1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation. 8 */ 9 10 #include <linux/module.h> 11 #include <linux/pci.h> 12 #include <linux/netdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/etherdevice.h> 16 #include "bnxt_hsi.h" 17 #include "bnxt.h" 18 #include "bnxt_sriov.h" 19 #include "bnxt_ethtool.h" 20 21 #ifdef CONFIG_BNXT_SRIOV 22 static int bnxt_vf_ndo_prep(struct bnxt *bp, int vf_id) 23 { 24 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 25 netdev_err(bp->dev, "vf ndo called though PF is down\n"); 26 return -EINVAL; 27 } 28 if (!bp->pf.active_vfs) { 29 netdev_err(bp->dev, "vf ndo called though sriov is disabled\n"); 30 return -EINVAL; 31 } 32 if (vf_id >= bp->pf.max_vfs) { 33 netdev_err(bp->dev, "Invalid VF id %d\n", vf_id); 34 return -EINVAL; 35 } 36 return 0; 37 } 38 39 int bnxt_set_vf_spoofchk(struct net_device *dev, int vf_id, bool setting) 40 { 41 struct hwrm_func_cfg_input req = {0}; 42 struct bnxt *bp = netdev_priv(dev); 43 struct bnxt_vf_info *vf; 44 bool old_setting = false; 45 u32 func_flags; 46 int rc; 47 48 rc = bnxt_vf_ndo_prep(bp, vf_id); 49 if (rc) 50 return rc; 51 52 vf = &bp->pf.vf[vf_id]; 53 if (vf->flags & BNXT_VF_SPOOFCHK) 54 old_setting = true; 55 if (old_setting == setting) 56 return 0; 57 58 func_flags = vf->func_flags; 59 if (setting) 60 func_flags |= FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK; 61 else 62 func_flags &= ~FUNC_CFG_REQ_FLAGS_SRC_MAC_ADDR_CHECK; 63 /*TODO: if the driver supports VLAN filter on guest VLAN, 64 * the spoof check should also include vlan anti-spoofing 65 */ 66 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 67 req.fid = cpu_to_le16(vf->fw_fid); 68 req.flags = cpu_to_le32(func_flags); 69 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 70 if (!rc) { 71 vf->func_flags = func_flags; 72 if (setting) 73 vf->flags |= BNXT_VF_SPOOFCHK; 74 else 75 vf->flags &= ~BNXT_VF_SPOOFCHK; 76 } 77 return rc; 78 } 79 80 int bnxt_get_vf_config(struct net_device *dev, int vf_id, 81 struct ifla_vf_info *ivi) 82 { 83 struct bnxt *bp = netdev_priv(dev); 84 struct bnxt_vf_info *vf; 85 int rc; 86 87 rc = bnxt_vf_ndo_prep(bp, vf_id); 88 if (rc) 89 return rc; 90 91 ivi->vf = vf_id; 92 vf = &bp->pf.vf[vf_id]; 93 94 memcpy(&ivi->mac, vf->mac_addr, ETH_ALEN); 95 ivi->max_tx_rate = vf->max_tx_rate; 96 ivi->min_tx_rate = vf->min_tx_rate; 97 ivi->vlan = vf->vlan; 98 ivi->qos = vf->flags & BNXT_VF_QOS; 99 ivi->spoofchk = vf->flags & BNXT_VF_SPOOFCHK; 100 if (!(vf->flags & BNXT_VF_LINK_FORCED)) 101 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; 102 else if (vf->flags & BNXT_VF_LINK_UP) 103 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; 104 else 105 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; 106 107 return 0; 108 } 109 110 int bnxt_set_vf_mac(struct net_device *dev, int vf_id, u8 *mac) 111 { 112 struct hwrm_func_cfg_input req = {0}; 113 struct bnxt *bp = netdev_priv(dev); 114 struct bnxt_vf_info *vf; 115 int rc; 116 117 rc = bnxt_vf_ndo_prep(bp, vf_id); 118 if (rc) 119 return rc; 120 /* reject bc or mc mac addr, zero mac addr means allow 121 * VF to use its own mac addr 122 */ 123 if (is_multicast_ether_addr(mac)) { 124 netdev_err(dev, "Invalid VF ethernet address\n"); 125 return -EINVAL; 126 } 127 vf = &bp->pf.vf[vf_id]; 128 129 memcpy(vf->mac_addr, mac, ETH_ALEN); 130 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 131 req.fid = cpu_to_le16(vf->fw_fid); 132 req.flags = cpu_to_le32(vf->func_flags); 133 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 134 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 135 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 136 } 137 138 int bnxt_set_vf_vlan(struct net_device *dev, int vf_id, u16 vlan_id, u8 qos) 139 { 140 struct hwrm_func_cfg_input req = {0}; 141 struct bnxt *bp = netdev_priv(dev); 142 struct bnxt_vf_info *vf; 143 u16 vlan_tag; 144 int rc; 145 146 rc = bnxt_vf_ndo_prep(bp, vf_id); 147 if (rc) 148 return rc; 149 150 /* TODO: needed to implement proper handling of user priority, 151 * currently fail the command if there is valid priority 152 */ 153 if (vlan_id > 4095 || qos) 154 return -EINVAL; 155 156 vf = &bp->pf.vf[vf_id]; 157 vlan_tag = vlan_id; 158 if (vlan_tag == vf->vlan) 159 return 0; 160 161 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 162 req.fid = cpu_to_le16(vf->fw_fid); 163 req.flags = cpu_to_le32(vf->func_flags); 164 req.dflt_vlan = cpu_to_le16(vlan_tag); 165 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_DFLT_VLAN); 166 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 167 if (!rc) 168 vf->vlan = vlan_tag; 169 return rc; 170 } 171 172 int bnxt_set_vf_bw(struct net_device *dev, int vf_id, int min_tx_rate, 173 int max_tx_rate) 174 { 175 struct hwrm_func_cfg_input req = {0}; 176 struct bnxt *bp = netdev_priv(dev); 177 struct bnxt_vf_info *vf; 178 u32 pf_link_speed; 179 int rc; 180 181 rc = bnxt_vf_ndo_prep(bp, vf_id); 182 if (rc) 183 return rc; 184 185 vf = &bp->pf.vf[vf_id]; 186 pf_link_speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 187 if (max_tx_rate > pf_link_speed) { 188 netdev_info(bp->dev, "max tx rate %d exceed PF link speed for VF %d\n", 189 max_tx_rate, vf_id); 190 return -EINVAL; 191 } 192 193 if (min_tx_rate > pf_link_speed || min_tx_rate > max_tx_rate) { 194 netdev_info(bp->dev, "min tx rate %d is invalid for VF %d\n", 195 min_tx_rate, vf_id); 196 return -EINVAL; 197 } 198 if (min_tx_rate == vf->min_tx_rate && max_tx_rate == vf->max_tx_rate) 199 return 0; 200 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 201 req.fid = cpu_to_le16(vf->fw_fid); 202 req.flags = cpu_to_le32(vf->func_flags); 203 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MAX_BW); 204 req.max_bw = cpu_to_le32(max_tx_rate); 205 req.enables |= cpu_to_le32(FUNC_CFG_REQ_ENABLES_MIN_BW); 206 req.min_bw = cpu_to_le32(min_tx_rate); 207 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 208 if (!rc) { 209 vf->min_tx_rate = min_tx_rate; 210 vf->max_tx_rate = max_tx_rate; 211 } 212 return rc; 213 } 214 215 int bnxt_set_vf_link_state(struct net_device *dev, int vf_id, int link) 216 { 217 struct bnxt *bp = netdev_priv(dev); 218 struct bnxt_vf_info *vf; 219 int rc; 220 221 rc = bnxt_vf_ndo_prep(bp, vf_id); 222 if (rc) 223 return rc; 224 225 vf = &bp->pf.vf[vf_id]; 226 227 vf->flags &= ~(BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED); 228 switch (link) { 229 case IFLA_VF_LINK_STATE_AUTO: 230 vf->flags |= BNXT_VF_LINK_UP; 231 break; 232 case IFLA_VF_LINK_STATE_DISABLE: 233 vf->flags |= BNXT_VF_LINK_FORCED; 234 break; 235 case IFLA_VF_LINK_STATE_ENABLE: 236 vf->flags |= BNXT_VF_LINK_UP | BNXT_VF_LINK_FORCED; 237 break; 238 default: 239 netdev_err(bp->dev, "Invalid link option\n"); 240 rc = -EINVAL; 241 break; 242 } 243 /* CHIMP TODO: send msg to VF to update new link state */ 244 245 return rc; 246 } 247 248 static int bnxt_set_vf_attr(struct bnxt *bp, int num_vfs) 249 { 250 int i; 251 struct bnxt_vf_info *vf; 252 253 for (i = 0; i < num_vfs; i++) { 254 vf = &bp->pf.vf[i]; 255 memset(vf, 0, sizeof(*vf)); 256 vf->flags = BNXT_VF_QOS | BNXT_VF_LINK_UP; 257 } 258 return 0; 259 } 260 261 static int bnxt_hwrm_func_vf_resource_free(struct bnxt *bp, int num_vfs) 262 { 263 int i, rc = 0; 264 struct bnxt_pf_info *pf = &bp->pf; 265 struct hwrm_func_vf_resc_free_input req = {0}; 266 267 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_RESC_FREE, -1, -1); 268 269 mutex_lock(&bp->hwrm_cmd_lock); 270 for (i = pf->first_vf_id; i < pf->first_vf_id + num_vfs; i++) { 271 req.vf_id = cpu_to_le16(i); 272 rc = _hwrm_send_message(bp, &req, sizeof(req), 273 HWRM_CMD_TIMEOUT); 274 if (rc) 275 break; 276 } 277 mutex_unlock(&bp->hwrm_cmd_lock); 278 return rc; 279 } 280 281 static void bnxt_free_vf_resources(struct bnxt *bp) 282 { 283 struct pci_dev *pdev = bp->pdev; 284 int i; 285 286 kfree(bp->pf.vf_event_bmap); 287 bp->pf.vf_event_bmap = NULL; 288 289 for (i = 0; i < 4; i++) { 290 if (bp->pf.hwrm_cmd_req_addr[i]) { 291 dma_free_coherent(&pdev->dev, BNXT_PAGE_SIZE, 292 bp->pf.hwrm_cmd_req_addr[i], 293 bp->pf.hwrm_cmd_req_dma_addr[i]); 294 bp->pf.hwrm_cmd_req_addr[i] = NULL; 295 } 296 } 297 298 kfree(bp->pf.vf); 299 bp->pf.vf = NULL; 300 } 301 302 static int bnxt_alloc_vf_resources(struct bnxt *bp, int num_vfs) 303 { 304 struct pci_dev *pdev = bp->pdev; 305 u32 nr_pages, size, i, j, k = 0; 306 307 bp->pf.vf = kcalloc(num_vfs, sizeof(struct bnxt_vf_info), GFP_KERNEL); 308 if (!bp->pf.vf) 309 return -ENOMEM; 310 311 bnxt_set_vf_attr(bp, num_vfs); 312 313 size = num_vfs * BNXT_HWRM_REQ_MAX_SIZE; 314 nr_pages = size / BNXT_PAGE_SIZE; 315 if (size & (BNXT_PAGE_SIZE - 1)) 316 nr_pages++; 317 318 for (i = 0; i < nr_pages; i++) { 319 bp->pf.hwrm_cmd_req_addr[i] = 320 dma_alloc_coherent(&pdev->dev, BNXT_PAGE_SIZE, 321 &bp->pf.hwrm_cmd_req_dma_addr[i], 322 GFP_KERNEL); 323 324 if (!bp->pf.hwrm_cmd_req_addr[i]) 325 return -ENOMEM; 326 327 for (j = 0; j < BNXT_HWRM_REQS_PER_PAGE && k < num_vfs; j++) { 328 struct bnxt_vf_info *vf = &bp->pf.vf[k]; 329 330 vf->hwrm_cmd_req_addr = bp->pf.hwrm_cmd_req_addr[i] + 331 j * BNXT_HWRM_REQ_MAX_SIZE; 332 vf->hwrm_cmd_req_dma_addr = 333 bp->pf.hwrm_cmd_req_dma_addr[i] + j * 334 BNXT_HWRM_REQ_MAX_SIZE; 335 k++; 336 } 337 } 338 339 /* Max 128 VF's */ 340 bp->pf.vf_event_bmap = kzalloc(16, GFP_KERNEL); 341 if (!bp->pf.vf_event_bmap) 342 return -ENOMEM; 343 344 bp->pf.hwrm_cmd_req_pages = nr_pages; 345 return 0; 346 } 347 348 static int bnxt_hwrm_func_buf_rgtr(struct bnxt *bp) 349 { 350 struct hwrm_func_buf_rgtr_input req = {0}; 351 352 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_BUF_RGTR, -1, -1); 353 354 req.req_buf_num_pages = cpu_to_le16(bp->pf.hwrm_cmd_req_pages); 355 req.req_buf_page_size = cpu_to_le16(BNXT_PAGE_SHIFT); 356 req.req_buf_len = cpu_to_le16(BNXT_HWRM_REQ_MAX_SIZE); 357 req.req_buf_page_addr0 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[0]); 358 req.req_buf_page_addr1 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[1]); 359 req.req_buf_page_addr2 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[2]); 360 req.req_buf_page_addr3 = cpu_to_le64(bp->pf.hwrm_cmd_req_dma_addr[3]); 361 362 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 363 } 364 365 /* only call by PF to reserve resources for VF */ 366 static int bnxt_hwrm_func_cfg(struct bnxt *bp, int num_vfs) 367 { 368 u32 rc = 0, mtu, i; 369 u16 vf_tx_rings, vf_rx_rings, vf_cp_rings, vf_stat_ctx, vf_vnics; 370 u16 vf_ring_grps; 371 struct hwrm_func_cfg_input req = {0}; 372 struct bnxt_pf_info *pf = &bp->pf; 373 374 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_CFG, -1, -1); 375 376 /* Remaining rings are distributed equally amongs VF's for now */ 377 /* TODO: the following workaroud is needed to restrict total number 378 * of vf_cp_rings not exceed number of HW ring groups. This WA should 379 * be removed once new HWRM provides HW ring groups capability in 380 * hwrm_func_qcap. 381 */ 382 vf_cp_rings = min_t(u16, pf->max_cp_rings, pf->max_stat_ctxs); 383 vf_cp_rings = (vf_cp_rings - bp->cp_nr_rings) / num_vfs; 384 /* TODO: restore this logic below once the WA above is removed */ 385 /* vf_cp_rings = (pf->max_cp_rings - bp->cp_nr_rings) / num_vfs; */ 386 vf_stat_ctx = (pf->max_stat_ctxs - bp->num_stat_ctxs) / num_vfs; 387 if (bp->flags & BNXT_FLAG_AGG_RINGS) 388 vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings * 2) / 389 num_vfs; 390 else 391 vf_rx_rings = (pf->max_rx_rings - bp->rx_nr_rings) / num_vfs; 392 vf_ring_grps = (bp->pf.max_hw_ring_grps - bp->rx_nr_rings) / num_vfs; 393 vf_tx_rings = (pf->max_tx_rings - bp->tx_nr_rings) / num_vfs; 394 395 req.enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_MTU | 396 FUNC_CFG_REQ_ENABLES_MRU | 397 FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS | 398 FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS | 399 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS | 400 FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS | 401 FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS | 402 FUNC_CFG_REQ_ENABLES_NUM_L2_CTXS | 403 FUNC_CFG_REQ_ENABLES_NUM_VNICS | 404 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS); 405 406 mtu = bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 407 req.mru = cpu_to_le16(mtu); 408 req.mtu = cpu_to_le16(mtu); 409 410 req.num_rsscos_ctxs = cpu_to_le16(1); 411 req.num_cmpl_rings = cpu_to_le16(vf_cp_rings); 412 req.num_tx_rings = cpu_to_le16(vf_tx_rings); 413 req.num_rx_rings = cpu_to_le16(vf_rx_rings); 414 req.num_hw_ring_grps = cpu_to_le16(vf_ring_grps); 415 req.num_l2_ctxs = cpu_to_le16(4); 416 vf_vnics = 1; 417 418 req.num_vnics = cpu_to_le16(vf_vnics); 419 /* FIXME spec currently uses 1 bit for stats ctx */ 420 req.num_stat_ctxs = cpu_to_le16(vf_stat_ctx); 421 422 mutex_lock(&bp->hwrm_cmd_lock); 423 for (i = 0; i < num_vfs; i++) { 424 req.fid = cpu_to_le16(pf->first_vf_id + i); 425 rc = _hwrm_send_message(bp, &req, sizeof(req), 426 HWRM_CMD_TIMEOUT); 427 if (rc) 428 break; 429 pf->active_vfs = i + 1; 430 pf->vf[i].fw_fid = le16_to_cpu(req.fid); 431 } 432 mutex_unlock(&bp->hwrm_cmd_lock); 433 if (!rc) { 434 pf->max_tx_rings -= vf_tx_rings * num_vfs; 435 pf->max_rx_rings -= vf_rx_rings * num_vfs; 436 pf->max_hw_ring_grps -= vf_ring_grps * num_vfs; 437 pf->max_cp_rings -= vf_cp_rings * num_vfs; 438 pf->max_rsscos_ctxs -= num_vfs; 439 pf->max_stat_ctxs -= vf_stat_ctx * num_vfs; 440 pf->max_vnics -= vf_vnics * num_vfs; 441 } 442 return rc; 443 } 444 445 static int bnxt_sriov_enable(struct bnxt *bp, int *num_vfs) 446 { 447 int rc = 0, vfs_supported; 448 int min_rx_rings, min_tx_rings, min_rss_ctxs; 449 int tx_ok = 0, rx_ok = 0, rss_ok = 0; 450 451 /* Check if we can enable requested num of vf's. At a mininum 452 * we require 1 RX 1 TX rings for each VF. In this minimum conf 453 * features like TPA will not be available. 454 */ 455 vfs_supported = *num_vfs; 456 457 while (vfs_supported) { 458 min_rx_rings = vfs_supported; 459 min_tx_rings = vfs_supported; 460 min_rss_ctxs = vfs_supported; 461 462 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 463 if (bp->pf.max_rx_rings - bp->rx_nr_rings * 2 >= 464 min_rx_rings) 465 rx_ok = 1; 466 } else { 467 if (bp->pf.max_rx_rings - bp->rx_nr_rings >= 468 min_rx_rings) 469 rx_ok = 1; 470 } 471 472 if (bp->pf.max_tx_rings - bp->tx_nr_rings >= min_tx_rings) 473 tx_ok = 1; 474 475 if (bp->pf.max_rsscos_ctxs - bp->rsscos_nr_ctxs >= min_rss_ctxs) 476 rss_ok = 1; 477 478 if (tx_ok && rx_ok && rss_ok) 479 break; 480 481 vfs_supported--; 482 } 483 484 if (!vfs_supported) { 485 netdev_err(bp->dev, "Cannot enable VF's as all resources are used by PF\n"); 486 return -EINVAL; 487 } 488 489 if (vfs_supported != *num_vfs) { 490 netdev_info(bp->dev, "Requested VFs %d, can enable %d\n", 491 *num_vfs, vfs_supported); 492 *num_vfs = vfs_supported; 493 } 494 495 rc = bnxt_alloc_vf_resources(bp, *num_vfs); 496 if (rc) 497 goto err_out1; 498 499 /* Reserve resources for VFs */ 500 rc = bnxt_hwrm_func_cfg(bp, *num_vfs); 501 if (rc) 502 goto err_out2; 503 504 /* Register buffers for VFs */ 505 rc = bnxt_hwrm_func_buf_rgtr(bp); 506 if (rc) 507 goto err_out2; 508 509 rc = pci_enable_sriov(bp->pdev, *num_vfs); 510 if (rc) 511 goto err_out2; 512 513 return 0; 514 515 err_out2: 516 /* Free the resources reserved for various VF's */ 517 bnxt_hwrm_func_vf_resource_free(bp, *num_vfs); 518 519 err_out1: 520 bnxt_free_vf_resources(bp); 521 522 return rc; 523 } 524 525 static int bnxt_hwrm_fwd_async_event_cmpl(struct bnxt *bp, 526 struct bnxt_vf_info *vf, 527 u16 event_id) 528 { 529 int rc = 0; 530 struct hwrm_fwd_async_event_cmpl_input req = {0}; 531 struct hwrm_fwd_async_event_cmpl_output *resp = bp->hwrm_cmd_resp_addr; 532 struct hwrm_async_event_cmpl *async_cmpl; 533 534 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_ASYNC_EVENT_CMPL, -1, -1); 535 if (vf) 536 req.encap_async_event_target_id = cpu_to_le16(vf->fw_fid); 537 else 538 /* broadcast this async event to all VFs */ 539 req.encap_async_event_target_id = cpu_to_le16(0xffff); 540 async_cmpl = (struct hwrm_async_event_cmpl *)req.encap_async_event_cmpl; 541 async_cmpl->type = 542 cpu_to_le16(HWRM_ASYNC_EVENT_CMPL_TYPE_HWRM_ASYNC_EVENT); 543 async_cmpl->event_id = cpu_to_le16(event_id); 544 545 mutex_lock(&bp->hwrm_cmd_lock); 546 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 547 548 if (rc) { 549 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl failed. rc:%d\n", 550 rc); 551 goto fwd_async_event_cmpl_exit; 552 } 553 554 if (resp->error_code) { 555 netdev_err(bp->dev, "hwrm_fwd_async_event_cmpl error %d\n", 556 resp->error_code); 557 rc = -1; 558 } 559 560 fwd_async_event_cmpl_exit: 561 mutex_unlock(&bp->hwrm_cmd_lock); 562 return rc; 563 } 564 565 void bnxt_sriov_disable(struct bnxt *bp) 566 { 567 u16 num_vfs = pci_num_vf(bp->pdev); 568 569 if (!num_vfs) 570 return; 571 572 if (pci_vfs_assigned(bp->pdev)) { 573 bnxt_hwrm_fwd_async_event_cmpl( 574 bp, NULL, 575 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD); 576 netdev_warn(bp->dev, "Unable to free %d VFs because some are assigned to VMs.\n", 577 num_vfs); 578 } else { 579 pci_disable_sriov(bp->pdev); 580 /* Free the HW resources reserved for various VF's */ 581 bnxt_hwrm_func_vf_resource_free(bp, num_vfs); 582 } 583 584 bnxt_free_vf_resources(bp); 585 586 bp->pf.active_vfs = 0; 587 /* Reclaim all resources for the PF. */ 588 bnxt_hwrm_func_qcaps(bp); 589 } 590 591 int bnxt_sriov_configure(struct pci_dev *pdev, int num_vfs) 592 { 593 struct net_device *dev = pci_get_drvdata(pdev); 594 struct bnxt *bp = netdev_priv(dev); 595 596 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) { 597 netdev_warn(dev, "Not allow SRIOV if the irq mode is not MSIX\n"); 598 return 0; 599 } 600 601 rtnl_lock(); 602 if (!netif_running(dev)) { 603 netdev_warn(dev, "Reject SRIOV config request since if is down!\n"); 604 rtnl_unlock(); 605 return 0; 606 } 607 bp->sriov_cfg = true; 608 rtnl_unlock(); 609 610 if (pci_vfs_assigned(bp->pdev)) { 611 netdev_warn(dev, "Unable to configure SRIOV since some VFs are assigned to VMs.\n"); 612 num_vfs = 0; 613 goto sriov_cfg_exit; 614 } 615 616 /* Check if enabled VFs is same as requested */ 617 if (num_vfs && num_vfs == bp->pf.active_vfs) 618 goto sriov_cfg_exit; 619 620 /* if there are previous existing VFs, clean them up */ 621 bnxt_sriov_disable(bp); 622 if (!num_vfs) 623 goto sriov_cfg_exit; 624 625 bnxt_sriov_enable(bp, &num_vfs); 626 627 sriov_cfg_exit: 628 bp->sriov_cfg = false; 629 wake_up(&bp->sriov_cfg_wait); 630 631 return num_vfs; 632 } 633 634 static int bnxt_hwrm_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 635 void *encap_resp, __le64 encap_resp_addr, 636 __le16 encap_resp_cpr, u32 msg_size) 637 { 638 int rc = 0; 639 struct hwrm_fwd_resp_input req = {0}; 640 struct hwrm_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 641 642 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FWD_RESP, -1, -1); 643 644 /* Set the new target id */ 645 req.target_id = cpu_to_le16(vf->fw_fid); 646 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 647 req.encap_resp_len = cpu_to_le16(msg_size); 648 req.encap_resp_addr = encap_resp_addr; 649 req.encap_resp_cmpl_ring = encap_resp_cpr; 650 memcpy(req.encap_resp, encap_resp, msg_size); 651 652 mutex_lock(&bp->hwrm_cmd_lock); 653 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 654 655 if (rc) { 656 netdev_err(bp->dev, "hwrm_fwd_resp failed. rc:%d\n", rc); 657 goto fwd_resp_exit; 658 } 659 660 if (resp->error_code) { 661 netdev_err(bp->dev, "hwrm_fwd_resp error %d\n", 662 resp->error_code); 663 rc = -1; 664 } 665 666 fwd_resp_exit: 667 mutex_unlock(&bp->hwrm_cmd_lock); 668 return rc; 669 } 670 671 static int bnxt_hwrm_fwd_err_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 672 u32 msg_size) 673 { 674 int rc = 0; 675 struct hwrm_reject_fwd_resp_input req = {0}; 676 struct hwrm_reject_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 677 678 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_REJECT_FWD_RESP, -1, -1); 679 /* Set the new target id */ 680 req.target_id = cpu_to_le16(vf->fw_fid); 681 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 682 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 683 684 mutex_lock(&bp->hwrm_cmd_lock); 685 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 686 687 if (rc) { 688 netdev_err(bp->dev, "hwrm_fwd_err_resp failed. rc:%d\n", rc); 689 goto fwd_err_resp_exit; 690 } 691 692 if (resp->error_code) { 693 netdev_err(bp->dev, "hwrm_fwd_err_resp error %d\n", 694 resp->error_code); 695 rc = -1; 696 } 697 698 fwd_err_resp_exit: 699 mutex_unlock(&bp->hwrm_cmd_lock); 700 return rc; 701 } 702 703 static int bnxt_hwrm_exec_fwd_resp(struct bnxt *bp, struct bnxt_vf_info *vf, 704 u32 msg_size) 705 { 706 int rc = 0; 707 struct hwrm_exec_fwd_resp_input req = {0}; 708 struct hwrm_exec_fwd_resp_output *resp = bp->hwrm_cmd_resp_addr; 709 710 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_EXEC_FWD_RESP, -1, -1); 711 /* Set the new target id */ 712 req.target_id = cpu_to_le16(vf->fw_fid); 713 req.encap_resp_target_id = cpu_to_le16(vf->fw_fid); 714 memcpy(req.encap_request, vf->hwrm_cmd_req_addr, msg_size); 715 716 mutex_lock(&bp->hwrm_cmd_lock); 717 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 718 719 if (rc) { 720 netdev_err(bp->dev, "hwrm_exec_fw_resp failed. rc:%d\n", rc); 721 goto exec_fwd_resp_exit; 722 } 723 724 if (resp->error_code) { 725 netdev_err(bp->dev, "hwrm_exec_fw_resp error %d\n", 726 resp->error_code); 727 rc = -1; 728 } 729 730 exec_fwd_resp_exit: 731 mutex_unlock(&bp->hwrm_cmd_lock); 732 return rc; 733 } 734 735 static int bnxt_vf_validate_set_mac(struct bnxt *bp, struct bnxt_vf_info *vf) 736 { 737 u32 msg_size = sizeof(struct hwrm_cfa_l2_filter_alloc_input); 738 struct hwrm_cfa_l2_filter_alloc_input *req = 739 (struct hwrm_cfa_l2_filter_alloc_input *)vf->hwrm_cmd_req_addr; 740 741 if (!is_valid_ether_addr(vf->mac_addr) || 742 ether_addr_equal((const u8 *)req->l2_addr, vf->mac_addr)) 743 return bnxt_hwrm_exec_fwd_resp(bp, vf, msg_size); 744 else 745 return bnxt_hwrm_fwd_err_resp(bp, vf, msg_size); 746 } 747 748 static int bnxt_vf_set_link(struct bnxt *bp, struct bnxt_vf_info *vf) 749 { 750 int rc = 0; 751 752 if (!(vf->flags & BNXT_VF_LINK_FORCED)) { 753 /* real link */ 754 rc = bnxt_hwrm_exec_fwd_resp( 755 bp, vf, sizeof(struct hwrm_port_phy_qcfg_input)); 756 } else { 757 struct hwrm_port_phy_qcfg_output phy_qcfg_resp; 758 struct hwrm_port_phy_qcfg_input *phy_qcfg_req; 759 760 phy_qcfg_req = 761 (struct hwrm_port_phy_qcfg_input *)vf->hwrm_cmd_req_addr; 762 mutex_lock(&bp->hwrm_cmd_lock); 763 memcpy(&phy_qcfg_resp, &bp->link_info.phy_qcfg_resp, 764 sizeof(phy_qcfg_resp)); 765 mutex_unlock(&bp->hwrm_cmd_lock); 766 phy_qcfg_resp.seq_id = phy_qcfg_req->seq_id; 767 768 if (vf->flags & BNXT_VF_LINK_UP) { 769 /* if physical link is down, force link up on VF */ 770 if (phy_qcfg_resp.link == 771 PORT_PHY_QCFG_RESP_LINK_NO_LINK) { 772 phy_qcfg_resp.link = 773 PORT_PHY_QCFG_RESP_LINK_LINK; 774 phy_qcfg_resp.link_speed = cpu_to_le16( 775 PORT_PHY_QCFG_RESP_LINK_SPEED_10GB); 776 phy_qcfg_resp.duplex = 777 PORT_PHY_QCFG_RESP_DUPLEX_FULL; 778 phy_qcfg_resp.pause = 779 (PORT_PHY_QCFG_RESP_PAUSE_TX | 780 PORT_PHY_QCFG_RESP_PAUSE_RX); 781 } 782 } else { 783 /* force link down */ 784 phy_qcfg_resp.link = PORT_PHY_QCFG_RESP_LINK_NO_LINK; 785 phy_qcfg_resp.link_speed = 0; 786 phy_qcfg_resp.duplex = PORT_PHY_QCFG_RESP_DUPLEX_HALF; 787 phy_qcfg_resp.pause = 0; 788 } 789 rc = bnxt_hwrm_fwd_resp(bp, vf, &phy_qcfg_resp, 790 phy_qcfg_req->resp_addr, 791 phy_qcfg_req->cmpl_ring, 792 sizeof(phy_qcfg_resp)); 793 } 794 return rc; 795 } 796 797 static int bnxt_vf_req_validate_snd(struct bnxt *bp, struct bnxt_vf_info *vf) 798 { 799 int rc = 0; 800 struct input *encap_req = vf->hwrm_cmd_req_addr; 801 u32 req_type = le16_to_cpu(encap_req->req_type); 802 803 switch (req_type) { 804 case HWRM_CFA_L2_FILTER_ALLOC: 805 rc = bnxt_vf_validate_set_mac(bp, vf); 806 break; 807 case HWRM_FUNC_CFG: 808 /* TODO Validate if VF is allowed to change mac address, 809 * mtu, num of rings etc 810 */ 811 rc = bnxt_hwrm_exec_fwd_resp( 812 bp, vf, sizeof(struct hwrm_func_cfg_input)); 813 break; 814 case HWRM_PORT_PHY_QCFG: 815 rc = bnxt_vf_set_link(bp, vf); 816 break; 817 default: 818 break; 819 } 820 return rc; 821 } 822 823 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 824 { 825 u32 i = 0, active_vfs = bp->pf.active_vfs, vf_id; 826 827 /* Scan through VF's and process commands */ 828 while (1) { 829 vf_id = find_next_bit(bp->pf.vf_event_bmap, active_vfs, i); 830 if (vf_id >= active_vfs) 831 break; 832 833 clear_bit(vf_id, bp->pf.vf_event_bmap); 834 bnxt_vf_req_validate_snd(bp, &bp->pf.vf[vf_id]); 835 i = vf_id + 1; 836 } 837 } 838 839 void bnxt_update_vf_mac(struct bnxt *bp) 840 { 841 struct hwrm_func_qcaps_input req = {0}; 842 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr; 843 844 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1); 845 req.fid = cpu_to_le16(0xffff); 846 847 mutex_lock(&bp->hwrm_cmd_lock); 848 if (_hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT)) 849 goto update_vf_mac_exit; 850 851 /* Store MAC address from the firmware. There are 2 cases: 852 * 1. MAC address is valid. It is assigned from the PF and we 853 * need to override the current VF MAC address with it. 854 * 2. MAC address is zero. The VF will use a random MAC address by 855 * default but the stored zero MAC will allow the VF user to change 856 * the random MAC address using ndo_set_mac_address() if he wants. 857 */ 858 if (!ether_addr_equal(resp->mac_address, bp->vf.mac_addr)) 859 memcpy(bp->vf.mac_addr, resp->mac_address, ETH_ALEN); 860 861 /* overwrite netdev dev_addr with admin VF MAC */ 862 if (is_valid_ether_addr(bp->vf.mac_addr)) 863 memcpy(bp->dev->dev_addr, bp->vf.mac_addr, ETH_ALEN); 864 update_vf_mac_exit: 865 mutex_unlock(&bp->hwrm_cmd_lock); 866 } 867 868 int bnxt_approve_mac(struct bnxt *bp, u8 *mac) 869 { 870 struct hwrm_func_vf_cfg_input req = {0}; 871 int rc = 0; 872 873 if (!BNXT_VF(bp)) 874 return 0; 875 876 if (bp->hwrm_spec_code < 0x10202) { 877 if (is_valid_ether_addr(bp->vf.mac_addr)) 878 rc = -EADDRNOTAVAIL; 879 goto mac_done; 880 } 881 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_VF_CFG, -1, -1); 882 req.enables = cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_DFLT_MAC_ADDR); 883 memcpy(req.dflt_mac_addr, mac, ETH_ALEN); 884 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT); 885 mac_done: 886 if (rc) { 887 rc = -EADDRNOTAVAIL; 888 netdev_warn(bp->dev, "VF MAC address %pM not approved by the PF\n", 889 mac); 890 } 891 return rc; 892 } 893 #else 894 895 void bnxt_sriov_disable(struct bnxt *bp) 896 { 897 } 898 899 void bnxt_hwrm_exec_fwd_req(struct bnxt *bp) 900 { 901 netdev_err(bp->dev, "Invalid VF message received when SRIOV is not enable\n"); 902 } 903 904 void bnxt_update_vf_mac(struct bnxt *bp) 905 { 906 } 907 908 int bnxt_approve_mac(struct bnxt *bp, u8 *mac) 909 { 910 return 0; 911 } 912 #endif 913