1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_hwmon.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 124 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 126 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 127 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 128 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 129 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 130 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 131 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 132 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 133 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 134 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 135 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 136 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 137 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 138 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 139 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 140 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 141 }; 142 143 static const struct pci_device_id bnxt_pci_tbl[] = { 144 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 145 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 146 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 147 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 148 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 149 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 150 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 151 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 152 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 153 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 154 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 159 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 163 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 164 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 166 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 167 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 168 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 171 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 178 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 179 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 180 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 181 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 182 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 183 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 184 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 185 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 186 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 187 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 193 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 194 #ifdef CONFIG_BNXT_SRIOV 195 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 196 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 197 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 198 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 200 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 206 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 207 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 208 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 209 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 211 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 214 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 216 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 217 #endif 218 { 0 } 219 }; 220 221 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 222 223 static const u16 bnxt_vf_req_snif[] = { 224 HWRM_FUNC_CFG, 225 HWRM_FUNC_VF_CFG, 226 HWRM_PORT_PHY_QCFG, 227 HWRM_CFA_L2_FILTER_ALLOC, 228 }; 229 230 static const u16 bnxt_async_events_arr[] = { 231 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 232 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 233 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 234 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 235 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 238 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 239 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 240 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 241 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 242 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 243 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 244 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 245 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 246 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 247 }; 248 249 static struct workqueue_struct *bnxt_pf_wq; 250 251 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 252 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 253 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 254 255 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 256 .ports = { 257 .src = 0, 258 .dst = 0, 259 }, 260 .addrs = { 261 .v6addrs = { 262 .src = BNXT_IPV6_MASK_NONE, 263 .dst = BNXT_IPV6_MASK_NONE, 264 }, 265 }, 266 }; 267 268 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 269 .ports = { 270 .src = cpu_to_be16(0xffff), 271 .dst = cpu_to_be16(0xffff), 272 }, 273 .addrs = { 274 .v6addrs = { 275 .src = BNXT_IPV6_MASK_ALL, 276 .dst = BNXT_IPV6_MASK_ALL, 277 }, 278 }, 279 }; 280 281 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 282 .ports = { 283 .src = cpu_to_be16(0xffff), 284 .dst = cpu_to_be16(0xffff), 285 }, 286 .addrs = { 287 .v4addrs = { 288 .src = cpu_to_be32(0xffffffff), 289 .dst = cpu_to_be32(0xffffffff), 290 }, 291 }, 292 }; 293 294 static bool bnxt_vf_pciid(enum board_idx idx) 295 { 296 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 297 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 298 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 299 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 300 } 301 302 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 303 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 304 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 305 306 #define BNXT_CP_DB_IRQ_DIS(db) \ 307 writel(DB_CP_IRQ_DIS_FLAGS, db) 308 309 #define BNXT_DB_CQ(db, idx) \ 310 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 311 312 #define BNXT_DB_NQ_P5(db, idx) \ 313 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 314 (db)->doorbell) 315 316 #define BNXT_DB_NQ_P7(db, idx) \ 317 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 318 DB_RING_IDX(db, idx), (db)->doorbell) 319 320 #define BNXT_DB_CQ_ARM(db, idx) \ 321 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 322 323 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 324 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 325 DB_RING_IDX(db, idx), (db)->doorbell) 326 327 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 328 { 329 if (bp->flags & BNXT_FLAG_CHIP_P7) 330 BNXT_DB_NQ_P7(db, idx); 331 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 332 BNXT_DB_NQ_P5(db, idx); 333 else 334 BNXT_DB_CQ(db, idx); 335 } 336 337 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 338 { 339 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 340 BNXT_DB_NQ_ARM_P5(db, idx); 341 else 342 BNXT_DB_CQ_ARM(db, idx); 343 } 344 345 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 346 { 347 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 348 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 349 DB_RING_IDX(db, idx), db->doorbell); 350 else 351 BNXT_DB_CQ(db, idx); 352 } 353 354 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 355 { 356 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 357 return; 358 359 if (BNXT_PF(bp)) 360 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 361 else 362 schedule_delayed_work(&bp->fw_reset_task, delay); 363 } 364 365 static void __bnxt_queue_sp_work(struct bnxt *bp) 366 { 367 if (BNXT_PF(bp)) 368 queue_work(bnxt_pf_wq, &bp->sp_task); 369 else 370 schedule_work(&bp->sp_task); 371 } 372 373 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 374 { 375 set_bit(event, &bp->sp_event); 376 __bnxt_queue_sp_work(bp); 377 } 378 379 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 380 { 381 if (!rxr->bnapi->in_reset) { 382 rxr->bnapi->in_reset = true; 383 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 384 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 385 else 386 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 387 __bnxt_queue_sp_work(bp); 388 } 389 rxr->rx_next_cons = 0xffff; 390 } 391 392 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 393 u16 curr) 394 { 395 struct bnxt_napi *bnapi = txr->bnapi; 396 397 if (bnapi->tx_fault) 398 return; 399 400 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 401 txr->txq_index, txr->tx_hw_cons, 402 txr->tx_cons, txr->tx_prod, curr); 403 WARN_ON_ONCE(1); 404 bnapi->tx_fault = 1; 405 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 406 } 407 408 const u16 bnxt_lhint_arr[] = { 409 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 410 TX_BD_FLAGS_LHINT_512_TO_1023, 411 TX_BD_FLAGS_LHINT_1024_TO_2047, 412 TX_BD_FLAGS_LHINT_1024_TO_2047, 413 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 414 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 415 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 416 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 417 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 418 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 419 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 420 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 421 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 422 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 423 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 424 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 425 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 426 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 427 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 428 }; 429 430 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 431 { 432 struct metadata_dst *md_dst = skb_metadata_dst(skb); 433 434 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 435 return 0; 436 437 return md_dst->u.port_info.port_id; 438 } 439 440 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 441 u16 prod) 442 { 443 /* Sync BD data before updating doorbell */ 444 wmb(); 445 bnxt_db_write(bp, &txr->tx_db, prod); 446 txr->kick_pending = 0; 447 } 448 449 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 450 { 451 struct bnxt *bp = netdev_priv(dev); 452 struct tx_bd *txbd, *txbd0; 453 struct tx_bd_ext *txbd1; 454 struct netdev_queue *txq; 455 int i; 456 dma_addr_t mapping; 457 unsigned int length, pad = 0; 458 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 459 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 460 struct pci_dev *pdev = bp->pdev; 461 u16 prod, last_frag, txts_prod; 462 struct bnxt_tx_ring_info *txr; 463 struct bnxt_sw_tx_bd *tx_buf; 464 __le32 lflags = 0; 465 466 i = skb_get_queue_mapping(skb); 467 if (unlikely(i >= bp->tx_nr_rings)) { 468 dev_kfree_skb_any(skb); 469 dev_core_stats_tx_dropped_inc(dev); 470 return NETDEV_TX_OK; 471 } 472 473 txq = netdev_get_tx_queue(dev, i); 474 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 475 prod = txr->tx_prod; 476 477 free_size = bnxt_tx_avail(bp, txr); 478 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 479 /* We must have raced with NAPI cleanup */ 480 if (net_ratelimit() && txr->kick_pending) 481 netif_warn(bp, tx_err, dev, 482 "bnxt: ring busy w/ flush pending!\n"); 483 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 484 bp->tx_wake_thresh)) 485 return NETDEV_TX_BUSY; 486 } 487 488 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 489 goto tx_free; 490 491 length = skb->len; 492 len = skb_headlen(skb); 493 last_frag = skb_shinfo(skb)->nr_frags; 494 495 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 496 497 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 498 tx_buf->skb = skb; 499 tx_buf->nr_frags = last_frag; 500 501 vlan_tag_flags = 0; 502 cfa_action = bnxt_xmit_get_cfa_action(skb); 503 if (skb_vlan_tag_present(skb)) { 504 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 505 skb_vlan_tag_get(skb); 506 /* Currently supports 8021Q, 8021AD vlan offloads 507 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 508 */ 509 if (skb->vlan_proto == htons(ETH_P_8021Q)) 510 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 511 } 512 513 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 514 ptp->tx_tstamp_en) { 515 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 516 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 517 tx_buf->is_ts_pkt = 1; 518 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 519 } else if (!skb_is_gso(skb)) { 520 u16 seq_id, hdr_off; 521 522 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 523 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 524 if (vlan_tag_flags) 525 hdr_off += VLAN_HLEN; 526 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 527 tx_buf->is_ts_pkt = 1; 528 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 529 530 ptp->txts_req[txts_prod].tx_seqid = seq_id; 531 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 532 tx_buf->txts_prod = txts_prod; 533 } 534 } 535 } 536 if (unlikely(skb->no_fcs)) 537 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 538 539 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 540 !lflags) { 541 struct tx_push_buffer *tx_push_buf = txr->tx_push; 542 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 543 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 544 void __iomem *db = txr->tx_db.doorbell; 545 void *pdata = tx_push_buf->data; 546 u64 *end; 547 int j, push_len; 548 549 /* Set COAL_NOW to be ready quickly for the next push */ 550 tx_push->tx_bd_len_flags_type = 551 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 552 TX_BD_TYPE_LONG_TX_BD | 553 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 554 TX_BD_FLAGS_COAL_NOW | 555 TX_BD_FLAGS_PACKET_END | 556 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 557 558 if (skb->ip_summed == CHECKSUM_PARTIAL) 559 tx_push1->tx_bd_hsize_lflags = 560 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 561 else 562 tx_push1->tx_bd_hsize_lflags = 0; 563 564 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 565 tx_push1->tx_bd_cfa_action = 566 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 567 568 end = pdata + length; 569 end = PTR_ALIGN(end, 8) - 1; 570 *end = 0; 571 572 skb_copy_from_linear_data(skb, pdata, len); 573 pdata += len; 574 for (j = 0; j < last_frag; j++) { 575 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 576 void *fptr; 577 578 fptr = skb_frag_address_safe(frag); 579 if (!fptr) 580 goto normal_tx; 581 582 memcpy(pdata, fptr, skb_frag_size(frag)); 583 pdata += skb_frag_size(frag); 584 } 585 586 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 587 txbd->tx_bd_haddr = txr->data_mapping; 588 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 589 prod = NEXT_TX(prod); 590 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 591 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 592 memcpy(txbd, tx_push1, sizeof(*txbd)); 593 prod = NEXT_TX(prod); 594 tx_push->doorbell = 595 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 596 DB_RING_IDX(&txr->tx_db, prod)); 597 WRITE_ONCE(txr->tx_prod, prod); 598 599 tx_buf->is_push = 1; 600 netdev_tx_sent_queue(txq, skb->len); 601 wmb(); /* Sync is_push and byte queue before pushing data */ 602 603 push_len = (length + sizeof(*tx_push) + 7) / 8; 604 if (push_len > 16) { 605 __iowrite64_copy(db, tx_push_buf, 16); 606 __iowrite32_copy(db + 4, tx_push_buf + 1, 607 (push_len - 16) << 1); 608 } else { 609 __iowrite64_copy(db, tx_push_buf, push_len); 610 } 611 612 goto tx_done; 613 } 614 615 normal_tx: 616 if (length < BNXT_MIN_PKT_SIZE) { 617 pad = BNXT_MIN_PKT_SIZE - length; 618 if (skb_pad(skb, pad)) 619 /* SKB already freed. */ 620 goto tx_kick_pending; 621 length = BNXT_MIN_PKT_SIZE; 622 } 623 624 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 625 626 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 627 goto tx_free; 628 629 dma_unmap_addr_set(tx_buf, mapping, mapping); 630 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 631 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 632 633 txbd->tx_bd_haddr = cpu_to_le64(mapping); 634 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 635 636 prod = NEXT_TX(prod); 637 txbd1 = (struct tx_bd_ext *) 638 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 639 640 txbd1->tx_bd_hsize_lflags = lflags; 641 if (skb_is_gso(skb)) { 642 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 643 u32 hdr_len; 644 645 if (skb->encapsulation) { 646 if (udp_gso) 647 hdr_len = skb_inner_transport_offset(skb) + 648 sizeof(struct udphdr); 649 else 650 hdr_len = skb_inner_tcp_all_headers(skb); 651 } else if (udp_gso) { 652 hdr_len = skb_transport_offset(skb) + 653 sizeof(struct udphdr); 654 } else { 655 hdr_len = skb_tcp_all_headers(skb); 656 } 657 658 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 659 TX_BD_FLAGS_T_IPID | 660 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 661 length = skb_shinfo(skb)->gso_size; 662 txbd1->tx_bd_mss = cpu_to_le32(length); 663 length += hdr_len; 664 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 665 txbd1->tx_bd_hsize_lflags |= 666 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 667 txbd1->tx_bd_mss = 0; 668 } 669 670 length >>= 9; 671 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 672 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 673 skb->len); 674 i = 0; 675 goto tx_dma_error; 676 } 677 flags |= bnxt_lhint_arr[length]; 678 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 679 680 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 681 txbd1->tx_bd_cfa_action = 682 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 683 txbd0 = txbd; 684 for (i = 0; i < last_frag; i++) { 685 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 686 687 prod = NEXT_TX(prod); 688 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 689 690 len = skb_frag_size(frag); 691 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 692 DMA_TO_DEVICE); 693 694 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 695 goto tx_dma_error; 696 697 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 698 dma_unmap_addr_set(tx_buf, mapping, mapping); 699 700 txbd->tx_bd_haddr = cpu_to_le64(mapping); 701 702 flags = len << TX_BD_LEN_SHIFT; 703 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 704 } 705 706 flags &= ~TX_BD_LEN; 707 txbd->tx_bd_len_flags_type = 708 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 709 TX_BD_FLAGS_PACKET_END); 710 711 netdev_tx_sent_queue(txq, skb->len); 712 713 skb_tx_timestamp(skb); 714 715 prod = NEXT_TX(prod); 716 WRITE_ONCE(txr->tx_prod, prod); 717 718 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 719 bnxt_txr_db_kick(bp, txr, prod); 720 } else { 721 if (free_size >= bp->tx_wake_thresh) 722 txbd0->tx_bd_len_flags_type |= 723 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 724 txr->kick_pending = 1; 725 } 726 727 tx_done: 728 729 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 730 if (netdev_xmit_more() && !tx_buf->is_push) { 731 txbd0->tx_bd_len_flags_type &= 732 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 733 bnxt_txr_db_kick(bp, txr, prod); 734 } 735 736 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 737 bp->tx_wake_thresh); 738 } 739 return NETDEV_TX_OK; 740 741 tx_dma_error: 742 last_frag = i; 743 744 /* start back at beginning and unmap skb */ 745 prod = txr->tx_prod; 746 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 747 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 748 skb_headlen(skb), DMA_TO_DEVICE); 749 prod = NEXT_TX(prod); 750 751 /* unmap remaining mapped pages */ 752 for (i = 0; i < last_frag; i++) { 753 prod = NEXT_TX(prod); 754 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 755 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 756 skb_frag_size(&skb_shinfo(skb)->frags[i]), 757 DMA_TO_DEVICE); 758 } 759 760 tx_free: 761 dev_kfree_skb_any(skb); 762 tx_kick_pending: 763 if (BNXT_TX_PTP_IS_SET(lflags)) { 764 txr->tx_buf_ring[txr->tx_prod].is_ts_pkt = 0; 765 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 766 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 767 /* set SKB to err so PTP worker will clean up */ 768 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 769 } 770 if (txr->kick_pending) 771 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 772 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 773 dev_core_stats_tx_dropped_inc(dev); 774 return NETDEV_TX_OK; 775 } 776 777 /* Returns true if some remaining TX packets not processed. */ 778 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 779 int budget) 780 { 781 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 782 struct pci_dev *pdev = bp->pdev; 783 u16 hw_cons = txr->tx_hw_cons; 784 unsigned int tx_bytes = 0; 785 u16 cons = txr->tx_cons; 786 int tx_pkts = 0; 787 bool rc = false; 788 789 while (RING_TX(bp, cons) != hw_cons) { 790 struct bnxt_sw_tx_bd *tx_buf; 791 struct sk_buff *skb; 792 bool is_ts_pkt; 793 int j, last; 794 795 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 796 skb = tx_buf->skb; 797 798 if (unlikely(!skb)) { 799 bnxt_sched_reset_txr(bp, txr, cons); 800 return rc; 801 } 802 803 is_ts_pkt = tx_buf->is_ts_pkt; 804 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 805 rc = true; 806 break; 807 } 808 809 cons = NEXT_TX(cons); 810 tx_pkts++; 811 tx_bytes += skb->len; 812 tx_buf->skb = NULL; 813 tx_buf->is_ts_pkt = 0; 814 815 if (tx_buf->is_push) { 816 tx_buf->is_push = 0; 817 goto next_tx_int; 818 } 819 820 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 821 skb_headlen(skb), DMA_TO_DEVICE); 822 last = tx_buf->nr_frags; 823 824 for (j = 0; j < last; j++) { 825 cons = NEXT_TX(cons); 826 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 827 dma_unmap_page( 828 &pdev->dev, 829 dma_unmap_addr(tx_buf, mapping), 830 skb_frag_size(&skb_shinfo(skb)->frags[j]), 831 DMA_TO_DEVICE); 832 } 833 if (unlikely(is_ts_pkt)) { 834 if (BNXT_CHIP_P5(bp)) { 835 /* PTP worker takes ownership of the skb */ 836 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 837 skb = NULL; 838 } 839 } 840 841 next_tx_int: 842 cons = NEXT_TX(cons); 843 844 dev_consume_skb_any(skb); 845 } 846 847 WRITE_ONCE(txr->tx_cons, cons); 848 849 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 850 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 851 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 852 853 return rc; 854 } 855 856 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 857 { 858 struct bnxt_tx_ring_info *txr; 859 bool more = false; 860 int i; 861 862 bnxt_for_each_napi_tx(i, bnapi, txr) { 863 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 864 more |= __bnxt_tx_int(bp, txr, budget); 865 } 866 if (!more) 867 bnapi->events &= ~BNXT_TX_CMP_EVENT; 868 } 869 870 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 871 struct bnxt_rx_ring_info *rxr, 872 unsigned int *offset, 873 gfp_t gfp) 874 { 875 struct page *page; 876 877 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 878 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 879 BNXT_RX_PAGE_SIZE); 880 } else { 881 page = page_pool_dev_alloc_pages(rxr->page_pool); 882 *offset = 0; 883 } 884 if (!page) 885 return NULL; 886 887 *mapping = page_pool_get_dma_addr(page) + *offset; 888 return page; 889 } 890 891 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 892 gfp_t gfp) 893 { 894 u8 *data; 895 struct pci_dev *pdev = bp->pdev; 896 897 if (gfp == GFP_ATOMIC) 898 data = napi_alloc_frag(bp->rx_buf_size); 899 else 900 data = netdev_alloc_frag(bp->rx_buf_size); 901 if (!data) 902 return NULL; 903 904 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 905 bp->rx_buf_use_size, bp->rx_dir, 906 DMA_ATTR_WEAK_ORDERING); 907 908 if (dma_mapping_error(&pdev->dev, *mapping)) { 909 skb_free_frag(data); 910 data = NULL; 911 } 912 return data; 913 } 914 915 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 916 u16 prod, gfp_t gfp) 917 { 918 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 919 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 920 dma_addr_t mapping; 921 922 if (BNXT_RX_PAGE_MODE(bp)) { 923 unsigned int offset; 924 struct page *page = 925 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 926 927 if (!page) 928 return -ENOMEM; 929 930 mapping += bp->rx_dma_offset; 931 rx_buf->data = page; 932 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 933 } else { 934 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 935 936 if (!data) 937 return -ENOMEM; 938 939 rx_buf->data = data; 940 rx_buf->data_ptr = data + bp->rx_offset; 941 } 942 rx_buf->mapping = mapping; 943 944 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 945 return 0; 946 } 947 948 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 949 { 950 u16 prod = rxr->rx_prod; 951 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 952 struct bnxt *bp = rxr->bnapi->bp; 953 struct rx_bd *cons_bd, *prod_bd; 954 955 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 956 cons_rx_buf = &rxr->rx_buf_ring[cons]; 957 958 prod_rx_buf->data = data; 959 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 960 961 prod_rx_buf->mapping = cons_rx_buf->mapping; 962 963 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 964 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 965 966 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 967 } 968 969 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 970 { 971 u16 next, max = rxr->rx_agg_bmap_size; 972 973 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 974 if (next >= max) 975 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 976 return next; 977 } 978 979 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 980 struct bnxt_rx_ring_info *rxr, 981 u16 prod, gfp_t gfp) 982 { 983 struct rx_bd *rxbd = 984 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 985 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 986 struct page *page; 987 dma_addr_t mapping; 988 u16 sw_prod = rxr->rx_sw_agg_prod; 989 unsigned int offset = 0; 990 991 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 992 993 if (!page) 994 return -ENOMEM; 995 996 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 997 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 998 999 __set_bit(sw_prod, rxr->rx_agg_bmap); 1000 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1001 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1002 1003 rx_agg_buf->page = page; 1004 rx_agg_buf->offset = offset; 1005 rx_agg_buf->mapping = mapping; 1006 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1007 rxbd->rx_bd_opaque = sw_prod; 1008 return 0; 1009 } 1010 1011 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1012 struct bnxt_cp_ring_info *cpr, 1013 u16 cp_cons, u16 curr) 1014 { 1015 struct rx_agg_cmp *agg; 1016 1017 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1018 agg = (struct rx_agg_cmp *) 1019 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1020 return agg; 1021 } 1022 1023 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1024 struct bnxt_rx_ring_info *rxr, 1025 u16 agg_id, u16 curr) 1026 { 1027 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1028 1029 return &tpa_info->agg_arr[curr]; 1030 } 1031 1032 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1033 u16 start, u32 agg_bufs, bool tpa) 1034 { 1035 struct bnxt_napi *bnapi = cpr->bnapi; 1036 struct bnxt *bp = bnapi->bp; 1037 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1038 u16 prod = rxr->rx_agg_prod; 1039 u16 sw_prod = rxr->rx_sw_agg_prod; 1040 bool p5_tpa = false; 1041 u32 i; 1042 1043 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1044 p5_tpa = true; 1045 1046 for (i = 0; i < agg_bufs; i++) { 1047 u16 cons; 1048 struct rx_agg_cmp *agg; 1049 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1050 struct rx_bd *prod_bd; 1051 struct page *page; 1052 1053 if (p5_tpa) 1054 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1055 else 1056 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1057 cons = agg->rx_agg_cmp_opaque; 1058 __clear_bit(cons, rxr->rx_agg_bmap); 1059 1060 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1061 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1062 1063 __set_bit(sw_prod, rxr->rx_agg_bmap); 1064 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1065 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1066 1067 /* It is possible for sw_prod to be equal to cons, so 1068 * set cons_rx_buf->page to NULL first. 1069 */ 1070 page = cons_rx_buf->page; 1071 cons_rx_buf->page = NULL; 1072 prod_rx_buf->page = page; 1073 prod_rx_buf->offset = cons_rx_buf->offset; 1074 1075 prod_rx_buf->mapping = cons_rx_buf->mapping; 1076 1077 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1078 1079 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1080 prod_bd->rx_bd_opaque = sw_prod; 1081 1082 prod = NEXT_RX_AGG(prod); 1083 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1084 } 1085 rxr->rx_agg_prod = prod; 1086 rxr->rx_sw_agg_prod = sw_prod; 1087 } 1088 1089 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1090 struct bnxt_rx_ring_info *rxr, 1091 u16 cons, void *data, u8 *data_ptr, 1092 dma_addr_t dma_addr, 1093 unsigned int offset_and_len) 1094 { 1095 unsigned int len = offset_and_len & 0xffff; 1096 struct page *page = data; 1097 u16 prod = rxr->rx_prod; 1098 struct sk_buff *skb; 1099 int err; 1100 1101 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1102 if (unlikely(err)) { 1103 bnxt_reuse_rx_data(rxr, cons, data); 1104 return NULL; 1105 } 1106 dma_addr -= bp->rx_dma_offset; 1107 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1108 bp->rx_dir); 1109 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1110 if (!skb) { 1111 page_pool_recycle_direct(rxr->page_pool, page); 1112 return NULL; 1113 } 1114 skb_mark_for_recycle(skb); 1115 skb_reserve(skb, bp->rx_offset); 1116 __skb_put(skb, len); 1117 1118 return skb; 1119 } 1120 1121 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1122 struct bnxt_rx_ring_info *rxr, 1123 u16 cons, void *data, u8 *data_ptr, 1124 dma_addr_t dma_addr, 1125 unsigned int offset_and_len) 1126 { 1127 unsigned int payload = offset_and_len >> 16; 1128 unsigned int len = offset_and_len & 0xffff; 1129 skb_frag_t *frag; 1130 struct page *page = data; 1131 u16 prod = rxr->rx_prod; 1132 struct sk_buff *skb; 1133 int off, err; 1134 1135 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1136 if (unlikely(err)) { 1137 bnxt_reuse_rx_data(rxr, cons, data); 1138 return NULL; 1139 } 1140 dma_addr -= bp->rx_dma_offset; 1141 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1142 bp->rx_dir); 1143 1144 if (unlikely(!payload)) 1145 payload = eth_get_headlen(bp->dev, data_ptr, len); 1146 1147 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1148 if (!skb) { 1149 page_pool_recycle_direct(rxr->page_pool, page); 1150 return NULL; 1151 } 1152 1153 skb_mark_for_recycle(skb); 1154 off = (void *)data_ptr - page_address(page); 1155 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1156 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1157 payload + NET_IP_ALIGN); 1158 1159 frag = &skb_shinfo(skb)->frags[0]; 1160 skb_frag_size_sub(frag, payload); 1161 skb_frag_off_add(frag, payload); 1162 skb->data_len -= payload; 1163 skb->tail += payload; 1164 1165 return skb; 1166 } 1167 1168 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1169 struct bnxt_rx_ring_info *rxr, u16 cons, 1170 void *data, u8 *data_ptr, 1171 dma_addr_t dma_addr, 1172 unsigned int offset_and_len) 1173 { 1174 u16 prod = rxr->rx_prod; 1175 struct sk_buff *skb; 1176 int err; 1177 1178 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1179 if (unlikely(err)) { 1180 bnxt_reuse_rx_data(rxr, cons, data); 1181 return NULL; 1182 } 1183 1184 skb = napi_build_skb(data, bp->rx_buf_size); 1185 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1186 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1187 if (!skb) { 1188 skb_free_frag(data); 1189 return NULL; 1190 } 1191 1192 skb_reserve(skb, bp->rx_offset); 1193 skb_put(skb, offset_and_len & 0xffff); 1194 return skb; 1195 } 1196 1197 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1198 struct bnxt_cp_ring_info *cpr, 1199 struct skb_shared_info *shinfo, 1200 u16 idx, u32 agg_bufs, bool tpa, 1201 struct xdp_buff *xdp) 1202 { 1203 struct bnxt_napi *bnapi = cpr->bnapi; 1204 struct pci_dev *pdev = bp->pdev; 1205 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1206 u16 prod = rxr->rx_agg_prod; 1207 u32 i, total_frag_len = 0; 1208 bool p5_tpa = false; 1209 1210 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1211 p5_tpa = true; 1212 1213 for (i = 0; i < agg_bufs; i++) { 1214 skb_frag_t *frag = &shinfo->frags[i]; 1215 u16 cons, frag_len; 1216 struct rx_agg_cmp *agg; 1217 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1218 struct page *page; 1219 dma_addr_t mapping; 1220 1221 if (p5_tpa) 1222 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1223 else 1224 agg = bnxt_get_agg(bp, cpr, idx, i); 1225 cons = agg->rx_agg_cmp_opaque; 1226 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1227 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1228 1229 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1230 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1231 cons_rx_buf->offset, frag_len); 1232 shinfo->nr_frags = i + 1; 1233 __clear_bit(cons, rxr->rx_agg_bmap); 1234 1235 /* It is possible for bnxt_alloc_rx_page() to allocate 1236 * a sw_prod index that equals the cons index, so we 1237 * need to clear the cons entry now. 1238 */ 1239 mapping = cons_rx_buf->mapping; 1240 page = cons_rx_buf->page; 1241 cons_rx_buf->page = NULL; 1242 1243 if (xdp && page_is_pfmemalloc(page)) 1244 xdp_buff_set_frag_pfmemalloc(xdp); 1245 1246 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1247 --shinfo->nr_frags; 1248 cons_rx_buf->page = page; 1249 1250 /* Update prod since possibly some pages have been 1251 * allocated already. 1252 */ 1253 rxr->rx_agg_prod = prod; 1254 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1255 return 0; 1256 } 1257 1258 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1259 bp->rx_dir); 1260 1261 total_frag_len += frag_len; 1262 prod = NEXT_RX_AGG(prod); 1263 } 1264 rxr->rx_agg_prod = prod; 1265 return total_frag_len; 1266 } 1267 1268 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1269 struct bnxt_cp_ring_info *cpr, 1270 struct sk_buff *skb, u16 idx, 1271 u32 agg_bufs, bool tpa) 1272 { 1273 struct skb_shared_info *shinfo = skb_shinfo(skb); 1274 u32 total_frag_len = 0; 1275 1276 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1277 agg_bufs, tpa, NULL); 1278 if (!total_frag_len) { 1279 skb_mark_for_recycle(skb); 1280 dev_kfree_skb(skb); 1281 return NULL; 1282 } 1283 1284 skb->data_len += total_frag_len; 1285 skb->len += total_frag_len; 1286 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1287 return skb; 1288 } 1289 1290 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1291 struct bnxt_cp_ring_info *cpr, 1292 struct xdp_buff *xdp, u16 idx, 1293 u32 agg_bufs, bool tpa) 1294 { 1295 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1296 u32 total_frag_len = 0; 1297 1298 if (!xdp_buff_has_frags(xdp)) 1299 shinfo->nr_frags = 0; 1300 1301 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1302 idx, agg_bufs, tpa, xdp); 1303 if (total_frag_len) { 1304 xdp_buff_set_frags_flag(xdp); 1305 shinfo->nr_frags = agg_bufs; 1306 shinfo->xdp_frags_size = total_frag_len; 1307 } 1308 return total_frag_len; 1309 } 1310 1311 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1312 u8 agg_bufs, u32 *raw_cons) 1313 { 1314 u16 last; 1315 struct rx_agg_cmp *agg; 1316 1317 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1318 last = RING_CMP(*raw_cons); 1319 agg = (struct rx_agg_cmp *) 1320 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1321 return RX_AGG_CMP_VALID(agg, *raw_cons); 1322 } 1323 1324 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1325 unsigned int len, 1326 dma_addr_t mapping) 1327 { 1328 struct bnxt *bp = bnapi->bp; 1329 struct pci_dev *pdev = bp->pdev; 1330 struct sk_buff *skb; 1331 1332 skb = napi_alloc_skb(&bnapi->napi, len); 1333 if (!skb) 1334 return NULL; 1335 1336 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1337 bp->rx_dir); 1338 1339 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1340 len + NET_IP_ALIGN); 1341 1342 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1343 bp->rx_dir); 1344 1345 skb_put(skb, len); 1346 1347 return skb; 1348 } 1349 1350 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1351 unsigned int len, 1352 dma_addr_t mapping) 1353 { 1354 return bnxt_copy_data(bnapi, data, len, mapping); 1355 } 1356 1357 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1358 struct xdp_buff *xdp, 1359 unsigned int len, 1360 dma_addr_t mapping) 1361 { 1362 unsigned int metasize = 0; 1363 u8 *data = xdp->data; 1364 struct sk_buff *skb; 1365 1366 len = xdp->data_end - xdp->data_meta; 1367 metasize = xdp->data - xdp->data_meta; 1368 data = xdp->data_meta; 1369 1370 skb = bnxt_copy_data(bnapi, data, len, mapping); 1371 if (!skb) 1372 return skb; 1373 1374 if (metasize) { 1375 skb_metadata_set(skb, metasize); 1376 __skb_pull(skb, metasize); 1377 } 1378 1379 return skb; 1380 } 1381 1382 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1383 u32 *raw_cons, void *cmp) 1384 { 1385 struct rx_cmp *rxcmp = cmp; 1386 u32 tmp_raw_cons = *raw_cons; 1387 u8 cmp_type, agg_bufs = 0; 1388 1389 cmp_type = RX_CMP_TYPE(rxcmp); 1390 1391 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1392 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1393 RX_CMP_AGG_BUFS) >> 1394 RX_CMP_AGG_BUFS_SHIFT; 1395 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1396 struct rx_tpa_end_cmp *tpa_end = cmp; 1397 1398 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1399 return 0; 1400 1401 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1402 } 1403 1404 if (agg_bufs) { 1405 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1406 return -EBUSY; 1407 } 1408 *raw_cons = tmp_raw_cons; 1409 return 0; 1410 } 1411 1412 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1413 { 1414 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1415 u16 idx = agg_id & MAX_TPA_P5_MASK; 1416 1417 if (test_bit(idx, map->agg_idx_bmap)) 1418 idx = find_first_zero_bit(map->agg_idx_bmap, 1419 BNXT_AGG_IDX_BMAP_SIZE); 1420 __set_bit(idx, map->agg_idx_bmap); 1421 map->agg_id_tbl[agg_id] = idx; 1422 return idx; 1423 } 1424 1425 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1426 { 1427 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1428 1429 __clear_bit(idx, map->agg_idx_bmap); 1430 } 1431 1432 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1433 { 1434 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1435 1436 return map->agg_id_tbl[agg_id]; 1437 } 1438 1439 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1440 struct rx_tpa_start_cmp *tpa_start, 1441 struct rx_tpa_start_cmp_ext *tpa_start1) 1442 { 1443 tpa_info->cfa_code_valid = 1; 1444 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1445 tpa_info->vlan_valid = 0; 1446 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1447 tpa_info->vlan_valid = 1; 1448 tpa_info->metadata = 1449 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1450 } 1451 } 1452 1453 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1454 struct rx_tpa_start_cmp *tpa_start, 1455 struct rx_tpa_start_cmp_ext *tpa_start1) 1456 { 1457 tpa_info->vlan_valid = 0; 1458 if (TPA_START_VLAN_VALID(tpa_start)) { 1459 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1460 u32 vlan_proto = ETH_P_8021Q; 1461 1462 tpa_info->vlan_valid = 1; 1463 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1464 vlan_proto = ETH_P_8021AD; 1465 tpa_info->metadata = vlan_proto << 16 | 1466 TPA_START_METADATA0_TCI(tpa_start1); 1467 } 1468 } 1469 1470 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1471 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1472 struct rx_tpa_start_cmp_ext *tpa_start1) 1473 { 1474 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1475 struct bnxt_tpa_info *tpa_info; 1476 u16 cons, prod, agg_id; 1477 struct rx_bd *prod_bd; 1478 dma_addr_t mapping; 1479 1480 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1481 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1482 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1483 } else { 1484 agg_id = TPA_START_AGG_ID(tpa_start); 1485 } 1486 cons = tpa_start->rx_tpa_start_cmp_opaque; 1487 prod = rxr->rx_prod; 1488 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1489 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1490 tpa_info = &rxr->rx_tpa[agg_id]; 1491 1492 if (unlikely(cons != rxr->rx_next_cons || 1493 TPA_START_ERROR(tpa_start))) { 1494 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1495 cons, rxr->rx_next_cons, 1496 TPA_START_ERROR_CODE(tpa_start1)); 1497 bnxt_sched_reset_rxr(bp, rxr); 1498 return; 1499 } 1500 prod_rx_buf->data = tpa_info->data; 1501 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1502 1503 mapping = tpa_info->mapping; 1504 prod_rx_buf->mapping = mapping; 1505 1506 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1507 1508 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1509 1510 tpa_info->data = cons_rx_buf->data; 1511 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1512 cons_rx_buf->data = NULL; 1513 tpa_info->mapping = cons_rx_buf->mapping; 1514 1515 tpa_info->len = 1516 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1517 RX_TPA_START_CMP_LEN_SHIFT; 1518 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1519 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1520 tpa_info->gso_type = SKB_GSO_TCPV4; 1521 if (TPA_START_IS_IPV6(tpa_start1)) 1522 tpa_info->gso_type = SKB_GSO_TCPV6; 1523 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1524 else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP && 1525 TPA_START_HASH_TYPE(tpa_start) == 3) 1526 tpa_info->gso_type = SKB_GSO_TCPV6; 1527 tpa_info->rss_hash = 1528 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1529 } else { 1530 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1531 tpa_info->gso_type = 0; 1532 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1533 } 1534 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1535 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1536 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1537 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1538 else 1539 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1540 tpa_info->agg_count = 0; 1541 1542 rxr->rx_prod = NEXT_RX(prod); 1543 cons = RING_RX(bp, NEXT_RX(cons)); 1544 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1545 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1546 1547 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1548 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1549 cons_rx_buf->data = NULL; 1550 } 1551 1552 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1553 { 1554 if (agg_bufs) 1555 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1556 } 1557 1558 #ifdef CONFIG_INET 1559 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1560 { 1561 struct udphdr *uh = NULL; 1562 1563 if (ip_proto == htons(ETH_P_IP)) { 1564 struct iphdr *iph = (struct iphdr *)skb->data; 1565 1566 if (iph->protocol == IPPROTO_UDP) 1567 uh = (struct udphdr *)(iph + 1); 1568 } else { 1569 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1570 1571 if (iph->nexthdr == IPPROTO_UDP) 1572 uh = (struct udphdr *)(iph + 1); 1573 } 1574 if (uh) { 1575 if (uh->check) 1576 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1577 else 1578 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1579 } 1580 } 1581 #endif 1582 1583 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1584 int payload_off, int tcp_ts, 1585 struct sk_buff *skb) 1586 { 1587 #ifdef CONFIG_INET 1588 struct tcphdr *th; 1589 int len, nw_off; 1590 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1591 u32 hdr_info = tpa_info->hdr_info; 1592 bool loopback = false; 1593 1594 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1595 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1596 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1597 1598 /* If the packet is an internal loopback packet, the offsets will 1599 * have an extra 4 bytes. 1600 */ 1601 if (inner_mac_off == 4) { 1602 loopback = true; 1603 } else if (inner_mac_off > 4) { 1604 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1605 ETH_HLEN - 2)); 1606 1607 /* We only support inner iPv4/ipv6. If we don't see the 1608 * correct protocol ID, it must be a loopback packet where 1609 * the offsets are off by 4. 1610 */ 1611 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1612 loopback = true; 1613 } 1614 if (loopback) { 1615 /* internal loopback packet, subtract all offsets by 4 */ 1616 inner_ip_off -= 4; 1617 inner_mac_off -= 4; 1618 outer_ip_off -= 4; 1619 } 1620 1621 nw_off = inner_ip_off - ETH_HLEN; 1622 skb_set_network_header(skb, nw_off); 1623 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1624 struct ipv6hdr *iph = ipv6_hdr(skb); 1625 1626 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1627 len = skb->len - skb_transport_offset(skb); 1628 th = tcp_hdr(skb); 1629 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1630 } else { 1631 struct iphdr *iph = ip_hdr(skb); 1632 1633 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1634 len = skb->len - skb_transport_offset(skb); 1635 th = tcp_hdr(skb); 1636 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1637 } 1638 1639 if (inner_mac_off) { /* tunnel */ 1640 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1641 ETH_HLEN - 2)); 1642 1643 bnxt_gro_tunnel(skb, proto); 1644 } 1645 #endif 1646 return skb; 1647 } 1648 1649 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1650 int payload_off, int tcp_ts, 1651 struct sk_buff *skb) 1652 { 1653 #ifdef CONFIG_INET 1654 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1655 u32 hdr_info = tpa_info->hdr_info; 1656 int iphdr_len, nw_off; 1657 1658 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1659 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1660 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1661 1662 nw_off = inner_ip_off - ETH_HLEN; 1663 skb_set_network_header(skb, nw_off); 1664 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1665 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1666 skb_set_transport_header(skb, nw_off + iphdr_len); 1667 1668 if (inner_mac_off) { /* tunnel */ 1669 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1670 ETH_HLEN - 2)); 1671 1672 bnxt_gro_tunnel(skb, proto); 1673 } 1674 #endif 1675 return skb; 1676 } 1677 1678 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1679 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1680 1681 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1682 int payload_off, int tcp_ts, 1683 struct sk_buff *skb) 1684 { 1685 #ifdef CONFIG_INET 1686 struct tcphdr *th; 1687 int len, nw_off, tcp_opt_len = 0; 1688 1689 if (tcp_ts) 1690 tcp_opt_len = 12; 1691 1692 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1693 struct iphdr *iph; 1694 1695 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1696 ETH_HLEN; 1697 skb_set_network_header(skb, nw_off); 1698 iph = ip_hdr(skb); 1699 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1700 len = skb->len - skb_transport_offset(skb); 1701 th = tcp_hdr(skb); 1702 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1703 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1704 struct ipv6hdr *iph; 1705 1706 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1707 ETH_HLEN; 1708 skb_set_network_header(skb, nw_off); 1709 iph = ipv6_hdr(skb); 1710 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1711 len = skb->len - skb_transport_offset(skb); 1712 th = tcp_hdr(skb); 1713 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1714 } else { 1715 dev_kfree_skb_any(skb); 1716 return NULL; 1717 } 1718 1719 if (nw_off) /* tunnel */ 1720 bnxt_gro_tunnel(skb, skb->protocol); 1721 #endif 1722 return skb; 1723 } 1724 1725 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1726 struct bnxt_tpa_info *tpa_info, 1727 struct rx_tpa_end_cmp *tpa_end, 1728 struct rx_tpa_end_cmp_ext *tpa_end1, 1729 struct sk_buff *skb) 1730 { 1731 #ifdef CONFIG_INET 1732 int payload_off; 1733 u16 segs; 1734 1735 segs = TPA_END_TPA_SEGS(tpa_end); 1736 if (segs == 1) 1737 return skb; 1738 1739 NAPI_GRO_CB(skb)->count = segs; 1740 skb_shinfo(skb)->gso_size = 1741 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1742 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1743 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1744 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1745 else 1746 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1747 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1748 if (likely(skb)) 1749 tcp_gro_complete(skb); 1750 #endif 1751 return skb; 1752 } 1753 1754 /* Given the cfa_code of a received packet determine which 1755 * netdev (vf-rep or PF) the packet is destined to. 1756 */ 1757 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1758 { 1759 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1760 1761 /* if vf-rep dev is NULL, the must belongs to the PF */ 1762 return dev ? dev : bp->dev; 1763 } 1764 1765 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1766 struct bnxt_cp_ring_info *cpr, 1767 u32 *raw_cons, 1768 struct rx_tpa_end_cmp *tpa_end, 1769 struct rx_tpa_end_cmp_ext *tpa_end1, 1770 u8 *event) 1771 { 1772 struct bnxt_napi *bnapi = cpr->bnapi; 1773 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1774 struct net_device *dev = bp->dev; 1775 u8 *data_ptr, agg_bufs; 1776 unsigned int len; 1777 struct bnxt_tpa_info *tpa_info; 1778 dma_addr_t mapping; 1779 struct sk_buff *skb; 1780 u16 idx = 0, agg_id; 1781 void *data; 1782 bool gro; 1783 1784 if (unlikely(bnapi->in_reset)) { 1785 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1786 1787 if (rc < 0) 1788 return ERR_PTR(-EBUSY); 1789 return NULL; 1790 } 1791 1792 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1793 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1794 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1795 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1796 tpa_info = &rxr->rx_tpa[agg_id]; 1797 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1798 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1799 agg_bufs, tpa_info->agg_count); 1800 agg_bufs = tpa_info->agg_count; 1801 } 1802 tpa_info->agg_count = 0; 1803 *event |= BNXT_AGG_EVENT; 1804 bnxt_free_agg_idx(rxr, agg_id); 1805 idx = agg_id; 1806 gro = !!(bp->flags & BNXT_FLAG_GRO); 1807 } else { 1808 agg_id = TPA_END_AGG_ID(tpa_end); 1809 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1810 tpa_info = &rxr->rx_tpa[agg_id]; 1811 idx = RING_CMP(*raw_cons); 1812 if (agg_bufs) { 1813 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1814 return ERR_PTR(-EBUSY); 1815 1816 *event |= BNXT_AGG_EVENT; 1817 idx = NEXT_CMP(idx); 1818 } 1819 gro = !!TPA_END_GRO(tpa_end); 1820 } 1821 data = tpa_info->data; 1822 data_ptr = tpa_info->data_ptr; 1823 prefetch(data_ptr); 1824 len = tpa_info->len; 1825 mapping = tpa_info->mapping; 1826 1827 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1828 bnxt_abort_tpa(cpr, idx, agg_bufs); 1829 if (agg_bufs > MAX_SKB_FRAGS) 1830 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1831 agg_bufs, (int)MAX_SKB_FRAGS); 1832 return NULL; 1833 } 1834 1835 if (len <= bp->rx_copy_thresh) { 1836 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1837 if (!skb) { 1838 bnxt_abort_tpa(cpr, idx, agg_bufs); 1839 cpr->sw_stats->rx.rx_oom_discards += 1; 1840 return NULL; 1841 } 1842 } else { 1843 u8 *new_data; 1844 dma_addr_t new_mapping; 1845 1846 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1847 if (!new_data) { 1848 bnxt_abort_tpa(cpr, idx, agg_bufs); 1849 cpr->sw_stats->rx.rx_oom_discards += 1; 1850 return NULL; 1851 } 1852 1853 tpa_info->data = new_data; 1854 tpa_info->data_ptr = new_data + bp->rx_offset; 1855 tpa_info->mapping = new_mapping; 1856 1857 skb = napi_build_skb(data, bp->rx_buf_size); 1858 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1859 bp->rx_buf_use_size, bp->rx_dir, 1860 DMA_ATTR_WEAK_ORDERING); 1861 1862 if (!skb) { 1863 skb_free_frag(data); 1864 bnxt_abort_tpa(cpr, idx, agg_bufs); 1865 cpr->sw_stats->rx.rx_oom_discards += 1; 1866 return NULL; 1867 } 1868 skb_reserve(skb, bp->rx_offset); 1869 skb_put(skb, len); 1870 } 1871 1872 if (agg_bufs) { 1873 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1874 if (!skb) { 1875 /* Page reuse already handled by bnxt_rx_pages(). */ 1876 cpr->sw_stats->rx.rx_oom_discards += 1; 1877 return NULL; 1878 } 1879 } 1880 1881 if (tpa_info->cfa_code_valid) 1882 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1883 skb->protocol = eth_type_trans(skb, dev); 1884 1885 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1886 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1887 1888 if (tpa_info->vlan_valid && 1889 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1890 __be16 vlan_proto = htons(tpa_info->metadata >> 1891 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1892 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1893 1894 if (eth_type_vlan(vlan_proto)) { 1895 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1896 } else { 1897 dev_kfree_skb(skb); 1898 return NULL; 1899 } 1900 } 1901 1902 skb_checksum_none_assert(skb); 1903 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1904 skb->ip_summed = CHECKSUM_UNNECESSARY; 1905 skb->csum_level = 1906 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1907 } 1908 1909 if (gro) 1910 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1911 1912 return skb; 1913 } 1914 1915 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1916 struct rx_agg_cmp *rx_agg) 1917 { 1918 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1919 struct bnxt_tpa_info *tpa_info; 1920 1921 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1922 tpa_info = &rxr->rx_tpa[agg_id]; 1923 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1924 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1925 } 1926 1927 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1928 struct sk_buff *skb) 1929 { 1930 skb_mark_for_recycle(skb); 1931 1932 if (skb->dev != bp->dev) { 1933 /* this packet belongs to a vf-rep */ 1934 bnxt_vf_rep_rx(bp, skb); 1935 return; 1936 } 1937 skb_record_rx_queue(skb, bnapi->index); 1938 napi_gro_receive(&bnapi->napi, skb); 1939 } 1940 1941 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1942 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1943 { 1944 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1945 1946 if (BNXT_PTP_RX_TS_VALID(flags)) 1947 goto ts_valid; 1948 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1949 return false; 1950 1951 ts_valid: 1952 *cmpl_ts = ts; 1953 return true; 1954 } 1955 1956 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1957 struct rx_cmp *rxcmp, 1958 struct rx_cmp_ext *rxcmp1) 1959 { 1960 __be16 vlan_proto; 1961 u16 vtag; 1962 1963 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1964 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1965 u32 meta_data; 1966 1967 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1968 return skb; 1969 1970 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1971 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1972 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1973 if (eth_type_vlan(vlan_proto)) 1974 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1975 else 1976 goto vlan_err; 1977 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 1978 if (RX_CMP_VLAN_VALID(rxcmp)) { 1979 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 1980 1981 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 1982 vlan_proto = htons(ETH_P_8021Q); 1983 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 1984 vlan_proto = htons(ETH_P_8021AD); 1985 else 1986 goto vlan_err; 1987 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 1988 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1989 } 1990 } 1991 return skb; 1992 vlan_err: 1993 dev_kfree_skb(skb); 1994 return NULL; 1995 } 1996 1997 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 1998 struct rx_cmp *rxcmp) 1999 { 2000 u8 ext_op; 2001 2002 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2003 switch (ext_op) { 2004 case EXT_OP_INNER_4: 2005 case EXT_OP_OUTER_4: 2006 case EXT_OP_INNFL_3: 2007 case EXT_OP_OUTFL_3: 2008 return PKT_HASH_TYPE_L4; 2009 default: 2010 return PKT_HASH_TYPE_L3; 2011 } 2012 } 2013 2014 /* returns the following: 2015 * 1 - 1 packet successfully received 2016 * 0 - successful TPA_START, packet not completed yet 2017 * -EBUSY - completion ring does not have all the agg buffers yet 2018 * -ENOMEM - packet aborted due to out of memory 2019 * -EIO - packet aborted due to hw error indicated in BD 2020 */ 2021 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2022 u32 *raw_cons, u8 *event) 2023 { 2024 struct bnxt_napi *bnapi = cpr->bnapi; 2025 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2026 struct net_device *dev = bp->dev; 2027 struct rx_cmp *rxcmp; 2028 struct rx_cmp_ext *rxcmp1; 2029 u32 tmp_raw_cons = *raw_cons; 2030 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2031 struct bnxt_sw_rx_bd *rx_buf; 2032 unsigned int len; 2033 u8 *data_ptr, agg_bufs, cmp_type; 2034 bool xdp_active = false; 2035 dma_addr_t dma_addr; 2036 struct sk_buff *skb; 2037 struct xdp_buff xdp; 2038 u32 flags, misc; 2039 u32 cmpl_ts; 2040 void *data; 2041 int rc = 0; 2042 2043 rxcmp = (struct rx_cmp *) 2044 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2045 2046 cmp_type = RX_CMP_TYPE(rxcmp); 2047 2048 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2049 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2050 goto next_rx_no_prod_no_len; 2051 } 2052 2053 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2054 cp_cons = RING_CMP(tmp_raw_cons); 2055 rxcmp1 = (struct rx_cmp_ext *) 2056 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2057 2058 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2059 return -EBUSY; 2060 2061 /* The valid test of the entry must be done first before 2062 * reading any further. 2063 */ 2064 dma_rmb(); 2065 prod = rxr->rx_prod; 2066 2067 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2068 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2069 bnxt_tpa_start(bp, rxr, cmp_type, 2070 (struct rx_tpa_start_cmp *)rxcmp, 2071 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2072 2073 *event |= BNXT_RX_EVENT; 2074 goto next_rx_no_prod_no_len; 2075 2076 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2077 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2078 (struct rx_tpa_end_cmp *)rxcmp, 2079 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2080 2081 if (IS_ERR(skb)) 2082 return -EBUSY; 2083 2084 rc = -ENOMEM; 2085 if (likely(skb)) { 2086 bnxt_deliver_skb(bp, bnapi, skb); 2087 rc = 1; 2088 } 2089 *event |= BNXT_RX_EVENT; 2090 goto next_rx_no_prod_no_len; 2091 } 2092 2093 cons = rxcmp->rx_cmp_opaque; 2094 if (unlikely(cons != rxr->rx_next_cons)) { 2095 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2096 2097 /* 0xffff is forced error, don't print it */ 2098 if (rxr->rx_next_cons != 0xffff) 2099 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2100 cons, rxr->rx_next_cons); 2101 bnxt_sched_reset_rxr(bp, rxr); 2102 if (rc1) 2103 return rc1; 2104 goto next_rx_no_prod_no_len; 2105 } 2106 rx_buf = &rxr->rx_buf_ring[cons]; 2107 data = rx_buf->data; 2108 data_ptr = rx_buf->data_ptr; 2109 prefetch(data_ptr); 2110 2111 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2112 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2113 2114 if (agg_bufs) { 2115 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2116 return -EBUSY; 2117 2118 cp_cons = NEXT_CMP(cp_cons); 2119 *event |= BNXT_AGG_EVENT; 2120 } 2121 *event |= BNXT_RX_EVENT; 2122 2123 rx_buf->data = NULL; 2124 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2125 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2126 2127 bnxt_reuse_rx_data(rxr, cons, data); 2128 if (agg_bufs) 2129 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2130 false); 2131 2132 rc = -EIO; 2133 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2134 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2135 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2136 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2137 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2138 rx_err); 2139 bnxt_sched_reset_rxr(bp, rxr); 2140 } 2141 } 2142 goto next_rx_no_len; 2143 } 2144 2145 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2146 len = flags >> RX_CMP_LEN_SHIFT; 2147 dma_addr = rx_buf->mapping; 2148 2149 if (bnxt_xdp_attached(bp, rxr)) { 2150 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2151 if (agg_bufs) { 2152 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2153 cp_cons, agg_bufs, 2154 false); 2155 if (!frag_len) 2156 goto oom_next_rx; 2157 } 2158 xdp_active = true; 2159 } 2160 2161 if (xdp_active) { 2162 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2163 rc = 1; 2164 goto next_rx; 2165 } 2166 } 2167 2168 if (len <= bp->rx_copy_thresh) { 2169 if (!xdp_active) 2170 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2171 else 2172 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2173 bnxt_reuse_rx_data(rxr, cons, data); 2174 if (!skb) { 2175 if (agg_bufs) { 2176 if (!xdp_active) 2177 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2178 agg_bufs, false); 2179 else 2180 bnxt_xdp_buff_frags_free(rxr, &xdp); 2181 } 2182 goto oom_next_rx; 2183 } 2184 } else { 2185 u32 payload; 2186 2187 if (rx_buf->data_ptr == data_ptr) 2188 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2189 else 2190 payload = 0; 2191 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2192 payload | len); 2193 if (!skb) 2194 goto oom_next_rx; 2195 } 2196 2197 if (agg_bufs) { 2198 if (!xdp_active) { 2199 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2200 if (!skb) 2201 goto oom_next_rx; 2202 } else { 2203 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 2204 if (!skb) { 2205 /* we should be able to free the old skb here */ 2206 bnxt_xdp_buff_frags_free(rxr, &xdp); 2207 goto oom_next_rx; 2208 } 2209 } 2210 } 2211 2212 if (RX_CMP_HASH_VALID(rxcmp)) { 2213 enum pkt_hash_types type; 2214 2215 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2216 type = bnxt_rss_ext_op(bp, rxcmp); 2217 } else { 2218 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2219 2220 /* RSS profiles 1 and 3 with extract code 0 for inner 2221 * 4-tuple 2222 */ 2223 if (hash_type != 1 && hash_type != 3) 2224 type = PKT_HASH_TYPE_L3; 2225 else 2226 type = PKT_HASH_TYPE_L4; 2227 } 2228 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2229 } 2230 2231 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2232 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2233 skb->protocol = eth_type_trans(skb, dev); 2234 2235 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2236 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2237 if (!skb) 2238 goto next_rx; 2239 } 2240 2241 skb_checksum_none_assert(skb); 2242 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2243 if (dev->features & NETIF_F_RXCSUM) { 2244 skb->ip_summed = CHECKSUM_UNNECESSARY; 2245 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2246 } 2247 } else { 2248 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2249 if (dev->features & NETIF_F_RXCSUM) 2250 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2251 } 2252 } 2253 2254 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2255 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2256 u64 ns, ts; 2257 2258 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2259 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2260 2261 spin_lock_bh(&ptp->ptp_lock); 2262 ns = timecounter_cyc2time(&ptp->tc, ts); 2263 spin_unlock_bh(&ptp->ptp_lock); 2264 memset(skb_hwtstamps(skb), 0, 2265 sizeof(*skb_hwtstamps(skb))); 2266 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2267 } 2268 } 2269 } 2270 bnxt_deliver_skb(bp, bnapi, skb); 2271 rc = 1; 2272 2273 next_rx: 2274 cpr->rx_packets += 1; 2275 cpr->rx_bytes += len; 2276 2277 next_rx_no_len: 2278 rxr->rx_prod = NEXT_RX(prod); 2279 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2280 2281 next_rx_no_prod_no_len: 2282 *raw_cons = tmp_raw_cons; 2283 2284 return rc; 2285 2286 oom_next_rx: 2287 cpr->sw_stats->rx.rx_oom_discards += 1; 2288 rc = -ENOMEM; 2289 goto next_rx; 2290 } 2291 2292 /* In netpoll mode, if we are using a combined completion ring, we need to 2293 * discard the rx packets and recycle the buffers. 2294 */ 2295 static int bnxt_force_rx_discard(struct bnxt *bp, 2296 struct bnxt_cp_ring_info *cpr, 2297 u32 *raw_cons, u8 *event) 2298 { 2299 u32 tmp_raw_cons = *raw_cons; 2300 struct rx_cmp_ext *rxcmp1; 2301 struct rx_cmp *rxcmp; 2302 u16 cp_cons; 2303 u8 cmp_type; 2304 int rc; 2305 2306 cp_cons = RING_CMP(tmp_raw_cons); 2307 rxcmp = (struct rx_cmp *) 2308 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2309 2310 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2311 cp_cons = RING_CMP(tmp_raw_cons); 2312 rxcmp1 = (struct rx_cmp_ext *) 2313 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2314 2315 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2316 return -EBUSY; 2317 2318 /* The valid test of the entry must be done first before 2319 * reading any further. 2320 */ 2321 dma_rmb(); 2322 cmp_type = RX_CMP_TYPE(rxcmp); 2323 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2324 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2325 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2326 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2327 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2328 struct rx_tpa_end_cmp_ext *tpa_end1; 2329 2330 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2331 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2332 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2333 } 2334 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2335 if (rc && rc != -EBUSY) 2336 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2337 return rc; 2338 } 2339 2340 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2341 { 2342 struct bnxt_fw_health *fw_health = bp->fw_health; 2343 u32 reg = fw_health->regs[reg_idx]; 2344 u32 reg_type, reg_off, val = 0; 2345 2346 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2347 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2348 switch (reg_type) { 2349 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2350 pci_read_config_dword(bp->pdev, reg_off, &val); 2351 break; 2352 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2353 reg_off = fw_health->mapped_regs[reg_idx]; 2354 fallthrough; 2355 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2356 val = readl(bp->bar0 + reg_off); 2357 break; 2358 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2359 val = readl(bp->bar1 + reg_off); 2360 break; 2361 } 2362 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2363 val &= fw_health->fw_reset_inprog_reg_mask; 2364 return val; 2365 } 2366 2367 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2368 { 2369 int i; 2370 2371 for (i = 0; i < bp->rx_nr_rings; i++) { 2372 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2373 struct bnxt_ring_grp_info *grp_info; 2374 2375 grp_info = &bp->grp_info[grp_idx]; 2376 if (grp_info->agg_fw_ring_id == ring_id) 2377 return grp_idx; 2378 } 2379 return INVALID_HW_RING_ID; 2380 } 2381 2382 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2383 { 2384 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2385 2386 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2387 return link_info->force_link_speed2; 2388 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2389 return link_info->force_pam4_link_speed; 2390 return link_info->force_link_speed; 2391 } 2392 2393 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2394 { 2395 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2396 2397 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2398 link_info->req_link_speed = link_info->force_link_speed2; 2399 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2400 switch (link_info->req_link_speed) { 2401 case BNXT_LINK_SPEED_50GB_PAM4: 2402 case BNXT_LINK_SPEED_100GB_PAM4: 2403 case BNXT_LINK_SPEED_200GB_PAM4: 2404 case BNXT_LINK_SPEED_400GB_PAM4: 2405 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2406 break; 2407 case BNXT_LINK_SPEED_100GB_PAM4_112: 2408 case BNXT_LINK_SPEED_200GB_PAM4_112: 2409 case BNXT_LINK_SPEED_400GB_PAM4_112: 2410 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2411 break; 2412 default: 2413 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2414 } 2415 return; 2416 } 2417 link_info->req_link_speed = link_info->force_link_speed; 2418 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2419 if (link_info->force_pam4_link_speed) { 2420 link_info->req_link_speed = link_info->force_pam4_link_speed; 2421 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2422 } 2423 } 2424 2425 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2426 { 2427 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2428 2429 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2430 link_info->advertising = link_info->auto_link_speeds2; 2431 return; 2432 } 2433 link_info->advertising = link_info->auto_link_speeds; 2434 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2435 } 2436 2437 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2438 { 2439 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2440 2441 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2442 if (link_info->req_link_speed != link_info->force_link_speed2) 2443 return true; 2444 return false; 2445 } 2446 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2447 link_info->req_link_speed != link_info->force_link_speed) 2448 return true; 2449 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2450 link_info->req_link_speed != link_info->force_pam4_link_speed) 2451 return true; 2452 return false; 2453 } 2454 2455 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2456 { 2457 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2458 2459 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2460 if (link_info->advertising != link_info->auto_link_speeds2) 2461 return true; 2462 return false; 2463 } 2464 if (link_info->advertising != link_info->auto_link_speeds || 2465 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2466 return true; 2467 return false; 2468 } 2469 2470 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2471 ((data2) & \ 2472 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2473 2474 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2475 (((data2) & \ 2476 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2477 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2478 2479 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2480 ((data1) & \ 2481 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2482 2483 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2484 (((data1) & \ 2485 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2486 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2487 2488 /* Return true if the workqueue has to be scheduled */ 2489 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2490 { 2491 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2492 2493 switch (err_type) { 2494 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2495 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2496 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2497 break; 2498 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2499 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2500 break; 2501 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2502 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2503 break; 2504 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2505 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2506 char *threshold_type; 2507 bool notify = false; 2508 char *dir_str; 2509 2510 switch (type) { 2511 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2512 threshold_type = "warning"; 2513 break; 2514 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2515 threshold_type = "critical"; 2516 break; 2517 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2518 threshold_type = "fatal"; 2519 break; 2520 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2521 threshold_type = "shutdown"; 2522 break; 2523 default: 2524 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2525 return false; 2526 } 2527 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2528 dir_str = "above"; 2529 notify = true; 2530 } else { 2531 dir_str = "below"; 2532 } 2533 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2534 dir_str, threshold_type); 2535 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2536 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2537 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2538 if (notify) { 2539 bp->thermal_threshold_type = type; 2540 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2541 return true; 2542 } 2543 return false; 2544 } 2545 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2546 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2547 break; 2548 default: 2549 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2550 err_type); 2551 break; 2552 } 2553 return false; 2554 } 2555 2556 #define BNXT_GET_EVENT_PORT(data) \ 2557 ((data) & \ 2558 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2559 2560 #define BNXT_EVENT_RING_TYPE(data2) \ 2561 ((data2) & \ 2562 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2563 2564 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2565 (BNXT_EVENT_RING_TYPE(data2) == \ 2566 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2567 2568 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2569 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2570 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2571 2572 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2573 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2574 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2575 2576 #define BNXT_PHC_BITS 48 2577 2578 static int bnxt_async_event_process(struct bnxt *bp, 2579 struct hwrm_async_event_cmpl *cmpl) 2580 { 2581 u16 event_id = le16_to_cpu(cmpl->event_id); 2582 u32 data1 = le32_to_cpu(cmpl->event_data1); 2583 u32 data2 = le32_to_cpu(cmpl->event_data2); 2584 2585 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2586 event_id, data1, data2); 2587 2588 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2589 switch (event_id) { 2590 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2591 struct bnxt_link_info *link_info = &bp->link_info; 2592 2593 if (BNXT_VF(bp)) 2594 goto async_event_process_exit; 2595 2596 /* print unsupported speed warning in forced speed mode only */ 2597 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2598 (data1 & 0x20000)) { 2599 u16 fw_speed = bnxt_get_force_speed(link_info); 2600 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2601 2602 if (speed != SPEED_UNKNOWN) 2603 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2604 speed); 2605 } 2606 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2607 } 2608 fallthrough; 2609 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2610 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2611 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2612 fallthrough; 2613 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2614 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2615 break; 2616 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2617 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2618 break; 2619 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2620 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2621 2622 if (BNXT_VF(bp)) 2623 break; 2624 2625 if (bp->pf.port_id != port_id) 2626 break; 2627 2628 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2629 break; 2630 } 2631 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2632 if (BNXT_PF(bp)) 2633 goto async_event_process_exit; 2634 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2635 break; 2636 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2637 char *type_str = "Solicited"; 2638 2639 if (!bp->fw_health) 2640 goto async_event_process_exit; 2641 2642 bp->fw_reset_timestamp = jiffies; 2643 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2644 if (!bp->fw_reset_min_dsecs) 2645 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2646 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2647 if (!bp->fw_reset_max_dsecs) 2648 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2649 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2650 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2651 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2652 type_str = "Fatal"; 2653 bp->fw_health->fatalities++; 2654 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2655 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2656 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2657 type_str = "Non-fatal"; 2658 bp->fw_health->survivals++; 2659 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2660 } 2661 netif_warn(bp, hw, bp->dev, 2662 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2663 type_str, data1, data2, 2664 bp->fw_reset_min_dsecs * 100, 2665 bp->fw_reset_max_dsecs * 100); 2666 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2667 break; 2668 } 2669 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2670 struct bnxt_fw_health *fw_health = bp->fw_health; 2671 char *status_desc = "healthy"; 2672 u32 status; 2673 2674 if (!fw_health) 2675 goto async_event_process_exit; 2676 2677 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2678 fw_health->enabled = false; 2679 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2680 break; 2681 } 2682 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2683 fw_health->tmr_multiplier = 2684 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2685 bp->current_interval * 10); 2686 fw_health->tmr_counter = fw_health->tmr_multiplier; 2687 if (!fw_health->enabled) 2688 fw_health->last_fw_heartbeat = 2689 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2690 fw_health->last_fw_reset_cnt = 2691 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2692 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2693 if (status != BNXT_FW_STATUS_HEALTHY) 2694 status_desc = "unhealthy"; 2695 netif_info(bp, drv, bp->dev, 2696 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2697 fw_health->primary ? "primary" : "backup", status, 2698 status_desc, fw_health->last_fw_reset_cnt); 2699 if (!fw_health->enabled) { 2700 /* Make sure tmr_counter is set and visible to 2701 * bnxt_health_check() before setting enabled to true. 2702 */ 2703 smp_wmb(); 2704 fw_health->enabled = true; 2705 } 2706 goto async_event_process_exit; 2707 } 2708 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2709 netif_notice(bp, hw, bp->dev, 2710 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2711 data1, data2); 2712 goto async_event_process_exit; 2713 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2714 struct bnxt_rx_ring_info *rxr; 2715 u16 grp_idx; 2716 2717 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2718 goto async_event_process_exit; 2719 2720 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2721 BNXT_EVENT_RING_TYPE(data2), data1); 2722 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2723 goto async_event_process_exit; 2724 2725 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2726 if (grp_idx == INVALID_HW_RING_ID) { 2727 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2728 data1); 2729 goto async_event_process_exit; 2730 } 2731 rxr = bp->bnapi[grp_idx]->rx_ring; 2732 bnxt_sched_reset_rxr(bp, rxr); 2733 goto async_event_process_exit; 2734 } 2735 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2736 struct bnxt_fw_health *fw_health = bp->fw_health; 2737 2738 netif_notice(bp, hw, bp->dev, 2739 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2740 data1, data2); 2741 if (fw_health) { 2742 fw_health->echo_req_data1 = data1; 2743 fw_health->echo_req_data2 = data2; 2744 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2745 break; 2746 } 2747 goto async_event_process_exit; 2748 } 2749 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2750 bnxt_ptp_pps_event(bp, data1, data2); 2751 goto async_event_process_exit; 2752 } 2753 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2754 if (bnxt_event_error_report(bp, data1, data2)) 2755 break; 2756 goto async_event_process_exit; 2757 } 2758 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2759 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2760 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2761 if (BNXT_PTP_USE_RTC(bp)) { 2762 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2763 u64 ns; 2764 2765 if (!ptp) 2766 goto async_event_process_exit; 2767 2768 spin_lock_bh(&ptp->ptp_lock); 2769 bnxt_ptp_update_current_time(bp); 2770 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2771 BNXT_PHC_BITS) | ptp->current_time); 2772 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2773 spin_unlock_bh(&ptp->ptp_lock); 2774 } 2775 break; 2776 } 2777 goto async_event_process_exit; 2778 } 2779 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2780 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2781 2782 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2783 goto async_event_process_exit; 2784 } 2785 default: 2786 goto async_event_process_exit; 2787 } 2788 __bnxt_queue_sp_work(bp); 2789 async_event_process_exit: 2790 return 0; 2791 } 2792 2793 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2794 { 2795 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2796 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2797 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2798 (struct hwrm_fwd_req_cmpl *)txcmp; 2799 2800 switch (cmpl_type) { 2801 case CMPL_BASE_TYPE_HWRM_DONE: 2802 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2803 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2804 break; 2805 2806 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2807 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2808 2809 if ((vf_id < bp->pf.first_vf_id) || 2810 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2811 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2812 vf_id); 2813 return -EINVAL; 2814 } 2815 2816 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2817 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2818 break; 2819 2820 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2821 bnxt_async_event_process(bp, 2822 (struct hwrm_async_event_cmpl *)txcmp); 2823 break; 2824 2825 default: 2826 break; 2827 } 2828 2829 return 0; 2830 } 2831 2832 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2833 { 2834 struct bnxt_napi *bnapi = dev_instance; 2835 struct bnxt *bp = bnapi->bp; 2836 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2837 u32 cons = RING_CMP(cpr->cp_raw_cons); 2838 2839 cpr->event_ctr++; 2840 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2841 napi_schedule(&bnapi->napi); 2842 return IRQ_HANDLED; 2843 } 2844 2845 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2846 { 2847 u32 raw_cons = cpr->cp_raw_cons; 2848 u16 cons = RING_CMP(raw_cons); 2849 struct tx_cmp *txcmp; 2850 2851 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2852 2853 return TX_CMP_VALID(txcmp, raw_cons); 2854 } 2855 2856 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2857 { 2858 struct bnxt_napi *bnapi = dev_instance; 2859 struct bnxt *bp = bnapi->bp; 2860 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2861 u32 cons = RING_CMP(cpr->cp_raw_cons); 2862 u32 int_status; 2863 2864 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2865 2866 if (!bnxt_has_work(bp, cpr)) { 2867 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2868 /* return if erroneous interrupt */ 2869 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2870 return IRQ_NONE; 2871 } 2872 2873 /* disable ring IRQ */ 2874 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2875 2876 /* Return here if interrupt is shared and is disabled. */ 2877 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2878 return IRQ_HANDLED; 2879 2880 napi_schedule(&bnapi->napi); 2881 return IRQ_HANDLED; 2882 } 2883 2884 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2885 int budget) 2886 { 2887 struct bnxt_napi *bnapi = cpr->bnapi; 2888 u32 raw_cons = cpr->cp_raw_cons; 2889 u32 cons; 2890 int rx_pkts = 0; 2891 u8 event = 0; 2892 struct tx_cmp *txcmp; 2893 2894 cpr->has_more_work = 0; 2895 cpr->had_work_done = 1; 2896 while (1) { 2897 u8 cmp_type; 2898 int rc; 2899 2900 cons = RING_CMP(raw_cons); 2901 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2902 2903 if (!TX_CMP_VALID(txcmp, raw_cons)) 2904 break; 2905 2906 /* The valid test of the entry must be done first before 2907 * reading any further. 2908 */ 2909 dma_rmb(); 2910 cmp_type = TX_CMP_TYPE(txcmp); 2911 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2912 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2913 u32 opaque = txcmp->tx_cmp_opaque; 2914 struct bnxt_tx_ring_info *txr; 2915 u16 tx_freed; 2916 2917 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2918 event |= BNXT_TX_CMP_EVENT; 2919 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2920 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2921 else 2922 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2923 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2924 bp->tx_ring_mask; 2925 /* return full budget so NAPI will complete. */ 2926 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2927 rx_pkts = budget; 2928 raw_cons = NEXT_RAW_CMP(raw_cons); 2929 if (budget) 2930 cpr->has_more_work = 1; 2931 break; 2932 } 2933 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 2934 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 2935 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 2936 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2937 if (likely(budget)) 2938 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2939 else 2940 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2941 &event); 2942 if (likely(rc >= 0)) 2943 rx_pkts += rc; 2944 /* Increment rx_pkts when rc is -ENOMEM to count towards 2945 * the NAPI budget. Otherwise, we may potentially loop 2946 * here forever if we consistently cannot allocate 2947 * buffers. 2948 */ 2949 else if (rc == -ENOMEM && budget) 2950 rx_pkts++; 2951 else if (rc == -EBUSY) /* partial completion */ 2952 break; 2953 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 2954 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 2955 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 2956 bnxt_hwrm_handler(bp, txcmp); 2957 } 2958 raw_cons = NEXT_RAW_CMP(raw_cons); 2959 2960 if (rx_pkts && rx_pkts == budget) { 2961 cpr->has_more_work = 1; 2962 break; 2963 } 2964 } 2965 2966 if (event & BNXT_REDIRECT_EVENT) { 2967 xdp_do_flush(); 2968 event &= ~BNXT_REDIRECT_EVENT; 2969 } 2970 2971 if (event & BNXT_TX_EVENT) { 2972 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 2973 u16 prod = txr->tx_prod; 2974 2975 /* Sync BD data before updating doorbell */ 2976 wmb(); 2977 2978 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2979 event &= ~BNXT_TX_EVENT; 2980 } 2981 2982 cpr->cp_raw_cons = raw_cons; 2983 bnapi->events |= event; 2984 return rx_pkts; 2985 } 2986 2987 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2988 int budget) 2989 { 2990 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 2991 bnapi->tx_int(bp, bnapi, budget); 2992 2993 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2994 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2995 2996 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2997 bnapi->events &= ~BNXT_RX_EVENT; 2998 } 2999 if (bnapi->events & BNXT_AGG_EVENT) { 3000 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3001 3002 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3003 bnapi->events &= ~BNXT_AGG_EVENT; 3004 } 3005 } 3006 3007 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3008 int budget) 3009 { 3010 struct bnxt_napi *bnapi = cpr->bnapi; 3011 int rx_pkts; 3012 3013 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3014 3015 /* ACK completion ring before freeing tx ring and producing new 3016 * buffers in rx/agg rings to prevent overflowing the completion 3017 * ring. 3018 */ 3019 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3020 3021 __bnxt_poll_work_done(bp, bnapi, budget); 3022 return rx_pkts; 3023 } 3024 3025 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3026 { 3027 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3028 struct bnxt *bp = bnapi->bp; 3029 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3030 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3031 struct tx_cmp *txcmp; 3032 struct rx_cmp_ext *rxcmp1; 3033 u32 cp_cons, tmp_raw_cons; 3034 u32 raw_cons = cpr->cp_raw_cons; 3035 bool flush_xdp = false; 3036 u32 rx_pkts = 0; 3037 u8 event = 0; 3038 3039 while (1) { 3040 int rc; 3041 3042 cp_cons = RING_CMP(raw_cons); 3043 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3044 3045 if (!TX_CMP_VALID(txcmp, raw_cons)) 3046 break; 3047 3048 /* The valid test of the entry must be done first before 3049 * reading any further. 3050 */ 3051 dma_rmb(); 3052 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3053 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3054 cp_cons = RING_CMP(tmp_raw_cons); 3055 rxcmp1 = (struct rx_cmp_ext *) 3056 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3057 3058 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3059 break; 3060 3061 /* force an error to recycle the buffer */ 3062 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3063 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3064 3065 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3066 if (likely(rc == -EIO) && budget) 3067 rx_pkts++; 3068 else if (rc == -EBUSY) /* partial completion */ 3069 break; 3070 if (event & BNXT_REDIRECT_EVENT) 3071 flush_xdp = true; 3072 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3073 CMPL_BASE_TYPE_HWRM_DONE)) { 3074 bnxt_hwrm_handler(bp, txcmp); 3075 } else { 3076 netdev_err(bp->dev, 3077 "Invalid completion received on special ring\n"); 3078 } 3079 raw_cons = NEXT_RAW_CMP(raw_cons); 3080 3081 if (rx_pkts == budget) 3082 break; 3083 } 3084 3085 cpr->cp_raw_cons = raw_cons; 3086 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3087 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3088 3089 if (event & BNXT_AGG_EVENT) 3090 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3091 if (flush_xdp) 3092 xdp_do_flush(); 3093 3094 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3095 napi_complete_done(napi, rx_pkts); 3096 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3097 } 3098 return rx_pkts; 3099 } 3100 3101 static int bnxt_poll(struct napi_struct *napi, int budget) 3102 { 3103 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3104 struct bnxt *bp = bnapi->bp; 3105 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3106 int work_done = 0; 3107 3108 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3109 napi_complete(napi); 3110 return 0; 3111 } 3112 while (1) { 3113 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3114 3115 if (work_done >= budget) { 3116 if (!budget) 3117 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3118 break; 3119 } 3120 3121 if (!bnxt_has_work(bp, cpr)) { 3122 if (napi_complete_done(napi, work_done)) 3123 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3124 break; 3125 } 3126 } 3127 if (bp->flags & BNXT_FLAG_DIM) { 3128 struct dim_sample dim_sample = {}; 3129 3130 dim_update_sample(cpr->event_ctr, 3131 cpr->rx_packets, 3132 cpr->rx_bytes, 3133 &dim_sample); 3134 net_dim(&cpr->dim, dim_sample); 3135 } 3136 return work_done; 3137 } 3138 3139 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3140 { 3141 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3142 int i, work_done = 0; 3143 3144 for (i = 0; i < cpr->cp_ring_count; i++) { 3145 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3146 3147 if (cpr2->had_nqe_notify) { 3148 work_done += __bnxt_poll_work(bp, cpr2, 3149 budget - work_done); 3150 cpr->has_more_work |= cpr2->has_more_work; 3151 } 3152 } 3153 return work_done; 3154 } 3155 3156 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3157 u64 dbr_type, int budget) 3158 { 3159 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3160 int i; 3161 3162 for (i = 0; i < cpr->cp_ring_count; i++) { 3163 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3164 struct bnxt_db_info *db; 3165 3166 if (cpr2->had_work_done) { 3167 u32 tgl = 0; 3168 3169 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3170 cpr2->had_nqe_notify = 0; 3171 tgl = cpr2->toggle; 3172 } 3173 db = &cpr2->cp_db; 3174 bnxt_writeq(bp, 3175 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3176 DB_RING_IDX(db, cpr2->cp_raw_cons), 3177 db->doorbell); 3178 cpr2->had_work_done = 0; 3179 } 3180 } 3181 __bnxt_poll_work_done(bp, bnapi, budget); 3182 } 3183 3184 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3185 { 3186 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3187 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3188 struct bnxt_cp_ring_info *cpr_rx; 3189 u32 raw_cons = cpr->cp_raw_cons; 3190 struct bnxt *bp = bnapi->bp; 3191 struct nqe_cn *nqcmp; 3192 int work_done = 0; 3193 u32 cons; 3194 3195 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3196 napi_complete(napi); 3197 return 0; 3198 } 3199 if (cpr->has_more_work) { 3200 cpr->has_more_work = 0; 3201 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3202 } 3203 while (1) { 3204 u16 type; 3205 3206 cons = RING_CMP(raw_cons); 3207 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3208 3209 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3210 if (cpr->has_more_work) 3211 break; 3212 3213 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3214 budget); 3215 cpr->cp_raw_cons = raw_cons; 3216 if (napi_complete_done(napi, work_done)) 3217 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3218 cpr->cp_raw_cons); 3219 goto poll_done; 3220 } 3221 3222 /* The valid test of the entry must be done first before 3223 * reading any further. 3224 */ 3225 dma_rmb(); 3226 3227 type = le16_to_cpu(nqcmp->type); 3228 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3229 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3230 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3231 struct bnxt_cp_ring_info *cpr2; 3232 3233 /* No more budget for RX work */ 3234 if (budget && work_done >= budget && 3235 cq_type == BNXT_NQ_HDL_TYPE_RX) 3236 break; 3237 3238 idx = BNXT_NQ_HDL_IDX(idx); 3239 cpr2 = &cpr->cp_ring_arr[idx]; 3240 cpr2->had_nqe_notify = 1; 3241 cpr2->toggle = NQE_CN_TOGGLE(type); 3242 work_done += __bnxt_poll_work(bp, cpr2, 3243 budget - work_done); 3244 cpr->has_more_work |= cpr2->has_more_work; 3245 } else { 3246 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3247 } 3248 raw_cons = NEXT_RAW_CMP(raw_cons); 3249 } 3250 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3251 if (raw_cons != cpr->cp_raw_cons) { 3252 cpr->cp_raw_cons = raw_cons; 3253 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3254 } 3255 poll_done: 3256 cpr_rx = &cpr->cp_ring_arr[0]; 3257 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3258 (bp->flags & BNXT_FLAG_DIM)) { 3259 struct dim_sample dim_sample = {}; 3260 3261 dim_update_sample(cpr->event_ctr, 3262 cpr_rx->rx_packets, 3263 cpr_rx->rx_bytes, 3264 &dim_sample); 3265 net_dim(&cpr->dim, dim_sample); 3266 } 3267 return work_done; 3268 } 3269 3270 static void bnxt_free_tx_skbs(struct bnxt *bp) 3271 { 3272 int i, max_idx; 3273 struct pci_dev *pdev = bp->pdev; 3274 3275 if (!bp->tx_ring) 3276 return; 3277 3278 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3279 for (i = 0; i < bp->tx_nr_rings; i++) { 3280 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3281 int j; 3282 3283 if (!txr->tx_buf_ring) 3284 continue; 3285 3286 for (j = 0; j < max_idx;) { 3287 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 3288 struct sk_buff *skb; 3289 int k, last; 3290 3291 if (i < bp->tx_nr_rings_xdp && 3292 tx_buf->action == XDP_REDIRECT) { 3293 dma_unmap_single(&pdev->dev, 3294 dma_unmap_addr(tx_buf, mapping), 3295 dma_unmap_len(tx_buf, len), 3296 DMA_TO_DEVICE); 3297 xdp_return_frame(tx_buf->xdpf); 3298 tx_buf->action = 0; 3299 tx_buf->xdpf = NULL; 3300 j++; 3301 continue; 3302 } 3303 3304 skb = tx_buf->skb; 3305 if (!skb) { 3306 j++; 3307 continue; 3308 } 3309 3310 tx_buf->skb = NULL; 3311 3312 if (tx_buf->is_push) { 3313 dev_kfree_skb(skb); 3314 j += 2; 3315 continue; 3316 } 3317 3318 dma_unmap_single(&pdev->dev, 3319 dma_unmap_addr(tx_buf, mapping), 3320 skb_headlen(skb), 3321 DMA_TO_DEVICE); 3322 3323 last = tx_buf->nr_frags; 3324 j += 2; 3325 for (k = 0; k < last; k++, j++) { 3326 int ring_idx = j & bp->tx_ring_mask; 3327 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3328 3329 tx_buf = &txr->tx_buf_ring[ring_idx]; 3330 dma_unmap_page( 3331 &pdev->dev, 3332 dma_unmap_addr(tx_buf, mapping), 3333 skb_frag_size(frag), DMA_TO_DEVICE); 3334 } 3335 dev_kfree_skb(skb); 3336 } 3337 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3338 } 3339 } 3340 3341 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3342 { 3343 struct pci_dev *pdev = bp->pdev; 3344 int i, max_idx; 3345 3346 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3347 3348 for (i = 0; i < max_idx; i++) { 3349 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3350 dma_addr_t mapping = rx_buf->mapping; 3351 void *data = rx_buf->data; 3352 3353 if (!data) 3354 continue; 3355 3356 rx_buf->data = NULL; 3357 if (BNXT_RX_PAGE_MODE(bp)) { 3358 page_pool_recycle_direct(rxr->page_pool, data); 3359 } else { 3360 dma_unmap_single_attrs(&pdev->dev, mapping, 3361 bp->rx_buf_use_size, bp->rx_dir, 3362 DMA_ATTR_WEAK_ORDERING); 3363 skb_free_frag(data); 3364 } 3365 } 3366 } 3367 3368 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3369 { 3370 int i, max_idx; 3371 3372 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3373 3374 for (i = 0; i < max_idx; i++) { 3375 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3376 struct page *page = rx_agg_buf->page; 3377 3378 if (!page) 3379 continue; 3380 3381 rx_agg_buf->page = NULL; 3382 __clear_bit(i, rxr->rx_agg_bmap); 3383 3384 page_pool_recycle_direct(rxr->page_pool, page); 3385 } 3386 } 3387 3388 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3389 { 3390 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3391 struct pci_dev *pdev = bp->pdev; 3392 struct bnxt_tpa_idx_map *map; 3393 int i; 3394 3395 if (!rxr->rx_tpa) 3396 goto skip_rx_tpa_free; 3397 3398 for (i = 0; i < bp->max_tpa; i++) { 3399 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3400 u8 *data = tpa_info->data; 3401 3402 if (!data) 3403 continue; 3404 3405 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 3406 bp->rx_buf_use_size, bp->rx_dir, 3407 DMA_ATTR_WEAK_ORDERING); 3408 3409 tpa_info->data = NULL; 3410 3411 skb_free_frag(data); 3412 } 3413 3414 skip_rx_tpa_free: 3415 if (!rxr->rx_buf_ring) 3416 goto skip_rx_buf_free; 3417 3418 bnxt_free_one_rx_ring(bp, rxr); 3419 3420 skip_rx_buf_free: 3421 if (!rxr->rx_agg_ring) 3422 goto skip_rx_agg_free; 3423 3424 bnxt_free_one_rx_agg_ring(bp, rxr); 3425 3426 skip_rx_agg_free: 3427 map = rxr->rx_tpa_idx_map; 3428 if (map) 3429 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3430 } 3431 3432 static void bnxt_free_rx_skbs(struct bnxt *bp) 3433 { 3434 int i; 3435 3436 if (!bp->rx_ring) 3437 return; 3438 3439 for (i = 0; i < bp->rx_nr_rings; i++) 3440 bnxt_free_one_rx_ring_skbs(bp, i); 3441 } 3442 3443 static void bnxt_free_skbs(struct bnxt *bp) 3444 { 3445 bnxt_free_tx_skbs(bp); 3446 bnxt_free_rx_skbs(bp); 3447 } 3448 3449 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3450 { 3451 u8 init_val = ctxm->init_value; 3452 u16 offset = ctxm->init_offset; 3453 u8 *p2 = p; 3454 int i; 3455 3456 if (!init_val) 3457 return; 3458 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3459 memset(p, init_val, len); 3460 return; 3461 } 3462 for (i = 0; i < len; i += ctxm->entry_size) 3463 *(p2 + i + offset) = init_val; 3464 } 3465 3466 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3467 { 3468 struct pci_dev *pdev = bp->pdev; 3469 int i; 3470 3471 if (!rmem->pg_arr) 3472 goto skip_pages; 3473 3474 for (i = 0; i < rmem->nr_pages; i++) { 3475 if (!rmem->pg_arr[i]) 3476 continue; 3477 3478 dma_free_coherent(&pdev->dev, rmem->page_size, 3479 rmem->pg_arr[i], rmem->dma_arr[i]); 3480 3481 rmem->pg_arr[i] = NULL; 3482 } 3483 skip_pages: 3484 if (rmem->pg_tbl) { 3485 size_t pg_tbl_size = rmem->nr_pages * 8; 3486 3487 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3488 pg_tbl_size = rmem->page_size; 3489 dma_free_coherent(&pdev->dev, pg_tbl_size, 3490 rmem->pg_tbl, rmem->pg_tbl_map); 3491 rmem->pg_tbl = NULL; 3492 } 3493 if (rmem->vmem_size && *rmem->vmem) { 3494 vfree(*rmem->vmem); 3495 *rmem->vmem = NULL; 3496 } 3497 } 3498 3499 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3500 { 3501 struct pci_dev *pdev = bp->pdev; 3502 u64 valid_bit = 0; 3503 int i; 3504 3505 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3506 valid_bit = PTU_PTE_VALID; 3507 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3508 size_t pg_tbl_size = rmem->nr_pages * 8; 3509 3510 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3511 pg_tbl_size = rmem->page_size; 3512 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3513 &rmem->pg_tbl_map, 3514 GFP_KERNEL); 3515 if (!rmem->pg_tbl) 3516 return -ENOMEM; 3517 } 3518 3519 for (i = 0; i < rmem->nr_pages; i++) { 3520 u64 extra_bits = valid_bit; 3521 3522 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3523 rmem->page_size, 3524 &rmem->dma_arr[i], 3525 GFP_KERNEL); 3526 if (!rmem->pg_arr[i]) 3527 return -ENOMEM; 3528 3529 if (rmem->ctx_mem) 3530 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3531 rmem->page_size); 3532 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3533 if (i == rmem->nr_pages - 2 && 3534 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3535 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3536 else if (i == rmem->nr_pages - 1 && 3537 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3538 extra_bits |= PTU_PTE_LAST; 3539 rmem->pg_tbl[i] = 3540 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3541 } 3542 } 3543 3544 if (rmem->vmem_size) { 3545 *rmem->vmem = vzalloc(rmem->vmem_size); 3546 if (!(*rmem->vmem)) 3547 return -ENOMEM; 3548 } 3549 return 0; 3550 } 3551 3552 static void bnxt_free_tpa_info(struct bnxt *bp) 3553 { 3554 int i, j; 3555 3556 for (i = 0; i < bp->rx_nr_rings; i++) { 3557 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3558 3559 kfree(rxr->rx_tpa_idx_map); 3560 rxr->rx_tpa_idx_map = NULL; 3561 if (rxr->rx_tpa) { 3562 for (j = 0; j < bp->max_tpa; j++) { 3563 kfree(rxr->rx_tpa[j].agg_arr); 3564 rxr->rx_tpa[j].agg_arr = NULL; 3565 } 3566 } 3567 kfree(rxr->rx_tpa); 3568 rxr->rx_tpa = NULL; 3569 } 3570 } 3571 3572 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3573 { 3574 int i, j; 3575 3576 bp->max_tpa = MAX_TPA; 3577 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3578 if (!bp->max_tpa_v2) 3579 return 0; 3580 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3581 } 3582 3583 for (i = 0; i < bp->rx_nr_rings; i++) { 3584 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3585 struct rx_agg_cmp *agg; 3586 3587 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3588 GFP_KERNEL); 3589 if (!rxr->rx_tpa) 3590 return -ENOMEM; 3591 3592 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3593 continue; 3594 for (j = 0; j < bp->max_tpa; j++) { 3595 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3596 if (!agg) 3597 return -ENOMEM; 3598 rxr->rx_tpa[j].agg_arr = agg; 3599 } 3600 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3601 GFP_KERNEL); 3602 if (!rxr->rx_tpa_idx_map) 3603 return -ENOMEM; 3604 } 3605 return 0; 3606 } 3607 3608 static void bnxt_free_rx_rings(struct bnxt *bp) 3609 { 3610 int i; 3611 3612 if (!bp->rx_ring) 3613 return; 3614 3615 bnxt_free_tpa_info(bp); 3616 for (i = 0; i < bp->rx_nr_rings; i++) { 3617 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3618 struct bnxt_ring_struct *ring; 3619 3620 if (rxr->xdp_prog) 3621 bpf_prog_put(rxr->xdp_prog); 3622 3623 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3624 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3625 3626 page_pool_destroy(rxr->page_pool); 3627 rxr->page_pool = NULL; 3628 3629 kfree(rxr->rx_agg_bmap); 3630 rxr->rx_agg_bmap = NULL; 3631 3632 ring = &rxr->rx_ring_struct; 3633 bnxt_free_ring(bp, &ring->ring_mem); 3634 3635 ring = &rxr->rx_agg_ring_struct; 3636 bnxt_free_ring(bp, &ring->ring_mem); 3637 } 3638 } 3639 3640 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3641 struct bnxt_rx_ring_info *rxr, 3642 int numa_node) 3643 { 3644 struct page_pool_params pp = { 0 }; 3645 3646 pp.pool_size = bp->rx_agg_ring_size; 3647 if (BNXT_RX_PAGE_MODE(bp)) 3648 pp.pool_size += bp->rx_ring_size; 3649 pp.nid = numa_node; 3650 pp.napi = &rxr->bnapi->napi; 3651 pp.netdev = bp->dev; 3652 pp.dev = &bp->pdev->dev; 3653 pp.dma_dir = bp->rx_dir; 3654 pp.max_len = PAGE_SIZE; 3655 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3656 3657 rxr->page_pool = page_pool_create(&pp); 3658 if (IS_ERR(rxr->page_pool)) { 3659 int err = PTR_ERR(rxr->page_pool); 3660 3661 rxr->page_pool = NULL; 3662 return err; 3663 } 3664 return 0; 3665 } 3666 3667 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3668 { 3669 int numa_node = dev_to_node(&bp->pdev->dev); 3670 int i, rc = 0, agg_rings = 0, cpu; 3671 3672 if (!bp->rx_ring) 3673 return -ENOMEM; 3674 3675 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3676 agg_rings = 1; 3677 3678 for (i = 0; i < bp->rx_nr_rings; i++) { 3679 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3680 struct bnxt_ring_struct *ring; 3681 int cpu_node; 3682 3683 ring = &rxr->rx_ring_struct; 3684 3685 cpu = cpumask_local_spread(i, numa_node); 3686 cpu_node = cpu_to_node(cpu); 3687 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3688 i, cpu_node); 3689 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3690 if (rc) 3691 return rc; 3692 3693 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3694 if (rc < 0) 3695 return rc; 3696 3697 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3698 MEM_TYPE_PAGE_POOL, 3699 rxr->page_pool); 3700 if (rc) { 3701 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3702 return rc; 3703 } 3704 3705 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3706 if (rc) 3707 return rc; 3708 3709 ring->grp_idx = i; 3710 if (agg_rings) { 3711 u16 mem_size; 3712 3713 ring = &rxr->rx_agg_ring_struct; 3714 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3715 if (rc) 3716 return rc; 3717 3718 ring->grp_idx = i; 3719 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3720 mem_size = rxr->rx_agg_bmap_size / 8; 3721 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3722 if (!rxr->rx_agg_bmap) 3723 return -ENOMEM; 3724 } 3725 } 3726 if (bp->flags & BNXT_FLAG_TPA) 3727 rc = bnxt_alloc_tpa_info(bp); 3728 return rc; 3729 } 3730 3731 static void bnxt_free_tx_rings(struct bnxt *bp) 3732 { 3733 int i; 3734 struct pci_dev *pdev = bp->pdev; 3735 3736 if (!bp->tx_ring) 3737 return; 3738 3739 for (i = 0; i < bp->tx_nr_rings; i++) { 3740 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3741 struct bnxt_ring_struct *ring; 3742 3743 if (txr->tx_push) { 3744 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3745 txr->tx_push, txr->tx_push_mapping); 3746 txr->tx_push = NULL; 3747 } 3748 3749 ring = &txr->tx_ring_struct; 3750 3751 bnxt_free_ring(bp, &ring->ring_mem); 3752 } 3753 } 3754 3755 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3756 ((tc) * (bp)->tx_nr_rings_per_tc) 3757 3758 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3759 ((tx) % (bp)->tx_nr_rings_per_tc) 3760 3761 #define BNXT_RING_TO_TC(bp, tx) \ 3762 ((tx) / (bp)->tx_nr_rings_per_tc) 3763 3764 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3765 { 3766 int i, j, rc; 3767 struct pci_dev *pdev = bp->pdev; 3768 3769 bp->tx_push_size = 0; 3770 if (bp->tx_push_thresh) { 3771 int push_size; 3772 3773 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3774 bp->tx_push_thresh); 3775 3776 if (push_size > 256) { 3777 push_size = 0; 3778 bp->tx_push_thresh = 0; 3779 } 3780 3781 bp->tx_push_size = push_size; 3782 } 3783 3784 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3785 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3786 struct bnxt_ring_struct *ring; 3787 u8 qidx; 3788 3789 ring = &txr->tx_ring_struct; 3790 3791 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3792 if (rc) 3793 return rc; 3794 3795 ring->grp_idx = txr->bnapi->index; 3796 if (bp->tx_push_size) { 3797 dma_addr_t mapping; 3798 3799 /* One pre-allocated DMA buffer to backup 3800 * TX push operation 3801 */ 3802 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3803 bp->tx_push_size, 3804 &txr->tx_push_mapping, 3805 GFP_KERNEL); 3806 3807 if (!txr->tx_push) 3808 return -ENOMEM; 3809 3810 mapping = txr->tx_push_mapping + 3811 sizeof(struct tx_push_bd); 3812 txr->data_mapping = cpu_to_le64(mapping); 3813 } 3814 qidx = bp->tc_to_qidx[j]; 3815 ring->queue_id = bp->q_info[qidx].queue_id; 3816 spin_lock_init(&txr->xdp_tx_lock); 3817 if (i < bp->tx_nr_rings_xdp) 3818 continue; 3819 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3820 j++; 3821 } 3822 return 0; 3823 } 3824 3825 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3826 { 3827 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3828 3829 kfree(cpr->cp_desc_ring); 3830 cpr->cp_desc_ring = NULL; 3831 ring->ring_mem.pg_arr = NULL; 3832 kfree(cpr->cp_desc_mapping); 3833 cpr->cp_desc_mapping = NULL; 3834 ring->ring_mem.dma_arr = NULL; 3835 } 3836 3837 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3838 { 3839 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3840 if (!cpr->cp_desc_ring) 3841 return -ENOMEM; 3842 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3843 GFP_KERNEL); 3844 if (!cpr->cp_desc_mapping) 3845 return -ENOMEM; 3846 return 0; 3847 } 3848 3849 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3850 { 3851 int i; 3852 3853 if (!bp->bnapi) 3854 return; 3855 for (i = 0; i < bp->cp_nr_rings; i++) { 3856 struct bnxt_napi *bnapi = bp->bnapi[i]; 3857 3858 if (!bnapi) 3859 continue; 3860 bnxt_free_cp_arrays(&bnapi->cp_ring); 3861 } 3862 } 3863 3864 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3865 { 3866 int i, n = bp->cp_nr_pages; 3867 3868 for (i = 0; i < bp->cp_nr_rings; i++) { 3869 struct bnxt_napi *bnapi = bp->bnapi[i]; 3870 int rc; 3871 3872 if (!bnapi) 3873 continue; 3874 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3875 if (rc) 3876 return rc; 3877 } 3878 return 0; 3879 } 3880 3881 static void bnxt_free_cp_rings(struct bnxt *bp) 3882 { 3883 int i; 3884 3885 if (!bp->bnapi) 3886 return; 3887 3888 for (i = 0; i < bp->cp_nr_rings; i++) { 3889 struct bnxt_napi *bnapi = bp->bnapi[i]; 3890 struct bnxt_cp_ring_info *cpr; 3891 struct bnxt_ring_struct *ring; 3892 int j; 3893 3894 if (!bnapi) 3895 continue; 3896 3897 cpr = &bnapi->cp_ring; 3898 ring = &cpr->cp_ring_struct; 3899 3900 bnxt_free_ring(bp, &ring->ring_mem); 3901 3902 if (!cpr->cp_ring_arr) 3903 continue; 3904 3905 for (j = 0; j < cpr->cp_ring_count; j++) { 3906 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 3907 3908 ring = &cpr2->cp_ring_struct; 3909 bnxt_free_ring(bp, &ring->ring_mem); 3910 bnxt_free_cp_arrays(cpr2); 3911 } 3912 kfree(cpr->cp_ring_arr); 3913 cpr->cp_ring_arr = NULL; 3914 cpr->cp_ring_count = 0; 3915 } 3916 } 3917 3918 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 3919 struct bnxt_cp_ring_info *cpr) 3920 { 3921 struct bnxt_ring_mem_info *rmem; 3922 struct bnxt_ring_struct *ring; 3923 int rc; 3924 3925 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3926 if (rc) { 3927 bnxt_free_cp_arrays(cpr); 3928 return -ENOMEM; 3929 } 3930 ring = &cpr->cp_ring_struct; 3931 rmem = &ring->ring_mem; 3932 rmem->nr_pages = bp->cp_nr_pages; 3933 rmem->page_size = HW_CMPD_RING_SIZE; 3934 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3935 rmem->dma_arr = cpr->cp_desc_mapping; 3936 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3937 rc = bnxt_alloc_ring(bp, rmem); 3938 if (rc) { 3939 bnxt_free_ring(bp, rmem); 3940 bnxt_free_cp_arrays(cpr); 3941 } 3942 return rc; 3943 } 3944 3945 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3946 { 3947 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3948 int i, j, rc, ulp_msix; 3949 int tcs = bp->num_tc; 3950 3951 if (!tcs) 3952 tcs = 1; 3953 ulp_msix = bnxt_get_ulp_msix_num(bp); 3954 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 3955 struct bnxt_napi *bnapi = bp->bnapi[i]; 3956 struct bnxt_cp_ring_info *cpr, *cpr2; 3957 struct bnxt_ring_struct *ring; 3958 int cp_count = 0, k; 3959 int rx = 0, tx = 0; 3960 3961 if (!bnapi) 3962 continue; 3963 3964 cpr = &bnapi->cp_ring; 3965 cpr->bnapi = bnapi; 3966 ring = &cpr->cp_ring_struct; 3967 3968 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3969 if (rc) 3970 return rc; 3971 3972 ring->map_idx = ulp_msix + i; 3973 3974 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3975 continue; 3976 3977 if (i < bp->rx_nr_rings) { 3978 cp_count++; 3979 rx = 1; 3980 } 3981 if (i < bp->tx_nr_rings_xdp) { 3982 cp_count++; 3983 tx = 1; 3984 } else if ((sh && i < bp->tx_nr_rings) || 3985 (!sh && i >= bp->rx_nr_rings)) { 3986 cp_count += tcs; 3987 tx = 1; 3988 } 3989 3990 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 3991 GFP_KERNEL); 3992 if (!cpr->cp_ring_arr) 3993 return -ENOMEM; 3994 cpr->cp_ring_count = cp_count; 3995 3996 for (k = 0; k < cp_count; k++) { 3997 cpr2 = &cpr->cp_ring_arr[k]; 3998 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 3999 if (rc) 4000 return rc; 4001 cpr2->bnapi = bnapi; 4002 cpr2->sw_stats = cpr->sw_stats; 4003 cpr2->cp_idx = k; 4004 if (!k && rx) { 4005 bp->rx_ring[i].rx_cpr = cpr2; 4006 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4007 } else { 4008 int n, tc = k - rx; 4009 4010 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4011 bp->tx_ring[n].tx_cpr = cpr2; 4012 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4013 } 4014 } 4015 if (tx) 4016 j++; 4017 } 4018 return 0; 4019 } 4020 4021 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4022 struct bnxt_rx_ring_info *rxr) 4023 { 4024 struct bnxt_ring_mem_info *rmem; 4025 struct bnxt_ring_struct *ring; 4026 4027 ring = &rxr->rx_ring_struct; 4028 rmem = &ring->ring_mem; 4029 rmem->nr_pages = bp->rx_nr_pages; 4030 rmem->page_size = HW_RXBD_RING_SIZE; 4031 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4032 rmem->dma_arr = rxr->rx_desc_mapping; 4033 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4034 rmem->vmem = (void **)&rxr->rx_buf_ring; 4035 4036 ring = &rxr->rx_agg_ring_struct; 4037 rmem = &ring->ring_mem; 4038 rmem->nr_pages = bp->rx_agg_nr_pages; 4039 rmem->page_size = HW_RXBD_RING_SIZE; 4040 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4041 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4042 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4043 rmem->vmem = (void **)&rxr->rx_agg_ring; 4044 } 4045 4046 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4047 struct bnxt_rx_ring_info *rxr) 4048 { 4049 struct bnxt_ring_mem_info *rmem; 4050 struct bnxt_ring_struct *ring; 4051 int i; 4052 4053 rxr->page_pool->p.napi = NULL; 4054 rxr->page_pool = NULL; 4055 4056 ring = &rxr->rx_ring_struct; 4057 rmem = &ring->ring_mem; 4058 rmem->pg_tbl = NULL; 4059 rmem->pg_tbl_map = 0; 4060 for (i = 0; i < rmem->nr_pages; i++) { 4061 rmem->pg_arr[i] = NULL; 4062 rmem->dma_arr[i] = 0; 4063 } 4064 *rmem->vmem = NULL; 4065 4066 ring = &rxr->rx_agg_ring_struct; 4067 rmem = &ring->ring_mem; 4068 rmem->pg_tbl = NULL; 4069 rmem->pg_tbl_map = 0; 4070 for (i = 0; i < rmem->nr_pages; i++) { 4071 rmem->pg_arr[i] = NULL; 4072 rmem->dma_arr[i] = 0; 4073 } 4074 *rmem->vmem = NULL; 4075 } 4076 4077 static void bnxt_init_ring_struct(struct bnxt *bp) 4078 { 4079 int i, j; 4080 4081 for (i = 0; i < bp->cp_nr_rings; i++) { 4082 struct bnxt_napi *bnapi = bp->bnapi[i]; 4083 struct bnxt_ring_mem_info *rmem; 4084 struct bnxt_cp_ring_info *cpr; 4085 struct bnxt_rx_ring_info *rxr; 4086 struct bnxt_tx_ring_info *txr; 4087 struct bnxt_ring_struct *ring; 4088 4089 if (!bnapi) 4090 continue; 4091 4092 cpr = &bnapi->cp_ring; 4093 ring = &cpr->cp_ring_struct; 4094 rmem = &ring->ring_mem; 4095 rmem->nr_pages = bp->cp_nr_pages; 4096 rmem->page_size = HW_CMPD_RING_SIZE; 4097 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4098 rmem->dma_arr = cpr->cp_desc_mapping; 4099 rmem->vmem_size = 0; 4100 4101 rxr = bnapi->rx_ring; 4102 if (!rxr) 4103 goto skip_rx; 4104 4105 ring = &rxr->rx_ring_struct; 4106 rmem = &ring->ring_mem; 4107 rmem->nr_pages = bp->rx_nr_pages; 4108 rmem->page_size = HW_RXBD_RING_SIZE; 4109 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4110 rmem->dma_arr = rxr->rx_desc_mapping; 4111 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4112 rmem->vmem = (void **)&rxr->rx_buf_ring; 4113 4114 ring = &rxr->rx_agg_ring_struct; 4115 rmem = &ring->ring_mem; 4116 rmem->nr_pages = bp->rx_agg_nr_pages; 4117 rmem->page_size = HW_RXBD_RING_SIZE; 4118 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4119 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4120 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4121 rmem->vmem = (void **)&rxr->rx_agg_ring; 4122 4123 skip_rx: 4124 bnxt_for_each_napi_tx(j, bnapi, txr) { 4125 ring = &txr->tx_ring_struct; 4126 rmem = &ring->ring_mem; 4127 rmem->nr_pages = bp->tx_nr_pages; 4128 rmem->page_size = HW_TXBD_RING_SIZE; 4129 rmem->pg_arr = (void **)txr->tx_desc_ring; 4130 rmem->dma_arr = txr->tx_desc_mapping; 4131 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4132 rmem->vmem = (void **)&txr->tx_buf_ring; 4133 } 4134 } 4135 } 4136 4137 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4138 { 4139 int i; 4140 u32 prod; 4141 struct rx_bd **rx_buf_ring; 4142 4143 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4144 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4145 int j; 4146 struct rx_bd *rxbd; 4147 4148 rxbd = rx_buf_ring[i]; 4149 if (!rxbd) 4150 continue; 4151 4152 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4153 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4154 rxbd->rx_bd_opaque = prod; 4155 } 4156 } 4157 } 4158 4159 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4160 struct bnxt_rx_ring_info *rxr, 4161 int ring_nr) 4162 { 4163 u32 prod; 4164 int i; 4165 4166 prod = rxr->rx_prod; 4167 for (i = 0; i < bp->rx_ring_size; i++) { 4168 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4169 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4170 ring_nr, i, bp->rx_ring_size); 4171 break; 4172 } 4173 prod = NEXT_RX(prod); 4174 } 4175 rxr->rx_prod = prod; 4176 } 4177 4178 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp, 4179 struct bnxt_rx_ring_info *rxr, 4180 int ring_nr) 4181 { 4182 u32 prod; 4183 int i; 4184 4185 prod = rxr->rx_agg_prod; 4186 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4187 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4188 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4189 ring_nr, i, bp->rx_ring_size); 4190 break; 4191 } 4192 prod = NEXT_RX_AGG(prod); 4193 } 4194 rxr->rx_agg_prod = prod; 4195 } 4196 4197 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4198 { 4199 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4200 int i; 4201 4202 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4203 4204 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4205 return 0; 4206 4207 bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr); 4208 4209 if (rxr->rx_tpa) { 4210 dma_addr_t mapping; 4211 u8 *data; 4212 4213 for (i = 0; i < bp->max_tpa; i++) { 4214 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 4215 if (!data) 4216 return -ENOMEM; 4217 4218 rxr->rx_tpa[i].data = data; 4219 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4220 rxr->rx_tpa[i].mapping = mapping; 4221 } 4222 } 4223 return 0; 4224 } 4225 4226 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4227 struct bnxt_rx_ring_info *rxr) 4228 { 4229 struct bnxt_ring_struct *ring; 4230 u32 type; 4231 4232 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4233 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4234 4235 if (NET_IP_ALIGN == 2) 4236 type |= RX_BD_FLAGS_SOP; 4237 4238 ring = &rxr->rx_ring_struct; 4239 bnxt_init_rxbd_pages(ring, type); 4240 ring->fw_ring_id = INVALID_HW_RING_ID; 4241 } 4242 4243 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4244 struct bnxt_rx_ring_info *rxr) 4245 { 4246 struct bnxt_ring_struct *ring; 4247 u32 type; 4248 4249 ring = &rxr->rx_agg_ring_struct; 4250 ring->fw_ring_id = INVALID_HW_RING_ID; 4251 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4252 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4253 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4254 4255 bnxt_init_rxbd_pages(ring, type); 4256 } 4257 } 4258 4259 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4260 { 4261 struct bnxt_rx_ring_info *rxr; 4262 4263 rxr = &bp->rx_ring[ring_nr]; 4264 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4265 4266 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4267 &rxr->bnapi->napi); 4268 4269 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4270 bpf_prog_add(bp->xdp_prog, 1); 4271 rxr->xdp_prog = bp->xdp_prog; 4272 } 4273 4274 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4275 4276 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4277 } 4278 4279 static void bnxt_init_cp_rings(struct bnxt *bp) 4280 { 4281 int i, j; 4282 4283 for (i = 0; i < bp->cp_nr_rings; i++) { 4284 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4285 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4286 4287 ring->fw_ring_id = INVALID_HW_RING_ID; 4288 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4289 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4290 if (!cpr->cp_ring_arr) 4291 continue; 4292 for (j = 0; j < cpr->cp_ring_count; j++) { 4293 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4294 4295 ring = &cpr2->cp_ring_struct; 4296 ring->fw_ring_id = INVALID_HW_RING_ID; 4297 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4298 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4299 } 4300 } 4301 } 4302 4303 static int bnxt_init_rx_rings(struct bnxt *bp) 4304 { 4305 int i, rc = 0; 4306 4307 if (BNXT_RX_PAGE_MODE(bp)) { 4308 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4309 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4310 } else { 4311 bp->rx_offset = BNXT_RX_OFFSET; 4312 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4313 } 4314 4315 for (i = 0; i < bp->rx_nr_rings; i++) { 4316 rc = bnxt_init_one_rx_ring(bp, i); 4317 if (rc) 4318 break; 4319 } 4320 4321 return rc; 4322 } 4323 4324 static int bnxt_init_tx_rings(struct bnxt *bp) 4325 { 4326 u16 i; 4327 4328 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4329 BNXT_MIN_TX_DESC_CNT); 4330 4331 for (i = 0; i < bp->tx_nr_rings; i++) { 4332 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4333 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4334 4335 ring->fw_ring_id = INVALID_HW_RING_ID; 4336 4337 if (i >= bp->tx_nr_rings_xdp) 4338 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4339 NETDEV_QUEUE_TYPE_TX, 4340 &txr->bnapi->napi); 4341 } 4342 4343 return 0; 4344 } 4345 4346 static void bnxt_free_ring_grps(struct bnxt *bp) 4347 { 4348 kfree(bp->grp_info); 4349 bp->grp_info = NULL; 4350 } 4351 4352 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4353 { 4354 int i; 4355 4356 if (irq_re_init) { 4357 bp->grp_info = kcalloc(bp->cp_nr_rings, 4358 sizeof(struct bnxt_ring_grp_info), 4359 GFP_KERNEL); 4360 if (!bp->grp_info) 4361 return -ENOMEM; 4362 } 4363 for (i = 0; i < bp->cp_nr_rings; i++) { 4364 if (irq_re_init) 4365 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4366 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4367 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4368 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4369 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4370 } 4371 return 0; 4372 } 4373 4374 static void bnxt_free_vnics(struct bnxt *bp) 4375 { 4376 kfree(bp->vnic_info); 4377 bp->vnic_info = NULL; 4378 bp->nr_vnics = 0; 4379 } 4380 4381 static int bnxt_alloc_vnics(struct bnxt *bp) 4382 { 4383 int num_vnics = 1; 4384 4385 #ifdef CONFIG_RFS_ACCEL 4386 if (bp->flags & BNXT_FLAG_RFS) { 4387 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4388 num_vnics++; 4389 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4390 num_vnics += bp->rx_nr_rings; 4391 } 4392 #endif 4393 4394 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4395 num_vnics++; 4396 4397 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4398 GFP_KERNEL); 4399 if (!bp->vnic_info) 4400 return -ENOMEM; 4401 4402 bp->nr_vnics = num_vnics; 4403 return 0; 4404 } 4405 4406 static void bnxt_init_vnics(struct bnxt *bp) 4407 { 4408 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4409 int i; 4410 4411 for (i = 0; i < bp->nr_vnics; i++) { 4412 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4413 int j; 4414 4415 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4416 vnic->vnic_id = i; 4417 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4418 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4419 4420 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4421 4422 if (bp->vnic_info[i].rss_hash_key) { 4423 if (i == BNXT_VNIC_DEFAULT) { 4424 u8 *key = (void *)vnic->rss_hash_key; 4425 int k; 4426 4427 if (!bp->rss_hash_key_valid && 4428 !bp->rss_hash_key_updated) { 4429 get_random_bytes(bp->rss_hash_key, 4430 HW_HASH_KEY_SIZE); 4431 bp->rss_hash_key_updated = true; 4432 } 4433 4434 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4435 HW_HASH_KEY_SIZE); 4436 4437 if (!bp->rss_hash_key_updated) 4438 continue; 4439 4440 bp->rss_hash_key_updated = false; 4441 bp->rss_hash_key_valid = true; 4442 4443 bp->toeplitz_prefix = 0; 4444 for (k = 0; k < 8; k++) { 4445 bp->toeplitz_prefix <<= 8; 4446 bp->toeplitz_prefix |= key[k]; 4447 } 4448 } else { 4449 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4450 HW_HASH_KEY_SIZE); 4451 } 4452 } 4453 } 4454 } 4455 4456 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4457 { 4458 int pages; 4459 4460 pages = ring_size / desc_per_pg; 4461 4462 if (!pages) 4463 return 1; 4464 4465 pages++; 4466 4467 while (pages & (pages - 1)) 4468 pages++; 4469 4470 return pages; 4471 } 4472 4473 void bnxt_set_tpa_flags(struct bnxt *bp) 4474 { 4475 bp->flags &= ~BNXT_FLAG_TPA; 4476 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4477 return; 4478 if (bp->dev->features & NETIF_F_LRO) 4479 bp->flags |= BNXT_FLAG_LRO; 4480 else if (bp->dev->features & NETIF_F_GRO_HW) 4481 bp->flags |= BNXT_FLAG_GRO; 4482 } 4483 4484 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4485 * be set on entry. 4486 */ 4487 void bnxt_set_ring_params(struct bnxt *bp) 4488 { 4489 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4490 u32 agg_factor = 0, agg_ring_size = 0; 4491 4492 /* 8 for CRC and VLAN */ 4493 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4494 4495 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4496 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4497 4498 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4499 ring_size = bp->rx_ring_size; 4500 bp->rx_agg_ring_size = 0; 4501 bp->rx_agg_nr_pages = 0; 4502 4503 if (bp->flags & BNXT_FLAG_TPA) 4504 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4505 4506 bp->flags &= ~BNXT_FLAG_JUMBO; 4507 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4508 u32 jumbo_factor; 4509 4510 bp->flags |= BNXT_FLAG_JUMBO; 4511 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4512 if (jumbo_factor > agg_factor) 4513 agg_factor = jumbo_factor; 4514 } 4515 if (agg_factor) { 4516 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4517 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4518 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4519 bp->rx_ring_size, ring_size); 4520 bp->rx_ring_size = ring_size; 4521 } 4522 agg_ring_size = ring_size * agg_factor; 4523 4524 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4525 RX_DESC_CNT); 4526 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4527 u32 tmp = agg_ring_size; 4528 4529 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4530 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4531 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4532 tmp, agg_ring_size); 4533 } 4534 bp->rx_agg_ring_size = agg_ring_size; 4535 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4536 4537 if (BNXT_RX_PAGE_MODE(bp)) { 4538 rx_space = PAGE_SIZE; 4539 rx_size = PAGE_SIZE - 4540 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4541 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4542 } else { 4543 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4544 rx_space = rx_size + NET_SKB_PAD + 4545 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4546 } 4547 } 4548 4549 bp->rx_buf_use_size = rx_size; 4550 bp->rx_buf_size = rx_space; 4551 4552 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4553 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4554 4555 ring_size = bp->tx_ring_size; 4556 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4557 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4558 4559 max_rx_cmpl = bp->rx_ring_size; 4560 /* MAX TPA needs to be added because TPA_START completions are 4561 * immediately recycled, so the TPA completions are not bound by 4562 * the RX ring size. 4563 */ 4564 if (bp->flags & BNXT_FLAG_TPA) 4565 max_rx_cmpl += bp->max_tpa; 4566 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4567 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4568 bp->cp_ring_size = ring_size; 4569 4570 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4571 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4572 bp->cp_nr_pages = MAX_CP_PAGES; 4573 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4574 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4575 ring_size, bp->cp_ring_size); 4576 } 4577 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4578 bp->cp_ring_mask = bp->cp_bit - 1; 4579 } 4580 4581 /* Changing allocation mode of RX rings. 4582 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4583 */ 4584 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4585 { 4586 struct net_device *dev = bp->dev; 4587 4588 if (page_mode) { 4589 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4590 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4591 4592 if (bp->xdp_prog->aux->xdp_has_frags) 4593 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4594 else 4595 dev->max_mtu = 4596 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4597 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4598 bp->flags |= BNXT_FLAG_JUMBO; 4599 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4600 } else { 4601 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4602 bp->rx_skb_func = bnxt_rx_page_skb; 4603 } 4604 bp->rx_dir = DMA_BIDIRECTIONAL; 4605 /* Disable LRO or GRO_HW */ 4606 netdev_update_features(dev); 4607 } else { 4608 dev->max_mtu = bp->max_mtu; 4609 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4610 bp->rx_dir = DMA_FROM_DEVICE; 4611 bp->rx_skb_func = bnxt_rx_skb; 4612 } 4613 return 0; 4614 } 4615 4616 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4617 { 4618 int i; 4619 struct bnxt_vnic_info *vnic; 4620 struct pci_dev *pdev = bp->pdev; 4621 4622 if (!bp->vnic_info) 4623 return; 4624 4625 for (i = 0; i < bp->nr_vnics; i++) { 4626 vnic = &bp->vnic_info[i]; 4627 4628 kfree(vnic->fw_grp_ids); 4629 vnic->fw_grp_ids = NULL; 4630 4631 kfree(vnic->uc_list); 4632 vnic->uc_list = NULL; 4633 4634 if (vnic->mc_list) { 4635 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4636 vnic->mc_list, vnic->mc_list_mapping); 4637 vnic->mc_list = NULL; 4638 } 4639 4640 if (vnic->rss_table) { 4641 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4642 vnic->rss_table, 4643 vnic->rss_table_dma_addr); 4644 vnic->rss_table = NULL; 4645 } 4646 4647 vnic->rss_hash_key = NULL; 4648 vnic->flags = 0; 4649 } 4650 } 4651 4652 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4653 { 4654 int i, rc = 0, size; 4655 struct bnxt_vnic_info *vnic; 4656 struct pci_dev *pdev = bp->pdev; 4657 int max_rings; 4658 4659 for (i = 0; i < bp->nr_vnics; i++) { 4660 vnic = &bp->vnic_info[i]; 4661 4662 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4663 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4664 4665 if (mem_size > 0) { 4666 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4667 if (!vnic->uc_list) { 4668 rc = -ENOMEM; 4669 goto out; 4670 } 4671 } 4672 } 4673 4674 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4675 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4676 vnic->mc_list = 4677 dma_alloc_coherent(&pdev->dev, 4678 vnic->mc_list_size, 4679 &vnic->mc_list_mapping, 4680 GFP_KERNEL); 4681 if (!vnic->mc_list) { 4682 rc = -ENOMEM; 4683 goto out; 4684 } 4685 } 4686 4687 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4688 goto vnic_skip_grps; 4689 4690 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4691 max_rings = bp->rx_nr_rings; 4692 else 4693 max_rings = 1; 4694 4695 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4696 if (!vnic->fw_grp_ids) { 4697 rc = -ENOMEM; 4698 goto out; 4699 } 4700 vnic_skip_grps: 4701 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4702 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4703 continue; 4704 4705 /* Allocate rss table and hash key */ 4706 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4707 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4708 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4709 4710 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4711 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4712 vnic->rss_table_size, 4713 &vnic->rss_table_dma_addr, 4714 GFP_KERNEL); 4715 if (!vnic->rss_table) { 4716 rc = -ENOMEM; 4717 goto out; 4718 } 4719 4720 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4721 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4722 } 4723 return 0; 4724 4725 out: 4726 return rc; 4727 } 4728 4729 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4730 { 4731 struct bnxt_hwrm_wait_token *token; 4732 4733 dma_pool_destroy(bp->hwrm_dma_pool); 4734 bp->hwrm_dma_pool = NULL; 4735 4736 rcu_read_lock(); 4737 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4738 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4739 rcu_read_unlock(); 4740 } 4741 4742 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4743 { 4744 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4745 BNXT_HWRM_DMA_SIZE, 4746 BNXT_HWRM_DMA_ALIGN, 0); 4747 if (!bp->hwrm_dma_pool) 4748 return -ENOMEM; 4749 4750 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4751 4752 return 0; 4753 } 4754 4755 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4756 { 4757 kfree(stats->hw_masks); 4758 stats->hw_masks = NULL; 4759 kfree(stats->sw_stats); 4760 stats->sw_stats = NULL; 4761 if (stats->hw_stats) { 4762 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4763 stats->hw_stats_map); 4764 stats->hw_stats = NULL; 4765 } 4766 } 4767 4768 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4769 bool alloc_masks) 4770 { 4771 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4772 &stats->hw_stats_map, GFP_KERNEL); 4773 if (!stats->hw_stats) 4774 return -ENOMEM; 4775 4776 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4777 if (!stats->sw_stats) 4778 goto stats_mem_err; 4779 4780 if (alloc_masks) { 4781 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4782 if (!stats->hw_masks) 4783 goto stats_mem_err; 4784 } 4785 return 0; 4786 4787 stats_mem_err: 4788 bnxt_free_stats_mem(bp, stats); 4789 return -ENOMEM; 4790 } 4791 4792 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4793 { 4794 int i; 4795 4796 for (i = 0; i < count; i++) 4797 mask_arr[i] = mask; 4798 } 4799 4800 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4801 { 4802 int i; 4803 4804 for (i = 0; i < count; i++) 4805 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4806 } 4807 4808 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4809 struct bnxt_stats_mem *stats) 4810 { 4811 struct hwrm_func_qstats_ext_output *resp; 4812 struct hwrm_func_qstats_ext_input *req; 4813 __le64 *hw_masks; 4814 int rc; 4815 4816 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4817 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4818 return -EOPNOTSUPP; 4819 4820 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4821 if (rc) 4822 return rc; 4823 4824 req->fid = cpu_to_le16(0xffff); 4825 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4826 4827 resp = hwrm_req_hold(bp, req); 4828 rc = hwrm_req_send(bp, req); 4829 if (!rc) { 4830 hw_masks = &resp->rx_ucast_pkts; 4831 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4832 } 4833 hwrm_req_drop(bp, req); 4834 return rc; 4835 } 4836 4837 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4838 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4839 4840 static void bnxt_init_stats(struct bnxt *bp) 4841 { 4842 struct bnxt_napi *bnapi = bp->bnapi[0]; 4843 struct bnxt_cp_ring_info *cpr; 4844 struct bnxt_stats_mem *stats; 4845 __le64 *rx_stats, *tx_stats; 4846 int rc, rx_count, tx_count; 4847 u64 *rx_masks, *tx_masks; 4848 u64 mask; 4849 u8 flags; 4850 4851 cpr = &bnapi->cp_ring; 4852 stats = &cpr->stats; 4853 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4854 if (rc) { 4855 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4856 mask = (1ULL << 48) - 1; 4857 else 4858 mask = -1ULL; 4859 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4860 } 4861 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4862 stats = &bp->port_stats; 4863 rx_stats = stats->hw_stats; 4864 rx_masks = stats->hw_masks; 4865 rx_count = sizeof(struct rx_port_stats) / 8; 4866 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4867 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4868 tx_count = sizeof(struct tx_port_stats) / 8; 4869 4870 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4871 rc = bnxt_hwrm_port_qstats(bp, flags); 4872 if (rc) { 4873 mask = (1ULL << 40) - 1; 4874 4875 bnxt_fill_masks(rx_masks, mask, rx_count); 4876 bnxt_fill_masks(tx_masks, mask, tx_count); 4877 } else { 4878 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4879 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4880 bnxt_hwrm_port_qstats(bp, 0); 4881 } 4882 } 4883 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4884 stats = &bp->rx_port_stats_ext; 4885 rx_stats = stats->hw_stats; 4886 rx_masks = stats->hw_masks; 4887 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4888 stats = &bp->tx_port_stats_ext; 4889 tx_stats = stats->hw_stats; 4890 tx_masks = stats->hw_masks; 4891 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4892 4893 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4894 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4895 if (rc) { 4896 mask = (1ULL << 40) - 1; 4897 4898 bnxt_fill_masks(rx_masks, mask, rx_count); 4899 if (tx_stats) 4900 bnxt_fill_masks(tx_masks, mask, tx_count); 4901 } else { 4902 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4903 if (tx_stats) 4904 bnxt_copy_hw_masks(tx_masks, tx_stats, 4905 tx_count); 4906 bnxt_hwrm_port_qstats_ext(bp, 0); 4907 } 4908 } 4909 } 4910 4911 static void bnxt_free_port_stats(struct bnxt *bp) 4912 { 4913 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4914 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4915 4916 bnxt_free_stats_mem(bp, &bp->port_stats); 4917 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4918 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4919 } 4920 4921 static void bnxt_free_ring_stats(struct bnxt *bp) 4922 { 4923 int i; 4924 4925 if (!bp->bnapi) 4926 return; 4927 4928 for (i = 0; i < bp->cp_nr_rings; i++) { 4929 struct bnxt_napi *bnapi = bp->bnapi[i]; 4930 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4931 4932 bnxt_free_stats_mem(bp, &cpr->stats); 4933 4934 kfree(cpr->sw_stats); 4935 cpr->sw_stats = NULL; 4936 } 4937 } 4938 4939 static int bnxt_alloc_stats(struct bnxt *bp) 4940 { 4941 u32 size, i; 4942 int rc; 4943 4944 size = bp->hw_ring_stats_size; 4945 4946 for (i = 0; i < bp->cp_nr_rings; i++) { 4947 struct bnxt_napi *bnapi = bp->bnapi[i]; 4948 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4949 4950 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 4951 if (!cpr->sw_stats) 4952 return -ENOMEM; 4953 4954 cpr->stats.len = size; 4955 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4956 if (rc) 4957 return rc; 4958 4959 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4960 } 4961 4962 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4963 return 0; 4964 4965 if (bp->port_stats.hw_stats) 4966 goto alloc_ext_stats; 4967 4968 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4969 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4970 if (rc) 4971 return rc; 4972 4973 bp->flags |= BNXT_FLAG_PORT_STATS; 4974 4975 alloc_ext_stats: 4976 /* Display extended statistics only if FW supports it */ 4977 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4978 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4979 return 0; 4980 4981 if (bp->rx_port_stats_ext.hw_stats) 4982 goto alloc_tx_ext_stats; 4983 4984 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4985 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4986 /* Extended stats are optional */ 4987 if (rc) 4988 return 0; 4989 4990 alloc_tx_ext_stats: 4991 if (bp->tx_port_stats_ext.hw_stats) 4992 return 0; 4993 4994 if (bp->hwrm_spec_code >= 0x10902 || 4995 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4996 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4997 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4998 /* Extended stats are optional */ 4999 if (rc) 5000 return 0; 5001 } 5002 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5003 return 0; 5004 } 5005 5006 static void bnxt_clear_ring_indices(struct bnxt *bp) 5007 { 5008 int i, j; 5009 5010 if (!bp->bnapi) 5011 return; 5012 5013 for (i = 0; i < bp->cp_nr_rings; i++) { 5014 struct bnxt_napi *bnapi = bp->bnapi[i]; 5015 struct bnxt_cp_ring_info *cpr; 5016 struct bnxt_rx_ring_info *rxr; 5017 struct bnxt_tx_ring_info *txr; 5018 5019 if (!bnapi) 5020 continue; 5021 5022 cpr = &bnapi->cp_ring; 5023 cpr->cp_raw_cons = 0; 5024 5025 bnxt_for_each_napi_tx(j, bnapi, txr) { 5026 txr->tx_prod = 0; 5027 txr->tx_cons = 0; 5028 txr->tx_hw_cons = 0; 5029 } 5030 5031 rxr = bnapi->rx_ring; 5032 if (rxr) { 5033 rxr->rx_prod = 0; 5034 rxr->rx_agg_prod = 0; 5035 rxr->rx_sw_agg_prod = 0; 5036 rxr->rx_next_cons = 0; 5037 } 5038 bnapi->events = 0; 5039 } 5040 } 5041 5042 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5043 { 5044 u8 type = fltr->type, flags = fltr->flags; 5045 5046 INIT_LIST_HEAD(&fltr->list); 5047 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5048 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5049 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5050 } 5051 5052 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5053 { 5054 if (!list_empty(&fltr->list)) 5055 list_del_init(&fltr->list); 5056 } 5057 5058 void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5059 { 5060 struct bnxt_filter_base *usr_fltr, *tmp; 5061 5062 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5063 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5064 continue; 5065 bnxt_del_one_usr_fltr(bp, usr_fltr); 5066 } 5067 } 5068 5069 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5070 { 5071 hlist_del(&fltr->hash); 5072 bnxt_del_one_usr_fltr(bp, fltr); 5073 if (fltr->flags) { 5074 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5075 bp->ntp_fltr_count--; 5076 } 5077 kfree(fltr); 5078 } 5079 5080 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5081 { 5082 int i; 5083 5084 /* Under rtnl_lock and all our NAPIs have been disabled. It's 5085 * safe to delete the hash table. 5086 */ 5087 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5088 struct hlist_head *head; 5089 struct hlist_node *tmp; 5090 struct bnxt_ntuple_filter *fltr; 5091 5092 head = &bp->ntp_fltr_hash_tbl[i]; 5093 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5094 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5095 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5096 !list_empty(&fltr->base.list))) 5097 continue; 5098 bnxt_del_fltr(bp, &fltr->base); 5099 } 5100 } 5101 if (!all) 5102 return; 5103 5104 bitmap_free(bp->ntp_fltr_bmap); 5105 bp->ntp_fltr_bmap = NULL; 5106 bp->ntp_fltr_count = 0; 5107 } 5108 5109 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5110 { 5111 int i, rc = 0; 5112 5113 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5114 return 0; 5115 5116 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5117 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5118 5119 bp->ntp_fltr_count = 0; 5120 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5121 5122 if (!bp->ntp_fltr_bmap) 5123 rc = -ENOMEM; 5124 5125 return rc; 5126 } 5127 5128 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5129 { 5130 int i; 5131 5132 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5133 struct hlist_head *head; 5134 struct hlist_node *tmp; 5135 struct bnxt_l2_filter *fltr; 5136 5137 head = &bp->l2_fltr_hash_tbl[i]; 5138 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5139 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5140 !list_empty(&fltr->base.list))) 5141 continue; 5142 bnxt_del_fltr(bp, &fltr->base); 5143 } 5144 } 5145 } 5146 5147 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5148 { 5149 int i; 5150 5151 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5152 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5153 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5154 } 5155 5156 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5157 { 5158 bnxt_free_vnic_attributes(bp); 5159 bnxt_free_tx_rings(bp); 5160 bnxt_free_rx_rings(bp); 5161 bnxt_free_cp_rings(bp); 5162 bnxt_free_all_cp_arrays(bp); 5163 bnxt_free_ntp_fltrs(bp, false); 5164 bnxt_free_l2_filters(bp, false); 5165 if (irq_re_init) { 5166 bnxt_free_ring_stats(bp); 5167 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5168 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5169 bnxt_free_port_stats(bp); 5170 bnxt_free_ring_grps(bp); 5171 bnxt_free_vnics(bp); 5172 kfree(bp->tx_ring_map); 5173 bp->tx_ring_map = NULL; 5174 kfree(bp->tx_ring); 5175 bp->tx_ring = NULL; 5176 kfree(bp->rx_ring); 5177 bp->rx_ring = NULL; 5178 kfree(bp->bnapi); 5179 bp->bnapi = NULL; 5180 } else { 5181 bnxt_clear_ring_indices(bp); 5182 } 5183 } 5184 5185 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5186 { 5187 int i, j, rc, size, arr_size; 5188 void *bnapi; 5189 5190 if (irq_re_init) { 5191 /* Allocate bnapi mem pointer array and mem block for 5192 * all queues 5193 */ 5194 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5195 bp->cp_nr_rings); 5196 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5197 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5198 if (!bnapi) 5199 return -ENOMEM; 5200 5201 bp->bnapi = bnapi; 5202 bnapi += arr_size; 5203 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5204 bp->bnapi[i] = bnapi; 5205 bp->bnapi[i]->index = i; 5206 bp->bnapi[i]->bp = bp; 5207 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5208 struct bnxt_cp_ring_info *cpr = 5209 &bp->bnapi[i]->cp_ring; 5210 5211 cpr->cp_ring_struct.ring_mem.flags = 5212 BNXT_RMEM_RING_PTE_FLAG; 5213 } 5214 } 5215 5216 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5217 sizeof(struct bnxt_rx_ring_info), 5218 GFP_KERNEL); 5219 if (!bp->rx_ring) 5220 return -ENOMEM; 5221 5222 for (i = 0; i < bp->rx_nr_rings; i++) { 5223 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5224 5225 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5226 rxr->rx_ring_struct.ring_mem.flags = 5227 BNXT_RMEM_RING_PTE_FLAG; 5228 rxr->rx_agg_ring_struct.ring_mem.flags = 5229 BNXT_RMEM_RING_PTE_FLAG; 5230 } else { 5231 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5232 } 5233 rxr->bnapi = bp->bnapi[i]; 5234 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5235 } 5236 5237 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5238 sizeof(struct bnxt_tx_ring_info), 5239 GFP_KERNEL); 5240 if (!bp->tx_ring) 5241 return -ENOMEM; 5242 5243 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5244 GFP_KERNEL); 5245 5246 if (!bp->tx_ring_map) 5247 return -ENOMEM; 5248 5249 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5250 j = 0; 5251 else 5252 j = bp->rx_nr_rings; 5253 5254 for (i = 0; i < bp->tx_nr_rings; i++) { 5255 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5256 struct bnxt_napi *bnapi2; 5257 5258 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5259 txr->tx_ring_struct.ring_mem.flags = 5260 BNXT_RMEM_RING_PTE_FLAG; 5261 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5262 if (i >= bp->tx_nr_rings_xdp) { 5263 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5264 5265 bnapi2 = bp->bnapi[k]; 5266 txr->txq_index = i - bp->tx_nr_rings_xdp; 5267 txr->tx_napi_idx = 5268 BNXT_RING_TO_TC(bp, txr->txq_index); 5269 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5270 bnapi2->tx_int = bnxt_tx_int; 5271 } else { 5272 bnapi2 = bp->bnapi[j]; 5273 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5274 bnapi2->tx_ring[0] = txr; 5275 bnapi2->tx_int = bnxt_tx_int_xdp; 5276 j++; 5277 } 5278 txr->bnapi = bnapi2; 5279 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5280 txr->tx_cpr = &bnapi2->cp_ring; 5281 } 5282 5283 rc = bnxt_alloc_stats(bp); 5284 if (rc) 5285 goto alloc_mem_err; 5286 bnxt_init_stats(bp); 5287 5288 rc = bnxt_alloc_ntp_fltrs(bp); 5289 if (rc) 5290 goto alloc_mem_err; 5291 5292 rc = bnxt_alloc_vnics(bp); 5293 if (rc) 5294 goto alloc_mem_err; 5295 } 5296 5297 rc = bnxt_alloc_all_cp_arrays(bp); 5298 if (rc) 5299 goto alloc_mem_err; 5300 5301 bnxt_init_ring_struct(bp); 5302 5303 rc = bnxt_alloc_rx_rings(bp); 5304 if (rc) 5305 goto alloc_mem_err; 5306 5307 rc = bnxt_alloc_tx_rings(bp); 5308 if (rc) 5309 goto alloc_mem_err; 5310 5311 rc = bnxt_alloc_cp_rings(bp); 5312 if (rc) 5313 goto alloc_mem_err; 5314 5315 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5316 BNXT_VNIC_MCAST_FLAG | 5317 BNXT_VNIC_UCAST_FLAG; 5318 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5319 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5320 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5321 5322 rc = bnxt_alloc_vnic_attributes(bp); 5323 if (rc) 5324 goto alloc_mem_err; 5325 return 0; 5326 5327 alloc_mem_err: 5328 bnxt_free_mem(bp, true); 5329 return rc; 5330 } 5331 5332 static void bnxt_disable_int(struct bnxt *bp) 5333 { 5334 int i; 5335 5336 if (!bp->bnapi) 5337 return; 5338 5339 for (i = 0; i < bp->cp_nr_rings; i++) { 5340 struct bnxt_napi *bnapi = bp->bnapi[i]; 5341 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5342 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5343 5344 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5345 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5346 } 5347 } 5348 5349 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5350 { 5351 struct bnxt_napi *bnapi = bp->bnapi[n]; 5352 struct bnxt_cp_ring_info *cpr; 5353 5354 cpr = &bnapi->cp_ring; 5355 return cpr->cp_ring_struct.map_idx; 5356 } 5357 5358 static void bnxt_disable_int_sync(struct bnxt *bp) 5359 { 5360 int i; 5361 5362 if (!bp->irq_tbl) 5363 return; 5364 5365 atomic_inc(&bp->intr_sem); 5366 5367 bnxt_disable_int(bp); 5368 for (i = 0; i < bp->cp_nr_rings; i++) { 5369 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5370 5371 synchronize_irq(bp->irq_tbl[map_idx].vector); 5372 } 5373 } 5374 5375 static void bnxt_enable_int(struct bnxt *bp) 5376 { 5377 int i; 5378 5379 atomic_set(&bp->intr_sem, 0); 5380 for (i = 0; i < bp->cp_nr_rings; i++) { 5381 struct bnxt_napi *bnapi = bp->bnapi[i]; 5382 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5383 5384 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5385 } 5386 } 5387 5388 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5389 bool async_only) 5390 { 5391 DECLARE_BITMAP(async_events_bmap, 256); 5392 u32 *events = (u32 *)async_events_bmap; 5393 struct hwrm_func_drv_rgtr_output *resp; 5394 struct hwrm_func_drv_rgtr_input *req; 5395 u32 flags; 5396 int rc, i; 5397 5398 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5399 if (rc) 5400 return rc; 5401 5402 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5403 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5404 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5405 5406 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5407 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5408 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5409 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5410 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5411 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5412 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5413 req->flags = cpu_to_le32(flags); 5414 req->ver_maj_8b = DRV_VER_MAJ; 5415 req->ver_min_8b = DRV_VER_MIN; 5416 req->ver_upd_8b = DRV_VER_UPD; 5417 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5418 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5419 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5420 5421 if (BNXT_PF(bp)) { 5422 u32 data[8]; 5423 int i; 5424 5425 memset(data, 0, sizeof(data)); 5426 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5427 u16 cmd = bnxt_vf_req_snif[i]; 5428 unsigned int bit, idx; 5429 5430 idx = cmd / 32; 5431 bit = cmd % 32; 5432 data[idx] |= 1 << bit; 5433 } 5434 5435 for (i = 0; i < 8; i++) 5436 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5437 5438 req->enables |= 5439 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5440 } 5441 5442 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5443 req->flags |= cpu_to_le32( 5444 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5445 5446 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5447 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5448 u16 event_id = bnxt_async_events_arr[i]; 5449 5450 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5451 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5452 continue; 5453 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5454 !bp->ptp_cfg) 5455 continue; 5456 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5457 } 5458 if (bmap && bmap_size) { 5459 for (i = 0; i < bmap_size; i++) { 5460 if (test_bit(i, bmap)) 5461 __set_bit(i, async_events_bmap); 5462 } 5463 } 5464 for (i = 0; i < 8; i++) 5465 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5466 5467 if (async_only) 5468 req->enables = 5469 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5470 5471 resp = hwrm_req_hold(bp, req); 5472 rc = hwrm_req_send(bp, req); 5473 if (!rc) { 5474 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5475 if (resp->flags & 5476 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5477 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5478 } 5479 hwrm_req_drop(bp, req); 5480 return rc; 5481 } 5482 5483 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5484 { 5485 struct hwrm_func_drv_unrgtr_input *req; 5486 int rc; 5487 5488 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5489 return 0; 5490 5491 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5492 if (rc) 5493 return rc; 5494 return hwrm_req_send(bp, req); 5495 } 5496 5497 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5498 5499 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5500 { 5501 struct hwrm_tunnel_dst_port_free_input *req; 5502 int rc; 5503 5504 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5505 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5506 return 0; 5507 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5508 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5509 return 0; 5510 5511 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5512 if (rc) 5513 return rc; 5514 5515 req->tunnel_type = tunnel_type; 5516 5517 switch (tunnel_type) { 5518 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5519 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5520 bp->vxlan_port = 0; 5521 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5522 break; 5523 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5524 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5525 bp->nge_port = 0; 5526 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5527 break; 5528 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5529 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5530 bp->vxlan_gpe_port = 0; 5531 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5532 break; 5533 default: 5534 break; 5535 } 5536 5537 rc = hwrm_req_send(bp, req); 5538 if (rc) 5539 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5540 rc); 5541 if (bp->flags & BNXT_FLAG_TPA) 5542 bnxt_set_tpa(bp, true); 5543 return rc; 5544 } 5545 5546 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5547 u8 tunnel_type) 5548 { 5549 struct hwrm_tunnel_dst_port_alloc_output *resp; 5550 struct hwrm_tunnel_dst_port_alloc_input *req; 5551 int rc; 5552 5553 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5554 if (rc) 5555 return rc; 5556 5557 req->tunnel_type = tunnel_type; 5558 req->tunnel_dst_port_val = port; 5559 5560 resp = hwrm_req_hold(bp, req); 5561 rc = hwrm_req_send(bp, req); 5562 if (rc) { 5563 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5564 rc); 5565 goto err_out; 5566 } 5567 5568 switch (tunnel_type) { 5569 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5570 bp->vxlan_port = port; 5571 bp->vxlan_fw_dst_port_id = 5572 le16_to_cpu(resp->tunnel_dst_port_id); 5573 break; 5574 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5575 bp->nge_port = port; 5576 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5577 break; 5578 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5579 bp->vxlan_gpe_port = port; 5580 bp->vxlan_gpe_fw_dst_port_id = 5581 le16_to_cpu(resp->tunnel_dst_port_id); 5582 break; 5583 default: 5584 break; 5585 } 5586 if (bp->flags & BNXT_FLAG_TPA) 5587 bnxt_set_tpa(bp, true); 5588 5589 err_out: 5590 hwrm_req_drop(bp, req); 5591 return rc; 5592 } 5593 5594 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5595 { 5596 struct hwrm_cfa_l2_set_rx_mask_input *req; 5597 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5598 int rc; 5599 5600 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5601 if (rc) 5602 return rc; 5603 5604 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5605 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5606 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5607 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5608 } 5609 req->mask = cpu_to_le32(vnic->rx_mask); 5610 return hwrm_req_send_silent(bp, req); 5611 } 5612 5613 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5614 { 5615 if (!atomic_dec_and_test(&fltr->refcnt)) 5616 return; 5617 spin_lock_bh(&bp->ntp_fltr_lock); 5618 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5619 spin_unlock_bh(&bp->ntp_fltr_lock); 5620 return; 5621 } 5622 hlist_del_rcu(&fltr->base.hash); 5623 bnxt_del_one_usr_fltr(bp, &fltr->base); 5624 if (fltr->base.flags) { 5625 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5626 bp->ntp_fltr_count--; 5627 } 5628 spin_unlock_bh(&bp->ntp_fltr_lock); 5629 kfree_rcu(fltr, base.rcu); 5630 } 5631 5632 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5633 struct bnxt_l2_key *key, 5634 u32 idx) 5635 { 5636 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5637 struct bnxt_l2_filter *fltr; 5638 5639 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5640 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5641 5642 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5643 l2_key->vlan == key->vlan) 5644 return fltr; 5645 } 5646 return NULL; 5647 } 5648 5649 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5650 struct bnxt_l2_key *key, 5651 u32 idx) 5652 { 5653 struct bnxt_l2_filter *fltr = NULL; 5654 5655 rcu_read_lock(); 5656 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5657 if (fltr) 5658 atomic_inc(&fltr->refcnt); 5659 rcu_read_unlock(); 5660 return fltr; 5661 } 5662 5663 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5664 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5665 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5666 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5667 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5668 5669 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5670 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5671 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5672 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5673 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5674 5675 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5676 { 5677 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5678 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5679 return sizeof(fkeys->addrs.v4addrs) + 5680 sizeof(fkeys->ports); 5681 5682 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5683 return sizeof(fkeys->addrs.v4addrs); 5684 } 5685 5686 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5687 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5688 return sizeof(fkeys->addrs.v6addrs) + 5689 sizeof(fkeys->ports); 5690 5691 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5692 return sizeof(fkeys->addrs.v6addrs); 5693 } 5694 5695 return 0; 5696 } 5697 5698 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5699 const unsigned char *key) 5700 { 5701 u64 prefix = bp->toeplitz_prefix, hash = 0; 5702 struct bnxt_ipv4_tuple tuple4; 5703 struct bnxt_ipv6_tuple tuple6; 5704 int i, j, len = 0; 5705 u8 *four_tuple; 5706 5707 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5708 if (!len) 5709 return 0; 5710 5711 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5712 tuple4.v4addrs = fkeys->addrs.v4addrs; 5713 tuple4.ports = fkeys->ports; 5714 four_tuple = (unsigned char *)&tuple4; 5715 } else { 5716 tuple6.v6addrs = fkeys->addrs.v6addrs; 5717 tuple6.ports = fkeys->ports; 5718 four_tuple = (unsigned char *)&tuple6; 5719 } 5720 5721 for (i = 0, j = 8; i < len; i++, j++) { 5722 u8 byte = four_tuple[i]; 5723 int bit; 5724 5725 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5726 if (byte & 0x80) 5727 hash ^= prefix; 5728 } 5729 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5730 } 5731 5732 /* The valid part of the hash is in the upper 32 bits. */ 5733 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5734 } 5735 5736 #ifdef CONFIG_RFS_ACCEL 5737 static struct bnxt_l2_filter * 5738 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5739 { 5740 struct bnxt_l2_filter *fltr; 5741 u32 idx; 5742 5743 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5744 BNXT_L2_FLTR_HASH_MASK; 5745 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5746 return fltr; 5747 } 5748 #endif 5749 5750 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5751 struct bnxt_l2_key *key, u32 idx) 5752 { 5753 struct hlist_head *head; 5754 5755 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5756 fltr->l2_key.vlan = key->vlan; 5757 fltr->base.type = BNXT_FLTR_TYPE_L2; 5758 if (fltr->base.flags) { 5759 int bit_id; 5760 5761 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5762 bp->max_fltr, 0); 5763 if (bit_id < 0) 5764 return -ENOMEM; 5765 fltr->base.sw_id = (u16)bit_id; 5766 bp->ntp_fltr_count++; 5767 } 5768 head = &bp->l2_fltr_hash_tbl[idx]; 5769 hlist_add_head_rcu(&fltr->base.hash, head); 5770 bnxt_insert_usr_fltr(bp, &fltr->base); 5771 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5772 atomic_set(&fltr->refcnt, 1); 5773 return 0; 5774 } 5775 5776 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 5777 struct bnxt_l2_key *key, 5778 gfp_t gfp) 5779 { 5780 struct bnxt_l2_filter *fltr; 5781 u32 idx; 5782 int rc; 5783 5784 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5785 BNXT_L2_FLTR_HASH_MASK; 5786 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5787 if (fltr) 5788 return fltr; 5789 5790 fltr = kzalloc(sizeof(*fltr), gfp); 5791 if (!fltr) 5792 return ERR_PTR(-ENOMEM); 5793 spin_lock_bh(&bp->ntp_fltr_lock); 5794 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5795 spin_unlock_bh(&bp->ntp_fltr_lock); 5796 if (rc) { 5797 bnxt_del_l2_filter(bp, fltr); 5798 fltr = ERR_PTR(rc); 5799 } 5800 return fltr; 5801 } 5802 5803 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 5804 struct bnxt_l2_key *key, 5805 u16 flags) 5806 { 5807 struct bnxt_l2_filter *fltr; 5808 u32 idx; 5809 int rc; 5810 5811 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5812 BNXT_L2_FLTR_HASH_MASK; 5813 spin_lock_bh(&bp->ntp_fltr_lock); 5814 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5815 if (fltr) { 5816 fltr = ERR_PTR(-EEXIST); 5817 goto l2_filter_exit; 5818 } 5819 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 5820 if (!fltr) { 5821 fltr = ERR_PTR(-ENOMEM); 5822 goto l2_filter_exit; 5823 } 5824 fltr->base.flags = flags; 5825 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5826 if (rc) { 5827 spin_unlock_bh(&bp->ntp_fltr_lock); 5828 bnxt_del_l2_filter(bp, fltr); 5829 return ERR_PTR(rc); 5830 } 5831 5832 l2_filter_exit: 5833 spin_unlock_bh(&bp->ntp_fltr_lock); 5834 return fltr; 5835 } 5836 5837 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 5838 { 5839 #ifdef CONFIG_BNXT_SRIOV 5840 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 5841 5842 return vf->fw_fid; 5843 #else 5844 return INVALID_HW_RING_ID; 5845 #endif 5846 } 5847 5848 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5849 { 5850 struct hwrm_cfa_l2_filter_free_input *req; 5851 u16 target_id = 0xffff; 5852 int rc; 5853 5854 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5855 struct bnxt_pf_info *pf = &bp->pf; 5856 5857 if (fltr->base.vf_idx >= pf->active_vfs) 5858 return -EINVAL; 5859 5860 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5861 if (target_id == INVALID_HW_RING_ID) 5862 return -EINVAL; 5863 } 5864 5865 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5866 if (rc) 5867 return rc; 5868 5869 req->target_id = cpu_to_le16(target_id); 5870 req->l2_filter_id = fltr->base.filter_id; 5871 return hwrm_req_send(bp, req); 5872 } 5873 5874 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5875 { 5876 struct hwrm_cfa_l2_filter_alloc_output *resp; 5877 struct hwrm_cfa_l2_filter_alloc_input *req; 5878 u16 target_id = 0xffff; 5879 int rc; 5880 5881 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5882 struct bnxt_pf_info *pf = &bp->pf; 5883 5884 if (fltr->base.vf_idx >= pf->active_vfs) 5885 return -EINVAL; 5886 5887 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5888 } 5889 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5890 if (rc) 5891 return rc; 5892 5893 req->target_id = cpu_to_le16(target_id); 5894 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5895 5896 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5897 req->flags |= 5898 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5899 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 5900 req->enables = 5901 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5902 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5903 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5904 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 5905 eth_broadcast_addr(req->l2_addr_mask); 5906 5907 if (fltr->l2_key.vlan) { 5908 req->enables |= 5909 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 5910 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 5911 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 5912 req->num_vlans = 1; 5913 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 5914 req->l2_ivlan_mask = cpu_to_le16(0xfff); 5915 } 5916 5917 resp = hwrm_req_hold(bp, req); 5918 rc = hwrm_req_send(bp, req); 5919 if (!rc) { 5920 fltr->base.filter_id = resp->l2_filter_id; 5921 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 5922 } 5923 hwrm_req_drop(bp, req); 5924 return rc; 5925 } 5926 5927 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5928 struct bnxt_ntuple_filter *fltr) 5929 { 5930 struct hwrm_cfa_ntuple_filter_free_input *req; 5931 int rc; 5932 5933 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 5934 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 5935 if (rc) 5936 return rc; 5937 5938 req->ntuple_filter_id = fltr->base.filter_id; 5939 return hwrm_req_send(bp, req); 5940 } 5941 5942 #define BNXT_NTP_FLTR_FLAGS \ 5943 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5944 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5945 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5946 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5947 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5948 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5949 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5950 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5951 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5952 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5953 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5954 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5955 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5956 5957 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5958 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5959 5960 void bnxt_fill_ipv6_mask(__be32 mask[4]) 5961 { 5962 int i; 5963 5964 for (i = 0; i < 4; i++) 5965 mask[i] = cpu_to_be32(~0); 5966 } 5967 5968 static void 5969 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 5970 struct hwrm_cfa_ntuple_filter_alloc_input *req, 5971 struct bnxt_ntuple_filter *fltr) 5972 { 5973 u16 rxq = fltr->base.rxq; 5974 5975 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 5976 struct ethtool_rxfh_context *ctx; 5977 struct bnxt_rss_ctx *rss_ctx; 5978 struct bnxt_vnic_info *vnic; 5979 5980 ctx = xa_load(&bp->dev->ethtool->rss_ctx, 5981 fltr->base.fw_vnic_id); 5982 if (ctx) { 5983 rss_ctx = ethtool_rxfh_context_priv(ctx); 5984 vnic = &rss_ctx->vnic; 5985 5986 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5987 } 5988 return; 5989 } 5990 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 5991 struct bnxt_vnic_info *vnic; 5992 u32 enables; 5993 5994 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 5995 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5996 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 5997 req->enables |= cpu_to_le32(enables); 5998 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 5999 } else { 6000 u32 flags; 6001 6002 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6003 req->flags |= cpu_to_le32(flags); 6004 req->dst_id = cpu_to_le16(rxq); 6005 } 6006 } 6007 6008 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6009 struct bnxt_ntuple_filter *fltr) 6010 { 6011 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6012 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6013 struct bnxt_flow_masks *masks = &fltr->fmasks; 6014 struct flow_keys *keys = &fltr->fkeys; 6015 struct bnxt_l2_filter *l2_fltr; 6016 struct bnxt_vnic_info *vnic; 6017 int rc; 6018 6019 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6020 if (rc) 6021 return rc; 6022 6023 l2_fltr = fltr->l2_fltr; 6024 req->l2_filter_id = l2_fltr->base.filter_id; 6025 6026 if (fltr->base.flags & BNXT_ACT_DROP) { 6027 req->flags = 6028 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6029 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6030 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6031 } else { 6032 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6033 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6034 } 6035 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6036 6037 req->ethertype = htons(ETH_P_IP); 6038 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6039 req->ip_protocol = keys->basic.ip_proto; 6040 6041 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6042 req->ethertype = htons(ETH_P_IPV6); 6043 req->ip_addr_type = 6044 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6045 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6046 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6047 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6048 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6049 } else { 6050 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6051 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6052 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6053 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6054 } 6055 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6056 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6057 req->tunnel_type = 6058 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6059 } 6060 6061 req->src_port = keys->ports.src; 6062 req->src_port_mask = masks->ports.src; 6063 req->dst_port = keys->ports.dst; 6064 req->dst_port_mask = masks->ports.dst; 6065 6066 resp = hwrm_req_hold(bp, req); 6067 rc = hwrm_req_send(bp, req); 6068 if (!rc) 6069 fltr->base.filter_id = resp->ntuple_filter_id; 6070 hwrm_req_drop(bp, req); 6071 return rc; 6072 } 6073 6074 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6075 const u8 *mac_addr) 6076 { 6077 struct bnxt_l2_filter *fltr; 6078 struct bnxt_l2_key key; 6079 int rc; 6080 6081 ether_addr_copy(key.dst_mac_addr, mac_addr); 6082 key.vlan = 0; 6083 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6084 if (IS_ERR(fltr)) 6085 return PTR_ERR(fltr); 6086 6087 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6088 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6089 if (rc) 6090 bnxt_del_l2_filter(bp, fltr); 6091 else 6092 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6093 return rc; 6094 } 6095 6096 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6097 { 6098 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6099 6100 /* Any associated ntuple filters will also be cleared by firmware. */ 6101 for (i = 0; i < num_of_vnics; i++) { 6102 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6103 6104 for (j = 0; j < vnic->uc_filter_count; j++) { 6105 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6106 6107 bnxt_hwrm_l2_filter_free(bp, fltr); 6108 bnxt_del_l2_filter(bp, fltr); 6109 } 6110 vnic->uc_filter_count = 0; 6111 } 6112 } 6113 6114 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6115 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6116 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6117 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6118 6119 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6120 struct hwrm_vnic_tpa_cfg_input *req) 6121 { 6122 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6123 6124 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6125 return; 6126 6127 if (bp->vxlan_port) 6128 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6129 if (bp->vxlan_gpe_port) 6130 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6131 if (bp->nge_port) 6132 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6133 6134 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6135 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6136 } 6137 6138 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6139 u32 tpa_flags) 6140 { 6141 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6142 struct hwrm_vnic_tpa_cfg_input *req; 6143 int rc; 6144 6145 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6146 return 0; 6147 6148 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6149 if (rc) 6150 return rc; 6151 6152 if (tpa_flags) { 6153 u16 mss = bp->dev->mtu - 40; 6154 u32 nsegs, n, segs = 0, flags; 6155 6156 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6157 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6158 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6159 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6160 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6161 if (tpa_flags & BNXT_FLAG_GRO) 6162 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6163 6164 req->flags = cpu_to_le32(flags); 6165 6166 req->enables = 6167 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6168 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6169 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6170 6171 /* Number of segs are log2 units, and first packet is not 6172 * included as part of this units. 6173 */ 6174 if (mss <= BNXT_RX_PAGE_SIZE) { 6175 n = BNXT_RX_PAGE_SIZE / mss; 6176 nsegs = (MAX_SKB_FRAGS - 1) * n; 6177 } else { 6178 n = mss / BNXT_RX_PAGE_SIZE; 6179 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6180 n++; 6181 nsegs = (MAX_SKB_FRAGS - n) / n; 6182 } 6183 6184 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6185 segs = MAX_TPA_SEGS_P5; 6186 max_aggs = bp->max_tpa; 6187 } else { 6188 segs = ilog2(nsegs); 6189 } 6190 req->max_agg_segs = cpu_to_le16(segs); 6191 req->max_aggs = cpu_to_le16(max_aggs); 6192 6193 req->min_agg_len = cpu_to_le32(512); 6194 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6195 } 6196 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6197 6198 return hwrm_req_send(bp, req); 6199 } 6200 6201 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6202 { 6203 struct bnxt_ring_grp_info *grp_info; 6204 6205 grp_info = &bp->grp_info[ring->grp_idx]; 6206 return grp_info->cp_fw_ring_id; 6207 } 6208 6209 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6210 { 6211 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6212 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6213 else 6214 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6215 } 6216 6217 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6218 { 6219 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6220 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6221 else 6222 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6223 } 6224 6225 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6226 { 6227 int entries; 6228 6229 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6230 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6231 else 6232 entries = HW_HASH_INDEX_SIZE; 6233 6234 bp->rss_indir_tbl_entries = entries; 6235 bp->rss_indir_tbl = 6236 kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6237 if (!bp->rss_indir_tbl) 6238 return -ENOMEM; 6239 6240 return 0; 6241 } 6242 6243 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, 6244 struct ethtool_rxfh_context *rss_ctx) 6245 { 6246 u16 max_rings, max_entries, pad, i; 6247 u32 *rss_indir_tbl; 6248 6249 if (!bp->rx_nr_rings) 6250 return; 6251 6252 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6253 max_rings = bp->rx_nr_rings - 1; 6254 else 6255 max_rings = bp->rx_nr_rings; 6256 6257 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6258 if (rss_ctx) 6259 rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx); 6260 else 6261 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6262 6263 for (i = 0; i < max_entries; i++) 6264 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6265 6266 pad = bp->rss_indir_tbl_entries - max_entries; 6267 if (pad) 6268 memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl)); 6269 } 6270 6271 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6272 { 6273 u32 i, tbl_size, max_ring = 0; 6274 6275 if (!bp->rss_indir_tbl) 6276 return 0; 6277 6278 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6279 for (i = 0; i < tbl_size; i++) 6280 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6281 return max_ring; 6282 } 6283 6284 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6285 { 6286 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6287 if (!rx_rings) 6288 return 0; 6289 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6290 BNXT_RSS_TABLE_ENTRIES_P5); 6291 } 6292 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6293 return 2; 6294 return 1; 6295 } 6296 6297 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6298 { 6299 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6300 u16 i, j; 6301 6302 /* Fill the RSS indirection table with ring group ids */ 6303 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6304 if (!no_rss) 6305 j = bp->rss_indir_tbl[i]; 6306 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6307 } 6308 } 6309 6310 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6311 struct bnxt_vnic_info *vnic) 6312 { 6313 __le16 *ring_tbl = vnic->rss_table; 6314 struct bnxt_rx_ring_info *rxr; 6315 u16 tbl_size, i; 6316 6317 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6318 6319 for (i = 0; i < tbl_size; i++) { 6320 u16 ring_id, j; 6321 6322 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6323 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6324 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6325 j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 6326 else 6327 j = bp->rss_indir_tbl[i]; 6328 rxr = &bp->rx_ring[j]; 6329 6330 ring_id = rxr->rx_ring_struct.fw_ring_id; 6331 *ring_tbl++ = cpu_to_le16(ring_id); 6332 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6333 *ring_tbl++ = cpu_to_le16(ring_id); 6334 } 6335 } 6336 6337 static void 6338 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6339 struct bnxt_vnic_info *vnic) 6340 { 6341 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6342 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6343 if (bp->flags & BNXT_FLAG_CHIP_P7) 6344 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6345 } else { 6346 bnxt_fill_hw_rss_tbl(bp, vnic); 6347 } 6348 6349 if (bp->rss_hash_delta) { 6350 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6351 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6352 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6353 else 6354 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6355 } else { 6356 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6357 } 6358 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6359 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6360 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6361 } 6362 6363 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6364 bool set_rss) 6365 { 6366 struct hwrm_vnic_rss_cfg_input *req; 6367 int rc; 6368 6369 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6370 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6371 return 0; 6372 6373 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6374 if (rc) 6375 return rc; 6376 6377 if (set_rss) 6378 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6379 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6380 return hwrm_req_send(bp, req); 6381 } 6382 6383 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6384 struct bnxt_vnic_info *vnic, bool set_rss) 6385 { 6386 struct hwrm_vnic_rss_cfg_input *req; 6387 dma_addr_t ring_tbl_map; 6388 u32 i, nr_ctxs; 6389 int rc; 6390 6391 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6392 if (rc) 6393 return rc; 6394 6395 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6396 if (!set_rss) 6397 return hwrm_req_send(bp, req); 6398 6399 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6400 ring_tbl_map = vnic->rss_table_dma_addr; 6401 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6402 6403 hwrm_req_hold(bp, req); 6404 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6405 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6406 req->ring_table_pair_index = i; 6407 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6408 rc = hwrm_req_send(bp, req); 6409 if (rc) 6410 goto exit; 6411 } 6412 6413 exit: 6414 hwrm_req_drop(bp, req); 6415 return rc; 6416 } 6417 6418 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6419 { 6420 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6421 struct hwrm_vnic_rss_qcfg_output *resp; 6422 struct hwrm_vnic_rss_qcfg_input *req; 6423 6424 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6425 return; 6426 6427 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6428 /* all contexts configured to same hash_type, zero always exists */ 6429 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6430 resp = hwrm_req_hold(bp, req); 6431 if (!hwrm_req_send(bp, req)) { 6432 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6433 bp->rss_hash_delta = 0; 6434 } 6435 hwrm_req_drop(bp, req); 6436 } 6437 6438 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6439 { 6440 struct hwrm_vnic_plcmodes_cfg_input *req; 6441 int rc; 6442 6443 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6444 if (rc) 6445 return rc; 6446 6447 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6448 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6449 6450 if (BNXT_RX_PAGE_MODE(bp)) { 6451 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6452 } else { 6453 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6454 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6455 req->enables |= 6456 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6457 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 6458 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 6459 } 6460 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6461 return hwrm_req_send(bp, req); 6462 } 6463 6464 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6465 struct bnxt_vnic_info *vnic, 6466 u16 ctx_idx) 6467 { 6468 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6469 6470 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6471 return; 6472 6473 req->rss_cos_lb_ctx_id = 6474 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6475 6476 hwrm_req_send(bp, req); 6477 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6478 } 6479 6480 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6481 { 6482 int i, j; 6483 6484 for (i = 0; i < bp->nr_vnics; i++) { 6485 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6486 6487 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6488 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6489 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6490 } 6491 } 6492 bp->rsscos_nr_ctxs = 0; 6493 } 6494 6495 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6496 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6497 { 6498 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6499 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6500 int rc; 6501 6502 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6503 if (rc) 6504 return rc; 6505 6506 resp = hwrm_req_hold(bp, req); 6507 rc = hwrm_req_send(bp, req); 6508 if (!rc) 6509 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6510 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6511 hwrm_req_drop(bp, req); 6512 6513 return rc; 6514 } 6515 6516 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6517 { 6518 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6519 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6520 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6521 } 6522 6523 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6524 { 6525 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6526 struct hwrm_vnic_cfg_input *req; 6527 unsigned int ring = 0, grp_idx; 6528 u16 def_vlan = 0; 6529 int rc; 6530 6531 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6532 if (rc) 6533 return rc; 6534 6535 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6536 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6537 6538 req->default_rx_ring_id = 6539 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6540 req->default_cmpl_ring_id = 6541 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6542 req->enables = 6543 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6544 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6545 goto vnic_mru; 6546 } 6547 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6548 /* Only RSS support for now TBD: COS & LB */ 6549 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6550 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6551 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6552 VNIC_CFG_REQ_ENABLES_MRU); 6553 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6554 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6555 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6556 VNIC_CFG_REQ_ENABLES_MRU); 6557 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6558 } else { 6559 req->rss_rule = cpu_to_le16(0xffff); 6560 } 6561 6562 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6563 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6564 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6565 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6566 } else { 6567 req->cos_rule = cpu_to_le16(0xffff); 6568 } 6569 6570 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6571 ring = 0; 6572 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6573 ring = vnic->vnic_id - 1; 6574 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6575 ring = bp->rx_nr_rings - 1; 6576 6577 grp_idx = bp->rx_ring[ring].bnapi->index; 6578 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6579 req->lb_rule = cpu_to_le16(0xffff); 6580 vnic_mru: 6581 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 6582 6583 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6584 #ifdef CONFIG_BNXT_SRIOV 6585 if (BNXT_VF(bp)) 6586 def_vlan = bp->vf.vlan; 6587 #endif 6588 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6589 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6590 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6591 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6592 6593 return hwrm_req_send(bp, req); 6594 } 6595 6596 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6597 struct bnxt_vnic_info *vnic) 6598 { 6599 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6600 struct hwrm_vnic_free_input *req; 6601 6602 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6603 return; 6604 6605 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6606 6607 hwrm_req_send(bp, req); 6608 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6609 } 6610 } 6611 6612 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6613 { 6614 u16 i; 6615 6616 for (i = 0; i < bp->nr_vnics; i++) 6617 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6618 } 6619 6620 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6621 unsigned int start_rx_ring_idx, 6622 unsigned int nr_rings) 6623 { 6624 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6625 struct hwrm_vnic_alloc_output *resp; 6626 struct hwrm_vnic_alloc_input *req; 6627 int rc; 6628 6629 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6630 if (rc) 6631 return rc; 6632 6633 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6634 goto vnic_no_ring_grps; 6635 6636 /* map ring groups to this vnic */ 6637 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6638 grp_idx = bp->rx_ring[i].bnapi->index; 6639 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6640 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6641 j, nr_rings); 6642 break; 6643 } 6644 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6645 } 6646 6647 vnic_no_ring_grps: 6648 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6649 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6650 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6651 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6652 6653 resp = hwrm_req_hold(bp, req); 6654 rc = hwrm_req_send(bp, req); 6655 if (!rc) 6656 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6657 hwrm_req_drop(bp, req); 6658 return rc; 6659 } 6660 6661 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6662 { 6663 struct hwrm_vnic_qcaps_output *resp; 6664 struct hwrm_vnic_qcaps_input *req; 6665 int rc; 6666 6667 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6668 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6669 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6670 if (bp->hwrm_spec_code < 0x10600) 6671 return 0; 6672 6673 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6674 if (rc) 6675 return rc; 6676 6677 resp = hwrm_req_hold(bp, req); 6678 rc = hwrm_req_send(bp, req); 6679 if (!rc) { 6680 u32 flags = le32_to_cpu(resp->flags); 6681 6682 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6683 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6684 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6685 if (flags & 6686 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6687 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6688 6689 /* Older P5 fw before EXT_HW_STATS support did not set 6690 * VLAN_STRIP_CAP properly. 6691 */ 6692 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6693 (BNXT_CHIP_P5(bp) && 6694 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6695 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6696 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6697 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6698 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6699 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6700 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6701 if (bp->max_tpa_v2) { 6702 if (BNXT_CHIP_P5(bp)) 6703 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6704 else 6705 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6706 } 6707 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6708 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6709 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6710 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6711 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6712 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6713 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6714 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6715 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6716 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6717 } 6718 hwrm_req_drop(bp, req); 6719 return rc; 6720 } 6721 6722 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6723 { 6724 struct hwrm_ring_grp_alloc_output *resp; 6725 struct hwrm_ring_grp_alloc_input *req; 6726 int rc; 6727 u16 i; 6728 6729 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6730 return 0; 6731 6732 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6733 if (rc) 6734 return rc; 6735 6736 resp = hwrm_req_hold(bp, req); 6737 for (i = 0; i < bp->rx_nr_rings; i++) { 6738 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6739 6740 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6741 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6742 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6743 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6744 6745 rc = hwrm_req_send(bp, req); 6746 6747 if (rc) 6748 break; 6749 6750 bp->grp_info[grp_idx].fw_grp_id = 6751 le32_to_cpu(resp->ring_group_id); 6752 } 6753 hwrm_req_drop(bp, req); 6754 return rc; 6755 } 6756 6757 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6758 { 6759 struct hwrm_ring_grp_free_input *req; 6760 u16 i; 6761 6762 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6763 return; 6764 6765 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6766 return; 6767 6768 hwrm_req_hold(bp, req); 6769 for (i = 0; i < bp->cp_nr_rings; i++) { 6770 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6771 continue; 6772 req->ring_group_id = 6773 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6774 6775 hwrm_req_send(bp, req); 6776 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6777 } 6778 hwrm_req_drop(bp, req); 6779 } 6780 6781 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 6782 struct bnxt_ring_struct *ring, 6783 u32 ring_type, u32 map_index) 6784 { 6785 struct hwrm_ring_alloc_output *resp; 6786 struct hwrm_ring_alloc_input *req; 6787 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 6788 struct bnxt_ring_grp_info *grp_info; 6789 int rc, err = 0; 6790 u16 ring_id; 6791 6792 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 6793 if (rc) 6794 goto exit; 6795 6796 req->enables = 0; 6797 if (rmem->nr_pages > 1) { 6798 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 6799 /* Page size is in log2 units */ 6800 req->page_size = BNXT_PAGE_SHIFT; 6801 req->page_tbl_depth = 1; 6802 } else { 6803 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 6804 } 6805 req->fbo = 0; 6806 /* Association of ring index with doorbell index and MSIX number */ 6807 req->logical_id = cpu_to_le16(map_index); 6808 6809 switch (ring_type) { 6810 case HWRM_RING_ALLOC_TX: { 6811 struct bnxt_tx_ring_info *txr; 6812 u16 flags = 0; 6813 6814 txr = container_of(ring, struct bnxt_tx_ring_info, 6815 tx_ring_struct); 6816 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 6817 /* Association of transmit ring with completion ring */ 6818 grp_info = &bp->grp_info[ring->grp_idx]; 6819 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 6820 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 6821 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6822 req->queue_id = cpu_to_le16(ring->queue_id); 6823 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 6824 req->cmpl_coal_cnt = 6825 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 6826 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 6827 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 6828 req->flags = cpu_to_le16(flags); 6829 break; 6830 } 6831 case HWRM_RING_ALLOC_RX: 6832 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6833 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 6834 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6835 u16 flags = 0; 6836 6837 /* Association of rx ring with stats context */ 6838 grp_info = &bp->grp_info[ring->grp_idx]; 6839 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6840 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6841 req->enables |= cpu_to_le32( 6842 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6843 if (NET_IP_ALIGN == 2) 6844 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 6845 req->flags = cpu_to_le16(flags); 6846 } 6847 break; 6848 case HWRM_RING_ALLOC_AGG: 6849 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6850 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6851 /* Association of agg ring with rx ring */ 6852 grp_info = &bp->grp_info[ring->grp_idx]; 6853 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6854 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6855 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6856 req->enables |= cpu_to_le32( 6857 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 6858 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6859 } else { 6860 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6861 } 6862 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 6863 break; 6864 case HWRM_RING_ALLOC_CMPL: 6865 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 6866 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6867 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6868 /* Association of cp ring with nq */ 6869 grp_info = &bp->grp_info[map_index]; 6870 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6871 req->cq_handle = cpu_to_le64(ring->handle); 6872 req->enables |= cpu_to_le32( 6873 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 6874 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 6875 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6876 } 6877 break; 6878 case HWRM_RING_ALLOC_NQ: 6879 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 6880 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6881 if (bp->flags & BNXT_FLAG_USING_MSIX) 6882 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6883 break; 6884 default: 6885 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 6886 ring_type); 6887 return -1; 6888 } 6889 6890 resp = hwrm_req_hold(bp, req); 6891 rc = hwrm_req_send(bp, req); 6892 err = le16_to_cpu(resp->error_code); 6893 ring_id = le16_to_cpu(resp->ring_id); 6894 hwrm_req_drop(bp, req); 6895 6896 exit: 6897 if (rc || err) { 6898 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 6899 ring_type, rc, err); 6900 return -EIO; 6901 } 6902 ring->fw_ring_id = ring_id; 6903 return rc; 6904 } 6905 6906 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 6907 { 6908 int rc; 6909 6910 if (BNXT_PF(bp)) { 6911 struct hwrm_func_cfg_input *req; 6912 6913 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 6914 if (rc) 6915 return rc; 6916 6917 req->fid = cpu_to_le16(0xffff); 6918 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6919 req->async_event_cr = cpu_to_le16(idx); 6920 return hwrm_req_send(bp, req); 6921 } else { 6922 struct hwrm_func_vf_cfg_input *req; 6923 6924 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 6925 if (rc) 6926 return rc; 6927 6928 req->enables = 6929 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6930 req->async_event_cr = cpu_to_le16(idx); 6931 return hwrm_req_send(bp, req); 6932 } 6933 } 6934 6935 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 6936 u32 ring_type) 6937 { 6938 switch (ring_type) { 6939 case HWRM_RING_ALLOC_TX: 6940 db->db_ring_mask = bp->tx_ring_mask; 6941 break; 6942 case HWRM_RING_ALLOC_RX: 6943 db->db_ring_mask = bp->rx_ring_mask; 6944 break; 6945 case HWRM_RING_ALLOC_AGG: 6946 db->db_ring_mask = bp->rx_agg_ring_mask; 6947 break; 6948 case HWRM_RING_ALLOC_CMPL: 6949 case HWRM_RING_ALLOC_NQ: 6950 db->db_ring_mask = bp->cp_ring_mask; 6951 break; 6952 } 6953 if (bp->flags & BNXT_FLAG_CHIP_P7) { 6954 db->db_epoch_mask = db->db_ring_mask + 1; 6955 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 6956 } 6957 } 6958 6959 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 6960 u32 map_idx, u32 xid) 6961 { 6962 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6963 switch (ring_type) { 6964 case HWRM_RING_ALLOC_TX: 6965 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 6966 break; 6967 case HWRM_RING_ALLOC_RX: 6968 case HWRM_RING_ALLOC_AGG: 6969 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 6970 break; 6971 case HWRM_RING_ALLOC_CMPL: 6972 db->db_key64 = DBR_PATH_L2; 6973 break; 6974 case HWRM_RING_ALLOC_NQ: 6975 db->db_key64 = DBR_PATH_L2; 6976 break; 6977 } 6978 db->db_key64 |= (u64)xid << DBR_XID_SFT; 6979 6980 if (bp->flags & BNXT_FLAG_CHIP_P7) 6981 db->db_key64 |= DBR_VALID; 6982 6983 db->doorbell = bp->bar1 + bp->db_offset; 6984 } else { 6985 db->doorbell = bp->bar1 + map_idx * 0x80; 6986 switch (ring_type) { 6987 case HWRM_RING_ALLOC_TX: 6988 db->db_key32 = DB_KEY_TX; 6989 break; 6990 case HWRM_RING_ALLOC_RX: 6991 case HWRM_RING_ALLOC_AGG: 6992 db->db_key32 = DB_KEY_RX; 6993 break; 6994 case HWRM_RING_ALLOC_CMPL: 6995 db->db_key32 = DB_KEY_CP; 6996 break; 6997 } 6998 } 6999 bnxt_set_db_mask(bp, db, ring_type); 7000 } 7001 7002 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7003 struct bnxt_rx_ring_info *rxr) 7004 { 7005 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7006 struct bnxt_napi *bnapi = rxr->bnapi; 7007 u32 type = HWRM_RING_ALLOC_RX; 7008 u32 map_idx = bnapi->index; 7009 int rc; 7010 7011 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7012 if (rc) 7013 return rc; 7014 7015 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7016 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7017 7018 return 0; 7019 } 7020 7021 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7022 struct bnxt_rx_ring_info *rxr) 7023 { 7024 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7025 u32 type = HWRM_RING_ALLOC_AGG; 7026 u32 grp_idx = ring->grp_idx; 7027 u32 map_idx; 7028 int rc; 7029 7030 map_idx = grp_idx + bp->rx_nr_rings; 7031 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7032 if (rc) 7033 return rc; 7034 7035 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7036 ring->fw_ring_id); 7037 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7038 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7039 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7040 7041 return 0; 7042 } 7043 7044 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7045 { 7046 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7047 int i, rc = 0; 7048 u32 type; 7049 7050 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7051 type = HWRM_RING_ALLOC_NQ; 7052 else 7053 type = HWRM_RING_ALLOC_CMPL; 7054 for (i = 0; i < bp->cp_nr_rings; i++) { 7055 struct bnxt_napi *bnapi = bp->bnapi[i]; 7056 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7057 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7058 u32 map_idx = ring->map_idx; 7059 unsigned int vector; 7060 7061 vector = bp->irq_tbl[map_idx].vector; 7062 disable_irq_nosync(vector); 7063 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7064 if (rc) { 7065 enable_irq(vector); 7066 goto err_out; 7067 } 7068 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7069 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7070 enable_irq(vector); 7071 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7072 7073 if (!i) { 7074 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7075 if (rc) 7076 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7077 } 7078 } 7079 7080 type = HWRM_RING_ALLOC_TX; 7081 for (i = 0; i < bp->tx_nr_rings; i++) { 7082 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7083 struct bnxt_ring_struct *ring; 7084 u32 map_idx; 7085 7086 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7087 struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr; 7088 struct bnxt_napi *bnapi = txr->bnapi; 7089 u32 type2 = HWRM_RING_ALLOC_CMPL; 7090 7091 ring = &cpr2->cp_ring_struct; 7092 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7093 map_idx = bnapi->index; 7094 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7095 if (rc) 7096 goto err_out; 7097 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7098 ring->fw_ring_id); 7099 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7100 } 7101 ring = &txr->tx_ring_struct; 7102 map_idx = i; 7103 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7104 if (rc) 7105 goto err_out; 7106 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 7107 } 7108 7109 for (i = 0; i < bp->rx_nr_rings; i++) { 7110 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7111 7112 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7113 if (rc) 7114 goto err_out; 7115 /* If we have agg rings, post agg buffers first. */ 7116 if (!agg_rings) 7117 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7118 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7119 struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr; 7120 struct bnxt_napi *bnapi = rxr->bnapi; 7121 u32 type2 = HWRM_RING_ALLOC_CMPL; 7122 struct bnxt_ring_struct *ring; 7123 u32 map_idx = bnapi->index; 7124 7125 ring = &cpr2->cp_ring_struct; 7126 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7127 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7128 if (rc) 7129 goto err_out; 7130 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7131 ring->fw_ring_id); 7132 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7133 } 7134 } 7135 7136 if (agg_rings) { 7137 for (i = 0; i < bp->rx_nr_rings; i++) { 7138 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7139 if (rc) 7140 goto err_out; 7141 } 7142 } 7143 err_out: 7144 return rc; 7145 } 7146 7147 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7148 struct bnxt_ring_struct *ring, 7149 u32 ring_type, int cmpl_ring_id) 7150 { 7151 struct hwrm_ring_free_output *resp; 7152 struct hwrm_ring_free_input *req; 7153 u16 error_code = 0; 7154 int rc; 7155 7156 if (BNXT_NO_FW_ACCESS(bp)) 7157 return 0; 7158 7159 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7160 if (rc) 7161 goto exit; 7162 7163 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7164 req->ring_type = ring_type; 7165 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7166 7167 resp = hwrm_req_hold(bp, req); 7168 rc = hwrm_req_send(bp, req); 7169 error_code = le16_to_cpu(resp->error_code); 7170 hwrm_req_drop(bp, req); 7171 exit: 7172 if (rc || error_code) { 7173 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7174 ring_type, rc, error_code); 7175 return -EIO; 7176 } 7177 return 0; 7178 } 7179 7180 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7181 struct bnxt_rx_ring_info *rxr, 7182 bool close_path) 7183 { 7184 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7185 u32 grp_idx = rxr->bnapi->index; 7186 u32 cmpl_ring_id; 7187 7188 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7189 return; 7190 7191 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7192 hwrm_ring_free_send_msg(bp, ring, 7193 RING_FREE_REQ_RING_TYPE_RX, 7194 close_path ? cmpl_ring_id : 7195 INVALID_HW_RING_ID); 7196 ring->fw_ring_id = INVALID_HW_RING_ID; 7197 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7198 } 7199 7200 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7201 struct bnxt_rx_ring_info *rxr, 7202 bool close_path) 7203 { 7204 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7205 u32 grp_idx = rxr->bnapi->index; 7206 u32 type, cmpl_ring_id; 7207 7208 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7209 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7210 else 7211 type = RING_FREE_REQ_RING_TYPE_RX; 7212 7213 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7214 return; 7215 7216 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7217 hwrm_ring_free_send_msg(bp, ring, type, 7218 close_path ? cmpl_ring_id : 7219 INVALID_HW_RING_ID); 7220 ring->fw_ring_id = INVALID_HW_RING_ID; 7221 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7222 } 7223 7224 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7225 { 7226 u32 type; 7227 int i; 7228 7229 if (!bp->bnapi) 7230 return; 7231 7232 for (i = 0; i < bp->tx_nr_rings; i++) { 7233 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7234 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7235 7236 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7237 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 7238 7239 hwrm_ring_free_send_msg(bp, ring, 7240 RING_FREE_REQ_RING_TYPE_TX, 7241 close_path ? cmpl_ring_id : 7242 INVALID_HW_RING_ID); 7243 ring->fw_ring_id = INVALID_HW_RING_ID; 7244 } 7245 } 7246 7247 for (i = 0; i < bp->rx_nr_rings; i++) { 7248 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7249 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7250 } 7251 7252 /* The completion rings are about to be freed. After that the 7253 * IRQ doorbell will not work anymore. So we need to disable 7254 * IRQ here. 7255 */ 7256 bnxt_disable_int_sync(bp); 7257 7258 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7259 type = RING_FREE_REQ_RING_TYPE_NQ; 7260 else 7261 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7262 for (i = 0; i < bp->cp_nr_rings; i++) { 7263 struct bnxt_napi *bnapi = bp->bnapi[i]; 7264 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7265 struct bnxt_ring_struct *ring; 7266 int j; 7267 7268 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) { 7269 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 7270 7271 ring = &cpr2->cp_ring_struct; 7272 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7273 continue; 7274 hwrm_ring_free_send_msg(bp, ring, 7275 RING_FREE_REQ_RING_TYPE_L2_CMPL, 7276 INVALID_HW_RING_ID); 7277 ring->fw_ring_id = INVALID_HW_RING_ID; 7278 } 7279 ring = &cpr->cp_ring_struct; 7280 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7281 hwrm_ring_free_send_msg(bp, ring, type, 7282 INVALID_HW_RING_ID); 7283 ring->fw_ring_id = INVALID_HW_RING_ID; 7284 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7285 } 7286 } 7287 } 7288 7289 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7290 bool shared); 7291 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7292 bool shared); 7293 7294 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7295 { 7296 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7297 struct hwrm_func_qcfg_output *resp; 7298 struct hwrm_func_qcfg_input *req; 7299 int rc; 7300 7301 if (bp->hwrm_spec_code < 0x10601) 7302 return 0; 7303 7304 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7305 if (rc) 7306 return rc; 7307 7308 req->fid = cpu_to_le16(0xffff); 7309 resp = hwrm_req_hold(bp, req); 7310 rc = hwrm_req_send(bp, req); 7311 if (rc) { 7312 hwrm_req_drop(bp, req); 7313 return rc; 7314 } 7315 7316 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7317 if (BNXT_NEW_RM(bp)) { 7318 u16 cp, stats; 7319 7320 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7321 hw_resc->resv_hw_ring_grps = 7322 le32_to_cpu(resp->alloc_hw_ring_grps); 7323 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7324 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7325 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7326 stats = le16_to_cpu(resp->alloc_stat_ctx); 7327 hw_resc->resv_irqs = cp; 7328 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7329 int rx = hw_resc->resv_rx_rings; 7330 int tx = hw_resc->resv_tx_rings; 7331 7332 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7333 rx >>= 1; 7334 if (cp < (rx + tx)) { 7335 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7336 if (rc) 7337 goto get_rings_exit; 7338 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7339 rx <<= 1; 7340 hw_resc->resv_rx_rings = rx; 7341 hw_resc->resv_tx_rings = tx; 7342 } 7343 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7344 hw_resc->resv_hw_ring_grps = rx; 7345 } 7346 hw_resc->resv_cp_rings = cp; 7347 hw_resc->resv_stat_ctxs = stats; 7348 } 7349 get_rings_exit: 7350 hwrm_req_drop(bp, req); 7351 return rc; 7352 } 7353 7354 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7355 { 7356 struct hwrm_func_qcfg_output *resp; 7357 struct hwrm_func_qcfg_input *req; 7358 int rc; 7359 7360 if (bp->hwrm_spec_code < 0x10601) 7361 return 0; 7362 7363 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7364 if (rc) 7365 return rc; 7366 7367 req->fid = cpu_to_le16(fid); 7368 resp = hwrm_req_hold(bp, req); 7369 rc = hwrm_req_send(bp, req); 7370 if (!rc) 7371 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7372 7373 hwrm_req_drop(bp, req); 7374 return rc; 7375 } 7376 7377 static bool bnxt_rfs_supported(struct bnxt *bp); 7378 7379 static struct hwrm_func_cfg_input * 7380 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7381 { 7382 struct hwrm_func_cfg_input *req; 7383 u32 enables = 0; 7384 7385 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7386 return NULL; 7387 7388 req->fid = cpu_to_le16(0xffff); 7389 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7390 req->num_tx_rings = cpu_to_le16(hwr->tx); 7391 if (BNXT_NEW_RM(bp)) { 7392 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7393 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7394 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7395 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7396 enables |= hwr->cp_p5 ? 7397 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7398 } else { 7399 enables |= hwr->cp ? 7400 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7401 enables |= hwr->grp ? 7402 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7403 } 7404 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7405 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7406 0; 7407 req->num_rx_rings = cpu_to_le16(hwr->rx); 7408 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7409 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7410 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7411 req->num_msix = cpu_to_le16(hwr->cp); 7412 } else { 7413 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7414 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7415 } 7416 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7417 req->num_vnics = cpu_to_le16(hwr->vnic); 7418 } 7419 req->enables = cpu_to_le32(enables); 7420 return req; 7421 } 7422 7423 static struct hwrm_func_vf_cfg_input * 7424 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7425 { 7426 struct hwrm_func_vf_cfg_input *req; 7427 u32 enables = 0; 7428 7429 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7430 return NULL; 7431 7432 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7433 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7434 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7435 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7436 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7437 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7438 enables |= hwr->cp_p5 ? 7439 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7440 } else { 7441 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7442 enables |= hwr->grp ? 7443 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7444 } 7445 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7446 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7447 7448 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7449 req->num_tx_rings = cpu_to_le16(hwr->tx); 7450 req->num_rx_rings = cpu_to_le16(hwr->rx); 7451 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7452 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7453 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7454 } else { 7455 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7456 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7457 } 7458 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7459 req->num_vnics = cpu_to_le16(hwr->vnic); 7460 7461 req->enables = cpu_to_le32(enables); 7462 return req; 7463 } 7464 7465 static int 7466 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7467 { 7468 struct hwrm_func_cfg_input *req; 7469 int rc; 7470 7471 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7472 if (!req) 7473 return -ENOMEM; 7474 7475 if (!req->enables) { 7476 hwrm_req_drop(bp, req); 7477 return 0; 7478 } 7479 7480 rc = hwrm_req_send(bp, req); 7481 if (rc) 7482 return rc; 7483 7484 if (bp->hwrm_spec_code < 0x10601) 7485 bp->hw_resc.resv_tx_rings = hwr->tx; 7486 7487 return bnxt_hwrm_get_rings(bp); 7488 } 7489 7490 static int 7491 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7492 { 7493 struct hwrm_func_vf_cfg_input *req; 7494 int rc; 7495 7496 if (!BNXT_NEW_RM(bp)) { 7497 bp->hw_resc.resv_tx_rings = hwr->tx; 7498 return 0; 7499 } 7500 7501 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7502 if (!req) 7503 return -ENOMEM; 7504 7505 rc = hwrm_req_send(bp, req); 7506 if (rc) 7507 return rc; 7508 7509 return bnxt_hwrm_get_rings(bp); 7510 } 7511 7512 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7513 { 7514 if (BNXT_PF(bp)) 7515 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7516 else 7517 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7518 } 7519 7520 int bnxt_nq_rings_in_use(struct bnxt *bp) 7521 { 7522 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7523 } 7524 7525 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7526 { 7527 int cp; 7528 7529 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7530 return bnxt_nq_rings_in_use(bp); 7531 7532 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7533 return cp; 7534 } 7535 7536 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7537 { 7538 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7539 } 7540 7541 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7542 { 7543 if (!hwr->grp) 7544 return 0; 7545 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7546 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7547 7548 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7549 rss_ctx *= hwr->vnic; 7550 return rss_ctx; 7551 } 7552 if (BNXT_VF(bp)) 7553 return BNXT_VF_MAX_RSS_CTX; 7554 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7555 return hwr->grp + 1; 7556 return 1; 7557 } 7558 7559 /* Check if a default RSS map needs to be setup. This function is only 7560 * used on older firmware that does not require reserving RX rings. 7561 */ 7562 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7563 { 7564 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7565 7566 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7567 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7568 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7569 if (!netif_is_rxfh_configured(bp->dev)) 7570 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7571 } 7572 } 7573 7574 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7575 { 7576 if (bp->flags & BNXT_FLAG_RFS) { 7577 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7578 return 2 + bp->num_rss_ctx; 7579 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7580 return rx_rings + 1; 7581 } 7582 return 1; 7583 } 7584 7585 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7586 { 7587 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7588 int cp = bnxt_cp_rings_in_use(bp); 7589 int nq = bnxt_nq_rings_in_use(bp); 7590 int rx = bp->rx_nr_rings, stat; 7591 int vnic, grp = rx; 7592 7593 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7594 bp->hwrm_spec_code >= 0x10601) 7595 return true; 7596 7597 /* Old firmware does not need RX ring reservations but we still 7598 * need to setup a default RSS map when needed. With new firmware 7599 * we go through RX ring reservations first and then set up the 7600 * RSS map for the successfully reserved RX rings when needed. 7601 */ 7602 if (!BNXT_NEW_RM(bp)) { 7603 bnxt_check_rss_tbl_no_rmgr(bp); 7604 return false; 7605 } 7606 7607 vnic = bnxt_get_total_vnics(bp, rx); 7608 7609 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7610 rx <<= 1; 7611 stat = bnxt_get_func_stat_ctxs(bp); 7612 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7613 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7614 (hw_resc->resv_hw_ring_grps != grp && 7615 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7616 return true; 7617 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7618 hw_resc->resv_irqs != nq) 7619 return true; 7620 return false; 7621 } 7622 7623 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7624 { 7625 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7626 7627 hwr->tx = hw_resc->resv_tx_rings; 7628 if (BNXT_NEW_RM(bp)) { 7629 hwr->rx = hw_resc->resv_rx_rings; 7630 hwr->cp = hw_resc->resv_irqs; 7631 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7632 hwr->cp_p5 = hw_resc->resv_cp_rings; 7633 hwr->grp = hw_resc->resv_hw_ring_grps; 7634 hwr->vnic = hw_resc->resv_vnics; 7635 hwr->stat = hw_resc->resv_stat_ctxs; 7636 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7637 } 7638 } 7639 7640 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7641 { 7642 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7643 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7644 } 7645 7646 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7647 7648 static int __bnxt_reserve_rings(struct bnxt *bp) 7649 { 7650 struct bnxt_hw_rings hwr = {0}; 7651 int cp = bp->cp_nr_rings; 7652 int rx_rings, rc; 7653 int ulp_msix = 0; 7654 bool sh = false; 7655 int tx_cp; 7656 7657 if (!bnxt_need_reserve_rings(bp)) 7658 return 0; 7659 7660 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7661 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7662 if (!ulp_msix) 7663 bnxt_set_ulp_stat_ctxs(bp, 0); 7664 7665 if (ulp_msix > bp->ulp_num_msix_want) 7666 ulp_msix = bp->ulp_num_msix_want; 7667 hwr.cp = cp + ulp_msix; 7668 } else { 7669 hwr.cp = bnxt_nq_rings_in_use(bp); 7670 } 7671 7672 hwr.tx = bp->tx_nr_rings; 7673 hwr.rx = bp->rx_nr_rings; 7674 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7675 sh = true; 7676 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7677 hwr.cp_p5 = hwr.rx + hwr.tx; 7678 7679 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7680 7681 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7682 hwr.rx <<= 1; 7683 hwr.grp = bp->rx_nr_rings; 7684 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7685 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7686 7687 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7688 if (rc) 7689 return rc; 7690 7691 bnxt_copy_reserved_rings(bp, &hwr); 7692 7693 rx_rings = hwr.rx; 7694 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7695 if (hwr.rx >= 2) { 7696 rx_rings = hwr.rx >> 1; 7697 } else { 7698 if (netif_running(bp->dev)) 7699 return -ENOMEM; 7700 7701 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7702 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7703 bp->dev->hw_features &= ~NETIF_F_LRO; 7704 bp->dev->features &= ~NETIF_F_LRO; 7705 bnxt_set_ring_params(bp); 7706 } 7707 } 7708 rx_rings = min_t(int, rx_rings, hwr.grp); 7709 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7710 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7711 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7712 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7713 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7714 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7715 hwr.rx = rx_rings << 1; 7716 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7717 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7718 bp->tx_nr_rings = hwr.tx; 7719 7720 /* If we cannot reserve all the RX rings, reset the RSS map only 7721 * if absolutely necessary 7722 */ 7723 if (rx_rings != bp->rx_nr_rings) { 7724 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 7725 rx_rings, bp->rx_nr_rings); 7726 if (netif_is_rxfh_configured(bp->dev) && 7727 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 7728 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 7729 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 7730 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 7731 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 7732 } 7733 } 7734 bp->rx_nr_rings = rx_rings; 7735 bp->cp_nr_rings = hwr.cp; 7736 7737 if (!bnxt_rings_ok(bp, &hwr)) 7738 return -ENOMEM; 7739 7740 if (!netif_is_rxfh_configured(bp->dev)) 7741 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7742 7743 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 7744 int resv_msix, resv_ctx, ulp_ctxs; 7745 struct bnxt_hw_resc *hw_resc; 7746 7747 hw_resc = &bp->hw_resc; 7748 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 7749 ulp_msix = min_t(int, resv_msix, ulp_msix); 7750 bnxt_set_ulp_msix_num(bp, ulp_msix); 7751 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 7752 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 7753 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 7754 } 7755 7756 return rc; 7757 } 7758 7759 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7760 { 7761 struct hwrm_func_vf_cfg_input *req; 7762 u32 flags; 7763 7764 if (!BNXT_NEW_RM(bp)) 7765 return 0; 7766 7767 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7768 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 7769 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7770 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7771 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7772 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 7773 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 7774 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7775 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7776 7777 req->flags = cpu_to_le32(flags); 7778 return hwrm_req_send_silent(bp, req); 7779 } 7780 7781 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7782 { 7783 struct hwrm_func_cfg_input *req; 7784 u32 flags; 7785 7786 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7787 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 7788 if (BNXT_NEW_RM(bp)) { 7789 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7790 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7791 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7792 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 7793 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7794 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 7795 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 7796 else 7797 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7798 } 7799 7800 req->flags = cpu_to_le32(flags); 7801 return hwrm_req_send_silent(bp, req); 7802 } 7803 7804 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7805 { 7806 if (bp->hwrm_spec_code < 0x10801) 7807 return 0; 7808 7809 if (BNXT_PF(bp)) 7810 return bnxt_hwrm_check_pf_rings(bp, hwr); 7811 7812 return bnxt_hwrm_check_vf_rings(bp, hwr); 7813 } 7814 7815 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 7816 { 7817 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7818 struct hwrm_ring_aggint_qcaps_output *resp; 7819 struct hwrm_ring_aggint_qcaps_input *req; 7820 int rc; 7821 7822 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 7823 coal_cap->num_cmpl_dma_aggr_max = 63; 7824 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 7825 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 7826 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 7827 coal_cap->int_lat_tmr_min_max = 65535; 7828 coal_cap->int_lat_tmr_max_max = 65535; 7829 coal_cap->num_cmpl_aggr_int_max = 65535; 7830 coal_cap->timer_units = 80; 7831 7832 if (bp->hwrm_spec_code < 0x10902) 7833 return; 7834 7835 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 7836 return; 7837 7838 resp = hwrm_req_hold(bp, req); 7839 rc = hwrm_req_send_silent(bp, req); 7840 if (!rc) { 7841 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 7842 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 7843 coal_cap->num_cmpl_dma_aggr_max = 7844 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 7845 coal_cap->num_cmpl_dma_aggr_during_int_max = 7846 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 7847 coal_cap->cmpl_aggr_dma_tmr_max = 7848 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 7849 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 7850 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 7851 coal_cap->int_lat_tmr_min_max = 7852 le16_to_cpu(resp->int_lat_tmr_min_max); 7853 coal_cap->int_lat_tmr_max_max = 7854 le16_to_cpu(resp->int_lat_tmr_max_max); 7855 coal_cap->num_cmpl_aggr_int_max = 7856 le16_to_cpu(resp->num_cmpl_aggr_int_max); 7857 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 7858 } 7859 hwrm_req_drop(bp, req); 7860 } 7861 7862 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 7863 { 7864 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7865 7866 return usec * 1000 / coal_cap->timer_units; 7867 } 7868 7869 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 7870 struct bnxt_coal *hw_coal, 7871 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7872 { 7873 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7874 u16 val, tmr, max, flags = hw_coal->flags; 7875 u32 cmpl_params = coal_cap->cmpl_params; 7876 7877 max = hw_coal->bufs_per_record * 128; 7878 if (hw_coal->budget) 7879 max = hw_coal->bufs_per_record * hw_coal->budget; 7880 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 7881 7882 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 7883 req->num_cmpl_aggr_int = cpu_to_le16(val); 7884 7885 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 7886 req->num_cmpl_dma_aggr = cpu_to_le16(val); 7887 7888 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 7889 coal_cap->num_cmpl_dma_aggr_during_int_max); 7890 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 7891 7892 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 7893 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 7894 req->int_lat_tmr_max = cpu_to_le16(tmr); 7895 7896 /* min timer set to 1/2 of interrupt timer */ 7897 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 7898 val = tmr / 2; 7899 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 7900 req->int_lat_tmr_min = cpu_to_le16(val); 7901 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7902 } 7903 7904 /* buf timer set to 1/4 of interrupt timer */ 7905 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 7906 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 7907 7908 if (cmpl_params & 7909 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 7910 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 7911 val = clamp_t(u16, tmr, 1, 7912 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 7913 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 7914 req->enables |= 7915 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 7916 } 7917 7918 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 7919 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 7920 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 7921 req->flags = cpu_to_le16(flags); 7922 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 7923 } 7924 7925 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 7926 struct bnxt_coal *hw_coal) 7927 { 7928 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 7929 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7930 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7931 u32 nq_params = coal_cap->nq_params; 7932 u16 tmr; 7933 int rc; 7934 7935 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 7936 return 0; 7937 7938 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7939 if (rc) 7940 return rc; 7941 7942 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 7943 req->flags = 7944 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 7945 7946 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 7947 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 7948 req->int_lat_tmr_min = cpu_to_le16(tmr); 7949 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7950 return hwrm_req_send(bp, req); 7951 } 7952 7953 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 7954 { 7955 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 7956 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7957 struct bnxt_coal coal; 7958 int rc; 7959 7960 /* Tick values in micro seconds. 7961 * 1 coal_buf x bufs_per_record = 1 completion record. 7962 */ 7963 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 7964 7965 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 7966 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 7967 7968 if (!bnapi->rx_ring) 7969 return -ENODEV; 7970 7971 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7972 if (rc) 7973 return rc; 7974 7975 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 7976 7977 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 7978 7979 return hwrm_req_send(bp, req_rx); 7980 } 7981 7982 static int 7983 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7984 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7985 { 7986 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 7987 7988 req->ring_id = cpu_to_le16(ring_id); 7989 return hwrm_req_send(bp, req); 7990 } 7991 7992 static int 7993 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7994 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7995 { 7996 struct bnxt_tx_ring_info *txr; 7997 int i, rc; 7998 7999 bnxt_for_each_napi_tx(i, bnapi, txr) { 8000 u16 ring_id; 8001 8002 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8003 req->ring_id = cpu_to_le16(ring_id); 8004 rc = hwrm_req_send(bp, req); 8005 if (rc) 8006 return rc; 8007 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8008 return 0; 8009 } 8010 return 0; 8011 } 8012 8013 int bnxt_hwrm_set_coal(struct bnxt *bp) 8014 { 8015 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8016 int i, rc; 8017 8018 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8019 if (rc) 8020 return rc; 8021 8022 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8023 if (rc) { 8024 hwrm_req_drop(bp, req_rx); 8025 return rc; 8026 } 8027 8028 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8029 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8030 8031 hwrm_req_hold(bp, req_rx); 8032 hwrm_req_hold(bp, req_tx); 8033 for (i = 0; i < bp->cp_nr_rings; i++) { 8034 struct bnxt_napi *bnapi = bp->bnapi[i]; 8035 struct bnxt_coal *hw_coal; 8036 8037 if (!bnapi->rx_ring) 8038 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8039 else 8040 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8041 if (rc) 8042 break; 8043 8044 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8045 continue; 8046 8047 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8048 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8049 if (rc) 8050 break; 8051 } 8052 if (bnapi->rx_ring) 8053 hw_coal = &bp->rx_coal; 8054 else 8055 hw_coal = &bp->tx_coal; 8056 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8057 } 8058 hwrm_req_drop(bp, req_rx); 8059 hwrm_req_drop(bp, req_tx); 8060 return rc; 8061 } 8062 8063 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8064 { 8065 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8066 struct hwrm_stat_ctx_free_input *req; 8067 int i; 8068 8069 if (!bp->bnapi) 8070 return; 8071 8072 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8073 return; 8074 8075 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8076 return; 8077 if (BNXT_FW_MAJ(bp) <= 20) { 8078 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8079 hwrm_req_drop(bp, req); 8080 return; 8081 } 8082 hwrm_req_hold(bp, req0); 8083 } 8084 hwrm_req_hold(bp, req); 8085 for (i = 0; i < bp->cp_nr_rings; i++) { 8086 struct bnxt_napi *bnapi = bp->bnapi[i]; 8087 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8088 8089 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8090 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8091 if (req0) { 8092 req0->stat_ctx_id = req->stat_ctx_id; 8093 hwrm_req_send(bp, req0); 8094 } 8095 hwrm_req_send(bp, req); 8096 8097 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8098 } 8099 } 8100 hwrm_req_drop(bp, req); 8101 if (req0) 8102 hwrm_req_drop(bp, req0); 8103 } 8104 8105 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8106 { 8107 struct hwrm_stat_ctx_alloc_output *resp; 8108 struct hwrm_stat_ctx_alloc_input *req; 8109 int rc, i; 8110 8111 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8112 return 0; 8113 8114 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8115 if (rc) 8116 return rc; 8117 8118 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8119 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8120 8121 resp = hwrm_req_hold(bp, req); 8122 for (i = 0; i < bp->cp_nr_rings; i++) { 8123 struct bnxt_napi *bnapi = bp->bnapi[i]; 8124 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8125 8126 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8127 8128 rc = hwrm_req_send(bp, req); 8129 if (rc) 8130 break; 8131 8132 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8133 8134 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8135 } 8136 hwrm_req_drop(bp, req); 8137 return rc; 8138 } 8139 8140 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8141 { 8142 struct hwrm_func_qcfg_output *resp; 8143 struct hwrm_func_qcfg_input *req; 8144 u16 flags; 8145 int rc; 8146 8147 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8148 if (rc) 8149 return rc; 8150 8151 req->fid = cpu_to_le16(0xffff); 8152 resp = hwrm_req_hold(bp, req); 8153 rc = hwrm_req_send(bp, req); 8154 if (rc) 8155 goto func_qcfg_exit; 8156 8157 #ifdef CONFIG_BNXT_SRIOV 8158 if (BNXT_VF(bp)) { 8159 struct bnxt_vf_info *vf = &bp->vf; 8160 8161 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8162 } else { 8163 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8164 } 8165 #endif 8166 flags = le16_to_cpu(resp->flags); 8167 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8168 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8169 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8170 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8171 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8172 } 8173 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8174 bp->flags |= BNXT_FLAG_MULTI_HOST; 8175 8176 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8177 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8178 8179 switch (resp->port_partition_type) { 8180 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8181 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8182 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8183 bp->port_partition_type = resp->port_partition_type; 8184 break; 8185 } 8186 if (bp->hwrm_spec_code < 0x10707 || 8187 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8188 bp->br_mode = BRIDGE_MODE_VEB; 8189 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8190 bp->br_mode = BRIDGE_MODE_VEPA; 8191 else 8192 bp->br_mode = BRIDGE_MODE_UNDEF; 8193 8194 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8195 if (!bp->max_mtu) 8196 bp->max_mtu = BNXT_MAX_MTU; 8197 8198 if (bp->db_size) 8199 goto func_qcfg_exit; 8200 8201 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8202 if (BNXT_CHIP_P5(bp)) { 8203 if (BNXT_PF(bp)) 8204 bp->db_offset = DB_PF_OFFSET_P5; 8205 else 8206 bp->db_offset = DB_VF_OFFSET_P5; 8207 } 8208 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8209 1024); 8210 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8211 bp->db_size <= bp->db_offset) 8212 bp->db_size = pci_resource_len(bp->pdev, 2); 8213 8214 func_qcfg_exit: 8215 hwrm_req_drop(bp, req); 8216 return rc; 8217 } 8218 8219 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8220 u8 init_val, u8 init_offset, 8221 bool init_mask_set) 8222 { 8223 ctxm->init_value = init_val; 8224 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8225 if (init_mask_set) 8226 ctxm->init_offset = init_offset * 4; 8227 else 8228 ctxm->init_value = 0; 8229 } 8230 8231 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8232 { 8233 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8234 u16 type; 8235 8236 for (type = 0; type < ctx_max; type++) { 8237 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8238 int n = 1; 8239 8240 if (!ctxm->max_entries) 8241 continue; 8242 8243 if (ctxm->instance_bmap) 8244 n = hweight32(ctxm->instance_bmap); 8245 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8246 if (!ctxm->pg_info) 8247 return -ENOMEM; 8248 } 8249 return 0; 8250 } 8251 8252 #define BNXT_CTX_INIT_VALID(flags) \ 8253 (!!((flags) & \ 8254 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8255 8256 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8257 { 8258 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8259 struct hwrm_func_backing_store_qcaps_v2_input *req; 8260 struct bnxt_ctx_mem_info *ctx; 8261 u16 type; 8262 int rc; 8263 8264 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8265 if (rc) 8266 return rc; 8267 8268 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8269 if (!ctx) 8270 return -ENOMEM; 8271 bp->ctx = ctx; 8272 8273 resp = hwrm_req_hold(bp, req); 8274 8275 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8276 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8277 u8 init_val, init_off, i; 8278 __le32 *p; 8279 u32 flags; 8280 8281 req->type = cpu_to_le16(type); 8282 rc = hwrm_req_send(bp, req); 8283 if (rc) 8284 goto ctx_done; 8285 flags = le32_to_cpu(resp->flags); 8286 type = le16_to_cpu(resp->next_valid_type); 8287 if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID)) 8288 continue; 8289 8290 ctxm->type = le16_to_cpu(resp->type); 8291 ctxm->entry_size = le16_to_cpu(resp->entry_size); 8292 ctxm->flags = flags; 8293 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8294 ctxm->entry_multiple = resp->entry_multiple; 8295 ctxm->max_entries = le32_to_cpu(resp->max_num_entries); 8296 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8297 init_val = resp->ctx_init_value; 8298 init_off = resp->ctx_init_offset; 8299 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8300 BNXT_CTX_INIT_VALID(flags)); 8301 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8302 BNXT_MAX_SPLIT_ENTRY); 8303 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8304 i++, p++) 8305 ctxm->split[i] = le32_to_cpu(*p); 8306 } 8307 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8308 8309 ctx_done: 8310 hwrm_req_drop(bp, req); 8311 return rc; 8312 } 8313 8314 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8315 { 8316 struct hwrm_func_backing_store_qcaps_output *resp; 8317 struct hwrm_func_backing_store_qcaps_input *req; 8318 int rc; 8319 8320 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 8321 return 0; 8322 8323 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8324 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8325 8326 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8327 if (rc) 8328 return rc; 8329 8330 resp = hwrm_req_hold(bp, req); 8331 rc = hwrm_req_send_silent(bp, req); 8332 if (!rc) { 8333 struct bnxt_ctx_mem_type *ctxm; 8334 struct bnxt_ctx_mem_info *ctx; 8335 u8 init_val, init_idx = 0; 8336 u16 init_mask; 8337 8338 ctx = bp->ctx; 8339 if (!ctx) { 8340 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8341 if (!ctx) { 8342 rc = -ENOMEM; 8343 goto ctx_err; 8344 } 8345 bp->ctx = ctx; 8346 } 8347 init_val = resp->ctx_kind_initializer; 8348 init_mask = le16_to_cpu(resp->ctx_init_mask); 8349 8350 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8351 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8352 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8353 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8354 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8355 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8356 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8357 (init_mask & (1 << init_idx++)) != 0); 8358 8359 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8360 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8361 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8362 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8363 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8364 (init_mask & (1 << init_idx++)) != 0); 8365 8366 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8367 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8368 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8369 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8370 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8371 (init_mask & (1 << init_idx++)) != 0); 8372 8373 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8374 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8375 ctxm->max_entries = ctxm->vnic_entries + 8376 le16_to_cpu(resp->vnic_max_ring_table_entries); 8377 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8378 bnxt_init_ctx_initializer(ctxm, init_val, 8379 resp->vnic_init_offset, 8380 (init_mask & (1 << init_idx++)) != 0); 8381 8382 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8383 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8384 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8385 bnxt_init_ctx_initializer(ctxm, init_val, 8386 resp->stat_init_offset, 8387 (init_mask & (1 << init_idx++)) != 0); 8388 8389 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8390 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8391 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8392 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8393 ctxm->entry_multiple = resp->tqm_entries_multiple; 8394 if (!ctxm->entry_multiple) 8395 ctxm->entry_multiple = 1; 8396 8397 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8398 8399 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8400 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8401 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8402 ctxm->mrav_num_entries_units = 8403 le16_to_cpu(resp->mrav_num_entries_units); 8404 bnxt_init_ctx_initializer(ctxm, init_val, 8405 resp->mrav_init_offset, 8406 (init_mask & (1 << init_idx++)) != 0); 8407 8408 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8409 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8410 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8411 8412 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8413 if (!ctx->tqm_fp_rings_count) 8414 ctx->tqm_fp_rings_count = bp->max_q; 8415 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8416 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8417 8418 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8419 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8420 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8421 8422 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8423 } else { 8424 rc = 0; 8425 } 8426 ctx_err: 8427 hwrm_req_drop(bp, req); 8428 return rc; 8429 } 8430 8431 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8432 __le64 *pg_dir) 8433 { 8434 if (!rmem->nr_pages) 8435 return; 8436 8437 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8438 if (rmem->depth >= 1) { 8439 if (rmem->depth == 2) 8440 *pg_attr |= 2; 8441 else 8442 *pg_attr |= 1; 8443 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8444 } else { 8445 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8446 } 8447 } 8448 8449 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8450 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8451 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8452 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8453 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8454 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8455 8456 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8457 { 8458 struct hwrm_func_backing_store_cfg_input *req; 8459 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8460 struct bnxt_ctx_pg_info *ctx_pg; 8461 struct bnxt_ctx_mem_type *ctxm; 8462 void **__req = (void **)&req; 8463 u32 req_len = sizeof(*req); 8464 __le32 *num_entries; 8465 __le64 *pg_dir; 8466 u32 flags = 0; 8467 u8 *pg_attr; 8468 u32 ena; 8469 int rc; 8470 int i; 8471 8472 if (!ctx) 8473 return 0; 8474 8475 if (req_len > bp->hwrm_max_ext_req_len) 8476 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8477 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8478 if (rc) 8479 return rc; 8480 8481 req->enables = cpu_to_le32(enables); 8482 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8483 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8484 ctx_pg = ctxm->pg_info; 8485 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8486 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8487 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8488 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8489 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8490 &req->qpc_pg_size_qpc_lvl, 8491 &req->qpc_page_dir); 8492 8493 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8494 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8495 } 8496 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8497 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8498 ctx_pg = ctxm->pg_info; 8499 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8500 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8501 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8502 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8503 &req->srq_pg_size_srq_lvl, 8504 &req->srq_page_dir); 8505 } 8506 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8507 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8508 ctx_pg = ctxm->pg_info; 8509 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8510 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8511 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8512 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8513 &req->cq_pg_size_cq_lvl, 8514 &req->cq_page_dir); 8515 } 8516 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8517 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8518 ctx_pg = ctxm->pg_info; 8519 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8520 req->vnic_num_ring_table_entries = 8521 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8522 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8523 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8524 &req->vnic_pg_size_vnic_lvl, 8525 &req->vnic_page_dir); 8526 } 8527 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8528 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8529 ctx_pg = ctxm->pg_info; 8530 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8531 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8532 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8533 &req->stat_pg_size_stat_lvl, 8534 &req->stat_page_dir); 8535 } 8536 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8537 u32 units; 8538 8539 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8540 ctx_pg = ctxm->pg_info; 8541 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8542 units = ctxm->mrav_num_entries_units; 8543 if (units) { 8544 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8545 u32 entries; 8546 8547 num_mr = ctx_pg->entries - num_ah; 8548 entries = ((num_mr / units) << 16) | (num_ah / units); 8549 req->mrav_num_entries = cpu_to_le32(entries); 8550 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8551 } 8552 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8553 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8554 &req->mrav_pg_size_mrav_lvl, 8555 &req->mrav_page_dir); 8556 } 8557 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8558 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8559 ctx_pg = ctxm->pg_info; 8560 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8561 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8562 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8563 &req->tim_pg_size_tim_lvl, 8564 &req->tim_page_dir); 8565 } 8566 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8567 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8568 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8569 pg_dir = &req->tqm_sp_page_dir, 8570 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8571 ctx_pg = ctxm->pg_info; 8572 i < BNXT_MAX_TQM_RINGS; 8573 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8574 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8575 if (!(enables & ena)) 8576 continue; 8577 8578 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8579 *num_entries = cpu_to_le32(ctx_pg->entries); 8580 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8581 } 8582 req->flags = cpu_to_le32(flags); 8583 return hwrm_req_send(bp, req); 8584 } 8585 8586 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8587 struct bnxt_ctx_pg_info *ctx_pg) 8588 { 8589 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8590 8591 rmem->page_size = BNXT_PAGE_SIZE; 8592 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8593 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8594 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8595 if (rmem->depth >= 1) 8596 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8597 return bnxt_alloc_ring(bp, rmem); 8598 } 8599 8600 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8601 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8602 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8603 { 8604 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8605 int rc; 8606 8607 if (!mem_size) 8608 return -EINVAL; 8609 8610 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8611 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8612 ctx_pg->nr_pages = 0; 8613 return -EINVAL; 8614 } 8615 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8616 int nr_tbls, i; 8617 8618 rmem->depth = 2; 8619 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8620 GFP_KERNEL); 8621 if (!ctx_pg->ctx_pg_tbl) 8622 return -ENOMEM; 8623 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8624 rmem->nr_pages = nr_tbls; 8625 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8626 if (rc) 8627 return rc; 8628 for (i = 0; i < nr_tbls; i++) { 8629 struct bnxt_ctx_pg_info *pg_tbl; 8630 8631 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8632 if (!pg_tbl) 8633 return -ENOMEM; 8634 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8635 rmem = &pg_tbl->ring_mem; 8636 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8637 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8638 rmem->depth = 1; 8639 rmem->nr_pages = MAX_CTX_PAGES; 8640 rmem->ctx_mem = ctxm; 8641 if (i == (nr_tbls - 1)) { 8642 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8643 8644 if (rem) 8645 rmem->nr_pages = rem; 8646 } 8647 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8648 if (rc) 8649 break; 8650 } 8651 } else { 8652 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8653 if (rmem->nr_pages > 1 || depth) 8654 rmem->depth = 1; 8655 rmem->ctx_mem = ctxm; 8656 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8657 } 8658 return rc; 8659 } 8660 8661 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 8662 struct bnxt_ctx_pg_info *ctx_pg) 8663 { 8664 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8665 8666 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 8667 ctx_pg->ctx_pg_tbl) { 8668 int i, nr_tbls = rmem->nr_pages; 8669 8670 for (i = 0; i < nr_tbls; i++) { 8671 struct bnxt_ctx_pg_info *pg_tbl; 8672 struct bnxt_ring_mem_info *rmem2; 8673 8674 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8675 if (!pg_tbl) 8676 continue; 8677 rmem2 = &pg_tbl->ring_mem; 8678 bnxt_free_ring(bp, rmem2); 8679 ctx_pg->ctx_pg_arr[i] = NULL; 8680 kfree(pg_tbl); 8681 ctx_pg->ctx_pg_tbl[i] = NULL; 8682 } 8683 kfree(ctx_pg->ctx_pg_tbl); 8684 ctx_pg->ctx_pg_tbl = NULL; 8685 } 8686 bnxt_free_ring(bp, rmem); 8687 ctx_pg->nr_pages = 0; 8688 } 8689 8690 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 8691 struct bnxt_ctx_mem_type *ctxm, u32 entries, 8692 u8 pg_lvl) 8693 { 8694 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8695 int i, rc = 0, n = 1; 8696 u32 mem_size; 8697 8698 if (!ctxm->entry_size || !ctx_pg) 8699 return -EINVAL; 8700 if (ctxm->instance_bmap) 8701 n = hweight32(ctxm->instance_bmap); 8702 if (ctxm->entry_multiple) 8703 entries = roundup(entries, ctxm->entry_multiple); 8704 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 8705 mem_size = entries * ctxm->entry_size; 8706 for (i = 0; i < n && !rc; i++) { 8707 ctx_pg[i].entries = entries; 8708 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 8709 ctxm->init_value ? ctxm : NULL); 8710 } 8711 return rc; 8712 } 8713 8714 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 8715 struct bnxt_ctx_mem_type *ctxm, 8716 bool last) 8717 { 8718 struct hwrm_func_backing_store_cfg_v2_input *req; 8719 u32 instance_bmap = ctxm->instance_bmap; 8720 int i, j, rc = 0, n = 1; 8721 __le32 *p; 8722 8723 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 8724 return 0; 8725 8726 if (instance_bmap) 8727 n = hweight32(ctxm->instance_bmap); 8728 else 8729 instance_bmap = 1; 8730 8731 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 8732 if (rc) 8733 return rc; 8734 hwrm_req_hold(bp, req); 8735 req->type = cpu_to_le16(ctxm->type); 8736 req->entry_size = cpu_to_le16(ctxm->entry_size); 8737 req->subtype_valid_cnt = ctxm->split_entry_cnt; 8738 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 8739 p[i] = cpu_to_le32(ctxm->split[i]); 8740 for (i = 0, j = 0; j < n && !rc; i++) { 8741 struct bnxt_ctx_pg_info *ctx_pg; 8742 8743 if (!(instance_bmap & (1 << i))) 8744 continue; 8745 req->instance = cpu_to_le16(i); 8746 ctx_pg = &ctxm->pg_info[j++]; 8747 if (!ctx_pg->entries) 8748 continue; 8749 req->num_entries = cpu_to_le32(ctx_pg->entries); 8750 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8751 &req->page_size_pbl_level, 8752 &req->page_dir); 8753 if (last && j == n) 8754 req->flags = 8755 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 8756 rc = hwrm_req_send(bp, req); 8757 } 8758 hwrm_req_drop(bp, req); 8759 return rc; 8760 } 8761 8762 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 8763 { 8764 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8765 struct bnxt_ctx_mem_type *ctxm; 8766 u16 last_type; 8767 int rc = 0; 8768 u16 type; 8769 8770 if (!ena) 8771 return 0; 8772 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 8773 last_type = BNXT_CTX_MAX - 1; 8774 else 8775 last_type = BNXT_CTX_L2_MAX - 1; 8776 ctx->ctx_arr[last_type].last = 1; 8777 8778 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 8779 ctxm = &ctx->ctx_arr[type]; 8780 8781 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 8782 if (rc) 8783 return rc; 8784 } 8785 return 0; 8786 } 8787 8788 void bnxt_free_ctx_mem(struct bnxt *bp) 8789 { 8790 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8791 u16 type; 8792 8793 if (!ctx) 8794 return; 8795 8796 for (type = 0; type < BNXT_CTX_V2_MAX; type++) { 8797 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8798 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8799 int i, n = 1; 8800 8801 if (!ctx_pg) 8802 continue; 8803 if (ctxm->instance_bmap) 8804 n = hweight32(ctxm->instance_bmap); 8805 for (i = 0; i < n; i++) 8806 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 8807 8808 kfree(ctx_pg); 8809 ctxm->pg_info = NULL; 8810 } 8811 8812 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 8813 kfree(ctx); 8814 bp->ctx = NULL; 8815 } 8816 8817 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 8818 { 8819 struct bnxt_ctx_mem_type *ctxm; 8820 struct bnxt_ctx_mem_info *ctx; 8821 u32 l2_qps, qp1_qps, max_qps; 8822 u32 ena, entries_sp, entries; 8823 u32 srqs, max_srqs, min; 8824 u32 num_mr, num_ah; 8825 u32 extra_srqs = 0; 8826 u32 extra_qps = 0; 8827 u32 fast_qpmd_qps; 8828 u8 pg_lvl = 1; 8829 int i, rc; 8830 8831 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 8832 if (rc) { 8833 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 8834 rc); 8835 return rc; 8836 } 8837 ctx = bp->ctx; 8838 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 8839 return 0; 8840 8841 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8842 l2_qps = ctxm->qp_l2_entries; 8843 qp1_qps = ctxm->qp_qp1_entries; 8844 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 8845 max_qps = ctxm->max_entries; 8846 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8847 srqs = ctxm->srq_l2_entries; 8848 max_srqs = ctxm->max_entries; 8849 ena = 0; 8850 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 8851 pg_lvl = 2; 8852 extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps); 8853 /* allocate extra qps if fw supports RoCE fast qp destroy feature */ 8854 extra_qps += fast_qpmd_qps; 8855 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 8856 if (fast_qpmd_qps) 8857 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 8858 } 8859 8860 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8861 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 8862 pg_lvl); 8863 if (rc) 8864 return rc; 8865 8866 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8867 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 8868 if (rc) 8869 return rc; 8870 8871 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8872 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 8873 extra_qps * 2, pg_lvl); 8874 if (rc) 8875 return rc; 8876 8877 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8878 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8879 if (rc) 8880 return rc; 8881 8882 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8883 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8884 if (rc) 8885 return rc; 8886 8887 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 8888 goto skip_rdma; 8889 8890 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8891 /* 128K extra is needed to accommodate static AH context 8892 * allocation by f/w. 8893 */ 8894 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 8895 num_ah = min_t(u32, num_mr, 1024 * 128); 8896 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 8897 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 8898 ctxm->mrav_av_entries = num_ah; 8899 8900 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 8901 if (rc) 8902 return rc; 8903 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 8904 8905 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8906 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 8907 if (rc) 8908 return rc; 8909 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 8910 8911 skip_rdma: 8912 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8913 min = ctxm->min_entries; 8914 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 8915 2 * (extra_qps + qp1_qps) + min; 8916 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 8917 if (rc) 8918 return rc; 8919 8920 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8921 entries = l2_qps + 2 * (extra_qps + qp1_qps); 8922 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 8923 if (rc) 8924 return rc; 8925 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 8926 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 8927 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 8928 8929 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8930 rc = bnxt_backing_store_cfg_v2(bp, ena); 8931 else 8932 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 8933 if (rc) { 8934 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 8935 rc); 8936 return rc; 8937 } 8938 ctx->flags |= BNXT_CTX_FLAG_INITED; 8939 return 0; 8940 } 8941 8942 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 8943 { 8944 struct hwrm_func_resource_qcaps_output *resp; 8945 struct hwrm_func_resource_qcaps_input *req; 8946 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8947 int rc; 8948 8949 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 8950 if (rc) 8951 return rc; 8952 8953 req->fid = cpu_to_le16(0xffff); 8954 resp = hwrm_req_hold(bp, req); 8955 rc = hwrm_req_send_silent(bp, req); 8956 if (rc) 8957 goto hwrm_func_resc_qcaps_exit; 8958 8959 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 8960 if (!all) 8961 goto hwrm_func_resc_qcaps_exit; 8962 8963 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 8964 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8965 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 8966 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8967 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 8968 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8969 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 8970 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8971 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 8972 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 8973 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 8974 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8975 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 8976 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8977 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 8978 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8979 8980 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8981 u16 max_msix = le16_to_cpu(resp->max_msix); 8982 8983 hw_resc->max_nqs = max_msix; 8984 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 8985 } 8986 8987 if (BNXT_PF(bp)) { 8988 struct bnxt_pf_info *pf = &bp->pf; 8989 8990 pf->vf_resv_strategy = 8991 le16_to_cpu(resp->vf_reservation_strategy); 8992 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 8993 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 8994 } 8995 hwrm_func_resc_qcaps_exit: 8996 hwrm_req_drop(bp, req); 8997 return rc; 8998 } 8999 9000 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9001 { 9002 struct hwrm_port_mac_ptp_qcfg_output *resp; 9003 struct hwrm_port_mac_ptp_qcfg_input *req; 9004 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9005 bool phc_cfg; 9006 u8 flags; 9007 int rc; 9008 9009 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9010 rc = -ENODEV; 9011 goto no_ptp; 9012 } 9013 9014 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9015 if (rc) 9016 goto no_ptp; 9017 9018 req->port_id = cpu_to_le16(bp->pf.port_id); 9019 resp = hwrm_req_hold(bp, req); 9020 rc = hwrm_req_send(bp, req); 9021 if (rc) 9022 goto exit; 9023 9024 flags = resp->flags; 9025 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9026 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9027 rc = -ENODEV; 9028 goto exit; 9029 } 9030 if (!ptp) { 9031 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9032 if (!ptp) { 9033 rc = -ENOMEM; 9034 goto exit; 9035 } 9036 ptp->bp = bp; 9037 bp->ptp_cfg = ptp; 9038 } 9039 9040 if (flags & 9041 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9042 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9043 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9044 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9045 } else if (BNXT_CHIP_P5(bp)) { 9046 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9047 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9048 } else { 9049 rc = -ENODEV; 9050 goto exit; 9051 } 9052 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9053 rc = bnxt_ptp_init(bp, phc_cfg); 9054 if (rc) 9055 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9056 exit: 9057 hwrm_req_drop(bp, req); 9058 if (!rc) 9059 return 0; 9060 9061 no_ptp: 9062 bnxt_ptp_clear(bp); 9063 kfree(ptp); 9064 bp->ptp_cfg = NULL; 9065 return rc; 9066 } 9067 9068 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9069 { 9070 struct hwrm_func_qcaps_output *resp; 9071 struct hwrm_func_qcaps_input *req; 9072 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9073 u32 flags, flags_ext, flags_ext2; 9074 int rc; 9075 9076 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9077 if (rc) 9078 return rc; 9079 9080 req->fid = cpu_to_le16(0xffff); 9081 resp = hwrm_req_hold(bp, req); 9082 rc = hwrm_req_send(bp, req); 9083 if (rc) 9084 goto hwrm_func_qcaps_exit; 9085 9086 flags = le32_to_cpu(resp->flags); 9087 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9088 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9089 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9090 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9091 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9092 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9093 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9094 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9095 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9096 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9097 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9098 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9099 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9100 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9101 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9102 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9103 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9104 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9105 9106 flags_ext = le32_to_cpu(resp->flags_ext); 9107 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9108 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9109 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9110 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9111 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9112 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9113 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9114 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9115 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9116 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9117 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9118 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9119 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9120 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9121 9122 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9123 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9124 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9125 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9126 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9127 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9128 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9129 9130 bp->tx_push_thresh = 0; 9131 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9132 BNXT_FW_MAJ(bp) > 217) 9133 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9134 9135 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9136 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9137 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9138 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9139 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9140 if (!hw_resc->max_hw_ring_grps) 9141 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9142 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9143 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9144 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9145 9146 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9147 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9148 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9149 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9150 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9151 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9152 9153 if (BNXT_PF(bp)) { 9154 struct bnxt_pf_info *pf = &bp->pf; 9155 9156 pf->fw_fid = le16_to_cpu(resp->fid); 9157 pf->port_id = le16_to_cpu(resp->port_id); 9158 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9159 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9160 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9161 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9162 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9163 bp->flags |= BNXT_FLAG_WOL_CAP; 9164 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9165 bp->fw_cap |= BNXT_FW_CAP_PTP; 9166 } else { 9167 bnxt_ptp_clear(bp); 9168 kfree(bp->ptp_cfg); 9169 bp->ptp_cfg = NULL; 9170 } 9171 } else { 9172 #ifdef CONFIG_BNXT_SRIOV 9173 struct bnxt_vf_info *vf = &bp->vf; 9174 9175 vf->fw_fid = le16_to_cpu(resp->fid); 9176 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9177 #endif 9178 } 9179 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9180 9181 hwrm_func_qcaps_exit: 9182 hwrm_req_drop(bp, req); 9183 return rc; 9184 } 9185 9186 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9187 { 9188 struct hwrm_dbg_qcaps_output *resp; 9189 struct hwrm_dbg_qcaps_input *req; 9190 int rc; 9191 9192 bp->fw_dbg_cap = 0; 9193 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9194 return; 9195 9196 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9197 if (rc) 9198 return; 9199 9200 req->fid = cpu_to_le16(0xffff); 9201 resp = hwrm_req_hold(bp, req); 9202 rc = hwrm_req_send(bp, req); 9203 if (rc) 9204 goto hwrm_dbg_qcaps_exit; 9205 9206 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9207 9208 hwrm_dbg_qcaps_exit: 9209 hwrm_req_drop(bp, req); 9210 } 9211 9212 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9213 9214 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9215 { 9216 int rc; 9217 9218 rc = __bnxt_hwrm_func_qcaps(bp); 9219 if (rc) 9220 return rc; 9221 9222 bnxt_hwrm_dbg_qcaps(bp); 9223 9224 rc = bnxt_hwrm_queue_qportcfg(bp); 9225 if (rc) { 9226 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9227 return rc; 9228 } 9229 if (bp->hwrm_spec_code >= 0x10803) { 9230 rc = bnxt_alloc_ctx_mem(bp); 9231 if (rc) 9232 return rc; 9233 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9234 if (!rc) 9235 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9236 } 9237 return 0; 9238 } 9239 9240 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9241 { 9242 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9243 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9244 u32 flags; 9245 int rc; 9246 9247 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9248 return 0; 9249 9250 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9251 if (rc) 9252 return rc; 9253 9254 resp = hwrm_req_hold(bp, req); 9255 rc = hwrm_req_send(bp, req); 9256 if (rc) 9257 goto hwrm_cfa_adv_qcaps_exit; 9258 9259 flags = le32_to_cpu(resp->flags); 9260 if (flags & 9261 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9262 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9263 9264 if (flags & 9265 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9266 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9267 9268 if (flags & 9269 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9270 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9271 9272 hwrm_cfa_adv_qcaps_exit: 9273 hwrm_req_drop(bp, req); 9274 return rc; 9275 } 9276 9277 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9278 { 9279 if (bp->fw_health) 9280 return 0; 9281 9282 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9283 if (!bp->fw_health) 9284 return -ENOMEM; 9285 9286 mutex_init(&bp->fw_health->lock); 9287 return 0; 9288 } 9289 9290 static int bnxt_alloc_fw_health(struct bnxt *bp) 9291 { 9292 int rc; 9293 9294 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9295 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9296 return 0; 9297 9298 rc = __bnxt_alloc_fw_health(bp); 9299 if (rc) { 9300 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9301 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9302 return rc; 9303 } 9304 9305 return 0; 9306 } 9307 9308 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9309 { 9310 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9311 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9312 BNXT_FW_HEALTH_WIN_MAP_OFF); 9313 } 9314 9315 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9316 { 9317 struct bnxt_fw_health *fw_health = bp->fw_health; 9318 u32 reg_type; 9319 9320 if (!fw_health) 9321 return; 9322 9323 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9324 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9325 fw_health->status_reliable = false; 9326 9327 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9328 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9329 fw_health->resets_reliable = false; 9330 } 9331 9332 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9333 { 9334 void __iomem *hs; 9335 u32 status_loc; 9336 u32 reg_type; 9337 u32 sig; 9338 9339 if (bp->fw_health) 9340 bp->fw_health->status_reliable = false; 9341 9342 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9343 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9344 9345 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9346 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9347 if (!bp->chip_num) { 9348 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9349 bp->chip_num = readl(bp->bar0 + 9350 BNXT_FW_HEALTH_WIN_BASE + 9351 BNXT_GRC_REG_CHIP_NUM); 9352 } 9353 if (!BNXT_CHIP_P5_PLUS(bp)) 9354 return; 9355 9356 status_loc = BNXT_GRC_REG_STATUS_P5 | 9357 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9358 } else { 9359 status_loc = readl(hs + offsetof(struct hcomm_status, 9360 fw_status_loc)); 9361 } 9362 9363 if (__bnxt_alloc_fw_health(bp)) { 9364 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9365 return; 9366 } 9367 9368 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9369 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9370 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9371 __bnxt_map_fw_health_reg(bp, status_loc); 9372 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9373 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9374 } 9375 9376 bp->fw_health->status_reliable = true; 9377 } 9378 9379 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9380 { 9381 struct bnxt_fw_health *fw_health = bp->fw_health; 9382 u32 reg_base = 0xffffffff; 9383 int i; 9384 9385 bp->fw_health->status_reliable = false; 9386 bp->fw_health->resets_reliable = false; 9387 /* Only pre-map the monitoring GRC registers using window 3 */ 9388 for (i = 0; i < 4; i++) { 9389 u32 reg = fw_health->regs[i]; 9390 9391 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9392 continue; 9393 if (reg_base == 0xffffffff) 9394 reg_base = reg & BNXT_GRC_BASE_MASK; 9395 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9396 return -ERANGE; 9397 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9398 } 9399 bp->fw_health->status_reliable = true; 9400 bp->fw_health->resets_reliable = true; 9401 if (reg_base == 0xffffffff) 9402 return 0; 9403 9404 __bnxt_map_fw_health_reg(bp, reg_base); 9405 return 0; 9406 } 9407 9408 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9409 { 9410 if (!bp->fw_health) 9411 return; 9412 9413 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9414 bp->fw_health->status_reliable = true; 9415 bp->fw_health->resets_reliable = true; 9416 } else { 9417 bnxt_try_map_fw_health_reg(bp); 9418 } 9419 } 9420 9421 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9422 { 9423 struct bnxt_fw_health *fw_health = bp->fw_health; 9424 struct hwrm_error_recovery_qcfg_output *resp; 9425 struct hwrm_error_recovery_qcfg_input *req; 9426 int rc, i; 9427 9428 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9429 return 0; 9430 9431 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9432 if (rc) 9433 return rc; 9434 9435 resp = hwrm_req_hold(bp, req); 9436 rc = hwrm_req_send(bp, req); 9437 if (rc) 9438 goto err_recovery_out; 9439 fw_health->flags = le32_to_cpu(resp->flags); 9440 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9441 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9442 rc = -EINVAL; 9443 goto err_recovery_out; 9444 } 9445 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9446 fw_health->master_func_wait_dsecs = 9447 le32_to_cpu(resp->master_func_wait_period); 9448 fw_health->normal_func_wait_dsecs = 9449 le32_to_cpu(resp->normal_func_wait_period); 9450 fw_health->post_reset_wait_dsecs = 9451 le32_to_cpu(resp->master_func_wait_period_after_reset); 9452 fw_health->post_reset_max_wait_dsecs = 9453 le32_to_cpu(resp->max_bailout_time_after_reset); 9454 fw_health->regs[BNXT_FW_HEALTH_REG] = 9455 le32_to_cpu(resp->fw_health_status_reg); 9456 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9457 le32_to_cpu(resp->fw_heartbeat_reg); 9458 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9459 le32_to_cpu(resp->fw_reset_cnt_reg); 9460 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9461 le32_to_cpu(resp->reset_inprogress_reg); 9462 fw_health->fw_reset_inprog_reg_mask = 9463 le32_to_cpu(resp->reset_inprogress_reg_mask); 9464 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9465 if (fw_health->fw_reset_seq_cnt >= 16) { 9466 rc = -EINVAL; 9467 goto err_recovery_out; 9468 } 9469 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9470 fw_health->fw_reset_seq_regs[i] = 9471 le32_to_cpu(resp->reset_reg[i]); 9472 fw_health->fw_reset_seq_vals[i] = 9473 le32_to_cpu(resp->reset_reg_val[i]); 9474 fw_health->fw_reset_seq_delay_msec[i] = 9475 resp->delay_after_reset[i]; 9476 } 9477 err_recovery_out: 9478 hwrm_req_drop(bp, req); 9479 if (!rc) 9480 rc = bnxt_map_fw_health_regs(bp); 9481 if (rc) 9482 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9483 return rc; 9484 } 9485 9486 static int bnxt_hwrm_func_reset(struct bnxt *bp) 9487 { 9488 struct hwrm_func_reset_input *req; 9489 int rc; 9490 9491 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 9492 if (rc) 9493 return rc; 9494 9495 req->enables = 0; 9496 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 9497 return hwrm_req_send(bp, req); 9498 } 9499 9500 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 9501 { 9502 struct hwrm_nvm_get_dev_info_output nvm_info; 9503 9504 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 9505 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 9506 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 9507 nvm_info.nvm_cfg_ver_upd); 9508 } 9509 9510 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 9511 { 9512 struct hwrm_queue_qportcfg_output *resp; 9513 struct hwrm_queue_qportcfg_input *req; 9514 u8 i, j, *qptr; 9515 bool no_rdma; 9516 int rc = 0; 9517 9518 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 9519 if (rc) 9520 return rc; 9521 9522 resp = hwrm_req_hold(bp, req); 9523 rc = hwrm_req_send(bp, req); 9524 if (rc) 9525 goto qportcfg_exit; 9526 9527 if (!resp->max_configurable_queues) { 9528 rc = -EINVAL; 9529 goto qportcfg_exit; 9530 } 9531 bp->max_tc = resp->max_configurable_queues; 9532 bp->max_lltc = resp->max_configurable_lossless_queues; 9533 if (bp->max_tc > BNXT_MAX_QUEUE) 9534 bp->max_tc = BNXT_MAX_QUEUE; 9535 9536 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 9537 qptr = &resp->queue_id0; 9538 for (i = 0, j = 0; i < bp->max_tc; i++) { 9539 bp->q_info[j].queue_id = *qptr; 9540 bp->q_ids[i] = *qptr++; 9541 bp->q_info[j].queue_profile = *qptr++; 9542 bp->tc_to_qidx[j] = j; 9543 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 9544 (no_rdma && BNXT_PF(bp))) 9545 j++; 9546 } 9547 bp->max_q = bp->max_tc; 9548 bp->max_tc = max_t(u8, j, 1); 9549 9550 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 9551 bp->max_tc = 1; 9552 9553 if (bp->max_lltc > bp->max_tc) 9554 bp->max_lltc = bp->max_tc; 9555 9556 qportcfg_exit: 9557 hwrm_req_drop(bp, req); 9558 return rc; 9559 } 9560 9561 static int bnxt_hwrm_poll(struct bnxt *bp) 9562 { 9563 struct hwrm_ver_get_input *req; 9564 int rc; 9565 9566 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9567 if (rc) 9568 return rc; 9569 9570 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9571 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9572 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9573 9574 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 9575 rc = hwrm_req_send(bp, req); 9576 return rc; 9577 } 9578 9579 static int bnxt_hwrm_ver_get(struct bnxt *bp) 9580 { 9581 struct hwrm_ver_get_output *resp; 9582 struct hwrm_ver_get_input *req; 9583 u16 fw_maj, fw_min, fw_bld, fw_rsv; 9584 u32 dev_caps_cfg, hwrm_ver; 9585 int rc, len; 9586 9587 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9588 if (rc) 9589 return rc; 9590 9591 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9592 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 9593 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9594 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9595 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9596 9597 resp = hwrm_req_hold(bp, req); 9598 rc = hwrm_req_send(bp, req); 9599 if (rc) 9600 goto hwrm_ver_get_exit; 9601 9602 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 9603 9604 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 9605 resp->hwrm_intf_min_8b << 8 | 9606 resp->hwrm_intf_upd_8b; 9607 if (resp->hwrm_intf_maj_8b < 1) { 9608 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 9609 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9610 resp->hwrm_intf_upd_8b); 9611 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 9612 } 9613 9614 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 9615 HWRM_VERSION_UPDATE; 9616 9617 if (bp->hwrm_spec_code > hwrm_ver) 9618 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9619 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 9620 HWRM_VERSION_UPDATE); 9621 else 9622 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9623 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9624 resp->hwrm_intf_upd_8b); 9625 9626 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 9627 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 9628 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 9629 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 9630 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 9631 len = FW_VER_STR_LEN; 9632 } else { 9633 fw_maj = resp->hwrm_fw_maj_8b; 9634 fw_min = resp->hwrm_fw_min_8b; 9635 fw_bld = resp->hwrm_fw_bld_8b; 9636 fw_rsv = resp->hwrm_fw_rsvd_8b; 9637 len = BC_HWRM_STR_LEN; 9638 } 9639 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 9640 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 9641 fw_rsv); 9642 9643 if (strlen(resp->active_pkg_name)) { 9644 int fw_ver_len = strlen(bp->fw_ver_str); 9645 9646 snprintf(bp->fw_ver_str + fw_ver_len, 9647 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 9648 resp->active_pkg_name); 9649 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 9650 } 9651 9652 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 9653 if (!bp->hwrm_cmd_timeout) 9654 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 9655 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 9656 if (!bp->hwrm_cmd_max_timeout) 9657 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 9658 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 9659 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 9660 bp->hwrm_cmd_max_timeout / 1000); 9661 9662 if (resp->hwrm_intf_maj_8b >= 1) { 9663 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 9664 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 9665 } 9666 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 9667 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 9668 9669 bp->chip_num = le16_to_cpu(resp->chip_num); 9670 bp->chip_rev = resp->chip_rev; 9671 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 9672 !resp->chip_metal) 9673 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 9674 9675 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 9676 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 9677 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 9678 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 9679 9680 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 9681 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 9682 9683 if (dev_caps_cfg & 9684 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 9685 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 9686 9687 if (dev_caps_cfg & 9688 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 9689 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 9690 9691 if (dev_caps_cfg & 9692 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 9693 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 9694 9695 hwrm_ver_get_exit: 9696 hwrm_req_drop(bp, req); 9697 return rc; 9698 } 9699 9700 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 9701 { 9702 struct hwrm_fw_set_time_input *req; 9703 struct tm tm; 9704 time64_t now = ktime_get_real_seconds(); 9705 int rc; 9706 9707 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 9708 bp->hwrm_spec_code < 0x10400) 9709 return -EOPNOTSUPP; 9710 9711 time64_to_tm(now, 0, &tm); 9712 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 9713 if (rc) 9714 return rc; 9715 9716 req->year = cpu_to_le16(1900 + tm.tm_year); 9717 req->month = 1 + tm.tm_mon; 9718 req->day = tm.tm_mday; 9719 req->hour = tm.tm_hour; 9720 req->minute = tm.tm_min; 9721 req->second = tm.tm_sec; 9722 return hwrm_req_send(bp, req); 9723 } 9724 9725 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 9726 { 9727 u64 sw_tmp; 9728 9729 hw &= mask; 9730 sw_tmp = (*sw & ~mask) | hw; 9731 if (hw < (*sw & mask)) 9732 sw_tmp += mask + 1; 9733 WRITE_ONCE(*sw, sw_tmp); 9734 } 9735 9736 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 9737 int count, bool ignore_zero) 9738 { 9739 int i; 9740 9741 for (i = 0; i < count; i++) { 9742 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 9743 9744 if (ignore_zero && !hw) 9745 continue; 9746 9747 if (masks[i] == -1ULL) 9748 sw_stats[i] = hw; 9749 else 9750 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 9751 } 9752 } 9753 9754 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 9755 { 9756 if (!stats->hw_stats) 9757 return; 9758 9759 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9760 stats->hw_masks, stats->len / 8, false); 9761 } 9762 9763 static void bnxt_accumulate_all_stats(struct bnxt *bp) 9764 { 9765 struct bnxt_stats_mem *ring0_stats; 9766 bool ignore_zero = false; 9767 int i; 9768 9769 /* Chip bug. Counter intermittently becomes 0. */ 9770 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9771 ignore_zero = true; 9772 9773 for (i = 0; i < bp->cp_nr_rings; i++) { 9774 struct bnxt_napi *bnapi = bp->bnapi[i]; 9775 struct bnxt_cp_ring_info *cpr; 9776 struct bnxt_stats_mem *stats; 9777 9778 cpr = &bnapi->cp_ring; 9779 stats = &cpr->stats; 9780 if (!i) 9781 ring0_stats = stats; 9782 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9783 ring0_stats->hw_masks, 9784 ring0_stats->len / 8, ignore_zero); 9785 } 9786 if (bp->flags & BNXT_FLAG_PORT_STATS) { 9787 struct bnxt_stats_mem *stats = &bp->port_stats; 9788 __le64 *hw_stats = stats->hw_stats; 9789 u64 *sw_stats = stats->sw_stats; 9790 u64 *masks = stats->hw_masks; 9791 int cnt; 9792 9793 cnt = sizeof(struct rx_port_stats) / 8; 9794 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9795 9796 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9797 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9798 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9799 cnt = sizeof(struct tx_port_stats) / 8; 9800 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9801 } 9802 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 9803 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 9804 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 9805 } 9806 } 9807 9808 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 9809 { 9810 struct hwrm_port_qstats_input *req; 9811 struct bnxt_pf_info *pf = &bp->pf; 9812 int rc; 9813 9814 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 9815 return 0; 9816 9817 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9818 return -EOPNOTSUPP; 9819 9820 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 9821 if (rc) 9822 return rc; 9823 9824 req->flags = flags; 9825 req->port_id = cpu_to_le16(pf->port_id); 9826 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 9827 BNXT_TX_PORT_STATS_BYTE_OFFSET); 9828 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 9829 return hwrm_req_send(bp, req); 9830 } 9831 9832 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 9833 { 9834 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 9835 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 9836 struct hwrm_port_qstats_ext_output *resp_qs; 9837 struct hwrm_port_qstats_ext_input *req_qs; 9838 struct bnxt_pf_info *pf = &bp->pf; 9839 u32 tx_stat_size; 9840 int rc; 9841 9842 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 9843 return 0; 9844 9845 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9846 return -EOPNOTSUPP; 9847 9848 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 9849 if (rc) 9850 return rc; 9851 9852 req_qs->flags = flags; 9853 req_qs->port_id = cpu_to_le16(pf->port_id); 9854 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 9855 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 9856 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 9857 sizeof(struct tx_port_stats_ext) : 0; 9858 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 9859 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 9860 resp_qs = hwrm_req_hold(bp, req_qs); 9861 rc = hwrm_req_send(bp, req_qs); 9862 if (!rc) { 9863 bp->fw_rx_stats_ext_size = 9864 le16_to_cpu(resp_qs->rx_stat_size) / 8; 9865 if (BNXT_FW_MAJ(bp) < 220 && 9866 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 9867 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 9868 9869 bp->fw_tx_stats_ext_size = tx_stat_size ? 9870 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 9871 } else { 9872 bp->fw_rx_stats_ext_size = 0; 9873 bp->fw_tx_stats_ext_size = 0; 9874 } 9875 hwrm_req_drop(bp, req_qs); 9876 9877 if (flags) 9878 return rc; 9879 9880 if (bp->fw_tx_stats_ext_size <= 9881 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 9882 bp->pri2cos_valid = 0; 9883 return rc; 9884 } 9885 9886 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 9887 if (rc) 9888 return rc; 9889 9890 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 9891 9892 resp_qc = hwrm_req_hold(bp, req_qc); 9893 rc = hwrm_req_send(bp, req_qc); 9894 if (!rc) { 9895 u8 *pri2cos; 9896 int i, j; 9897 9898 pri2cos = &resp_qc->pri0_cos_queue_id; 9899 for (i = 0; i < 8; i++) { 9900 u8 queue_id = pri2cos[i]; 9901 u8 queue_idx; 9902 9903 /* Per port queue IDs start from 0, 10, 20, etc */ 9904 queue_idx = queue_id % 10; 9905 if (queue_idx > BNXT_MAX_QUEUE) { 9906 bp->pri2cos_valid = false; 9907 hwrm_req_drop(bp, req_qc); 9908 return rc; 9909 } 9910 for (j = 0; j < bp->max_q; j++) { 9911 if (bp->q_ids[j] == queue_id) 9912 bp->pri2cos_idx[i] = queue_idx; 9913 } 9914 } 9915 bp->pri2cos_valid = true; 9916 } 9917 hwrm_req_drop(bp, req_qc); 9918 9919 return rc; 9920 } 9921 9922 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 9923 { 9924 bnxt_hwrm_tunnel_dst_port_free(bp, 9925 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 9926 bnxt_hwrm_tunnel_dst_port_free(bp, 9927 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 9928 } 9929 9930 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 9931 { 9932 int rc, i; 9933 u32 tpa_flags = 0; 9934 9935 if (set_tpa) 9936 tpa_flags = bp->flags & BNXT_FLAG_TPA; 9937 else if (BNXT_NO_FW_ACCESS(bp)) 9938 return 0; 9939 for (i = 0; i < bp->nr_vnics; i++) { 9940 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 9941 if (rc) { 9942 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 9943 i, rc); 9944 return rc; 9945 } 9946 } 9947 return 0; 9948 } 9949 9950 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 9951 { 9952 int i; 9953 9954 for (i = 0; i < bp->nr_vnics; i++) 9955 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 9956 } 9957 9958 static void bnxt_clear_vnic(struct bnxt *bp) 9959 { 9960 if (!bp->vnic_info) 9961 return; 9962 9963 bnxt_hwrm_clear_vnic_filter(bp); 9964 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 9965 /* clear all RSS setting before free vnic ctx */ 9966 bnxt_hwrm_clear_vnic_rss(bp); 9967 bnxt_hwrm_vnic_ctx_free(bp); 9968 } 9969 /* before free the vnic, undo the vnic tpa settings */ 9970 if (bp->flags & BNXT_FLAG_TPA) 9971 bnxt_set_tpa(bp, false); 9972 bnxt_hwrm_vnic_free(bp); 9973 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9974 bnxt_hwrm_vnic_ctx_free(bp); 9975 } 9976 9977 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 9978 bool irq_re_init) 9979 { 9980 bnxt_clear_vnic(bp); 9981 bnxt_hwrm_ring_free(bp, close_path); 9982 bnxt_hwrm_ring_grp_free(bp); 9983 if (irq_re_init) { 9984 bnxt_hwrm_stat_ctx_free(bp); 9985 bnxt_hwrm_free_tunnel_ports(bp); 9986 } 9987 } 9988 9989 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 9990 { 9991 struct hwrm_func_cfg_input *req; 9992 u8 evb_mode; 9993 int rc; 9994 9995 if (br_mode == BRIDGE_MODE_VEB) 9996 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 9997 else if (br_mode == BRIDGE_MODE_VEPA) 9998 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 9999 else 10000 return -EINVAL; 10001 10002 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10003 if (rc) 10004 return rc; 10005 10006 req->fid = cpu_to_le16(0xffff); 10007 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10008 req->evb_mode = evb_mode; 10009 return hwrm_req_send(bp, req); 10010 } 10011 10012 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10013 { 10014 struct hwrm_func_cfg_input *req; 10015 int rc; 10016 10017 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10018 return 0; 10019 10020 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10021 if (rc) 10022 return rc; 10023 10024 req->fid = cpu_to_le16(0xffff); 10025 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10026 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10027 if (size == 128) 10028 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10029 10030 return hwrm_req_send(bp, req); 10031 } 10032 10033 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10034 { 10035 int rc; 10036 10037 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10038 goto skip_rss_ctx; 10039 10040 /* allocate context for vnic */ 10041 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10042 if (rc) { 10043 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10044 vnic->vnic_id, rc); 10045 goto vnic_setup_err; 10046 } 10047 bp->rsscos_nr_ctxs++; 10048 10049 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10050 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10051 if (rc) { 10052 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10053 vnic->vnic_id, rc); 10054 goto vnic_setup_err; 10055 } 10056 bp->rsscos_nr_ctxs++; 10057 } 10058 10059 skip_rss_ctx: 10060 /* configure default vnic, ring grp */ 10061 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10062 if (rc) { 10063 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10064 vnic->vnic_id, rc); 10065 goto vnic_setup_err; 10066 } 10067 10068 /* Enable RSS hashing on vnic */ 10069 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10070 if (rc) { 10071 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10072 vnic->vnic_id, rc); 10073 goto vnic_setup_err; 10074 } 10075 10076 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10077 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10078 if (rc) { 10079 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10080 vnic->vnic_id, rc); 10081 } 10082 } 10083 10084 vnic_setup_err: 10085 return rc; 10086 } 10087 10088 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10089 { 10090 int rc; 10091 10092 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10093 if (rc) { 10094 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10095 vnic->vnic_id, rc); 10096 return rc; 10097 } 10098 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10099 if (rc) 10100 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10101 vnic->vnic_id, rc); 10102 return rc; 10103 } 10104 10105 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10106 { 10107 int rc, i, nr_ctxs; 10108 10109 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10110 for (i = 0; i < nr_ctxs; i++) { 10111 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10112 if (rc) { 10113 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10114 vnic->vnic_id, i, rc); 10115 break; 10116 } 10117 bp->rsscos_nr_ctxs++; 10118 } 10119 if (i < nr_ctxs) 10120 return -ENOMEM; 10121 10122 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10123 if (rc) 10124 return rc; 10125 10126 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10127 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10128 if (rc) { 10129 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10130 vnic->vnic_id, rc); 10131 } 10132 } 10133 return rc; 10134 } 10135 10136 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10137 { 10138 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10139 return __bnxt_setup_vnic_p5(bp, vnic); 10140 else 10141 return __bnxt_setup_vnic(bp, vnic); 10142 } 10143 10144 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10145 struct bnxt_vnic_info *vnic, 10146 u16 start_rx_ring_idx, int rx_rings) 10147 { 10148 int rc; 10149 10150 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10151 if (rc) { 10152 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10153 vnic->vnic_id, rc); 10154 return rc; 10155 } 10156 return bnxt_setup_vnic(bp, vnic); 10157 } 10158 10159 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10160 { 10161 struct bnxt_vnic_info *vnic; 10162 int i, rc = 0; 10163 10164 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10165 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10166 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10167 } 10168 10169 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10170 return 0; 10171 10172 for (i = 0; i < bp->rx_nr_rings; i++) { 10173 u16 vnic_id = i + 1; 10174 u16 ring_id = i; 10175 10176 if (vnic_id >= bp->nr_vnics) 10177 break; 10178 10179 vnic = &bp->vnic_info[vnic_id]; 10180 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10181 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10182 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10183 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10184 break; 10185 } 10186 return rc; 10187 } 10188 10189 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10190 bool all) 10191 { 10192 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10193 struct bnxt_filter_base *usr_fltr, *tmp; 10194 struct bnxt_ntuple_filter *ntp_fltr; 10195 int i; 10196 10197 if (netif_running(bp->dev)) { 10198 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10199 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10200 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10201 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10202 } 10203 } 10204 if (!all) 10205 return; 10206 10207 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10208 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10209 usr_fltr->fw_vnic_id == rss_ctx->index) { 10210 ntp_fltr = container_of(usr_fltr, 10211 struct bnxt_ntuple_filter, 10212 base); 10213 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10214 bnxt_del_ntp_filter(bp, ntp_fltr); 10215 bnxt_del_one_usr_fltr(bp, usr_fltr); 10216 } 10217 } 10218 10219 if (vnic->rss_table) 10220 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10221 vnic->rss_table, 10222 vnic->rss_table_dma_addr); 10223 bp->num_rss_ctx--; 10224 } 10225 10226 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10227 { 10228 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10229 struct ethtool_rxfh_context *ctx; 10230 unsigned long context; 10231 10232 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10233 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10234 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10235 10236 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10237 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10238 __bnxt_setup_vnic_p5(bp, vnic)) { 10239 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10240 rss_ctx->index); 10241 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10242 ethtool_rxfh_context_lost(bp->dev, rss_ctx->index); 10243 } 10244 } 10245 } 10246 10247 void bnxt_clear_rss_ctxs(struct bnxt *bp) 10248 { 10249 struct ethtool_rxfh_context *ctx; 10250 unsigned long context; 10251 10252 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10253 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10254 10255 bnxt_del_one_rss_ctx(bp, rss_ctx, false); 10256 } 10257 } 10258 10259 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10260 static bool bnxt_promisc_ok(struct bnxt *bp) 10261 { 10262 #ifdef CONFIG_BNXT_SRIOV 10263 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10264 return false; 10265 #endif 10266 return true; 10267 } 10268 10269 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10270 { 10271 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10272 unsigned int rc = 0; 10273 10274 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10275 if (rc) { 10276 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10277 rc); 10278 return rc; 10279 } 10280 10281 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10282 if (rc) { 10283 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10284 rc); 10285 return rc; 10286 } 10287 return rc; 10288 } 10289 10290 static int bnxt_cfg_rx_mode(struct bnxt *); 10291 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10292 10293 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10294 { 10295 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10296 int rc = 0; 10297 unsigned int rx_nr_rings = bp->rx_nr_rings; 10298 10299 if (irq_re_init) { 10300 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10301 if (rc) { 10302 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10303 rc); 10304 goto err_out; 10305 } 10306 } 10307 10308 rc = bnxt_hwrm_ring_alloc(bp); 10309 if (rc) { 10310 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10311 goto err_out; 10312 } 10313 10314 rc = bnxt_hwrm_ring_grp_alloc(bp); 10315 if (rc) { 10316 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10317 goto err_out; 10318 } 10319 10320 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10321 rx_nr_rings--; 10322 10323 /* default vnic 0 */ 10324 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10325 if (rc) { 10326 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10327 goto err_out; 10328 } 10329 10330 if (BNXT_VF(bp)) 10331 bnxt_hwrm_func_qcfg(bp); 10332 10333 rc = bnxt_setup_vnic(bp, vnic); 10334 if (rc) 10335 goto err_out; 10336 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10337 bnxt_hwrm_update_rss_hash_cfg(bp); 10338 10339 if (bp->flags & BNXT_FLAG_RFS) { 10340 rc = bnxt_alloc_rfs_vnics(bp); 10341 if (rc) 10342 goto err_out; 10343 } 10344 10345 if (bp->flags & BNXT_FLAG_TPA) { 10346 rc = bnxt_set_tpa(bp, true); 10347 if (rc) 10348 goto err_out; 10349 } 10350 10351 if (BNXT_VF(bp)) 10352 bnxt_update_vf_mac(bp); 10353 10354 /* Filter for default vnic 0 */ 10355 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10356 if (rc) { 10357 if (BNXT_VF(bp) && rc == -ENODEV) 10358 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10359 else 10360 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10361 goto err_out; 10362 } 10363 vnic->uc_filter_count = 1; 10364 10365 vnic->rx_mask = 0; 10366 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10367 goto skip_rx_mask; 10368 10369 if (bp->dev->flags & IFF_BROADCAST) 10370 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10371 10372 if (bp->dev->flags & IFF_PROMISC) 10373 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10374 10375 if (bp->dev->flags & IFF_ALLMULTI) { 10376 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10377 vnic->mc_list_count = 0; 10378 } else if (bp->dev->flags & IFF_MULTICAST) { 10379 u32 mask = 0; 10380 10381 bnxt_mc_list_updated(bp, &mask); 10382 vnic->rx_mask |= mask; 10383 } 10384 10385 rc = bnxt_cfg_rx_mode(bp); 10386 if (rc) 10387 goto err_out; 10388 10389 skip_rx_mask: 10390 rc = bnxt_hwrm_set_coal(bp); 10391 if (rc) 10392 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10393 rc); 10394 10395 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10396 rc = bnxt_setup_nitroa0_vnic(bp); 10397 if (rc) 10398 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10399 rc); 10400 } 10401 10402 if (BNXT_VF(bp)) { 10403 bnxt_hwrm_func_qcfg(bp); 10404 netdev_update_features(bp->dev); 10405 } 10406 10407 return 0; 10408 10409 err_out: 10410 bnxt_hwrm_resource_free(bp, 0, true); 10411 10412 return rc; 10413 } 10414 10415 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10416 { 10417 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10418 return 0; 10419 } 10420 10421 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10422 { 10423 bnxt_init_cp_rings(bp); 10424 bnxt_init_rx_rings(bp); 10425 bnxt_init_tx_rings(bp); 10426 bnxt_init_ring_grps(bp, irq_re_init); 10427 bnxt_init_vnics(bp); 10428 10429 return bnxt_init_chip(bp, irq_re_init); 10430 } 10431 10432 static int bnxt_set_real_num_queues(struct bnxt *bp) 10433 { 10434 int rc; 10435 struct net_device *dev = bp->dev; 10436 10437 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10438 bp->tx_nr_rings_xdp); 10439 if (rc) 10440 return rc; 10441 10442 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10443 if (rc) 10444 return rc; 10445 10446 #ifdef CONFIG_RFS_ACCEL 10447 if (bp->flags & BNXT_FLAG_RFS) 10448 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 10449 #endif 10450 10451 return rc; 10452 } 10453 10454 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10455 bool shared) 10456 { 10457 int _rx = *rx, _tx = *tx; 10458 10459 if (shared) { 10460 *rx = min_t(int, _rx, max); 10461 *tx = min_t(int, _tx, max); 10462 } else { 10463 if (max < 2) 10464 return -ENOMEM; 10465 10466 while (_rx + _tx > max) { 10467 if (_rx > _tx && _rx > 1) 10468 _rx--; 10469 else if (_tx > 1) 10470 _tx--; 10471 } 10472 *rx = _rx; 10473 *tx = _tx; 10474 } 10475 return 0; 10476 } 10477 10478 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 10479 { 10480 return (tx - tx_xdp) / tx_sets + tx_xdp; 10481 } 10482 10483 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 10484 { 10485 int tcs = bp->num_tc; 10486 10487 if (!tcs) 10488 tcs = 1; 10489 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 10490 } 10491 10492 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 10493 { 10494 int tcs = bp->num_tc; 10495 10496 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 10497 bp->tx_nr_rings_xdp; 10498 } 10499 10500 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10501 bool sh) 10502 { 10503 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 10504 10505 if (tx_cp != *tx) { 10506 int tx_saved = tx_cp, rc; 10507 10508 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 10509 if (rc) 10510 return rc; 10511 if (tx_cp != tx_saved) 10512 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 10513 return 0; 10514 } 10515 return __bnxt_trim_rings(bp, rx, tx, max, sh); 10516 } 10517 10518 static void bnxt_setup_msix(struct bnxt *bp) 10519 { 10520 const int len = sizeof(bp->irq_tbl[0].name); 10521 struct net_device *dev = bp->dev; 10522 int tcs, i; 10523 10524 tcs = bp->num_tc; 10525 if (tcs) { 10526 int i, off, count; 10527 10528 for (i = 0; i < tcs; i++) { 10529 count = bp->tx_nr_rings_per_tc; 10530 off = BNXT_TC_TO_RING_BASE(bp, i); 10531 netdev_set_tc_queue(dev, i, count, off); 10532 } 10533 } 10534 10535 for (i = 0; i < bp->cp_nr_rings; i++) { 10536 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10537 char *attr; 10538 10539 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 10540 attr = "TxRx"; 10541 else if (i < bp->rx_nr_rings) 10542 attr = "rx"; 10543 else 10544 attr = "tx"; 10545 10546 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 10547 attr, i); 10548 bp->irq_tbl[map_idx].handler = bnxt_msix; 10549 } 10550 } 10551 10552 static void bnxt_setup_inta(struct bnxt *bp) 10553 { 10554 const int len = sizeof(bp->irq_tbl[0].name); 10555 10556 if (bp->num_tc) { 10557 netdev_reset_tc(bp->dev); 10558 bp->num_tc = 0; 10559 } 10560 10561 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 10562 0); 10563 bp->irq_tbl[0].handler = bnxt_inta; 10564 } 10565 10566 static int bnxt_init_int_mode(struct bnxt *bp); 10567 10568 static int bnxt_setup_int_mode(struct bnxt *bp) 10569 { 10570 int rc; 10571 10572 if (!bp->irq_tbl) { 10573 rc = bnxt_init_int_mode(bp); 10574 if (rc || !bp->irq_tbl) 10575 return rc ?: -ENODEV; 10576 } 10577 10578 if (bp->flags & BNXT_FLAG_USING_MSIX) 10579 bnxt_setup_msix(bp); 10580 else 10581 bnxt_setup_inta(bp); 10582 10583 rc = bnxt_set_real_num_queues(bp); 10584 return rc; 10585 } 10586 10587 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 10588 { 10589 return bp->hw_resc.max_rsscos_ctxs; 10590 } 10591 10592 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 10593 { 10594 return bp->hw_resc.max_vnics; 10595 } 10596 10597 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 10598 { 10599 return bp->hw_resc.max_stat_ctxs; 10600 } 10601 10602 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 10603 { 10604 return bp->hw_resc.max_cp_rings; 10605 } 10606 10607 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 10608 { 10609 unsigned int cp = bp->hw_resc.max_cp_rings; 10610 10611 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10612 cp -= bnxt_get_ulp_msix_num(bp); 10613 10614 return cp; 10615 } 10616 10617 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 10618 { 10619 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10620 10621 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10622 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 10623 10624 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 10625 } 10626 10627 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 10628 { 10629 bp->hw_resc.max_irqs = max_irqs; 10630 } 10631 10632 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 10633 { 10634 unsigned int cp; 10635 10636 cp = bnxt_get_max_func_cp_rings_for_en(bp); 10637 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10638 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 10639 else 10640 return cp - bp->cp_nr_rings; 10641 } 10642 10643 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 10644 { 10645 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 10646 } 10647 10648 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 10649 { 10650 int max_irq = bnxt_get_max_func_irqs(bp); 10651 int total_req = bp->cp_nr_rings + num; 10652 10653 if (max_irq < total_req) { 10654 num = max_irq - bp->cp_nr_rings; 10655 if (num <= 0) 10656 return 0; 10657 } 10658 return num; 10659 } 10660 10661 static int bnxt_get_num_msix(struct bnxt *bp) 10662 { 10663 if (!BNXT_NEW_RM(bp)) 10664 return bnxt_get_max_func_irqs(bp); 10665 10666 return bnxt_nq_rings_in_use(bp); 10667 } 10668 10669 static int bnxt_init_msix(struct bnxt *bp) 10670 { 10671 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp; 10672 struct msix_entry *msix_ent; 10673 10674 total_vecs = bnxt_get_num_msix(bp); 10675 max = bnxt_get_max_func_irqs(bp); 10676 if (total_vecs > max) 10677 total_vecs = max; 10678 10679 if (!total_vecs) 10680 return 0; 10681 10682 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 10683 if (!msix_ent) 10684 return -ENOMEM; 10685 10686 for (i = 0; i < total_vecs; i++) { 10687 msix_ent[i].entry = i; 10688 msix_ent[i].vector = 0; 10689 } 10690 10691 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 10692 min = 2; 10693 10694 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 10695 ulp_msix = bnxt_get_ulp_msix_num(bp); 10696 if (total_vecs < 0 || total_vecs < ulp_msix) { 10697 rc = -ENODEV; 10698 goto msix_setup_exit; 10699 } 10700 10701 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 10702 if (bp->irq_tbl) { 10703 for (i = 0; i < total_vecs; i++) 10704 bp->irq_tbl[i].vector = msix_ent[i].vector; 10705 10706 bp->total_irqs = total_vecs; 10707 /* Trim rings based upon num of vectors allocated */ 10708 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 10709 total_vecs - ulp_msix, min == 1); 10710 if (rc) 10711 goto msix_setup_exit; 10712 10713 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 10714 bp->cp_nr_rings = (min == 1) ? 10715 max_t(int, tx_cp, bp->rx_nr_rings) : 10716 tx_cp + bp->rx_nr_rings; 10717 10718 } else { 10719 rc = -ENOMEM; 10720 goto msix_setup_exit; 10721 } 10722 bp->flags |= BNXT_FLAG_USING_MSIX; 10723 kfree(msix_ent); 10724 return 0; 10725 10726 msix_setup_exit: 10727 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 10728 kfree(bp->irq_tbl); 10729 bp->irq_tbl = NULL; 10730 pci_disable_msix(bp->pdev); 10731 kfree(msix_ent); 10732 return rc; 10733 } 10734 10735 static int bnxt_init_inta(struct bnxt *bp) 10736 { 10737 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 10738 if (!bp->irq_tbl) 10739 return -ENOMEM; 10740 10741 bp->total_irqs = 1; 10742 bp->rx_nr_rings = 1; 10743 bp->tx_nr_rings = 1; 10744 bp->cp_nr_rings = 1; 10745 bp->flags |= BNXT_FLAG_SHARED_RINGS; 10746 bp->irq_tbl[0].vector = bp->pdev->irq; 10747 return 0; 10748 } 10749 10750 static int bnxt_init_int_mode(struct bnxt *bp) 10751 { 10752 int rc = -ENODEV; 10753 10754 if (bp->flags & BNXT_FLAG_MSIX_CAP) 10755 rc = bnxt_init_msix(bp); 10756 10757 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 10758 /* fallback to INTA */ 10759 rc = bnxt_init_inta(bp); 10760 } 10761 return rc; 10762 } 10763 10764 static void bnxt_clear_int_mode(struct bnxt *bp) 10765 { 10766 if (bp->flags & BNXT_FLAG_USING_MSIX) 10767 pci_disable_msix(bp->pdev); 10768 10769 kfree(bp->irq_tbl); 10770 bp->irq_tbl = NULL; 10771 bp->flags &= ~BNXT_FLAG_USING_MSIX; 10772 } 10773 10774 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 10775 { 10776 bool irq_cleared = false; 10777 int tcs = bp->num_tc; 10778 int irqs_required; 10779 int rc; 10780 10781 if (!bnxt_need_reserve_rings(bp)) 10782 return 0; 10783 10784 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 10785 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 10786 10787 if (ulp_msix > bp->ulp_num_msix_want) 10788 ulp_msix = bp->ulp_num_msix_want; 10789 irqs_required = ulp_msix + bp->cp_nr_rings; 10790 } else { 10791 irqs_required = bnxt_get_num_msix(bp); 10792 } 10793 10794 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 10795 bnxt_ulp_irq_stop(bp); 10796 bnxt_clear_int_mode(bp); 10797 irq_cleared = true; 10798 } 10799 rc = __bnxt_reserve_rings(bp); 10800 if (irq_cleared) { 10801 if (!rc) 10802 rc = bnxt_init_int_mode(bp); 10803 bnxt_ulp_irq_restart(bp, rc); 10804 } 10805 if (rc) { 10806 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 10807 return rc; 10808 } 10809 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 10810 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 10811 netdev_err(bp->dev, "tx ring reservation failure\n"); 10812 netdev_reset_tc(bp->dev); 10813 bp->num_tc = 0; 10814 if (bp->tx_nr_rings_xdp) 10815 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 10816 else 10817 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 10818 return -ENOMEM; 10819 } 10820 return 0; 10821 } 10822 10823 static void bnxt_free_irq(struct bnxt *bp) 10824 { 10825 struct bnxt_irq *irq; 10826 int i; 10827 10828 #ifdef CONFIG_RFS_ACCEL 10829 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 10830 bp->dev->rx_cpu_rmap = NULL; 10831 #endif 10832 if (!bp->irq_tbl || !bp->bnapi) 10833 return; 10834 10835 for (i = 0; i < bp->cp_nr_rings; i++) { 10836 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10837 10838 irq = &bp->irq_tbl[map_idx]; 10839 if (irq->requested) { 10840 if (irq->have_cpumask) { 10841 irq_set_affinity_hint(irq->vector, NULL); 10842 free_cpumask_var(irq->cpu_mask); 10843 irq->have_cpumask = 0; 10844 } 10845 free_irq(irq->vector, bp->bnapi[i]); 10846 } 10847 10848 irq->requested = 0; 10849 } 10850 } 10851 10852 static int bnxt_request_irq(struct bnxt *bp) 10853 { 10854 int i, j, rc = 0; 10855 unsigned long flags = 0; 10856 #ifdef CONFIG_RFS_ACCEL 10857 struct cpu_rmap *rmap; 10858 #endif 10859 10860 rc = bnxt_setup_int_mode(bp); 10861 if (rc) { 10862 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 10863 rc); 10864 return rc; 10865 } 10866 #ifdef CONFIG_RFS_ACCEL 10867 rmap = bp->dev->rx_cpu_rmap; 10868 #endif 10869 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 10870 flags = IRQF_SHARED; 10871 10872 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 10873 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10874 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 10875 10876 #ifdef CONFIG_RFS_ACCEL 10877 if (rmap && bp->bnapi[i]->rx_ring) { 10878 rc = irq_cpu_rmap_add(rmap, irq->vector); 10879 if (rc) 10880 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 10881 j); 10882 j++; 10883 } 10884 #endif 10885 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 10886 bp->bnapi[i]); 10887 if (rc) 10888 break; 10889 10890 netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector); 10891 irq->requested = 1; 10892 10893 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 10894 int numa_node = dev_to_node(&bp->pdev->dev); 10895 10896 irq->have_cpumask = 1; 10897 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 10898 irq->cpu_mask); 10899 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 10900 if (rc) { 10901 netdev_warn(bp->dev, 10902 "Set affinity failed, IRQ = %d\n", 10903 irq->vector); 10904 break; 10905 } 10906 } 10907 } 10908 return rc; 10909 } 10910 10911 static void bnxt_del_napi(struct bnxt *bp) 10912 { 10913 int i; 10914 10915 if (!bp->bnapi) 10916 return; 10917 10918 for (i = 0; i < bp->rx_nr_rings; i++) 10919 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 10920 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 10921 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 10922 10923 for (i = 0; i < bp->cp_nr_rings; i++) { 10924 struct bnxt_napi *bnapi = bp->bnapi[i]; 10925 10926 __netif_napi_del(&bnapi->napi); 10927 } 10928 /* We called __netif_napi_del(), we need 10929 * to respect an RCU grace period before freeing napi structures. 10930 */ 10931 synchronize_net(); 10932 } 10933 10934 static void bnxt_init_napi(struct bnxt *bp) 10935 { 10936 int i; 10937 unsigned int cp_nr_rings = bp->cp_nr_rings; 10938 struct bnxt_napi *bnapi; 10939 10940 if (bp->flags & BNXT_FLAG_USING_MSIX) { 10941 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 10942 10943 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10944 poll_fn = bnxt_poll_p5; 10945 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10946 cp_nr_rings--; 10947 for (i = 0; i < cp_nr_rings; i++) { 10948 bnapi = bp->bnapi[i]; 10949 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 10950 } 10951 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10952 bnapi = bp->bnapi[cp_nr_rings]; 10953 netif_napi_add(bp->dev, &bnapi->napi, 10954 bnxt_poll_nitroa0); 10955 } 10956 } else { 10957 bnapi = bp->bnapi[0]; 10958 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 10959 } 10960 } 10961 10962 static void bnxt_disable_napi(struct bnxt *bp) 10963 { 10964 int i; 10965 10966 if (!bp->bnapi || 10967 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 10968 return; 10969 10970 for (i = 0; i < bp->cp_nr_rings; i++) { 10971 struct bnxt_napi *bnapi = bp->bnapi[i]; 10972 struct bnxt_cp_ring_info *cpr; 10973 10974 cpr = &bnapi->cp_ring; 10975 if (bnapi->tx_fault) 10976 cpr->sw_stats->tx.tx_resets++; 10977 if (bnapi->in_reset) 10978 cpr->sw_stats->rx.rx_resets++; 10979 napi_disable(&bnapi->napi); 10980 if (bnapi->rx_ring) 10981 cancel_work_sync(&cpr->dim.work); 10982 } 10983 } 10984 10985 static void bnxt_enable_napi(struct bnxt *bp) 10986 { 10987 int i; 10988 10989 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 10990 for (i = 0; i < bp->cp_nr_rings; i++) { 10991 struct bnxt_napi *bnapi = bp->bnapi[i]; 10992 struct bnxt_cp_ring_info *cpr; 10993 10994 bnapi->tx_fault = 0; 10995 10996 cpr = &bnapi->cp_ring; 10997 bnapi->in_reset = false; 10998 10999 if (bnapi->rx_ring) { 11000 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11001 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11002 } 11003 napi_enable(&bnapi->napi); 11004 } 11005 } 11006 11007 void bnxt_tx_disable(struct bnxt *bp) 11008 { 11009 int i; 11010 struct bnxt_tx_ring_info *txr; 11011 11012 if (bp->tx_ring) { 11013 for (i = 0; i < bp->tx_nr_rings; i++) { 11014 txr = &bp->tx_ring[i]; 11015 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11016 } 11017 } 11018 /* Make sure napi polls see @dev_state change */ 11019 synchronize_net(); 11020 /* Drop carrier first to prevent TX timeout */ 11021 netif_carrier_off(bp->dev); 11022 /* Stop all TX queues */ 11023 netif_tx_disable(bp->dev); 11024 } 11025 11026 void bnxt_tx_enable(struct bnxt *bp) 11027 { 11028 int i; 11029 struct bnxt_tx_ring_info *txr; 11030 11031 for (i = 0; i < bp->tx_nr_rings; i++) { 11032 txr = &bp->tx_ring[i]; 11033 WRITE_ONCE(txr->dev_state, 0); 11034 } 11035 /* Make sure napi polls see @dev_state change */ 11036 synchronize_net(); 11037 netif_tx_wake_all_queues(bp->dev); 11038 if (BNXT_LINK_IS_UP(bp)) 11039 netif_carrier_on(bp->dev); 11040 } 11041 11042 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11043 { 11044 u8 active_fec = link_info->active_fec_sig_mode & 11045 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11046 11047 switch (active_fec) { 11048 default: 11049 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11050 return "None"; 11051 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11052 return "Clause 74 BaseR"; 11053 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11054 return "Clause 91 RS(528,514)"; 11055 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11056 return "Clause 91 RS544_1XN"; 11057 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11058 return "Clause 91 RS(544,514)"; 11059 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11060 return "Clause 91 RS272_1XN"; 11061 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11062 return "Clause 91 RS(272,257)"; 11063 } 11064 } 11065 11066 void bnxt_report_link(struct bnxt *bp) 11067 { 11068 if (BNXT_LINK_IS_UP(bp)) { 11069 const char *signal = ""; 11070 const char *flow_ctrl; 11071 const char *duplex; 11072 u32 speed; 11073 u16 fec; 11074 11075 netif_carrier_on(bp->dev); 11076 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11077 if (speed == SPEED_UNKNOWN) { 11078 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11079 return; 11080 } 11081 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11082 duplex = "full"; 11083 else 11084 duplex = "half"; 11085 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11086 flow_ctrl = "ON - receive & transmit"; 11087 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11088 flow_ctrl = "ON - transmit"; 11089 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11090 flow_ctrl = "ON - receive"; 11091 else 11092 flow_ctrl = "none"; 11093 if (bp->link_info.phy_qcfg_resp.option_flags & 11094 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11095 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11096 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11097 switch (sig_mode) { 11098 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11099 signal = "(NRZ) "; 11100 break; 11101 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11102 signal = "(PAM4 56Gbps) "; 11103 break; 11104 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11105 signal = "(PAM4 112Gbps) "; 11106 break; 11107 default: 11108 break; 11109 } 11110 } 11111 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11112 speed, signal, duplex, flow_ctrl); 11113 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11114 netdev_info(bp->dev, "EEE is %s\n", 11115 bp->eee.eee_active ? "active" : 11116 "not active"); 11117 fec = bp->link_info.fec_cfg; 11118 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11119 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11120 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11121 bnxt_report_fec(&bp->link_info)); 11122 } else { 11123 netif_carrier_off(bp->dev); 11124 netdev_err(bp->dev, "NIC Link is Down\n"); 11125 } 11126 } 11127 11128 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11129 { 11130 if (!resp->supported_speeds_auto_mode && 11131 !resp->supported_speeds_force_mode && 11132 !resp->supported_pam4_speeds_auto_mode && 11133 !resp->supported_pam4_speeds_force_mode && 11134 !resp->supported_speeds2_auto_mode && 11135 !resp->supported_speeds2_force_mode) 11136 return true; 11137 return false; 11138 } 11139 11140 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11141 { 11142 struct bnxt_link_info *link_info = &bp->link_info; 11143 struct hwrm_port_phy_qcaps_output *resp; 11144 struct hwrm_port_phy_qcaps_input *req; 11145 int rc = 0; 11146 11147 if (bp->hwrm_spec_code < 0x10201) 11148 return 0; 11149 11150 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11151 if (rc) 11152 return rc; 11153 11154 resp = hwrm_req_hold(bp, req); 11155 rc = hwrm_req_send(bp, req); 11156 if (rc) 11157 goto hwrm_phy_qcaps_exit; 11158 11159 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11160 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11161 struct ethtool_keee *eee = &bp->eee; 11162 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11163 11164 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11165 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11166 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11167 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11168 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11169 } 11170 11171 if (bp->hwrm_spec_code >= 0x10a01) { 11172 if (bnxt_phy_qcaps_no_speed(resp)) { 11173 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11174 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11175 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11176 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11177 netdev_info(bp->dev, "Ethernet link enabled\n"); 11178 /* Phy re-enabled, reprobe the speeds */ 11179 link_info->support_auto_speeds = 0; 11180 link_info->support_pam4_auto_speeds = 0; 11181 link_info->support_auto_speeds2 = 0; 11182 } 11183 } 11184 if (resp->supported_speeds_auto_mode) 11185 link_info->support_auto_speeds = 11186 le16_to_cpu(resp->supported_speeds_auto_mode); 11187 if (resp->supported_pam4_speeds_auto_mode) 11188 link_info->support_pam4_auto_speeds = 11189 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11190 if (resp->supported_speeds2_auto_mode) 11191 link_info->support_auto_speeds2 = 11192 le16_to_cpu(resp->supported_speeds2_auto_mode); 11193 11194 bp->port_count = resp->port_cnt; 11195 11196 hwrm_phy_qcaps_exit: 11197 hwrm_req_drop(bp, req); 11198 return rc; 11199 } 11200 11201 static bool bnxt_support_dropped(u16 advertising, u16 supported) 11202 { 11203 u16 diff = advertising ^ supported; 11204 11205 return ((supported | diff) != supported); 11206 } 11207 11208 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 11209 { 11210 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 11211 11212 /* Check if any advertised speeds are no longer supported. The caller 11213 * holds the link_lock mutex, so we can modify link_info settings. 11214 */ 11215 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11216 if (bnxt_support_dropped(link_info->advertising, 11217 link_info->support_auto_speeds2)) { 11218 link_info->advertising = link_info->support_auto_speeds2; 11219 return true; 11220 } 11221 return false; 11222 } 11223 if (bnxt_support_dropped(link_info->advertising, 11224 link_info->support_auto_speeds)) { 11225 link_info->advertising = link_info->support_auto_speeds; 11226 return true; 11227 } 11228 if (bnxt_support_dropped(link_info->advertising_pam4, 11229 link_info->support_pam4_auto_speeds)) { 11230 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 11231 return true; 11232 } 11233 return false; 11234 } 11235 11236 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 11237 { 11238 struct bnxt_link_info *link_info = &bp->link_info; 11239 struct hwrm_port_phy_qcfg_output *resp; 11240 struct hwrm_port_phy_qcfg_input *req; 11241 u8 link_state = link_info->link_state; 11242 bool support_changed; 11243 int rc; 11244 11245 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 11246 if (rc) 11247 return rc; 11248 11249 resp = hwrm_req_hold(bp, req); 11250 rc = hwrm_req_send(bp, req); 11251 if (rc) { 11252 hwrm_req_drop(bp, req); 11253 if (BNXT_VF(bp) && rc == -ENODEV) { 11254 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 11255 rc = 0; 11256 } 11257 return rc; 11258 } 11259 11260 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 11261 link_info->phy_link_status = resp->link; 11262 link_info->duplex = resp->duplex_cfg; 11263 if (bp->hwrm_spec_code >= 0x10800) 11264 link_info->duplex = resp->duplex_state; 11265 link_info->pause = resp->pause; 11266 link_info->auto_mode = resp->auto_mode; 11267 link_info->auto_pause_setting = resp->auto_pause; 11268 link_info->lp_pause = resp->link_partner_adv_pause; 11269 link_info->force_pause_setting = resp->force_pause; 11270 link_info->duplex_setting = resp->duplex_cfg; 11271 if (link_info->phy_link_status == BNXT_LINK_LINK) { 11272 link_info->link_speed = le16_to_cpu(resp->link_speed); 11273 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 11274 link_info->active_lanes = resp->active_lanes; 11275 } else { 11276 link_info->link_speed = 0; 11277 link_info->active_lanes = 0; 11278 } 11279 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 11280 link_info->force_pam4_link_speed = 11281 le16_to_cpu(resp->force_pam4_link_speed); 11282 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 11283 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 11284 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 11285 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 11286 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 11287 link_info->auto_pam4_link_speeds = 11288 le16_to_cpu(resp->auto_pam4_link_speed_mask); 11289 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 11290 link_info->lp_auto_link_speeds = 11291 le16_to_cpu(resp->link_partner_adv_speeds); 11292 link_info->lp_auto_pam4_link_speeds = 11293 resp->link_partner_pam4_adv_speeds; 11294 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 11295 link_info->phy_ver[0] = resp->phy_maj; 11296 link_info->phy_ver[1] = resp->phy_min; 11297 link_info->phy_ver[2] = resp->phy_bld; 11298 link_info->media_type = resp->media_type; 11299 link_info->phy_type = resp->phy_type; 11300 link_info->transceiver = resp->xcvr_pkg_type; 11301 link_info->phy_addr = resp->eee_config_phy_addr & 11302 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 11303 link_info->module_status = resp->module_status; 11304 11305 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 11306 struct ethtool_keee *eee = &bp->eee; 11307 u16 fw_speeds; 11308 11309 eee->eee_active = 0; 11310 if (resp->eee_config_phy_addr & 11311 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 11312 eee->eee_active = 1; 11313 fw_speeds = le16_to_cpu( 11314 resp->link_partner_adv_eee_link_speed_mask); 11315 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 11316 } 11317 11318 /* Pull initial EEE config */ 11319 if (!chng_link_state) { 11320 if (resp->eee_config_phy_addr & 11321 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 11322 eee->eee_enabled = 1; 11323 11324 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 11325 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 11326 11327 if (resp->eee_config_phy_addr & 11328 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 11329 __le32 tmr; 11330 11331 eee->tx_lpi_enabled = 1; 11332 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 11333 eee->tx_lpi_timer = le32_to_cpu(tmr) & 11334 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 11335 } 11336 } 11337 } 11338 11339 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 11340 if (bp->hwrm_spec_code >= 0x10504) { 11341 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 11342 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 11343 } 11344 /* TODO: need to add more logic to report VF link */ 11345 if (chng_link_state) { 11346 if (link_info->phy_link_status == BNXT_LINK_LINK) 11347 link_info->link_state = BNXT_LINK_STATE_UP; 11348 else 11349 link_info->link_state = BNXT_LINK_STATE_DOWN; 11350 if (link_state != link_info->link_state) 11351 bnxt_report_link(bp); 11352 } else { 11353 /* always link down if not require to update link state */ 11354 link_info->link_state = BNXT_LINK_STATE_DOWN; 11355 } 11356 hwrm_req_drop(bp, req); 11357 11358 if (!BNXT_PHY_CFG_ABLE(bp)) 11359 return 0; 11360 11361 support_changed = bnxt_support_speed_dropped(link_info); 11362 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 11363 bnxt_hwrm_set_link_setting(bp, true, false); 11364 return 0; 11365 } 11366 11367 static void bnxt_get_port_module_status(struct bnxt *bp) 11368 { 11369 struct bnxt_link_info *link_info = &bp->link_info; 11370 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 11371 u8 module_status; 11372 11373 if (bnxt_update_link(bp, true)) 11374 return; 11375 11376 module_status = link_info->module_status; 11377 switch (module_status) { 11378 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 11379 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 11380 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 11381 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 11382 bp->pf.port_id); 11383 if (bp->hwrm_spec_code >= 0x10201) { 11384 netdev_warn(bp->dev, "Module part number %s\n", 11385 resp->phy_vendor_partnumber); 11386 } 11387 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 11388 netdev_warn(bp->dev, "TX is disabled\n"); 11389 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 11390 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 11391 } 11392 } 11393 11394 static void 11395 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11396 { 11397 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 11398 if (bp->hwrm_spec_code >= 0x10201) 11399 req->auto_pause = 11400 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 11401 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11402 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 11403 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11404 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 11405 req->enables |= 11406 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11407 } else { 11408 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11409 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 11410 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11411 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 11412 req->enables |= 11413 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 11414 if (bp->hwrm_spec_code >= 0x10201) { 11415 req->auto_pause = req->force_pause; 11416 req->enables |= cpu_to_le32( 11417 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11418 } 11419 } 11420 } 11421 11422 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11423 { 11424 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 11425 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 11426 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11427 req->enables |= 11428 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 11429 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 11430 } else if (bp->link_info.advertising) { 11431 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 11432 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 11433 } 11434 if (bp->link_info.advertising_pam4) { 11435 req->enables |= 11436 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 11437 req->auto_link_pam4_speed_mask = 11438 cpu_to_le16(bp->link_info.advertising_pam4); 11439 } 11440 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 11441 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 11442 } else { 11443 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 11444 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11445 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 11446 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 11447 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 11448 (u32)bp->link_info.req_link_speed); 11449 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 11450 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11451 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 11452 } else { 11453 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11454 } 11455 } 11456 11457 /* tell chimp that the setting takes effect immediately */ 11458 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 11459 } 11460 11461 int bnxt_hwrm_set_pause(struct bnxt *bp) 11462 { 11463 struct hwrm_port_phy_cfg_input *req; 11464 int rc; 11465 11466 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11467 if (rc) 11468 return rc; 11469 11470 bnxt_hwrm_set_pause_common(bp, req); 11471 11472 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 11473 bp->link_info.force_link_chng) 11474 bnxt_hwrm_set_link_common(bp, req); 11475 11476 rc = hwrm_req_send(bp, req); 11477 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 11478 /* since changing of pause setting doesn't trigger any link 11479 * change event, the driver needs to update the current pause 11480 * result upon successfully return of the phy_cfg command 11481 */ 11482 bp->link_info.pause = 11483 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 11484 bp->link_info.auto_pause_setting = 0; 11485 if (!bp->link_info.force_link_chng) 11486 bnxt_report_link(bp); 11487 } 11488 bp->link_info.force_link_chng = false; 11489 return rc; 11490 } 11491 11492 static void bnxt_hwrm_set_eee(struct bnxt *bp, 11493 struct hwrm_port_phy_cfg_input *req) 11494 { 11495 struct ethtool_keee *eee = &bp->eee; 11496 11497 if (eee->eee_enabled) { 11498 u16 eee_speeds; 11499 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 11500 11501 if (eee->tx_lpi_enabled) 11502 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 11503 else 11504 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 11505 11506 req->flags |= cpu_to_le32(flags); 11507 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 11508 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 11509 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 11510 } else { 11511 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 11512 } 11513 } 11514 11515 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 11516 { 11517 struct hwrm_port_phy_cfg_input *req; 11518 int rc; 11519 11520 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11521 if (rc) 11522 return rc; 11523 11524 if (set_pause) 11525 bnxt_hwrm_set_pause_common(bp, req); 11526 11527 bnxt_hwrm_set_link_common(bp, req); 11528 11529 if (set_eee) 11530 bnxt_hwrm_set_eee(bp, req); 11531 return hwrm_req_send(bp, req); 11532 } 11533 11534 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 11535 { 11536 struct hwrm_port_phy_cfg_input *req; 11537 int rc; 11538 11539 if (!BNXT_SINGLE_PF(bp)) 11540 return 0; 11541 11542 if (pci_num_vf(bp->pdev) && 11543 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 11544 return 0; 11545 11546 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11547 if (rc) 11548 return rc; 11549 11550 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 11551 rc = hwrm_req_send(bp, req); 11552 if (!rc) { 11553 mutex_lock(&bp->link_lock); 11554 /* Device is not obliged link down in certain scenarios, even 11555 * when forced. Setting the state unknown is consistent with 11556 * driver startup and will force link state to be reported 11557 * during subsequent open based on PORT_PHY_QCFG. 11558 */ 11559 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 11560 mutex_unlock(&bp->link_lock); 11561 } 11562 return rc; 11563 } 11564 11565 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 11566 { 11567 #ifdef CONFIG_TEE_BNXT_FW 11568 int rc = tee_bnxt_fw_load(); 11569 11570 if (rc) 11571 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 11572 11573 return rc; 11574 #else 11575 netdev_err(bp->dev, "OP-TEE not supported\n"); 11576 return -ENODEV; 11577 #endif 11578 } 11579 11580 static int bnxt_try_recover_fw(struct bnxt *bp) 11581 { 11582 if (bp->fw_health && bp->fw_health->status_reliable) { 11583 int retry = 0, rc; 11584 u32 sts; 11585 11586 do { 11587 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11588 rc = bnxt_hwrm_poll(bp); 11589 if (!BNXT_FW_IS_BOOTING(sts) && 11590 !BNXT_FW_IS_RECOVERING(sts)) 11591 break; 11592 retry++; 11593 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 11594 11595 if (!BNXT_FW_IS_HEALTHY(sts)) { 11596 netdev_err(bp->dev, 11597 "Firmware not responding, status: 0x%x\n", 11598 sts); 11599 rc = -ENODEV; 11600 } 11601 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 11602 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 11603 return bnxt_fw_reset_via_optee(bp); 11604 } 11605 return rc; 11606 } 11607 11608 return -ENODEV; 11609 } 11610 11611 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 11612 { 11613 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11614 11615 if (!BNXT_NEW_RM(bp)) 11616 return; /* no resource reservations required */ 11617 11618 hw_resc->resv_cp_rings = 0; 11619 hw_resc->resv_stat_ctxs = 0; 11620 hw_resc->resv_irqs = 0; 11621 hw_resc->resv_tx_rings = 0; 11622 hw_resc->resv_rx_rings = 0; 11623 hw_resc->resv_hw_ring_grps = 0; 11624 hw_resc->resv_vnics = 0; 11625 hw_resc->resv_rsscos_ctxs = 0; 11626 if (!fw_reset) { 11627 bp->tx_nr_rings = 0; 11628 bp->rx_nr_rings = 0; 11629 } 11630 } 11631 11632 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 11633 { 11634 int rc; 11635 11636 if (!BNXT_NEW_RM(bp)) 11637 return 0; /* no resource reservations required */ 11638 11639 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 11640 if (rc) 11641 netdev_err(bp->dev, "resc_qcaps failed\n"); 11642 11643 bnxt_clear_reservations(bp, fw_reset); 11644 11645 return rc; 11646 } 11647 11648 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 11649 { 11650 struct hwrm_func_drv_if_change_output *resp; 11651 struct hwrm_func_drv_if_change_input *req; 11652 bool fw_reset = !bp->irq_tbl; 11653 bool resc_reinit = false; 11654 int rc, retry = 0; 11655 u32 flags = 0; 11656 11657 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 11658 return 0; 11659 11660 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 11661 if (rc) 11662 return rc; 11663 11664 if (up) 11665 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 11666 resp = hwrm_req_hold(bp, req); 11667 11668 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 11669 while (retry < BNXT_FW_IF_RETRY) { 11670 rc = hwrm_req_send(bp, req); 11671 if (rc != -EAGAIN) 11672 break; 11673 11674 msleep(50); 11675 retry++; 11676 } 11677 11678 if (rc == -EAGAIN) { 11679 hwrm_req_drop(bp, req); 11680 return rc; 11681 } else if (!rc) { 11682 flags = le32_to_cpu(resp->flags); 11683 } else if (up) { 11684 rc = bnxt_try_recover_fw(bp); 11685 fw_reset = true; 11686 } 11687 hwrm_req_drop(bp, req); 11688 if (rc) 11689 return rc; 11690 11691 if (!up) { 11692 bnxt_inv_fw_health_reg(bp); 11693 return 0; 11694 } 11695 11696 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 11697 resc_reinit = true; 11698 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 11699 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 11700 fw_reset = true; 11701 else 11702 bnxt_remap_fw_health_regs(bp); 11703 11704 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 11705 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 11706 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11707 return -ENODEV; 11708 } 11709 if (resc_reinit || fw_reset) { 11710 if (fw_reset) { 11711 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11712 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11713 bnxt_ulp_irq_stop(bp); 11714 bnxt_free_ctx_mem(bp); 11715 bnxt_dcb_free(bp); 11716 rc = bnxt_fw_init_one(bp); 11717 if (rc) { 11718 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11719 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11720 return rc; 11721 } 11722 bnxt_clear_int_mode(bp); 11723 rc = bnxt_init_int_mode(bp); 11724 if (rc) { 11725 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11726 netdev_err(bp->dev, "init int mode failed\n"); 11727 return rc; 11728 } 11729 } 11730 rc = bnxt_cancel_reservations(bp, fw_reset); 11731 } 11732 return rc; 11733 } 11734 11735 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 11736 { 11737 struct hwrm_port_led_qcaps_output *resp; 11738 struct hwrm_port_led_qcaps_input *req; 11739 struct bnxt_pf_info *pf = &bp->pf; 11740 int rc; 11741 11742 bp->num_leds = 0; 11743 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 11744 return 0; 11745 11746 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 11747 if (rc) 11748 return rc; 11749 11750 req->port_id = cpu_to_le16(pf->port_id); 11751 resp = hwrm_req_hold(bp, req); 11752 rc = hwrm_req_send(bp, req); 11753 if (rc) { 11754 hwrm_req_drop(bp, req); 11755 return rc; 11756 } 11757 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 11758 int i; 11759 11760 bp->num_leds = resp->num_leds; 11761 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 11762 bp->num_leds); 11763 for (i = 0; i < bp->num_leds; i++) { 11764 struct bnxt_led_info *led = &bp->leds[i]; 11765 __le16 caps = led->led_state_caps; 11766 11767 if (!led->led_group_id || 11768 !BNXT_LED_ALT_BLINK_CAP(caps)) { 11769 bp->num_leds = 0; 11770 break; 11771 } 11772 } 11773 } 11774 hwrm_req_drop(bp, req); 11775 return 0; 11776 } 11777 11778 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 11779 { 11780 struct hwrm_wol_filter_alloc_output *resp; 11781 struct hwrm_wol_filter_alloc_input *req; 11782 int rc; 11783 11784 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 11785 if (rc) 11786 return rc; 11787 11788 req->port_id = cpu_to_le16(bp->pf.port_id); 11789 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 11790 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 11791 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 11792 11793 resp = hwrm_req_hold(bp, req); 11794 rc = hwrm_req_send(bp, req); 11795 if (!rc) 11796 bp->wol_filter_id = resp->wol_filter_id; 11797 hwrm_req_drop(bp, req); 11798 return rc; 11799 } 11800 11801 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 11802 { 11803 struct hwrm_wol_filter_free_input *req; 11804 int rc; 11805 11806 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 11807 if (rc) 11808 return rc; 11809 11810 req->port_id = cpu_to_le16(bp->pf.port_id); 11811 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 11812 req->wol_filter_id = bp->wol_filter_id; 11813 11814 return hwrm_req_send(bp, req); 11815 } 11816 11817 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 11818 { 11819 struct hwrm_wol_filter_qcfg_output *resp; 11820 struct hwrm_wol_filter_qcfg_input *req; 11821 u16 next_handle = 0; 11822 int rc; 11823 11824 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 11825 if (rc) 11826 return rc; 11827 11828 req->port_id = cpu_to_le16(bp->pf.port_id); 11829 req->handle = cpu_to_le16(handle); 11830 resp = hwrm_req_hold(bp, req); 11831 rc = hwrm_req_send(bp, req); 11832 if (!rc) { 11833 next_handle = le16_to_cpu(resp->next_handle); 11834 if (next_handle != 0) { 11835 if (resp->wol_type == 11836 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 11837 bp->wol = 1; 11838 bp->wol_filter_id = resp->wol_filter_id; 11839 } 11840 } 11841 } 11842 hwrm_req_drop(bp, req); 11843 return next_handle; 11844 } 11845 11846 static void bnxt_get_wol_settings(struct bnxt *bp) 11847 { 11848 u16 handle = 0; 11849 11850 bp->wol = 0; 11851 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 11852 return; 11853 11854 do { 11855 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 11856 } while (handle && handle != 0xffff); 11857 } 11858 11859 static bool bnxt_eee_config_ok(struct bnxt *bp) 11860 { 11861 struct ethtool_keee *eee = &bp->eee; 11862 struct bnxt_link_info *link_info = &bp->link_info; 11863 11864 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 11865 return true; 11866 11867 if (eee->eee_enabled) { 11868 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 11869 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 11870 11871 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 11872 11873 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11874 eee->eee_enabled = 0; 11875 return false; 11876 } 11877 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 11878 linkmode_and(eee->advertised, advertising, 11879 eee->supported); 11880 return false; 11881 } 11882 } 11883 return true; 11884 } 11885 11886 static int bnxt_update_phy_setting(struct bnxt *bp) 11887 { 11888 int rc; 11889 bool update_link = false; 11890 bool update_pause = false; 11891 bool update_eee = false; 11892 struct bnxt_link_info *link_info = &bp->link_info; 11893 11894 rc = bnxt_update_link(bp, true); 11895 if (rc) { 11896 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 11897 rc); 11898 return rc; 11899 } 11900 if (!BNXT_SINGLE_PF(bp)) 11901 return 0; 11902 11903 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11904 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 11905 link_info->req_flow_ctrl) 11906 update_pause = true; 11907 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11908 link_info->force_pause_setting != link_info->req_flow_ctrl) 11909 update_pause = true; 11910 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11911 if (BNXT_AUTO_MODE(link_info->auto_mode)) 11912 update_link = true; 11913 if (bnxt_force_speed_updated(link_info)) 11914 update_link = true; 11915 if (link_info->req_duplex != link_info->duplex_setting) 11916 update_link = true; 11917 } else { 11918 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 11919 update_link = true; 11920 if (bnxt_auto_speed_updated(link_info)) 11921 update_link = true; 11922 } 11923 11924 /* The last close may have shutdown the link, so need to call 11925 * PHY_CFG to bring it back up. 11926 */ 11927 if (!BNXT_LINK_IS_UP(bp)) 11928 update_link = true; 11929 11930 if (!bnxt_eee_config_ok(bp)) 11931 update_eee = true; 11932 11933 if (update_link) 11934 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 11935 else if (update_pause) 11936 rc = bnxt_hwrm_set_pause(bp); 11937 if (rc) { 11938 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 11939 rc); 11940 return rc; 11941 } 11942 11943 return rc; 11944 } 11945 11946 /* Common routine to pre-map certain register block to different GRC window. 11947 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 11948 * in PF and 3 windows in VF that can be customized to map in different 11949 * register blocks. 11950 */ 11951 static void bnxt_preset_reg_win(struct bnxt *bp) 11952 { 11953 if (BNXT_PF(bp)) { 11954 /* CAG registers map to GRC window #4 */ 11955 writel(BNXT_CAG_REG_BASE, 11956 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 11957 } 11958 } 11959 11960 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 11961 11962 static int bnxt_reinit_after_abort(struct bnxt *bp) 11963 { 11964 int rc; 11965 11966 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11967 return -EBUSY; 11968 11969 if (bp->dev->reg_state == NETREG_UNREGISTERED) 11970 return -ENODEV; 11971 11972 rc = bnxt_fw_init_one(bp); 11973 if (!rc) { 11974 bnxt_clear_int_mode(bp); 11975 rc = bnxt_init_int_mode(bp); 11976 if (!rc) { 11977 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11978 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11979 } 11980 } 11981 return rc; 11982 } 11983 11984 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 11985 { 11986 struct bnxt_ntuple_filter *ntp_fltr; 11987 struct bnxt_l2_filter *l2_fltr; 11988 11989 if (list_empty(&fltr->list)) 11990 return; 11991 11992 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 11993 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 11994 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 11995 atomic_inc(&l2_fltr->refcnt); 11996 ntp_fltr->l2_fltr = l2_fltr; 11997 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 11998 bnxt_del_ntp_filter(bp, ntp_fltr); 11999 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12000 fltr->sw_id); 12001 } 12002 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12003 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12004 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12005 bnxt_del_l2_filter(bp, l2_fltr); 12006 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12007 fltr->sw_id); 12008 } 12009 } 12010 } 12011 12012 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12013 { 12014 struct bnxt_filter_base *usr_fltr, *tmp; 12015 12016 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12017 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12018 } 12019 12020 static int bnxt_set_xps_mapping(struct bnxt *bp) 12021 { 12022 int numa_node = dev_to_node(&bp->pdev->dev); 12023 unsigned int q_idx, map_idx, cpu, i; 12024 const struct cpumask *cpu_mask_ptr; 12025 int nr_cpus = num_online_cpus(); 12026 cpumask_t *q_map; 12027 int rc = 0; 12028 12029 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12030 if (!q_map) 12031 return -ENOMEM; 12032 12033 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12034 * Each TC has the same number of TX queues. The nth TX queue for each 12035 * TC will have the same CPU mask. 12036 */ 12037 for (i = 0; i < nr_cpus; i++) { 12038 map_idx = i % bp->tx_nr_rings_per_tc; 12039 cpu = cpumask_local_spread(i, numa_node); 12040 cpu_mask_ptr = get_cpu_mask(cpu); 12041 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12042 } 12043 12044 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12045 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12046 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12047 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12048 if (rc) { 12049 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12050 q_idx); 12051 break; 12052 } 12053 } 12054 12055 kfree(q_map); 12056 12057 return rc; 12058 } 12059 12060 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12061 { 12062 int rc = 0; 12063 12064 bnxt_preset_reg_win(bp); 12065 netif_carrier_off(bp->dev); 12066 if (irq_re_init) { 12067 /* Reserve rings now if none were reserved at driver probe. */ 12068 rc = bnxt_init_dflt_ring_mode(bp); 12069 if (rc) { 12070 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12071 return rc; 12072 } 12073 } 12074 rc = bnxt_reserve_rings(bp, irq_re_init); 12075 if (rc) 12076 return rc; 12077 if ((bp->flags & BNXT_FLAG_RFS) && 12078 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 12079 /* disable RFS if falling back to INTA */ 12080 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 12081 bp->flags &= ~BNXT_FLAG_RFS; 12082 } 12083 12084 rc = bnxt_alloc_mem(bp, irq_re_init); 12085 if (rc) { 12086 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12087 goto open_err_free_mem; 12088 } 12089 12090 if (irq_re_init) { 12091 bnxt_init_napi(bp); 12092 rc = bnxt_request_irq(bp); 12093 if (rc) { 12094 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12095 goto open_err_irq; 12096 } 12097 } 12098 12099 rc = bnxt_init_nic(bp, irq_re_init); 12100 if (rc) { 12101 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12102 goto open_err_irq; 12103 } 12104 12105 bnxt_enable_napi(bp); 12106 bnxt_debug_dev_init(bp); 12107 12108 if (link_re_init) { 12109 mutex_lock(&bp->link_lock); 12110 rc = bnxt_update_phy_setting(bp); 12111 mutex_unlock(&bp->link_lock); 12112 if (rc) { 12113 netdev_warn(bp->dev, "failed to update phy settings\n"); 12114 if (BNXT_SINGLE_PF(bp)) { 12115 bp->link_info.phy_retry = true; 12116 bp->link_info.phy_retry_expires = 12117 jiffies + 5 * HZ; 12118 } 12119 } 12120 } 12121 12122 if (irq_re_init) { 12123 udp_tunnel_nic_reset_ntf(bp->dev); 12124 rc = bnxt_set_xps_mapping(bp); 12125 if (rc) 12126 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12127 } 12128 12129 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12130 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12131 static_branch_enable(&bnxt_xdp_locking_key); 12132 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12133 static_branch_disable(&bnxt_xdp_locking_key); 12134 } 12135 set_bit(BNXT_STATE_OPEN, &bp->state); 12136 bnxt_enable_int(bp); 12137 /* Enable TX queues */ 12138 bnxt_tx_enable(bp); 12139 mod_timer(&bp->timer, jiffies + bp->current_interval); 12140 /* Poll link status and check for SFP+ module status */ 12141 mutex_lock(&bp->link_lock); 12142 bnxt_get_port_module_status(bp); 12143 mutex_unlock(&bp->link_lock); 12144 12145 /* VF-reps may need to be re-opened after the PF is re-opened */ 12146 if (BNXT_PF(bp)) 12147 bnxt_vf_reps_open(bp); 12148 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 12149 WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS); 12150 bnxt_ptp_init_rtc(bp, true); 12151 bnxt_ptp_cfg_tstamp_filters(bp); 12152 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12153 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12154 bnxt_cfg_usr_fltrs(bp); 12155 return 0; 12156 12157 open_err_irq: 12158 bnxt_del_napi(bp); 12159 12160 open_err_free_mem: 12161 bnxt_free_skbs(bp); 12162 bnxt_free_irq(bp); 12163 bnxt_free_mem(bp, true); 12164 return rc; 12165 } 12166 12167 /* rtnl_lock held */ 12168 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12169 { 12170 int rc = 0; 12171 12172 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12173 rc = -EIO; 12174 if (!rc) 12175 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12176 if (rc) { 12177 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12178 dev_close(bp->dev); 12179 } 12180 return rc; 12181 } 12182 12183 /* rtnl_lock held, open the NIC half way by allocating all resources, but 12184 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 12185 * self tests. 12186 */ 12187 int bnxt_half_open_nic(struct bnxt *bp) 12188 { 12189 int rc = 0; 12190 12191 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12192 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12193 rc = -ENODEV; 12194 goto half_open_err; 12195 } 12196 12197 rc = bnxt_alloc_mem(bp, true); 12198 if (rc) { 12199 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12200 goto half_open_err; 12201 } 12202 bnxt_init_napi(bp); 12203 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12204 rc = bnxt_init_nic(bp, true); 12205 if (rc) { 12206 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12207 bnxt_del_napi(bp); 12208 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12209 goto half_open_err; 12210 } 12211 return 0; 12212 12213 half_open_err: 12214 bnxt_free_skbs(bp); 12215 bnxt_free_mem(bp, true); 12216 dev_close(bp->dev); 12217 return rc; 12218 } 12219 12220 /* rtnl_lock held, this call can only be made after a previous successful 12221 * call to bnxt_half_open_nic(). 12222 */ 12223 void bnxt_half_close_nic(struct bnxt *bp) 12224 { 12225 bnxt_hwrm_resource_free(bp, false, true); 12226 bnxt_del_napi(bp); 12227 bnxt_free_skbs(bp); 12228 bnxt_free_mem(bp, true); 12229 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12230 } 12231 12232 void bnxt_reenable_sriov(struct bnxt *bp) 12233 { 12234 if (BNXT_PF(bp)) { 12235 struct bnxt_pf_info *pf = &bp->pf; 12236 int n = pf->active_vfs; 12237 12238 if (n) 12239 bnxt_cfg_hw_sriov(bp, &n, true); 12240 } 12241 } 12242 12243 static int bnxt_open(struct net_device *dev) 12244 { 12245 struct bnxt *bp = netdev_priv(dev); 12246 int rc; 12247 12248 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12249 rc = bnxt_reinit_after_abort(bp); 12250 if (rc) { 12251 if (rc == -EBUSY) 12252 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 12253 else 12254 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 12255 return -ENODEV; 12256 } 12257 } 12258 12259 rc = bnxt_hwrm_if_change(bp, true); 12260 if (rc) 12261 return rc; 12262 12263 rc = __bnxt_open_nic(bp, true, true); 12264 if (rc) { 12265 bnxt_hwrm_if_change(bp, false); 12266 } else { 12267 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 12268 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12269 bnxt_queue_sp_work(bp, 12270 BNXT_RESTART_ULP_SP_EVENT); 12271 } 12272 } 12273 12274 return rc; 12275 } 12276 12277 static bool bnxt_drv_busy(struct bnxt *bp) 12278 { 12279 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 12280 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 12281 } 12282 12283 static void bnxt_get_ring_stats(struct bnxt *bp, 12284 struct rtnl_link_stats64 *stats); 12285 12286 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 12287 bool link_re_init) 12288 { 12289 /* Close the VF-reps before closing PF */ 12290 if (BNXT_PF(bp)) 12291 bnxt_vf_reps_close(bp); 12292 12293 /* Change device state to avoid TX queue wake up's */ 12294 bnxt_tx_disable(bp); 12295 12296 clear_bit(BNXT_STATE_OPEN, &bp->state); 12297 smp_mb__after_atomic(); 12298 while (bnxt_drv_busy(bp)) 12299 msleep(20); 12300 12301 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12302 bnxt_clear_rss_ctxs(bp); 12303 /* Flush rings and disable interrupts */ 12304 bnxt_shutdown_nic(bp, irq_re_init); 12305 12306 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 12307 12308 bnxt_debug_dev_exit(bp); 12309 bnxt_disable_napi(bp); 12310 del_timer_sync(&bp->timer); 12311 bnxt_free_skbs(bp); 12312 12313 /* Save ring stats before shutdown */ 12314 if (bp->bnapi && irq_re_init) { 12315 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 12316 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 12317 } 12318 if (irq_re_init) { 12319 bnxt_free_irq(bp); 12320 bnxt_del_napi(bp); 12321 } 12322 bnxt_free_mem(bp, irq_re_init); 12323 } 12324 12325 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12326 { 12327 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12328 /* If we get here, it means firmware reset is in progress 12329 * while we are trying to close. We can safely proceed with 12330 * the close because we are holding rtnl_lock(). Some firmware 12331 * messages may fail as we proceed to close. We set the 12332 * ABORT_ERR flag here so that the FW reset thread will later 12333 * abort when it gets the rtnl_lock() and sees the flag. 12334 */ 12335 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 12336 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12337 } 12338 12339 #ifdef CONFIG_BNXT_SRIOV 12340 if (bp->sriov_cfg) { 12341 int rc; 12342 12343 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 12344 !bp->sriov_cfg, 12345 BNXT_SRIOV_CFG_WAIT_TMO); 12346 if (!rc) 12347 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 12348 else if (rc < 0) 12349 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 12350 } 12351 #endif 12352 __bnxt_close_nic(bp, irq_re_init, link_re_init); 12353 } 12354 12355 static int bnxt_close(struct net_device *dev) 12356 { 12357 struct bnxt *bp = netdev_priv(dev); 12358 12359 bnxt_close_nic(bp, true, true); 12360 bnxt_hwrm_shutdown_link(bp); 12361 bnxt_hwrm_if_change(bp, false); 12362 return 0; 12363 } 12364 12365 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 12366 u16 *val) 12367 { 12368 struct hwrm_port_phy_mdio_read_output *resp; 12369 struct hwrm_port_phy_mdio_read_input *req; 12370 int rc; 12371 12372 if (bp->hwrm_spec_code < 0x10a00) 12373 return -EOPNOTSUPP; 12374 12375 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 12376 if (rc) 12377 return rc; 12378 12379 req->port_id = cpu_to_le16(bp->pf.port_id); 12380 req->phy_addr = phy_addr; 12381 req->reg_addr = cpu_to_le16(reg & 0x1f); 12382 if (mdio_phy_id_is_c45(phy_addr)) { 12383 req->cl45_mdio = 1; 12384 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12385 req->dev_addr = mdio_phy_id_devad(phy_addr); 12386 req->reg_addr = cpu_to_le16(reg); 12387 } 12388 12389 resp = hwrm_req_hold(bp, req); 12390 rc = hwrm_req_send(bp, req); 12391 if (!rc) 12392 *val = le16_to_cpu(resp->reg_data); 12393 hwrm_req_drop(bp, req); 12394 return rc; 12395 } 12396 12397 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 12398 u16 val) 12399 { 12400 struct hwrm_port_phy_mdio_write_input *req; 12401 int rc; 12402 12403 if (bp->hwrm_spec_code < 0x10a00) 12404 return -EOPNOTSUPP; 12405 12406 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 12407 if (rc) 12408 return rc; 12409 12410 req->port_id = cpu_to_le16(bp->pf.port_id); 12411 req->phy_addr = phy_addr; 12412 req->reg_addr = cpu_to_le16(reg & 0x1f); 12413 if (mdio_phy_id_is_c45(phy_addr)) { 12414 req->cl45_mdio = 1; 12415 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12416 req->dev_addr = mdio_phy_id_devad(phy_addr); 12417 req->reg_addr = cpu_to_le16(reg); 12418 } 12419 req->reg_data = cpu_to_le16(val); 12420 12421 return hwrm_req_send(bp, req); 12422 } 12423 12424 /* rtnl_lock held */ 12425 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12426 { 12427 struct mii_ioctl_data *mdio = if_mii(ifr); 12428 struct bnxt *bp = netdev_priv(dev); 12429 int rc; 12430 12431 switch (cmd) { 12432 case SIOCGMIIPHY: 12433 mdio->phy_id = bp->link_info.phy_addr; 12434 12435 fallthrough; 12436 case SIOCGMIIREG: { 12437 u16 mii_regval = 0; 12438 12439 if (!netif_running(dev)) 12440 return -EAGAIN; 12441 12442 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 12443 &mii_regval); 12444 mdio->val_out = mii_regval; 12445 return rc; 12446 } 12447 12448 case SIOCSMIIREG: 12449 if (!netif_running(dev)) 12450 return -EAGAIN; 12451 12452 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 12453 mdio->val_in); 12454 12455 case SIOCSHWTSTAMP: 12456 return bnxt_hwtstamp_set(dev, ifr); 12457 12458 case SIOCGHWTSTAMP: 12459 return bnxt_hwtstamp_get(dev, ifr); 12460 12461 default: 12462 /* do nothing */ 12463 break; 12464 } 12465 return -EOPNOTSUPP; 12466 } 12467 12468 static void bnxt_get_ring_stats(struct bnxt *bp, 12469 struct rtnl_link_stats64 *stats) 12470 { 12471 int i; 12472 12473 for (i = 0; i < bp->cp_nr_rings; i++) { 12474 struct bnxt_napi *bnapi = bp->bnapi[i]; 12475 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12476 u64 *sw = cpr->stats.sw_stats; 12477 12478 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 12479 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12480 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 12481 12482 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 12483 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 12484 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 12485 12486 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 12487 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 12488 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 12489 12490 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 12491 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 12492 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 12493 12494 stats->rx_missed_errors += 12495 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 12496 12497 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12498 12499 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 12500 12501 stats->rx_dropped += 12502 cpr->sw_stats->rx.rx_netpoll_discards + 12503 cpr->sw_stats->rx.rx_oom_discards; 12504 } 12505 } 12506 12507 static void bnxt_add_prev_stats(struct bnxt *bp, 12508 struct rtnl_link_stats64 *stats) 12509 { 12510 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 12511 12512 stats->rx_packets += prev_stats->rx_packets; 12513 stats->tx_packets += prev_stats->tx_packets; 12514 stats->rx_bytes += prev_stats->rx_bytes; 12515 stats->tx_bytes += prev_stats->tx_bytes; 12516 stats->rx_missed_errors += prev_stats->rx_missed_errors; 12517 stats->multicast += prev_stats->multicast; 12518 stats->rx_dropped += prev_stats->rx_dropped; 12519 stats->tx_dropped += prev_stats->tx_dropped; 12520 } 12521 12522 static void 12523 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 12524 { 12525 struct bnxt *bp = netdev_priv(dev); 12526 12527 set_bit(BNXT_STATE_READ_STATS, &bp->state); 12528 /* Make sure bnxt_close_nic() sees that we are reading stats before 12529 * we check the BNXT_STATE_OPEN flag. 12530 */ 12531 smp_mb__after_atomic(); 12532 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12533 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12534 *stats = bp->net_stats_prev; 12535 return; 12536 } 12537 12538 bnxt_get_ring_stats(bp, stats); 12539 bnxt_add_prev_stats(bp, stats); 12540 12541 if (bp->flags & BNXT_FLAG_PORT_STATS) { 12542 u64 *rx = bp->port_stats.sw_stats; 12543 u64 *tx = bp->port_stats.sw_stats + 12544 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 12545 12546 stats->rx_crc_errors = 12547 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 12548 stats->rx_frame_errors = 12549 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 12550 stats->rx_length_errors = 12551 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 12552 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 12553 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 12554 stats->rx_errors = 12555 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 12556 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 12557 stats->collisions = 12558 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 12559 stats->tx_fifo_errors = 12560 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 12561 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 12562 } 12563 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12564 } 12565 12566 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 12567 struct bnxt_total_ring_err_stats *stats, 12568 struct bnxt_cp_ring_info *cpr) 12569 { 12570 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 12571 u64 *hw_stats = cpr->stats.sw_stats; 12572 12573 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 12574 stats->rx_total_resets += sw_stats->rx.rx_resets; 12575 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 12576 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 12577 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 12578 stats->rx_total_ring_discards += 12579 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 12580 stats->tx_total_resets += sw_stats->tx.tx_resets; 12581 stats->tx_total_ring_discards += 12582 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 12583 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 12584 } 12585 12586 void bnxt_get_ring_err_stats(struct bnxt *bp, 12587 struct bnxt_total_ring_err_stats *stats) 12588 { 12589 int i; 12590 12591 for (i = 0; i < bp->cp_nr_rings; i++) 12592 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 12593 } 12594 12595 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 12596 { 12597 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12598 struct net_device *dev = bp->dev; 12599 struct netdev_hw_addr *ha; 12600 u8 *haddr; 12601 int mc_count = 0; 12602 bool update = false; 12603 int off = 0; 12604 12605 netdev_for_each_mc_addr(ha, dev) { 12606 if (mc_count >= BNXT_MAX_MC_ADDRS) { 12607 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12608 vnic->mc_list_count = 0; 12609 return false; 12610 } 12611 haddr = ha->addr; 12612 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 12613 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 12614 update = true; 12615 } 12616 off += ETH_ALEN; 12617 mc_count++; 12618 } 12619 if (mc_count) 12620 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12621 12622 if (mc_count != vnic->mc_list_count) { 12623 vnic->mc_list_count = mc_count; 12624 update = true; 12625 } 12626 return update; 12627 } 12628 12629 static bool bnxt_uc_list_updated(struct bnxt *bp) 12630 { 12631 struct net_device *dev = bp->dev; 12632 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12633 struct netdev_hw_addr *ha; 12634 int off = 0; 12635 12636 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 12637 return true; 12638 12639 netdev_for_each_uc_addr(ha, dev) { 12640 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 12641 return true; 12642 12643 off += ETH_ALEN; 12644 } 12645 return false; 12646 } 12647 12648 static void bnxt_set_rx_mode(struct net_device *dev) 12649 { 12650 struct bnxt *bp = netdev_priv(dev); 12651 struct bnxt_vnic_info *vnic; 12652 bool mc_update = false; 12653 bool uc_update; 12654 u32 mask; 12655 12656 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 12657 return; 12658 12659 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12660 mask = vnic->rx_mask; 12661 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 12662 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 12663 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 12664 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 12665 12666 if (dev->flags & IFF_PROMISC) 12667 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12668 12669 uc_update = bnxt_uc_list_updated(bp); 12670 12671 if (dev->flags & IFF_BROADCAST) 12672 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 12673 if (dev->flags & IFF_ALLMULTI) { 12674 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12675 vnic->mc_list_count = 0; 12676 } else if (dev->flags & IFF_MULTICAST) { 12677 mc_update = bnxt_mc_list_updated(bp, &mask); 12678 } 12679 12680 if (mask != vnic->rx_mask || uc_update || mc_update) { 12681 vnic->rx_mask = mask; 12682 12683 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12684 } 12685 } 12686 12687 static int bnxt_cfg_rx_mode(struct bnxt *bp) 12688 { 12689 struct net_device *dev = bp->dev; 12690 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12691 struct netdev_hw_addr *ha; 12692 int i, off = 0, rc; 12693 bool uc_update; 12694 12695 netif_addr_lock_bh(dev); 12696 uc_update = bnxt_uc_list_updated(bp); 12697 netif_addr_unlock_bh(dev); 12698 12699 if (!uc_update) 12700 goto skip_uc; 12701 12702 for (i = 1; i < vnic->uc_filter_count; i++) { 12703 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 12704 12705 bnxt_hwrm_l2_filter_free(bp, fltr); 12706 bnxt_del_l2_filter(bp, fltr); 12707 } 12708 12709 vnic->uc_filter_count = 1; 12710 12711 netif_addr_lock_bh(dev); 12712 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 12713 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12714 } else { 12715 netdev_for_each_uc_addr(ha, dev) { 12716 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 12717 off += ETH_ALEN; 12718 vnic->uc_filter_count++; 12719 } 12720 } 12721 netif_addr_unlock_bh(dev); 12722 12723 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 12724 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 12725 if (rc) { 12726 if (BNXT_VF(bp) && rc == -ENODEV) { 12727 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12728 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 12729 else 12730 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 12731 rc = 0; 12732 } else { 12733 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 12734 } 12735 vnic->uc_filter_count = i; 12736 return rc; 12737 } 12738 } 12739 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12740 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 12741 12742 skip_uc: 12743 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 12744 !bnxt_promisc_ok(bp)) 12745 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12746 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12747 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 12748 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 12749 rc); 12750 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12751 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12752 vnic->mc_list_count = 0; 12753 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12754 } 12755 if (rc) 12756 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 12757 rc); 12758 12759 return rc; 12760 } 12761 12762 static bool bnxt_can_reserve_rings(struct bnxt *bp) 12763 { 12764 #ifdef CONFIG_BNXT_SRIOV 12765 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 12766 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12767 12768 /* No minimum rings were provisioned by the PF. Don't 12769 * reserve rings by default when device is down. 12770 */ 12771 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 12772 return true; 12773 12774 if (!netif_running(bp->dev)) 12775 return false; 12776 } 12777 #endif 12778 return true; 12779 } 12780 12781 /* If the chip and firmware supports RFS */ 12782 static bool bnxt_rfs_supported(struct bnxt *bp) 12783 { 12784 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 12785 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 12786 return true; 12787 return false; 12788 } 12789 /* 212 firmware is broken for aRFS */ 12790 if (BNXT_FW_MAJ(bp) == 212) 12791 return false; 12792 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 12793 return true; 12794 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 12795 return true; 12796 return false; 12797 } 12798 12799 /* If runtime conditions support RFS */ 12800 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 12801 { 12802 struct bnxt_hw_rings hwr = {0}; 12803 int max_vnics, max_rss_ctxs; 12804 12805 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 12806 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 12807 return bnxt_rfs_supported(bp); 12808 12809 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 12810 return false; 12811 12812 hwr.grp = bp->rx_nr_rings; 12813 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 12814 if (new_rss_ctx) 12815 hwr.vnic++; 12816 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 12817 max_vnics = bnxt_get_max_func_vnics(bp); 12818 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 12819 12820 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 12821 if (bp->rx_nr_rings > 1) 12822 netdev_warn(bp->dev, 12823 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 12824 min(max_rss_ctxs - 1, max_vnics - 1)); 12825 return false; 12826 } 12827 12828 if (!BNXT_NEW_RM(bp)) 12829 return true; 12830 12831 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 12832 * issue that will mess up the default VNIC if we reduce the 12833 * reservations. 12834 */ 12835 if (hwr.vnic <= bp->hw_resc.resv_vnics && 12836 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12837 return true; 12838 12839 bnxt_hwrm_reserve_rings(bp, &hwr); 12840 if (hwr.vnic <= bp->hw_resc.resv_vnics && 12841 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12842 return true; 12843 12844 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 12845 hwr.vnic = 1; 12846 hwr.rss_ctx = 0; 12847 bnxt_hwrm_reserve_rings(bp, &hwr); 12848 return false; 12849 } 12850 12851 static netdev_features_t bnxt_fix_features(struct net_device *dev, 12852 netdev_features_t features) 12853 { 12854 struct bnxt *bp = netdev_priv(dev); 12855 netdev_features_t vlan_features; 12856 12857 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 12858 features &= ~NETIF_F_NTUPLE; 12859 12860 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 12861 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12862 12863 if (!(features & NETIF_F_GRO)) 12864 features &= ~NETIF_F_GRO_HW; 12865 12866 if (features & NETIF_F_GRO_HW) 12867 features &= ~NETIF_F_LRO; 12868 12869 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 12870 * turned on or off together. 12871 */ 12872 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 12873 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 12874 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12875 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12876 else if (vlan_features) 12877 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 12878 } 12879 #ifdef CONFIG_BNXT_SRIOV 12880 if (BNXT_VF(bp) && bp->vf.vlan) 12881 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12882 #endif 12883 return features; 12884 } 12885 12886 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 12887 bool link_re_init, u32 flags, bool update_tpa) 12888 { 12889 bnxt_close_nic(bp, irq_re_init, link_re_init); 12890 bp->flags = flags; 12891 if (update_tpa) 12892 bnxt_set_ring_params(bp); 12893 return bnxt_open_nic(bp, irq_re_init, link_re_init); 12894 } 12895 12896 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 12897 { 12898 bool update_tpa = false, update_ntuple = false; 12899 struct bnxt *bp = netdev_priv(dev); 12900 u32 flags = bp->flags; 12901 u32 changes; 12902 int rc = 0; 12903 bool re_init = false; 12904 12905 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 12906 if (features & NETIF_F_GRO_HW) 12907 flags |= BNXT_FLAG_GRO; 12908 else if (features & NETIF_F_LRO) 12909 flags |= BNXT_FLAG_LRO; 12910 12911 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 12912 flags &= ~BNXT_FLAG_TPA; 12913 12914 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12915 flags |= BNXT_FLAG_STRIP_VLAN; 12916 12917 if (features & NETIF_F_NTUPLE) 12918 flags |= BNXT_FLAG_RFS; 12919 else 12920 bnxt_clear_usr_fltrs(bp, true); 12921 12922 changes = flags ^ bp->flags; 12923 if (changes & BNXT_FLAG_TPA) { 12924 update_tpa = true; 12925 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 12926 (flags & BNXT_FLAG_TPA) == 0 || 12927 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 12928 re_init = true; 12929 } 12930 12931 if (changes & ~BNXT_FLAG_TPA) 12932 re_init = true; 12933 12934 if (changes & BNXT_FLAG_RFS) 12935 update_ntuple = true; 12936 12937 if (flags != bp->flags) { 12938 u32 old_flags = bp->flags; 12939 12940 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12941 bp->flags = flags; 12942 if (update_tpa) 12943 bnxt_set_ring_params(bp); 12944 return rc; 12945 } 12946 12947 if (update_ntuple) 12948 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 12949 12950 if (re_init) 12951 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 12952 12953 if (update_tpa) { 12954 bp->flags = flags; 12955 rc = bnxt_set_tpa(bp, 12956 (flags & BNXT_FLAG_TPA) ? 12957 true : false); 12958 if (rc) 12959 bp->flags = old_flags; 12960 } 12961 } 12962 return rc; 12963 } 12964 12965 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 12966 u8 **nextp) 12967 { 12968 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 12969 struct hop_jumbo_hdr *jhdr; 12970 int hdr_count = 0; 12971 u8 *nexthdr; 12972 int start; 12973 12974 /* Check that there are at most 2 IPv6 extension headers, no 12975 * fragment header, and each is <= 64 bytes. 12976 */ 12977 start = nw_off + sizeof(*ip6h); 12978 nexthdr = &ip6h->nexthdr; 12979 while (ipv6_ext_hdr(*nexthdr)) { 12980 struct ipv6_opt_hdr *hp; 12981 int hdrlen; 12982 12983 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 12984 *nexthdr == NEXTHDR_FRAGMENT) 12985 return false; 12986 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 12987 skb_headlen(skb), NULL); 12988 if (!hp) 12989 return false; 12990 if (*nexthdr == NEXTHDR_AUTH) 12991 hdrlen = ipv6_authlen(hp); 12992 else 12993 hdrlen = ipv6_optlen(hp); 12994 12995 if (hdrlen > 64) 12996 return false; 12997 12998 /* The ext header may be a hop-by-hop header inserted for 12999 * big TCP purposes. This will be removed before sending 13000 * from NIC, so do not count it. 13001 */ 13002 if (*nexthdr == NEXTHDR_HOP) { 13003 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 13004 goto increment_hdr; 13005 13006 jhdr = (struct hop_jumbo_hdr *)hp; 13007 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 13008 jhdr->nexthdr != IPPROTO_TCP) 13009 goto increment_hdr; 13010 13011 goto next_hdr; 13012 } 13013 increment_hdr: 13014 hdr_count++; 13015 next_hdr: 13016 nexthdr = &hp->nexthdr; 13017 start += hdrlen; 13018 } 13019 if (nextp) { 13020 /* Caller will check inner protocol */ 13021 if (skb->encapsulation) { 13022 *nextp = nexthdr; 13023 return true; 13024 } 13025 *nextp = NULL; 13026 } 13027 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13028 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13029 } 13030 13031 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13032 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13033 { 13034 struct udphdr *uh = udp_hdr(skb); 13035 __be16 udp_port = uh->dest; 13036 13037 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13038 udp_port != bp->vxlan_gpe_port) 13039 return false; 13040 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13041 struct ethhdr *eh = inner_eth_hdr(skb); 13042 13043 switch (eh->h_proto) { 13044 case htons(ETH_P_IP): 13045 return true; 13046 case htons(ETH_P_IPV6): 13047 return bnxt_exthdr_check(bp, skb, 13048 skb_inner_network_offset(skb), 13049 NULL); 13050 } 13051 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13052 return true; 13053 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13054 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13055 NULL); 13056 } 13057 return false; 13058 } 13059 13060 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13061 { 13062 switch (l4_proto) { 13063 case IPPROTO_UDP: 13064 return bnxt_udp_tunl_check(bp, skb); 13065 case IPPROTO_IPIP: 13066 return true; 13067 case IPPROTO_GRE: { 13068 switch (skb->inner_protocol) { 13069 default: 13070 return false; 13071 case htons(ETH_P_IP): 13072 return true; 13073 case htons(ETH_P_IPV6): 13074 fallthrough; 13075 } 13076 } 13077 case IPPROTO_IPV6: 13078 /* Check ext headers of inner ipv6 */ 13079 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13080 NULL); 13081 } 13082 return false; 13083 } 13084 13085 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13086 struct net_device *dev, 13087 netdev_features_t features) 13088 { 13089 struct bnxt *bp = netdev_priv(dev); 13090 u8 *l4_proto; 13091 13092 features = vlan_features_check(skb, features); 13093 switch (vlan_get_protocol(skb)) { 13094 case htons(ETH_P_IP): 13095 if (!skb->encapsulation) 13096 return features; 13097 l4_proto = &ip_hdr(skb)->protocol; 13098 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13099 return features; 13100 break; 13101 case htons(ETH_P_IPV6): 13102 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13103 &l4_proto)) 13104 break; 13105 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13106 return features; 13107 break; 13108 } 13109 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13110 } 13111 13112 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13113 u32 *reg_buf) 13114 { 13115 struct hwrm_dbg_read_direct_output *resp; 13116 struct hwrm_dbg_read_direct_input *req; 13117 __le32 *dbg_reg_buf; 13118 dma_addr_t mapping; 13119 int rc, i; 13120 13121 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13122 if (rc) 13123 return rc; 13124 13125 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13126 &mapping); 13127 if (!dbg_reg_buf) { 13128 rc = -ENOMEM; 13129 goto dbg_rd_reg_exit; 13130 } 13131 13132 req->host_dest_addr = cpu_to_le64(mapping); 13133 13134 resp = hwrm_req_hold(bp, req); 13135 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13136 req->read_len32 = cpu_to_le32(num_words); 13137 13138 rc = hwrm_req_send(bp, req); 13139 if (rc || resp->error_code) { 13140 rc = -EIO; 13141 goto dbg_rd_reg_exit; 13142 } 13143 for (i = 0; i < num_words; i++) 13144 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13145 13146 dbg_rd_reg_exit: 13147 hwrm_req_drop(bp, req); 13148 return rc; 13149 } 13150 13151 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13152 u32 ring_id, u32 *prod, u32 *cons) 13153 { 13154 struct hwrm_dbg_ring_info_get_output *resp; 13155 struct hwrm_dbg_ring_info_get_input *req; 13156 int rc; 13157 13158 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13159 if (rc) 13160 return rc; 13161 13162 req->ring_type = ring_type; 13163 req->fw_ring_id = cpu_to_le32(ring_id); 13164 resp = hwrm_req_hold(bp, req); 13165 rc = hwrm_req_send(bp, req); 13166 if (!rc) { 13167 *prod = le32_to_cpu(resp->producer_index); 13168 *cons = le32_to_cpu(resp->consumer_index); 13169 } 13170 hwrm_req_drop(bp, req); 13171 return rc; 13172 } 13173 13174 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13175 { 13176 struct bnxt_tx_ring_info *txr; 13177 int i = bnapi->index, j; 13178 13179 bnxt_for_each_napi_tx(j, bnapi, txr) 13180 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13181 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13182 txr->tx_cons); 13183 } 13184 13185 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13186 { 13187 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13188 int i = bnapi->index; 13189 13190 if (!rxr) 13191 return; 13192 13193 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13194 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13195 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13196 rxr->rx_sw_agg_prod); 13197 } 13198 13199 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13200 { 13201 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13202 int i = bnapi->index; 13203 13204 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13205 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13206 } 13207 13208 static void bnxt_dbg_dump_states(struct bnxt *bp) 13209 { 13210 int i; 13211 struct bnxt_napi *bnapi; 13212 13213 for (i = 0; i < bp->cp_nr_rings; i++) { 13214 bnapi = bp->bnapi[i]; 13215 if (netif_msg_drv(bp)) { 13216 bnxt_dump_tx_sw_state(bnapi); 13217 bnxt_dump_rx_sw_state(bnapi); 13218 bnxt_dump_cp_sw_state(bnapi); 13219 } 13220 } 13221 } 13222 13223 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 13224 { 13225 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 13226 struct hwrm_ring_reset_input *req; 13227 struct bnxt_napi *bnapi = rxr->bnapi; 13228 struct bnxt_cp_ring_info *cpr; 13229 u16 cp_ring_id; 13230 int rc; 13231 13232 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 13233 if (rc) 13234 return rc; 13235 13236 cpr = &bnapi->cp_ring; 13237 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 13238 req->cmpl_ring = cpu_to_le16(cp_ring_id); 13239 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 13240 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 13241 return hwrm_req_send_silent(bp, req); 13242 } 13243 13244 static void bnxt_reset_task(struct bnxt *bp, bool silent) 13245 { 13246 if (!silent) 13247 bnxt_dbg_dump_states(bp); 13248 if (netif_running(bp->dev)) { 13249 bnxt_close_nic(bp, !silent, false); 13250 bnxt_open_nic(bp, !silent, false); 13251 } 13252 } 13253 13254 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 13255 { 13256 struct bnxt *bp = netdev_priv(dev); 13257 13258 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 13259 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 13260 } 13261 13262 static void bnxt_fw_health_check(struct bnxt *bp) 13263 { 13264 struct bnxt_fw_health *fw_health = bp->fw_health; 13265 struct pci_dev *pdev = bp->pdev; 13266 u32 val; 13267 13268 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13269 return; 13270 13271 /* Make sure it is enabled before checking the tmr_counter. */ 13272 smp_rmb(); 13273 if (fw_health->tmr_counter) { 13274 fw_health->tmr_counter--; 13275 return; 13276 } 13277 13278 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13279 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 13280 fw_health->arrests++; 13281 goto fw_reset; 13282 } 13283 13284 fw_health->last_fw_heartbeat = val; 13285 13286 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13287 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 13288 fw_health->discoveries++; 13289 goto fw_reset; 13290 } 13291 13292 fw_health->tmr_counter = fw_health->tmr_multiplier; 13293 return; 13294 13295 fw_reset: 13296 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 13297 } 13298 13299 static void bnxt_timer(struct timer_list *t) 13300 { 13301 struct bnxt *bp = from_timer(bp, t, timer); 13302 struct net_device *dev = bp->dev; 13303 13304 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 13305 return; 13306 13307 if (atomic_read(&bp->intr_sem) != 0) 13308 goto bnxt_restart_timer; 13309 13310 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 13311 bnxt_fw_health_check(bp); 13312 13313 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 13314 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 13315 13316 if (bnxt_tc_flower_enabled(bp)) 13317 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 13318 13319 #ifdef CONFIG_RFS_ACCEL 13320 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 13321 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13322 #endif /*CONFIG_RFS_ACCEL*/ 13323 13324 if (bp->link_info.phy_retry) { 13325 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 13326 bp->link_info.phy_retry = false; 13327 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 13328 } else { 13329 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 13330 } 13331 } 13332 13333 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13334 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13335 13336 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 13337 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 13338 13339 bnxt_restart_timer: 13340 mod_timer(&bp->timer, jiffies + bp->current_interval); 13341 } 13342 13343 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 13344 { 13345 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 13346 * set. If the device is being closed, bnxt_close() may be holding 13347 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 13348 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 13349 */ 13350 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13351 rtnl_lock(); 13352 } 13353 13354 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 13355 { 13356 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13357 rtnl_unlock(); 13358 } 13359 13360 /* Only called from bnxt_sp_task() */ 13361 static void bnxt_reset(struct bnxt *bp, bool silent) 13362 { 13363 bnxt_rtnl_lock_sp(bp); 13364 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 13365 bnxt_reset_task(bp, silent); 13366 bnxt_rtnl_unlock_sp(bp); 13367 } 13368 13369 /* Only called from bnxt_sp_task() */ 13370 static void bnxt_rx_ring_reset(struct bnxt *bp) 13371 { 13372 int i; 13373 13374 bnxt_rtnl_lock_sp(bp); 13375 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13376 bnxt_rtnl_unlock_sp(bp); 13377 return; 13378 } 13379 /* Disable and flush TPA before resetting the RX ring */ 13380 if (bp->flags & BNXT_FLAG_TPA) 13381 bnxt_set_tpa(bp, false); 13382 for (i = 0; i < bp->rx_nr_rings; i++) { 13383 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 13384 struct bnxt_cp_ring_info *cpr; 13385 int rc; 13386 13387 if (!rxr->bnapi->in_reset) 13388 continue; 13389 13390 rc = bnxt_hwrm_rx_ring_reset(bp, i); 13391 if (rc) { 13392 if (rc == -EINVAL || rc == -EOPNOTSUPP) 13393 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 13394 else 13395 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 13396 rc); 13397 bnxt_reset_task(bp, true); 13398 break; 13399 } 13400 bnxt_free_one_rx_ring_skbs(bp, i); 13401 rxr->rx_prod = 0; 13402 rxr->rx_agg_prod = 0; 13403 rxr->rx_sw_agg_prod = 0; 13404 rxr->rx_next_cons = 0; 13405 rxr->bnapi->in_reset = false; 13406 bnxt_alloc_one_rx_ring(bp, i); 13407 cpr = &rxr->bnapi->cp_ring; 13408 cpr->sw_stats->rx.rx_resets++; 13409 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13410 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 13411 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 13412 } 13413 if (bp->flags & BNXT_FLAG_TPA) 13414 bnxt_set_tpa(bp, true); 13415 bnxt_rtnl_unlock_sp(bp); 13416 } 13417 13418 static void bnxt_fw_fatal_close(struct bnxt *bp) 13419 { 13420 bnxt_tx_disable(bp); 13421 bnxt_disable_napi(bp); 13422 bnxt_disable_int_sync(bp); 13423 bnxt_free_irq(bp); 13424 bnxt_clear_int_mode(bp); 13425 pci_disable_device(bp->pdev); 13426 } 13427 13428 static void bnxt_fw_reset_close(struct bnxt *bp) 13429 { 13430 /* When firmware is in fatal state, quiesce device and disable 13431 * bus master to prevent any potential bad DMAs before freeing 13432 * kernel memory. 13433 */ 13434 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 13435 u16 val = 0; 13436 13437 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13438 if (val == 0xffff) 13439 bp->fw_reset_min_dsecs = 0; 13440 bnxt_fw_fatal_close(bp); 13441 } 13442 __bnxt_close_nic(bp, true, false); 13443 bnxt_vf_reps_free(bp); 13444 bnxt_clear_int_mode(bp); 13445 bnxt_hwrm_func_drv_unrgtr(bp); 13446 if (pci_is_enabled(bp->pdev)) 13447 pci_disable_device(bp->pdev); 13448 bnxt_free_ctx_mem(bp); 13449 } 13450 13451 static bool is_bnxt_fw_ok(struct bnxt *bp) 13452 { 13453 struct bnxt_fw_health *fw_health = bp->fw_health; 13454 bool no_heartbeat = false, has_reset = false; 13455 u32 val; 13456 13457 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13458 if (val == fw_health->last_fw_heartbeat) 13459 no_heartbeat = true; 13460 13461 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13462 if (val != fw_health->last_fw_reset_cnt) 13463 has_reset = true; 13464 13465 if (!no_heartbeat && has_reset) 13466 return true; 13467 13468 return false; 13469 } 13470 13471 /* rtnl_lock is acquired before calling this function */ 13472 static void bnxt_force_fw_reset(struct bnxt *bp) 13473 { 13474 struct bnxt_fw_health *fw_health = bp->fw_health; 13475 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13476 u32 wait_dsecs; 13477 13478 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 13479 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13480 return; 13481 13482 if (ptp) { 13483 spin_lock_bh(&ptp->ptp_lock); 13484 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13485 spin_unlock_bh(&ptp->ptp_lock); 13486 } else { 13487 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13488 } 13489 bnxt_fw_reset_close(bp); 13490 wait_dsecs = fw_health->master_func_wait_dsecs; 13491 if (fw_health->primary) { 13492 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 13493 wait_dsecs = 0; 13494 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13495 } else { 13496 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 13497 wait_dsecs = fw_health->normal_func_wait_dsecs; 13498 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13499 } 13500 13501 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 13502 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 13503 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13504 } 13505 13506 void bnxt_fw_exception(struct bnxt *bp) 13507 { 13508 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 13509 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13510 bnxt_ulp_stop(bp); 13511 bnxt_rtnl_lock_sp(bp); 13512 bnxt_force_fw_reset(bp); 13513 bnxt_rtnl_unlock_sp(bp); 13514 } 13515 13516 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 13517 * < 0 on error. 13518 */ 13519 static int bnxt_get_registered_vfs(struct bnxt *bp) 13520 { 13521 #ifdef CONFIG_BNXT_SRIOV 13522 int rc; 13523 13524 if (!BNXT_PF(bp)) 13525 return 0; 13526 13527 rc = bnxt_hwrm_func_qcfg(bp); 13528 if (rc) { 13529 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 13530 return rc; 13531 } 13532 if (bp->pf.registered_vfs) 13533 return bp->pf.registered_vfs; 13534 if (bp->sriov_cfg) 13535 return 1; 13536 #endif 13537 return 0; 13538 } 13539 13540 void bnxt_fw_reset(struct bnxt *bp) 13541 { 13542 bnxt_ulp_stop(bp); 13543 bnxt_rtnl_lock_sp(bp); 13544 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 13545 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13546 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13547 int n = 0, tmo; 13548 13549 if (ptp) { 13550 spin_lock_bh(&ptp->ptp_lock); 13551 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13552 spin_unlock_bh(&ptp->ptp_lock); 13553 } else { 13554 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13555 } 13556 if (bp->pf.active_vfs && 13557 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 13558 n = bnxt_get_registered_vfs(bp); 13559 if (n < 0) { 13560 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 13561 n); 13562 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13563 dev_close(bp->dev); 13564 goto fw_reset_exit; 13565 } else if (n > 0) { 13566 u16 vf_tmo_dsecs = n * 10; 13567 13568 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 13569 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 13570 bp->fw_reset_state = 13571 BNXT_FW_RESET_STATE_POLL_VF; 13572 bnxt_queue_fw_reset_work(bp, HZ / 10); 13573 goto fw_reset_exit; 13574 } 13575 bnxt_fw_reset_close(bp); 13576 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13577 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13578 tmo = HZ / 10; 13579 } else { 13580 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13581 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13582 } 13583 bnxt_queue_fw_reset_work(bp, tmo); 13584 } 13585 fw_reset_exit: 13586 bnxt_rtnl_unlock_sp(bp); 13587 } 13588 13589 static void bnxt_chk_missed_irq(struct bnxt *bp) 13590 { 13591 int i; 13592 13593 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13594 return; 13595 13596 for (i = 0; i < bp->cp_nr_rings; i++) { 13597 struct bnxt_napi *bnapi = bp->bnapi[i]; 13598 struct bnxt_cp_ring_info *cpr; 13599 u32 fw_ring_id; 13600 int j; 13601 13602 if (!bnapi) 13603 continue; 13604 13605 cpr = &bnapi->cp_ring; 13606 for (j = 0; j < cpr->cp_ring_count; j++) { 13607 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 13608 u32 val[2]; 13609 13610 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 13611 continue; 13612 13613 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 13614 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 13615 continue; 13616 } 13617 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 13618 bnxt_dbg_hwrm_ring_info_get(bp, 13619 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 13620 fw_ring_id, &val[0], &val[1]); 13621 cpr->sw_stats->cmn.missed_irqs++; 13622 } 13623 } 13624 } 13625 13626 static void bnxt_cfg_ntp_filters(struct bnxt *); 13627 13628 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 13629 { 13630 struct bnxt_link_info *link_info = &bp->link_info; 13631 13632 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 13633 link_info->autoneg = BNXT_AUTONEG_SPEED; 13634 if (bp->hwrm_spec_code >= 0x10201) { 13635 if (link_info->auto_pause_setting & 13636 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 13637 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13638 } else { 13639 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13640 } 13641 bnxt_set_auto_speed(link_info); 13642 } else { 13643 bnxt_set_force_speed(link_info); 13644 link_info->req_duplex = link_info->duplex_setting; 13645 } 13646 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 13647 link_info->req_flow_ctrl = 13648 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 13649 else 13650 link_info->req_flow_ctrl = link_info->force_pause_setting; 13651 } 13652 13653 static void bnxt_fw_echo_reply(struct bnxt *bp) 13654 { 13655 struct bnxt_fw_health *fw_health = bp->fw_health; 13656 struct hwrm_func_echo_response_input *req; 13657 int rc; 13658 13659 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 13660 if (rc) 13661 return; 13662 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 13663 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 13664 hwrm_req_send(bp, req); 13665 } 13666 13667 static void bnxt_ulp_restart(struct bnxt *bp) 13668 { 13669 bnxt_ulp_stop(bp); 13670 bnxt_ulp_start(bp, 0); 13671 } 13672 13673 static void bnxt_sp_task(struct work_struct *work) 13674 { 13675 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 13676 13677 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13678 smp_mb__after_atomic(); 13679 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13680 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13681 return; 13682 } 13683 13684 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 13685 bnxt_ulp_restart(bp); 13686 bnxt_reenable_sriov(bp); 13687 } 13688 13689 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 13690 bnxt_cfg_rx_mode(bp); 13691 13692 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 13693 bnxt_cfg_ntp_filters(bp); 13694 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 13695 bnxt_hwrm_exec_fwd_req(bp); 13696 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13697 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13698 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 13699 bnxt_hwrm_port_qstats(bp, 0); 13700 bnxt_hwrm_port_qstats_ext(bp, 0); 13701 bnxt_accumulate_all_stats(bp); 13702 } 13703 13704 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 13705 int rc; 13706 13707 mutex_lock(&bp->link_lock); 13708 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 13709 &bp->sp_event)) 13710 bnxt_hwrm_phy_qcaps(bp); 13711 13712 rc = bnxt_update_link(bp, true); 13713 if (rc) 13714 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 13715 rc); 13716 13717 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 13718 &bp->sp_event)) 13719 bnxt_init_ethtool_link_settings(bp); 13720 mutex_unlock(&bp->link_lock); 13721 } 13722 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 13723 int rc; 13724 13725 mutex_lock(&bp->link_lock); 13726 rc = bnxt_update_phy_setting(bp); 13727 mutex_unlock(&bp->link_lock); 13728 if (rc) { 13729 netdev_warn(bp->dev, "update phy settings retry failed\n"); 13730 } else { 13731 bp->link_info.phy_retry = false; 13732 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 13733 } 13734 } 13735 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 13736 mutex_lock(&bp->link_lock); 13737 bnxt_get_port_module_status(bp); 13738 mutex_unlock(&bp->link_lock); 13739 } 13740 13741 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 13742 bnxt_tc_flow_stats_work(bp); 13743 13744 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 13745 bnxt_chk_missed_irq(bp); 13746 13747 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 13748 bnxt_fw_echo_reply(bp); 13749 13750 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 13751 bnxt_hwmon_notify_event(bp); 13752 13753 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 13754 * must be the last functions to be called before exiting. 13755 */ 13756 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 13757 bnxt_reset(bp, false); 13758 13759 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 13760 bnxt_reset(bp, true); 13761 13762 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 13763 bnxt_rx_ring_reset(bp); 13764 13765 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 13766 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 13767 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 13768 bnxt_devlink_health_fw_report(bp); 13769 else 13770 bnxt_fw_reset(bp); 13771 } 13772 13773 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 13774 if (!is_bnxt_fw_ok(bp)) 13775 bnxt_devlink_health_fw_report(bp); 13776 } 13777 13778 smp_mb__before_atomic(); 13779 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13780 } 13781 13782 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13783 int *max_cp); 13784 13785 /* Under rtnl_lock */ 13786 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 13787 int tx_xdp) 13788 { 13789 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 13790 struct bnxt_hw_rings hwr = {0}; 13791 int rx_rings = rx; 13792 13793 if (tcs) 13794 tx_sets = tcs; 13795 13796 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 13797 13798 if (max_rx < rx_rings) 13799 return -ENOMEM; 13800 13801 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13802 rx_rings <<= 1; 13803 13804 hwr.rx = rx_rings; 13805 hwr.tx = tx * tx_sets + tx_xdp; 13806 if (max_tx < hwr.tx) 13807 return -ENOMEM; 13808 13809 hwr.vnic = bnxt_get_total_vnics(bp, rx); 13810 13811 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 13812 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 13813 if (max_cp < hwr.cp) 13814 return -ENOMEM; 13815 hwr.stat = hwr.cp; 13816 if (BNXT_NEW_RM(bp)) { 13817 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 13818 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 13819 hwr.grp = rx; 13820 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13821 } 13822 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 13823 hwr.cp_p5 = hwr.tx + rx; 13824 return bnxt_hwrm_check_rings(bp, &hwr); 13825 } 13826 13827 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 13828 { 13829 if (bp->bar2) { 13830 pci_iounmap(pdev, bp->bar2); 13831 bp->bar2 = NULL; 13832 } 13833 13834 if (bp->bar1) { 13835 pci_iounmap(pdev, bp->bar1); 13836 bp->bar1 = NULL; 13837 } 13838 13839 if (bp->bar0) { 13840 pci_iounmap(pdev, bp->bar0); 13841 bp->bar0 = NULL; 13842 } 13843 } 13844 13845 static void bnxt_cleanup_pci(struct bnxt *bp) 13846 { 13847 bnxt_unmap_bars(bp, bp->pdev); 13848 pci_release_regions(bp->pdev); 13849 if (pci_is_enabled(bp->pdev)) 13850 pci_disable_device(bp->pdev); 13851 } 13852 13853 static void bnxt_init_dflt_coal(struct bnxt *bp) 13854 { 13855 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 13856 struct bnxt_coal *coal; 13857 u16 flags = 0; 13858 13859 if (coal_cap->cmpl_params & 13860 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 13861 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 13862 13863 /* Tick values in micro seconds. 13864 * 1 coal_buf x bufs_per_record = 1 completion record. 13865 */ 13866 coal = &bp->rx_coal; 13867 coal->coal_ticks = 10; 13868 coal->coal_bufs = 30; 13869 coal->coal_ticks_irq = 1; 13870 coal->coal_bufs_irq = 2; 13871 coal->idle_thresh = 50; 13872 coal->bufs_per_record = 2; 13873 coal->budget = 64; /* NAPI budget */ 13874 coal->flags = flags; 13875 13876 coal = &bp->tx_coal; 13877 coal->coal_ticks = 28; 13878 coal->coal_bufs = 30; 13879 coal->coal_ticks_irq = 2; 13880 coal->coal_bufs_irq = 2; 13881 coal->bufs_per_record = 1; 13882 coal->flags = flags; 13883 13884 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 13885 } 13886 13887 /* FW that pre-reserves 1 VNIC per function */ 13888 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 13889 { 13890 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 13891 13892 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13893 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 13894 return true; 13895 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13896 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 13897 return true; 13898 return false; 13899 } 13900 13901 static int bnxt_fw_init_one_p1(struct bnxt *bp) 13902 { 13903 int rc; 13904 13905 bp->fw_cap = 0; 13906 rc = bnxt_hwrm_ver_get(bp); 13907 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 13908 * so wait before continuing with recovery. 13909 */ 13910 if (rc) 13911 msleep(100); 13912 bnxt_try_map_fw_health_reg(bp); 13913 if (rc) { 13914 rc = bnxt_try_recover_fw(bp); 13915 if (rc) 13916 return rc; 13917 rc = bnxt_hwrm_ver_get(bp); 13918 if (rc) 13919 return rc; 13920 } 13921 13922 bnxt_nvm_cfg_ver_get(bp); 13923 13924 rc = bnxt_hwrm_func_reset(bp); 13925 if (rc) 13926 return -ENODEV; 13927 13928 bnxt_hwrm_fw_set_time(bp); 13929 return 0; 13930 } 13931 13932 static int bnxt_fw_init_one_p2(struct bnxt *bp) 13933 { 13934 int rc; 13935 13936 /* Get the MAX capabilities for this function */ 13937 rc = bnxt_hwrm_func_qcaps(bp); 13938 if (rc) { 13939 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 13940 rc); 13941 return -ENODEV; 13942 } 13943 13944 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 13945 if (rc) 13946 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 13947 rc); 13948 13949 if (bnxt_alloc_fw_health(bp)) { 13950 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 13951 } else { 13952 rc = bnxt_hwrm_error_recovery_qcfg(bp); 13953 if (rc) 13954 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 13955 rc); 13956 } 13957 13958 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 13959 if (rc) 13960 return -ENODEV; 13961 13962 if (bnxt_fw_pre_resv_vnics(bp)) 13963 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 13964 13965 bnxt_hwrm_func_qcfg(bp); 13966 bnxt_hwrm_vnic_qcaps(bp); 13967 bnxt_hwrm_port_led_qcaps(bp); 13968 bnxt_ethtool_init(bp); 13969 if (bp->fw_cap & BNXT_FW_CAP_PTP) 13970 __bnxt_hwrm_ptp_qcfg(bp); 13971 bnxt_dcb_init(bp); 13972 bnxt_hwmon_init(bp); 13973 return 0; 13974 } 13975 13976 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 13977 { 13978 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 13979 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 13980 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 13981 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 13982 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 13983 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 13984 bp->rss_hash_delta = bp->rss_hash_cfg; 13985 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 13986 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 13987 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 13988 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 13989 } 13990 } 13991 13992 static void bnxt_set_dflt_rfs(struct bnxt *bp) 13993 { 13994 struct net_device *dev = bp->dev; 13995 13996 dev->hw_features &= ~NETIF_F_NTUPLE; 13997 dev->features &= ~NETIF_F_NTUPLE; 13998 bp->flags &= ~BNXT_FLAG_RFS; 13999 if (bnxt_rfs_supported(bp)) { 14000 dev->hw_features |= NETIF_F_NTUPLE; 14001 if (bnxt_rfs_capable(bp, false)) { 14002 bp->flags |= BNXT_FLAG_RFS; 14003 dev->features |= NETIF_F_NTUPLE; 14004 } 14005 } 14006 } 14007 14008 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14009 { 14010 struct pci_dev *pdev = bp->pdev; 14011 14012 bnxt_set_dflt_rss_hash_type(bp); 14013 bnxt_set_dflt_rfs(bp); 14014 14015 bnxt_get_wol_settings(bp); 14016 if (bp->flags & BNXT_FLAG_WOL_CAP) 14017 device_set_wakeup_enable(&pdev->dev, bp->wol); 14018 else 14019 device_set_wakeup_capable(&pdev->dev, false); 14020 14021 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14022 bnxt_hwrm_coal_params_qcaps(bp); 14023 } 14024 14025 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14026 14027 int bnxt_fw_init_one(struct bnxt *bp) 14028 { 14029 int rc; 14030 14031 rc = bnxt_fw_init_one_p1(bp); 14032 if (rc) { 14033 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14034 return rc; 14035 } 14036 rc = bnxt_fw_init_one_p2(bp); 14037 if (rc) { 14038 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14039 return rc; 14040 } 14041 rc = bnxt_probe_phy(bp, false); 14042 if (rc) 14043 return rc; 14044 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14045 if (rc) 14046 return rc; 14047 14048 bnxt_fw_init_one_p3(bp); 14049 return 0; 14050 } 14051 14052 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14053 { 14054 struct bnxt_fw_health *fw_health = bp->fw_health; 14055 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14056 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14057 u32 reg_type, reg_off, delay_msecs; 14058 14059 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14060 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14061 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14062 switch (reg_type) { 14063 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14064 pci_write_config_dword(bp->pdev, reg_off, val); 14065 break; 14066 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14067 writel(reg_off & BNXT_GRC_BASE_MASK, 14068 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14069 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14070 fallthrough; 14071 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14072 writel(val, bp->bar0 + reg_off); 14073 break; 14074 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14075 writel(val, bp->bar1 + reg_off); 14076 break; 14077 } 14078 if (delay_msecs) { 14079 pci_read_config_dword(bp->pdev, 0, &val); 14080 msleep(delay_msecs); 14081 } 14082 } 14083 14084 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14085 { 14086 struct hwrm_func_qcfg_output *resp; 14087 struct hwrm_func_qcfg_input *req; 14088 bool result = true; /* firmware will enforce if unknown */ 14089 14090 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14091 return result; 14092 14093 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14094 return result; 14095 14096 req->fid = cpu_to_le16(0xffff); 14097 resp = hwrm_req_hold(bp, req); 14098 if (!hwrm_req_send(bp, req)) 14099 result = !!(le16_to_cpu(resp->flags) & 14100 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14101 hwrm_req_drop(bp, req); 14102 return result; 14103 } 14104 14105 static void bnxt_reset_all(struct bnxt *bp) 14106 { 14107 struct bnxt_fw_health *fw_health = bp->fw_health; 14108 int i, rc; 14109 14110 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14111 bnxt_fw_reset_via_optee(bp); 14112 bp->fw_reset_timestamp = jiffies; 14113 return; 14114 } 14115 14116 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14117 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14118 bnxt_fw_reset_writel(bp, i); 14119 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14120 struct hwrm_fw_reset_input *req; 14121 14122 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14123 if (!rc) { 14124 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14125 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14126 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14127 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14128 rc = hwrm_req_send(bp, req); 14129 } 14130 if (rc != -ENODEV) 14131 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14132 } 14133 bp->fw_reset_timestamp = jiffies; 14134 } 14135 14136 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14137 { 14138 return time_after(jiffies, bp->fw_reset_timestamp + 14139 (bp->fw_reset_max_dsecs * HZ / 10)); 14140 } 14141 14142 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14143 { 14144 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14145 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14146 bnxt_dl_health_fw_status_update(bp, false); 14147 bp->fw_reset_state = 0; 14148 dev_close(bp->dev); 14149 } 14150 14151 static void bnxt_fw_reset_task(struct work_struct *work) 14152 { 14153 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14154 int rc = 0; 14155 14156 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14157 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14158 return; 14159 } 14160 14161 switch (bp->fw_reset_state) { 14162 case BNXT_FW_RESET_STATE_POLL_VF: { 14163 int n = bnxt_get_registered_vfs(bp); 14164 int tmo; 14165 14166 if (n < 0) { 14167 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14168 n, jiffies_to_msecs(jiffies - 14169 bp->fw_reset_timestamp)); 14170 goto fw_reset_abort; 14171 } else if (n > 0) { 14172 if (bnxt_fw_reset_timeout(bp)) { 14173 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14174 bp->fw_reset_state = 0; 14175 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 14176 n); 14177 goto ulp_start; 14178 } 14179 bnxt_queue_fw_reset_work(bp, HZ / 10); 14180 return; 14181 } 14182 bp->fw_reset_timestamp = jiffies; 14183 rtnl_lock(); 14184 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 14185 bnxt_fw_reset_abort(bp, rc); 14186 rtnl_unlock(); 14187 goto ulp_start; 14188 } 14189 bnxt_fw_reset_close(bp); 14190 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14191 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14192 tmo = HZ / 10; 14193 } else { 14194 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14195 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14196 } 14197 rtnl_unlock(); 14198 bnxt_queue_fw_reset_work(bp, tmo); 14199 return; 14200 } 14201 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 14202 u32 val; 14203 14204 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14205 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 14206 !bnxt_fw_reset_timeout(bp)) { 14207 bnxt_queue_fw_reset_work(bp, HZ / 5); 14208 return; 14209 } 14210 14211 if (!bp->fw_health->primary) { 14212 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 14213 14214 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14215 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14216 return; 14217 } 14218 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14219 } 14220 fallthrough; 14221 case BNXT_FW_RESET_STATE_RESET_FW: 14222 bnxt_reset_all(bp); 14223 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14224 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 14225 return; 14226 case BNXT_FW_RESET_STATE_ENABLE_DEV: 14227 bnxt_inv_fw_health_reg(bp); 14228 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 14229 !bp->fw_reset_min_dsecs) { 14230 u16 val; 14231 14232 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14233 if (val == 0xffff) { 14234 if (bnxt_fw_reset_timeout(bp)) { 14235 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 14236 rc = -ETIMEDOUT; 14237 goto fw_reset_abort; 14238 } 14239 bnxt_queue_fw_reset_work(bp, HZ / 1000); 14240 return; 14241 } 14242 } 14243 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14244 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 14245 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 14246 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 14247 bnxt_dl_remote_reload(bp); 14248 if (pci_enable_device(bp->pdev)) { 14249 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 14250 rc = -ENODEV; 14251 goto fw_reset_abort; 14252 } 14253 pci_set_master(bp->pdev); 14254 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 14255 fallthrough; 14256 case BNXT_FW_RESET_STATE_POLL_FW: 14257 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 14258 rc = bnxt_hwrm_poll(bp); 14259 if (rc) { 14260 if (bnxt_fw_reset_timeout(bp)) { 14261 netdev_err(bp->dev, "Firmware reset aborted\n"); 14262 goto fw_reset_abort_status; 14263 } 14264 bnxt_queue_fw_reset_work(bp, HZ / 5); 14265 return; 14266 } 14267 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 14268 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 14269 fallthrough; 14270 case BNXT_FW_RESET_STATE_OPENING: 14271 while (!rtnl_trylock()) { 14272 bnxt_queue_fw_reset_work(bp, HZ / 10); 14273 return; 14274 } 14275 rc = bnxt_open(bp->dev); 14276 if (rc) { 14277 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 14278 bnxt_fw_reset_abort(bp, rc); 14279 rtnl_unlock(); 14280 goto ulp_start; 14281 } 14282 14283 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 14284 bp->fw_health->enabled) { 14285 bp->fw_health->last_fw_reset_cnt = 14286 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14287 } 14288 bp->fw_reset_state = 0; 14289 /* Make sure fw_reset_state is 0 before clearing the flag */ 14290 smp_mb__before_atomic(); 14291 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14292 bnxt_ptp_reapply_pps(bp); 14293 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 14294 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 14295 bnxt_dl_health_fw_recovery_done(bp); 14296 bnxt_dl_health_fw_status_update(bp, true); 14297 } 14298 rtnl_unlock(); 14299 bnxt_ulp_start(bp, 0); 14300 bnxt_reenable_sriov(bp); 14301 rtnl_lock(); 14302 bnxt_vf_reps_alloc(bp); 14303 bnxt_vf_reps_open(bp); 14304 rtnl_unlock(); 14305 break; 14306 } 14307 return; 14308 14309 fw_reset_abort_status: 14310 if (bp->fw_health->status_reliable || 14311 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 14312 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14313 14314 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 14315 } 14316 fw_reset_abort: 14317 rtnl_lock(); 14318 bnxt_fw_reset_abort(bp, rc); 14319 rtnl_unlock(); 14320 ulp_start: 14321 bnxt_ulp_start(bp, rc); 14322 } 14323 14324 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 14325 { 14326 int rc; 14327 struct bnxt *bp = netdev_priv(dev); 14328 14329 SET_NETDEV_DEV(dev, &pdev->dev); 14330 14331 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 14332 rc = pci_enable_device(pdev); 14333 if (rc) { 14334 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 14335 goto init_err; 14336 } 14337 14338 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 14339 dev_err(&pdev->dev, 14340 "Cannot find PCI device base address, aborting\n"); 14341 rc = -ENODEV; 14342 goto init_err_disable; 14343 } 14344 14345 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 14346 if (rc) { 14347 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 14348 goto init_err_disable; 14349 } 14350 14351 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 14352 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 14353 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 14354 rc = -EIO; 14355 goto init_err_release; 14356 } 14357 14358 pci_set_master(pdev); 14359 14360 bp->dev = dev; 14361 bp->pdev = pdev; 14362 14363 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 14364 * determines the BAR size. 14365 */ 14366 bp->bar0 = pci_ioremap_bar(pdev, 0); 14367 if (!bp->bar0) { 14368 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 14369 rc = -ENOMEM; 14370 goto init_err_release; 14371 } 14372 14373 bp->bar2 = pci_ioremap_bar(pdev, 4); 14374 if (!bp->bar2) { 14375 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 14376 rc = -ENOMEM; 14377 goto init_err_release; 14378 } 14379 14380 INIT_WORK(&bp->sp_task, bnxt_sp_task); 14381 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 14382 14383 spin_lock_init(&bp->ntp_fltr_lock); 14384 #if BITS_PER_LONG == 32 14385 spin_lock_init(&bp->db_lock); 14386 #endif 14387 14388 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 14389 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 14390 14391 timer_setup(&bp->timer, bnxt_timer, 0); 14392 bp->current_interval = BNXT_TIMER_INTERVAL; 14393 14394 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 14395 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 14396 14397 clear_bit(BNXT_STATE_OPEN, &bp->state); 14398 return 0; 14399 14400 init_err_release: 14401 bnxt_unmap_bars(bp, pdev); 14402 pci_release_regions(pdev); 14403 14404 init_err_disable: 14405 pci_disable_device(pdev); 14406 14407 init_err: 14408 return rc; 14409 } 14410 14411 /* rtnl_lock held */ 14412 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 14413 { 14414 struct sockaddr *addr = p; 14415 struct bnxt *bp = netdev_priv(dev); 14416 int rc = 0; 14417 14418 if (!is_valid_ether_addr(addr->sa_data)) 14419 return -EADDRNOTAVAIL; 14420 14421 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 14422 return 0; 14423 14424 rc = bnxt_approve_mac(bp, addr->sa_data, true); 14425 if (rc) 14426 return rc; 14427 14428 eth_hw_addr_set(dev, addr->sa_data); 14429 bnxt_clear_usr_fltrs(bp, true); 14430 if (netif_running(dev)) { 14431 bnxt_close_nic(bp, false, false); 14432 rc = bnxt_open_nic(bp, false, false); 14433 } 14434 14435 return rc; 14436 } 14437 14438 /* rtnl_lock held */ 14439 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 14440 { 14441 struct bnxt *bp = netdev_priv(dev); 14442 14443 if (netif_running(dev)) 14444 bnxt_close_nic(bp, true, false); 14445 14446 WRITE_ONCE(dev->mtu, new_mtu); 14447 bnxt_set_ring_params(bp); 14448 14449 if (netif_running(dev)) 14450 return bnxt_open_nic(bp, true, false); 14451 14452 return 0; 14453 } 14454 14455 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 14456 { 14457 struct bnxt *bp = netdev_priv(dev); 14458 bool sh = false; 14459 int rc, tx_cp; 14460 14461 if (tc > bp->max_tc) { 14462 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 14463 tc, bp->max_tc); 14464 return -EINVAL; 14465 } 14466 14467 if (bp->num_tc == tc) 14468 return 0; 14469 14470 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 14471 sh = true; 14472 14473 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 14474 sh, tc, bp->tx_nr_rings_xdp); 14475 if (rc) 14476 return rc; 14477 14478 /* Needs to close the device and do hw resource re-allocations */ 14479 if (netif_running(bp->dev)) 14480 bnxt_close_nic(bp, true, false); 14481 14482 if (tc) { 14483 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 14484 netdev_set_num_tc(dev, tc); 14485 bp->num_tc = tc; 14486 } else { 14487 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14488 netdev_reset_tc(dev); 14489 bp->num_tc = 0; 14490 } 14491 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 14492 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 14493 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 14494 tx_cp + bp->rx_nr_rings; 14495 14496 if (netif_running(bp->dev)) 14497 return bnxt_open_nic(bp, true, false); 14498 14499 return 0; 14500 } 14501 14502 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 14503 void *cb_priv) 14504 { 14505 struct bnxt *bp = cb_priv; 14506 14507 if (!bnxt_tc_flower_enabled(bp) || 14508 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 14509 return -EOPNOTSUPP; 14510 14511 switch (type) { 14512 case TC_SETUP_CLSFLOWER: 14513 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 14514 default: 14515 return -EOPNOTSUPP; 14516 } 14517 } 14518 14519 LIST_HEAD(bnxt_block_cb_list); 14520 14521 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 14522 void *type_data) 14523 { 14524 struct bnxt *bp = netdev_priv(dev); 14525 14526 switch (type) { 14527 case TC_SETUP_BLOCK: 14528 return flow_block_cb_setup_simple(type_data, 14529 &bnxt_block_cb_list, 14530 bnxt_setup_tc_block_cb, 14531 bp, bp, true); 14532 case TC_SETUP_QDISC_MQPRIO: { 14533 struct tc_mqprio_qopt *mqprio = type_data; 14534 14535 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 14536 14537 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 14538 } 14539 default: 14540 return -EOPNOTSUPP; 14541 } 14542 } 14543 14544 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 14545 const struct sk_buff *skb) 14546 { 14547 struct bnxt_vnic_info *vnic; 14548 14549 if (skb) 14550 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 14551 14552 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 14553 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 14554 } 14555 14556 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 14557 u32 idx) 14558 { 14559 struct hlist_head *head; 14560 int bit_id; 14561 14562 spin_lock_bh(&bp->ntp_fltr_lock); 14563 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 14564 if (bit_id < 0) { 14565 spin_unlock_bh(&bp->ntp_fltr_lock); 14566 return -ENOMEM; 14567 } 14568 14569 fltr->base.sw_id = (u16)bit_id; 14570 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 14571 fltr->base.flags |= BNXT_ACT_RING_DST; 14572 head = &bp->ntp_fltr_hash_tbl[idx]; 14573 hlist_add_head_rcu(&fltr->base.hash, head); 14574 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 14575 bnxt_insert_usr_fltr(bp, &fltr->base); 14576 bp->ntp_fltr_count++; 14577 spin_unlock_bh(&bp->ntp_fltr_lock); 14578 return 0; 14579 } 14580 14581 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 14582 struct bnxt_ntuple_filter *f2) 14583 { 14584 struct bnxt_flow_masks *masks1 = &f1->fmasks; 14585 struct bnxt_flow_masks *masks2 = &f2->fmasks; 14586 struct flow_keys *keys1 = &f1->fkeys; 14587 struct flow_keys *keys2 = &f2->fkeys; 14588 14589 if (keys1->basic.n_proto != keys2->basic.n_proto || 14590 keys1->basic.ip_proto != keys2->basic.ip_proto) 14591 return false; 14592 14593 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 14594 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 14595 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 14596 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 14597 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 14598 return false; 14599 } else { 14600 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 14601 &keys2->addrs.v6addrs.src) || 14602 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 14603 &masks2->addrs.v6addrs.src) || 14604 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 14605 &keys2->addrs.v6addrs.dst) || 14606 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 14607 &masks2->addrs.v6addrs.dst)) 14608 return false; 14609 } 14610 14611 return keys1->ports.src == keys2->ports.src && 14612 masks1->ports.src == masks2->ports.src && 14613 keys1->ports.dst == keys2->ports.dst && 14614 masks1->ports.dst == masks2->ports.dst && 14615 keys1->control.flags == keys2->control.flags && 14616 f1->l2_fltr == f2->l2_fltr; 14617 } 14618 14619 struct bnxt_ntuple_filter * 14620 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 14621 struct bnxt_ntuple_filter *fltr, u32 idx) 14622 { 14623 struct bnxt_ntuple_filter *f; 14624 struct hlist_head *head; 14625 14626 head = &bp->ntp_fltr_hash_tbl[idx]; 14627 hlist_for_each_entry_rcu(f, head, base.hash) { 14628 if (bnxt_fltr_match(f, fltr)) 14629 return f; 14630 } 14631 return NULL; 14632 } 14633 14634 #ifdef CONFIG_RFS_ACCEL 14635 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 14636 u16 rxq_index, u32 flow_id) 14637 { 14638 struct bnxt *bp = netdev_priv(dev); 14639 struct bnxt_ntuple_filter *fltr, *new_fltr; 14640 struct flow_keys *fkeys; 14641 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 14642 struct bnxt_l2_filter *l2_fltr; 14643 int rc = 0, idx; 14644 u32 flags; 14645 14646 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 14647 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 14648 atomic_inc(&l2_fltr->refcnt); 14649 } else { 14650 struct bnxt_l2_key key; 14651 14652 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 14653 key.vlan = 0; 14654 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 14655 if (!l2_fltr) 14656 return -EINVAL; 14657 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 14658 bnxt_del_l2_filter(bp, l2_fltr); 14659 return -EINVAL; 14660 } 14661 } 14662 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 14663 if (!new_fltr) { 14664 bnxt_del_l2_filter(bp, l2_fltr); 14665 return -ENOMEM; 14666 } 14667 14668 fkeys = &new_fltr->fkeys; 14669 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 14670 rc = -EPROTONOSUPPORT; 14671 goto err_free; 14672 } 14673 14674 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 14675 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 14676 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 14677 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 14678 rc = -EPROTONOSUPPORT; 14679 goto err_free; 14680 } 14681 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 14682 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 14683 if (bp->hwrm_spec_code < 0x10601) { 14684 rc = -EPROTONOSUPPORT; 14685 goto err_free; 14686 } 14687 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 14688 } 14689 flags = fkeys->control.flags; 14690 if (((flags & FLOW_DIS_ENCAPSULATION) && 14691 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 14692 rc = -EPROTONOSUPPORT; 14693 goto err_free; 14694 } 14695 new_fltr->l2_fltr = l2_fltr; 14696 14697 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 14698 rcu_read_lock(); 14699 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 14700 if (fltr) { 14701 rc = fltr->base.sw_id; 14702 rcu_read_unlock(); 14703 goto err_free; 14704 } 14705 rcu_read_unlock(); 14706 14707 new_fltr->flow_id = flow_id; 14708 new_fltr->base.rxq = rxq_index; 14709 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 14710 if (!rc) { 14711 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14712 return new_fltr->base.sw_id; 14713 } 14714 14715 err_free: 14716 bnxt_del_l2_filter(bp, l2_fltr); 14717 kfree(new_fltr); 14718 return rc; 14719 } 14720 #endif 14721 14722 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 14723 { 14724 spin_lock_bh(&bp->ntp_fltr_lock); 14725 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 14726 spin_unlock_bh(&bp->ntp_fltr_lock); 14727 return; 14728 } 14729 hlist_del_rcu(&fltr->base.hash); 14730 bnxt_del_one_usr_fltr(bp, &fltr->base); 14731 bp->ntp_fltr_count--; 14732 spin_unlock_bh(&bp->ntp_fltr_lock); 14733 bnxt_del_l2_filter(bp, fltr->l2_fltr); 14734 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 14735 kfree_rcu(fltr, base.rcu); 14736 } 14737 14738 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 14739 { 14740 #ifdef CONFIG_RFS_ACCEL 14741 int i; 14742 14743 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 14744 struct hlist_head *head; 14745 struct hlist_node *tmp; 14746 struct bnxt_ntuple_filter *fltr; 14747 int rc; 14748 14749 head = &bp->ntp_fltr_hash_tbl[i]; 14750 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 14751 bool del = false; 14752 14753 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 14754 if (fltr->base.flags & BNXT_ACT_NO_AGING) 14755 continue; 14756 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 14757 fltr->flow_id, 14758 fltr->base.sw_id)) { 14759 bnxt_hwrm_cfa_ntuple_filter_free(bp, 14760 fltr); 14761 del = true; 14762 } 14763 } else { 14764 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 14765 fltr); 14766 if (rc) 14767 del = true; 14768 else 14769 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 14770 } 14771 14772 if (del) 14773 bnxt_del_ntp_filter(bp, fltr); 14774 } 14775 } 14776 #endif 14777 } 14778 14779 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 14780 unsigned int entry, struct udp_tunnel_info *ti) 14781 { 14782 struct bnxt *bp = netdev_priv(netdev); 14783 unsigned int cmd; 14784 14785 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14786 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 14787 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14788 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 14789 else 14790 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 14791 14792 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 14793 } 14794 14795 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 14796 unsigned int entry, struct udp_tunnel_info *ti) 14797 { 14798 struct bnxt *bp = netdev_priv(netdev); 14799 unsigned int cmd; 14800 14801 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14802 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 14803 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14804 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 14805 else 14806 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 14807 14808 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 14809 } 14810 14811 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 14812 .set_port = bnxt_udp_tunnel_set_port, 14813 .unset_port = bnxt_udp_tunnel_unset_port, 14814 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14815 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14816 .tables = { 14817 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14818 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14819 }, 14820 }, bnxt_udp_tunnels_p7 = { 14821 .set_port = bnxt_udp_tunnel_set_port, 14822 .unset_port = bnxt_udp_tunnel_unset_port, 14823 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14824 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14825 .tables = { 14826 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14827 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14828 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 14829 }, 14830 }; 14831 14832 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 14833 struct net_device *dev, u32 filter_mask, 14834 int nlflags) 14835 { 14836 struct bnxt *bp = netdev_priv(dev); 14837 14838 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 14839 nlflags, filter_mask, NULL); 14840 } 14841 14842 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 14843 u16 flags, struct netlink_ext_ack *extack) 14844 { 14845 struct bnxt *bp = netdev_priv(dev); 14846 struct nlattr *attr, *br_spec; 14847 int rem, rc = 0; 14848 14849 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 14850 return -EOPNOTSUPP; 14851 14852 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 14853 if (!br_spec) 14854 return -EINVAL; 14855 14856 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 14857 u16 mode; 14858 14859 mode = nla_get_u16(attr); 14860 if (mode == bp->br_mode) 14861 break; 14862 14863 rc = bnxt_hwrm_set_br_mode(bp, mode); 14864 if (!rc) 14865 bp->br_mode = mode; 14866 break; 14867 } 14868 return rc; 14869 } 14870 14871 int bnxt_get_port_parent_id(struct net_device *dev, 14872 struct netdev_phys_item_id *ppid) 14873 { 14874 struct bnxt *bp = netdev_priv(dev); 14875 14876 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 14877 return -EOPNOTSUPP; 14878 14879 /* The PF and it's VF-reps only support the switchdev framework */ 14880 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 14881 return -EOPNOTSUPP; 14882 14883 ppid->id_len = sizeof(bp->dsn); 14884 memcpy(ppid->id, bp->dsn, ppid->id_len); 14885 14886 return 0; 14887 } 14888 14889 static const struct net_device_ops bnxt_netdev_ops = { 14890 .ndo_open = bnxt_open, 14891 .ndo_start_xmit = bnxt_start_xmit, 14892 .ndo_stop = bnxt_close, 14893 .ndo_get_stats64 = bnxt_get_stats64, 14894 .ndo_set_rx_mode = bnxt_set_rx_mode, 14895 .ndo_eth_ioctl = bnxt_ioctl, 14896 .ndo_validate_addr = eth_validate_addr, 14897 .ndo_set_mac_address = bnxt_change_mac_addr, 14898 .ndo_change_mtu = bnxt_change_mtu, 14899 .ndo_fix_features = bnxt_fix_features, 14900 .ndo_set_features = bnxt_set_features, 14901 .ndo_features_check = bnxt_features_check, 14902 .ndo_tx_timeout = bnxt_tx_timeout, 14903 #ifdef CONFIG_BNXT_SRIOV 14904 .ndo_get_vf_config = bnxt_get_vf_config, 14905 .ndo_set_vf_mac = bnxt_set_vf_mac, 14906 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 14907 .ndo_set_vf_rate = bnxt_set_vf_bw, 14908 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 14909 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 14910 .ndo_set_vf_trust = bnxt_set_vf_trust, 14911 #endif 14912 .ndo_setup_tc = bnxt_setup_tc, 14913 #ifdef CONFIG_RFS_ACCEL 14914 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 14915 #endif 14916 .ndo_bpf = bnxt_xdp, 14917 .ndo_xdp_xmit = bnxt_xdp_xmit, 14918 .ndo_bridge_getlink = bnxt_bridge_getlink, 14919 .ndo_bridge_setlink = bnxt_bridge_setlink, 14920 }; 14921 14922 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 14923 struct netdev_queue_stats_rx *stats) 14924 { 14925 struct bnxt *bp = netdev_priv(dev); 14926 struct bnxt_cp_ring_info *cpr; 14927 u64 *sw; 14928 14929 cpr = &bp->bnapi[i]->cp_ring; 14930 sw = cpr->stats.sw_stats; 14931 14932 stats->packets = 0; 14933 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 14934 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 14935 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 14936 14937 stats->bytes = 0; 14938 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 14939 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 14940 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 14941 14942 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 14943 } 14944 14945 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 14946 struct netdev_queue_stats_tx *stats) 14947 { 14948 struct bnxt *bp = netdev_priv(dev); 14949 struct bnxt_napi *bnapi; 14950 u64 *sw; 14951 14952 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 14953 sw = bnapi->cp_ring.stats.sw_stats; 14954 14955 stats->packets = 0; 14956 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 14957 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 14958 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 14959 14960 stats->bytes = 0; 14961 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 14962 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 14963 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 14964 } 14965 14966 static void bnxt_get_base_stats(struct net_device *dev, 14967 struct netdev_queue_stats_rx *rx, 14968 struct netdev_queue_stats_tx *tx) 14969 { 14970 struct bnxt *bp = netdev_priv(dev); 14971 14972 rx->packets = bp->net_stats_prev.rx_packets; 14973 rx->bytes = bp->net_stats_prev.rx_bytes; 14974 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 14975 14976 tx->packets = bp->net_stats_prev.tx_packets; 14977 tx->bytes = bp->net_stats_prev.tx_bytes; 14978 } 14979 14980 static const struct netdev_stat_ops bnxt_stat_ops = { 14981 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 14982 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 14983 .get_base_stats = bnxt_get_base_stats, 14984 }; 14985 14986 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 14987 { 14988 u16 mem_size; 14989 14990 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 14991 mem_size = rxr->rx_agg_bmap_size / 8; 14992 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 14993 if (!rxr->rx_agg_bmap) 14994 return -ENOMEM; 14995 14996 return 0; 14997 } 14998 14999 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 15000 { 15001 struct bnxt_rx_ring_info *rxr, *clone; 15002 struct bnxt *bp = netdev_priv(dev); 15003 struct bnxt_ring_struct *ring; 15004 int rc; 15005 15006 rxr = &bp->rx_ring[idx]; 15007 clone = qmem; 15008 memcpy(clone, rxr, sizeof(*rxr)); 15009 bnxt_init_rx_ring_struct(bp, clone); 15010 bnxt_reset_rx_ring_struct(bp, clone); 15011 15012 clone->rx_prod = 0; 15013 clone->rx_agg_prod = 0; 15014 clone->rx_sw_agg_prod = 0; 15015 clone->rx_next_cons = 0; 15016 15017 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15018 if (rc) 15019 return rc; 15020 15021 ring = &clone->rx_ring_struct; 15022 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15023 if (rc) 15024 goto err_free_rx_ring; 15025 15026 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15027 ring = &clone->rx_agg_ring_struct; 15028 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15029 if (rc) 15030 goto err_free_rx_agg_ring; 15031 15032 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15033 if (rc) 15034 goto err_free_rx_agg_ring; 15035 } 15036 15037 bnxt_init_one_rx_ring_rxbd(bp, clone); 15038 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15039 15040 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15041 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15042 bnxt_alloc_one_rx_ring_page(bp, clone, idx); 15043 15044 return 0; 15045 15046 err_free_rx_agg_ring: 15047 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15048 err_free_rx_ring: 15049 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15050 clone->page_pool->p.napi = NULL; 15051 page_pool_destroy(clone->page_pool); 15052 clone->page_pool = NULL; 15053 return rc; 15054 } 15055 15056 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15057 { 15058 struct bnxt_rx_ring_info *rxr = qmem; 15059 struct bnxt *bp = netdev_priv(dev); 15060 struct bnxt_ring_struct *ring; 15061 15062 bnxt_free_one_rx_ring(bp, rxr); 15063 bnxt_free_one_rx_agg_ring(bp, rxr); 15064 15065 page_pool_destroy(rxr->page_pool); 15066 rxr->page_pool = NULL; 15067 15068 ring = &rxr->rx_ring_struct; 15069 bnxt_free_ring(bp, &ring->ring_mem); 15070 15071 ring = &rxr->rx_agg_ring_struct; 15072 bnxt_free_ring(bp, &ring->ring_mem); 15073 15074 kfree(rxr->rx_agg_bmap); 15075 rxr->rx_agg_bmap = NULL; 15076 } 15077 15078 static void bnxt_copy_rx_ring(struct bnxt *bp, 15079 struct bnxt_rx_ring_info *dst, 15080 struct bnxt_rx_ring_info *src) 15081 { 15082 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15083 struct bnxt_ring_struct *dst_ring, *src_ring; 15084 int i; 15085 15086 dst_ring = &dst->rx_ring_struct; 15087 dst_rmem = &dst_ring->ring_mem; 15088 src_ring = &src->rx_ring_struct; 15089 src_rmem = &src_ring->ring_mem; 15090 15091 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15092 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15093 WARN_ON(dst_rmem->flags != src_rmem->flags); 15094 WARN_ON(dst_rmem->depth != src_rmem->depth); 15095 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15096 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15097 15098 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15099 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15100 *dst_rmem->vmem = *src_rmem->vmem; 15101 for (i = 0; i < dst_rmem->nr_pages; i++) { 15102 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15103 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15104 } 15105 15106 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15107 return; 15108 15109 dst_ring = &dst->rx_agg_ring_struct; 15110 dst_rmem = &dst_ring->ring_mem; 15111 src_ring = &src->rx_agg_ring_struct; 15112 src_rmem = &src_ring->ring_mem; 15113 15114 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15115 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15116 WARN_ON(dst_rmem->flags != src_rmem->flags); 15117 WARN_ON(dst_rmem->depth != src_rmem->depth); 15118 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15119 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15120 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 15121 15122 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15123 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15124 *dst_rmem->vmem = *src_rmem->vmem; 15125 for (i = 0; i < dst_rmem->nr_pages; i++) { 15126 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15127 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15128 } 15129 15130 dst->rx_agg_bmap = src->rx_agg_bmap; 15131 } 15132 15133 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 15134 { 15135 struct bnxt *bp = netdev_priv(dev); 15136 struct bnxt_rx_ring_info *rxr, *clone; 15137 struct bnxt_cp_ring_info *cpr; 15138 int rc; 15139 15140 rxr = &bp->rx_ring[idx]; 15141 clone = qmem; 15142 15143 rxr->rx_prod = clone->rx_prod; 15144 rxr->rx_agg_prod = clone->rx_agg_prod; 15145 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 15146 rxr->rx_next_cons = clone->rx_next_cons; 15147 rxr->page_pool = clone->page_pool; 15148 15149 bnxt_copy_rx_ring(bp, rxr, clone); 15150 15151 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 15152 if (rc) 15153 return rc; 15154 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 15155 if (rc) 15156 goto err_free_hwrm_rx_ring; 15157 15158 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 15159 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15160 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 15161 15162 napi_enable(&rxr->bnapi->napi); 15163 15164 cpr = &rxr->bnapi->cp_ring; 15165 cpr->sw_stats->rx.rx_resets++; 15166 15167 return 0; 15168 15169 err_free_hwrm_rx_ring: 15170 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15171 return rc; 15172 } 15173 15174 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 15175 { 15176 struct bnxt *bp = netdev_priv(dev); 15177 struct bnxt_rx_ring_info *rxr; 15178 15179 rxr = &bp->rx_ring[idx]; 15180 napi_disable(&rxr->bnapi->napi); 15181 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15182 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 15183 rxr->rx_next_cons = 0; 15184 page_pool_disable_direct_recycling(rxr->page_pool); 15185 15186 memcpy(qmem, rxr, sizeof(*rxr)); 15187 bnxt_init_rx_ring_struct(bp, qmem); 15188 15189 return 0; 15190 } 15191 15192 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 15193 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 15194 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 15195 .ndo_queue_mem_free = bnxt_queue_mem_free, 15196 .ndo_queue_start = bnxt_queue_start, 15197 .ndo_queue_stop = bnxt_queue_stop, 15198 }; 15199 15200 static void bnxt_remove_one(struct pci_dev *pdev) 15201 { 15202 struct net_device *dev = pci_get_drvdata(pdev); 15203 struct bnxt *bp = netdev_priv(dev); 15204 15205 if (BNXT_PF(bp)) 15206 bnxt_sriov_disable(bp); 15207 15208 bnxt_rdma_aux_device_del(bp); 15209 15210 bnxt_ptp_clear(bp); 15211 unregister_netdev(dev); 15212 15213 bnxt_rdma_aux_device_uninit(bp); 15214 15215 bnxt_free_l2_filters(bp, true); 15216 bnxt_free_ntp_fltrs(bp, true); 15217 WARN_ON(bp->num_rss_ctx); 15218 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15219 /* Flush any pending tasks */ 15220 cancel_work_sync(&bp->sp_task); 15221 cancel_delayed_work_sync(&bp->fw_reset_task); 15222 bp->sp_event = 0; 15223 15224 bnxt_dl_fw_reporters_destroy(bp); 15225 bnxt_dl_unregister(bp); 15226 bnxt_shutdown_tc(bp); 15227 15228 bnxt_clear_int_mode(bp); 15229 bnxt_hwrm_func_drv_unrgtr(bp); 15230 bnxt_free_hwrm_resources(bp); 15231 bnxt_hwmon_uninit(bp); 15232 bnxt_ethtool_free(bp); 15233 bnxt_dcb_free(bp); 15234 kfree(bp->ptp_cfg); 15235 bp->ptp_cfg = NULL; 15236 kfree(bp->fw_health); 15237 bp->fw_health = NULL; 15238 bnxt_cleanup_pci(bp); 15239 bnxt_free_ctx_mem(bp); 15240 kfree(bp->rss_indir_tbl); 15241 bp->rss_indir_tbl = NULL; 15242 bnxt_free_port_stats(bp); 15243 free_netdev(dev); 15244 } 15245 15246 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 15247 { 15248 int rc = 0; 15249 struct bnxt_link_info *link_info = &bp->link_info; 15250 15251 bp->phy_flags = 0; 15252 rc = bnxt_hwrm_phy_qcaps(bp); 15253 if (rc) { 15254 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 15255 rc); 15256 return rc; 15257 } 15258 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 15259 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 15260 else 15261 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 15262 if (!fw_dflt) 15263 return 0; 15264 15265 mutex_lock(&bp->link_lock); 15266 rc = bnxt_update_link(bp, false); 15267 if (rc) { 15268 mutex_unlock(&bp->link_lock); 15269 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 15270 rc); 15271 return rc; 15272 } 15273 15274 /* Older firmware does not have supported_auto_speeds, so assume 15275 * that all supported speeds can be autonegotiated. 15276 */ 15277 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 15278 link_info->support_auto_speeds = link_info->support_speeds; 15279 15280 bnxt_init_ethtool_link_settings(bp); 15281 mutex_unlock(&bp->link_lock); 15282 return 0; 15283 } 15284 15285 static int bnxt_get_max_irq(struct pci_dev *pdev) 15286 { 15287 u16 ctrl; 15288 15289 if (!pdev->msix_cap) 15290 return 1; 15291 15292 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 15293 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 15294 } 15295 15296 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15297 int *max_cp) 15298 { 15299 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 15300 int max_ring_grps = 0, max_irq; 15301 15302 *max_tx = hw_resc->max_tx_rings; 15303 *max_rx = hw_resc->max_rx_rings; 15304 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 15305 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 15306 bnxt_get_ulp_msix_num_in_use(bp), 15307 hw_resc->max_stat_ctxs - 15308 bnxt_get_ulp_stat_ctxs_in_use(bp)); 15309 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 15310 *max_cp = min_t(int, *max_cp, max_irq); 15311 max_ring_grps = hw_resc->max_hw_ring_grps; 15312 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 15313 *max_cp -= 1; 15314 *max_rx -= 2; 15315 } 15316 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15317 *max_rx >>= 1; 15318 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 15319 int rc; 15320 15321 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 15322 if (rc) { 15323 *max_rx = 0; 15324 *max_tx = 0; 15325 } 15326 /* On P5 chips, max_cp output param should be available NQs */ 15327 *max_cp = max_irq; 15328 } 15329 *max_rx = min_t(int, *max_rx, max_ring_grps); 15330 } 15331 15332 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 15333 { 15334 int rx, tx, cp; 15335 15336 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 15337 *max_rx = rx; 15338 *max_tx = tx; 15339 if (!rx || !tx || !cp) 15340 return -ENOMEM; 15341 15342 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 15343 } 15344 15345 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15346 bool shared) 15347 { 15348 int rc; 15349 15350 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15351 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 15352 /* Not enough rings, try disabling agg rings. */ 15353 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 15354 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15355 if (rc) { 15356 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 15357 bp->flags |= BNXT_FLAG_AGG_RINGS; 15358 return rc; 15359 } 15360 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 15361 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15362 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15363 bnxt_set_ring_params(bp); 15364 } 15365 15366 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 15367 int max_cp, max_stat, max_irq; 15368 15369 /* Reserve minimum resources for RoCE */ 15370 max_cp = bnxt_get_max_func_cp_rings(bp); 15371 max_stat = bnxt_get_max_func_stat_ctxs(bp); 15372 max_irq = bnxt_get_max_func_irqs(bp); 15373 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 15374 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 15375 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 15376 return 0; 15377 15378 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 15379 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 15380 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 15381 max_cp = min_t(int, max_cp, max_irq); 15382 max_cp = min_t(int, max_cp, max_stat); 15383 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 15384 if (rc) 15385 rc = 0; 15386 } 15387 return rc; 15388 } 15389 15390 /* In initial default shared ring setting, each shared ring must have a 15391 * RX/TX ring pair. 15392 */ 15393 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 15394 { 15395 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 15396 bp->rx_nr_rings = bp->cp_nr_rings; 15397 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 15398 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15399 } 15400 15401 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 15402 { 15403 int dflt_rings, max_rx_rings, max_tx_rings, rc; 15404 int avail_msix; 15405 15406 if (!bnxt_can_reserve_rings(bp)) 15407 return 0; 15408 15409 if (sh) 15410 bp->flags |= BNXT_FLAG_SHARED_RINGS; 15411 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 15412 /* Reduce default rings on multi-port cards so that total default 15413 * rings do not exceed CPU count. 15414 */ 15415 if (bp->port_count > 1) { 15416 int max_rings = 15417 max_t(int, num_online_cpus() / bp->port_count, 1); 15418 15419 dflt_rings = min_t(int, dflt_rings, max_rings); 15420 } 15421 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 15422 if (rc) 15423 return rc; 15424 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 15425 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 15426 if (sh) 15427 bnxt_trim_dflt_sh_rings(bp); 15428 else 15429 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 15430 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15431 15432 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 15433 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 15434 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 15435 15436 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 15437 bnxt_set_dflt_ulp_stat_ctxs(bp); 15438 } 15439 15440 rc = __bnxt_reserve_rings(bp); 15441 if (rc && rc != -ENODEV) 15442 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 15443 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15444 if (sh) 15445 bnxt_trim_dflt_sh_rings(bp); 15446 15447 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 15448 if (bnxt_need_reserve_rings(bp)) { 15449 rc = __bnxt_reserve_rings(bp); 15450 if (rc && rc != -ENODEV) 15451 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 15452 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15453 } 15454 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 15455 bp->rx_nr_rings++; 15456 bp->cp_nr_rings++; 15457 } 15458 if (rc) { 15459 bp->tx_nr_rings = 0; 15460 bp->rx_nr_rings = 0; 15461 } 15462 return rc; 15463 } 15464 15465 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 15466 { 15467 int rc; 15468 15469 if (bp->tx_nr_rings) 15470 return 0; 15471 15472 bnxt_ulp_irq_stop(bp); 15473 bnxt_clear_int_mode(bp); 15474 rc = bnxt_set_dflt_rings(bp, true); 15475 if (rc) { 15476 if (BNXT_VF(bp) && rc == -ENODEV) 15477 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15478 else 15479 netdev_err(bp->dev, "Not enough rings available.\n"); 15480 goto init_dflt_ring_err; 15481 } 15482 rc = bnxt_init_int_mode(bp); 15483 if (rc) 15484 goto init_dflt_ring_err; 15485 15486 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15487 15488 bnxt_set_dflt_rfs(bp); 15489 15490 init_dflt_ring_err: 15491 bnxt_ulp_irq_restart(bp, rc); 15492 return rc; 15493 } 15494 15495 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 15496 { 15497 int rc; 15498 15499 ASSERT_RTNL(); 15500 bnxt_hwrm_func_qcaps(bp); 15501 15502 if (netif_running(bp->dev)) 15503 __bnxt_close_nic(bp, true, false); 15504 15505 bnxt_ulp_irq_stop(bp); 15506 bnxt_clear_int_mode(bp); 15507 rc = bnxt_init_int_mode(bp); 15508 bnxt_ulp_irq_restart(bp, rc); 15509 15510 if (netif_running(bp->dev)) { 15511 if (rc) 15512 dev_close(bp->dev); 15513 else 15514 rc = bnxt_open_nic(bp, true, false); 15515 } 15516 15517 return rc; 15518 } 15519 15520 static int bnxt_init_mac_addr(struct bnxt *bp) 15521 { 15522 int rc = 0; 15523 15524 if (BNXT_PF(bp)) { 15525 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 15526 } else { 15527 #ifdef CONFIG_BNXT_SRIOV 15528 struct bnxt_vf_info *vf = &bp->vf; 15529 bool strict_approval = true; 15530 15531 if (is_valid_ether_addr(vf->mac_addr)) { 15532 /* overwrite netdev dev_addr with admin VF MAC */ 15533 eth_hw_addr_set(bp->dev, vf->mac_addr); 15534 /* Older PF driver or firmware may not approve this 15535 * correctly. 15536 */ 15537 strict_approval = false; 15538 } else { 15539 eth_hw_addr_random(bp->dev); 15540 } 15541 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 15542 #endif 15543 } 15544 return rc; 15545 } 15546 15547 static void bnxt_vpd_read_info(struct bnxt *bp) 15548 { 15549 struct pci_dev *pdev = bp->pdev; 15550 unsigned int vpd_size, kw_len; 15551 int pos, size; 15552 u8 *vpd_data; 15553 15554 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 15555 if (IS_ERR(vpd_data)) { 15556 pci_warn(pdev, "Unable to read VPD\n"); 15557 return; 15558 } 15559 15560 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15561 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 15562 if (pos < 0) 15563 goto read_sn; 15564 15565 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15566 memcpy(bp->board_partno, &vpd_data[pos], size); 15567 15568 read_sn: 15569 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15570 PCI_VPD_RO_KEYWORD_SERIALNO, 15571 &kw_len); 15572 if (pos < 0) 15573 goto exit; 15574 15575 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15576 memcpy(bp->board_serialno, &vpd_data[pos], size); 15577 exit: 15578 kfree(vpd_data); 15579 } 15580 15581 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 15582 { 15583 struct pci_dev *pdev = bp->pdev; 15584 u64 qword; 15585 15586 qword = pci_get_dsn(pdev); 15587 if (!qword) { 15588 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 15589 return -EOPNOTSUPP; 15590 } 15591 15592 put_unaligned_le64(qword, dsn); 15593 15594 bp->flags |= BNXT_FLAG_DSN_VALID; 15595 return 0; 15596 } 15597 15598 static int bnxt_map_db_bar(struct bnxt *bp) 15599 { 15600 if (!bp->db_size) 15601 return -ENODEV; 15602 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 15603 if (!bp->bar1) 15604 return -ENOMEM; 15605 return 0; 15606 } 15607 15608 void bnxt_print_device_info(struct bnxt *bp) 15609 { 15610 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 15611 board_info[bp->board_idx].name, 15612 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 15613 15614 pcie_print_link_status(bp->pdev); 15615 } 15616 15617 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 15618 { 15619 struct bnxt_hw_resc *hw_resc; 15620 struct net_device *dev; 15621 struct bnxt *bp; 15622 int rc, max_irqs; 15623 15624 if (pci_is_bridge(pdev)) 15625 return -ENODEV; 15626 15627 /* Clear any pending DMA transactions from crash kernel 15628 * while loading driver in capture kernel. 15629 */ 15630 if (is_kdump_kernel()) { 15631 pci_clear_master(pdev); 15632 pcie_flr(pdev); 15633 } 15634 15635 max_irqs = bnxt_get_max_irq(pdev); 15636 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 15637 max_irqs); 15638 if (!dev) 15639 return -ENOMEM; 15640 15641 bp = netdev_priv(dev); 15642 bp->board_idx = ent->driver_data; 15643 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 15644 bnxt_set_max_func_irqs(bp, max_irqs); 15645 15646 if (bnxt_vf_pciid(bp->board_idx)) 15647 bp->flags |= BNXT_FLAG_VF; 15648 15649 /* No devlink port registration in case of a VF */ 15650 if (BNXT_PF(bp)) 15651 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 15652 15653 if (pdev->msix_cap) 15654 bp->flags |= BNXT_FLAG_MSIX_CAP; 15655 15656 rc = bnxt_init_board(pdev, dev); 15657 if (rc < 0) 15658 goto init_err_free; 15659 15660 dev->netdev_ops = &bnxt_netdev_ops; 15661 dev->stat_ops = &bnxt_stat_ops; 15662 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 15663 dev->ethtool_ops = &bnxt_ethtool_ops; 15664 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 15665 pci_set_drvdata(pdev, dev); 15666 15667 rc = bnxt_alloc_hwrm_resources(bp); 15668 if (rc) 15669 goto init_err_pci_clean; 15670 15671 mutex_init(&bp->hwrm_cmd_lock); 15672 mutex_init(&bp->link_lock); 15673 15674 rc = bnxt_fw_init_one_p1(bp); 15675 if (rc) 15676 goto init_err_pci_clean; 15677 15678 if (BNXT_PF(bp)) 15679 bnxt_vpd_read_info(bp); 15680 15681 if (BNXT_CHIP_P5_PLUS(bp)) { 15682 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 15683 if (BNXT_CHIP_P7(bp)) 15684 bp->flags |= BNXT_FLAG_CHIP_P7; 15685 } 15686 15687 rc = bnxt_alloc_rss_indir_tbl(bp); 15688 if (rc) 15689 goto init_err_pci_clean; 15690 15691 rc = bnxt_fw_init_one_p2(bp); 15692 if (rc) 15693 goto init_err_pci_clean; 15694 15695 rc = bnxt_map_db_bar(bp); 15696 if (rc) { 15697 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 15698 rc); 15699 goto init_err_pci_clean; 15700 } 15701 15702 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15703 NETIF_F_TSO | NETIF_F_TSO6 | 15704 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15705 NETIF_F_GSO_IPXIP4 | 15706 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15707 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 15708 NETIF_F_RXCSUM | NETIF_F_GRO; 15709 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15710 dev->hw_features |= NETIF_F_GSO_UDP_L4; 15711 15712 if (BNXT_SUPPORTS_TPA(bp)) 15713 dev->hw_features |= NETIF_F_LRO; 15714 15715 dev->hw_enc_features = 15716 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15717 NETIF_F_TSO | NETIF_F_TSO6 | 15718 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15719 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15720 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 15721 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15722 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 15723 if (bp->flags & BNXT_FLAG_CHIP_P7) 15724 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 15725 else 15726 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 15727 15728 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 15729 NETIF_F_GSO_GRE_CSUM; 15730 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 15731 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 15732 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 15733 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 15734 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 15735 if (BNXT_SUPPORTS_TPA(bp)) 15736 dev->hw_features |= NETIF_F_GRO_HW; 15737 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 15738 if (dev->features & NETIF_F_GRO_HW) 15739 dev->features &= ~NETIF_F_LRO; 15740 dev->priv_flags |= IFF_UNICAST_FLT; 15741 15742 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 15743 if (bp->tso_max_segs) 15744 netif_set_tso_max_segs(dev, bp->tso_max_segs); 15745 15746 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 15747 NETDEV_XDP_ACT_RX_SG; 15748 15749 #ifdef CONFIG_BNXT_SRIOV 15750 init_waitqueue_head(&bp->sriov_cfg_wait); 15751 #endif 15752 if (BNXT_SUPPORTS_TPA(bp)) { 15753 bp->gro_func = bnxt_gro_func_5730x; 15754 if (BNXT_CHIP_P4(bp)) 15755 bp->gro_func = bnxt_gro_func_5731x; 15756 else if (BNXT_CHIP_P5_PLUS(bp)) 15757 bp->gro_func = bnxt_gro_func_5750x; 15758 } 15759 if (!BNXT_CHIP_P4_PLUS(bp)) 15760 bp->flags |= BNXT_FLAG_DOUBLE_DB; 15761 15762 rc = bnxt_init_mac_addr(bp); 15763 if (rc) { 15764 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 15765 rc = -EADDRNOTAVAIL; 15766 goto init_err_pci_clean; 15767 } 15768 15769 if (BNXT_PF(bp)) { 15770 /* Read the adapter's DSN to use as the eswitch switch_id */ 15771 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 15772 } 15773 15774 /* MTU range: 60 - FW defined max */ 15775 dev->min_mtu = ETH_ZLEN; 15776 dev->max_mtu = bp->max_mtu; 15777 15778 rc = bnxt_probe_phy(bp, true); 15779 if (rc) 15780 goto init_err_pci_clean; 15781 15782 hw_resc = &bp->hw_resc; 15783 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 15784 BNXT_L2_FLTR_MAX_FLTR; 15785 /* Older firmware may not report these filters properly */ 15786 if (bp->max_fltr < BNXT_MAX_FLTR) 15787 bp->max_fltr = BNXT_MAX_FLTR; 15788 bnxt_init_l2_fltr_tbl(bp); 15789 bnxt_set_rx_skb_mode(bp, false); 15790 bnxt_set_tpa_flags(bp); 15791 bnxt_set_ring_params(bp); 15792 bnxt_rdma_aux_device_init(bp); 15793 rc = bnxt_set_dflt_rings(bp, true); 15794 if (rc) { 15795 if (BNXT_VF(bp) && rc == -ENODEV) { 15796 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15797 } else { 15798 netdev_err(bp->dev, "Not enough rings available.\n"); 15799 rc = -ENOMEM; 15800 } 15801 goto init_err_pci_clean; 15802 } 15803 15804 bnxt_fw_init_one_p3(bp); 15805 15806 bnxt_init_dflt_coal(bp); 15807 15808 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 15809 bp->flags |= BNXT_FLAG_STRIP_VLAN; 15810 15811 rc = bnxt_init_int_mode(bp); 15812 if (rc) 15813 goto init_err_pci_clean; 15814 15815 /* No TC has been set yet and rings may have been trimmed due to 15816 * limited MSIX, so we re-initialize the TX rings per TC. 15817 */ 15818 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15819 15820 if (BNXT_PF(bp)) { 15821 if (!bnxt_pf_wq) { 15822 bnxt_pf_wq = 15823 create_singlethread_workqueue("bnxt_pf_wq"); 15824 if (!bnxt_pf_wq) { 15825 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 15826 rc = -ENOMEM; 15827 goto init_err_pci_clean; 15828 } 15829 } 15830 rc = bnxt_init_tc(bp); 15831 if (rc) 15832 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 15833 rc); 15834 } 15835 15836 bnxt_inv_fw_health_reg(bp); 15837 rc = bnxt_dl_register(bp); 15838 if (rc) 15839 goto init_err_dl; 15840 15841 INIT_LIST_HEAD(&bp->usr_fltr_list); 15842 15843 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 15844 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 15845 15846 rc = register_netdev(dev); 15847 if (rc) 15848 goto init_err_cleanup; 15849 15850 bnxt_dl_fw_reporters_create(bp); 15851 15852 bnxt_rdma_aux_device_add(bp); 15853 15854 bnxt_print_device_info(bp); 15855 15856 pci_save_state(pdev); 15857 15858 return 0; 15859 init_err_cleanup: 15860 bnxt_rdma_aux_device_uninit(bp); 15861 bnxt_dl_unregister(bp); 15862 init_err_dl: 15863 bnxt_shutdown_tc(bp); 15864 bnxt_clear_int_mode(bp); 15865 15866 init_err_pci_clean: 15867 bnxt_hwrm_func_drv_unrgtr(bp); 15868 bnxt_free_hwrm_resources(bp); 15869 bnxt_hwmon_uninit(bp); 15870 bnxt_ethtool_free(bp); 15871 bnxt_ptp_clear(bp); 15872 kfree(bp->ptp_cfg); 15873 bp->ptp_cfg = NULL; 15874 kfree(bp->fw_health); 15875 bp->fw_health = NULL; 15876 bnxt_cleanup_pci(bp); 15877 bnxt_free_ctx_mem(bp); 15878 kfree(bp->rss_indir_tbl); 15879 bp->rss_indir_tbl = NULL; 15880 15881 init_err_free: 15882 free_netdev(dev); 15883 return rc; 15884 } 15885 15886 static void bnxt_shutdown(struct pci_dev *pdev) 15887 { 15888 struct net_device *dev = pci_get_drvdata(pdev); 15889 struct bnxt *bp; 15890 15891 if (!dev) 15892 return; 15893 15894 rtnl_lock(); 15895 bp = netdev_priv(dev); 15896 if (!bp) 15897 goto shutdown_exit; 15898 15899 if (netif_running(dev)) 15900 dev_close(dev); 15901 15902 bnxt_clear_int_mode(bp); 15903 pci_disable_device(pdev); 15904 15905 if (system_state == SYSTEM_POWER_OFF) { 15906 pci_wake_from_d3(pdev, bp->wol); 15907 pci_set_power_state(pdev, PCI_D3hot); 15908 } 15909 15910 shutdown_exit: 15911 rtnl_unlock(); 15912 } 15913 15914 #ifdef CONFIG_PM_SLEEP 15915 static int bnxt_suspend(struct device *device) 15916 { 15917 struct net_device *dev = dev_get_drvdata(device); 15918 struct bnxt *bp = netdev_priv(dev); 15919 int rc = 0; 15920 15921 bnxt_ulp_stop(bp); 15922 15923 rtnl_lock(); 15924 if (netif_running(dev)) { 15925 netif_device_detach(dev); 15926 rc = bnxt_close(dev); 15927 } 15928 bnxt_hwrm_func_drv_unrgtr(bp); 15929 pci_disable_device(bp->pdev); 15930 bnxt_free_ctx_mem(bp); 15931 rtnl_unlock(); 15932 return rc; 15933 } 15934 15935 static int bnxt_resume(struct device *device) 15936 { 15937 struct net_device *dev = dev_get_drvdata(device); 15938 struct bnxt *bp = netdev_priv(dev); 15939 int rc = 0; 15940 15941 rtnl_lock(); 15942 rc = pci_enable_device(bp->pdev); 15943 if (rc) { 15944 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 15945 rc); 15946 goto resume_exit; 15947 } 15948 pci_set_master(bp->pdev); 15949 if (bnxt_hwrm_ver_get(bp)) { 15950 rc = -ENODEV; 15951 goto resume_exit; 15952 } 15953 rc = bnxt_hwrm_func_reset(bp); 15954 if (rc) { 15955 rc = -EBUSY; 15956 goto resume_exit; 15957 } 15958 15959 rc = bnxt_hwrm_func_qcaps(bp); 15960 if (rc) 15961 goto resume_exit; 15962 15963 bnxt_clear_reservations(bp, true); 15964 15965 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 15966 rc = -ENODEV; 15967 goto resume_exit; 15968 } 15969 15970 bnxt_get_wol_settings(bp); 15971 if (netif_running(dev)) { 15972 rc = bnxt_open(dev); 15973 if (!rc) 15974 netif_device_attach(dev); 15975 } 15976 15977 resume_exit: 15978 rtnl_unlock(); 15979 bnxt_ulp_start(bp, rc); 15980 if (!rc) 15981 bnxt_reenable_sriov(bp); 15982 return rc; 15983 } 15984 15985 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 15986 #define BNXT_PM_OPS (&bnxt_pm_ops) 15987 15988 #else 15989 15990 #define BNXT_PM_OPS NULL 15991 15992 #endif /* CONFIG_PM_SLEEP */ 15993 15994 /** 15995 * bnxt_io_error_detected - called when PCI error is detected 15996 * @pdev: Pointer to PCI device 15997 * @state: The current pci connection state 15998 * 15999 * This function is called after a PCI bus error affecting 16000 * this device has been detected. 16001 */ 16002 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 16003 pci_channel_state_t state) 16004 { 16005 struct net_device *netdev = pci_get_drvdata(pdev); 16006 struct bnxt *bp = netdev_priv(netdev); 16007 bool abort = false; 16008 16009 netdev_info(netdev, "PCI I/O error detected\n"); 16010 16011 bnxt_ulp_stop(bp); 16012 16013 rtnl_lock(); 16014 netif_device_detach(netdev); 16015 16016 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16017 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16018 abort = true; 16019 } 16020 16021 if (abort || state == pci_channel_io_perm_failure) { 16022 rtnl_unlock(); 16023 return PCI_ERS_RESULT_DISCONNECT; 16024 } 16025 16026 /* Link is not reliable anymore if state is pci_channel_io_frozen 16027 * so we disable bus master to prevent any potential bad DMAs before 16028 * freeing kernel memory. 16029 */ 16030 if (state == pci_channel_io_frozen) { 16031 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 16032 bnxt_fw_fatal_close(bp); 16033 } 16034 16035 if (netif_running(netdev)) 16036 __bnxt_close_nic(bp, true, true); 16037 16038 if (pci_is_enabled(pdev)) 16039 pci_disable_device(pdev); 16040 bnxt_free_ctx_mem(bp); 16041 rtnl_unlock(); 16042 16043 /* Request a slot slot reset. */ 16044 return PCI_ERS_RESULT_NEED_RESET; 16045 } 16046 16047 /** 16048 * bnxt_io_slot_reset - called after the pci bus has been reset. 16049 * @pdev: Pointer to PCI device 16050 * 16051 * Restart the card from scratch, as if from a cold-boot. 16052 * At this point, the card has exprienced a hard reset, 16053 * followed by fixups by BIOS, and has its config space 16054 * set up identically to what it was at cold boot. 16055 */ 16056 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 16057 { 16058 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 16059 struct net_device *netdev = pci_get_drvdata(pdev); 16060 struct bnxt *bp = netdev_priv(netdev); 16061 int retry = 0; 16062 int err = 0; 16063 int off; 16064 16065 netdev_info(bp->dev, "PCI Slot Reset\n"); 16066 16067 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 16068 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 16069 msleep(900); 16070 16071 rtnl_lock(); 16072 16073 if (pci_enable_device(pdev)) { 16074 dev_err(&pdev->dev, 16075 "Cannot re-enable PCI device after reset.\n"); 16076 } else { 16077 pci_set_master(pdev); 16078 /* Upon fatal error, our device internal logic that latches to 16079 * BAR value is getting reset and will restore only upon 16080 * rewritting the BARs. 16081 * 16082 * As pci_restore_state() does not re-write the BARs if the 16083 * value is same as saved value earlier, driver needs to 16084 * write the BARs to 0 to force restore, in case of fatal error. 16085 */ 16086 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 16087 &bp->state)) { 16088 for (off = PCI_BASE_ADDRESS_0; 16089 off <= PCI_BASE_ADDRESS_5; off += 4) 16090 pci_write_config_dword(bp->pdev, off, 0); 16091 } 16092 pci_restore_state(pdev); 16093 pci_save_state(pdev); 16094 16095 bnxt_inv_fw_health_reg(bp); 16096 bnxt_try_map_fw_health_reg(bp); 16097 16098 /* In some PCIe AER scenarios, firmware may take up to 16099 * 10 seconds to become ready in the worst case. 16100 */ 16101 do { 16102 err = bnxt_try_recover_fw(bp); 16103 if (!err) 16104 break; 16105 retry++; 16106 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 16107 16108 if (err) { 16109 dev_err(&pdev->dev, "Firmware not ready\n"); 16110 goto reset_exit; 16111 } 16112 16113 err = bnxt_hwrm_func_reset(bp); 16114 if (!err) 16115 result = PCI_ERS_RESULT_RECOVERED; 16116 16117 bnxt_ulp_irq_stop(bp); 16118 bnxt_clear_int_mode(bp); 16119 err = bnxt_init_int_mode(bp); 16120 bnxt_ulp_irq_restart(bp, err); 16121 } 16122 16123 reset_exit: 16124 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16125 bnxt_clear_reservations(bp, true); 16126 rtnl_unlock(); 16127 16128 return result; 16129 } 16130 16131 /** 16132 * bnxt_io_resume - called when traffic can start flowing again. 16133 * @pdev: Pointer to PCI device 16134 * 16135 * This callback is called when the error recovery driver tells 16136 * us that its OK to resume normal operation. 16137 */ 16138 static void bnxt_io_resume(struct pci_dev *pdev) 16139 { 16140 struct net_device *netdev = pci_get_drvdata(pdev); 16141 struct bnxt *bp = netdev_priv(netdev); 16142 int err; 16143 16144 netdev_info(bp->dev, "PCI Slot Resume\n"); 16145 rtnl_lock(); 16146 16147 err = bnxt_hwrm_func_qcaps(bp); 16148 if (!err && netif_running(netdev)) 16149 err = bnxt_open(netdev); 16150 16151 if (!err) 16152 netif_device_attach(netdev); 16153 16154 rtnl_unlock(); 16155 bnxt_ulp_start(bp, err); 16156 if (!err) 16157 bnxt_reenable_sriov(bp); 16158 } 16159 16160 static const struct pci_error_handlers bnxt_err_handler = { 16161 .error_detected = bnxt_io_error_detected, 16162 .slot_reset = bnxt_io_slot_reset, 16163 .resume = bnxt_io_resume 16164 }; 16165 16166 static struct pci_driver bnxt_pci_driver = { 16167 .name = DRV_MODULE_NAME, 16168 .id_table = bnxt_pci_tbl, 16169 .probe = bnxt_init_one, 16170 .remove = bnxt_remove_one, 16171 .shutdown = bnxt_shutdown, 16172 .driver.pm = BNXT_PM_OPS, 16173 .err_handler = &bnxt_err_handler, 16174 #if defined(CONFIG_BNXT_SRIOV) 16175 .sriov_configure = bnxt_sriov_configure, 16176 #endif 16177 }; 16178 16179 static int __init bnxt_init(void) 16180 { 16181 int err; 16182 16183 bnxt_debug_init(); 16184 err = pci_register_driver(&bnxt_pci_driver); 16185 if (err) { 16186 bnxt_debug_exit(); 16187 return err; 16188 } 16189 16190 return 0; 16191 } 16192 16193 static void __exit bnxt_exit(void) 16194 { 16195 pci_unregister_driver(&bnxt_pci_driver); 16196 if (bnxt_pf_wq) 16197 destroy_workqueue(bnxt_pf_wq); 16198 bnxt_debug_exit(); 16199 } 16200 16201 module_init(bnxt_init); 16202 module_exit(bnxt_exit); 16203