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); 197 ivi->max_tx_rate = vf->max_tx_rate; 198 ivi->min_tx_rate = vf->min_tx_rate; 199 ivi->vlan = vf->vlan; 200 if (vf->flags & BNXT_VF_QOS) 201 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; 202 else 203 ivi->qos = 0; 204 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); 205 ivi->trusted = bnxt_is_trusted_vf(bp, vf); 206 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 207 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 208 else if (vf->flags & BNXT_VF_LINK_UP) 209 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 210 else 211 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 212 213 return 0; 214 } 215 216 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 217 { 218 struct bnxt *bp = netdev_priv(dev); 219 struct hwrm_func_cfg_input *req; 220 struct bnxt_vf_info *vf; 221 int rc; 222 223 rc = bnxt_vf_ndo_prep(bp, vf_id); 224 if (rc) 225 return rc; 226 /* reject bc or mc mac addr, zero mac addr means allow 227 * VF to use its own mac addr 228 */ 229 if (is_multicast_ether_addr(mac)) { 230 netdev_err(dev, "Invalid VF ethernet address\n"); 231 return -EINVAL; 232 } 233 vf = &bp->pf.vf[vf_id]; 234 235 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 236 if (rc) 237 return rc; 238 239 memcpy(vf->mac_addr, mac, ETH_ALEN); 240 241 req->fid = cpu_to_le16(vf->fw_fid); 242 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 243 memcpy(req->dflt_mac_addr, mac, ETH_ALEN); 244 return hwrm_req_send(bp, req); 245 } 246 247 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 248 __be16 vlan_proto) 249 { 250 struct bnxt *bp = netdev_priv(dev); 251 struct hwrm_func_cfg_input *req; 252 struct bnxt_vf_info *vf; 253 u16 vlan_tag; 254 int rc; 255 256 if (bp->hwrm_spec_code < 0x10201) 257 return -ENOTSUPP; 258 259 if (vlan_proto != htons(ETH_P_8021Q)) 260 return -EPROTONOSUPPORT; 261 262 rc = bnxt_vf_ndo_prep(bp, vf_id); 263 if (rc) 264 return rc; 265 266 /* TODO: needed to implement proper handling of user priority, 267 * currently fail the command if there is valid priority 268 */ 269 if (vlan_id > 4095 || qos) 270 return -EINVAL; 271 272 vf = &bp->pf.vf[vf_id]; 273 vlan_tag = vlan_id; 274 if (vlan_tag == vf->vlan) 275 return 0; 276 277 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 278 if (!rc) { 279 req->fid = cpu_to_le16(vf->fw_fid); 280 req->dflt_vlan = cpu_to_le16(vlan_tag); 281 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 282 rc = hwrm_req_send(bp, req); 283 if (!rc) 284 vf->vlan = vlan_tag; 285 } 286 return rc; 287 } 288 289 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 290 int max_tx_rate) 291 { 292 struct bnxt *bp = netdev_priv(dev); 293 struct hwrm_func_cfg_input *req; 294 struct bnxt_vf_info *vf; 295 u32 pf_link_speed; 296 int rc; 297 298 rc = bnxt_vf_ndo_prep(bp, vf_id); 299 if (rc) 300 return rc; 301 302 vf = &bp->pf.vf[vf_id]; 303 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 304 if (max_tx_rate > pf_link_speed) { 305 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 306 max_tx_rate, vf_id); 307 return -EINVAL; 308 } 309 310 if (min_tx_rate > pf_link_speed) { 311 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 312 min_tx_rate, vf_id); 313 return -EINVAL; 314 } 315 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 316 return 0; 317 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 318 if (!rc) { 319 req->fid = cpu_to_le16(vf->fw_fid); 320 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW | 321 FUNC_CFG_REQ_ENABLES_MIN_BW); 322 req->max_bw = cpu_to_le32(max_tx_rate); 323 req->min_bw = cpu_to_le32(min_tx_rate); 324 rc = hwrm_req_send(bp, req); 325 if (!rc) { 326 vf->min_tx_rate = min_tx_rate; 327 vf->max_tx_rate = max_tx_rate; 328 } 329 } 330 return rc; 331 } 332 333 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 334 { 335 struct bnxt *bp = netdev_priv(dev); 336 struct bnxt_vf_info *vf; 337 int rc; 338 339 rc = bnxt_vf_ndo_prep(bp, vf_id); 340 if (rc) 341 return rc; 342 343 vf = &bp->pf.vf[vf_id]; 344 345 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 346 switch (link) { 347 case IFLA_VF_LINK_STATE_AUTO: 348 vf->flags |= BNXT_VF_LINK_UP; 349 break; 350 case IFLA_VF_LINK_STATE_DISABLE: 351 vf->flags |= BNXT_VF_LINK_FORCED; 352 break; 353 case IFLA_VF_LINK_STATE_ENABLE: 354 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 355 break; 356 default: 357 netdev_err(bp->dev, "Invalid link option\n"); 358 rc = -EINVAL; 359 break; 360 } 361 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 362 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 363 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 364 return rc; 365 } 366 367 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 368 { 369 int i; 370 struct bnxt_vf_info *vf; 371 372 for (i = 0; i < num_vfs; i++) { 373 vf = &bp->pf.vf[i]; 374 memset(vf, 0, sizeof(*vf)); 375 } 376 return 0; 377 } 378 379 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 380 { 381 struct hwrm_func_vf_resc_free_input *req; 382 struct bnxt_pf_info *pf = &bp->pf; 383 int i, rc; 384 385 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESC_FREE); 386 if (rc) 387 return rc; 388 389 hwrm_req_hold(bp, req); 390 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 391 req->vf_id = cpu_to_le16(i); 392 rc = hwrm_req_send(bp, req); 393 if (rc) 394 break; 395 } 396 hwrm_req_drop(bp, req); 397 return rc; 398 } 399 400 static void bnxt_free_vf_resources(struct bnxt *bp) 401 { 402 struct pci_dev *pdev = bp->pdev; 403 int i; 404 405 kfree(bp->pf.vf_event_bmap); 406 bp->pf.vf_event_bmap = NULL; 407 408 for (i = 0; i < 4; i++) { 409 if (bp->pf.hwrm_cmd_req_addr[i]) { 410 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 411 bp->pf.hwrm_cmd_req_addr[i], 412 bp->pf.hwrm_cmd_req_dma_addr[i]); 413 bp->pf.hwrm_cmd_req_addr[i] = NULL; 414 } 415 } 416 417 bp->pf.active_vfs = 0; 418 kfree(bp->pf.vf); 419 bp->pf.vf = NULL; 420 } 421 422 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 423 { 424 struct pci_dev *pdev = bp->pdev; 425 u32 nr_pages, size, i, j, k = 0; 426 427 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 428 if (!bp->pf.vf) 429 return -ENOMEM; 430 431 bnxt_set_vf_attr(bp, num_vfs); 432 433 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 434 nr_pages = size / BNXT_PAGE_SIZE; 435 if (size & (BNXT_PAGE_SIZE - 1)) 436 nr_pages++; 437 438 for (i = 0; i < nr_pages; i++) { 439 bp->pf.hwrm_cmd_req_addr[i] = 440 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 441 &bp->pf.hwrm_cmd_req_dma_addr[i], 442 GFP_KERNEL); 443 444 if (!bp->pf.hwrm_cmd_req_addr[i]) 445 return -ENOMEM; 446 447 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 448 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 449 450 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 451 j * BNXT_HWRM_REQ_MAX_SIZE; 452 vf->hwrm_cmd_req_dma_addr = 453 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 454 BNXT_HWRM_REQ_MAX_SIZE; 455 k++; 456 } 457 } 458 459 /* Max 128 VF's */ 460 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 461 if (!bp->pf.vf_event_bmap) 462 return -ENOMEM; 463 464 bp->pf.hwrm_cmd_req_pages = nr_pages; 465 return 0; 466 } 467 468 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 469 { 470 struct hwrm_func_buf_rgtr_input *req; 471 int rc; 472 473 rc = hwrm_req_init(bp, req, HWRM_FUNC_BUF_RGTR); 474 if (rc) 475 return rc; 476 477 req->req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 478 req->req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 479 req->req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 480 req->req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 481 req->req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 482 req->req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 483 req->req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 484 485 return hwrm_req_send(bp, req); 486 } 487 488 static int __bnxt_set_vf_params(struct bnxt *bp, int vf_id) 489 { 490 struct hwrm_func_cfg_input *req; 491 struct bnxt_vf_info *vf; 492 int rc; 493 494 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 495 if (rc) 496 return rc; 497 498 vf = &bp->pf.vf[vf_id]; 499 req->fid = cpu_to_le16(vf->fw_fid); 500 501 if (is_valid_ether_addr(vf->mac_addr)) { 502 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 503 memcpy(req->dflt_mac_addr, vf->mac_addr, ETH_ALEN); 504 } 505 if (vf->vlan) { 506 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 507 req->dflt_vlan = cpu_to_le16(vf->vlan); 508 } 509 if (vf->max_tx_rate) { 510 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW | 511 FUNC_CFG_REQ_ENABLES_MIN_BW); 512 req->max_bw = cpu_to_le32(vf->max_tx_rate); 513 req->min_bw = cpu_to_le32(vf->min_tx_rate); 514 } 515 if (vf->flags & BNXT_VF_TRUST) 516 req->flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 517 518 return hwrm_req_send(bp, req); 519 } 520 521 /* Only called by PF to reserve resources for VFs, returns actual number of 522 * VFs configured, or < 0 on error. 523 */ 524 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset) 525 { 526 struct hwrm_func_vf_resource_cfg_input *req; 527 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 528 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; 529 u16 vf_stat_ctx, vf_vnics, vf_ring_grps; 530 struct bnxt_pf_info *pf = &bp->pf; 531 int i, rc = 0, min = 1; 532 u16 vf_msix = 0; 533 u16 vf_rss; 534 535 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESOURCE_CFG); 536 if (rc) 537 return rc; 538 539 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 540 vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp); 541 vf_ring_grps = 0; 542 } else { 543 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; 544 } 545 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp); 546 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp); 547 if (bp->flags & BNXT_FLAG_AGG_RINGS) 548 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; 549 else 550 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; 551 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; 552 vf_vnics = hw_resc->max_vnics - bp->nr_vnics; 553 vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs; 554 555 req->min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX); 556 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 557 min = 0; 558 req->min_rsscos_ctx = cpu_to_le16(min); 559 } 560 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL || 561 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 562 req->min_cmpl_rings = cpu_to_le16(min); 563 req->min_tx_rings = cpu_to_le16(min); 564 req->min_rx_rings = cpu_to_le16(min); 565 req->min_l2_ctxs = cpu_to_le16(min); 566 req->min_vnics = cpu_to_le16(min); 567 req->min_stat_ctx = cpu_to_le16(min); 568 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 569 req->min_hw_ring_grps = cpu_to_le16(min); 570 } else { 571 vf_cp_rings /= num_vfs; 572 vf_tx_rings /= num_vfs; 573 vf_rx_rings /= num_vfs; 574 if ((bp->fw_cap & BNXT_FW_CAP_PRE_RESV_VNICS) && 575 vf_vnics >= pf->max_vfs) { 576 /* Take into account that FW has pre-reserved 1 VNIC for 577 * each pf->max_vfs. 578 */ 579 vf_vnics = (vf_vnics - pf->max_vfs + num_vfs) / num_vfs; 580 } else { 581 vf_vnics /= num_vfs; 582 } 583 vf_stat_ctx /= num_vfs; 584 vf_ring_grps /= num_vfs; 585 vf_rss /= num_vfs; 586 587 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 588 req->min_cmpl_rings = cpu_to_le16(vf_cp_rings); 589 req->min_tx_rings = cpu_to_le16(vf_tx_rings); 590 req->min_rx_rings = cpu_to_le16(vf_rx_rings); 591 req->min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 592 req->min_vnics = cpu_to_le16(vf_vnics); 593 req->min_stat_ctx = cpu_to_le16(vf_stat_ctx); 594 req->min_hw_ring_grps = cpu_to_le16(vf_ring_grps); 595 req->min_rsscos_ctx = cpu_to_le16(vf_rss); 596 } 597 req->max_cmpl_rings = cpu_to_le16(vf_cp_rings); 598 req->max_tx_rings = cpu_to_le16(vf_tx_rings); 599 req->max_rx_rings = cpu_to_le16(vf_rx_rings); 600 req->max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 601 req->max_vnics = cpu_to_le16(vf_vnics); 602 req->max_stat_ctx = cpu_to_le16(vf_stat_ctx); 603 req->max_hw_ring_grps = cpu_to_le16(vf_ring_grps); 604 req->max_rsscos_ctx = cpu_to_le16(vf_rss); 605 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 606 req->max_msix = cpu_to_le16(vf_msix / num_vfs); 607 608 hwrm_req_hold(bp, req); 609 for (i = 0; i < num_vfs; i++) { 610 if (reset) 611 __bnxt_set_vf_params(bp, i); 612 613 req->vf_id = cpu_to_le16(pf->first_vf_id + i); 614 rc = hwrm_req_send(bp, req); 615 if (rc) 616 break; 617 pf->active_vfs = i + 1; 618 pf->vf[i].fw_fid = pf->first_vf_id + i; 619 } 620 621 if (pf->active_vfs) { 622 u16 n = pf->active_vfs; 623 624 hw_resc->max_tx_rings -= le16_to_cpu(req->min_tx_rings) * n; 625 hw_resc->max_rx_rings -= le16_to_cpu(req->min_rx_rings) * n; 626 hw_resc->max_hw_ring_grps -= 627 le16_to_cpu(req->min_hw_ring_grps) * n; 628 hw_resc->max_cp_rings -= le16_to_cpu(req->min_cmpl_rings) * n; 629 hw_resc->max_rsscos_ctxs -= 630 le16_to_cpu(req->min_rsscos_ctx) * n; 631 hw_resc->max_stat_ctxs -= le16_to_cpu(req->min_stat_ctx) * n; 632 hw_resc->max_vnics -= le16_to_cpu(req->min_vnics) * n; 633 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 634 hw_resc->max_nqs -= vf_msix; 635 636 rc = pf->active_vfs; 637 } 638 hwrm_req_drop(bp, req); 639 return rc; 640 } 641 642 /* Only called by PF to reserve resources for VFs, returns actual number of 643 * VFs configured, or < 0 on error. 644 */ 645 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 646 { 647 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 648 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 649 struct bnxt_pf_info *pf = &bp->pf; 650 struct hwrm_func_cfg_input *req; 651 int total_vf_tx_rings = 0; 652 u16 vf_ring_grps; 653 u32 mtu, i; 654 int rc; 655 656 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 657 if (rc) 658 return rc; 659 660 /* Remaining rings are distributed equally amongs VF's for now */ 661 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs; 662 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs; 663 if (bp->flags & BNXT_FLAG_AGG_RINGS) 664 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / 665 num_vfs; 666 else 667 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / 668 num_vfs; 669 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 670 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; 671 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; 672 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 673 674 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ADMIN_MTU | 675 FUNC_CFG_REQ_ENABLES_MRU | 676 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 677 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 678 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 679 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 680 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 681 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 682 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 683 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 684 685 mtu = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 686 req->mru = cpu_to_le16(mtu); 687 req->admin_mtu = cpu_to_le16(mtu); 688 689 req->num_rsscos_ctxs = cpu_to_le16(1); 690 req->num_cmpl_rings = cpu_to_le16(vf_cp_rings); 691 req->num_tx_rings = cpu_to_le16(vf_tx_rings); 692 req->num_rx_rings = cpu_to_le16(vf_rx_rings); 693 req->num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 694 req->num_l2_ctxs = cpu_to_le16(4); 695 696 req->num_vnics = cpu_to_le16(vf_vnics); 697 /* FIXME spec currently uses 1 bit for stats ctx */ 698 req->num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 699 700 hwrm_req_hold(bp, req); 701 for (i = 0; i < num_vfs; i++) { 702 int vf_tx_rsvd = vf_tx_rings; 703 704 req->fid = cpu_to_le16(pf->first_vf_id + i); 705 rc = hwrm_req_send(bp, req); 706 if (rc) 707 break; 708 pf->active_vfs = i + 1; 709 pf->vf[i].fw_fid = le16_to_cpu(req->fid); 710 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, 711 &vf_tx_rsvd); 712 if (rc) 713 break; 714 total_vf_tx_rings += vf_tx_rsvd; 715 } 716 hwrm_req_drop(bp, req); 717 if (pf->active_vfs) { 718 hw_resc->max_tx_rings -= total_vf_tx_rings; 719 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; 720 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; 721 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; 722 hw_resc->max_rsscos_ctxs -= num_vfs; 723 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; 724 hw_resc->max_vnics -= vf_vnics * num_vfs; 725 rc = pf->active_vfs; 726 } 727 return rc; 728 } 729 730 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset) 731 { 732 if (BNXT_NEW_RM(bp)) 733 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset); 734 else 735 return bnxt_hwrm_func_cfg(bp, num_vfs); 736 } 737 738 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 739 { 740 int rc; 741 742 /* Register buffers for VFs */ 743 rc = bnxt_hwrm_func_buf_rgtr(bp); 744 if (rc) 745 return rc; 746 747 /* Reserve resources for VFs */ 748 rc = bnxt_func_cfg(bp, *num_vfs, reset); 749 if (rc != *num_vfs) { 750 if (rc <= 0) { 751 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); 752 *num_vfs = 0; 753 return rc; 754 } 755 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", 756 rc); 757 *num_vfs = rc; 758 } 759 760 return 0; 761 } 762 763 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 764 { 765 int rc = 0, vfs_supported; 766 int min_rx_rings, min_tx_rings, min_rss_ctxs; 767 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 768 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 769 int avail_cp, avail_stat; 770 771 /* Check if we can enable requested num of vf's. At a mininum 772 * we require 1 RX 1 TX rings for each VF. In this minimum conf 773 * features like TPA will not be available. 774 */ 775 vfs_supported = *num_vfs; 776 777 avail_cp = bnxt_get_avail_cp_rings_for_en(bp); 778 avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp); 779 avail_cp = min_t(int, avail_cp, avail_stat); 780 781 while (vfs_supported) { 782 min_rx_rings = vfs_supported; 783 min_tx_rings = vfs_supported; 784 min_rss_ctxs = vfs_supported; 785 786 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 787 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= 788 min_rx_rings) 789 rx_ok = 1; 790 } else { 791 if (hw_resc->max_rx_rings - bp->rx_nr_rings >= 792 min_rx_rings) 793 rx_ok = 1; 794 } 795 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || 796 avail_cp < min_rx_rings) 797 rx_ok = 0; 798 799 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && 800 avail_cp >= min_tx_rings) 801 tx_ok = 1; 802 803 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= 804 min_rss_ctxs) 805 rss_ok = 1; 806 807 if (tx_ok && rx_ok && rss_ok) 808 break; 809 810 vfs_supported--; 811 } 812 813 if (!vfs_supported) { 814 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 815 return -EINVAL; 816 } 817 818 if (vfs_supported != *num_vfs) { 819 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 820 *num_vfs, vfs_supported); 821 *num_vfs = vfs_supported; 822 } 823 824 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 825 if (rc) 826 goto err_out1; 827 828 rc = bnxt_cfg_hw_sriov(bp, num_vfs, false); 829 if (rc) 830 goto err_out2; 831 832 rc = pci_enable_sriov(bp->pdev, *num_vfs); 833 if (rc) 834 goto err_out2; 835 836 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 837 return 0; 838 839 /* Create representors for VFs in switchdev mode */ 840 devl_lock(bp->dl); 841 rc = bnxt_vf_reps_create(bp); 842 devl_unlock(bp->dl); 843 if (rc) { 844 netdev_info(bp->dev, "Cannot enable VFS as representors cannot be created\n"); 845 goto err_out3; 846 } 847 848 return 0; 849 850 err_out3: 851 /* Disable SR-IOV */ 852 pci_disable_sriov(bp->pdev); 853 854 err_out2: 855 /* Free the resources reserved for various VF's */ 856 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 857 858 /* Restore the max resources */ 859 bnxt_hwrm_func_qcaps(bp); 860 861 err_out1: 862 bnxt_free_vf_resources(bp); 863 864 return rc; 865 } 866 867 void bnxt_sriov_disable(struct bnxt *bp) 868 { 869 u16 num_vfs = pci_num_vf(bp->pdev); 870 871 if (!num_vfs) 872 return; 873 874 /* synchronize VF and VF-rep create and destroy */ 875 devl_lock(bp->dl); 876 bnxt_vf_reps_destroy(bp); 877 878 if (pci_vfs_assigned(bp->pdev)) { 879 bnxt_hwrm_fwd_async_event_cmpl( 880 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 881 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 882 num_vfs); 883 } else { 884 pci_disable_sriov(bp->pdev); 885 /* Free the HW resources reserved for various VF's */ 886 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 887 } 888 devl_unlock(bp->dl); 889 890 bnxt_free_vf_resources(bp); 891 892 /* Reclaim all resources for the PF. */ 893 rtnl_lock(); 894 bnxt_restore_pf_fw_resources(bp); 895 rtnl_unlock(); 896 } 897 898 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 899 { 900 struct net_device *dev = pci_get_drvdata(pdev); 901 struct bnxt *bp = netdev_priv(dev); 902 903 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 904 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); 905 return 0; 906 } 907 908 rtnl_lock(); 909 if (!netif_running(dev)) { 910 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 911 rtnl_unlock(); 912 return 0; 913 } 914 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 915 netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n"); 916 rtnl_unlock(); 917 return 0; 918 } 919 bp->sriov_cfg = true; 920 rtnl_unlock(); 921 922 if (pci_vfs_assigned(bp->pdev)) { 923 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 924 num_vfs = 0; 925 goto sriov_cfg_exit; 926 } 927 928 /* Check if enabled VFs is same as requested */ 929 if (num_vfs && num_vfs == bp->pf.active_vfs) 930 goto sriov_cfg_exit; 931 932 /* if there are previous existing VFs, clean them up */ 933 bnxt_sriov_disable(bp); 934 if (!num_vfs) 935 goto sriov_cfg_exit; 936 937 bnxt_sriov_enable(bp, &num_vfs); 938 939 sriov_cfg_exit: 940 bp->sriov_cfg = false; 941 wake_up(&bp->sriov_cfg_wait); 942 943 return num_vfs; 944 } 945 946 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 947 void *encap_resp, __le64 encap_resp_addr, 948 __le16 encap_resp_cpr, u32 msg_size) 949 { 950 struct hwrm_fwd_resp_input *req; 951 int rc; 952 953 if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) { 954 netdev_warn_once(bp->dev, "HWRM fwd response too big (%d bytes)\n", 955 msg_size); 956 return -EINVAL; 957 } 958 959 rc = hwrm_req_init(bp, req, HWRM_FWD_RESP); 960 if (!rc) { 961 /* Set the new target id */ 962 req->target_id = cpu_to_le16(vf->fw_fid); 963 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid); 964 req->encap_resp_len = cpu_to_le16(msg_size); 965 req->encap_resp_addr = encap_resp_addr; 966 req->encap_resp_cmpl_ring = encap_resp_cpr; 967 memcpy(req->encap_resp, encap_resp, msg_size); 968 969 rc = hwrm_req_send(bp, req); 970 } 971 if (rc) 972 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 973 return rc; 974 } 975 976 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 977 u32 msg_size) 978 { 979 struct hwrm_reject_fwd_resp_input *req; 980 int rc; 981 982 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size)) 983 return -EINVAL; 984 985 rc = hwrm_req_init(bp, req, HWRM_REJECT_FWD_RESP); 986 if (!rc) { 987 /* Set the new target id */ 988 req->target_id = cpu_to_le16(vf->fw_fid); 989 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid); 990 memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size); 991 992 rc = hwrm_req_send(bp, req); 993 } 994 if (rc) 995 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 996 return rc; 997 } 998 999 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 1000 u32 msg_size) 1001 { 1002 struct hwrm_exec_fwd_resp_input *req; 1003 int rc; 1004 1005 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size)) 1006 return -EINVAL; 1007 1008 rc = hwrm_req_init(bp, req, HWRM_EXEC_FWD_RESP); 1009 if (!rc) { 1010 /* Set the new target id */ 1011 req->target_id = cpu_to_le16(vf->fw_fid); 1012 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid); 1013 memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size); 1014 1015 rc = hwrm_req_send(bp, req); 1016 } 1017 if (rc) 1018 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 1019 return rc; 1020 } 1021 1022 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 1023 { 1024 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); 1025 struct hwrm_func_vf_cfg_input *req = 1026 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; 1027 1028 /* Allow VF to set a valid MAC address, if trust is set to on or 1029 * if the PF assigned MAC address is zero 1030 */ 1031 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { 1032 bool trust = bnxt_is_trusted_vf(bp, vf); 1033 1034 if (is_valid_ether_addr(req->dflt_mac_addr) && 1035 (trust || !is_valid_ether_addr(vf->mac_addr) || 1036 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) { 1037 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); 1038 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1039 } 1040 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1041 } 1042 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1043 } 1044 1045 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 1046 { 1047 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 1048 struct hwrm_cfa_l2_filter_alloc_input *req = 1049 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 1050 bool mac_ok = false; 1051 1052 if (!is_valid_ether_addr((const u8 *)req->l2_addr)) 1053 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1054 1055 /* Allow VF to set a valid MAC address, if trust is set to on. 1056 * Or VF MAC address must first match MAC address in PF's context. 1057 * Otherwise, it must match the VF MAC address if firmware spec >= 1058 * 1.2.2 1059 */ 1060 if (bnxt_is_trusted_vf(bp, vf)) { 1061 mac_ok = true; 1062 } else if (is_valid_ether_addr(vf->mac_addr)) { 1063 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 1064 mac_ok = true; 1065 } else if (is_valid_ether_addr(vf->vf_mac_addr)) { 1066 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) 1067 mac_ok = true; 1068 } else { 1069 /* There are two cases: 1070 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded 1071 * to the PF and so it doesn't have to match 1072 * 2.Allow VF to modify it's own MAC when PF has not assigned a 1073 * valid MAC address and firmware spec >= 0x10202 1074 */ 1075 mac_ok = true; 1076 } 1077 if (mac_ok) 1078 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1079 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1080 } 1081 1082 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 1083 { 1084 int rc = 0; 1085 1086 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 1087 /* real link */ 1088 rc = bnxt_hwrm_exec_fwd_resp( 1089 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 1090 } else { 1091 struct hwrm_port_phy_qcfg_output_compat phy_qcfg_resp = {}; 1092 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 1093 1094 phy_qcfg_req = 1095 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 1096 mutex_lock(&bp->link_lock); 1097 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 1098 sizeof(phy_qcfg_resp)); 1099 mutex_unlock(&bp->link_lock); 1100 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); 1101 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 1102 /* New SPEEDS2 fields are beyond the legacy structure, so 1103 * clear the SPEEDS2_SUPPORTED flag. 1104 */ 1105 phy_qcfg_resp.option_flags &= 1106 ~PORT_PHY_QCAPS_RESP_FLAGS2_SPEEDS2_SUPPORTED; 1107 phy_qcfg_resp.valid = 1; 1108 1109 if (vf->flags & BNXT_VF_LINK_UP) { 1110 /* if physical link is down, force link up on VF */ 1111 if (phy_qcfg_resp.link != 1112 PORT_PHY_QCFG_RESP_LINK_LINK) { 1113 phy_qcfg_resp.link = 1114 PORT_PHY_QCFG_RESP_LINK_LINK; 1115 phy_qcfg_resp.link_speed = cpu_to_le16( 1116 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 1117 phy_qcfg_resp.duplex_cfg = 1118 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; 1119 phy_qcfg_resp.duplex_state = 1120 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; 1121 phy_qcfg_resp.pause = 1122 (PORT_PHY_QCFG_RESP_PAUSE_TX | 1123 PORT_PHY_QCFG_RESP_PAUSE_RX); 1124 } 1125 } else { 1126 /* force link down */ 1127 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 1128 phy_qcfg_resp.link_speed = 0; 1129 phy_qcfg_resp.duplex_state = 1130 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; 1131 phy_qcfg_resp.pause = 0; 1132 } 1133 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 1134 phy_qcfg_req->resp_addr, 1135 phy_qcfg_req->cmpl_ring, 1136 sizeof(phy_qcfg_resp)); 1137 } 1138 return rc; 1139 } 1140 1141 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 1142 { 1143 int rc = 0; 1144 struct input *encap_req = vf->hwrm_cmd_req_addr; 1145 u32 req_type = le16_to_cpu(encap_req->req_type); 1146 1147 switch (req_type) { 1148 case HWRM_FUNC_VF_CFG: 1149 rc = bnxt_vf_configure_mac(bp, vf); 1150 break; 1151 case HWRM_CFA_L2_FILTER_ALLOC: 1152 rc = bnxt_vf_validate_set_mac(bp, vf); 1153 break; 1154 case HWRM_FUNC_CFG: 1155 /* TODO Validate if VF is allowed to change mac address, 1156 * mtu, num of rings etc 1157 */ 1158 rc = bnxt_hwrm_exec_fwd_resp( 1159 bp, vf, sizeof(struct hwrm_func_cfg_input)); 1160 break; 1161 case HWRM_PORT_PHY_QCFG: 1162 rc = bnxt_vf_set_link(bp, vf); 1163 break; 1164 default: 1165 break; 1166 } 1167 return rc; 1168 } 1169 1170 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1171 { 1172 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 1173 1174 /* Scan through VF's and process commands */ 1175 while (1) { 1176 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 1177 if (vf_id >= active_vfs) 1178 break; 1179 1180 clear_bit(vf_id, bp->pf.vf_event_bmap); 1181 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 1182 i = vf_id + 1; 1183 } 1184 } 1185 1186 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict) 1187 { 1188 struct hwrm_func_vf_cfg_input *req; 1189 int rc = 0; 1190 1191 if (!BNXT_VF(bp)) 1192 return 0; 1193 1194 if (bp->hwrm_spec_code < 0x10202) { 1195 if (is_valid_ether_addr(bp->vf.mac_addr)) 1196 rc = -EADDRNOTAVAIL; 1197 goto mac_done; 1198 } 1199 1200 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 1201 if (rc) 1202 goto mac_done; 1203 1204 req->enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 1205 memcpy(req->dflt_mac_addr, mac, ETH_ALEN); 1206 if (!strict) 1207 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT); 1208 rc = hwrm_req_send(bp, req); 1209 mac_done: 1210 if (rc && strict) { 1211 rc = -EADDRNOTAVAIL; 1212 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 1213 mac); 1214 return rc; 1215 } 1216 return 0; 1217 } 1218 1219 void bnxt_update_vf_mac(struct bnxt *bp) 1220 { 1221 struct hwrm_func_qcaps_output *resp; 1222 struct hwrm_func_qcaps_input *req; 1223 bool inform_pf = false; 1224 1225 if (hwrm_req_init(bp, req, HWRM_FUNC_QCAPS)) 1226 return; 1227 1228 req->fid = cpu_to_le16(0xffff); 1229 1230 resp = hwrm_req_hold(bp, req); 1231 if (hwrm_req_send(bp, req)) 1232 goto update_vf_mac_exit; 1233 1234 /* Store MAC address from the firmware. There are 2 cases: 1235 * 1. MAC address is valid. It is assigned from the PF and we 1236 * need to override the current VF MAC address with it. 1237 * 2. MAC address is zero. The VF will use a random MAC address by 1238 * default but the stored zero MAC will allow the VF user to change 1239 * the random MAC address using ndo_set_mac_address() if he wants. 1240 */ 1241 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) { 1242 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 1243 /* This means we are now using our own MAC address, let 1244 * the PF know about this MAC address. 1245 */ 1246 if (!is_valid_ether_addr(bp->vf.mac_addr)) 1247 inform_pf = true; 1248 } 1249 1250 /* overwrite netdev dev_addr with admin VF MAC */ 1251 if (is_valid_ether_addr(bp->vf.mac_addr)) 1252 eth_hw_addr_set(bp->dev, bp->vf.mac_addr); 1253 update_vf_mac_exit: 1254 hwrm_req_drop(bp, req); 1255 if (inform_pf) 1256 bnxt_approve_mac(bp, bp->dev->dev_addr, false); 1257 } 1258 1259 #else 1260 1261 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 1262 { 1263 if (*num_vfs) 1264 return -EOPNOTSUPP; 1265 return 0; 1266 } 1267 1268 void bnxt_sriov_disable(struct bnxt *bp) 1269 { 1270 } 1271 1272 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1273 { 1274 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 1275 } 1276 1277 void bnxt_update_vf_mac(struct bnxt *bp) 1278 { 1279 } 1280 1281 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict) 1282 { 1283 return 0; 1284 } 1285 #endif 1286