1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2018 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/ethtool.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/if_vlan.h> 16 #include <linux/interrupt.h> 17 #include <linux/etherdevice.h> 18 #include <net/dcbnl.h> 19 #include "bnxt_hsi.h" 20 #include "bnxt.h" 21 #include "bnxt_hwrm.h" 22 #include "bnxt_ulp.h" 23 #include "bnxt_sriov.h" 24 #include "bnxt_vfr.h" 25 #include "bnxt_ethtool.h" 26 27 #ifdef CONFIG_BNXT_SRIOV 28 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 29 struct bnxt_vf_info *vf, u16 event_id) 30 { 31 struct hwrm_fwd_async_event_cmpl_input *req; 32 struct hwrm_async_event_cmpl *async_cmpl; 33 int rc = 0; 34 35 rc = hwrm_req_init(bp, req, HWRM_FWD_ASYNC_EVENT_CMPL); 36 if (rc) 37 goto exit; 38 39 if (vf) 40 req->encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 41 else 42 /* broadcast this async event to all VFs */ 43 req->encap_async_event_target_id = cpu_to_le16(0xffff); 44 async_cmpl = 45 (struct hwrm_async_event_cmpl *)req->encap_async_event_cmpl; 46 async_cmpl->type = cpu_to_le16(ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 47 async_cmpl->event_id = cpu_to_le16(event_id); 48 49 rc = hwrm_req_send(bp, req); 50 exit: 51 if (rc) 52 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 53 rc); 54 return rc; 55 } 56 57 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 58 { 59 if (!bp->pf.active_vfs) { 60 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 61 return -EINVAL; 62 } 63 if (vf_id >= bp->pf.active_vfs) { 64 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 65 return -EINVAL; 66 } 67 return 0; 68 } 69 70 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 71 { 72 struct bnxt *bp = netdev_priv(dev); 73 struct hwrm_func_cfg_input *req; 74 bool old_setting = false; 75 struct bnxt_vf_info *vf; 76 u32 func_flags; 77 int rc; 78 79 if (bp->hwrm_spec_code < 0x10701) 80 return -ENOTSUPP; 81 82 rc = bnxt_vf_ndo_prep(bp, vf_id); 83 if (rc) 84 return rc; 85 86 vf = &bp->pf.vf[vf_id]; 87 if (vf->flags & BNXT_VF_SPOOFCHK) 88 old_setting = true; 89 if (old_setting == setting) 90 return 0; 91 92 if (setting) 93 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_ENABLE; 94 else 95 func_flags = FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK_DISABLE; 96 /*TODO: if the driver supports VLAN filter on guest VLAN, 97 * the spoof check should also include vlan anti-spoofing 98 */ 99 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 100 if (!rc) { 101 req->fid = cpu_to_le16(vf->fw_fid); 102 req->flags = cpu_to_le32(func_flags); 103 rc = hwrm_req_send(bp, req); 104 if (!rc) { 105 if (setting) 106 vf->flags |= BNXT_VF_SPOOFCHK; 107 else 108 vf->flags &= ~BNXT_VF_SPOOFCHK; 109 } 110 } 111 return rc; 112 } 113 114 static int bnxt_hwrm_func_qcfg_flags(struct bnxt *bp, struct bnxt_vf_info *vf) 115 { 116 struct hwrm_func_qcfg_output *resp; 117 struct hwrm_func_qcfg_input *req; 118 int rc; 119 120 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 121 if (rc) 122 return rc; 123 124 req->fid = cpu_to_le16(BNXT_PF(bp) ? vf->fw_fid : 0xffff); 125 resp = hwrm_req_hold(bp, req); 126 rc = hwrm_req_send(bp, req); 127 if (!rc) 128 vf->func_qcfg_flags = le16_to_cpu(resp->flags); 129 hwrm_req_drop(bp, req); 130 return rc; 131 } 132 133 bool bnxt_is_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 134 { 135 if (BNXT_PF(bp) && !(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 136 return !!(vf->flags & BNXT_VF_TRUST); 137 138 bnxt_hwrm_func_qcfg_flags(bp, vf); 139 return !!(vf->func_qcfg_flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF); 140 } 141 142 static int bnxt_hwrm_set_trusted_vf(struct bnxt *bp, struct bnxt_vf_info *vf) 143 { 144 struct hwrm_func_cfg_input *req; 145 int rc; 146 147 if (!(bp->fw_cap & BNXT_FW_CAP_TRUSTED_VF)) 148 return 0; 149 150 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 151 if (rc) 152 return rc; 153 154 req->fid = cpu_to_le16(vf->fw_fid); 155 if (vf->flags & BNXT_VF_TRUST) 156 req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 157 else 158 req->flags = cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_DISABLE); 159 return hwrm_req_send(bp, req); 160 } 161 162 int bnxt_set_vf_trust(struct net_device *dev, int vf_id, bool trusted) 163 { 164 struct bnxt *bp = netdev_priv(dev); 165 struct bnxt_vf_info *vf; 166 167 if (bnxt_vf_ndo_prep(bp, vf_id)) 168 return -EINVAL; 169 170 vf = &bp->pf.vf[vf_id]; 171 if (trusted) 172 vf->flags |= BNXT_VF_TRUST; 173 else 174 vf->flags &= ~BNXT_VF_TRUST; 175 176 bnxt_hwrm_set_trusted_vf(bp, vf); 177 return 0; 178 } 179 180 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 181 struct ifla_vf_info *ivi) 182 { 183 struct bnxt *bp = netdev_priv(dev); 184 struct bnxt_vf_info *vf; 185 int rc; 186 187 rc = bnxt_vf_ndo_prep(bp, vf_id); 188 if (rc) 189 return rc; 190 191 ivi->vf = vf_id; 192 vf = &bp->pf.vf[vf_id]; 193 194 if (is_valid_ether_addr(vf->mac_addr)) 195 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 196 else 197 memcpy(&ivi->mac, vf->vf_mac_addr, ETH_ALEN); 198 ivi->max_tx_rate = vf->max_tx_rate; 199 ivi->min_tx_rate = vf->min_tx_rate; 200 ivi->vlan = vf->vlan & VLAN_VID_MASK; 201 ivi->qos = vf->vlan >> VLAN_PRIO_SHIFT; 202 ivi->spoofchk = !!(vf->flags & BNXT_VF_SPOOFCHK); 203 ivi->trusted = bnxt_is_trusted_vf(bp, vf); 204 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 205 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 206 else if (vf->flags & BNXT_VF_LINK_UP) 207 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 208 else 209 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 210 211 return 0; 212 } 213 214 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 215 { 216 struct bnxt *bp = netdev_priv(dev); 217 struct hwrm_func_cfg_input *req; 218 struct bnxt_vf_info *vf; 219 int rc; 220 221 rc = bnxt_vf_ndo_prep(bp, vf_id); 222 if (rc) 223 return rc; 224 /* reject bc or mc mac addr, zero mac addr means allow 225 * VF to use its own mac addr 226 */ 227 if (is_multicast_ether_addr(mac)) { 228 netdev_err(dev, "Invalid VF ethernet address\n"); 229 return -EINVAL; 230 } 231 vf = &bp->pf.vf[vf_id]; 232 233 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 234 if (rc) 235 return rc; 236 237 memcpy(vf->mac_addr, mac, ETH_ALEN); 238 239 req->fid = cpu_to_le16(vf->fw_fid); 240 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 241 memcpy(req->dflt_mac_addr, mac, ETH_ALEN); 242 return hwrm_req_send(bp, req); 243 } 244 245 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos, 246 __be16 vlan_proto) 247 { 248 struct bnxt *bp = netdev_priv(dev); 249 struct hwrm_func_cfg_input *req; 250 struct bnxt_vf_info *vf; 251 u16 vlan_tag; 252 int rc; 253 254 if (bp->hwrm_spec_code < 0x10201) 255 return -ENOTSUPP; 256 257 if (vlan_proto != htons(ETH_P_8021Q) && 258 (vlan_proto != htons(ETH_P_8021AD) || 259 !(bp->fw_cap & BNXT_FW_CAP_DFLT_VLAN_TPID_PCP))) 260 return -EPROTONOSUPPORT; 261 262 rc = bnxt_vf_ndo_prep(bp, vf_id); 263 if (rc) 264 return rc; 265 266 if (vlan_id >= VLAN_N_VID || qos >= IEEE_8021Q_MAX_PRIORITIES || 267 (!vlan_id && qos)) 268 return -EINVAL; 269 270 vf = &bp->pf.vf[vf_id]; 271 vlan_tag = vlan_id | (u16)qos << VLAN_PRIO_SHIFT; 272 if (vlan_tag == vf->vlan) 273 return 0; 274 275 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 276 if (!rc) { 277 req->fid = cpu_to_le16(vf->fw_fid); 278 req->dflt_vlan = cpu_to_le16(vlan_tag); 279 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 280 if (bp->fw_cap & BNXT_FW_CAP_DFLT_VLAN_TPID_PCP) { 281 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_TPID); 282 req->tpid = vlan_proto; 283 } 284 rc = hwrm_req_send(bp, req); 285 if (!rc) 286 vf->vlan = vlan_tag; 287 } 288 return rc; 289 } 290 291 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 292 int max_tx_rate) 293 { 294 struct bnxt *bp = netdev_priv(dev); 295 struct hwrm_func_cfg_input *req; 296 struct bnxt_vf_info *vf; 297 u32 pf_link_speed; 298 int rc; 299 300 rc = bnxt_vf_ndo_prep(bp, vf_id); 301 if (rc) 302 return rc; 303 304 vf = &bp->pf.vf[vf_id]; 305 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 306 if (max_tx_rate > pf_link_speed) { 307 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 308 max_tx_rate, vf_id); 309 return -EINVAL; 310 } 311 312 if (min_tx_rate > pf_link_speed) { 313 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 314 min_tx_rate, vf_id); 315 return -EINVAL; 316 } 317 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 318 return 0; 319 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 320 if (!rc) { 321 req->fid = cpu_to_le16(vf->fw_fid); 322 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW | 323 FUNC_CFG_REQ_ENABLES_MIN_BW); 324 req->max_bw = cpu_to_le32(max_tx_rate); 325 req->min_bw = cpu_to_le32(min_tx_rate); 326 rc = hwrm_req_send(bp, req); 327 if (!rc) { 328 vf->min_tx_rate = min_tx_rate; 329 vf->max_tx_rate = max_tx_rate; 330 } 331 } 332 return rc; 333 } 334 335 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 336 { 337 struct bnxt *bp = netdev_priv(dev); 338 struct bnxt_vf_info *vf; 339 int rc; 340 341 rc = bnxt_vf_ndo_prep(bp, vf_id); 342 if (rc) 343 return rc; 344 345 vf = &bp->pf.vf[vf_id]; 346 347 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 348 switch (link) { 349 case IFLA_VF_LINK_STATE_AUTO: 350 vf->flags |= BNXT_VF_LINK_UP; 351 break; 352 case IFLA_VF_LINK_STATE_DISABLE: 353 vf->flags |= BNXT_VF_LINK_FORCED; 354 break; 355 case IFLA_VF_LINK_STATE_ENABLE: 356 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 357 break; 358 default: 359 netdev_err(bp->dev, "Invalid link option\n"); 360 rc = -EINVAL; 361 break; 362 } 363 if (vf->flags & (BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED)) 364 rc = bnxt_hwrm_fwd_async_event_cmpl(bp, vf, 365 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE); 366 return rc; 367 } 368 369 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 370 { 371 int i; 372 struct bnxt_vf_info *vf; 373 374 for (i = 0; i < num_vfs; i++) { 375 vf = &bp->pf.vf[i]; 376 memset(vf, 0, sizeof(*vf)); 377 } 378 return 0; 379 } 380 381 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 382 { 383 struct hwrm_func_vf_resc_free_input *req; 384 struct bnxt_pf_info *pf = &bp->pf; 385 int i, rc; 386 387 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESC_FREE); 388 if (rc) 389 return rc; 390 391 hwrm_req_hold(bp, req); 392 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 393 req->vf_id = cpu_to_le16(i); 394 rc = hwrm_req_send(bp, req); 395 if (rc) 396 break; 397 } 398 hwrm_req_drop(bp, req); 399 return rc; 400 } 401 402 static void bnxt_free_vf_resources(struct bnxt *bp) 403 { 404 struct pci_dev *pdev = bp->pdev; 405 int i; 406 407 kfree(bp->pf.vf_event_bmap); 408 bp->pf.vf_event_bmap = NULL; 409 410 for (i = 0; i < 4; i++) { 411 if (bp->pf.hwrm_cmd_req_addr[i]) { 412 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 413 bp->pf.hwrm_cmd_req_addr[i], 414 bp->pf.hwrm_cmd_req_dma_addr[i]); 415 bp->pf.hwrm_cmd_req_addr[i] = NULL; 416 } 417 } 418 419 bp->pf.active_vfs = 0; 420 kfree(bp->pf.vf); 421 bp->pf.vf = NULL; 422 } 423 424 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 425 { 426 struct pci_dev *pdev = bp->pdev; 427 u32 nr_pages, size, i, j, k = 0; 428 429 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 430 if (!bp->pf.vf) 431 return -ENOMEM; 432 433 bnxt_set_vf_attr(bp, num_vfs); 434 435 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 436 nr_pages = size / BNXT_PAGE_SIZE; 437 if (size & (BNXT_PAGE_SIZE - 1)) 438 nr_pages++; 439 440 for (i = 0; i < nr_pages; i++) { 441 bp->pf.hwrm_cmd_req_addr[i] = 442 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 443 &bp->pf.hwrm_cmd_req_dma_addr[i], 444 GFP_KERNEL); 445 446 if (!bp->pf.hwrm_cmd_req_addr[i]) 447 return -ENOMEM; 448 449 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 450 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 451 452 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 453 j * BNXT_HWRM_REQ_MAX_SIZE; 454 vf->hwrm_cmd_req_dma_addr = 455 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 456 BNXT_HWRM_REQ_MAX_SIZE; 457 k++; 458 } 459 } 460 461 /* Max 128 VF's */ 462 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 463 if (!bp->pf.vf_event_bmap) 464 return -ENOMEM; 465 466 bp->pf.hwrm_cmd_req_pages = nr_pages; 467 return 0; 468 } 469 470 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 471 { 472 struct hwrm_func_buf_rgtr_input *req; 473 int rc; 474 475 rc = hwrm_req_init(bp, req, HWRM_FUNC_BUF_RGTR); 476 if (rc) 477 return rc; 478 479 req->req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 480 req->req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 481 req->req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 482 req->req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 483 req->req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 484 req->req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 485 req->req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 486 487 return hwrm_req_send(bp, req); 488 } 489 490 static int __bnxt_set_vf_params(struct bnxt *bp, int vf_id) 491 { 492 struct hwrm_func_cfg_input *req; 493 struct bnxt_vf_info *vf; 494 int rc; 495 496 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 497 if (rc) 498 return rc; 499 500 vf = &bp->pf.vf[vf_id]; 501 req->fid = cpu_to_le16(vf->fw_fid); 502 503 if (is_valid_ether_addr(vf->mac_addr)) { 504 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 505 memcpy(req->dflt_mac_addr, vf->mac_addr, ETH_ALEN); 506 } 507 if (vf->vlan) { 508 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 509 req->dflt_vlan = cpu_to_le16(vf->vlan); 510 } 511 if (vf->max_tx_rate) { 512 req->enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW | 513 FUNC_CFG_REQ_ENABLES_MIN_BW); 514 req->max_bw = cpu_to_le32(vf->max_tx_rate); 515 req->min_bw = cpu_to_le32(vf->min_tx_rate); 516 } 517 if (vf->flags & BNXT_VF_TRUST) 518 req->flags |= cpu_to_le32(FUNC_CFG_REQ_FLAGS_TRUSTED_VF_ENABLE); 519 520 return hwrm_req_send(bp, req); 521 } 522 523 /* Only called by PF to reserve resources for VFs, returns actual number of 524 * VFs configured, or < 0 on error. 525 */ 526 static int bnxt_hwrm_func_vf_resc_cfg(struct bnxt *bp, int num_vfs, bool reset) 527 { 528 struct hwrm_func_vf_resource_cfg_input *req; 529 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 530 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings; 531 u16 vf_stat_ctx, vf_vnics, vf_ring_grps; 532 struct bnxt_pf_info *pf = &bp->pf; 533 int i, rc = 0, min = 1; 534 u16 vf_msix = 0; 535 u16 vf_rss; 536 537 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_RESOURCE_CFG); 538 if (rc) 539 return rc; 540 541 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 542 vf_msix = hw_resc->max_nqs - bnxt_nq_rings_in_use(bp); 543 vf_ring_grps = 0; 544 } else { 545 vf_ring_grps = hw_resc->max_hw_ring_grps - bp->rx_nr_rings; 546 } 547 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp); 548 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp); 549 if (bp->flags & BNXT_FLAG_AGG_RINGS) 550 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings * 2; 551 else 552 vf_rx_rings = hw_resc->max_rx_rings - bp->rx_nr_rings; 553 vf_tx_rings = hw_resc->max_tx_rings - bp->tx_nr_rings; 554 vf_vnics = hw_resc->max_vnics - bp->nr_vnics; 555 vf_rss = hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs; 556 557 req->min_rsscos_ctx = cpu_to_le16(BNXT_VF_MIN_RSS_CTX); 558 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 559 min = 0; 560 req->min_rsscos_ctx = cpu_to_le16(min); 561 } 562 if (pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL || 563 pf->vf_resv_strategy == BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) { 564 req->min_cmpl_rings = cpu_to_le16(min); 565 req->min_tx_rings = cpu_to_le16(min); 566 req->min_rx_rings = cpu_to_le16(min); 567 req->min_l2_ctxs = cpu_to_le16(min); 568 req->min_vnics = cpu_to_le16(min); 569 req->min_stat_ctx = cpu_to_le16(min); 570 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 571 req->min_hw_ring_grps = cpu_to_le16(min); 572 } else { 573 vf_cp_rings /= num_vfs; 574 vf_tx_rings /= num_vfs; 575 vf_rx_rings /= num_vfs; 576 if ((bp->fw_cap & BNXT_FW_CAP_PRE_RESV_VNICS) && 577 vf_vnics >= pf->max_vfs) { 578 /* Take into account that FW has pre-reserved 1 VNIC for 579 * each pf->max_vfs. 580 */ 581 vf_vnics = (vf_vnics - pf->max_vfs + num_vfs) / num_vfs; 582 } else { 583 vf_vnics /= num_vfs; 584 } 585 vf_stat_ctx /= num_vfs; 586 vf_ring_grps /= num_vfs; 587 vf_rss /= num_vfs; 588 589 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 590 req->min_cmpl_rings = cpu_to_le16(vf_cp_rings); 591 req->min_tx_rings = cpu_to_le16(vf_tx_rings); 592 req->min_rx_rings = cpu_to_le16(vf_rx_rings); 593 req->min_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 594 req->min_vnics = cpu_to_le16(vf_vnics); 595 req->min_stat_ctx = cpu_to_le16(vf_stat_ctx); 596 req->min_hw_ring_grps = cpu_to_le16(vf_ring_grps); 597 req->min_rsscos_ctx = cpu_to_le16(vf_rss); 598 } 599 req->max_cmpl_rings = cpu_to_le16(vf_cp_rings); 600 req->max_tx_rings = cpu_to_le16(vf_tx_rings); 601 req->max_rx_rings = cpu_to_le16(vf_rx_rings); 602 req->max_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 603 req->max_vnics = cpu_to_le16(vf_vnics); 604 req->max_stat_ctx = cpu_to_le16(vf_stat_ctx); 605 req->max_hw_ring_grps = cpu_to_le16(vf_ring_grps); 606 req->max_rsscos_ctx = cpu_to_le16(vf_rss); 607 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 608 req->max_msix = cpu_to_le16(vf_msix / num_vfs); 609 610 hwrm_req_hold(bp, req); 611 for (i = 0; i < num_vfs; i++) { 612 if (reset) 613 __bnxt_set_vf_params(bp, i); 614 615 req->vf_id = cpu_to_le16(pf->first_vf_id + i); 616 rc = hwrm_req_send(bp, req); 617 if (rc) 618 break; 619 pf->active_vfs = i + 1; 620 pf->vf[i].fw_fid = pf->first_vf_id + i; 621 } 622 623 if (pf->active_vfs) { 624 u16 n = pf->active_vfs; 625 626 hw_resc->max_tx_rings -= le16_to_cpu(req->min_tx_rings) * n; 627 hw_resc->max_rx_rings -= le16_to_cpu(req->min_rx_rings) * n; 628 hw_resc->max_hw_ring_grps -= 629 le16_to_cpu(req->min_hw_ring_grps) * n; 630 hw_resc->max_cp_rings -= le16_to_cpu(req->min_cmpl_rings) * n; 631 hw_resc->max_rsscos_ctxs -= 632 le16_to_cpu(req->min_rsscos_ctx) * n; 633 hw_resc->max_stat_ctxs -= le16_to_cpu(req->min_stat_ctx) * n; 634 hw_resc->max_vnics -= le16_to_cpu(req->min_vnics) * n; 635 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 636 hw_resc->max_nqs -= vf_msix; 637 638 rc = pf->active_vfs; 639 } 640 hwrm_req_drop(bp, req); 641 return rc; 642 } 643 644 /* Only called by PF to reserve resources for VFs, returns actual number of 645 * VFs configured, or < 0 on error. 646 */ 647 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 648 { 649 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 650 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 651 struct bnxt_pf_info *pf = &bp->pf; 652 struct hwrm_func_cfg_input *req; 653 int total_vf_tx_rings = 0; 654 u16 vf_ring_grps; 655 u32 mtu, i; 656 int rc; 657 658 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 659 if (rc) 660 return rc; 661 662 /* Remaining rings are distributed equally amongs VF's for now */ 663 vf_cp_rings = bnxt_get_avail_cp_rings_for_en(bp) / num_vfs; 664 vf_stat_ctx = bnxt_get_avail_stat_ctxs_for_en(bp) / num_vfs; 665 if (bp->flags & BNXT_FLAG_AGG_RINGS) 666 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings * 2) / 667 num_vfs; 668 else 669 vf_rx_rings = (hw_resc->max_rx_rings - bp->rx_nr_rings) / 670 num_vfs; 671 vf_ring_grps = (hw_resc->max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 672 vf_tx_rings = (hw_resc->max_tx_rings - bp->tx_nr_rings) / num_vfs; 673 vf_vnics = (hw_resc->max_vnics - bp->nr_vnics) / num_vfs; 674 vf_vnics = min_t(u16, vf_vnics, vf_rx_rings); 675 676 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ADMIN_MTU | 677 FUNC_CFG_REQ_ENABLES_MRU | 678 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 679 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 680 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 681 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 682 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 683 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 684 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 685 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 686 687 mtu = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 688 req->mru = cpu_to_le16(mtu); 689 req->admin_mtu = cpu_to_le16(mtu); 690 691 req->num_rsscos_ctxs = cpu_to_le16(1); 692 req->num_cmpl_rings = cpu_to_le16(vf_cp_rings); 693 req->num_tx_rings = cpu_to_le16(vf_tx_rings); 694 req->num_rx_rings = cpu_to_le16(vf_rx_rings); 695 req->num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 696 req->num_l2_ctxs = cpu_to_le16(4); 697 698 req->num_vnics = cpu_to_le16(vf_vnics); 699 /* FIXME spec currently uses 1 bit for stats ctx */ 700 req->num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 701 702 hwrm_req_hold(bp, req); 703 for (i = 0; i < num_vfs; i++) { 704 int vf_tx_rsvd = vf_tx_rings; 705 706 req->fid = cpu_to_le16(pf->first_vf_id + i); 707 rc = hwrm_req_send(bp, req); 708 if (rc) 709 break; 710 pf->active_vfs = i + 1; 711 pf->vf[i].fw_fid = le16_to_cpu(req->fid); 712 rc = __bnxt_hwrm_get_tx_rings(bp, pf->vf[i].fw_fid, 713 &vf_tx_rsvd); 714 if (rc) 715 break; 716 total_vf_tx_rings += vf_tx_rsvd; 717 } 718 hwrm_req_drop(bp, req); 719 if (pf->active_vfs) { 720 hw_resc->max_tx_rings -= total_vf_tx_rings; 721 hw_resc->max_rx_rings -= vf_rx_rings * num_vfs; 722 hw_resc->max_hw_ring_grps -= vf_ring_grps * num_vfs; 723 hw_resc->max_cp_rings -= vf_cp_rings * num_vfs; 724 hw_resc->max_rsscos_ctxs -= num_vfs; 725 hw_resc->max_stat_ctxs -= vf_stat_ctx * num_vfs; 726 hw_resc->max_vnics -= vf_vnics * num_vfs; 727 rc = pf->active_vfs; 728 } 729 return rc; 730 } 731 732 static int bnxt_func_cfg(struct bnxt *bp, int num_vfs, bool reset) 733 { 734 if (BNXT_NEW_RM(bp)) 735 return bnxt_hwrm_func_vf_resc_cfg(bp, num_vfs, reset); 736 else 737 return bnxt_hwrm_func_cfg(bp, num_vfs); 738 } 739 740 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 741 { 742 int rc; 743 744 /* Register buffers for VFs */ 745 rc = bnxt_hwrm_func_buf_rgtr(bp); 746 if (rc) 747 return rc; 748 749 /* Reserve resources for VFs */ 750 rc = bnxt_func_cfg(bp, *num_vfs, reset); 751 if (rc != *num_vfs) { 752 if (rc <= 0) { 753 netdev_warn(bp->dev, "Unable to reserve resources for SRIOV.\n"); 754 *num_vfs = 0; 755 return rc; 756 } 757 netdev_warn(bp->dev, "Only able to reserve resources for %d VFs.\n", 758 rc); 759 *num_vfs = rc; 760 } 761 762 return 0; 763 } 764 765 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 766 { 767 int rc = 0, vfs_supported; 768 int min_rx_rings, min_tx_rings, min_rss_ctxs; 769 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 770 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 771 int avail_cp, avail_stat; 772 773 /* Check if we can enable requested num of vf's. At a mininum 774 * we require 1 RX 1 TX rings for each VF. In this minimum conf 775 * features like TPA will not be available. 776 */ 777 vfs_supported = *num_vfs; 778 779 avail_cp = bnxt_get_avail_cp_rings_for_en(bp); 780 avail_stat = bnxt_get_avail_stat_ctxs_for_en(bp); 781 avail_cp = min_t(int, avail_cp, avail_stat); 782 783 while (vfs_supported) { 784 min_rx_rings = vfs_supported; 785 min_tx_rings = vfs_supported; 786 min_rss_ctxs = vfs_supported; 787 788 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 789 if (hw_resc->max_rx_rings - bp->rx_nr_rings * 2 >= 790 min_rx_rings) 791 rx_ok = 1; 792 } else { 793 if (hw_resc->max_rx_rings - bp->rx_nr_rings >= 794 min_rx_rings) 795 rx_ok = 1; 796 } 797 if (hw_resc->max_vnics - bp->nr_vnics < min_rx_rings || 798 avail_cp < min_rx_rings) 799 rx_ok = 0; 800 801 if (hw_resc->max_tx_rings - bp->tx_nr_rings >= min_tx_rings && 802 avail_cp >= min_tx_rings) 803 tx_ok = 1; 804 805 if (hw_resc->max_rsscos_ctxs - bp->rsscos_nr_ctxs >= 806 min_rss_ctxs) 807 rss_ok = 1; 808 809 if (tx_ok && rx_ok && rss_ok) 810 break; 811 812 vfs_supported--; 813 } 814 815 if (!vfs_supported) { 816 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 817 return -EINVAL; 818 } 819 820 if (vfs_supported != *num_vfs) { 821 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 822 *num_vfs, vfs_supported); 823 *num_vfs = vfs_supported; 824 } 825 826 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 827 if (rc) 828 goto err_out1; 829 830 rc = bnxt_cfg_hw_sriov(bp, num_vfs, false); 831 if (rc) 832 goto err_out2; 833 834 rc = pci_enable_sriov(bp->pdev, *num_vfs); 835 if (rc) 836 goto err_out2; 837 838 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 839 return 0; 840 841 /* Create representors for VFs in switchdev mode */ 842 devl_lock(bp->dl); 843 rc = bnxt_vf_reps_create(bp); 844 devl_unlock(bp->dl); 845 if (rc) { 846 netdev_info(bp->dev, "Cannot enable VFS as representors cannot be created\n"); 847 goto err_out3; 848 } 849 850 return 0; 851 852 err_out3: 853 /* Disable SR-IOV */ 854 pci_disable_sriov(bp->pdev); 855 856 err_out2: 857 /* Free the resources reserved for various VF's */ 858 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 859 860 /* Restore the max resources */ 861 bnxt_hwrm_func_qcaps(bp); 862 863 err_out1: 864 bnxt_free_vf_resources(bp); 865 866 return rc; 867 } 868 869 void bnxt_sriov_disable(struct bnxt *bp) 870 { 871 u16 num_vfs = pci_num_vf(bp->pdev); 872 873 if (!num_vfs) 874 return; 875 876 /* synchronize VF and VF-rep create and destroy */ 877 devl_lock(bp->dl); 878 bnxt_vf_reps_destroy(bp); 879 880 if (pci_vfs_assigned(bp->pdev)) { 881 bnxt_hwrm_fwd_async_event_cmpl( 882 bp, NULL, ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 883 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 884 num_vfs); 885 } else { 886 pci_disable_sriov(bp->pdev); 887 /* Free the HW resources reserved for various VF's */ 888 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 889 } 890 devl_unlock(bp->dl); 891 892 bnxt_free_vf_resources(bp); 893 894 /* Reclaim all resources for the PF. */ 895 rtnl_lock(); 896 bnxt_restore_pf_fw_resources(bp); 897 rtnl_unlock(); 898 } 899 900 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 901 { 902 struct net_device *dev = pci_get_drvdata(pdev); 903 struct bnxt *bp = netdev_priv(dev); 904 905 rtnl_lock(); 906 if (!netif_running(dev)) { 907 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 908 rtnl_unlock(); 909 return 0; 910 } 911 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 912 netdev_warn(dev, "Reject SRIOV config request when FW reset is in progress\n"); 913 rtnl_unlock(); 914 return 0; 915 } 916 bp->sriov_cfg = true; 917 rtnl_unlock(); 918 919 if (pci_vfs_assigned(bp->pdev)) { 920 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 921 num_vfs = 0; 922 goto sriov_cfg_exit; 923 } 924 925 /* Check if enabled VFs is same as requested */ 926 if (num_vfs && num_vfs == bp->pf.active_vfs) 927 goto sriov_cfg_exit; 928 929 /* if there are previous existing VFs, clean them up */ 930 bnxt_sriov_disable(bp); 931 if (!num_vfs) 932 goto sriov_cfg_exit; 933 934 bnxt_sriov_enable(bp, &num_vfs); 935 936 sriov_cfg_exit: 937 bp->sriov_cfg = false; 938 wake_up(&bp->sriov_cfg_wait); 939 940 return num_vfs; 941 } 942 943 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 944 void *encap_resp, __le64 encap_resp_addr, 945 __le16 encap_resp_cpr, u32 msg_size) 946 { 947 struct hwrm_fwd_resp_input *req; 948 int rc; 949 950 if (BNXT_FWD_RESP_SIZE_ERR(msg_size)) { 951 netdev_warn_once(bp->dev, "HWRM fwd response too big (%d bytes)\n", 952 msg_size); 953 return -EINVAL; 954 } 955 956 rc = hwrm_req_init(bp, req, HWRM_FWD_RESP); 957 if (!rc) { 958 /* Set the new target id */ 959 req->target_id = cpu_to_le16(vf->fw_fid); 960 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid); 961 req->encap_resp_len = cpu_to_le16(msg_size); 962 req->encap_resp_addr = encap_resp_addr; 963 req->encap_resp_cmpl_ring = encap_resp_cpr; 964 memcpy(req->encap_resp, encap_resp, msg_size); 965 966 rc = hwrm_req_send(bp, req); 967 } 968 if (rc) 969 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 970 return rc; 971 } 972 973 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 974 u32 msg_size) 975 { 976 struct hwrm_reject_fwd_resp_input *req; 977 int rc; 978 979 if (BNXT_REJ_FWD_RESP_SIZE_ERR(msg_size)) 980 return -EINVAL; 981 982 rc = hwrm_req_init(bp, req, HWRM_REJECT_FWD_RESP); 983 if (!rc) { 984 /* Set the new target id */ 985 req->target_id = cpu_to_le16(vf->fw_fid); 986 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid); 987 memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size); 988 989 rc = hwrm_req_send(bp, req); 990 } 991 if (rc) 992 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 993 return rc; 994 } 995 996 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 997 u32 msg_size) 998 { 999 struct hwrm_exec_fwd_resp_input *req; 1000 int rc; 1001 1002 if (BNXT_EXEC_FWD_RESP_SIZE_ERR(msg_size)) 1003 return -EINVAL; 1004 1005 rc = hwrm_req_init(bp, req, HWRM_EXEC_FWD_RESP); 1006 if (!rc) { 1007 /* Set the new target id */ 1008 req->target_id = cpu_to_le16(vf->fw_fid); 1009 req->encap_resp_target_id = cpu_to_le16(vf->fw_fid); 1010 memcpy(req->encap_request, vf->hwrm_cmd_req_addr, msg_size); 1011 1012 rc = hwrm_req_send(bp, req); 1013 } 1014 if (rc) 1015 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 1016 return rc; 1017 } 1018 1019 static int bnxt_vf_configure_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 1020 { 1021 u32 msg_size = sizeof(struct hwrm_func_vf_cfg_input); 1022 struct hwrm_func_vf_cfg_input *req = 1023 (struct hwrm_func_vf_cfg_input *)vf->hwrm_cmd_req_addr; 1024 1025 /* Allow VF to set a valid MAC address, if trust is set to on or 1026 * if the PF assigned MAC address is zero 1027 */ 1028 if (req->enables & cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR)) { 1029 bool trust = bnxt_is_trusted_vf(bp, vf); 1030 1031 if (is_valid_ether_addr(req->dflt_mac_addr) && 1032 (trust || !is_valid_ether_addr(vf->mac_addr) || 1033 ether_addr_equal(req->dflt_mac_addr, vf->mac_addr))) { 1034 ether_addr_copy(vf->vf_mac_addr, req->dflt_mac_addr); 1035 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1036 } 1037 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1038 } 1039 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1040 } 1041 1042 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 1043 { 1044 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 1045 struct hwrm_cfa_l2_filter_alloc_input *req = 1046 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 1047 bool mac_ok = false; 1048 1049 if (!is_valid_ether_addr((const u8 *)req->l2_addr)) 1050 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1051 1052 /* Allow VF to set a valid MAC address, if trust is set to on. 1053 * Or VF MAC address must first match MAC address in PF's context. 1054 * Otherwise, it must match the VF MAC address if firmware spec >= 1055 * 1.2.2 1056 */ 1057 if (bnxt_is_trusted_vf(bp, vf)) { 1058 mac_ok = true; 1059 } else if (is_valid_ether_addr(vf->mac_addr)) { 1060 if (ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 1061 mac_ok = true; 1062 } else if (is_valid_ether_addr(vf->vf_mac_addr)) { 1063 if (ether_addr_equal((const u8 *)req->l2_addr, vf->vf_mac_addr)) 1064 mac_ok = true; 1065 } else { 1066 /* There are two cases: 1067 * 1.If firmware spec < 0x10202,VF MAC address is not forwarded 1068 * to the PF and so it doesn't have to match 1069 * 2.Allow VF to modify it's own MAC when PF has not assigned a 1070 * valid MAC address and firmware spec >= 0x10202 1071 */ 1072 mac_ok = true; 1073 } 1074 if (mac_ok) 1075 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 1076 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 1077 } 1078 1079 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 1080 { 1081 int rc = 0; 1082 1083 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 1084 /* real link */ 1085 rc = bnxt_hwrm_exec_fwd_resp( 1086 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 1087 } else { 1088 struct hwrm_port_phy_qcfg_output_compat phy_qcfg_resp = {}; 1089 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 1090 1091 phy_qcfg_req = 1092 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 1093 mutex_lock(&bp->link_lock); 1094 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 1095 sizeof(phy_qcfg_resp)); 1096 mutex_unlock(&bp->link_lock); 1097 phy_qcfg_resp.resp_len = cpu_to_le16(sizeof(phy_qcfg_resp)); 1098 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 1099 /* New SPEEDS2 fields are beyond the legacy structure, so 1100 * clear the SPEEDS2_SUPPORTED flag. 1101 */ 1102 phy_qcfg_resp.option_flags &= 1103 ~PORT_PHY_QCAPS_RESP_FLAGS2_SPEEDS2_SUPPORTED; 1104 phy_qcfg_resp.valid = 1; 1105 1106 if (vf->flags & BNXT_VF_LINK_UP) { 1107 /* if physical link is down, force link up on VF */ 1108 if (phy_qcfg_resp.link != 1109 PORT_PHY_QCFG_RESP_LINK_LINK) { 1110 phy_qcfg_resp.link = 1111 PORT_PHY_QCFG_RESP_LINK_LINK; 1112 phy_qcfg_resp.link_speed = cpu_to_le16( 1113 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 1114 phy_qcfg_resp.duplex_cfg = 1115 PORT_PHY_QCFG_RESP_DUPLEX_CFG_FULL; 1116 phy_qcfg_resp.duplex_state = 1117 PORT_PHY_QCFG_RESP_DUPLEX_STATE_FULL; 1118 phy_qcfg_resp.pause = 1119 (PORT_PHY_QCFG_RESP_PAUSE_TX | 1120 PORT_PHY_QCFG_RESP_PAUSE_RX); 1121 } 1122 } else { 1123 /* force link down */ 1124 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 1125 phy_qcfg_resp.link_speed = 0; 1126 phy_qcfg_resp.duplex_state = 1127 PORT_PHY_QCFG_RESP_DUPLEX_STATE_HALF; 1128 phy_qcfg_resp.pause = 0; 1129 } 1130 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 1131 phy_qcfg_req->resp_addr, 1132 phy_qcfg_req->cmpl_ring, 1133 sizeof(phy_qcfg_resp)); 1134 } 1135 return rc; 1136 } 1137 1138 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 1139 { 1140 int rc = 0; 1141 struct input *encap_req = vf->hwrm_cmd_req_addr; 1142 u32 req_type = le16_to_cpu(encap_req->req_type); 1143 1144 switch (req_type) { 1145 case HWRM_FUNC_VF_CFG: 1146 rc = bnxt_vf_configure_mac(bp, vf); 1147 break; 1148 case HWRM_CFA_L2_FILTER_ALLOC: 1149 rc = bnxt_vf_validate_set_mac(bp, vf); 1150 break; 1151 case HWRM_FUNC_CFG: 1152 /* TODO Validate if VF is allowed to change mac address, 1153 * mtu, num of rings etc 1154 */ 1155 rc = bnxt_hwrm_exec_fwd_resp( 1156 bp, vf, sizeof(struct hwrm_func_cfg_input)); 1157 break; 1158 case HWRM_PORT_PHY_QCFG: 1159 rc = bnxt_vf_set_link(bp, vf); 1160 break; 1161 default: 1162 break; 1163 } 1164 return rc; 1165 } 1166 1167 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1168 { 1169 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 1170 1171 /* Scan through VF's and process commands */ 1172 while (1) { 1173 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 1174 if (vf_id >= active_vfs) 1175 break; 1176 1177 clear_bit(vf_id, bp->pf.vf_event_bmap); 1178 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 1179 i = vf_id + 1; 1180 } 1181 } 1182 1183 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict) 1184 { 1185 struct hwrm_func_vf_cfg_input *req; 1186 int rc = 0; 1187 1188 if (!BNXT_VF(bp)) 1189 return 0; 1190 1191 if (bp->hwrm_spec_code < 0x10202) { 1192 if (is_valid_ether_addr(bp->vf.mac_addr)) 1193 rc = -EADDRNOTAVAIL; 1194 goto mac_done; 1195 } 1196 1197 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 1198 if (rc) 1199 goto mac_done; 1200 1201 req->enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 1202 memcpy(req->dflt_mac_addr, mac, ETH_ALEN); 1203 if (!strict) 1204 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT); 1205 rc = hwrm_req_send(bp, req); 1206 mac_done: 1207 if (rc && strict) { 1208 rc = -EADDRNOTAVAIL; 1209 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 1210 mac); 1211 return rc; 1212 } 1213 return 0; 1214 } 1215 1216 void bnxt_update_vf_mac(struct bnxt *bp) 1217 { 1218 struct hwrm_func_qcaps_output *resp; 1219 struct hwrm_func_qcaps_input *req; 1220 bool inform_pf = false; 1221 1222 if (hwrm_req_init(bp, req, HWRM_FUNC_QCAPS)) 1223 return; 1224 1225 req->fid = cpu_to_le16(0xffff); 1226 1227 resp = hwrm_req_hold(bp, req); 1228 if (hwrm_req_send(bp, req)) 1229 goto update_vf_mac_exit; 1230 1231 /* Store MAC address from the firmware. There are 2 cases: 1232 * 1. MAC address is valid. It is assigned from the PF and we 1233 * need to override the current VF MAC address with it. 1234 * 2. MAC address is zero. The VF will use a random MAC address by 1235 * default but the stored zero MAC will allow the VF user to change 1236 * the random MAC address using ndo_set_mac_address() if he wants. 1237 */ 1238 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) { 1239 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 1240 /* This means we are now using our own MAC address, let 1241 * the PF know about this MAC address. 1242 */ 1243 if (!is_valid_ether_addr(bp->vf.mac_addr)) 1244 inform_pf = true; 1245 } 1246 1247 /* overwrite netdev dev_addr with admin VF MAC */ 1248 if (is_valid_ether_addr(bp->vf.mac_addr)) 1249 eth_hw_addr_set(bp->dev, bp->vf.mac_addr); 1250 update_vf_mac_exit: 1251 hwrm_req_drop(bp, req); 1252 if (inform_pf) 1253 bnxt_approve_mac(bp, bp->dev->dev_addr, false); 1254 } 1255 1256 #else 1257 1258 int bnxt_cfg_hw_sriov(struct bnxt *bp, int *num_vfs, bool reset) 1259 { 1260 if (*num_vfs) 1261 return -EOPNOTSUPP; 1262 return 0; 1263 } 1264 1265 void bnxt_sriov_disable(struct bnxt *bp) 1266 { 1267 } 1268 1269 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 1270 { 1271 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 1272 } 1273 1274 void bnxt_update_vf_mac(struct bnxt *bp) 1275 { 1276 } 1277 1278 int bnxt_approve_mac(struct bnxt *bp, const u8 *mac, bool strict) 1279 { 1280 return 0; 1281 } 1282 #endif 1283