1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_hwmon.h" 73 74 #define BNXT_TX_TIMEOUT (5 * HZ) 75 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 76 NETIF_MSG_TX_ERR) 77 78 MODULE_LICENSE("GPL"); 79 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 80 81 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 82 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 83 #define BNXT_RX_COPY_THRESH 256 84 85 #define BNXT_TX_PUSH_THRESH 164 86 87 /* indexed by enum board_idx */ 88 static const struct { 89 char *name; 90 } board_info[] = { 91 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 92 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 93 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 94 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 95 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 96 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 97 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 98 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 99 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 100 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 101 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 102 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 103 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 104 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 105 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 106 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 108 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 109 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 110 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 111 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 112 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 113 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 114 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 115 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 116 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 117 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 118 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 119 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 120 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 121 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 123 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 124 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 126 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 127 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 128 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 129 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 130 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 131 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 132 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 133 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 134 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 135 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 136 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 137 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 138 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 139 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 140 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 141 }; 142 143 static const struct pci_device_id bnxt_pci_tbl[] = { 144 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 145 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 146 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 147 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 148 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 149 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 150 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 151 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 152 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 153 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 154 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 155 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 159 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 163 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 164 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 165 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 166 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 167 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 168 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 171 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 172 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 178 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 179 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 180 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 181 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 182 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 183 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 184 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 185 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 186 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 187 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 193 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 194 #ifdef CONFIG_BNXT_SRIOV 195 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 196 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 197 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 198 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 199 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 200 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 201 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 206 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 207 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 208 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 209 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 211 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 214 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 216 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 217 #endif 218 { 0 } 219 }; 220 221 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 222 223 static const u16 bnxt_vf_req_snif[] = { 224 HWRM_FUNC_CFG, 225 HWRM_FUNC_VF_CFG, 226 HWRM_PORT_PHY_QCFG, 227 HWRM_CFA_L2_FILTER_ALLOC, 228 }; 229 230 static const u16 bnxt_async_events_arr[] = { 231 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 232 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 233 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 234 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 235 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 238 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 239 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 240 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 241 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 242 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 243 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 244 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 245 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 246 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 247 }; 248 249 static struct workqueue_struct *bnxt_pf_wq; 250 251 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 252 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 253 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 254 255 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 256 .ports = { 257 .src = 0, 258 .dst = 0, 259 }, 260 .addrs = { 261 .v6addrs = { 262 .src = BNXT_IPV6_MASK_NONE, 263 .dst = BNXT_IPV6_MASK_NONE, 264 }, 265 }, 266 }; 267 268 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 269 .ports = { 270 .src = cpu_to_be16(0xffff), 271 .dst = cpu_to_be16(0xffff), 272 }, 273 .addrs = { 274 .v6addrs = { 275 .src = BNXT_IPV6_MASK_ALL, 276 .dst = BNXT_IPV6_MASK_ALL, 277 }, 278 }, 279 }; 280 281 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 282 .ports = { 283 .src = cpu_to_be16(0xffff), 284 .dst = cpu_to_be16(0xffff), 285 }, 286 .addrs = { 287 .v4addrs = { 288 .src = cpu_to_be32(0xffffffff), 289 .dst = cpu_to_be32(0xffffffff), 290 }, 291 }, 292 }; 293 294 static bool bnxt_vf_pciid(enum board_idx idx) 295 { 296 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 297 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 298 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 299 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 300 } 301 302 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 303 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 304 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS) 305 306 #define BNXT_CP_DB_IRQ_DIS(db) \ 307 writel(DB_CP_IRQ_DIS_FLAGS, db) 308 309 #define BNXT_DB_CQ(db, idx) \ 310 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 311 312 #define BNXT_DB_NQ_P5(db, idx) \ 313 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 314 (db)->doorbell) 315 316 #define BNXT_DB_NQ_P7(db, idx) \ 317 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 318 DB_RING_IDX(db, idx), (db)->doorbell) 319 320 #define BNXT_DB_CQ_ARM(db, idx) \ 321 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 322 323 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 324 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 325 DB_RING_IDX(db, idx), (db)->doorbell) 326 327 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 328 { 329 if (bp->flags & BNXT_FLAG_CHIP_P7) 330 BNXT_DB_NQ_P7(db, idx); 331 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 332 BNXT_DB_NQ_P5(db, idx); 333 else 334 BNXT_DB_CQ(db, idx); 335 } 336 337 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 338 { 339 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 340 BNXT_DB_NQ_ARM_P5(db, idx); 341 else 342 BNXT_DB_CQ_ARM(db, idx); 343 } 344 345 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 346 { 347 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 348 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 349 DB_RING_IDX(db, idx), db->doorbell); 350 else 351 BNXT_DB_CQ(db, idx); 352 } 353 354 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 355 { 356 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 357 return; 358 359 if (BNXT_PF(bp)) 360 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 361 else 362 schedule_delayed_work(&bp->fw_reset_task, delay); 363 } 364 365 static void __bnxt_queue_sp_work(struct bnxt *bp) 366 { 367 if (BNXT_PF(bp)) 368 queue_work(bnxt_pf_wq, &bp->sp_task); 369 else 370 schedule_work(&bp->sp_task); 371 } 372 373 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 374 { 375 set_bit(event, &bp->sp_event); 376 __bnxt_queue_sp_work(bp); 377 } 378 379 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 380 { 381 if (!rxr->bnapi->in_reset) { 382 rxr->bnapi->in_reset = true; 383 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 384 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 385 else 386 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 387 __bnxt_queue_sp_work(bp); 388 } 389 rxr->rx_next_cons = 0xffff; 390 } 391 392 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 393 u16 curr) 394 { 395 struct bnxt_napi *bnapi = txr->bnapi; 396 397 if (bnapi->tx_fault) 398 return; 399 400 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 401 txr->txq_index, txr->tx_hw_cons, 402 txr->tx_cons, txr->tx_prod, curr); 403 WARN_ON_ONCE(1); 404 bnapi->tx_fault = 1; 405 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 406 } 407 408 const u16 bnxt_lhint_arr[] = { 409 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 410 TX_BD_FLAGS_LHINT_512_TO_1023, 411 TX_BD_FLAGS_LHINT_1024_TO_2047, 412 TX_BD_FLAGS_LHINT_1024_TO_2047, 413 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 414 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 415 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 416 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 417 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 418 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 419 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 420 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 421 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 422 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 423 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 424 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 425 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 426 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 427 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 428 }; 429 430 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 431 { 432 struct metadata_dst *md_dst = skb_metadata_dst(skb); 433 434 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 435 return 0; 436 437 return md_dst->u.port_info.port_id; 438 } 439 440 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 441 u16 prod) 442 { 443 /* Sync BD data before updating doorbell */ 444 wmb(); 445 bnxt_db_write(bp, &txr->tx_db, prod); 446 txr->kick_pending = 0; 447 } 448 449 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 450 { 451 struct bnxt *bp = netdev_priv(dev); 452 struct tx_bd *txbd, *txbd0; 453 struct tx_bd_ext *txbd1; 454 struct netdev_queue *txq; 455 int i; 456 dma_addr_t mapping; 457 unsigned int length, pad = 0; 458 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 459 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 460 struct pci_dev *pdev = bp->pdev; 461 u16 prod, last_frag, txts_prod; 462 struct bnxt_tx_ring_info *txr; 463 struct bnxt_sw_tx_bd *tx_buf; 464 __le32 lflags = 0; 465 466 i = skb_get_queue_mapping(skb); 467 if (unlikely(i >= bp->tx_nr_rings)) { 468 dev_kfree_skb_any(skb); 469 dev_core_stats_tx_dropped_inc(dev); 470 return NETDEV_TX_OK; 471 } 472 473 txq = netdev_get_tx_queue(dev, i); 474 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 475 prod = txr->tx_prod; 476 477 free_size = bnxt_tx_avail(bp, txr); 478 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 479 /* We must have raced with NAPI cleanup */ 480 if (net_ratelimit() && txr->kick_pending) 481 netif_warn(bp, tx_err, dev, 482 "bnxt: ring busy w/ flush pending!\n"); 483 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 484 bp->tx_wake_thresh)) 485 return NETDEV_TX_BUSY; 486 } 487 488 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 489 goto tx_free; 490 491 length = skb->len; 492 len = skb_headlen(skb); 493 last_frag = skb_shinfo(skb)->nr_frags; 494 495 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 496 497 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 498 tx_buf->skb = skb; 499 tx_buf->nr_frags = last_frag; 500 501 vlan_tag_flags = 0; 502 cfa_action = bnxt_xmit_get_cfa_action(skb); 503 if (skb_vlan_tag_present(skb)) { 504 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 505 skb_vlan_tag_get(skb); 506 /* Currently supports 8021Q, 8021AD vlan offloads 507 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 508 */ 509 if (skb->vlan_proto == htons(ETH_P_8021Q)) 510 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 511 } 512 513 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 514 ptp->tx_tstamp_en) { 515 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 516 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 517 tx_buf->is_ts_pkt = 1; 518 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 519 } else if (!skb_is_gso(skb)) { 520 u16 seq_id, hdr_off; 521 522 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 523 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 524 if (vlan_tag_flags) 525 hdr_off += VLAN_HLEN; 526 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 527 tx_buf->is_ts_pkt = 1; 528 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 529 530 ptp->txts_req[txts_prod].tx_seqid = seq_id; 531 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 532 tx_buf->txts_prod = txts_prod; 533 } 534 } 535 } 536 if (unlikely(skb->no_fcs)) 537 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 538 539 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 540 !lflags) { 541 struct tx_push_buffer *tx_push_buf = txr->tx_push; 542 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 543 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 544 void __iomem *db = txr->tx_db.doorbell; 545 void *pdata = tx_push_buf->data; 546 u64 *end; 547 int j, push_len; 548 549 /* Set COAL_NOW to be ready quickly for the next push */ 550 tx_push->tx_bd_len_flags_type = 551 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 552 TX_BD_TYPE_LONG_TX_BD | 553 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 554 TX_BD_FLAGS_COAL_NOW | 555 TX_BD_FLAGS_PACKET_END | 556 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 557 558 if (skb->ip_summed == CHECKSUM_PARTIAL) 559 tx_push1->tx_bd_hsize_lflags = 560 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 561 else 562 tx_push1->tx_bd_hsize_lflags = 0; 563 564 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 565 tx_push1->tx_bd_cfa_action = 566 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 567 568 end = pdata + length; 569 end = PTR_ALIGN(end, 8) - 1; 570 *end = 0; 571 572 skb_copy_from_linear_data(skb, pdata, len); 573 pdata += len; 574 for (j = 0; j < last_frag; j++) { 575 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 576 void *fptr; 577 578 fptr = skb_frag_address_safe(frag); 579 if (!fptr) 580 goto normal_tx; 581 582 memcpy(pdata, fptr, skb_frag_size(frag)); 583 pdata += skb_frag_size(frag); 584 } 585 586 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 587 txbd->tx_bd_haddr = txr->data_mapping; 588 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 589 prod = NEXT_TX(prod); 590 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 591 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 592 memcpy(txbd, tx_push1, sizeof(*txbd)); 593 prod = NEXT_TX(prod); 594 tx_push->doorbell = 595 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 596 DB_RING_IDX(&txr->tx_db, prod)); 597 WRITE_ONCE(txr->tx_prod, prod); 598 599 tx_buf->is_push = 1; 600 netdev_tx_sent_queue(txq, skb->len); 601 wmb(); /* Sync is_push and byte queue before pushing data */ 602 603 push_len = (length + sizeof(*tx_push) + 7) / 8; 604 if (push_len > 16) { 605 __iowrite64_copy(db, tx_push_buf, 16); 606 __iowrite32_copy(db + 4, tx_push_buf + 1, 607 (push_len - 16) << 1); 608 } else { 609 __iowrite64_copy(db, tx_push_buf, push_len); 610 } 611 612 goto tx_done; 613 } 614 615 normal_tx: 616 if (length < BNXT_MIN_PKT_SIZE) { 617 pad = BNXT_MIN_PKT_SIZE - length; 618 if (skb_pad(skb, pad)) 619 /* SKB already freed. */ 620 goto tx_kick_pending; 621 length = BNXT_MIN_PKT_SIZE; 622 } 623 624 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 625 626 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 627 goto tx_free; 628 629 dma_unmap_addr_set(tx_buf, mapping, mapping); 630 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 631 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 632 633 txbd->tx_bd_haddr = cpu_to_le64(mapping); 634 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 635 636 prod = NEXT_TX(prod); 637 txbd1 = (struct tx_bd_ext *) 638 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 639 640 txbd1->tx_bd_hsize_lflags = lflags; 641 if (skb_is_gso(skb)) { 642 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 643 u32 hdr_len; 644 645 if (skb->encapsulation) { 646 if (udp_gso) 647 hdr_len = skb_inner_transport_offset(skb) + 648 sizeof(struct udphdr); 649 else 650 hdr_len = skb_inner_tcp_all_headers(skb); 651 } else if (udp_gso) { 652 hdr_len = skb_transport_offset(skb) + 653 sizeof(struct udphdr); 654 } else { 655 hdr_len = skb_tcp_all_headers(skb); 656 } 657 658 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 659 TX_BD_FLAGS_T_IPID | 660 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 661 length = skb_shinfo(skb)->gso_size; 662 txbd1->tx_bd_mss = cpu_to_le32(length); 663 length += hdr_len; 664 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 665 txbd1->tx_bd_hsize_lflags |= 666 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 667 txbd1->tx_bd_mss = 0; 668 } 669 670 length >>= 9; 671 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 672 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 673 skb->len); 674 i = 0; 675 goto tx_dma_error; 676 } 677 flags |= bnxt_lhint_arr[length]; 678 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 679 680 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 681 txbd1->tx_bd_cfa_action = 682 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 683 txbd0 = txbd; 684 for (i = 0; i < last_frag; i++) { 685 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 686 687 prod = NEXT_TX(prod); 688 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 689 690 len = skb_frag_size(frag); 691 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 692 DMA_TO_DEVICE); 693 694 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 695 goto tx_dma_error; 696 697 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 698 dma_unmap_addr_set(tx_buf, mapping, mapping); 699 700 txbd->tx_bd_haddr = cpu_to_le64(mapping); 701 702 flags = len << TX_BD_LEN_SHIFT; 703 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 704 } 705 706 flags &= ~TX_BD_LEN; 707 txbd->tx_bd_len_flags_type = 708 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 709 TX_BD_FLAGS_PACKET_END); 710 711 netdev_tx_sent_queue(txq, skb->len); 712 713 skb_tx_timestamp(skb); 714 715 prod = NEXT_TX(prod); 716 WRITE_ONCE(txr->tx_prod, prod); 717 718 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 719 bnxt_txr_db_kick(bp, txr, prod); 720 } else { 721 if (free_size >= bp->tx_wake_thresh) 722 txbd0->tx_bd_len_flags_type |= 723 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 724 txr->kick_pending = 1; 725 } 726 727 tx_done: 728 729 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 730 if (netdev_xmit_more() && !tx_buf->is_push) { 731 txbd0->tx_bd_len_flags_type &= 732 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 733 bnxt_txr_db_kick(bp, txr, prod); 734 } 735 736 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 737 bp->tx_wake_thresh); 738 } 739 return NETDEV_TX_OK; 740 741 tx_dma_error: 742 last_frag = i; 743 744 /* start back at beginning and unmap skb */ 745 prod = txr->tx_prod; 746 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 747 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 748 skb_headlen(skb), DMA_TO_DEVICE); 749 prod = NEXT_TX(prod); 750 751 /* unmap remaining mapped pages */ 752 for (i = 0; i < last_frag; i++) { 753 prod = NEXT_TX(prod); 754 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 755 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 756 skb_frag_size(&skb_shinfo(skb)->frags[i]), 757 DMA_TO_DEVICE); 758 } 759 760 tx_free: 761 dev_kfree_skb_any(skb); 762 tx_kick_pending: 763 if (BNXT_TX_PTP_IS_SET(lflags)) { 764 txr->tx_buf_ring[txr->tx_prod].is_ts_pkt = 0; 765 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 766 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 767 /* set SKB to err so PTP worker will clean up */ 768 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 769 } 770 if (txr->kick_pending) 771 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 772 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 773 dev_core_stats_tx_dropped_inc(dev); 774 return NETDEV_TX_OK; 775 } 776 777 /* Returns true if some remaining TX packets not processed. */ 778 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 779 int budget) 780 { 781 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 782 struct pci_dev *pdev = bp->pdev; 783 u16 hw_cons = txr->tx_hw_cons; 784 unsigned int tx_bytes = 0; 785 u16 cons = txr->tx_cons; 786 int tx_pkts = 0; 787 bool rc = false; 788 789 while (RING_TX(bp, cons) != hw_cons) { 790 struct bnxt_sw_tx_bd *tx_buf; 791 struct sk_buff *skb; 792 bool is_ts_pkt; 793 int j, last; 794 795 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 796 skb = tx_buf->skb; 797 798 if (unlikely(!skb)) { 799 bnxt_sched_reset_txr(bp, txr, cons); 800 return rc; 801 } 802 803 is_ts_pkt = tx_buf->is_ts_pkt; 804 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 805 rc = true; 806 break; 807 } 808 809 cons = NEXT_TX(cons); 810 tx_pkts++; 811 tx_bytes += skb->len; 812 tx_buf->skb = NULL; 813 tx_buf->is_ts_pkt = 0; 814 815 if (tx_buf->is_push) { 816 tx_buf->is_push = 0; 817 goto next_tx_int; 818 } 819 820 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 821 skb_headlen(skb), DMA_TO_DEVICE); 822 last = tx_buf->nr_frags; 823 824 for (j = 0; j < last; j++) { 825 cons = NEXT_TX(cons); 826 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 827 dma_unmap_page( 828 &pdev->dev, 829 dma_unmap_addr(tx_buf, mapping), 830 skb_frag_size(&skb_shinfo(skb)->frags[j]), 831 DMA_TO_DEVICE); 832 } 833 if (unlikely(is_ts_pkt)) { 834 if (BNXT_CHIP_P5(bp)) { 835 /* PTP worker takes ownership of the skb */ 836 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 837 skb = NULL; 838 } 839 } 840 841 next_tx_int: 842 cons = NEXT_TX(cons); 843 844 dev_consume_skb_any(skb); 845 } 846 847 WRITE_ONCE(txr->tx_cons, cons); 848 849 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 850 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 851 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 852 853 return rc; 854 } 855 856 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 857 { 858 struct bnxt_tx_ring_info *txr; 859 bool more = false; 860 int i; 861 862 bnxt_for_each_napi_tx(i, bnapi, txr) { 863 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 864 more |= __bnxt_tx_int(bp, txr, budget); 865 } 866 if (!more) 867 bnapi->events &= ~BNXT_TX_CMP_EVENT; 868 } 869 870 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 871 struct bnxt_rx_ring_info *rxr, 872 unsigned int *offset, 873 gfp_t gfp) 874 { 875 struct page *page; 876 877 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 878 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 879 BNXT_RX_PAGE_SIZE); 880 } else { 881 page = page_pool_dev_alloc_pages(rxr->page_pool); 882 *offset = 0; 883 } 884 if (!page) 885 return NULL; 886 887 *mapping = page_pool_get_dma_addr(page) + *offset; 888 return page; 889 } 890 891 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 892 gfp_t gfp) 893 { 894 u8 *data; 895 struct pci_dev *pdev = bp->pdev; 896 897 if (gfp == GFP_ATOMIC) 898 data = napi_alloc_frag(bp->rx_buf_size); 899 else 900 data = netdev_alloc_frag(bp->rx_buf_size); 901 if (!data) 902 return NULL; 903 904 *mapping = dma_map_single_attrs(&pdev->dev, data + bp->rx_dma_offset, 905 bp->rx_buf_use_size, bp->rx_dir, 906 DMA_ATTR_WEAK_ORDERING); 907 908 if (dma_mapping_error(&pdev->dev, *mapping)) { 909 skb_free_frag(data); 910 data = NULL; 911 } 912 return data; 913 } 914 915 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 916 u16 prod, gfp_t gfp) 917 { 918 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 919 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 920 dma_addr_t mapping; 921 922 if (BNXT_RX_PAGE_MODE(bp)) { 923 unsigned int offset; 924 struct page *page = 925 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 926 927 if (!page) 928 return -ENOMEM; 929 930 mapping += bp->rx_dma_offset; 931 rx_buf->data = page; 932 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 933 } else { 934 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, gfp); 935 936 if (!data) 937 return -ENOMEM; 938 939 rx_buf->data = data; 940 rx_buf->data_ptr = data + bp->rx_offset; 941 } 942 rx_buf->mapping = mapping; 943 944 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 945 return 0; 946 } 947 948 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 949 { 950 u16 prod = rxr->rx_prod; 951 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 952 struct bnxt *bp = rxr->bnapi->bp; 953 struct rx_bd *cons_bd, *prod_bd; 954 955 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 956 cons_rx_buf = &rxr->rx_buf_ring[cons]; 957 958 prod_rx_buf->data = data; 959 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 960 961 prod_rx_buf->mapping = cons_rx_buf->mapping; 962 963 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 964 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 965 966 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 967 } 968 969 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 970 { 971 u16 next, max = rxr->rx_agg_bmap_size; 972 973 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 974 if (next >= max) 975 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 976 return next; 977 } 978 979 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 980 struct bnxt_rx_ring_info *rxr, 981 u16 prod, gfp_t gfp) 982 { 983 struct rx_bd *rxbd = 984 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 985 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 986 struct page *page; 987 dma_addr_t mapping; 988 u16 sw_prod = rxr->rx_sw_agg_prod; 989 unsigned int offset = 0; 990 991 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 992 993 if (!page) 994 return -ENOMEM; 995 996 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 997 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 998 999 __set_bit(sw_prod, rxr->rx_agg_bmap); 1000 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1001 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1002 1003 rx_agg_buf->page = page; 1004 rx_agg_buf->offset = offset; 1005 rx_agg_buf->mapping = mapping; 1006 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1007 rxbd->rx_bd_opaque = sw_prod; 1008 return 0; 1009 } 1010 1011 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1012 struct bnxt_cp_ring_info *cpr, 1013 u16 cp_cons, u16 curr) 1014 { 1015 struct rx_agg_cmp *agg; 1016 1017 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1018 agg = (struct rx_agg_cmp *) 1019 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1020 return agg; 1021 } 1022 1023 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1024 struct bnxt_rx_ring_info *rxr, 1025 u16 agg_id, u16 curr) 1026 { 1027 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1028 1029 return &tpa_info->agg_arr[curr]; 1030 } 1031 1032 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1033 u16 start, u32 agg_bufs, bool tpa) 1034 { 1035 struct bnxt_napi *bnapi = cpr->bnapi; 1036 struct bnxt *bp = bnapi->bp; 1037 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1038 u16 prod = rxr->rx_agg_prod; 1039 u16 sw_prod = rxr->rx_sw_agg_prod; 1040 bool p5_tpa = false; 1041 u32 i; 1042 1043 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1044 p5_tpa = true; 1045 1046 for (i = 0; i < agg_bufs; i++) { 1047 u16 cons; 1048 struct rx_agg_cmp *agg; 1049 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1050 struct rx_bd *prod_bd; 1051 struct page *page; 1052 1053 if (p5_tpa) 1054 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1055 else 1056 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1057 cons = agg->rx_agg_cmp_opaque; 1058 __clear_bit(cons, rxr->rx_agg_bmap); 1059 1060 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1061 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1062 1063 __set_bit(sw_prod, rxr->rx_agg_bmap); 1064 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1065 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1066 1067 /* It is possible for sw_prod to be equal to cons, so 1068 * set cons_rx_buf->page to NULL first. 1069 */ 1070 page = cons_rx_buf->page; 1071 cons_rx_buf->page = NULL; 1072 prod_rx_buf->page = page; 1073 prod_rx_buf->offset = cons_rx_buf->offset; 1074 1075 prod_rx_buf->mapping = cons_rx_buf->mapping; 1076 1077 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1078 1079 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1080 prod_bd->rx_bd_opaque = sw_prod; 1081 1082 prod = NEXT_RX_AGG(prod); 1083 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1084 } 1085 rxr->rx_agg_prod = prod; 1086 rxr->rx_sw_agg_prod = sw_prod; 1087 } 1088 1089 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1090 struct bnxt_rx_ring_info *rxr, 1091 u16 cons, void *data, u8 *data_ptr, 1092 dma_addr_t dma_addr, 1093 unsigned int offset_and_len) 1094 { 1095 unsigned int len = offset_and_len & 0xffff; 1096 struct page *page = data; 1097 u16 prod = rxr->rx_prod; 1098 struct sk_buff *skb; 1099 int err; 1100 1101 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1102 if (unlikely(err)) { 1103 bnxt_reuse_rx_data(rxr, cons, data); 1104 return NULL; 1105 } 1106 dma_addr -= bp->rx_dma_offset; 1107 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1108 bp->rx_dir); 1109 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1110 if (!skb) { 1111 page_pool_recycle_direct(rxr->page_pool, page); 1112 return NULL; 1113 } 1114 skb_mark_for_recycle(skb); 1115 skb_reserve(skb, bp->rx_offset); 1116 __skb_put(skb, len); 1117 1118 return skb; 1119 } 1120 1121 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1122 struct bnxt_rx_ring_info *rxr, 1123 u16 cons, void *data, u8 *data_ptr, 1124 dma_addr_t dma_addr, 1125 unsigned int offset_and_len) 1126 { 1127 unsigned int payload = offset_and_len >> 16; 1128 unsigned int len = offset_and_len & 0xffff; 1129 skb_frag_t *frag; 1130 struct page *page = data; 1131 u16 prod = rxr->rx_prod; 1132 struct sk_buff *skb; 1133 int off, err; 1134 1135 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1136 if (unlikely(err)) { 1137 bnxt_reuse_rx_data(rxr, cons, data); 1138 return NULL; 1139 } 1140 dma_addr -= bp->rx_dma_offset; 1141 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1142 bp->rx_dir); 1143 1144 if (unlikely(!payload)) 1145 payload = eth_get_headlen(bp->dev, data_ptr, len); 1146 1147 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1148 if (!skb) { 1149 page_pool_recycle_direct(rxr->page_pool, page); 1150 return NULL; 1151 } 1152 1153 skb_mark_for_recycle(skb); 1154 off = (void *)data_ptr - page_address(page); 1155 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1156 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1157 payload + NET_IP_ALIGN); 1158 1159 frag = &skb_shinfo(skb)->frags[0]; 1160 skb_frag_size_sub(frag, payload); 1161 skb_frag_off_add(frag, payload); 1162 skb->data_len -= payload; 1163 skb->tail += payload; 1164 1165 return skb; 1166 } 1167 1168 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1169 struct bnxt_rx_ring_info *rxr, u16 cons, 1170 void *data, u8 *data_ptr, 1171 dma_addr_t dma_addr, 1172 unsigned int offset_and_len) 1173 { 1174 u16 prod = rxr->rx_prod; 1175 struct sk_buff *skb; 1176 int err; 1177 1178 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1179 if (unlikely(err)) { 1180 bnxt_reuse_rx_data(rxr, cons, data); 1181 return NULL; 1182 } 1183 1184 skb = napi_build_skb(data, bp->rx_buf_size); 1185 dma_unmap_single_attrs(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1186 bp->rx_dir, DMA_ATTR_WEAK_ORDERING); 1187 if (!skb) { 1188 skb_free_frag(data); 1189 return NULL; 1190 } 1191 1192 skb_reserve(skb, bp->rx_offset); 1193 skb_put(skb, offset_and_len & 0xffff); 1194 return skb; 1195 } 1196 1197 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1198 struct bnxt_cp_ring_info *cpr, 1199 struct skb_shared_info *shinfo, 1200 u16 idx, u32 agg_bufs, bool tpa, 1201 struct xdp_buff *xdp) 1202 { 1203 struct bnxt_napi *bnapi = cpr->bnapi; 1204 struct pci_dev *pdev = bp->pdev; 1205 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1206 u16 prod = rxr->rx_agg_prod; 1207 u32 i, total_frag_len = 0; 1208 bool p5_tpa = false; 1209 1210 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1211 p5_tpa = true; 1212 1213 for (i = 0; i < agg_bufs; i++) { 1214 skb_frag_t *frag = &shinfo->frags[i]; 1215 u16 cons, frag_len; 1216 struct rx_agg_cmp *agg; 1217 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1218 struct page *page; 1219 dma_addr_t mapping; 1220 1221 if (p5_tpa) 1222 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1223 else 1224 agg = bnxt_get_agg(bp, cpr, idx, i); 1225 cons = agg->rx_agg_cmp_opaque; 1226 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1227 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1228 1229 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1230 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1231 cons_rx_buf->offset, frag_len); 1232 shinfo->nr_frags = i + 1; 1233 __clear_bit(cons, rxr->rx_agg_bmap); 1234 1235 /* It is possible for bnxt_alloc_rx_page() to allocate 1236 * a sw_prod index that equals the cons index, so we 1237 * need to clear the cons entry now. 1238 */ 1239 mapping = cons_rx_buf->mapping; 1240 page = cons_rx_buf->page; 1241 cons_rx_buf->page = NULL; 1242 1243 if (xdp && page_is_pfmemalloc(page)) 1244 xdp_buff_set_frag_pfmemalloc(xdp); 1245 1246 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1247 --shinfo->nr_frags; 1248 cons_rx_buf->page = page; 1249 1250 /* Update prod since possibly some pages have been 1251 * allocated already. 1252 */ 1253 rxr->rx_agg_prod = prod; 1254 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1255 return 0; 1256 } 1257 1258 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1259 bp->rx_dir); 1260 1261 total_frag_len += frag_len; 1262 prod = NEXT_RX_AGG(prod); 1263 } 1264 rxr->rx_agg_prod = prod; 1265 return total_frag_len; 1266 } 1267 1268 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1269 struct bnxt_cp_ring_info *cpr, 1270 struct sk_buff *skb, u16 idx, 1271 u32 agg_bufs, bool tpa) 1272 { 1273 struct skb_shared_info *shinfo = skb_shinfo(skb); 1274 u32 total_frag_len = 0; 1275 1276 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1277 agg_bufs, tpa, NULL); 1278 if (!total_frag_len) { 1279 skb_mark_for_recycle(skb); 1280 dev_kfree_skb(skb); 1281 return NULL; 1282 } 1283 1284 skb->data_len += total_frag_len; 1285 skb->len += total_frag_len; 1286 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1287 return skb; 1288 } 1289 1290 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1291 struct bnxt_cp_ring_info *cpr, 1292 struct xdp_buff *xdp, u16 idx, 1293 u32 agg_bufs, bool tpa) 1294 { 1295 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1296 u32 total_frag_len = 0; 1297 1298 if (!xdp_buff_has_frags(xdp)) 1299 shinfo->nr_frags = 0; 1300 1301 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1302 idx, agg_bufs, tpa, xdp); 1303 if (total_frag_len) { 1304 xdp_buff_set_frags_flag(xdp); 1305 shinfo->nr_frags = agg_bufs; 1306 shinfo->xdp_frags_size = total_frag_len; 1307 } 1308 return total_frag_len; 1309 } 1310 1311 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1312 u8 agg_bufs, u32 *raw_cons) 1313 { 1314 u16 last; 1315 struct rx_agg_cmp *agg; 1316 1317 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1318 last = RING_CMP(*raw_cons); 1319 agg = (struct rx_agg_cmp *) 1320 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1321 return RX_AGG_CMP_VALID(agg, *raw_cons); 1322 } 1323 1324 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1325 unsigned int len, 1326 dma_addr_t mapping) 1327 { 1328 struct bnxt *bp = bnapi->bp; 1329 struct pci_dev *pdev = bp->pdev; 1330 struct sk_buff *skb; 1331 1332 skb = napi_alloc_skb(&bnapi->napi, len); 1333 if (!skb) 1334 return NULL; 1335 1336 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1337 bp->rx_dir); 1338 1339 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1340 len + NET_IP_ALIGN); 1341 1342 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1343 bp->rx_dir); 1344 1345 skb_put(skb, len); 1346 1347 return skb; 1348 } 1349 1350 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1351 unsigned int len, 1352 dma_addr_t mapping) 1353 { 1354 return bnxt_copy_data(bnapi, data, len, mapping); 1355 } 1356 1357 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1358 struct xdp_buff *xdp, 1359 unsigned int len, 1360 dma_addr_t mapping) 1361 { 1362 unsigned int metasize = 0; 1363 u8 *data = xdp->data; 1364 struct sk_buff *skb; 1365 1366 len = xdp->data_end - xdp->data_meta; 1367 metasize = xdp->data - xdp->data_meta; 1368 data = xdp->data_meta; 1369 1370 skb = bnxt_copy_data(bnapi, data, len, mapping); 1371 if (!skb) 1372 return skb; 1373 1374 if (metasize) { 1375 skb_metadata_set(skb, metasize); 1376 __skb_pull(skb, metasize); 1377 } 1378 1379 return skb; 1380 } 1381 1382 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1383 u32 *raw_cons, void *cmp) 1384 { 1385 struct rx_cmp *rxcmp = cmp; 1386 u32 tmp_raw_cons = *raw_cons; 1387 u8 cmp_type, agg_bufs = 0; 1388 1389 cmp_type = RX_CMP_TYPE(rxcmp); 1390 1391 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1392 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1393 RX_CMP_AGG_BUFS) >> 1394 RX_CMP_AGG_BUFS_SHIFT; 1395 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1396 struct rx_tpa_end_cmp *tpa_end = cmp; 1397 1398 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1399 return 0; 1400 1401 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1402 } 1403 1404 if (agg_bufs) { 1405 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1406 return -EBUSY; 1407 } 1408 *raw_cons = tmp_raw_cons; 1409 return 0; 1410 } 1411 1412 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1413 { 1414 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1415 u16 idx = agg_id & MAX_TPA_P5_MASK; 1416 1417 if (test_bit(idx, map->agg_idx_bmap)) 1418 idx = find_first_zero_bit(map->agg_idx_bmap, 1419 BNXT_AGG_IDX_BMAP_SIZE); 1420 __set_bit(idx, map->agg_idx_bmap); 1421 map->agg_id_tbl[agg_id] = idx; 1422 return idx; 1423 } 1424 1425 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1426 { 1427 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1428 1429 __clear_bit(idx, map->agg_idx_bmap); 1430 } 1431 1432 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1433 { 1434 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1435 1436 return map->agg_id_tbl[agg_id]; 1437 } 1438 1439 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1440 struct rx_tpa_start_cmp *tpa_start, 1441 struct rx_tpa_start_cmp_ext *tpa_start1) 1442 { 1443 tpa_info->cfa_code_valid = 1; 1444 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1445 tpa_info->vlan_valid = 0; 1446 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1447 tpa_info->vlan_valid = 1; 1448 tpa_info->metadata = 1449 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1450 } 1451 } 1452 1453 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1454 struct rx_tpa_start_cmp *tpa_start, 1455 struct rx_tpa_start_cmp_ext *tpa_start1) 1456 { 1457 tpa_info->vlan_valid = 0; 1458 if (TPA_START_VLAN_VALID(tpa_start)) { 1459 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1460 u32 vlan_proto = ETH_P_8021Q; 1461 1462 tpa_info->vlan_valid = 1; 1463 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1464 vlan_proto = ETH_P_8021AD; 1465 tpa_info->metadata = vlan_proto << 16 | 1466 TPA_START_METADATA0_TCI(tpa_start1); 1467 } 1468 } 1469 1470 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1471 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1472 struct rx_tpa_start_cmp_ext *tpa_start1) 1473 { 1474 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1475 struct bnxt_tpa_info *tpa_info; 1476 u16 cons, prod, agg_id; 1477 struct rx_bd *prod_bd; 1478 dma_addr_t mapping; 1479 1480 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1481 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1482 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1483 } else { 1484 agg_id = TPA_START_AGG_ID(tpa_start); 1485 } 1486 cons = tpa_start->rx_tpa_start_cmp_opaque; 1487 prod = rxr->rx_prod; 1488 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1489 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1490 tpa_info = &rxr->rx_tpa[agg_id]; 1491 1492 if (unlikely(cons != rxr->rx_next_cons || 1493 TPA_START_ERROR(tpa_start))) { 1494 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1495 cons, rxr->rx_next_cons, 1496 TPA_START_ERROR_CODE(tpa_start1)); 1497 bnxt_sched_reset_rxr(bp, rxr); 1498 return; 1499 } 1500 prod_rx_buf->data = tpa_info->data; 1501 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1502 1503 mapping = tpa_info->mapping; 1504 prod_rx_buf->mapping = mapping; 1505 1506 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1507 1508 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1509 1510 tpa_info->data = cons_rx_buf->data; 1511 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1512 cons_rx_buf->data = NULL; 1513 tpa_info->mapping = cons_rx_buf->mapping; 1514 1515 tpa_info->len = 1516 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1517 RX_TPA_START_CMP_LEN_SHIFT; 1518 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1519 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1520 tpa_info->gso_type = SKB_GSO_TCPV4; 1521 if (TPA_START_IS_IPV6(tpa_start1)) 1522 tpa_info->gso_type = SKB_GSO_TCPV6; 1523 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1524 else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP && 1525 TPA_START_HASH_TYPE(tpa_start) == 3) 1526 tpa_info->gso_type = SKB_GSO_TCPV6; 1527 tpa_info->rss_hash = 1528 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1529 } else { 1530 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1531 tpa_info->gso_type = 0; 1532 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1533 } 1534 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1535 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1536 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1537 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1538 else 1539 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1540 tpa_info->agg_count = 0; 1541 1542 rxr->rx_prod = NEXT_RX(prod); 1543 cons = RING_RX(bp, NEXT_RX(cons)); 1544 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1545 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1546 1547 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1548 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1549 cons_rx_buf->data = NULL; 1550 } 1551 1552 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1553 { 1554 if (agg_bufs) 1555 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1556 } 1557 1558 #ifdef CONFIG_INET 1559 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1560 { 1561 struct udphdr *uh = NULL; 1562 1563 if (ip_proto == htons(ETH_P_IP)) { 1564 struct iphdr *iph = (struct iphdr *)skb->data; 1565 1566 if (iph->protocol == IPPROTO_UDP) 1567 uh = (struct udphdr *)(iph + 1); 1568 } else { 1569 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1570 1571 if (iph->nexthdr == IPPROTO_UDP) 1572 uh = (struct udphdr *)(iph + 1); 1573 } 1574 if (uh) { 1575 if (uh->check) 1576 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1577 else 1578 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1579 } 1580 } 1581 #endif 1582 1583 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1584 int payload_off, int tcp_ts, 1585 struct sk_buff *skb) 1586 { 1587 #ifdef CONFIG_INET 1588 struct tcphdr *th; 1589 int len, nw_off; 1590 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1591 u32 hdr_info = tpa_info->hdr_info; 1592 bool loopback = false; 1593 1594 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1595 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1596 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1597 1598 /* If the packet is an internal loopback packet, the offsets will 1599 * have an extra 4 bytes. 1600 */ 1601 if (inner_mac_off == 4) { 1602 loopback = true; 1603 } else if (inner_mac_off > 4) { 1604 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1605 ETH_HLEN - 2)); 1606 1607 /* We only support inner iPv4/ipv6. If we don't see the 1608 * correct protocol ID, it must be a loopback packet where 1609 * the offsets are off by 4. 1610 */ 1611 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1612 loopback = true; 1613 } 1614 if (loopback) { 1615 /* internal loopback packet, subtract all offsets by 4 */ 1616 inner_ip_off -= 4; 1617 inner_mac_off -= 4; 1618 outer_ip_off -= 4; 1619 } 1620 1621 nw_off = inner_ip_off - ETH_HLEN; 1622 skb_set_network_header(skb, nw_off); 1623 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1624 struct ipv6hdr *iph = ipv6_hdr(skb); 1625 1626 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1627 len = skb->len - skb_transport_offset(skb); 1628 th = tcp_hdr(skb); 1629 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1630 } else { 1631 struct iphdr *iph = ip_hdr(skb); 1632 1633 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1634 len = skb->len - skb_transport_offset(skb); 1635 th = tcp_hdr(skb); 1636 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1637 } 1638 1639 if (inner_mac_off) { /* tunnel */ 1640 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1641 ETH_HLEN - 2)); 1642 1643 bnxt_gro_tunnel(skb, proto); 1644 } 1645 #endif 1646 return skb; 1647 } 1648 1649 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1650 int payload_off, int tcp_ts, 1651 struct sk_buff *skb) 1652 { 1653 #ifdef CONFIG_INET 1654 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1655 u32 hdr_info = tpa_info->hdr_info; 1656 int iphdr_len, nw_off; 1657 1658 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1659 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1660 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1661 1662 nw_off = inner_ip_off - ETH_HLEN; 1663 skb_set_network_header(skb, nw_off); 1664 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1665 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1666 skb_set_transport_header(skb, nw_off + iphdr_len); 1667 1668 if (inner_mac_off) { /* tunnel */ 1669 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1670 ETH_HLEN - 2)); 1671 1672 bnxt_gro_tunnel(skb, proto); 1673 } 1674 #endif 1675 return skb; 1676 } 1677 1678 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1679 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1680 1681 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1682 int payload_off, int tcp_ts, 1683 struct sk_buff *skb) 1684 { 1685 #ifdef CONFIG_INET 1686 struct tcphdr *th; 1687 int len, nw_off, tcp_opt_len = 0; 1688 1689 if (tcp_ts) 1690 tcp_opt_len = 12; 1691 1692 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1693 struct iphdr *iph; 1694 1695 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1696 ETH_HLEN; 1697 skb_set_network_header(skb, nw_off); 1698 iph = ip_hdr(skb); 1699 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1700 len = skb->len - skb_transport_offset(skb); 1701 th = tcp_hdr(skb); 1702 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1703 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1704 struct ipv6hdr *iph; 1705 1706 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1707 ETH_HLEN; 1708 skb_set_network_header(skb, nw_off); 1709 iph = ipv6_hdr(skb); 1710 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1711 len = skb->len - skb_transport_offset(skb); 1712 th = tcp_hdr(skb); 1713 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1714 } else { 1715 dev_kfree_skb_any(skb); 1716 return NULL; 1717 } 1718 1719 if (nw_off) /* tunnel */ 1720 bnxt_gro_tunnel(skb, skb->protocol); 1721 #endif 1722 return skb; 1723 } 1724 1725 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1726 struct bnxt_tpa_info *tpa_info, 1727 struct rx_tpa_end_cmp *tpa_end, 1728 struct rx_tpa_end_cmp_ext *tpa_end1, 1729 struct sk_buff *skb) 1730 { 1731 #ifdef CONFIG_INET 1732 int payload_off; 1733 u16 segs; 1734 1735 segs = TPA_END_TPA_SEGS(tpa_end); 1736 if (segs == 1) 1737 return skb; 1738 1739 NAPI_GRO_CB(skb)->count = segs; 1740 skb_shinfo(skb)->gso_size = 1741 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1742 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1743 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1744 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1745 else 1746 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1747 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1748 if (likely(skb)) 1749 tcp_gro_complete(skb); 1750 #endif 1751 return skb; 1752 } 1753 1754 /* Given the cfa_code of a received packet determine which 1755 * netdev (vf-rep or PF) the packet is destined to. 1756 */ 1757 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1758 { 1759 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1760 1761 /* if vf-rep dev is NULL, the must belongs to the PF */ 1762 return dev ? dev : bp->dev; 1763 } 1764 1765 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1766 struct bnxt_cp_ring_info *cpr, 1767 u32 *raw_cons, 1768 struct rx_tpa_end_cmp *tpa_end, 1769 struct rx_tpa_end_cmp_ext *tpa_end1, 1770 u8 *event) 1771 { 1772 struct bnxt_napi *bnapi = cpr->bnapi; 1773 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1774 struct net_device *dev = bp->dev; 1775 u8 *data_ptr, agg_bufs; 1776 unsigned int len; 1777 struct bnxt_tpa_info *tpa_info; 1778 dma_addr_t mapping; 1779 struct sk_buff *skb; 1780 u16 idx = 0, agg_id; 1781 void *data; 1782 bool gro; 1783 1784 if (unlikely(bnapi->in_reset)) { 1785 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1786 1787 if (rc < 0) 1788 return ERR_PTR(-EBUSY); 1789 return NULL; 1790 } 1791 1792 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1793 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1794 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1795 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1796 tpa_info = &rxr->rx_tpa[agg_id]; 1797 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1798 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1799 agg_bufs, tpa_info->agg_count); 1800 agg_bufs = tpa_info->agg_count; 1801 } 1802 tpa_info->agg_count = 0; 1803 *event |= BNXT_AGG_EVENT; 1804 bnxt_free_agg_idx(rxr, agg_id); 1805 idx = agg_id; 1806 gro = !!(bp->flags & BNXT_FLAG_GRO); 1807 } else { 1808 agg_id = TPA_END_AGG_ID(tpa_end); 1809 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1810 tpa_info = &rxr->rx_tpa[agg_id]; 1811 idx = RING_CMP(*raw_cons); 1812 if (agg_bufs) { 1813 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1814 return ERR_PTR(-EBUSY); 1815 1816 *event |= BNXT_AGG_EVENT; 1817 idx = NEXT_CMP(idx); 1818 } 1819 gro = !!TPA_END_GRO(tpa_end); 1820 } 1821 data = tpa_info->data; 1822 data_ptr = tpa_info->data_ptr; 1823 prefetch(data_ptr); 1824 len = tpa_info->len; 1825 mapping = tpa_info->mapping; 1826 1827 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1828 bnxt_abort_tpa(cpr, idx, agg_bufs); 1829 if (agg_bufs > MAX_SKB_FRAGS) 1830 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1831 agg_bufs, (int)MAX_SKB_FRAGS); 1832 return NULL; 1833 } 1834 1835 if (len <= bp->rx_copy_thresh) { 1836 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1837 if (!skb) { 1838 bnxt_abort_tpa(cpr, idx, agg_bufs); 1839 cpr->sw_stats->rx.rx_oom_discards += 1; 1840 return NULL; 1841 } 1842 } else { 1843 u8 *new_data; 1844 dma_addr_t new_mapping; 1845 1846 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, GFP_ATOMIC); 1847 if (!new_data) { 1848 bnxt_abort_tpa(cpr, idx, agg_bufs); 1849 cpr->sw_stats->rx.rx_oom_discards += 1; 1850 return NULL; 1851 } 1852 1853 tpa_info->data = new_data; 1854 tpa_info->data_ptr = new_data + bp->rx_offset; 1855 tpa_info->mapping = new_mapping; 1856 1857 skb = napi_build_skb(data, bp->rx_buf_size); 1858 dma_unmap_single_attrs(&bp->pdev->dev, mapping, 1859 bp->rx_buf_use_size, bp->rx_dir, 1860 DMA_ATTR_WEAK_ORDERING); 1861 1862 if (!skb) { 1863 skb_free_frag(data); 1864 bnxt_abort_tpa(cpr, idx, agg_bufs); 1865 cpr->sw_stats->rx.rx_oom_discards += 1; 1866 return NULL; 1867 } 1868 skb_reserve(skb, bp->rx_offset); 1869 skb_put(skb, len); 1870 } 1871 1872 if (agg_bufs) { 1873 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1874 if (!skb) { 1875 /* Page reuse already handled by bnxt_rx_pages(). */ 1876 cpr->sw_stats->rx.rx_oom_discards += 1; 1877 return NULL; 1878 } 1879 } 1880 1881 if (tpa_info->cfa_code_valid) 1882 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1883 skb->protocol = eth_type_trans(skb, dev); 1884 1885 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1886 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1887 1888 if (tpa_info->vlan_valid && 1889 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1890 __be16 vlan_proto = htons(tpa_info->metadata >> 1891 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1892 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1893 1894 if (eth_type_vlan(vlan_proto)) { 1895 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1896 } else { 1897 dev_kfree_skb(skb); 1898 return NULL; 1899 } 1900 } 1901 1902 skb_checksum_none_assert(skb); 1903 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1904 skb->ip_summed = CHECKSUM_UNNECESSARY; 1905 skb->csum_level = 1906 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1907 } 1908 1909 if (gro) 1910 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1911 1912 return skb; 1913 } 1914 1915 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1916 struct rx_agg_cmp *rx_agg) 1917 { 1918 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1919 struct bnxt_tpa_info *tpa_info; 1920 1921 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1922 tpa_info = &rxr->rx_tpa[agg_id]; 1923 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1924 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1925 } 1926 1927 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1928 struct sk_buff *skb) 1929 { 1930 skb_mark_for_recycle(skb); 1931 1932 if (skb->dev != bp->dev) { 1933 /* this packet belongs to a vf-rep */ 1934 bnxt_vf_rep_rx(bp, skb); 1935 return; 1936 } 1937 skb_record_rx_queue(skb, bnapi->index); 1938 napi_gro_receive(&bnapi->napi, skb); 1939 } 1940 1941 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1942 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1943 { 1944 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1945 1946 if (BNXT_PTP_RX_TS_VALID(flags)) 1947 goto ts_valid; 1948 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1949 return false; 1950 1951 ts_valid: 1952 *cmpl_ts = ts; 1953 return true; 1954 } 1955 1956 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1957 struct rx_cmp *rxcmp, 1958 struct rx_cmp_ext *rxcmp1) 1959 { 1960 __be16 vlan_proto; 1961 u16 vtag; 1962 1963 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1964 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1965 u32 meta_data; 1966 1967 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1968 return skb; 1969 1970 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1971 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1972 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1973 if (eth_type_vlan(vlan_proto)) 1974 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1975 else 1976 goto vlan_err; 1977 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 1978 if (RX_CMP_VLAN_VALID(rxcmp)) { 1979 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 1980 1981 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 1982 vlan_proto = htons(ETH_P_8021Q); 1983 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 1984 vlan_proto = htons(ETH_P_8021AD); 1985 else 1986 goto vlan_err; 1987 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 1988 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1989 } 1990 } 1991 return skb; 1992 vlan_err: 1993 dev_kfree_skb(skb); 1994 return NULL; 1995 } 1996 1997 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 1998 struct rx_cmp *rxcmp) 1999 { 2000 u8 ext_op; 2001 2002 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2003 switch (ext_op) { 2004 case EXT_OP_INNER_4: 2005 case EXT_OP_OUTER_4: 2006 case EXT_OP_INNFL_3: 2007 case EXT_OP_OUTFL_3: 2008 return PKT_HASH_TYPE_L4; 2009 default: 2010 return PKT_HASH_TYPE_L3; 2011 } 2012 } 2013 2014 /* returns the following: 2015 * 1 - 1 packet successfully received 2016 * 0 - successful TPA_START, packet not completed yet 2017 * -EBUSY - completion ring does not have all the agg buffers yet 2018 * -ENOMEM - packet aborted due to out of memory 2019 * -EIO - packet aborted due to hw error indicated in BD 2020 */ 2021 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2022 u32 *raw_cons, u8 *event) 2023 { 2024 struct bnxt_napi *bnapi = cpr->bnapi; 2025 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2026 struct net_device *dev = bp->dev; 2027 struct rx_cmp *rxcmp; 2028 struct rx_cmp_ext *rxcmp1; 2029 u32 tmp_raw_cons = *raw_cons; 2030 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2031 struct bnxt_sw_rx_bd *rx_buf; 2032 unsigned int len; 2033 u8 *data_ptr, agg_bufs, cmp_type; 2034 bool xdp_active = false; 2035 dma_addr_t dma_addr; 2036 struct sk_buff *skb; 2037 struct xdp_buff xdp; 2038 u32 flags, misc; 2039 u32 cmpl_ts; 2040 void *data; 2041 int rc = 0; 2042 2043 rxcmp = (struct rx_cmp *) 2044 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2045 2046 cmp_type = RX_CMP_TYPE(rxcmp); 2047 2048 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2049 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2050 goto next_rx_no_prod_no_len; 2051 } 2052 2053 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2054 cp_cons = RING_CMP(tmp_raw_cons); 2055 rxcmp1 = (struct rx_cmp_ext *) 2056 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2057 2058 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2059 return -EBUSY; 2060 2061 /* The valid test of the entry must be done first before 2062 * reading any further. 2063 */ 2064 dma_rmb(); 2065 prod = rxr->rx_prod; 2066 2067 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2068 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2069 bnxt_tpa_start(bp, rxr, cmp_type, 2070 (struct rx_tpa_start_cmp *)rxcmp, 2071 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2072 2073 *event |= BNXT_RX_EVENT; 2074 goto next_rx_no_prod_no_len; 2075 2076 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2077 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2078 (struct rx_tpa_end_cmp *)rxcmp, 2079 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2080 2081 if (IS_ERR(skb)) 2082 return -EBUSY; 2083 2084 rc = -ENOMEM; 2085 if (likely(skb)) { 2086 bnxt_deliver_skb(bp, bnapi, skb); 2087 rc = 1; 2088 } 2089 *event |= BNXT_RX_EVENT; 2090 goto next_rx_no_prod_no_len; 2091 } 2092 2093 cons = rxcmp->rx_cmp_opaque; 2094 if (unlikely(cons != rxr->rx_next_cons)) { 2095 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2096 2097 /* 0xffff is forced error, don't print it */ 2098 if (rxr->rx_next_cons != 0xffff) 2099 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2100 cons, rxr->rx_next_cons); 2101 bnxt_sched_reset_rxr(bp, rxr); 2102 if (rc1) 2103 return rc1; 2104 goto next_rx_no_prod_no_len; 2105 } 2106 rx_buf = &rxr->rx_buf_ring[cons]; 2107 data = rx_buf->data; 2108 data_ptr = rx_buf->data_ptr; 2109 prefetch(data_ptr); 2110 2111 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2112 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2113 2114 if (agg_bufs) { 2115 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2116 return -EBUSY; 2117 2118 cp_cons = NEXT_CMP(cp_cons); 2119 *event |= BNXT_AGG_EVENT; 2120 } 2121 *event |= BNXT_RX_EVENT; 2122 2123 rx_buf->data = NULL; 2124 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2125 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2126 2127 bnxt_reuse_rx_data(rxr, cons, data); 2128 if (agg_bufs) 2129 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2130 false); 2131 2132 rc = -EIO; 2133 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2134 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2135 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2136 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2137 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2138 rx_err); 2139 bnxt_sched_reset_rxr(bp, rxr); 2140 } 2141 } 2142 goto next_rx_no_len; 2143 } 2144 2145 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2146 len = flags >> RX_CMP_LEN_SHIFT; 2147 dma_addr = rx_buf->mapping; 2148 2149 if (bnxt_xdp_attached(bp, rxr)) { 2150 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2151 if (agg_bufs) { 2152 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2153 cp_cons, agg_bufs, 2154 false); 2155 if (!frag_len) 2156 goto oom_next_rx; 2157 } 2158 xdp_active = true; 2159 } 2160 2161 if (xdp_active) { 2162 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2163 rc = 1; 2164 goto next_rx; 2165 } 2166 } 2167 2168 if (len <= bp->rx_copy_thresh) { 2169 if (!xdp_active) 2170 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2171 else 2172 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2173 bnxt_reuse_rx_data(rxr, cons, data); 2174 if (!skb) { 2175 if (agg_bufs) { 2176 if (!xdp_active) 2177 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2178 agg_bufs, false); 2179 else 2180 bnxt_xdp_buff_frags_free(rxr, &xdp); 2181 } 2182 goto oom_next_rx; 2183 } 2184 } else { 2185 u32 payload; 2186 2187 if (rx_buf->data_ptr == data_ptr) 2188 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2189 else 2190 payload = 0; 2191 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2192 payload | len); 2193 if (!skb) 2194 goto oom_next_rx; 2195 } 2196 2197 if (agg_bufs) { 2198 if (!xdp_active) { 2199 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2200 if (!skb) 2201 goto oom_next_rx; 2202 } else { 2203 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 2204 if (!skb) { 2205 /* we should be able to free the old skb here */ 2206 bnxt_xdp_buff_frags_free(rxr, &xdp); 2207 goto oom_next_rx; 2208 } 2209 } 2210 } 2211 2212 if (RX_CMP_HASH_VALID(rxcmp)) { 2213 enum pkt_hash_types type; 2214 2215 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2216 type = bnxt_rss_ext_op(bp, rxcmp); 2217 } else { 2218 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2219 2220 /* RSS profiles 1 and 3 with extract code 0 for inner 2221 * 4-tuple 2222 */ 2223 if (hash_type != 1 && hash_type != 3) 2224 type = PKT_HASH_TYPE_L3; 2225 else 2226 type = PKT_HASH_TYPE_L4; 2227 } 2228 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2229 } 2230 2231 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2232 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2233 skb->protocol = eth_type_trans(skb, dev); 2234 2235 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2236 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2237 if (!skb) 2238 goto next_rx; 2239 } 2240 2241 skb_checksum_none_assert(skb); 2242 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2243 if (dev->features & NETIF_F_RXCSUM) { 2244 skb->ip_summed = CHECKSUM_UNNECESSARY; 2245 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2246 } 2247 } else { 2248 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2249 if (dev->features & NETIF_F_RXCSUM) 2250 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2251 } 2252 } 2253 2254 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2255 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2256 u64 ns, ts; 2257 2258 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2259 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2260 2261 spin_lock_bh(&ptp->ptp_lock); 2262 ns = timecounter_cyc2time(&ptp->tc, ts); 2263 spin_unlock_bh(&ptp->ptp_lock); 2264 memset(skb_hwtstamps(skb), 0, 2265 sizeof(*skb_hwtstamps(skb))); 2266 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2267 } 2268 } 2269 } 2270 bnxt_deliver_skb(bp, bnapi, skb); 2271 rc = 1; 2272 2273 next_rx: 2274 cpr->rx_packets += 1; 2275 cpr->rx_bytes += len; 2276 2277 next_rx_no_len: 2278 rxr->rx_prod = NEXT_RX(prod); 2279 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2280 2281 next_rx_no_prod_no_len: 2282 *raw_cons = tmp_raw_cons; 2283 2284 return rc; 2285 2286 oom_next_rx: 2287 cpr->sw_stats->rx.rx_oom_discards += 1; 2288 rc = -ENOMEM; 2289 goto next_rx; 2290 } 2291 2292 /* In netpoll mode, if we are using a combined completion ring, we need to 2293 * discard the rx packets and recycle the buffers. 2294 */ 2295 static int bnxt_force_rx_discard(struct bnxt *bp, 2296 struct bnxt_cp_ring_info *cpr, 2297 u32 *raw_cons, u8 *event) 2298 { 2299 u32 tmp_raw_cons = *raw_cons; 2300 struct rx_cmp_ext *rxcmp1; 2301 struct rx_cmp *rxcmp; 2302 u16 cp_cons; 2303 u8 cmp_type; 2304 int rc; 2305 2306 cp_cons = RING_CMP(tmp_raw_cons); 2307 rxcmp = (struct rx_cmp *) 2308 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2309 2310 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2311 cp_cons = RING_CMP(tmp_raw_cons); 2312 rxcmp1 = (struct rx_cmp_ext *) 2313 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2314 2315 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2316 return -EBUSY; 2317 2318 /* The valid test of the entry must be done first before 2319 * reading any further. 2320 */ 2321 dma_rmb(); 2322 cmp_type = RX_CMP_TYPE(rxcmp); 2323 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2324 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2325 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2326 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2327 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2328 struct rx_tpa_end_cmp_ext *tpa_end1; 2329 2330 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2331 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2332 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2333 } 2334 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2335 if (rc && rc != -EBUSY) 2336 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2337 return rc; 2338 } 2339 2340 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2341 { 2342 struct bnxt_fw_health *fw_health = bp->fw_health; 2343 u32 reg = fw_health->regs[reg_idx]; 2344 u32 reg_type, reg_off, val = 0; 2345 2346 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2347 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2348 switch (reg_type) { 2349 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2350 pci_read_config_dword(bp->pdev, reg_off, &val); 2351 break; 2352 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2353 reg_off = fw_health->mapped_regs[reg_idx]; 2354 fallthrough; 2355 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2356 val = readl(bp->bar0 + reg_off); 2357 break; 2358 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2359 val = readl(bp->bar1 + reg_off); 2360 break; 2361 } 2362 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2363 val &= fw_health->fw_reset_inprog_reg_mask; 2364 return val; 2365 } 2366 2367 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2368 { 2369 int i; 2370 2371 for (i = 0; i < bp->rx_nr_rings; i++) { 2372 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2373 struct bnxt_ring_grp_info *grp_info; 2374 2375 grp_info = &bp->grp_info[grp_idx]; 2376 if (grp_info->agg_fw_ring_id == ring_id) 2377 return grp_idx; 2378 } 2379 return INVALID_HW_RING_ID; 2380 } 2381 2382 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2383 { 2384 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2385 2386 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2387 return link_info->force_link_speed2; 2388 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2389 return link_info->force_pam4_link_speed; 2390 return link_info->force_link_speed; 2391 } 2392 2393 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2394 { 2395 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2396 2397 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2398 link_info->req_link_speed = link_info->force_link_speed2; 2399 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2400 switch (link_info->req_link_speed) { 2401 case BNXT_LINK_SPEED_50GB_PAM4: 2402 case BNXT_LINK_SPEED_100GB_PAM4: 2403 case BNXT_LINK_SPEED_200GB_PAM4: 2404 case BNXT_LINK_SPEED_400GB_PAM4: 2405 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2406 break; 2407 case BNXT_LINK_SPEED_100GB_PAM4_112: 2408 case BNXT_LINK_SPEED_200GB_PAM4_112: 2409 case BNXT_LINK_SPEED_400GB_PAM4_112: 2410 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2411 break; 2412 default: 2413 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2414 } 2415 return; 2416 } 2417 link_info->req_link_speed = link_info->force_link_speed; 2418 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2419 if (link_info->force_pam4_link_speed) { 2420 link_info->req_link_speed = link_info->force_pam4_link_speed; 2421 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2422 } 2423 } 2424 2425 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2426 { 2427 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2428 2429 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2430 link_info->advertising = link_info->auto_link_speeds2; 2431 return; 2432 } 2433 link_info->advertising = link_info->auto_link_speeds; 2434 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2435 } 2436 2437 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2438 { 2439 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2440 2441 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2442 if (link_info->req_link_speed != link_info->force_link_speed2) 2443 return true; 2444 return false; 2445 } 2446 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2447 link_info->req_link_speed != link_info->force_link_speed) 2448 return true; 2449 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2450 link_info->req_link_speed != link_info->force_pam4_link_speed) 2451 return true; 2452 return false; 2453 } 2454 2455 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2456 { 2457 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2458 2459 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2460 if (link_info->advertising != link_info->auto_link_speeds2) 2461 return true; 2462 return false; 2463 } 2464 if (link_info->advertising != link_info->auto_link_speeds || 2465 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2466 return true; 2467 return false; 2468 } 2469 2470 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2471 ((data2) & \ 2472 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2473 2474 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2475 (((data2) & \ 2476 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2477 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2478 2479 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2480 ((data1) & \ 2481 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2482 2483 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2484 (((data1) & \ 2485 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2486 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2487 2488 /* Return true if the workqueue has to be scheduled */ 2489 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2490 { 2491 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2492 2493 switch (err_type) { 2494 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2495 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2496 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2497 break; 2498 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2499 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2500 break; 2501 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2502 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2503 break; 2504 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2505 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2506 char *threshold_type; 2507 bool notify = false; 2508 char *dir_str; 2509 2510 switch (type) { 2511 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2512 threshold_type = "warning"; 2513 break; 2514 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2515 threshold_type = "critical"; 2516 break; 2517 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2518 threshold_type = "fatal"; 2519 break; 2520 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2521 threshold_type = "shutdown"; 2522 break; 2523 default: 2524 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2525 return false; 2526 } 2527 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2528 dir_str = "above"; 2529 notify = true; 2530 } else { 2531 dir_str = "below"; 2532 } 2533 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2534 dir_str, threshold_type); 2535 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2536 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2537 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2538 if (notify) { 2539 bp->thermal_threshold_type = type; 2540 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2541 return true; 2542 } 2543 return false; 2544 } 2545 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2546 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2547 break; 2548 default: 2549 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2550 err_type); 2551 break; 2552 } 2553 return false; 2554 } 2555 2556 #define BNXT_GET_EVENT_PORT(data) \ 2557 ((data) & \ 2558 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2559 2560 #define BNXT_EVENT_RING_TYPE(data2) \ 2561 ((data2) & \ 2562 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2563 2564 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2565 (BNXT_EVENT_RING_TYPE(data2) == \ 2566 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2567 2568 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2569 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2570 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2571 2572 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2573 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2574 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2575 2576 #define BNXT_PHC_BITS 48 2577 2578 static int bnxt_async_event_process(struct bnxt *bp, 2579 struct hwrm_async_event_cmpl *cmpl) 2580 { 2581 u16 event_id = le16_to_cpu(cmpl->event_id); 2582 u32 data1 = le32_to_cpu(cmpl->event_data1); 2583 u32 data2 = le32_to_cpu(cmpl->event_data2); 2584 2585 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2586 event_id, data1, data2); 2587 2588 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2589 switch (event_id) { 2590 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2591 struct bnxt_link_info *link_info = &bp->link_info; 2592 2593 if (BNXT_VF(bp)) 2594 goto async_event_process_exit; 2595 2596 /* print unsupported speed warning in forced speed mode only */ 2597 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2598 (data1 & 0x20000)) { 2599 u16 fw_speed = bnxt_get_force_speed(link_info); 2600 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2601 2602 if (speed != SPEED_UNKNOWN) 2603 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2604 speed); 2605 } 2606 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2607 } 2608 fallthrough; 2609 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2610 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2611 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2612 fallthrough; 2613 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2614 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2615 break; 2616 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2617 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2618 break; 2619 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2620 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2621 2622 if (BNXT_VF(bp)) 2623 break; 2624 2625 if (bp->pf.port_id != port_id) 2626 break; 2627 2628 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2629 break; 2630 } 2631 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2632 if (BNXT_PF(bp)) 2633 goto async_event_process_exit; 2634 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2635 break; 2636 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2637 char *type_str = "Solicited"; 2638 2639 if (!bp->fw_health) 2640 goto async_event_process_exit; 2641 2642 bp->fw_reset_timestamp = jiffies; 2643 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2644 if (!bp->fw_reset_min_dsecs) 2645 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2646 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2647 if (!bp->fw_reset_max_dsecs) 2648 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2649 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2650 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2651 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2652 type_str = "Fatal"; 2653 bp->fw_health->fatalities++; 2654 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2655 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2656 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2657 type_str = "Non-fatal"; 2658 bp->fw_health->survivals++; 2659 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2660 } 2661 netif_warn(bp, hw, bp->dev, 2662 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2663 type_str, data1, data2, 2664 bp->fw_reset_min_dsecs * 100, 2665 bp->fw_reset_max_dsecs * 100); 2666 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2667 break; 2668 } 2669 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2670 struct bnxt_fw_health *fw_health = bp->fw_health; 2671 char *status_desc = "healthy"; 2672 u32 status; 2673 2674 if (!fw_health) 2675 goto async_event_process_exit; 2676 2677 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2678 fw_health->enabled = false; 2679 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2680 break; 2681 } 2682 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2683 fw_health->tmr_multiplier = 2684 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2685 bp->current_interval * 10); 2686 fw_health->tmr_counter = fw_health->tmr_multiplier; 2687 if (!fw_health->enabled) 2688 fw_health->last_fw_heartbeat = 2689 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2690 fw_health->last_fw_reset_cnt = 2691 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2692 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2693 if (status != BNXT_FW_STATUS_HEALTHY) 2694 status_desc = "unhealthy"; 2695 netif_info(bp, drv, bp->dev, 2696 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2697 fw_health->primary ? "primary" : "backup", status, 2698 status_desc, fw_health->last_fw_reset_cnt); 2699 if (!fw_health->enabled) { 2700 /* Make sure tmr_counter is set and visible to 2701 * bnxt_health_check() before setting enabled to true. 2702 */ 2703 smp_wmb(); 2704 fw_health->enabled = true; 2705 } 2706 goto async_event_process_exit; 2707 } 2708 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2709 netif_notice(bp, hw, bp->dev, 2710 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2711 data1, data2); 2712 goto async_event_process_exit; 2713 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2714 struct bnxt_rx_ring_info *rxr; 2715 u16 grp_idx; 2716 2717 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2718 goto async_event_process_exit; 2719 2720 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2721 BNXT_EVENT_RING_TYPE(data2), data1); 2722 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2723 goto async_event_process_exit; 2724 2725 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2726 if (grp_idx == INVALID_HW_RING_ID) { 2727 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2728 data1); 2729 goto async_event_process_exit; 2730 } 2731 rxr = bp->bnapi[grp_idx]->rx_ring; 2732 bnxt_sched_reset_rxr(bp, rxr); 2733 goto async_event_process_exit; 2734 } 2735 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2736 struct bnxt_fw_health *fw_health = bp->fw_health; 2737 2738 netif_notice(bp, hw, bp->dev, 2739 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2740 data1, data2); 2741 if (fw_health) { 2742 fw_health->echo_req_data1 = data1; 2743 fw_health->echo_req_data2 = data2; 2744 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2745 break; 2746 } 2747 goto async_event_process_exit; 2748 } 2749 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2750 bnxt_ptp_pps_event(bp, data1, data2); 2751 goto async_event_process_exit; 2752 } 2753 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2754 if (bnxt_event_error_report(bp, data1, data2)) 2755 break; 2756 goto async_event_process_exit; 2757 } 2758 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2759 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2760 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2761 if (BNXT_PTP_USE_RTC(bp)) { 2762 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2763 u64 ns; 2764 2765 if (!ptp) 2766 goto async_event_process_exit; 2767 2768 spin_lock_bh(&ptp->ptp_lock); 2769 bnxt_ptp_update_current_time(bp); 2770 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2771 BNXT_PHC_BITS) | ptp->current_time); 2772 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2773 spin_unlock_bh(&ptp->ptp_lock); 2774 } 2775 break; 2776 } 2777 goto async_event_process_exit; 2778 } 2779 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2780 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2781 2782 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2783 goto async_event_process_exit; 2784 } 2785 default: 2786 goto async_event_process_exit; 2787 } 2788 __bnxt_queue_sp_work(bp); 2789 async_event_process_exit: 2790 return 0; 2791 } 2792 2793 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2794 { 2795 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2796 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2797 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2798 (struct hwrm_fwd_req_cmpl *)txcmp; 2799 2800 switch (cmpl_type) { 2801 case CMPL_BASE_TYPE_HWRM_DONE: 2802 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2803 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2804 break; 2805 2806 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2807 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2808 2809 if ((vf_id < bp->pf.first_vf_id) || 2810 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2811 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2812 vf_id); 2813 return -EINVAL; 2814 } 2815 2816 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2817 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2818 break; 2819 2820 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2821 bnxt_async_event_process(bp, 2822 (struct hwrm_async_event_cmpl *)txcmp); 2823 break; 2824 2825 default: 2826 break; 2827 } 2828 2829 return 0; 2830 } 2831 2832 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2833 { 2834 struct bnxt_napi *bnapi = dev_instance; 2835 struct bnxt *bp = bnapi->bp; 2836 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2837 u32 cons = RING_CMP(cpr->cp_raw_cons); 2838 2839 cpr->event_ctr++; 2840 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2841 napi_schedule(&bnapi->napi); 2842 return IRQ_HANDLED; 2843 } 2844 2845 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2846 { 2847 u32 raw_cons = cpr->cp_raw_cons; 2848 u16 cons = RING_CMP(raw_cons); 2849 struct tx_cmp *txcmp; 2850 2851 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2852 2853 return TX_CMP_VALID(txcmp, raw_cons); 2854 } 2855 2856 static irqreturn_t bnxt_inta(int irq, void *dev_instance) 2857 { 2858 struct bnxt_napi *bnapi = dev_instance; 2859 struct bnxt *bp = bnapi->bp; 2860 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2861 u32 cons = RING_CMP(cpr->cp_raw_cons); 2862 u32 int_status; 2863 2864 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2865 2866 if (!bnxt_has_work(bp, cpr)) { 2867 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS); 2868 /* return if erroneous interrupt */ 2869 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id))) 2870 return IRQ_NONE; 2871 } 2872 2873 /* disable ring IRQ */ 2874 BNXT_CP_DB_IRQ_DIS(cpr->cp_db.doorbell); 2875 2876 /* Return here if interrupt is shared and is disabled. */ 2877 if (unlikely(atomic_read(&bp->intr_sem) != 0)) 2878 return IRQ_HANDLED; 2879 2880 napi_schedule(&bnapi->napi); 2881 return IRQ_HANDLED; 2882 } 2883 2884 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2885 int budget) 2886 { 2887 struct bnxt_napi *bnapi = cpr->bnapi; 2888 u32 raw_cons = cpr->cp_raw_cons; 2889 u32 cons; 2890 int rx_pkts = 0; 2891 u8 event = 0; 2892 struct tx_cmp *txcmp; 2893 2894 cpr->has_more_work = 0; 2895 cpr->had_work_done = 1; 2896 while (1) { 2897 u8 cmp_type; 2898 int rc; 2899 2900 cons = RING_CMP(raw_cons); 2901 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2902 2903 if (!TX_CMP_VALID(txcmp, raw_cons)) 2904 break; 2905 2906 /* The valid test of the entry must be done first before 2907 * reading any further. 2908 */ 2909 dma_rmb(); 2910 cmp_type = TX_CMP_TYPE(txcmp); 2911 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2912 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2913 u32 opaque = txcmp->tx_cmp_opaque; 2914 struct bnxt_tx_ring_info *txr; 2915 u16 tx_freed; 2916 2917 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2918 event |= BNXT_TX_CMP_EVENT; 2919 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2920 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2921 else 2922 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2923 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2924 bp->tx_ring_mask; 2925 /* return full budget so NAPI will complete. */ 2926 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2927 rx_pkts = budget; 2928 raw_cons = NEXT_RAW_CMP(raw_cons); 2929 if (budget) 2930 cpr->has_more_work = 1; 2931 break; 2932 } 2933 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 2934 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 2935 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 2936 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2937 if (likely(budget)) 2938 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2939 else 2940 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2941 &event); 2942 if (likely(rc >= 0)) 2943 rx_pkts += rc; 2944 /* Increment rx_pkts when rc is -ENOMEM to count towards 2945 * the NAPI budget. Otherwise, we may potentially loop 2946 * here forever if we consistently cannot allocate 2947 * buffers. 2948 */ 2949 else if (rc == -ENOMEM && budget) 2950 rx_pkts++; 2951 else if (rc == -EBUSY) /* partial completion */ 2952 break; 2953 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 2954 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 2955 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 2956 bnxt_hwrm_handler(bp, txcmp); 2957 } 2958 raw_cons = NEXT_RAW_CMP(raw_cons); 2959 2960 if (rx_pkts && rx_pkts == budget) { 2961 cpr->has_more_work = 1; 2962 break; 2963 } 2964 } 2965 2966 if (event & BNXT_REDIRECT_EVENT) { 2967 xdp_do_flush(); 2968 event &= ~BNXT_REDIRECT_EVENT; 2969 } 2970 2971 if (event & BNXT_TX_EVENT) { 2972 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 2973 u16 prod = txr->tx_prod; 2974 2975 /* Sync BD data before updating doorbell */ 2976 wmb(); 2977 2978 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 2979 event &= ~BNXT_TX_EVENT; 2980 } 2981 2982 cpr->cp_raw_cons = raw_cons; 2983 bnapi->events |= event; 2984 return rx_pkts; 2985 } 2986 2987 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 2988 int budget) 2989 { 2990 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 2991 bnapi->tx_int(bp, bnapi, budget); 2992 2993 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 2994 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2995 2996 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 2997 bnapi->events &= ~BNXT_RX_EVENT; 2998 } 2999 if (bnapi->events & BNXT_AGG_EVENT) { 3000 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3001 3002 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3003 bnapi->events &= ~BNXT_AGG_EVENT; 3004 } 3005 } 3006 3007 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3008 int budget) 3009 { 3010 struct bnxt_napi *bnapi = cpr->bnapi; 3011 int rx_pkts; 3012 3013 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3014 3015 /* ACK completion ring before freeing tx ring and producing new 3016 * buffers in rx/agg rings to prevent overflowing the completion 3017 * ring. 3018 */ 3019 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3020 3021 __bnxt_poll_work_done(bp, bnapi, budget); 3022 return rx_pkts; 3023 } 3024 3025 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3026 { 3027 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3028 struct bnxt *bp = bnapi->bp; 3029 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3030 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3031 struct tx_cmp *txcmp; 3032 struct rx_cmp_ext *rxcmp1; 3033 u32 cp_cons, tmp_raw_cons; 3034 u32 raw_cons = cpr->cp_raw_cons; 3035 bool flush_xdp = false; 3036 u32 rx_pkts = 0; 3037 u8 event = 0; 3038 3039 while (1) { 3040 int rc; 3041 3042 cp_cons = RING_CMP(raw_cons); 3043 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3044 3045 if (!TX_CMP_VALID(txcmp, raw_cons)) 3046 break; 3047 3048 /* The valid test of the entry must be done first before 3049 * reading any further. 3050 */ 3051 dma_rmb(); 3052 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3053 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3054 cp_cons = RING_CMP(tmp_raw_cons); 3055 rxcmp1 = (struct rx_cmp_ext *) 3056 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3057 3058 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3059 break; 3060 3061 /* force an error to recycle the buffer */ 3062 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3063 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3064 3065 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3066 if (likely(rc == -EIO) && budget) 3067 rx_pkts++; 3068 else if (rc == -EBUSY) /* partial completion */ 3069 break; 3070 if (event & BNXT_REDIRECT_EVENT) 3071 flush_xdp = true; 3072 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3073 CMPL_BASE_TYPE_HWRM_DONE)) { 3074 bnxt_hwrm_handler(bp, txcmp); 3075 } else { 3076 netdev_err(bp->dev, 3077 "Invalid completion received on special ring\n"); 3078 } 3079 raw_cons = NEXT_RAW_CMP(raw_cons); 3080 3081 if (rx_pkts == budget) 3082 break; 3083 } 3084 3085 cpr->cp_raw_cons = raw_cons; 3086 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3087 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3088 3089 if (event & BNXT_AGG_EVENT) 3090 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3091 if (flush_xdp) 3092 xdp_do_flush(); 3093 3094 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3095 napi_complete_done(napi, rx_pkts); 3096 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3097 } 3098 return rx_pkts; 3099 } 3100 3101 static int bnxt_poll(struct napi_struct *napi, int budget) 3102 { 3103 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3104 struct bnxt *bp = bnapi->bp; 3105 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3106 int work_done = 0; 3107 3108 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3109 napi_complete(napi); 3110 return 0; 3111 } 3112 while (1) { 3113 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3114 3115 if (work_done >= budget) { 3116 if (!budget) 3117 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3118 break; 3119 } 3120 3121 if (!bnxt_has_work(bp, cpr)) { 3122 if (napi_complete_done(napi, work_done)) 3123 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3124 break; 3125 } 3126 } 3127 if (bp->flags & BNXT_FLAG_DIM) { 3128 struct dim_sample dim_sample = {}; 3129 3130 dim_update_sample(cpr->event_ctr, 3131 cpr->rx_packets, 3132 cpr->rx_bytes, 3133 &dim_sample); 3134 net_dim(&cpr->dim, dim_sample); 3135 } 3136 return work_done; 3137 } 3138 3139 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3140 { 3141 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3142 int i, work_done = 0; 3143 3144 for (i = 0; i < cpr->cp_ring_count; i++) { 3145 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3146 3147 if (cpr2->had_nqe_notify) { 3148 work_done += __bnxt_poll_work(bp, cpr2, 3149 budget - work_done); 3150 cpr->has_more_work |= cpr2->has_more_work; 3151 } 3152 } 3153 return work_done; 3154 } 3155 3156 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3157 u64 dbr_type, int budget) 3158 { 3159 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3160 int i; 3161 3162 for (i = 0; i < cpr->cp_ring_count; i++) { 3163 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3164 struct bnxt_db_info *db; 3165 3166 if (cpr2->had_work_done) { 3167 u32 tgl = 0; 3168 3169 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3170 cpr2->had_nqe_notify = 0; 3171 tgl = cpr2->toggle; 3172 } 3173 db = &cpr2->cp_db; 3174 bnxt_writeq(bp, 3175 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3176 DB_RING_IDX(db, cpr2->cp_raw_cons), 3177 db->doorbell); 3178 cpr2->had_work_done = 0; 3179 } 3180 } 3181 __bnxt_poll_work_done(bp, bnapi, budget); 3182 } 3183 3184 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3185 { 3186 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3187 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3188 struct bnxt_cp_ring_info *cpr_rx; 3189 u32 raw_cons = cpr->cp_raw_cons; 3190 struct bnxt *bp = bnapi->bp; 3191 struct nqe_cn *nqcmp; 3192 int work_done = 0; 3193 u32 cons; 3194 3195 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3196 napi_complete(napi); 3197 return 0; 3198 } 3199 if (cpr->has_more_work) { 3200 cpr->has_more_work = 0; 3201 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3202 } 3203 while (1) { 3204 u16 type; 3205 3206 cons = RING_CMP(raw_cons); 3207 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3208 3209 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3210 if (cpr->has_more_work) 3211 break; 3212 3213 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3214 budget); 3215 cpr->cp_raw_cons = raw_cons; 3216 if (napi_complete_done(napi, work_done)) 3217 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3218 cpr->cp_raw_cons); 3219 goto poll_done; 3220 } 3221 3222 /* The valid test of the entry must be done first before 3223 * reading any further. 3224 */ 3225 dma_rmb(); 3226 3227 type = le16_to_cpu(nqcmp->type); 3228 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3229 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3230 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3231 struct bnxt_cp_ring_info *cpr2; 3232 3233 /* No more budget for RX work */ 3234 if (budget && work_done >= budget && 3235 cq_type == BNXT_NQ_HDL_TYPE_RX) 3236 break; 3237 3238 idx = BNXT_NQ_HDL_IDX(idx); 3239 cpr2 = &cpr->cp_ring_arr[idx]; 3240 cpr2->had_nqe_notify = 1; 3241 cpr2->toggle = NQE_CN_TOGGLE(type); 3242 work_done += __bnxt_poll_work(bp, cpr2, 3243 budget - work_done); 3244 cpr->has_more_work |= cpr2->has_more_work; 3245 } else { 3246 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3247 } 3248 raw_cons = NEXT_RAW_CMP(raw_cons); 3249 } 3250 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3251 if (raw_cons != cpr->cp_raw_cons) { 3252 cpr->cp_raw_cons = raw_cons; 3253 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3254 } 3255 poll_done: 3256 cpr_rx = &cpr->cp_ring_arr[0]; 3257 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3258 (bp->flags & BNXT_FLAG_DIM)) { 3259 struct dim_sample dim_sample = {}; 3260 3261 dim_update_sample(cpr->event_ctr, 3262 cpr_rx->rx_packets, 3263 cpr_rx->rx_bytes, 3264 &dim_sample); 3265 net_dim(&cpr->dim, dim_sample); 3266 } 3267 return work_done; 3268 } 3269 3270 static void bnxt_free_tx_skbs(struct bnxt *bp) 3271 { 3272 int i, max_idx; 3273 struct pci_dev *pdev = bp->pdev; 3274 3275 if (!bp->tx_ring) 3276 return; 3277 3278 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3279 for (i = 0; i < bp->tx_nr_rings; i++) { 3280 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3281 int j; 3282 3283 if (!txr->tx_buf_ring) 3284 continue; 3285 3286 for (j = 0; j < max_idx;) { 3287 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 3288 struct sk_buff *skb; 3289 int k, last; 3290 3291 if (i < bp->tx_nr_rings_xdp && 3292 tx_buf->action == XDP_REDIRECT) { 3293 dma_unmap_single(&pdev->dev, 3294 dma_unmap_addr(tx_buf, mapping), 3295 dma_unmap_len(tx_buf, len), 3296 DMA_TO_DEVICE); 3297 xdp_return_frame(tx_buf->xdpf); 3298 tx_buf->action = 0; 3299 tx_buf->xdpf = NULL; 3300 j++; 3301 continue; 3302 } 3303 3304 skb = tx_buf->skb; 3305 if (!skb) { 3306 j++; 3307 continue; 3308 } 3309 3310 tx_buf->skb = NULL; 3311 3312 if (tx_buf->is_push) { 3313 dev_kfree_skb(skb); 3314 j += 2; 3315 continue; 3316 } 3317 3318 dma_unmap_single(&pdev->dev, 3319 dma_unmap_addr(tx_buf, mapping), 3320 skb_headlen(skb), 3321 DMA_TO_DEVICE); 3322 3323 last = tx_buf->nr_frags; 3324 j += 2; 3325 for (k = 0; k < last; k++, j++) { 3326 int ring_idx = j & bp->tx_ring_mask; 3327 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3328 3329 tx_buf = &txr->tx_buf_ring[ring_idx]; 3330 dma_unmap_page( 3331 &pdev->dev, 3332 dma_unmap_addr(tx_buf, mapping), 3333 skb_frag_size(frag), DMA_TO_DEVICE); 3334 } 3335 dev_kfree_skb(skb); 3336 } 3337 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3338 } 3339 } 3340 3341 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3342 { 3343 struct pci_dev *pdev = bp->pdev; 3344 int i, max_idx; 3345 3346 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3347 3348 for (i = 0; i < max_idx; i++) { 3349 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3350 dma_addr_t mapping = rx_buf->mapping; 3351 void *data = rx_buf->data; 3352 3353 if (!data) 3354 continue; 3355 3356 rx_buf->data = NULL; 3357 if (BNXT_RX_PAGE_MODE(bp)) { 3358 page_pool_recycle_direct(rxr->page_pool, data); 3359 } else { 3360 dma_unmap_single_attrs(&pdev->dev, mapping, 3361 bp->rx_buf_use_size, bp->rx_dir, 3362 DMA_ATTR_WEAK_ORDERING); 3363 skb_free_frag(data); 3364 } 3365 } 3366 } 3367 3368 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3369 { 3370 int i, max_idx; 3371 3372 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3373 3374 for (i = 0; i < max_idx; i++) { 3375 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3376 struct page *page = rx_agg_buf->page; 3377 3378 if (!page) 3379 continue; 3380 3381 rx_agg_buf->page = NULL; 3382 __clear_bit(i, rxr->rx_agg_bmap); 3383 3384 page_pool_recycle_direct(rxr->page_pool, page); 3385 } 3386 } 3387 3388 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3389 { 3390 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3391 struct pci_dev *pdev = bp->pdev; 3392 struct bnxt_tpa_idx_map *map; 3393 int i; 3394 3395 if (!rxr->rx_tpa) 3396 goto skip_rx_tpa_free; 3397 3398 for (i = 0; i < bp->max_tpa; i++) { 3399 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3400 u8 *data = tpa_info->data; 3401 3402 if (!data) 3403 continue; 3404 3405 dma_unmap_single_attrs(&pdev->dev, tpa_info->mapping, 3406 bp->rx_buf_use_size, bp->rx_dir, 3407 DMA_ATTR_WEAK_ORDERING); 3408 3409 tpa_info->data = NULL; 3410 3411 skb_free_frag(data); 3412 } 3413 3414 skip_rx_tpa_free: 3415 if (!rxr->rx_buf_ring) 3416 goto skip_rx_buf_free; 3417 3418 bnxt_free_one_rx_ring(bp, rxr); 3419 3420 skip_rx_buf_free: 3421 if (!rxr->rx_agg_ring) 3422 goto skip_rx_agg_free; 3423 3424 bnxt_free_one_rx_agg_ring(bp, rxr); 3425 3426 skip_rx_agg_free: 3427 map = rxr->rx_tpa_idx_map; 3428 if (map) 3429 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3430 } 3431 3432 static void bnxt_free_rx_skbs(struct bnxt *bp) 3433 { 3434 int i; 3435 3436 if (!bp->rx_ring) 3437 return; 3438 3439 for (i = 0; i < bp->rx_nr_rings; i++) 3440 bnxt_free_one_rx_ring_skbs(bp, i); 3441 } 3442 3443 static void bnxt_free_skbs(struct bnxt *bp) 3444 { 3445 bnxt_free_tx_skbs(bp); 3446 bnxt_free_rx_skbs(bp); 3447 } 3448 3449 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3450 { 3451 u8 init_val = ctxm->init_value; 3452 u16 offset = ctxm->init_offset; 3453 u8 *p2 = p; 3454 int i; 3455 3456 if (!init_val) 3457 return; 3458 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3459 memset(p, init_val, len); 3460 return; 3461 } 3462 for (i = 0; i < len; i += ctxm->entry_size) 3463 *(p2 + i + offset) = init_val; 3464 } 3465 3466 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3467 { 3468 struct pci_dev *pdev = bp->pdev; 3469 int i; 3470 3471 if (!rmem->pg_arr) 3472 goto skip_pages; 3473 3474 for (i = 0; i < rmem->nr_pages; i++) { 3475 if (!rmem->pg_arr[i]) 3476 continue; 3477 3478 dma_free_coherent(&pdev->dev, rmem->page_size, 3479 rmem->pg_arr[i], rmem->dma_arr[i]); 3480 3481 rmem->pg_arr[i] = NULL; 3482 } 3483 skip_pages: 3484 if (rmem->pg_tbl) { 3485 size_t pg_tbl_size = rmem->nr_pages * 8; 3486 3487 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3488 pg_tbl_size = rmem->page_size; 3489 dma_free_coherent(&pdev->dev, pg_tbl_size, 3490 rmem->pg_tbl, rmem->pg_tbl_map); 3491 rmem->pg_tbl = NULL; 3492 } 3493 if (rmem->vmem_size && *rmem->vmem) { 3494 vfree(*rmem->vmem); 3495 *rmem->vmem = NULL; 3496 } 3497 } 3498 3499 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3500 { 3501 struct pci_dev *pdev = bp->pdev; 3502 u64 valid_bit = 0; 3503 int i; 3504 3505 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3506 valid_bit = PTU_PTE_VALID; 3507 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3508 size_t pg_tbl_size = rmem->nr_pages * 8; 3509 3510 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3511 pg_tbl_size = rmem->page_size; 3512 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3513 &rmem->pg_tbl_map, 3514 GFP_KERNEL); 3515 if (!rmem->pg_tbl) 3516 return -ENOMEM; 3517 } 3518 3519 for (i = 0; i < rmem->nr_pages; i++) { 3520 u64 extra_bits = valid_bit; 3521 3522 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3523 rmem->page_size, 3524 &rmem->dma_arr[i], 3525 GFP_KERNEL); 3526 if (!rmem->pg_arr[i]) 3527 return -ENOMEM; 3528 3529 if (rmem->ctx_mem) 3530 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3531 rmem->page_size); 3532 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3533 if (i == rmem->nr_pages - 2 && 3534 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3535 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3536 else if (i == rmem->nr_pages - 1 && 3537 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3538 extra_bits |= PTU_PTE_LAST; 3539 rmem->pg_tbl[i] = 3540 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3541 } 3542 } 3543 3544 if (rmem->vmem_size) { 3545 *rmem->vmem = vzalloc(rmem->vmem_size); 3546 if (!(*rmem->vmem)) 3547 return -ENOMEM; 3548 } 3549 return 0; 3550 } 3551 3552 static void bnxt_free_tpa_info(struct bnxt *bp) 3553 { 3554 int i, j; 3555 3556 for (i = 0; i < bp->rx_nr_rings; i++) { 3557 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3558 3559 kfree(rxr->rx_tpa_idx_map); 3560 rxr->rx_tpa_idx_map = NULL; 3561 if (rxr->rx_tpa) { 3562 for (j = 0; j < bp->max_tpa; j++) { 3563 kfree(rxr->rx_tpa[j].agg_arr); 3564 rxr->rx_tpa[j].agg_arr = NULL; 3565 } 3566 } 3567 kfree(rxr->rx_tpa); 3568 rxr->rx_tpa = NULL; 3569 } 3570 } 3571 3572 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3573 { 3574 int i, j; 3575 3576 bp->max_tpa = MAX_TPA; 3577 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3578 if (!bp->max_tpa_v2) 3579 return 0; 3580 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3581 } 3582 3583 for (i = 0; i < bp->rx_nr_rings; i++) { 3584 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3585 struct rx_agg_cmp *agg; 3586 3587 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3588 GFP_KERNEL); 3589 if (!rxr->rx_tpa) 3590 return -ENOMEM; 3591 3592 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3593 continue; 3594 for (j = 0; j < bp->max_tpa; j++) { 3595 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3596 if (!agg) 3597 return -ENOMEM; 3598 rxr->rx_tpa[j].agg_arr = agg; 3599 } 3600 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3601 GFP_KERNEL); 3602 if (!rxr->rx_tpa_idx_map) 3603 return -ENOMEM; 3604 } 3605 return 0; 3606 } 3607 3608 static void bnxt_free_rx_rings(struct bnxt *bp) 3609 { 3610 int i; 3611 3612 if (!bp->rx_ring) 3613 return; 3614 3615 bnxt_free_tpa_info(bp); 3616 for (i = 0; i < bp->rx_nr_rings; i++) { 3617 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3618 struct bnxt_ring_struct *ring; 3619 3620 if (rxr->xdp_prog) 3621 bpf_prog_put(rxr->xdp_prog); 3622 3623 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3624 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3625 3626 page_pool_destroy(rxr->page_pool); 3627 rxr->page_pool = NULL; 3628 3629 kfree(rxr->rx_agg_bmap); 3630 rxr->rx_agg_bmap = NULL; 3631 3632 ring = &rxr->rx_ring_struct; 3633 bnxt_free_ring(bp, &ring->ring_mem); 3634 3635 ring = &rxr->rx_agg_ring_struct; 3636 bnxt_free_ring(bp, &ring->ring_mem); 3637 } 3638 } 3639 3640 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3641 struct bnxt_rx_ring_info *rxr, 3642 int numa_node) 3643 { 3644 struct page_pool_params pp = { 0 }; 3645 3646 pp.pool_size = bp->rx_agg_ring_size; 3647 if (BNXT_RX_PAGE_MODE(bp)) 3648 pp.pool_size += bp->rx_ring_size; 3649 pp.nid = numa_node; 3650 pp.napi = &rxr->bnapi->napi; 3651 pp.netdev = bp->dev; 3652 pp.dev = &bp->pdev->dev; 3653 pp.dma_dir = bp->rx_dir; 3654 pp.max_len = PAGE_SIZE; 3655 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3656 3657 rxr->page_pool = page_pool_create(&pp); 3658 if (IS_ERR(rxr->page_pool)) { 3659 int err = PTR_ERR(rxr->page_pool); 3660 3661 rxr->page_pool = NULL; 3662 return err; 3663 } 3664 return 0; 3665 } 3666 3667 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3668 { 3669 int numa_node = dev_to_node(&bp->pdev->dev); 3670 int i, rc = 0, agg_rings = 0, cpu; 3671 3672 if (!bp->rx_ring) 3673 return -ENOMEM; 3674 3675 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3676 agg_rings = 1; 3677 3678 for (i = 0; i < bp->rx_nr_rings; i++) { 3679 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3680 struct bnxt_ring_struct *ring; 3681 int cpu_node; 3682 3683 ring = &rxr->rx_ring_struct; 3684 3685 cpu = cpumask_local_spread(i, numa_node); 3686 cpu_node = cpu_to_node(cpu); 3687 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3688 i, cpu_node); 3689 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3690 if (rc) 3691 return rc; 3692 3693 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3694 if (rc < 0) 3695 return rc; 3696 3697 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3698 MEM_TYPE_PAGE_POOL, 3699 rxr->page_pool); 3700 if (rc) { 3701 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3702 return rc; 3703 } 3704 3705 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3706 if (rc) 3707 return rc; 3708 3709 ring->grp_idx = i; 3710 if (agg_rings) { 3711 u16 mem_size; 3712 3713 ring = &rxr->rx_agg_ring_struct; 3714 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3715 if (rc) 3716 return rc; 3717 3718 ring->grp_idx = i; 3719 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3720 mem_size = rxr->rx_agg_bmap_size / 8; 3721 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3722 if (!rxr->rx_agg_bmap) 3723 return -ENOMEM; 3724 } 3725 } 3726 if (bp->flags & BNXT_FLAG_TPA) 3727 rc = bnxt_alloc_tpa_info(bp); 3728 return rc; 3729 } 3730 3731 static void bnxt_free_tx_rings(struct bnxt *bp) 3732 { 3733 int i; 3734 struct pci_dev *pdev = bp->pdev; 3735 3736 if (!bp->tx_ring) 3737 return; 3738 3739 for (i = 0; i < bp->tx_nr_rings; i++) { 3740 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3741 struct bnxt_ring_struct *ring; 3742 3743 if (txr->tx_push) { 3744 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3745 txr->tx_push, txr->tx_push_mapping); 3746 txr->tx_push = NULL; 3747 } 3748 3749 ring = &txr->tx_ring_struct; 3750 3751 bnxt_free_ring(bp, &ring->ring_mem); 3752 } 3753 } 3754 3755 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3756 ((tc) * (bp)->tx_nr_rings_per_tc) 3757 3758 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3759 ((tx) % (bp)->tx_nr_rings_per_tc) 3760 3761 #define BNXT_RING_TO_TC(bp, tx) \ 3762 ((tx) / (bp)->tx_nr_rings_per_tc) 3763 3764 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3765 { 3766 int i, j, rc; 3767 struct pci_dev *pdev = bp->pdev; 3768 3769 bp->tx_push_size = 0; 3770 if (bp->tx_push_thresh) { 3771 int push_size; 3772 3773 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3774 bp->tx_push_thresh); 3775 3776 if (push_size > 256) { 3777 push_size = 0; 3778 bp->tx_push_thresh = 0; 3779 } 3780 3781 bp->tx_push_size = push_size; 3782 } 3783 3784 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3785 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3786 struct bnxt_ring_struct *ring; 3787 u8 qidx; 3788 3789 ring = &txr->tx_ring_struct; 3790 3791 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3792 if (rc) 3793 return rc; 3794 3795 ring->grp_idx = txr->bnapi->index; 3796 if (bp->tx_push_size) { 3797 dma_addr_t mapping; 3798 3799 /* One pre-allocated DMA buffer to backup 3800 * TX push operation 3801 */ 3802 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3803 bp->tx_push_size, 3804 &txr->tx_push_mapping, 3805 GFP_KERNEL); 3806 3807 if (!txr->tx_push) 3808 return -ENOMEM; 3809 3810 mapping = txr->tx_push_mapping + 3811 sizeof(struct tx_push_bd); 3812 txr->data_mapping = cpu_to_le64(mapping); 3813 } 3814 qidx = bp->tc_to_qidx[j]; 3815 ring->queue_id = bp->q_info[qidx].queue_id; 3816 spin_lock_init(&txr->xdp_tx_lock); 3817 if (i < bp->tx_nr_rings_xdp) 3818 continue; 3819 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3820 j++; 3821 } 3822 return 0; 3823 } 3824 3825 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3826 { 3827 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3828 3829 kfree(cpr->cp_desc_ring); 3830 cpr->cp_desc_ring = NULL; 3831 ring->ring_mem.pg_arr = NULL; 3832 kfree(cpr->cp_desc_mapping); 3833 cpr->cp_desc_mapping = NULL; 3834 ring->ring_mem.dma_arr = NULL; 3835 } 3836 3837 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3838 { 3839 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3840 if (!cpr->cp_desc_ring) 3841 return -ENOMEM; 3842 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3843 GFP_KERNEL); 3844 if (!cpr->cp_desc_mapping) 3845 return -ENOMEM; 3846 return 0; 3847 } 3848 3849 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3850 { 3851 int i; 3852 3853 if (!bp->bnapi) 3854 return; 3855 for (i = 0; i < bp->cp_nr_rings; i++) { 3856 struct bnxt_napi *bnapi = bp->bnapi[i]; 3857 3858 if (!bnapi) 3859 continue; 3860 bnxt_free_cp_arrays(&bnapi->cp_ring); 3861 } 3862 } 3863 3864 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3865 { 3866 int i, n = bp->cp_nr_pages; 3867 3868 for (i = 0; i < bp->cp_nr_rings; i++) { 3869 struct bnxt_napi *bnapi = bp->bnapi[i]; 3870 int rc; 3871 3872 if (!bnapi) 3873 continue; 3874 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3875 if (rc) 3876 return rc; 3877 } 3878 return 0; 3879 } 3880 3881 static void bnxt_free_cp_rings(struct bnxt *bp) 3882 { 3883 int i; 3884 3885 if (!bp->bnapi) 3886 return; 3887 3888 for (i = 0; i < bp->cp_nr_rings; i++) { 3889 struct bnxt_napi *bnapi = bp->bnapi[i]; 3890 struct bnxt_cp_ring_info *cpr; 3891 struct bnxt_ring_struct *ring; 3892 int j; 3893 3894 if (!bnapi) 3895 continue; 3896 3897 cpr = &bnapi->cp_ring; 3898 ring = &cpr->cp_ring_struct; 3899 3900 bnxt_free_ring(bp, &ring->ring_mem); 3901 3902 if (!cpr->cp_ring_arr) 3903 continue; 3904 3905 for (j = 0; j < cpr->cp_ring_count; j++) { 3906 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 3907 3908 ring = &cpr2->cp_ring_struct; 3909 bnxt_free_ring(bp, &ring->ring_mem); 3910 bnxt_free_cp_arrays(cpr2); 3911 } 3912 kfree(cpr->cp_ring_arr); 3913 cpr->cp_ring_arr = NULL; 3914 cpr->cp_ring_count = 0; 3915 } 3916 } 3917 3918 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 3919 struct bnxt_cp_ring_info *cpr) 3920 { 3921 struct bnxt_ring_mem_info *rmem; 3922 struct bnxt_ring_struct *ring; 3923 int rc; 3924 3925 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3926 if (rc) { 3927 bnxt_free_cp_arrays(cpr); 3928 return -ENOMEM; 3929 } 3930 ring = &cpr->cp_ring_struct; 3931 rmem = &ring->ring_mem; 3932 rmem->nr_pages = bp->cp_nr_pages; 3933 rmem->page_size = HW_CMPD_RING_SIZE; 3934 rmem->pg_arr = (void **)cpr->cp_desc_ring; 3935 rmem->dma_arr = cpr->cp_desc_mapping; 3936 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 3937 rc = bnxt_alloc_ring(bp, rmem); 3938 if (rc) { 3939 bnxt_free_ring(bp, rmem); 3940 bnxt_free_cp_arrays(cpr); 3941 } 3942 return rc; 3943 } 3944 3945 static int bnxt_alloc_cp_rings(struct bnxt *bp) 3946 { 3947 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 3948 int i, j, rc, ulp_msix; 3949 int tcs = bp->num_tc; 3950 3951 if (!tcs) 3952 tcs = 1; 3953 ulp_msix = bnxt_get_ulp_msix_num(bp); 3954 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 3955 struct bnxt_napi *bnapi = bp->bnapi[i]; 3956 struct bnxt_cp_ring_info *cpr, *cpr2; 3957 struct bnxt_ring_struct *ring; 3958 int cp_count = 0, k; 3959 int rx = 0, tx = 0; 3960 3961 if (!bnapi) 3962 continue; 3963 3964 cpr = &bnapi->cp_ring; 3965 cpr->bnapi = bnapi; 3966 ring = &cpr->cp_ring_struct; 3967 3968 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3969 if (rc) 3970 return rc; 3971 3972 ring->map_idx = ulp_msix + i; 3973 3974 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3975 continue; 3976 3977 if (i < bp->rx_nr_rings) { 3978 cp_count++; 3979 rx = 1; 3980 } 3981 if (i < bp->tx_nr_rings_xdp) { 3982 cp_count++; 3983 tx = 1; 3984 } else if ((sh && i < bp->tx_nr_rings) || 3985 (!sh && i >= bp->rx_nr_rings)) { 3986 cp_count += tcs; 3987 tx = 1; 3988 } 3989 3990 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 3991 GFP_KERNEL); 3992 if (!cpr->cp_ring_arr) 3993 return -ENOMEM; 3994 cpr->cp_ring_count = cp_count; 3995 3996 for (k = 0; k < cp_count; k++) { 3997 cpr2 = &cpr->cp_ring_arr[k]; 3998 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 3999 if (rc) 4000 return rc; 4001 cpr2->bnapi = bnapi; 4002 cpr2->sw_stats = cpr->sw_stats; 4003 cpr2->cp_idx = k; 4004 if (!k && rx) { 4005 bp->rx_ring[i].rx_cpr = cpr2; 4006 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4007 } else { 4008 int n, tc = k - rx; 4009 4010 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4011 bp->tx_ring[n].tx_cpr = cpr2; 4012 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4013 } 4014 } 4015 if (tx) 4016 j++; 4017 } 4018 return 0; 4019 } 4020 4021 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4022 struct bnxt_rx_ring_info *rxr) 4023 { 4024 struct bnxt_ring_mem_info *rmem; 4025 struct bnxt_ring_struct *ring; 4026 4027 ring = &rxr->rx_ring_struct; 4028 rmem = &ring->ring_mem; 4029 rmem->nr_pages = bp->rx_nr_pages; 4030 rmem->page_size = HW_RXBD_RING_SIZE; 4031 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4032 rmem->dma_arr = rxr->rx_desc_mapping; 4033 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4034 rmem->vmem = (void **)&rxr->rx_buf_ring; 4035 4036 ring = &rxr->rx_agg_ring_struct; 4037 rmem = &ring->ring_mem; 4038 rmem->nr_pages = bp->rx_agg_nr_pages; 4039 rmem->page_size = HW_RXBD_RING_SIZE; 4040 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4041 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4042 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4043 rmem->vmem = (void **)&rxr->rx_agg_ring; 4044 } 4045 4046 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4047 struct bnxt_rx_ring_info *rxr) 4048 { 4049 struct bnxt_ring_mem_info *rmem; 4050 struct bnxt_ring_struct *ring; 4051 int i; 4052 4053 rxr->page_pool->p.napi = NULL; 4054 rxr->page_pool = NULL; 4055 4056 ring = &rxr->rx_ring_struct; 4057 rmem = &ring->ring_mem; 4058 rmem->pg_tbl = NULL; 4059 rmem->pg_tbl_map = 0; 4060 for (i = 0; i < rmem->nr_pages; i++) { 4061 rmem->pg_arr[i] = NULL; 4062 rmem->dma_arr[i] = 0; 4063 } 4064 *rmem->vmem = NULL; 4065 4066 ring = &rxr->rx_agg_ring_struct; 4067 rmem = &ring->ring_mem; 4068 rmem->pg_tbl = NULL; 4069 rmem->pg_tbl_map = 0; 4070 for (i = 0; i < rmem->nr_pages; i++) { 4071 rmem->pg_arr[i] = NULL; 4072 rmem->dma_arr[i] = 0; 4073 } 4074 *rmem->vmem = NULL; 4075 } 4076 4077 static void bnxt_init_ring_struct(struct bnxt *bp) 4078 { 4079 int i, j; 4080 4081 for (i = 0; i < bp->cp_nr_rings; i++) { 4082 struct bnxt_napi *bnapi = bp->bnapi[i]; 4083 struct bnxt_ring_mem_info *rmem; 4084 struct bnxt_cp_ring_info *cpr; 4085 struct bnxt_rx_ring_info *rxr; 4086 struct bnxt_tx_ring_info *txr; 4087 struct bnxt_ring_struct *ring; 4088 4089 if (!bnapi) 4090 continue; 4091 4092 cpr = &bnapi->cp_ring; 4093 ring = &cpr->cp_ring_struct; 4094 rmem = &ring->ring_mem; 4095 rmem->nr_pages = bp->cp_nr_pages; 4096 rmem->page_size = HW_CMPD_RING_SIZE; 4097 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4098 rmem->dma_arr = cpr->cp_desc_mapping; 4099 rmem->vmem_size = 0; 4100 4101 rxr = bnapi->rx_ring; 4102 if (!rxr) 4103 goto skip_rx; 4104 4105 ring = &rxr->rx_ring_struct; 4106 rmem = &ring->ring_mem; 4107 rmem->nr_pages = bp->rx_nr_pages; 4108 rmem->page_size = HW_RXBD_RING_SIZE; 4109 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4110 rmem->dma_arr = rxr->rx_desc_mapping; 4111 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4112 rmem->vmem = (void **)&rxr->rx_buf_ring; 4113 4114 ring = &rxr->rx_agg_ring_struct; 4115 rmem = &ring->ring_mem; 4116 rmem->nr_pages = bp->rx_agg_nr_pages; 4117 rmem->page_size = HW_RXBD_RING_SIZE; 4118 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4119 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4120 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4121 rmem->vmem = (void **)&rxr->rx_agg_ring; 4122 4123 skip_rx: 4124 bnxt_for_each_napi_tx(j, bnapi, txr) { 4125 ring = &txr->tx_ring_struct; 4126 rmem = &ring->ring_mem; 4127 rmem->nr_pages = bp->tx_nr_pages; 4128 rmem->page_size = HW_TXBD_RING_SIZE; 4129 rmem->pg_arr = (void **)txr->tx_desc_ring; 4130 rmem->dma_arr = txr->tx_desc_mapping; 4131 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4132 rmem->vmem = (void **)&txr->tx_buf_ring; 4133 } 4134 } 4135 } 4136 4137 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4138 { 4139 int i; 4140 u32 prod; 4141 struct rx_bd **rx_buf_ring; 4142 4143 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4144 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4145 int j; 4146 struct rx_bd *rxbd; 4147 4148 rxbd = rx_buf_ring[i]; 4149 if (!rxbd) 4150 continue; 4151 4152 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4153 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4154 rxbd->rx_bd_opaque = prod; 4155 } 4156 } 4157 } 4158 4159 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4160 struct bnxt_rx_ring_info *rxr, 4161 int ring_nr) 4162 { 4163 u32 prod; 4164 int i; 4165 4166 prod = rxr->rx_prod; 4167 for (i = 0; i < bp->rx_ring_size; i++) { 4168 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4169 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4170 ring_nr, i, bp->rx_ring_size); 4171 break; 4172 } 4173 prod = NEXT_RX(prod); 4174 } 4175 rxr->rx_prod = prod; 4176 } 4177 4178 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp, 4179 struct bnxt_rx_ring_info *rxr, 4180 int ring_nr) 4181 { 4182 u32 prod; 4183 int i; 4184 4185 prod = rxr->rx_agg_prod; 4186 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4187 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4188 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4189 ring_nr, i, bp->rx_ring_size); 4190 break; 4191 } 4192 prod = NEXT_RX_AGG(prod); 4193 } 4194 rxr->rx_agg_prod = prod; 4195 } 4196 4197 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4198 { 4199 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4200 int i; 4201 4202 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4203 4204 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4205 return 0; 4206 4207 bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr); 4208 4209 if (rxr->rx_tpa) { 4210 dma_addr_t mapping; 4211 u8 *data; 4212 4213 for (i = 0; i < bp->max_tpa; i++) { 4214 data = __bnxt_alloc_rx_frag(bp, &mapping, GFP_KERNEL); 4215 if (!data) 4216 return -ENOMEM; 4217 4218 rxr->rx_tpa[i].data = data; 4219 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4220 rxr->rx_tpa[i].mapping = mapping; 4221 } 4222 } 4223 return 0; 4224 } 4225 4226 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4227 struct bnxt_rx_ring_info *rxr) 4228 { 4229 struct bnxt_ring_struct *ring; 4230 u32 type; 4231 4232 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4233 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4234 4235 if (NET_IP_ALIGN == 2) 4236 type |= RX_BD_FLAGS_SOP; 4237 4238 ring = &rxr->rx_ring_struct; 4239 bnxt_init_rxbd_pages(ring, type); 4240 ring->fw_ring_id = INVALID_HW_RING_ID; 4241 } 4242 4243 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4244 struct bnxt_rx_ring_info *rxr) 4245 { 4246 struct bnxt_ring_struct *ring; 4247 u32 type; 4248 4249 ring = &rxr->rx_agg_ring_struct; 4250 ring->fw_ring_id = INVALID_HW_RING_ID; 4251 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4252 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4253 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4254 4255 bnxt_init_rxbd_pages(ring, type); 4256 } 4257 } 4258 4259 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4260 { 4261 struct bnxt_rx_ring_info *rxr; 4262 4263 rxr = &bp->rx_ring[ring_nr]; 4264 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4265 4266 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4267 &rxr->bnapi->napi); 4268 4269 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4270 bpf_prog_add(bp->xdp_prog, 1); 4271 rxr->xdp_prog = bp->xdp_prog; 4272 } 4273 4274 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4275 4276 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4277 } 4278 4279 static void bnxt_init_cp_rings(struct bnxt *bp) 4280 { 4281 int i, j; 4282 4283 for (i = 0; i < bp->cp_nr_rings; i++) { 4284 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4285 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4286 4287 ring->fw_ring_id = INVALID_HW_RING_ID; 4288 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4289 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4290 if (!cpr->cp_ring_arr) 4291 continue; 4292 for (j = 0; j < cpr->cp_ring_count; j++) { 4293 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4294 4295 ring = &cpr2->cp_ring_struct; 4296 ring->fw_ring_id = INVALID_HW_RING_ID; 4297 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4298 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4299 } 4300 } 4301 } 4302 4303 static int bnxt_init_rx_rings(struct bnxt *bp) 4304 { 4305 int i, rc = 0; 4306 4307 if (BNXT_RX_PAGE_MODE(bp)) { 4308 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4309 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4310 } else { 4311 bp->rx_offset = BNXT_RX_OFFSET; 4312 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4313 } 4314 4315 for (i = 0; i < bp->rx_nr_rings; i++) { 4316 rc = bnxt_init_one_rx_ring(bp, i); 4317 if (rc) 4318 break; 4319 } 4320 4321 return rc; 4322 } 4323 4324 static int bnxt_init_tx_rings(struct bnxt *bp) 4325 { 4326 u16 i; 4327 4328 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4329 BNXT_MIN_TX_DESC_CNT); 4330 4331 for (i = 0; i < bp->tx_nr_rings; i++) { 4332 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4333 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4334 4335 ring->fw_ring_id = INVALID_HW_RING_ID; 4336 4337 if (i >= bp->tx_nr_rings_xdp) 4338 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4339 NETDEV_QUEUE_TYPE_TX, 4340 &txr->bnapi->napi); 4341 } 4342 4343 return 0; 4344 } 4345 4346 static void bnxt_free_ring_grps(struct bnxt *bp) 4347 { 4348 kfree(bp->grp_info); 4349 bp->grp_info = NULL; 4350 } 4351 4352 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4353 { 4354 int i; 4355 4356 if (irq_re_init) { 4357 bp->grp_info = kcalloc(bp->cp_nr_rings, 4358 sizeof(struct bnxt_ring_grp_info), 4359 GFP_KERNEL); 4360 if (!bp->grp_info) 4361 return -ENOMEM; 4362 } 4363 for (i = 0; i < bp->cp_nr_rings; i++) { 4364 if (irq_re_init) 4365 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4366 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4367 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4368 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4369 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4370 } 4371 return 0; 4372 } 4373 4374 static void bnxt_free_vnics(struct bnxt *bp) 4375 { 4376 kfree(bp->vnic_info); 4377 bp->vnic_info = NULL; 4378 bp->nr_vnics = 0; 4379 } 4380 4381 static int bnxt_alloc_vnics(struct bnxt *bp) 4382 { 4383 int num_vnics = 1; 4384 4385 #ifdef CONFIG_RFS_ACCEL 4386 if (bp->flags & BNXT_FLAG_RFS) { 4387 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4388 num_vnics++; 4389 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4390 num_vnics += bp->rx_nr_rings; 4391 } 4392 #endif 4393 4394 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4395 num_vnics++; 4396 4397 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4398 GFP_KERNEL); 4399 if (!bp->vnic_info) 4400 return -ENOMEM; 4401 4402 bp->nr_vnics = num_vnics; 4403 return 0; 4404 } 4405 4406 static void bnxt_init_vnics(struct bnxt *bp) 4407 { 4408 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4409 int i; 4410 4411 for (i = 0; i < bp->nr_vnics; i++) { 4412 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4413 int j; 4414 4415 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4416 vnic->vnic_id = i; 4417 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4418 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4419 4420 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4421 4422 if (bp->vnic_info[i].rss_hash_key) { 4423 if (i == BNXT_VNIC_DEFAULT) { 4424 u8 *key = (void *)vnic->rss_hash_key; 4425 int k; 4426 4427 if (!bp->rss_hash_key_valid && 4428 !bp->rss_hash_key_updated) { 4429 get_random_bytes(bp->rss_hash_key, 4430 HW_HASH_KEY_SIZE); 4431 bp->rss_hash_key_updated = true; 4432 } 4433 4434 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4435 HW_HASH_KEY_SIZE); 4436 4437 if (!bp->rss_hash_key_updated) 4438 continue; 4439 4440 bp->rss_hash_key_updated = false; 4441 bp->rss_hash_key_valid = true; 4442 4443 bp->toeplitz_prefix = 0; 4444 for (k = 0; k < 8; k++) { 4445 bp->toeplitz_prefix <<= 8; 4446 bp->toeplitz_prefix |= key[k]; 4447 } 4448 } else { 4449 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4450 HW_HASH_KEY_SIZE); 4451 } 4452 } 4453 } 4454 } 4455 4456 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4457 { 4458 int pages; 4459 4460 pages = ring_size / desc_per_pg; 4461 4462 if (!pages) 4463 return 1; 4464 4465 pages++; 4466 4467 while (pages & (pages - 1)) 4468 pages++; 4469 4470 return pages; 4471 } 4472 4473 void bnxt_set_tpa_flags(struct bnxt *bp) 4474 { 4475 bp->flags &= ~BNXT_FLAG_TPA; 4476 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4477 return; 4478 if (bp->dev->features & NETIF_F_LRO) 4479 bp->flags |= BNXT_FLAG_LRO; 4480 else if (bp->dev->features & NETIF_F_GRO_HW) 4481 bp->flags |= BNXT_FLAG_GRO; 4482 } 4483 4484 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4485 * be set on entry. 4486 */ 4487 void bnxt_set_ring_params(struct bnxt *bp) 4488 { 4489 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4490 u32 agg_factor = 0, agg_ring_size = 0; 4491 4492 /* 8 for CRC and VLAN */ 4493 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4494 4495 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4496 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4497 4498 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4499 ring_size = bp->rx_ring_size; 4500 bp->rx_agg_ring_size = 0; 4501 bp->rx_agg_nr_pages = 0; 4502 4503 if (bp->flags & BNXT_FLAG_TPA) 4504 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4505 4506 bp->flags &= ~BNXT_FLAG_JUMBO; 4507 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4508 u32 jumbo_factor; 4509 4510 bp->flags |= BNXT_FLAG_JUMBO; 4511 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4512 if (jumbo_factor > agg_factor) 4513 agg_factor = jumbo_factor; 4514 } 4515 if (agg_factor) { 4516 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4517 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4518 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4519 bp->rx_ring_size, ring_size); 4520 bp->rx_ring_size = ring_size; 4521 } 4522 agg_ring_size = ring_size * agg_factor; 4523 4524 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4525 RX_DESC_CNT); 4526 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4527 u32 tmp = agg_ring_size; 4528 4529 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4530 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4531 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4532 tmp, agg_ring_size); 4533 } 4534 bp->rx_agg_ring_size = agg_ring_size; 4535 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4536 4537 if (BNXT_RX_PAGE_MODE(bp)) { 4538 rx_space = PAGE_SIZE; 4539 rx_size = PAGE_SIZE - 4540 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4541 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4542 } else { 4543 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4544 rx_space = rx_size + NET_SKB_PAD + 4545 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4546 } 4547 } 4548 4549 bp->rx_buf_use_size = rx_size; 4550 bp->rx_buf_size = rx_space; 4551 4552 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4553 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4554 4555 ring_size = bp->tx_ring_size; 4556 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4557 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4558 4559 max_rx_cmpl = bp->rx_ring_size; 4560 /* MAX TPA needs to be added because TPA_START completions are 4561 * immediately recycled, so the TPA completions are not bound by 4562 * the RX ring size. 4563 */ 4564 if (bp->flags & BNXT_FLAG_TPA) 4565 max_rx_cmpl += bp->max_tpa; 4566 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4567 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4568 bp->cp_ring_size = ring_size; 4569 4570 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4571 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4572 bp->cp_nr_pages = MAX_CP_PAGES; 4573 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4574 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4575 ring_size, bp->cp_ring_size); 4576 } 4577 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4578 bp->cp_ring_mask = bp->cp_bit - 1; 4579 } 4580 4581 /* Changing allocation mode of RX rings. 4582 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4583 */ 4584 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4585 { 4586 struct net_device *dev = bp->dev; 4587 4588 if (page_mode) { 4589 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4590 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4591 4592 if (bp->xdp_prog->aux->xdp_has_frags) 4593 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4594 else 4595 dev->max_mtu = 4596 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4597 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4598 bp->flags |= BNXT_FLAG_JUMBO; 4599 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4600 } else { 4601 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4602 bp->rx_skb_func = bnxt_rx_page_skb; 4603 } 4604 bp->rx_dir = DMA_BIDIRECTIONAL; 4605 /* Disable LRO or GRO_HW */ 4606 netdev_update_features(dev); 4607 } else { 4608 dev->max_mtu = bp->max_mtu; 4609 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4610 bp->rx_dir = DMA_FROM_DEVICE; 4611 bp->rx_skb_func = bnxt_rx_skb; 4612 } 4613 return 0; 4614 } 4615 4616 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4617 { 4618 int i; 4619 struct bnxt_vnic_info *vnic; 4620 struct pci_dev *pdev = bp->pdev; 4621 4622 if (!bp->vnic_info) 4623 return; 4624 4625 for (i = 0; i < bp->nr_vnics; i++) { 4626 vnic = &bp->vnic_info[i]; 4627 4628 kfree(vnic->fw_grp_ids); 4629 vnic->fw_grp_ids = NULL; 4630 4631 kfree(vnic->uc_list); 4632 vnic->uc_list = NULL; 4633 4634 if (vnic->mc_list) { 4635 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4636 vnic->mc_list, vnic->mc_list_mapping); 4637 vnic->mc_list = NULL; 4638 } 4639 4640 if (vnic->rss_table) { 4641 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4642 vnic->rss_table, 4643 vnic->rss_table_dma_addr); 4644 vnic->rss_table = NULL; 4645 } 4646 4647 vnic->rss_hash_key = NULL; 4648 vnic->flags = 0; 4649 } 4650 } 4651 4652 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4653 { 4654 int i, rc = 0, size; 4655 struct bnxt_vnic_info *vnic; 4656 struct pci_dev *pdev = bp->pdev; 4657 int max_rings; 4658 4659 for (i = 0; i < bp->nr_vnics; i++) { 4660 vnic = &bp->vnic_info[i]; 4661 4662 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4663 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4664 4665 if (mem_size > 0) { 4666 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4667 if (!vnic->uc_list) { 4668 rc = -ENOMEM; 4669 goto out; 4670 } 4671 } 4672 } 4673 4674 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4675 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4676 vnic->mc_list = 4677 dma_alloc_coherent(&pdev->dev, 4678 vnic->mc_list_size, 4679 &vnic->mc_list_mapping, 4680 GFP_KERNEL); 4681 if (!vnic->mc_list) { 4682 rc = -ENOMEM; 4683 goto out; 4684 } 4685 } 4686 4687 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4688 goto vnic_skip_grps; 4689 4690 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4691 max_rings = bp->rx_nr_rings; 4692 else 4693 max_rings = 1; 4694 4695 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4696 if (!vnic->fw_grp_ids) { 4697 rc = -ENOMEM; 4698 goto out; 4699 } 4700 vnic_skip_grps: 4701 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4702 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4703 continue; 4704 4705 /* Allocate rss table and hash key */ 4706 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4707 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4708 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4709 4710 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4711 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4712 vnic->rss_table_size, 4713 &vnic->rss_table_dma_addr, 4714 GFP_KERNEL); 4715 if (!vnic->rss_table) { 4716 rc = -ENOMEM; 4717 goto out; 4718 } 4719 4720 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4721 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4722 } 4723 return 0; 4724 4725 out: 4726 return rc; 4727 } 4728 4729 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4730 { 4731 struct bnxt_hwrm_wait_token *token; 4732 4733 dma_pool_destroy(bp->hwrm_dma_pool); 4734 bp->hwrm_dma_pool = NULL; 4735 4736 rcu_read_lock(); 4737 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4738 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4739 rcu_read_unlock(); 4740 } 4741 4742 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4743 { 4744 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4745 BNXT_HWRM_DMA_SIZE, 4746 BNXT_HWRM_DMA_ALIGN, 0); 4747 if (!bp->hwrm_dma_pool) 4748 return -ENOMEM; 4749 4750 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4751 4752 return 0; 4753 } 4754 4755 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4756 { 4757 kfree(stats->hw_masks); 4758 stats->hw_masks = NULL; 4759 kfree(stats->sw_stats); 4760 stats->sw_stats = NULL; 4761 if (stats->hw_stats) { 4762 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4763 stats->hw_stats_map); 4764 stats->hw_stats = NULL; 4765 } 4766 } 4767 4768 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4769 bool alloc_masks) 4770 { 4771 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4772 &stats->hw_stats_map, GFP_KERNEL); 4773 if (!stats->hw_stats) 4774 return -ENOMEM; 4775 4776 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4777 if (!stats->sw_stats) 4778 goto stats_mem_err; 4779 4780 if (alloc_masks) { 4781 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4782 if (!stats->hw_masks) 4783 goto stats_mem_err; 4784 } 4785 return 0; 4786 4787 stats_mem_err: 4788 bnxt_free_stats_mem(bp, stats); 4789 return -ENOMEM; 4790 } 4791 4792 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4793 { 4794 int i; 4795 4796 for (i = 0; i < count; i++) 4797 mask_arr[i] = mask; 4798 } 4799 4800 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4801 { 4802 int i; 4803 4804 for (i = 0; i < count; i++) 4805 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4806 } 4807 4808 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4809 struct bnxt_stats_mem *stats) 4810 { 4811 struct hwrm_func_qstats_ext_output *resp; 4812 struct hwrm_func_qstats_ext_input *req; 4813 __le64 *hw_masks; 4814 int rc; 4815 4816 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4817 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4818 return -EOPNOTSUPP; 4819 4820 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4821 if (rc) 4822 return rc; 4823 4824 req->fid = cpu_to_le16(0xffff); 4825 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4826 4827 resp = hwrm_req_hold(bp, req); 4828 rc = hwrm_req_send(bp, req); 4829 if (!rc) { 4830 hw_masks = &resp->rx_ucast_pkts; 4831 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4832 } 4833 hwrm_req_drop(bp, req); 4834 return rc; 4835 } 4836 4837 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4838 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4839 4840 static void bnxt_init_stats(struct bnxt *bp) 4841 { 4842 struct bnxt_napi *bnapi = bp->bnapi[0]; 4843 struct bnxt_cp_ring_info *cpr; 4844 struct bnxt_stats_mem *stats; 4845 __le64 *rx_stats, *tx_stats; 4846 int rc, rx_count, tx_count; 4847 u64 *rx_masks, *tx_masks; 4848 u64 mask; 4849 u8 flags; 4850 4851 cpr = &bnapi->cp_ring; 4852 stats = &cpr->stats; 4853 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4854 if (rc) { 4855 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4856 mask = (1ULL << 48) - 1; 4857 else 4858 mask = -1ULL; 4859 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4860 } 4861 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4862 stats = &bp->port_stats; 4863 rx_stats = stats->hw_stats; 4864 rx_masks = stats->hw_masks; 4865 rx_count = sizeof(struct rx_port_stats) / 8; 4866 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4867 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4868 tx_count = sizeof(struct tx_port_stats) / 8; 4869 4870 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4871 rc = bnxt_hwrm_port_qstats(bp, flags); 4872 if (rc) { 4873 mask = (1ULL << 40) - 1; 4874 4875 bnxt_fill_masks(rx_masks, mask, rx_count); 4876 bnxt_fill_masks(tx_masks, mask, tx_count); 4877 } else { 4878 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4879 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4880 bnxt_hwrm_port_qstats(bp, 0); 4881 } 4882 } 4883 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4884 stats = &bp->rx_port_stats_ext; 4885 rx_stats = stats->hw_stats; 4886 rx_masks = stats->hw_masks; 4887 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4888 stats = &bp->tx_port_stats_ext; 4889 tx_stats = stats->hw_stats; 4890 tx_masks = stats->hw_masks; 4891 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4892 4893 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4894 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4895 if (rc) { 4896 mask = (1ULL << 40) - 1; 4897 4898 bnxt_fill_masks(rx_masks, mask, rx_count); 4899 if (tx_stats) 4900 bnxt_fill_masks(tx_masks, mask, tx_count); 4901 } else { 4902 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4903 if (tx_stats) 4904 bnxt_copy_hw_masks(tx_masks, tx_stats, 4905 tx_count); 4906 bnxt_hwrm_port_qstats_ext(bp, 0); 4907 } 4908 } 4909 } 4910 4911 static void bnxt_free_port_stats(struct bnxt *bp) 4912 { 4913 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4914 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4915 4916 bnxt_free_stats_mem(bp, &bp->port_stats); 4917 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4918 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4919 } 4920 4921 static void bnxt_free_ring_stats(struct bnxt *bp) 4922 { 4923 int i; 4924 4925 if (!bp->bnapi) 4926 return; 4927 4928 for (i = 0; i < bp->cp_nr_rings; i++) { 4929 struct bnxt_napi *bnapi = bp->bnapi[i]; 4930 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4931 4932 bnxt_free_stats_mem(bp, &cpr->stats); 4933 4934 kfree(cpr->sw_stats); 4935 cpr->sw_stats = NULL; 4936 } 4937 } 4938 4939 static int bnxt_alloc_stats(struct bnxt *bp) 4940 { 4941 u32 size, i; 4942 int rc; 4943 4944 size = bp->hw_ring_stats_size; 4945 4946 for (i = 0; i < bp->cp_nr_rings; i++) { 4947 struct bnxt_napi *bnapi = bp->bnapi[i]; 4948 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 4949 4950 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 4951 if (!cpr->sw_stats) 4952 return -ENOMEM; 4953 4954 cpr->stats.len = size; 4955 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 4956 if (rc) 4957 return rc; 4958 4959 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 4960 } 4961 4962 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 4963 return 0; 4964 4965 if (bp->port_stats.hw_stats) 4966 goto alloc_ext_stats; 4967 4968 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 4969 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 4970 if (rc) 4971 return rc; 4972 4973 bp->flags |= BNXT_FLAG_PORT_STATS; 4974 4975 alloc_ext_stats: 4976 /* Display extended statistics only if FW supports it */ 4977 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 4978 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 4979 return 0; 4980 4981 if (bp->rx_port_stats_ext.hw_stats) 4982 goto alloc_tx_ext_stats; 4983 4984 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 4985 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 4986 /* Extended stats are optional */ 4987 if (rc) 4988 return 0; 4989 4990 alloc_tx_ext_stats: 4991 if (bp->tx_port_stats_ext.hw_stats) 4992 return 0; 4993 4994 if (bp->hwrm_spec_code >= 0x10902 || 4995 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 4996 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 4997 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 4998 /* Extended stats are optional */ 4999 if (rc) 5000 return 0; 5001 } 5002 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5003 return 0; 5004 } 5005 5006 static void bnxt_clear_ring_indices(struct bnxt *bp) 5007 { 5008 int i, j; 5009 5010 if (!bp->bnapi) 5011 return; 5012 5013 for (i = 0; i < bp->cp_nr_rings; i++) { 5014 struct bnxt_napi *bnapi = bp->bnapi[i]; 5015 struct bnxt_cp_ring_info *cpr; 5016 struct bnxt_rx_ring_info *rxr; 5017 struct bnxt_tx_ring_info *txr; 5018 5019 if (!bnapi) 5020 continue; 5021 5022 cpr = &bnapi->cp_ring; 5023 cpr->cp_raw_cons = 0; 5024 5025 bnxt_for_each_napi_tx(j, bnapi, txr) { 5026 txr->tx_prod = 0; 5027 txr->tx_cons = 0; 5028 txr->tx_hw_cons = 0; 5029 } 5030 5031 rxr = bnapi->rx_ring; 5032 if (rxr) { 5033 rxr->rx_prod = 0; 5034 rxr->rx_agg_prod = 0; 5035 rxr->rx_sw_agg_prod = 0; 5036 rxr->rx_next_cons = 0; 5037 } 5038 bnapi->events = 0; 5039 } 5040 } 5041 5042 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5043 { 5044 u8 type = fltr->type, flags = fltr->flags; 5045 5046 INIT_LIST_HEAD(&fltr->list); 5047 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5048 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5049 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5050 } 5051 5052 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5053 { 5054 if (!list_empty(&fltr->list)) 5055 list_del_init(&fltr->list); 5056 } 5057 5058 void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5059 { 5060 struct bnxt_filter_base *usr_fltr, *tmp; 5061 5062 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5063 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5064 continue; 5065 bnxt_del_one_usr_fltr(bp, usr_fltr); 5066 } 5067 } 5068 5069 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5070 { 5071 hlist_del(&fltr->hash); 5072 bnxt_del_one_usr_fltr(bp, fltr); 5073 if (fltr->flags) { 5074 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5075 bp->ntp_fltr_count--; 5076 } 5077 kfree(fltr); 5078 } 5079 5080 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5081 { 5082 int i; 5083 5084 /* Under rtnl_lock and all our NAPIs have been disabled. It's 5085 * safe to delete the hash table. 5086 */ 5087 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5088 struct hlist_head *head; 5089 struct hlist_node *tmp; 5090 struct bnxt_ntuple_filter *fltr; 5091 5092 head = &bp->ntp_fltr_hash_tbl[i]; 5093 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5094 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5095 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5096 !list_empty(&fltr->base.list))) 5097 continue; 5098 bnxt_del_fltr(bp, &fltr->base); 5099 } 5100 } 5101 if (!all) 5102 return; 5103 5104 bitmap_free(bp->ntp_fltr_bmap); 5105 bp->ntp_fltr_bmap = NULL; 5106 bp->ntp_fltr_count = 0; 5107 } 5108 5109 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5110 { 5111 int i, rc = 0; 5112 5113 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5114 return 0; 5115 5116 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5117 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5118 5119 bp->ntp_fltr_count = 0; 5120 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5121 5122 if (!bp->ntp_fltr_bmap) 5123 rc = -ENOMEM; 5124 5125 return rc; 5126 } 5127 5128 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5129 { 5130 int i; 5131 5132 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5133 struct hlist_head *head; 5134 struct hlist_node *tmp; 5135 struct bnxt_l2_filter *fltr; 5136 5137 head = &bp->l2_fltr_hash_tbl[i]; 5138 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5139 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5140 !list_empty(&fltr->base.list))) 5141 continue; 5142 bnxt_del_fltr(bp, &fltr->base); 5143 } 5144 } 5145 } 5146 5147 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5148 { 5149 int i; 5150 5151 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5152 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5153 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5154 } 5155 5156 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5157 { 5158 bnxt_free_vnic_attributes(bp); 5159 bnxt_free_tx_rings(bp); 5160 bnxt_free_rx_rings(bp); 5161 bnxt_free_cp_rings(bp); 5162 bnxt_free_all_cp_arrays(bp); 5163 bnxt_free_ntp_fltrs(bp, false); 5164 bnxt_free_l2_filters(bp, false); 5165 if (irq_re_init) { 5166 bnxt_free_ring_stats(bp); 5167 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5168 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5169 bnxt_free_port_stats(bp); 5170 bnxt_free_ring_grps(bp); 5171 bnxt_free_vnics(bp); 5172 kfree(bp->tx_ring_map); 5173 bp->tx_ring_map = NULL; 5174 kfree(bp->tx_ring); 5175 bp->tx_ring = NULL; 5176 kfree(bp->rx_ring); 5177 bp->rx_ring = NULL; 5178 kfree(bp->bnapi); 5179 bp->bnapi = NULL; 5180 } else { 5181 bnxt_clear_ring_indices(bp); 5182 } 5183 } 5184 5185 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5186 { 5187 int i, j, rc, size, arr_size; 5188 void *bnapi; 5189 5190 if (irq_re_init) { 5191 /* Allocate bnapi mem pointer array and mem block for 5192 * all queues 5193 */ 5194 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5195 bp->cp_nr_rings); 5196 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5197 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5198 if (!bnapi) 5199 return -ENOMEM; 5200 5201 bp->bnapi = bnapi; 5202 bnapi += arr_size; 5203 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5204 bp->bnapi[i] = bnapi; 5205 bp->bnapi[i]->index = i; 5206 bp->bnapi[i]->bp = bp; 5207 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5208 struct bnxt_cp_ring_info *cpr = 5209 &bp->bnapi[i]->cp_ring; 5210 5211 cpr->cp_ring_struct.ring_mem.flags = 5212 BNXT_RMEM_RING_PTE_FLAG; 5213 } 5214 } 5215 5216 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5217 sizeof(struct bnxt_rx_ring_info), 5218 GFP_KERNEL); 5219 if (!bp->rx_ring) 5220 return -ENOMEM; 5221 5222 for (i = 0; i < bp->rx_nr_rings; i++) { 5223 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5224 5225 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5226 rxr->rx_ring_struct.ring_mem.flags = 5227 BNXT_RMEM_RING_PTE_FLAG; 5228 rxr->rx_agg_ring_struct.ring_mem.flags = 5229 BNXT_RMEM_RING_PTE_FLAG; 5230 } else { 5231 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5232 } 5233 rxr->bnapi = bp->bnapi[i]; 5234 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5235 } 5236 5237 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5238 sizeof(struct bnxt_tx_ring_info), 5239 GFP_KERNEL); 5240 if (!bp->tx_ring) 5241 return -ENOMEM; 5242 5243 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5244 GFP_KERNEL); 5245 5246 if (!bp->tx_ring_map) 5247 return -ENOMEM; 5248 5249 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5250 j = 0; 5251 else 5252 j = bp->rx_nr_rings; 5253 5254 for (i = 0; i < bp->tx_nr_rings; i++) { 5255 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5256 struct bnxt_napi *bnapi2; 5257 5258 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5259 txr->tx_ring_struct.ring_mem.flags = 5260 BNXT_RMEM_RING_PTE_FLAG; 5261 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5262 if (i >= bp->tx_nr_rings_xdp) { 5263 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5264 5265 bnapi2 = bp->bnapi[k]; 5266 txr->txq_index = i - bp->tx_nr_rings_xdp; 5267 txr->tx_napi_idx = 5268 BNXT_RING_TO_TC(bp, txr->txq_index); 5269 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5270 bnapi2->tx_int = bnxt_tx_int; 5271 } else { 5272 bnapi2 = bp->bnapi[j]; 5273 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5274 bnapi2->tx_ring[0] = txr; 5275 bnapi2->tx_int = bnxt_tx_int_xdp; 5276 j++; 5277 } 5278 txr->bnapi = bnapi2; 5279 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5280 txr->tx_cpr = &bnapi2->cp_ring; 5281 } 5282 5283 rc = bnxt_alloc_stats(bp); 5284 if (rc) 5285 goto alloc_mem_err; 5286 bnxt_init_stats(bp); 5287 5288 rc = bnxt_alloc_ntp_fltrs(bp); 5289 if (rc) 5290 goto alloc_mem_err; 5291 5292 rc = bnxt_alloc_vnics(bp); 5293 if (rc) 5294 goto alloc_mem_err; 5295 } 5296 5297 rc = bnxt_alloc_all_cp_arrays(bp); 5298 if (rc) 5299 goto alloc_mem_err; 5300 5301 bnxt_init_ring_struct(bp); 5302 5303 rc = bnxt_alloc_rx_rings(bp); 5304 if (rc) 5305 goto alloc_mem_err; 5306 5307 rc = bnxt_alloc_tx_rings(bp); 5308 if (rc) 5309 goto alloc_mem_err; 5310 5311 rc = bnxt_alloc_cp_rings(bp); 5312 if (rc) 5313 goto alloc_mem_err; 5314 5315 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5316 BNXT_VNIC_MCAST_FLAG | 5317 BNXT_VNIC_UCAST_FLAG; 5318 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5319 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5320 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5321 5322 rc = bnxt_alloc_vnic_attributes(bp); 5323 if (rc) 5324 goto alloc_mem_err; 5325 return 0; 5326 5327 alloc_mem_err: 5328 bnxt_free_mem(bp, true); 5329 return rc; 5330 } 5331 5332 static void bnxt_disable_int(struct bnxt *bp) 5333 { 5334 int i; 5335 5336 if (!bp->bnapi) 5337 return; 5338 5339 for (i = 0; i < bp->cp_nr_rings; i++) { 5340 struct bnxt_napi *bnapi = bp->bnapi[i]; 5341 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5342 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5343 5344 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5345 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5346 } 5347 } 5348 5349 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5350 { 5351 struct bnxt_napi *bnapi = bp->bnapi[n]; 5352 struct bnxt_cp_ring_info *cpr; 5353 5354 cpr = &bnapi->cp_ring; 5355 return cpr->cp_ring_struct.map_idx; 5356 } 5357 5358 static void bnxt_disable_int_sync(struct bnxt *bp) 5359 { 5360 int i; 5361 5362 if (!bp->irq_tbl) 5363 return; 5364 5365 atomic_inc(&bp->intr_sem); 5366 5367 bnxt_disable_int(bp); 5368 for (i = 0; i < bp->cp_nr_rings; i++) { 5369 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5370 5371 synchronize_irq(bp->irq_tbl[map_idx].vector); 5372 } 5373 } 5374 5375 static void bnxt_enable_int(struct bnxt *bp) 5376 { 5377 int i; 5378 5379 atomic_set(&bp->intr_sem, 0); 5380 for (i = 0; i < bp->cp_nr_rings; i++) { 5381 struct bnxt_napi *bnapi = bp->bnapi[i]; 5382 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5383 5384 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5385 } 5386 } 5387 5388 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5389 bool async_only) 5390 { 5391 DECLARE_BITMAP(async_events_bmap, 256); 5392 u32 *events = (u32 *)async_events_bmap; 5393 struct hwrm_func_drv_rgtr_output *resp; 5394 struct hwrm_func_drv_rgtr_input *req; 5395 u32 flags; 5396 int rc, i; 5397 5398 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5399 if (rc) 5400 return rc; 5401 5402 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5403 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5404 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5405 5406 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5407 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5408 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5409 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5410 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5411 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5412 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5413 req->flags = cpu_to_le32(flags); 5414 req->ver_maj_8b = DRV_VER_MAJ; 5415 req->ver_min_8b = DRV_VER_MIN; 5416 req->ver_upd_8b = DRV_VER_UPD; 5417 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5418 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5419 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5420 5421 if (BNXT_PF(bp)) { 5422 u32 data[8]; 5423 int i; 5424 5425 memset(data, 0, sizeof(data)); 5426 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5427 u16 cmd = bnxt_vf_req_snif[i]; 5428 unsigned int bit, idx; 5429 5430 idx = cmd / 32; 5431 bit = cmd % 32; 5432 data[idx] |= 1 << bit; 5433 } 5434 5435 for (i = 0; i < 8; i++) 5436 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5437 5438 req->enables |= 5439 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5440 } 5441 5442 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5443 req->flags |= cpu_to_le32( 5444 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5445 5446 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5447 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5448 u16 event_id = bnxt_async_events_arr[i]; 5449 5450 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5451 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5452 continue; 5453 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5454 !bp->ptp_cfg) 5455 continue; 5456 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5457 } 5458 if (bmap && bmap_size) { 5459 for (i = 0; i < bmap_size; i++) { 5460 if (test_bit(i, bmap)) 5461 __set_bit(i, async_events_bmap); 5462 } 5463 } 5464 for (i = 0; i < 8; i++) 5465 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5466 5467 if (async_only) 5468 req->enables = 5469 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5470 5471 resp = hwrm_req_hold(bp, req); 5472 rc = hwrm_req_send(bp, req); 5473 if (!rc) { 5474 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5475 if (resp->flags & 5476 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5477 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5478 } 5479 hwrm_req_drop(bp, req); 5480 return rc; 5481 } 5482 5483 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5484 { 5485 struct hwrm_func_drv_unrgtr_input *req; 5486 int rc; 5487 5488 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5489 return 0; 5490 5491 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5492 if (rc) 5493 return rc; 5494 return hwrm_req_send(bp, req); 5495 } 5496 5497 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5498 5499 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5500 { 5501 struct hwrm_tunnel_dst_port_free_input *req; 5502 int rc; 5503 5504 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5505 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5506 return 0; 5507 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5508 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5509 return 0; 5510 5511 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5512 if (rc) 5513 return rc; 5514 5515 req->tunnel_type = tunnel_type; 5516 5517 switch (tunnel_type) { 5518 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5519 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5520 bp->vxlan_port = 0; 5521 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5522 break; 5523 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5524 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5525 bp->nge_port = 0; 5526 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5527 break; 5528 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5529 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5530 bp->vxlan_gpe_port = 0; 5531 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5532 break; 5533 default: 5534 break; 5535 } 5536 5537 rc = hwrm_req_send(bp, req); 5538 if (rc) 5539 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5540 rc); 5541 if (bp->flags & BNXT_FLAG_TPA) 5542 bnxt_set_tpa(bp, true); 5543 return rc; 5544 } 5545 5546 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5547 u8 tunnel_type) 5548 { 5549 struct hwrm_tunnel_dst_port_alloc_output *resp; 5550 struct hwrm_tunnel_dst_port_alloc_input *req; 5551 int rc; 5552 5553 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5554 if (rc) 5555 return rc; 5556 5557 req->tunnel_type = tunnel_type; 5558 req->tunnel_dst_port_val = port; 5559 5560 resp = hwrm_req_hold(bp, req); 5561 rc = hwrm_req_send(bp, req); 5562 if (rc) { 5563 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5564 rc); 5565 goto err_out; 5566 } 5567 5568 switch (tunnel_type) { 5569 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5570 bp->vxlan_port = port; 5571 bp->vxlan_fw_dst_port_id = 5572 le16_to_cpu(resp->tunnel_dst_port_id); 5573 break; 5574 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5575 bp->nge_port = port; 5576 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5577 break; 5578 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5579 bp->vxlan_gpe_port = port; 5580 bp->vxlan_gpe_fw_dst_port_id = 5581 le16_to_cpu(resp->tunnel_dst_port_id); 5582 break; 5583 default: 5584 break; 5585 } 5586 if (bp->flags & BNXT_FLAG_TPA) 5587 bnxt_set_tpa(bp, true); 5588 5589 err_out: 5590 hwrm_req_drop(bp, req); 5591 return rc; 5592 } 5593 5594 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5595 { 5596 struct hwrm_cfa_l2_set_rx_mask_input *req; 5597 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5598 int rc; 5599 5600 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5601 if (rc) 5602 return rc; 5603 5604 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5605 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5606 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5607 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5608 } 5609 req->mask = cpu_to_le32(vnic->rx_mask); 5610 return hwrm_req_send_silent(bp, req); 5611 } 5612 5613 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5614 { 5615 if (!atomic_dec_and_test(&fltr->refcnt)) 5616 return; 5617 spin_lock_bh(&bp->ntp_fltr_lock); 5618 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5619 spin_unlock_bh(&bp->ntp_fltr_lock); 5620 return; 5621 } 5622 hlist_del_rcu(&fltr->base.hash); 5623 bnxt_del_one_usr_fltr(bp, &fltr->base); 5624 if (fltr->base.flags) { 5625 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5626 bp->ntp_fltr_count--; 5627 } 5628 spin_unlock_bh(&bp->ntp_fltr_lock); 5629 kfree_rcu(fltr, base.rcu); 5630 } 5631 5632 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5633 struct bnxt_l2_key *key, 5634 u32 idx) 5635 { 5636 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5637 struct bnxt_l2_filter *fltr; 5638 5639 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5640 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5641 5642 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5643 l2_key->vlan == key->vlan) 5644 return fltr; 5645 } 5646 return NULL; 5647 } 5648 5649 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5650 struct bnxt_l2_key *key, 5651 u32 idx) 5652 { 5653 struct bnxt_l2_filter *fltr = NULL; 5654 5655 rcu_read_lock(); 5656 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5657 if (fltr) 5658 atomic_inc(&fltr->refcnt); 5659 rcu_read_unlock(); 5660 return fltr; 5661 } 5662 5663 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5664 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5665 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5666 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5667 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5668 5669 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5670 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5671 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5672 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5673 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5674 5675 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5676 { 5677 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5678 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5679 return sizeof(fkeys->addrs.v4addrs) + 5680 sizeof(fkeys->ports); 5681 5682 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5683 return sizeof(fkeys->addrs.v4addrs); 5684 } 5685 5686 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5687 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5688 return sizeof(fkeys->addrs.v6addrs) + 5689 sizeof(fkeys->ports); 5690 5691 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5692 return sizeof(fkeys->addrs.v6addrs); 5693 } 5694 5695 return 0; 5696 } 5697 5698 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5699 const unsigned char *key) 5700 { 5701 u64 prefix = bp->toeplitz_prefix, hash = 0; 5702 struct bnxt_ipv4_tuple tuple4; 5703 struct bnxt_ipv6_tuple tuple6; 5704 int i, j, len = 0; 5705 u8 *four_tuple; 5706 5707 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5708 if (!len) 5709 return 0; 5710 5711 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5712 tuple4.v4addrs = fkeys->addrs.v4addrs; 5713 tuple4.ports = fkeys->ports; 5714 four_tuple = (unsigned char *)&tuple4; 5715 } else { 5716 tuple6.v6addrs = fkeys->addrs.v6addrs; 5717 tuple6.ports = fkeys->ports; 5718 four_tuple = (unsigned char *)&tuple6; 5719 } 5720 5721 for (i = 0, j = 8; i < len; i++, j++) { 5722 u8 byte = four_tuple[i]; 5723 int bit; 5724 5725 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5726 if (byte & 0x80) 5727 hash ^= prefix; 5728 } 5729 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5730 } 5731 5732 /* The valid part of the hash is in the upper 32 bits. */ 5733 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5734 } 5735 5736 #ifdef CONFIG_RFS_ACCEL 5737 static struct bnxt_l2_filter * 5738 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5739 { 5740 struct bnxt_l2_filter *fltr; 5741 u32 idx; 5742 5743 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5744 BNXT_L2_FLTR_HASH_MASK; 5745 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5746 return fltr; 5747 } 5748 #endif 5749 5750 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5751 struct bnxt_l2_key *key, u32 idx) 5752 { 5753 struct hlist_head *head; 5754 5755 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5756 fltr->l2_key.vlan = key->vlan; 5757 fltr->base.type = BNXT_FLTR_TYPE_L2; 5758 if (fltr->base.flags) { 5759 int bit_id; 5760 5761 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5762 bp->max_fltr, 0); 5763 if (bit_id < 0) 5764 return -ENOMEM; 5765 fltr->base.sw_id = (u16)bit_id; 5766 bp->ntp_fltr_count++; 5767 } 5768 head = &bp->l2_fltr_hash_tbl[idx]; 5769 hlist_add_head_rcu(&fltr->base.hash, head); 5770 bnxt_insert_usr_fltr(bp, &fltr->base); 5771 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5772 atomic_set(&fltr->refcnt, 1); 5773 return 0; 5774 } 5775 5776 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 5777 struct bnxt_l2_key *key, 5778 gfp_t gfp) 5779 { 5780 struct bnxt_l2_filter *fltr; 5781 u32 idx; 5782 int rc; 5783 5784 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5785 BNXT_L2_FLTR_HASH_MASK; 5786 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5787 if (fltr) 5788 return fltr; 5789 5790 fltr = kzalloc(sizeof(*fltr), gfp); 5791 if (!fltr) 5792 return ERR_PTR(-ENOMEM); 5793 spin_lock_bh(&bp->ntp_fltr_lock); 5794 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5795 spin_unlock_bh(&bp->ntp_fltr_lock); 5796 if (rc) { 5797 bnxt_del_l2_filter(bp, fltr); 5798 fltr = ERR_PTR(rc); 5799 } 5800 return fltr; 5801 } 5802 5803 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 5804 struct bnxt_l2_key *key, 5805 u16 flags) 5806 { 5807 struct bnxt_l2_filter *fltr; 5808 u32 idx; 5809 int rc; 5810 5811 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5812 BNXT_L2_FLTR_HASH_MASK; 5813 spin_lock_bh(&bp->ntp_fltr_lock); 5814 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5815 if (fltr) { 5816 fltr = ERR_PTR(-EEXIST); 5817 goto l2_filter_exit; 5818 } 5819 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 5820 if (!fltr) { 5821 fltr = ERR_PTR(-ENOMEM); 5822 goto l2_filter_exit; 5823 } 5824 fltr->base.flags = flags; 5825 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5826 if (rc) { 5827 spin_unlock_bh(&bp->ntp_fltr_lock); 5828 bnxt_del_l2_filter(bp, fltr); 5829 return ERR_PTR(rc); 5830 } 5831 5832 l2_filter_exit: 5833 spin_unlock_bh(&bp->ntp_fltr_lock); 5834 return fltr; 5835 } 5836 5837 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 5838 { 5839 #ifdef CONFIG_BNXT_SRIOV 5840 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 5841 5842 return vf->fw_fid; 5843 #else 5844 return INVALID_HW_RING_ID; 5845 #endif 5846 } 5847 5848 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5849 { 5850 struct hwrm_cfa_l2_filter_free_input *req; 5851 u16 target_id = 0xffff; 5852 int rc; 5853 5854 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5855 struct bnxt_pf_info *pf = &bp->pf; 5856 5857 if (fltr->base.vf_idx >= pf->active_vfs) 5858 return -EINVAL; 5859 5860 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5861 if (target_id == INVALID_HW_RING_ID) 5862 return -EINVAL; 5863 } 5864 5865 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5866 if (rc) 5867 return rc; 5868 5869 req->target_id = cpu_to_le16(target_id); 5870 req->l2_filter_id = fltr->base.filter_id; 5871 return hwrm_req_send(bp, req); 5872 } 5873 5874 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5875 { 5876 struct hwrm_cfa_l2_filter_alloc_output *resp; 5877 struct hwrm_cfa_l2_filter_alloc_input *req; 5878 u16 target_id = 0xffff; 5879 int rc; 5880 5881 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5882 struct bnxt_pf_info *pf = &bp->pf; 5883 5884 if (fltr->base.vf_idx >= pf->active_vfs) 5885 return -EINVAL; 5886 5887 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5888 } 5889 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5890 if (rc) 5891 return rc; 5892 5893 req->target_id = cpu_to_le16(target_id); 5894 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5895 5896 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5897 req->flags |= 5898 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5899 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 5900 req->enables = 5901 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5902 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5903 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5904 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 5905 eth_broadcast_addr(req->l2_addr_mask); 5906 5907 if (fltr->l2_key.vlan) { 5908 req->enables |= 5909 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 5910 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 5911 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 5912 req->num_vlans = 1; 5913 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 5914 req->l2_ivlan_mask = cpu_to_le16(0xfff); 5915 } 5916 5917 resp = hwrm_req_hold(bp, req); 5918 rc = hwrm_req_send(bp, req); 5919 if (!rc) { 5920 fltr->base.filter_id = resp->l2_filter_id; 5921 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 5922 } 5923 hwrm_req_drop(bp, req); 5924 return rc; 5925 } 5926 5927 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 5928 struct bnxt_ntuple_filter *fltr) 5929 { 5930 struct hwrm_cfa_ntuple_filter_free_input *req; 5931 int rc; 5932 5933 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 5934 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 5935 if (rc) 5936 return rc; 5937 5938 req->ntuple_filter_id = fltr->base.filter_id; 5939 return hwrm_req_send(bp, req); 5940 } 5941 5942 #define BNXT_NTP_FLTR_FLAGS \ 5943 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 5944 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 5945 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 5946 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 5947 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 5948 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 5949 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 5950 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 5951 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 5952 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 5953 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 5954 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 5955 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 5956 5957 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 5958 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 5959 5960 void bnxt_fill_ipv6_mask(__be32 mask[4]) 5961 { 5962 int i; 5963 5964 for (i = 0; i < 4; i++) 5965 mask[i] = cpu_to_be32(~0); 5966 } 5967 5968 static void 5969 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 5970 struct hwrm_cfa_ntuple_filter_alloc_input *req, 5971 struct bnxt_ntuple_filter *fltr) 5972 { 5973 struct bnxt_rss_ctx *rss_ctx, *tmp; 5974 u16 rxq = fltr->base.rxq; 5975 5976 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 5977 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) { 5978 if (rss_ctx->index == fltr->base.fw_vnic_id) { 5979 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 5980 5981 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5982 break; 5983 } 5984 } 5985 return; 5986 } 5987 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 5988 struct bnxt_vnic_info *vnic; 5989 u32 enables; 5990 5991 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 5992 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 5993 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 5994 req->enables |= cpu_to_le32(enables); 5995 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 5996 } else { 5997 u32 flags; 5998 5999 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6000 req->flags |= cpu_to_le32(flags); 6001 req->dst_id = cpu_to_le16(rxq); 6002 } 6003 } 6004 6005 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6006 struct bnxt_ntuple_filter *fltr) 6007 { 6008 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6009 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6010 struct bnxt_flow_masks *masks = &fltr->fmasks; 6011 struct flow_keys *keys = &fltr->fkeys; 6012 struct bnxt_l2_filter *l2_fltr; 6013 struct bnxt_vnic_info *vnic; 6014 int rc; 6015 6016 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6017 if (rc) 6018 return rc; 6019 6020 l2_fltr = fltr->l2_fltr; 6021 req->l2_filter_id = l2_fltr->base.filter_id; 6022 6023 if (fltr->base.flags & BNXT_ACT_DROP) { 6024 req->flags = 6025 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6026 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6027 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6028 } else { 6029 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6030 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6031 } 6032 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6033 6034 req->ethertype = htons(ETH_P_IP); 6035 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6036 req->ip_protocol = keys->basic.ip_proto; 6037 6038 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6039 req->ethertype = htons(ETH_P_IPV6); 6040 req->ip_addr_type = 6041 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6042 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6043 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6044 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6045 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6046 } else { 6047 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6048 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6049 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6050 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6051 } 6052 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6053 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6054 req->tunnel_type = 6055 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6056 } 6057 6058 req->src_port = keys->ports.src; 6059 req->src_port_mask = masks->ports.src; 6060 req->dst_port = keys->ports.dst; 6061 req->dst_port_mask = masks->ports.dst; 6062 6063 resp = hwrm_req_hold(bp, req); 6064 rc = hwrm_req_send(bp, req); 6065 if (!rc) 6066 fltr->base.filter_id = resp->ntuple_filter_id; 6067 hwrm_req_drop(bp, req); 6068 return rc; 6069 } 6070 6071 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6072 const u8 *mac_addr) 6073 { 6074 struct bnxt_l2_filter *fltr; 6075 struct bnxt_l2_key key; 6076 int rc; 6077 6078 ether_addr_copy(key.dst_mac_addr, mac_addr); 6079 key.vlan = 0; 6080 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6081 if (IS_ERR(fltr)) 6082 return PTR_ERR(fltr); 6083 6084 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6085 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6086 if (rc) 6087 bnxt_del_l2_filter(bp, fltr); 6088 else 6089 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6090 return rc; 6091 } 6092 6093 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6094 { 6095 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6096 6097 /* Any associated ntuple filters will also be cleared by firmware. */ 6098 for (i = 0; i < num_of_vnics; i++) { 6099 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6100 6101 for (j = 0; j < vnic->uc_filter_count; j++) { 6102 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6103 6104 bnxt_hwrm_l2_filter_free(bp, fltr); 6105 bnxt_del_l2_filter(bp, fltr); 6106 } 6107 vnic->uc_filter_count = 0; 6108 } 6109 } 6110 6111 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6112 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6113 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6114 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6115 6116 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6117 struct hwrm_vnic_tpa_cfg_input *req) 6118 { 6119 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6120 6121 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6122 return; 6123 6124 if (bp->vxlan_port) 6125 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6126 if (bp->vxlan_gpe_port) 6127 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6128 if (bp->nge_port) 6129 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6130 6131 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6132 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6133 } 6134 6135 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6136 u32 tpa_flags) 6137 { 6138 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6139 struct hwrm_vnic_tpa_cfg_input *req; 6140 int rc; 6141 6142 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6143 return 0; 6144 6145 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6146 if (rc) 6147 return rc; 6148 6149 if (tpa_flags) { 6150 u16 mss = bp->dev->mtu - 40; 6151 u32 nsegs, n, segs = 0, flags; 6152 6153 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6154 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6155 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6156 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6157 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6158 if (tpa_flags & BNXT_FLAG_GRO) 6159 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6160 6161 req->flags = cpu_to_le32(flags); 6162 6163 req->enables = 6164 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6165 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6166 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6167 6168 /* Number of segs are log2 units, and first packet is not 6169 * included as part of this units. 6170 */ 6171 if (mss <= BNXT_RX_PAGE_SIZE) { 6172 n = BNXT_RX_PAGE_SIZE / mss; 6173 nsegs = (MAX_SKB_FRAGS - 1) * n; 6174 } else { 6175 n = mss / BNXT_RX_PAGE_SIZE; 6176 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6177 n++; 6178 nsegs = (MAX_SKB_FRAGS - n) / n; 6179 } 6180 6181 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6182 segs = MAX_TPA_SEGS_P5; 6183 max_aggs = bp->max_tpa; 6184 } else { 6185 segs = ilog2(nsegs); 6186 } 6187 req->max_agg_segs = cpu_to_le16(segs); 6188 req->max_aggs = cpu_to_le16(max_aggs); 6189 6190 req->min_agg_len = cpu_to_le32(512); 6191 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6192 } 6193 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6194 6195 return hwrm_req_send(bp, req); 6196 } 6197 6198 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6199 { 6200 struct bnxt_ring_grp_info *grp_info; 6201 6202 grp_info = &bp->grp_info[ring->grp_idx]; 6203 return grp_info->cp_fw_ring_id; 6204 } 6205 6206 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6207 { 6208 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6209 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6210 else 6211 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6212 } 6213 6214 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6215 { 6216 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6217 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6218 else 6219 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6220 } 6221 6222 int bnxt_alloc_rss_indir_tbl(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx) 6223 { 6224 int entries; 6225 u16 *tbl; 6226 6227 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6228 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6229 else 6230 entries = HW_HASH_INDEX_SIZE; 6231 6232 bp->rss_indir_tbl_entries = entries; 6233 tbl = kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6234 if (!tbl) 6235 return -ENOMEM; 6236 6237 if (rss_ctx) 6238 rss_ctx->rss_indir_tbl = tbl; 6239 else 6240 bp->rss_indir_tbl = tbl; 6241 6242 return 0; 6243 } 6244 6245 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx) 6246 { 6247 u16 max_rings, max_entries, pad, i; 6248 u16 *rss_indir_tbl; 6249 6250 if (!bp->rx_nr_rings) 6251 return; 6252 6253 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6254 max_rings = bp->rx_nr_rings - 1; 6255 else 6256 max_rings = bp->rx_nr_rings; 6257 6258 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6259 if (rss_ctx) 6260 rss_indir_tbl = &rss_ctx->rss_indir_tbl[0]; 6261 else 6262 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6263 6264 for (i = 0; i < max_entries; i++) 6265 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6266 6267 pad = bp->rss_indir_tbl_entries - max_entries; 6268 if (pad) 6269 memset(&rss_indir_tbl[i], 0, pad * sizeof(u16)); 6270 } 6271 6272 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6273 { 6274 u16 i, tbl_size, max_ring = 0; 6275 6276 if (!bp->rss_indir_tbl) 6277 return 0; 6278 6279 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6280 for (i = 0; i < tbl_size; i++) 6281 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6282 return max_ring; 6283 } 6284 6285 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6286 { 6287 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6288 if (!rx_rings) 6289 return 0; 6290 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6291 BNXT_RSS_TABLE_ENTRIES_P5); 6292 } 6293 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6294 return 2; 6295 return 1; 6296 } 6297 6298 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6299 { 6300 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6301 u16 i, j; 6302 6303 /* Fill the RSS indirection table with ring group ids */ 6304 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6305 if (!no_rss) 6306 j = bp->rss_indir_tbl[i]; 6307 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6308 } 6309 } 6310 6311 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6312 struct bnxt_vnic_info *vnic) 6313 { 6314 __le16 *ring_tbl = vnic->rss_table; 6315 struct bnxt_rx_ring_info *rxr; 6316 u16 tbl_size, i; 6317 6318 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6319 6320 for (i = 0; i < tbl_size; i++) { 6321 u16 ring_id, j; 6322 6323 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6324 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6325 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6326 j = vnic->rss_ctx->rss_indir_tbl[i]; 6327 else 6328 j = bp->rss_indir_tbl[i]; 6329 rxr = &bp->rx_ring[j]; 6330 6331 ring_id = rxr->rx_ring_struct.fw_ring_id; 6332 *ring_tbl++ = cpu_to_le16(ring_id); 6333 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6334 *ring_tbl++ = cpu_to_le16(ring_id); 6335 } 6336 } 6337 6338 static void 6339 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6340 struct bnxt_vnic_info *vnic) 6341 { 6342 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6343 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6344 if (bp->flags & BNXT_FLAG_CHIP_P7) 6345 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6346 } else { 6347 bnxt_fill_hw_rss_tbl(bp, vnic); 6348 } 6349 6350 if (bp->rss_hash_delta) { 6351 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6352 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6353 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6354 else 6355 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6356 } else { 6357 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6358 } 6359 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6360 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6361 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6362 } 6363 6364 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6365 bool set_rss) 6366 { 6367 struct hwrm_vnic_rss_cfg_input *req; 6368 int rc; 6369 6370 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6371 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6372 return 0; 6373 6374 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6375 if (rc) 6376 return rc; 6377 6378 if (set_rss) 6379 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6380 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6381 return hwrm_req_send(bp, req); 6382 } 6383 6384 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6385 struct bnxt_vnic_info *vnic, bool set_rss) 6386 { 6387 struct hwrm_vnic_rss_cfg_input *req; 6388 dma_addr_t ring_tbl_map; 6389 u32 i, nr_ctxs; 6390 int rc; 6391 6392 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6393 if (rc) 6394 return rc; 6395 6396 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6397 if (!set_rss) 6398 return hwrm_req_send(bp, req); 6399 6400 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6401 ring_tbl_map = vnic->rss_table_dma_addr; 6402 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6403 6404 hwrm_req_hold(bp, req); 6405 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6406 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6407 req->ring_table_pair_index = i; 6408 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6409 rc = hwrm_req_send(bp, req); 6410 if (rc) 6411 goto exit; 6412 } 6413 6414 exit: 6415 hwrm_req_drop(bp, req); 6416 return rc; 6417 } 6418 6419 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6420 { 6421 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6422 struct hwrm_vnic_rss_qcfg_output *resp; 6423 struct hwrm_vnic_rss_qcfg_input *req; 6424 6425 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6426 return; 6427 6428 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6429 /* all contexts configured to same hash_type, zero always exists */ 6430 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6431 resp = hwrm_req_hold(bp, req); 6432 if (!hwrm_req_send(bp, req)) { 6433 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6434 bp->rss_hash_delta = 0; 6435 } 6436 hwrm_req_drop(bp, req); 6437 } 6438 6439 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6440 { 6441 struct hwrm_vnic_plcmodes_cfg_input *req; 6442 int rc; 6443 6444 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6445 if (rc) 6446 return rc; 6447 6448 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6449 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6450 6451 if (BNXT_RX_PAGE_MODE(bp)) { 6452 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6453 } else { 6454 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6455 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6456 req->enables |= 6457 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6458 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 6459 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 6460 } 6461 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6462 return hwrm_req_send(bp, req); 6463 } 6464 6465 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6466 struct bnxt_vnic_info *vnic, 6467 u16 ctx_idx) 6468 { 6469 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6470 6471 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6472 return; 6473 6474 req->rss_cos_lb_ctx_id = 6475 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6476 6477 hwrm_req_send(bp, req); 6478 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6479 } 6480 6481 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6482 { 6483 int i, j; 6484 6485 for (i = 0; i < bp->nr_vnics; i++) { 6486 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6487 6488 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6489 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6490 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6491 } 6492 } 6493 bp->rsscos_nr_ctxs = 0; 6494 } 6495 6496 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6497 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6498 { 6499 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6500 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6501 int rc; 6502 6503 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6504 if (rc) 6505 return rc; 6506 6507 resp = hwrm_req_hold(bp, req); 6508 rc = hwrm_req_send(bp, req); 6509 if (!rc) 6510 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6511 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6512 hwrm_req_drop(bp, req); 6513 6514 return rc; 6515 } 6516 6517 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6518 { 6519 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6520 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6521 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6522 } 6523 6524 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6525 { 6526 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6527 struct hwrm_vnic_cfg_input *req; 6528 unsigned int ring = 0, grp_idx; 6529 u16 def_vlan = 0; 6530 int rc; 6531 6532 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6533 if (rc) 6534 return rc; 6535 6536 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6537 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6538 6539 req->default_rx_ring_id = 6540 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6541 req->default_cmpl_ring_id = 6542 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6543 req->enables = 6544 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6545 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6546 goto vnic_mru; 6547 } 6548 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6549 /* Only RSS support for now TBD: COS & LB */ 6550 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6551 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6552 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6553 VNIC_CFG_REQ_ENABLES_MRU); 6554 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6555 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6556 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6557 VNIC_CFG_REQ_ENABLES_MRU); 6558 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6559 } else { 6560 req->rss_rule = cpu_to_le16(0xffff); 6561 } 6562 6563 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6564 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6565 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6566 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6567 } else { 6568 req->cos_rule = cpu_to_le16(0xffff); 6569 } 6570 6571 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6572 ring = 0; 6573 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6574 ring = vnic->vnic_id - 1; 6575 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6576 ring = bp->rx_nr_rings - 1; 6577 6578 grp_idx = bp->rx_ring[ring].bnapi->index; 6579 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6580 req->lb_rule = cpu_to_le16(0xffff); 6581 vnic_mru: 6582 req->mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + VLAN_HLEN); 6583 6584 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6585 #ifdef CONFIG_BNXT_SRIOV 6586 if (BNXT_VF(bp)) 6587 def_vlan = bp->vf.vlan; 6588 #endif 6589 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6590 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6591 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6592 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6593 6594 return hwrm_req_send(bp, req); 6595 } 6596 6597 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6598 struct bnxt_vnic_info *vnic) 6599 { 6600 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6601 struct hwrm_vnic_free_input *req; 6602 6603 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6604 return; 6605 6606 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6607 6608 hwrm_req_send(bp, req); 6609 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6610 } 6611 } 6612 6613 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6614 { 6615 u16 i; 6616 6617 for (i = 0; i < bp->nr_vnics; i++) 6618 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6619 } 6620 6621 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6622 unsigned int start_rx_ring_idx, 6623 unsigned int nr_rings) 6624 { 6625 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6626 struct hwrm_vnic_alloc_output *resp; 6627 struct hwrm_vnic_alloc_input *req; 6628 int rc; 6629 6630 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6631 if (rc) 6632 return rc; 6633 6634 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6635 goto vnic_no_ring_grps; 6636 6637 /* map ring groups to this vnic */ 6638 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6639 grp_idx = bp->rx_ring[i].bnapi->index; 6640 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6641 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6642 j, nr_rings); 6643 break; 6644 } 6645 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6646 } 6647 6648 vnic_no_ring_grps: 6649 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6650 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6651 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6652 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6653 6654 resp = hwrm_req_hold(bp, req); 6655 rc = hwrm_req_send(bp, req); 6656 if (!rc) 6657 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6658 hwrm_req_drop(bp, req); 6659 return rc; 6660 } 6661 6662 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6663 { 6664 struct hwrm_vnic_qcaps_output *resp; 6665 struct hwrm_vnic_qcaps_input *req; 6666 int rc; 6667 6668 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6669 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6670 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6671 if (bp->hwrm_spec_code < 0x10600) 6672 return 0; 6673 6674 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6675 if (rc) 6676 return rc; 6677 6678 resp = hwrm_req_hold(bp, req); 6679 rc = hwrm_req_send(bp, req); 6680 if (!rc) { 6681 u32 flags = le32_to_cpu(resp->flags); 6682 6683 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6684 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6685 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6686 if (flags & 6687 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6688 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6689 6690 /* Older P5 fw before EXT_HW_STATS support did not set 6691 * VLAN_STRIP_CAP properly. 6692 */ 6693 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6694 (BNXT_CHIP_P5(bp) && 6695 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6696 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6697 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6698 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6699 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6700 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6701 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6702 if (bp->max_tpa_v2) { 6703 if (BNXT_CHIP_P5(bp)) 6704 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6705 else 6706 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6707 } 6708 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6709 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6710 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6711 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6712 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6713 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6714 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6715 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6716 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6717 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6718 } 6719 hwrm_req_drop(bp, req); 6720 return rc; 6721 } 6722 6723 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6724 { 6725 struct hwrm_ring_grp_alloc_output *resp; 6726 struct hwrm_ring_grp_alloc_input *req; 6727 int rc; 6728 u16 i; 6729 6730 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6731 return 0; 6732 6733 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6734 if (rc) 6735 return rc; 6736 6737 resp = hwrm_req_hold(bp, req); 6738 for (i = 0; i < bp->rx_nr_rings; i++) { 6739 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6740 6741 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6742 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6743 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6744 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6745 6746 rc = hwrm_req_send(bp, req); 6747 6748 if (rc) 6749 break; 6750 6751 bp->grp_info[grp_idx].fw_grp_id = 6752 le32_to_cpu(resp->ring_group_id); 6753 } 6754 hwrm_req_drop(bp, req); 6755 return rc; 6756 } 6757 6758 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6759 { 6760 struct hwrm_ring_grp_free_input *req; 6761 u16 i; 6762 6763 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6764 return; 6765 6766 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6767 return; 6768 6769 hwrm_req_hold(bp, req); 6770 for (i = 0; i < bp->cp_nr_rings; i++) { 6771 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6772 continue; 6773 req->ring_group_id = 6774 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6775 6776 hwrm_req_send(bp, req); 6777 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6778 } 6779 hwrm_req_drop(bp, req); 6780 } 6781 6782 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 6783 struct bnxt_ring_struct *ring, 6784 u32 ring_type, u32 map_index) 6785 { 6786 struct hwrm_ring_alloc_output *resp; 6787 struct hwrm_ring_alloc_input *req; 6788 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 6789 struct bnxt_ring_grp_info *grp_info; 6790 int rc, err = 0; 6791 u16 ring_id; 6792 6793 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 6794 if (rc) 6795 goto exit; 6796 6797 req->enables = 0; 6798 if (rmem->nr_pages > 1) { 6799 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 6800 /* Page size is in log2 units */ 6801 req->page_size = BNXT_PAGE_SHIFT; 6802 req->page_tbl_depth = 1; 6803 } else { 6804 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 6805 } 6806 req->fbo = 0; 6807 /* Association of ring index with doorbell index and MSIX number */ 6808 req->logical_id = cpu_to_le16(map_index); 6809 6810 switch (ring_type) { 6811 case HWRM_RING_ALLOC_TX: { 6812 struct bnxt_tx_ring_info *txr; 6813 u16 flags = 0; 6814 6815 txr = container_of(ring, struct bnxt_tx_ring_info, 6816 tx_ring_struct); 6817 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 6818 /* Association of transmit ring with completion ring */ 6819 grp_info = &bp->grp_info[ring->grp_idx]; 6820 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 6821 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 6822 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6823 req->queue_id = cpu_to_le16(ring->queue_id); 6824 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 6825 req->cmpl_coal_cnt = 6826 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 6827 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 6828 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 6829 req->flags = cpu_to_le16(flags); 6830 break; 6831 } 6832 case HWRM_RING_ALLOC_RX: 6833 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6834 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 6835 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6836 u16 flags = 0; 6837 6838 /* Association of rx ring with stats context */ 6839 grp_info = &bp->grp_info[ring->grp_idx]; 6840 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6841 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6842 req->enables |= cpu_to_le32( 6843 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6844 if (NET_IP_ALIGN == 2) 6845 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 6846 req->flags = cpu_to_le16(flags); 6847 } 6848 break; 6849 case HWRM_RING_ALLOC_AGG: 6850 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6851 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6852 /* Association of agg ring with rx ring */ 6853 grp_info = &bp->grp_info[ring->grp_idx]; 6854 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6855 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6856 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6857 req->enables |= cpu_to_le32( 6858 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 6859 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6860 } else { 6861 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6862 } 6863 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 6864 break; 6865 case HWRM_RING_ALLOC_CMPL: 6866 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 6867 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6868 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6869 /* Association of cp ring with nq */ 6870 grp_info = &bp->grp_info[map_index]; 6871 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6872 req->cq_handle = cpu_to_le64(ring->handle); 6873 req->enables |= cpu_to_le32( 6874 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 6875 } else if (bp->flags & BNXT_FLAG_USING_MSIX) { 6876 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6877 } 6878 break; 6879 case HWRM_RING_ALLOC_NQ: 6880 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 6881 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6882 if (bp->flags & BNXT_FLAG_USING_MSIX) 6883 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6884 break; 6885 default: 6886 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 6887 ring_type); 6888 return -1; 6889 } 6890 6891 resp = hwrm_req_hold(bp, req); 6892 rc = hwrm_req_send(bp, req); 6893 err = le16_to_cpu(resp->error_code); 6894 ring_id = le16_to_cpu(resp->ring_id); 6895 hwrm_req_drop(bp, req); 6896 6897 exit: 6898 if (rc || err) { 6899 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 6900 ring_type, rc, err); 6901 return -EIO; 6902 } 6903 ring->fw_ring_id = ring_id; 6904 return rc; 6905 } 6906 6907 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 6908 { 6909 int rc; 6910 6911 if (BNXT_PF(bp)) { 6912 struct hwrm_func_cfg_input *req; 6913 6914 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 6915 if (rc) 6916 return rc; 6917 6918 req->fid = cpu_to_le16(0xffff); 6919 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6920 req->async_event_cr = cpu_to_le16(idx); 6921 return hwrm_req_send(bp, req); 6922 } else { 6923 struct hwrm_func_vf_cfg_input *req; 6924 6925 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 6926 if (rc) 6927 return rc; 6928 6929 req->enables = 6930 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6931 req->async_event_cr = cpu_to_le16(idx); 6932 return hwrm_req_send(bp, req); 6933 } 6934 } 6935 6936 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 6937 u32 ring_type) 6938 { 6939 switch (ring_type) { 6940 case HWRM_RING_ALLOC_TX: 6941 db->db_ring_mask = bp->tx_ring_mask; 6942 break; 6943 case HWRM_RING_ALLOC_RX: 6944 db->db_ring_mask = bp->rx_ring_mask; 6945 break; 6946 case HWRM_RING_ALLOC_AGG: 6947 db->db_ring_mask = bp->rx_agg_ring_mask; 6948 break; 6949 case HWRM_RING_ALLOC_CMPL: 6950 case HWRM_RING_ALLOC_NQ: 6951 db->db_ring_mask = bp->cp_ring_mask; 6952 break; 6953 } 6954 if (bp->flags & BNXT_FLAG_CHIP_P7) { 6955 db->db_epoch_mask = db->db_ring_mask + 1; 6956 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 6957 } 6958 } 6959 6960 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 6961 u32 map_idx, u32 xid) 6962 { 6963 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6964 switch (ring_type) { 6965 case HWRM_RING_ALLOC_TX: 6966 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 6967 break; 6968 case HWRM_RING_ALLOC_RX: 6969 case HWRM_RING_ALLOC_AGG: 6970 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 6971 break; 6972 case HWRM_RING_ALLOC_CMPL: 6973 db->db_key64 = DBR_PATH_L2; 6974 break; 6975 case HWRM_RING_ALLOC_NQ: 6976 db->db_key64 = DBR_PATH_L2; 6977 break; 6978 } 6979 db->db_key64 |= (u64)xid << DBR_XID_SFT; 6980 6981 if (bp->flags & BNXT_FLAG_CHIP_P7) 6982 db->db_key64 |= DBR_VALID; 6983 6984 db->doorbell = bp->bar1 + bp->db_offset; 6985 } else { 6986 db->doorbell = bp->bar1 + map_idx * 0x80; 6987 switch (ring_type) { 6988 case HWRM_RING_ALLOC_TX: 6989 db->db_key32 = DB_KEY_TX; 6990 break; 6991 case HWRM_RING_ALLOC_RX: 6992 case HWRM_RING_ALLOC_AGG: 6993 db->db_key32 = DB_KEY_RX; 6994 break; 6995 case HWRM_RING_ALLOC_CMPL: 6996 db->db_key32 = DB_KEY_CP; 6997 break; 6998 } 6999 } 7000 bnxt_set_db_mask(bp, db, ring_type); 7001 } 7002 7003 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7004 struct bnxt_rx_ring_info *rxr) 7005 { 7006 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7007 struct bnxt_napi *bnapi = rxr->bnapi; 7008 u32 type = HWRM_RING_ALLOC_RX; 7009 u32 map_idx = bnapi->index; 7010 int rc; 7011 7012 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7013 if (rc) 7014 return rc; 7015 7016 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7017 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7018 7019 return 0; 7020 } 7021 7022 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7023 struct bnxt_rx_ring_info *rxr) 7024 { 7025 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7026 u32 type = HWRM_RING_ALLOC_AGG; 7027 u32 grp_idx = ring->grp_idx; 7028 u32 map_idx; 7029 int rc; 7030 7031 map_idx = grp_idx + bp->rx_nr_rings; 7032 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7033 if (rc) 7034 return rc; 7035 7036 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7037 ring->fw_ring_id); 7038 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7039 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7040 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7041 7042 return 0; 7043 } 7044 7045 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7046 { 7047 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7048 int i, rc = 0; 7049 u32 type; 7050 7051 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7052 type = HWRM_RING_ALLOC_NQ; 7053 else 7054 type = HWRM_RING_ALLOC_CMPL; 7055 for (i = 0; i < bp->cp_nr_rings; i++) { 7056 struct bnxt_napi *bnapi = bp->bnapi[i]; 7057 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7058 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7059 u32 map_idx = ring->map_idx; 7060 unsigned int vector; 7061 7062 vector = bp->irq_tbl[map_idx].vector; 7063 disable_irq_nosync(vector); 7064 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7065 if (rc) { 7066 enable_irq(vector); 7067 goto err_out; 7068 } 7069 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7070 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7071 enable_irq(vector); 7072 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7073 7074 if (!i) { 7075 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7076 if (rc) 7077 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7078 } 7079 } 7080 7081 type = HWRM_RING_ALLOC_TX; 7082 for (i = 0; i < bp->tx_nr_rings; i++) { 7083 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7084 struct bnxt_ring_struct *ring; 7085 u32 map_idx; 7086 7087 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7088 struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr; 7089 struct bnxt_napi *bnapi = txr->bnapi; 7090 u32 type2 = HWRM_RING_ALLOC_CMPL; 7091 7092 ring = &cpr2->cp_ring_struct; 7093 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7094 map_idx = bnapi->index; 7095 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7096 if (rc) 7097 goto err_out; 7098 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7099 ring->fw_ring_id); 7100 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7101 } 7102 ring = &txr->tx_ring_struct; 7103 map_idx = i; 7104 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7105 if (rc) 7106 goto err_out; 7107 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 7108 } 7109 7110 for (i = 0; i < bp->rx_nr_rings; i++) { 7111 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7112 7113 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7114 if (rc) 7115 goto err_out; 7116 /* If we have agg rings, post agg buffers first. */ 7117 if (!agg_rings) 7118 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7119 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7120 struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr; 7121 struct bnxt_napi *bnapi = rxr->bnapi; 7122 u32 type2 = HWRM_RING_ALLOC_CMPL; 7123 struct bnxt_ring_struct *ring; 7124 u32 map_idx = bnapi->index; 7125 7126 ring = &cpr2->cp_ring_struct; 7127 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7128 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7129 if (rc) 7130 goto err_out; 7131 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7132 ring->fw_ring_id); 7133 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7134 } 7135 } 7136 7137 if (agg_rings) { 7138 for (i = 0; i < bp->rx_nr_rings; i++) { 7139 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7140 if (rc) 7141 goto err_out; 7142 } 7143 } 7144 err_out: 7145 return rc; 7146 } 7147 7148 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7149 struct bnxt_ring_struct *ring, 7150 u32 ring_type, int cmpl_ring_id) 7151 { 7152 struct hwrm_ring_free_output *resp; 7153 struct hwrm_ring_free_input *req; 7154 u16 error_code = 0; 7155 int rc; 7156 7157 if (BNXT_NO_FW_ACCESS(bp)) 7158 return 0; 7159 7160 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7161 if (rc) 7162 goto exit; 7163 7164 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7165 req->ring_type = ring_type; 7166 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7167 7168 resp = hwrm_req_hold(bp, req); 7169 rc = hwrm_req_send(bp, req); 7170 error_code = le16_to_cpu(resp->error_code); 7171 hwrm_req_drop(bp, req); 7172 exit: 7173 if (rc || error_code) { 7174 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7175 ring_type, rc, error_code); 7176 return -EIO; 7177 } 7178 return 0; 7179 } 7180 7181 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7182 struct bnxt_rx_ring_info *rxr, 7183 bool close_path) 7184 { 7185 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7186 u32 grp_idx = rxr->bnapi->index; 7187 u32 cmpl_ring_id; 7188 7189 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7190 return; 7191 7192 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7193 hwrm_ring_free_send_msg(bp, ring, 7194 RING_FREE_REQ_RING_TYPE_RX, 7195 close_path ? cmpl_ring_id : 7196 INVALID_HW_RING_ID); 7197 ring->fw_ring_id = INVALID_HW_RING_ID; 7198 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7199 } 7200 7201 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7202 struct bnxt_rx_ring_info *rxr, 7203 bool close_path) 7204 { 7205 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7206 u32 grp_idx = rxr->bnapi->index; 7207 u32 type, cmpl_ring_id; 7208 7209 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7210 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7211 else 7212 type = RING_FREE_REQ_RING_TYPE_RX; 7213 7214 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7215 return; 7216 7217 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7218 hwrm_ring_free_send_msg(bp, ring, type, 7219 close_path ? cmpl_ring_id : 7220 INVALID_HW_RING_ID); 7221 ring->fw_ring_id = INVALID_HW_RING_ID; 7222 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7223 } 7224 7225 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7226 { 7227 u32 type; 7228 int i; 7229 7230 if (!bp->bnapi) 7231 return; 7232 7233 for (i = 0; i < bp->tx_nr_rings; i++) { 7234 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7235 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7236 7237 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7238 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 7239 7240 hwrm_ring_free_send_msg(bp, ring, 7241 RING_FREE_REQ_RING_TYPE_TX, 7242 close_path ? cmpl_ring_id : 7243 INVALID_HW_RING_ID); 7244 ring->fw_ring_id = INVALID_HW_RING_ID; 7245 } 7246 } 7247 7248 for (i = 0; i < bp->rx_nr_rings; i++) { 7249 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7250 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7251 } 7252 7253 /* The completion rings are about to be freed. After that the 7254 * IRQ doorbell will not work anymore. So we need to disable 7255 * IRQ here. 7256 */ 7257 bnxt_disable_int_sync(bp); 7258 7259 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7260 type = RING_FREE_REQ_RING_TYPE_NQ; 7261 else 7262 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7263 for (i = 0; i < bp->cp_nr_rings; i++) { 7264 struct bnxt_napi *bnapi = bp->bnapi[i]; 7265 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7266 struct bnxt_ring_struct *ring; 7267 int j; 7268 7269 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) { 7270 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 7271 7272 ring = &cpr2->cp_ring_struct; 7273 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7274 continue; 7275 hwrm_ring_free_send_msg(bp, ring, 7276 RING_FREE_REQ_RING_TYPE_L2_CMPL, 7277 INVALID_HW_RING_ID); 7278 ring->fw_ring_id = INVALID_HW_RING_ID; 7279 } 7280 ring = &cpr->cp_ring_struct; 7281 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7282 hwrm_ring_free_send_msg(bp, ring, type, 7283 INVALID_HW_RING_ID); 7284 ring->fw_ring_id = INVALID_HW_RING_ID; 7285 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7286 } 7287 } 7288 } 7289 7290 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7291 bool shared); 7292 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7293 bool shared); 7294 7295 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7296 { 7297 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7298 struct hwrm_func_qcfg_output *resp; 7299 struct hwrm_func_qcfg_input *req; 7300 int rc; 7301 7302 if (bp->hwrm_spec_code < 0x10601) 7303 return 0; 7304 7305 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7306 if (rc) 7307 return rc; 7308 7309 req->fid = cpu_to_le16(0xffff); 7310 resp = hwrm_req_hold(bp, req); 7311 rc = hwrm_req_send(bp, req); 7312 if (rc) { 7313 hwrm_req_drop(bp, req); 7314 return rc; 7315 } 7316 7317 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7318 if (BNXT_NEW_RM(bp)) { 7319 u16 cp, stats; 7320 7321 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7322 hw_resc->resv_hw_ring_grps = 7323 le32_to_cpu(resp->alloc_hw_ring_grps); 7324 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7325 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7326 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7327 stats = le16_to_cpu(resp->alloc_stat_ctx); 7328 hw_resc->resv_irqs = cp; 7329 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7330 int rx = hw_resc->resv_rx_rings; 7331 int tx = hw_resc->resv_tx_rings; 7332 7333 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7334 rx >>= 1; 7335 if (cp < (rx + tx)) { 7336 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7337 if (rc) 7338 goto get_rings_exit; 7339 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7340 rx <<= 1; 7341 hw_resc->resv_rx_rings = rx; 7342 hw_resc->resv_tx_rings = tx; 7343 } 7344 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7345 hw_resc->resv_hw_ring_grps = rx; 7346 } 7347 hw_resc->resv_cp_rings = cp; 7348 hw_resc->resv_stat_ctxs = stats; 7349 } 7350 get_rings_exit: 7351 hwrm_req_drop(bp, req); 7352 return rc; 7353 } 7354 7355 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7356 { 7357 struct hwrm_func_qcfg_output *resp; 7358 struct hwrm_func_qcfg_input *req; 7359 int rc; 7360 7361 if (bp->hwrm_spec_code < 0x10601) 7362 return 0; 7363 7364 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7365 if (rc) 7366 return rc; 7367 7368 req->fid = cpu_to_le16(fid); 7369 resp = hwrm_req_hold(bp, req); 7370 rc = hwrm_req_send(bp, req); 7371 if (!rc) 7372 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7373 7374 hwrm_req_drop(bp, req); 7375 return rc; 7376 } 7377 7378 static bool bnxt_rfs_supported(struct bnxt *bp); 7379 7380 static struct hwrm_func_cfg_input * 7381 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7382 { 7383 struct hwrm_func_cfg_input *req; 7384 u32 enables = 0; 7385 7386 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7387 return NULL; 7388 7389 req->fid = cpu_to_le16(0xffff); 7390 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7391 req->num_tx_rings = cpu_to_le16(hwr->tx); 7392 if (BNXT_NEW_RM(bp)) { 7393 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7394 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7395 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7396 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7397 enables |= hwr->cp_p5 ? 7398 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7399 } else { 7400 enables |= hwr->cp ? 7401 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7402 enables |= hwr->grp ? 7403 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7404 } 7405 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7406 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7407 0; 7408 req->num_rx_rings = cpu_to_le16(hwr->rx); 7409 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7410 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7411 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7412 req->num_msix = cpu_to_le16(hwr->cp); 7413 } else { 7414 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7415 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7416 } 7417 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7418 req->num_vnics = cpu_to_le16(hwr->vnic); 7419 } 7420 req->enables = cpu_to_le32(enables); 7421 return req; 7422 } 7423 7424 static struct hwrm_func_vf_cfg_input * 7425 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7426 { 7427 struct hwrm_func_vf_cfg_input *req; 7428 u32 enables = 0; 7429 7430 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7431 return NULL; 7432 7433 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7434 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7435 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7436 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7437 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7438 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7439 enables |= hwr->cp_p5 ? 7440 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7441 } else { 7442 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7443 enables |= hwr->grp ? 7444 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7445 } 7446 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7447 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7448 7449 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7450 req->num_tx_rings = cpu_to_le16(hwr->tx); 7451 req->num_rx_rings = cpu_to_le16(hwr->rx); 7452 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7453 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7454 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7455 } else { 7456 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7457 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7458 } 7459 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7460 req->num_vnics = cpu_to_le16(hwr->vnic); 7461 7462 req->enables = cpu_to_le32(enables); 7463 return req; 7464 } 7465 7466 static int 7467 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7468 { 7469 struct hwrm_func_cfg_input *req; 7470 int rc; 7471 7472 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7473 if (!req) 7474 return -ENOMEM; 7475 7476 if (!req->enables) { 7477 hwrm_req_drop(bp, req); 7478 return 0; 7479 } 7480 7481 rc = hwrm_req_send(bp, req); 7482 if (rc) 7483 return rc; 7484 7485 if (bp->hwrm_spec_code < 0x10601) 7486 bp->hw_resc.resv_tx_rings = hwr->tx; 7487 7488 return bnxt_hwrm_get_rings(bp); 7489 } 7490 7491 static int 7492 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7493 { 7494 struct hwrm_func_vf_cfg_input *req; 7495 int rc; 7496 7497 if (!BNXT_NEW_RM(bp)) { 7498 bp->hw_resc.resv_tx_rings = hwr->tx; 7499 return 0; 7500 } 7501 7502 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7503 if (!req) 7504 return -ENOMEM; 7505 7506 rc = hwrm_req_send(bp, req); 7507 if (rc) 7508 return rc; 7509 7510 return bnxt_hwrm_get_rings(bp); 7511 } 7512 7513 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7514 { 7515 if (BNXT_PF(bp)) 7516 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7517 else 7518 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7519 } 7520 7521 int bnxt_nq_rings_in_use(struct bnxt *bp) 7522 { 7523 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7524 } 7525 7526 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7527 { 7528 int cp; 7529 7530 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7531 return bnxt_nq_rings_in_use(bp); 7532 7533 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7534 return cp; 7535 } 7536 7537 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7538 { 7539 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7540 } 7541 7542 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7543 { 7544 if (!hwr->grp) 7545 return 0; 7546 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7547 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7548 7549 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7550 rss_ctx *= hwr->vnic; 7551 return rss_ctx; 7552 } 7553 if (BNXT_VF(bp)) 7554 return BNXT_VF_MAX_RSS_CTX; 7555 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7556 return hwr->grp + 1; 7557 return 1; 7558 } 7559 7560 /* Check if a default RSS map needs to be setup. This function is only 7561 * used on older firmware that does not require reserving RX rings. 7562 */ 7563 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7564 { 7565 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7566 7567 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7568 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7569 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7570 if (!netif_is_rxfh_configured(bp->dev)) 7571 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7572 } 7573 } 7574 7575 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7576 { 7577 if (bp->flags & BNXT_FLAG_RFS) { 7578 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7579 return 2 + bp->num_rss_ctx; 7580 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7581 return rx_rings + 1; 7582 } 7583 return 1; 7584 } 7585 7586 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7587 { 7588 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7589 int cp = bnxt_cp_rings_in_use(bp); 7590 int nq = bnxt_nq_rings_in_use(bp); 7591 int rx = bp->rx_nr_rings, stat; 7592 int vnic, grp = rx; 7593 7594 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7595 bp->hwrm_spec_code >= 0x10601) 7596 return true; 7597 7598 /* Old firmware does not need RX ring reservations but we still 7599 * need to setup a default RSS map when needed. With new firmware 7600 * we go through RX ring reservations first and then set up the 7601 * RSS map for the successfully reserved RX rings when needed. 7602 */ 7603 if (!BNXT_NEW_RM(bp)) { 7604 bnxt_check_rss_tbl_no_rmgr(bp); 7605 return false; 7606 } 7607 7608 vnic = bnxt_get_total_vnics(bp, rx); 7609 7610 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7611 rx <<= 1; 7612 stat = bnxt_get_func_stat_ctxs(bp); 7613 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7614 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7615 (hw_resc->resv_hw_ring_grps != grp && 7616 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7617 return true; 7618 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7619 hw_resc->resv_irqs != nq) 7620 return true; 7621 return false; 7622 } 7623 7624 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7625 { 7626 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7627 7628 hwr->tx = hw_resc->resv_tx_rings; 7629 if (BNXT_NEW_RM(bp)) { 7630 hwr->rx = hw_resc->resv_rx_rings; 7631 hwr->cp = hw_resc->resv_irqs; 7632 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7633 hwr->cp_p5 = hw_resc->resv_cp_rings; 7634 hwr->grp = hw_resc->resv_hw_ring_grps; 7635 hwr->vnic = hw_resc->resv_vnics; 7636 hwr->stat = hw_resc->resv_stat_ctxs; 7637 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7638 } 7639 } 7640 7641 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7642 { 7643 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7644 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7645 } 7646 7647 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7648 7649 static int __bnxt_reserve_rings(struct bnxt *bp) 7650 { 7651 struct bnxt_hw_rings hwr = {0}; 7652 int cp = bp->cp_nr_rings; 7653 int rx_rings, rc; 7654 int ulp_msix = 0; 7655 bool sh = false; 7656 int tx_cp; 7657 7658 if (!bnxt_need_reserve_rings(bp)) 7659 return 0; 7660 7661 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7662 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7663 if (!ulp_msix) 7664 bnxt_set_ulp_stat_ctxs(bp, 0); 7665 7666 if (ulp_msix > bp->ulp_num_msix_want) 7667 ulp_msix = bp->ulp_num_msix_want; 7668 hwr.cp = cp + ulp_msix; 7669 } else { 7670 hwr.cp = bnxt_nq_rings_in_use(bp); 7671 } 7672 7673 hwr.tx = bp->tx_nr_rings; 7674 hwr.rx = bp->rx_nr_rings; 7675 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7676 sh = true; 7677 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7678 hwr.cp_p5 = hwr.rx + hwr.tx; 7679 7680 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7681 7682 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7683 hwr.rx <<= 1; 7684 hwr.grp = bp->rx_nr_rings; 7685 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7686 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7687 7688 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7689 if (rc) 7690 return rc; 7691 7692 bnxt_copy_reserved_rings(bp, &hwr); 7693 7694 rx_rings = hwr.rx; 7695 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7696 if (hwr.rx >= 2) { 7697 rx_rings = hwr.rx >> 1; 7698 } else { 7699 if (netif_running(bp->dev)) 7700 return -ENOMEM; 7701 7702 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7703 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7704 bp->dev->hw_features &= ~NETIF_F_LRO; 7705 bp->dev->features &= ~NETIF_F_LRO; 7706 bnxt_set_ring_params(bp); 7707 } 7708 } 7709 rx_rings = min_t(int, rx_rings, hwr.grp); 7710 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7711 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7712 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7713 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7714 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7715 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7716 hwr.rx = rx_rings << 1; 7717 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7718 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7719 bp->tx_nr_rings = hwr.tx; 7720 7721 /* If we cannot reserve all the RX rings, reset the RSS map only 7722 * if absolutely necessary 7723 */ 7724 if (rx_rings != bp->rx_nr_rings) { 7725 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 7726 rx_rings, bp->rx_nr_rings); 7727 if (netif_is_rxfh_configured(bp->dev) && 7728 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 7729 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 7730 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 7731 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 7732 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 7733 } 7734 } 7735 bp->rx_nr_rings = rx_rings; 7736 bp->cp_nr_rings = hwr.cp; 7737 7738 if (!bnxt_rings_ok(bp, &hwr)) 7739 return -ENOMEM; 7740 7741 if (!netif_is_rxfh_configured(bp->dev)) 7742 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7743 7744 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 7745 int resv_msix, resv_ctx, ulp_ctxs; 7746 struct bnxt_hw_resc *hw_resc; 7747 7748 hw_resc = &bp->hw_resc; 7749 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 7750 ulp_msix = min_t(int, resv_msix, ulp_msix); 7751 bnxt_set_ulp_msix_num(bp, ulp_msix); 7752 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 7753 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 7754 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 7755 } 7756 7757 return rc; 7758 } 7759 7760 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7761 { 7762 struct hwrm_func_vf_cfg_input *req; 7763 u32 flags; 7764 7765 if (!BNXT_NEW_RM(bp)) 7766 return 0; 7767 7768 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7769 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 7770 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7771 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7772 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7773 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 7774 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 7775 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7776 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7777 7778 req->flags = cpu_to_le32(flags); 7779 return hwrm_req_send_silent(bp, req); 7780 } 7781 7782 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7783 { 7784 struct hwrm_func_cfg_input *req; 7785 u32 flags; 7786 7787 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7788 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 7789 if (BNXT_NEW_RM(bp)) { 7790 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7791 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7792 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7793 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 7794 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7795 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 7796 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 7797 else 7798 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7799 } 7800 7801 req->flags = cpu_to_le32(flags); 7802 return hwrm_req_send_silent(bp, req); 7803 } 7804 7805 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7806 { 7807 if (bp->hwrm_spec_code < 0x10801) 7808 return 0; 7809 7810 if (BNXT_PF(bp)) 7811 return bnxt_hwrm_check_pf_rings(bp, hwr); 7812 7813 return bnxt_hwrm_check_vf_rings(bp, hwr); 7814 } 7815 7816 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 7817 { 7818 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7819 struct hwrm_ring_aggint_qcaps_output *resp; 7820 struct hwrm_ring_aggint_qcaps_input *req; 7821 int rc; 7822 7823 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 7824 coal_cap->num_cmpl_dma_aggr_max = 63; 7825 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 7826 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 7827 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 7828 coal_cap->int_lat_tmr_min_max = 65535; 7829 coal_cap->int_lat_tmr_max_max = 65535; 7830 coal_cap->num_cmpl_aggr_int_max = 65535; 7831 coal_cap->timer_units = 80; 7832 7833 if (bp->hwrm_spec_code < 0x10902) 7834 return; 7835 7836 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 7837 return; 7838 7839 resp = hwrm_req_hold(bp, req); 7840 rc = hwrm_req_send_silent(bp, req); 7841 if (!rc) { 7842 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 7843 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 7844 coal_cap->num_cmpl_dma_aggr_max = 7845 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 7846 coal_cap->num_cmpl_dma_aggr_during_int_max = 7847 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 7848 coal_cap->cmpl_aggr_dma_tmr_max = 7849 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 7850 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 7851 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 7852 coal_cap->int_lat_tmr_min_max = 7853 le16_to_cpu(resp->int_lat_tmr_min_max); 7854 coal_cap->int_lat_tmr_max_max = 7855 le16_to_cpu(resp->int_lat_tmr_max_max); 7856 coal_cap->num_cmpl_aggr_int_max = 7857 le16_to_cpu(resp->num_cmpl_aggr_int_max); 7858 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 7859 } 7860 hwrm_req_drop(bp, req); 7861 } 7862 7863 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 7864 { 7865 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7866 7867 return usec * 1000 / coal_cap->timer_units; 7868 } 7869 7870 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 7871 struct bnxt_coal *hw_coal, 7872 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7873 { 7874 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7875 u16 val, tmr, max, flags = hw_coal->flags; 7876 u32 cmpl_params = coal_cap->cmpl_params; 7877 7878 max = hw_coal->bufs_per_record * 128; 7879 if (hw_coal->budget) 7880 max = hw_coal->bufs_per_record * hw_coal->budget; 7881 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 7882 7883 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 7884 req->num_cmpl_aggr_int = cpu_to_le16(val); 7885 7886 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 7887 req->num_cmpl_dma_aggr = cpu_to_le16(val); 7888 7889 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 7890 coal_cap->num_cmpl_dma_aggr_during_int_max); 7891 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 7892 7893 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 7894 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 7895 req->int_lat_tmr_max = cpu_to_le16(tmr); 7896 7897 /* min timer set to 1/2 of interrupt timer */ 7898 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 7899 val = tmr / 2; 7900 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 7901 req->int_lat_tmr_min = cpu_to_le16(val); 7902 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7903 } 7904 7905 /* buf timer set to 1/4 of interrupt timer */ 7906 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 7907 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 7908 7909 if (cmpl_params & 7910 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 7911 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 7912 val = clamp_t(u16, tmr, 1, 7913 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 7914 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 7915 req->enables |= 7916 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 7917 } 7918 7919 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 7920 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 7921 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 7922 req->flags = cpu_to_le16(flags); 7923 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 7924 } 7925 7926 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 7927 struct bnxt_coal *hw_coal) 7928 { 7929 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 7930 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7931 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7932 u32 nq_params = coal_cap->nq_params; 7933 u16 tmr; 7934 int rc; 7935 7936 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 7937 return 0; 7938 7939 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7940 if (rc) 7941 return rc; 7942 7943 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 7944 req->flags = 7945 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 7946 7947 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 7948 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 7949 req->int_lat_tmr_min = cpu_to_le16(tmr); 7950 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7951 return hwrm_req_send(bp, req); 7952 } 7953 7954 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 7955 { 7956 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 7957 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7958 struct bnxt_coal coal; 7959 int rc; 7960 7961 /* Tick values in micro seconds. 7962 * 1 coal_buf x bufs_per_record = 1 completion record. 7963 */ 7964 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 7965 7966 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 7967 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 7968 7969 if (!bnapi->rx_ring) 7970 return -ENODEV; 7971 7972 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 7973 if (rc) 7974 return rc; 7975 7976 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 7977 7978 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 7979 7980 return hwrm_req_send(bp, req_rx); 7981 } 7982 7983 static int 7984 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7985 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7986 { 7987 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 7988 7989 req->ring_id = cpu_to_le16(ring_id); 7990 return hwrm_req_send(bp, req); 7991 } 7992 7993 static int 7994 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 7995 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7996 { 7997 struct bnxt_tx_ring_info *txr; 7998 int i, rc; 7999 8000 bnxt_for_each_napi_tx(i, bnapi, txr) { 8001 u16 ring_id; 8002 8003 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8004 req->ring_id = cpu_to_le16(ring_id); 8005 rc = hwrm_req_send(bp, req); 8006 if (rc) 8007 return rc; 8008 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8009 return 0; 8010 } 8011 return 0; 8012 } 8013 8014 int bnxt_hwrm_set_coal(struct bnxt *bp) 8015 { 8016 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8017 int i, rc; 8018 8019 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8020 if (rc) 8021 return rc; 8022 8023 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8024 if (rc) { 8025 hwrm_req_drop(bp, req_rx); 8026 return rc; 8027 } 8028 8029 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8030 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8031 8032 hwrm_req_hold(bp, req_rx); 8033 hwrm_req_hold(bp, req_tx); 8034 for (i = 0; i < bp->cp_nr_rings; i++) { 8035 struct bnxt_napi *bnapi = bp->bnapi[i]; 8036 struct bnxt_coal *hw_coal; 8037 8038 if (!bnapi->rx_ring) 8039 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8040 else 8041 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8042 if (rc) 8043 break; 8044 8045 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8046 continue; 8047 8048 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8049 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8050 if (rc) 8051 break; 8052 } 8053 if (bnapi->rx_ring) 8054 hw_coal = &bp->rx_coal; 8055 else 8056 hw_coal = &bp->tx_coal; 8057 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8058 } 8059 hwrm_req_drop(bp, req_rx); 8060 hwrm_req_drop(bp, req_tx); 8061 return rc; 8062 } 8063 8064 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8065 { 8066 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8067 struct hwrm_stat_ctx_free_input *req; 8068 int i; 8069 8070 if (!bp->bnapi) 8071 return; 8072 8073 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8074 return; 8075 8076 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8077 return; 8078 if (BNXT_FW_MAJ(bp) <= 20) { 8079 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8080 hwrm_req_drop(bp, req); 8081 return; 8082 } 8083 hwrm_req_hold(bp, req0); 8084 } 8085 hwrm_req_hold(bp, req); 8086 for (i = 0; i < bp->cp_nr_rings; i++) { 8087 struct bnxt_napi *bnapi = bp->bnapi[i]; 8088 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8089 8090 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8091 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8092 if (req0) { 8093 req0->stat_ctx_id = req->stat_ctx_id; 8094 hwrm_req_send(bp, req0); 8095 } 8096 hwrm_req_send(bp, req); 8097 8098 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8099 } 8100 } 8101 hwrm_req_drop(bp, req); 8102 if (req0) 8103 hwrm_req_drop(bp, req0); 8104 } 8105 8106 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8107 { 8108 struct hwrm_stat_ctx_alloc_output *resp; 8109 struct hwrm_stat_ctx_alloc_input *req; 8110 int rc, i; 8111 8112 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8113 return 0; 8114 8115 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8116 if (rc) 8117 return rc; 8118 8119 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8120 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8121 8122 resp = hwrm_req_hold(bp, req); 8123 for (i = 0; i < bp->cp_nr_rings; i++) { 8124 struct bnxt_napi *bnapi = bp->bnapi[i]; 8125 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8126 8127 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8128 8129 rc = hwrm_req_send(bp, req); 8130 if (rc) 8131 break; 8132 8133 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8134 8135 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8136 } 8137 hwrm_req_drop(bp, req); 8138 return rc; 8139 } 8140 8141 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8142 { 8143 struct hwrm_func_qcfg_output *resp; 8144 struct hwrm_func_qcfg_input *req; 8145 u16 flags; 8146 int rc; 8147 8148 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8149 if (rc) 8150 return rc; 8151 8152 req->fid = cpu_to_le16(0xffff); 8153 resp = hwrm_req_hold(bp, req); 8154 rc = hwrm_req_send(bp, req); 8155 if (rc) 8156 goto func_qcfg_exit; 8157 8158 #ifdef CONFIG_BNXT_SRIOV 8159 if (BNXT_VF(bp)) { 8160 struct bnxt_vf_info *vf = &bp->vf; 8161 8162 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8163 } else { 8164 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8165 } 8166 #endif 8167 flags = le16_to_cpu(resp->flags); 8168 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8169 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8170 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8171 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8172 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8173 } 8174 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8175 bp->flags |= BNXT_FLAG_MULTI_HOST; 8176 8177 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8178 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8179 8180 switch (resp->port_partition_type) { 8181 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8182 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8183 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8184 bp->port_partition_type = resp->port_partition_type; 8185 break; 8186 } 8187 if (bp->hwrm_spec_code < 0x10707 || 8188 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8189 bp->br_mode = BRIDGE_MODE_VEB; 8190 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8191 bp->br_mode = BRIDGE_MODE_VEPA; 8192 else 8193 bp->br_mode = BRIDGE_MODE_UNDEF; 8194 8195 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8196 if (!bp->max_mtu) 8197 bp->max_mtu = BNXT_MAX_MTU; 8198 8199 if (bp->db_size) 8200 goto func_qcfg_exit; 8201 8202 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8203 if (BNXT_CHIP_P5(bp)) { 8204 if (BNXT_PF(bp)) 8205 bp->db_offset = DB_PF_OFFSET_P5; 8206 else 8207 bp->db_offset = DB_VF_OFFSET_P5; 8208 } 8209 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8210 1024); 8211 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8212 bp->db_size <= bp->db_offset) 8213 bp->db_size = pci_resource_len(bp->pdev, 2); 8214 8215 func_qcfg_exit: 8216 hwrm_req_drop(bp, req); 8217 return rc; 8218 } 8219 8220 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8221 u8 init_val, u8 init_offset, 8222 bool init_mask_set) 8223 { 8224 ctxm->init_value = init_val; 8225 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8226 if (init_mask_set) 8227 ctxm->init_offset = init_offset * 4; 8228 else 8229 ctxm->init_value = 0; 8230 } 8231 8232 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8233 { 8234 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8235 u16 type; 8236 8237 for (type = 0; type < ctx_max; type++) { 8238 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8239 int n = 1; 8240 8241 if (!ctxm->max_entries) 8242 continue; 8243 8244 if (ctxm->instance_bmap) 8245 n = hweight32(ctxm->instance_bmap); 8246 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8247 if (!ctxm->pg_info) 8248 return -ENOMEM; 8249 } 8250 return 0; 8251 } 8252 8253 #define BNXT_CTX_INIT_VALID(flags) \ 8254 (!!((flags) & \ 8255 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8256 8257 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8258 { 8259 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8260 struct hwrm_func_backing_store_qcaps_v2_input *req; 8261 struct bnxt_ctx_mem_info *ctx; 8262 u16 type; 8263 int rc; 8264 8265 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8266 if (rc) 8267 return rc; 8268 8269 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8270 if (!ctx) 8271 return -ENOMEM; 8272 bp->ctx = ctx; 8273 8274 resp = hwrm_req_hold(bp, req); 8275 8276 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8277 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8278 u8 init_val, init_off, i; 8279 __le32 *p; 8280 u32 flags; 8281 8282 req->type = cpu_to_le16(type); 8283 rc = hwrm_req_send(bp, req); 8284 if (rc) 8285 goto ctx_done; 8286 flags = le32_to_cpu(resp->flags); 8287 type = le16_to_cpu(resp->next_valid_type); 8288 if (!(flags & FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_TYPE_VALID)) 8289 continue; 8290 8291 ctxm->type = le16_to_cpu(resp->type); 8292 ctxm->entry_size = le16_to_cpu(resp->entry_size); 8293 ctxm->flags = flags; 8294 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8295 ctxm->entry_multiple = resp->entry_multiple; 8296 ctxm->max_entries = le32_to_cpu(resp->max_num_entries); 8297 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8298 init_val = resp->ctx_init_value; 8299 init_off = resp->ctx_init_offset; 8300 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8301 BNXT_CTX_INIT_VALID(flags)); 8302 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8303 BNXT_MAX_SPLIT_ENTRY); 8304 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8305 i++, p++) 8306 ctxm->split[i] = le32_to_cpu(*p); 8307 } 8308 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8309 8310 ctx_done: 8311 hwrm_req_drop(bp, req); 8312 return rc; 8313 } 8314 8315 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8316 { 8317 struct hwrm_func_backing_store_qcaps_output *resp; 8318 struct hwrm_func_backing_store_qcaps_input *req; 8319 int rc; 8320 8321 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || bp->ctx) 8322 return 0; 8323 8324 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8325 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8326 8327 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8328 if (rc) 8329 return rc; 8330 8331 resp = hwrm_req_hold(bp, req); 8332 rc = hwrm_req_send_silent(bp, req); 8333 if (!rc) { 8334 struct bnxt_ctx_mem_type *ctxm; 8335 struct bnxt_ctx_mem_info *ctx; 8336 u8 init_val, init_idx = 0; 8337 u16 init_mask; 8338 8339 ctx = bp->ctx; 8340 if (!ctx) { 8341 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8342 if (!ctx) { 8343 rc = -ENOMEM; 8344 goto ctx_err; 8345 } 8346 bp->ctx = ctx; 8347 } 8348 init_val = resp->ctx_kind_initializer; 8349 init_mask = le16_to_cpu(resp->ctx_init_mask); 8350 8351 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8352 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8353 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8354 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8355 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8356 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8357 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8358 (init_mask & (1 << init_idx++)) != 0); 8359 8360 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8361 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8362 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8363 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8364 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8365 (init_mask & (1 << init_idx++)) != 0); 8366 8367 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8368 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8369 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8370 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8371 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8372 (init_mask & (1 << init_idx++)) != 0); 8373 8374 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8375 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8376 ctxm->max_entries = ctxm->vnic_entries + 8377 le16_to_cpu(resp->vnic_max_ring_table_entries); 8378 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8379 bnxt_init_ctx_initializer(ctxm, init_val, 8380 resp->vnic_init_offset, 8381 (init_mask & (1 << init_idx++)) != 0); 8382 8383 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8384 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8385 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8386 bnxt_init_ctx_initializer(ctxm, init_val, 8387 resp->stat_init_offset, 8388 (init_mask & (1 << init_idx++)) != 0); 8389 8390 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8391 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8392 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8393 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8394 ctxm->entry_multiple = resp->tqm_entries_multiple; 8395 if (!ctxm->entry_multiple) 8396 ctxm->entry_multiple = 1; 8397 8398 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8399 8400 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8401 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8402 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8403 ctxm->mrav_num_entries_units = 8404 le16_to_cpu(resp->mrav_num_entries_units); 8405 bnxt_init_ctx_initializer(ctxm, init_val, 8406 resp->mrav_init_offset, 8407 (init_mask & (1 << init_idx++)) != 0); 8408 8409 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8410 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8411 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8412 8413 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8414 if (!ctx->tqm_fp_rings_count) 8415 ctx->tqm_fp_rings_count = bp->max_q; 8416 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8417 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8418 8419 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8420 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8421 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8422 8423 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8424 } else { 8425 rc = 0; 8426 } 8427 ctx_err: 8428 hwrm_req_drop(bp, req); 8429 return rc; 8430 } 8431 8432 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8433 __le64 *pg_dir) 8434 { 8435 if (!rmem->nr_pages) 8436 return; 8437 8438 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8439 if (rmem->depth >= 1) { 8440 if (rmem->depth == 2) 8441 *pg_attr |= 2; 8442 else 8443 *pg_attr |= 1; 8444 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8445 } else { 8446 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8447 } 8448 } 8449 8450 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8451 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8452 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8453 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8454 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8455 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8456 8457 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8458 { 8459 struct hwrm_func_backing_store_cfg_input *req; 8460 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8461 struct bnxt_ctx_pg_info *ctx_pg; 8462 struct bnxt_ctx_mem_type *ctxm; 8463 void **__req = (void **)&req; 8464 u32 req_len = sizeof(*req); 8465 __le32 *num_entries; 8466 __le64 *pg_dir; 8467 u32 flags = 0; 8468 u8 *pg_attr; 8469 u32 ena; 8470 int rc; 8471 int i; 8472 8473 if (!ctx) 8474 return 0; 8475 8476 if (req_len > bp->hwrm_max_ext_req_len) 8477 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8478 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8479 if (rc) 8480 return rc; 8481 8482 req->enables = cpu_to_le32(enables); 8483 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8484 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8485 ctx_pg = ctxm->pg_info; 8486 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8487 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8488 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8489 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8490 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8491 &req->qpc_pg_size_qpc_lvl, 8492 &req->qpc_page_dir); 8493 8494 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8495 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8496 } 8497 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8498 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8499 ctx_pg = ctxm->pg_info; 8500 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8501 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8502 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8503 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8504 &req->srq_pg_size_srq_lvl, 8505 &req->srq_page_dir); 8506 } 8507 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8508 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8509 ctx_pg = ctxm->pg_info; 8510 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8511 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8512 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8513 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8514 &req->cq_pg_size_cq_lvl, 8515 &req->cq_page_dir); 8516 } 8517 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8518 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8519 ctx_pg = ctxm->pg_info; 8520 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8521 req->vnic_num_ring_table_entries = 8522 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8523 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8524 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8525 &req->vnic_pg_size_vnic_lvl, 8526 &req->vnic_page_dir); 8527 } 8528 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8529 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8530 ctx_pg = ctxm->pg_info; 8531 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8532 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8533 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8534 &req->stat_pg_size_stat_lvl, 8535 &req->stat_page_dir); 8536 } 8537 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8538 u32 units; 8539 8540 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8541 ctx_pg = ctxm->pg_info; 8542 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8543 units = ctxm->mrav_num_entries_units; 8544 if (units) { 8545 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8546 u32 entries; 8547 8548 num_mr = ctx_pg->entries - num_ah; 8549 entries = ((num_mr / units) << 16) | (num_ah / units); 8550 req->mrav_num_entries = cpu_to_le32(entries); 8551 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8552 } 8553 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8554 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8555 &req->mrav_pg_size_mrav_lvl, 8556 &req->mrav_page_dir); 8557 } 8558 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8559 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8560 ctx_pg = ctxm->pg_info; 8561 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8562 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8563 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8564 &req->tim_pg_size_tim_lvl, 8565 &req->tim_page_dir); 8566 } 8567 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8568 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8569 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8570 pg_dir = &req->tqm_sp_page_dir, 8571 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8572 ctx_pg = ctxm->pg_info; 8573 i < BNXT_MAX_TQM_RINGS; 8574 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8575 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8576 if (!(enables & ena)) 8577 continue; 8578 8579 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8580 *num_entries = cpu_to_le32(ctx_pg->entries); 8581 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8582 } 8583 req->flags = cpu_to_le32(flags); 8584 return hwrm_req_send(bp, req); 8585 } 8586 8587 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8588 struct bnxt_ctx_pg_info *ctx_pg) 8589 { 8590 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8591 8592 rmem->page_size = BNXT_PAGE_SIZE; 8593 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8594 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8595 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8596 if (rmem->depth >= 1) 8597 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8598 return bnxt_alloc_ring(bp, rmem); 8599 } 8600 8601 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8602 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8603 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8604 { 8605 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8606 int rc; 8607 8608 if (!mem_size) 8609 return -EINVAL; 8610 8611 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8612 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8613 ctx_pg->nr_pages = 0; 8614 return -EINVAL; 8615 } 8616 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8617 int nr_tbls, i; 8618 8619 rmem->depth = 2; 8620 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8621 GFP_KERNEL); 8622 if (!ctx_pg->ctx_pg_tbl) 8623 return -ENOMEM; 8624 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8625 rmem->nr_pages = nr_tbls; 8626 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8627 if (rc) 8628 return rc; 8629 for (i = 0; i < nr_tbls; i++) { 8630 struct bnxt_ctx_pg_info *pg_tbl; 8631 8632 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8633 if (!pg_tbl) 8634 return -ENOMEM; 8635 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8636 rmem = &pg_tbl->ring_mem; 8637 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8638 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8639 rmem->depth = 1; 8640 rmem->nr_pages = MAX_CTX_PAGES; 8641 rmem->ctx_mem = ctxm; 8642 if (i == (nr_tbls - 1)) { 8643 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8644 8645 if (rem) 8646 rmem->nr_pages = rem; 8647 } 8648 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8649 if (rc) 8650 break; 8651 } 8652 } else { 8653 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8654 if (rmem->nr_pages > 1 || depth) 8655 rmem->depth = 1; 8656 rmem->ctx_mem = ctxm; 8657 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8658 } 8659 return rc; 8660 } 8661 8662 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 8663 struct bnxt_ctx_pg_info *ctx_pg) 8664 { 8665 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8666 8667 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 8668 ctx_pg->ctx_pg_tbl) { 8669 int i, nr_tbls = rmem->nr_pages; 8670 8671 for (i = 0; i < nr_tbls; i++) { 8672 struct bnxt_ctx_pg_info *pg_tbl; 8673 struct bnxt_ring_mem_info *rmem2; 8674 8675 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8676 if (!pg_tbl) 8677 continue; 8678 rmem2 = &pg_tbl->ring_mem; 8679 bnxt_free_ring(bp, rmem2); 8680 ctx_pg->ctx_pg_arr[i] = NULL; 8681 kfree(pg_tbl); 8682 ctx_pg->ctx_pg_tbl[i] = NULL; 8683 } 8684 kfree(ctx_pg->ctx_pg_tbl); 8685 ctx_pg->ctx_pg_tbl = NULL; 8686 } 8687 bnxt_free_ring(bp, rmem); 8688 ctx_pg->nr_pages = 0; 8689 } 8690 8691 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 8692 struct bnxt_ctx_mem_type *ctxm, u32 entries, 8693 u8 pg_lvl) 8694 { 8695 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8696 int i, rc = 0, n = 1; 8697 u32 mem_size; 8698 8699 if (!ctxm->entry_size || !ctx_pg) 8700 return -EINVAL; 8701 if (ctxm->instance_bmap) 8702 n = hweight32(ctxm->instance_bmap); 8703 if (ctxm->entry_multiple) 8704 entries = roundup(entries, ctxm->entry_multiple); 8705 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 8706 mem_size = entries * ctxm->entry_size; 8707 for (i = 0; i < n && !rc; i++) { 8708 ctx_pg[i].entries = entries; 8709 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 8710 ctxm->init_value ? ctxm : NULL); 8711 } 8712 return rc; 8713 } 8714 8715 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 8716 struct bnxt_ctx_mem_type *ctxm, 8717 bool last) 8718 { 8719 struct hwrm_func_backing_store_cfg_v2_input *req; 8720 u32 instance_bmap = ctxm->instance_bmap; 8721 int i, j, rc = 0, n = 1; 8722 __le32 *p; 8723 8724 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 8725 return 0; 8726 8727 if (instance_bmap) 8728 n = hweight32(ctxm->instance_bmap); 8729 else 8730 instance_bmap = 1; 8731 8732 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 8733 if (rc) 8734 return rc; 8735 hwrm_req_hold(bp, req); 8736 req->type = cpu_to_le16(ctxm->type); 8737 req->entry_size = cpu_to_le16(ctxm->entry_size); 8738 req->subtype_valid_cnt = ctxm->split_entry_cnt; 8739 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 8740 p[i] = cpu_to_le32(ctxm->split[i]); 8741 for (i = 0, j = 0; j < n && !rc; i++) { 8742 struct bnxt_ctx_pg_info *ctx_pg; 8743 8744 if (!(instance_bmap & (1 << i))) 8745 continue; 8746 req->instance = cpu_to_le16(i); 8747 ctx_pg = &ctxm->pg_info[j++]; 8748 if (!ctx_pg->entries) 8749 continue; 8750 req->num_entries = cpu_to_le32(ctx_pg->entries); 8751 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8752 &req->page_size_pbl_level, 8753 &req->page_dir); 8754 if (last && j == n) 8755 req->flags = 8756 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 8757 rc = hwrm_req_send(bp, req); 8758 } 8759 hwrm_req_drop(bp, req); 8760 return rc; 8761 } 8762 8763 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 8764 { 8765 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8766 struct bnxt_ctx_mem_type *ctxm; 8767 u16 last_type; 8768 int rc = 0; 8769 u16 type; 8770 8771 if (!ena) 8772 return 0; 8773 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 8774 last_type = BNXT_CTX_MAX - 1; 8775 else 8776 last_type = BNXT_CTX_L2_MAX - 1; 8777 ctx->ctx_arr[last_type].last = 1; 8778 8779 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 8780 ctxm = &ctx->ctx_arr[type]; 8781 8782 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 8783 if (rc) 8784 return rc; 8785 } 8786 return 0; 8787 } 8788 8789 void bnxt_free_ctx_mem(struct bnxt *bp) 8790 { 8791 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8792 u16 type; 8793 8794 if (!ctx) 8795 return; 8796 8797 for (type = 0; type < BNXT_CTX_V2_MAX; type++) { 8798 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8799 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8800 int i, n = 1; 8801 8802 if (!ctx_pg) 8803 continue; 8804 if (ctxm->instance_bmap) 8805 n = hweight32(ctxm->instance_bmap); 8806 for (i = 0; i < n; i++) 8807 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 8808 8809 kfree(ctx_pg); 8810 ctxm->pg_info = NULL; 8811 } 8812 8813 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 8814 kfree(ctx); 8815 bp->ctx = NULL; 8816 } 8817 8818 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 8819 { 8820 struct bnxt_ctx_mem_type *ctxm; 8821 struct bnxt_ctx_mem_info *ctx; 8822 u32 l2_qps, qp1_qps, max_qps; 8823 u32 ena, entries_sp, entries; 8824 u32 srqs, max_srqs, min; 8825 u32 num_mr, num_ah; 8826 u32 extra_srqs = 0; 8827 u32 extra_qps = 0; 8828 u32 fast_qpmd_qps; 8829 u8 pg_lvl = 1; 8830 int i, rc; 8831 8832 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 8833 if (rc) { 8834 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 8835 rc); 8836 return rc; 8837 } 8838 ctx = bp->ctx; 8839 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 8840 return 0; 8841 8842 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8843 l2_qps = ctxm->qp_l2_entries; 8844 qp1_qps = ctxm->qp_qp1_entries; 8845 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 8846 max_qps = ctxm->max_entries; 8847 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8848 srqs = ctxm->srq_l2_entries; 8849 max_srqs = ctxm->max_entries; 8850 ena = 0; 8851 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 8852 pg_lvl = 2; 8853 extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps); 8854 /* allocate extra qps if fw supports RoCE fast qp destroy feature */ 8855 extra_qps += fast_qpmd_qps; 8856 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 8857 if (fast_qpmd_qps) 8858 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 8859 } 8860 8861 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8862 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 8863 pg_lvl); 8864 if (rc) 8865 return rc; 8866 8867 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8868 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 8869 if (rc) 8870 return rc; 8871 8872 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8873 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 8874 extra_qps * 2, pg_lvl); 8875 if (rc) 8876 return rc; 8877 8878 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8879 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8880 if (rc) 8881 return rc; 8882 8883 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8884 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 8885 if (rc) 8886 return rc; 8887 8888 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 8889 goto skip_rdma; 8890 8891 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8892 /* 128K extra is needed to accommodate static AH context 8893 * allocation by f/w. 8894 */ 8895 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 8896 num_ah = min_t(u32, num_mr, 1024 * 128); 8897 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 8898 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 8899 ctxm->mrav_av_entries = num_ah; 8900 8901 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 8902 if (rc) 8903 return rc; 8904 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 8905 8906 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8907 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 8908 if (rc) 8909 return rc; 8910 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 8911 8912 skip_rdma: 8913 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8914 min = ctxm->min_entries; 8915 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 8916 2 * (extra_qps + qp1_qps) + min; 8917 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 8918 if (rc) 8919 return rc; 8920 8921 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8922 entries = l2_qps + 2 * (extra_qps + qp1_qps); 8923 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 8924 if (rc) 8925 return rc; 8926 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 8927 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 8928 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 8929 8930 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8931 rc = bnxt_backing_store_cfg_v2(bp, ena); 8932 else 8933 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 8934 if (rc) { 8935 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 8936 rc); 8937 return rc; 8938 } 8939 ctx->flags |= BNXT_CTX_FLAG_INITED; 8940 return 0; 8941 } 8942 8943 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 8944 { 8945 struct hwrm_func_resource_qcaps_output *resp; 8946 struct hwrm_func_resource_qcaps_input *req; 8947 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 8948 int rc; 8949 8950 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 8951 if (rc) 8952 return rc; 8953 8954 req->fid = cpu_to_le16(0xffff); 8955 resp = hwrm_req_hold(bp, req); 8956 rc = hwrm_req_send_silent(bp, req); 8957 if (rc) 8958 goto hwrm_func_resc_qcaps_exit; 8959 8960 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 8961 if (!all) 8962 goto hwrm_func_resc_qcaps_exit; 8963 8964 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 8965 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 8966 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 8967 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 8968 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 8969 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 8970 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 8971 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 8972 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 8973 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 8974 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 8975 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 8976 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 8977 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 8978 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 8979 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 8980 8981 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 8982 u16 max_msix = le16_to_cpu(resp->max_msix); 8983 8984 hw_resc->max_nqs = max_msix; 8985 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 8986 } 8987 8988 if (BNXT_PF(bp)) { 8989 struct bnxt_pf_info *pf = &bp->pf; 8990 8991 pf->vf_resv_strategy = 8992 le16_to_cpu(resp->vf_reservation_strategy); 8993 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 8994 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 8995 } 8996 hwrm_func_resc_qcaps_exit: 8997 hwrm_req_drop(bp, req); 8998 return rc; 8999 } 9000 9001 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9002 { 9003 struct hwrm_port_mac_ptp_qcfg_output *resp; 9004 struct hwrm_port_mac_ptp_qcfg_input *req; 9005 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9006 bool phc_cfg; 9007 u8 flags; 9008 int rc; 9009 9010 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9011 rc = -ENODEV; 9012 goto no_ptp; 9013 } 9014 9015 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9016 if (rc) 9017 goto no_ptp; 9018 9019 req->port_id = cpu_to_le16(bp->pf.port_id); 9020 resp = hwrm_req_hold(bp, req); 9021 rc = hwrm_req_send(bp, req); 9022 if (rc) 9023 goto exit; 9024 9025 flags = resp->flags; 9026 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9027 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9028 rc = -ENODEV; 9029 goto exit; 9030 } 9031 if (!ptp) { 9032 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9033 if (!ptp) { 9034 rc = -ENOMEM; 9035 goto exit; 9036 } 9037 ptp->bp = bp; 9038 bp->ptp_cfg = ptp; 9039 } 9040 9041 if (flags & 9042 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9043 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9044 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9045 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9046 } else if (BNXT_CHIP_P5(bp)) { 9047 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9048 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9049 } else { 9050 rc = -ENODEV; 9051 goto exit; 9052 } 9053 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9054 rc = bnxt_ptp_init(bp, phc_cfg); 9055 if (rc) 9056 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9057 exit: 9058 hwrm_req_drop(bp, req); 9059 if (!rc) 9060 return 0; 9061 9062 no_ptp: 9063 bnxt_ptp_clear(bp); 9064 kfree(ptp); 9065 bp->ptp_cfg = NULL; 9066 return rc; 9067 } 9068 9069 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9070 { 9071 struct hwrm_func_qcaps_output *resp; 9072 struct hwrm_func_qcaps_input *req; 9073 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9074 u32 flags, flags_ext, flags_ext2; 9075 int rc; 9076 9077 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9078 if (rc) 9079 return rc; 9080 9081 req->fid = cpu_to_le16(0xffff); 9082 resp = hwrm_req_hold(bp, req); 9083 rc = hwrm_req_send(bp, req); 9084 if (rc) 9085 goto hwrm_func_qcaps_exit; 9086 9087 flags = le32_to_cpu(resp->flags); 9088 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9089 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9090 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9091 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9092 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9093 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9094 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9095 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9096 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9097 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9098 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9099 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9100 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9101 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9102 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9103 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9104 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9105 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9106 9107 flags_ext = le32_to_cpu(resp->flags_ext); 9108 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9109 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9110 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9111 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9112 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9113 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9114 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9115 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9116 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9117 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9118 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9119 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9120 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9121 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9122 9123 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9124 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9125 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9126 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9127 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9128 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9129 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9130 9131 bp->tx_push_thresh = 0; 9132 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9133 BNXT_FW_MAJ(bp) > 217) 9134 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9135 9136 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9137 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9138 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9139 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9140 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9141 if (!hw_resc->max_hw_ring_grps) 9142 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9143 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9144 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9145 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9146 9147 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9148 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9149 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9150 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9151 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9152 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9153 9154 if (BNXT_PF(bp)) { 9155 struct bnxt_pf_info *pf = &bp->pf; 9156 9157 pf->fw_fid = le16_to_cpu(resp->fid); 9158 pf->port_id = le16_to_cpu(resp->port_id); 9159 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9160 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9161 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9162 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9163 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9164 bp->flags |= BNXT_FLAG_WOL_CAP; 9165 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9166 bp->fw_cap |= BNXT_FW_CAP_PTP; 9167 } else { 9168 bnxt_ptp_clear(bp); 9169 kfree(bp->ptp_cfg); 9170 bp->ptp_cfg = NULL; 9171 } 9172 } else { 9173 #ifdef CONFIG_BNXT_SRIOV 9174 struct bnxt_vf_info *vf = &bp->vf; 9175 9176 vf->fw_fid = le16_to_cpu(resp->fid); 9177 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9178 #endif 9179 } 9180 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9181 9182 hwrm_func_qcaps_exit: 9183 hwrm_req_drop(bp, req); 9184 return rc; 9185 } 9186 9187 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9188 { 9189 struct hwrm_dbg_qcaps_output *resp; 9190 struct hwrm_dbg_qcaps_input *req; 9191 int rc; 9192 9193 bp->fw_dbg_cap = 0; 9194 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9195 return; 9196 9197 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9198 if (rc) 9199 return; 9200 9201 req->fid = cpu_to_le16(0xffff); 9202 resp = hwrm_req_hold(bp, req); 9203 rc = hwrm_req_send(bp, req); 9204 if (rc) 9205 goto hwrm_dbg_qcaps_exit; 9206 9207 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9208 9209 hwrm_dbg_qcaps_exit: 9210 hwrm_req_drop(bp, req); 9211 } 9212 9213 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9214 9215 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9216 { 9217 int rc; 9218 9219 rc = __bnxt_hwrm_func_qcaps(bp); 9220 if (rc) 9221 return rc; 9222 9223 bnxt_hwrm_dbg_qcaps(bp); 9224 9225 rc = bnxt_hwrm_queue_qportcfg(bp); 9226 if (rc) { 9227 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9228 return rc; 9229 } 9230 if (bp->hwrm_spec_code >= 0x10803) { 9231 rc = bnxt_alloc_ctx_mem(bp); 9232 if (rc) 9233 return rc; 9234 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9235 if (!rc) 9236 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9237 } 9238 return 0; 9239 } 9240 9241 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9242 { 9243 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9244 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9245 u32 flags; 9246 int rc; 9247 9248 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9249 return 0; 9250 9251 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9252 if (rc) 9253 return rc; 9254 9255 resp = hwrm_req_hold(bp, req); 9256 rc = hwrm_req_send(bp, req); 9257 if (rc) 9258 goto hwrm_cfa_adv_qcaps_exit; 9259 9260 flags = le32_to_cpu(resp->flags); 9261 if (flags & 9262 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9263 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9264 9265 if (flags & 9266 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9267 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9268 9269 if (flags & 9270 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9271 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9272 9273 hwrm_cfa_adv_qcaps_exit: 9274 hwrm_req_drop(bp, req); 9275 return rc; 9276 } 9277 9278 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9279 { 9280 if (bp->fw_health) 9281 return 0; 9282 9283 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9284 if (!bp->fw_health) 9285 return -ENOMEM; 9286 9287 mutex_init(&bp->fw_health->lock); 9288 return 0; 9289 } 9290 9291 static int bnxt_alloc_fw_health(struct bnxt *bp) 9292 { 9293 int rc; 9294 9295 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9296 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9297 return 0; 9298 9299 rc = __bnxt_alloc_fw_health(bp); 9300 if (rc) { 9301 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9302 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9303 return rc; 9304 } 9305 9306 return 0; 9307 } 9308 9309 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9310 { 9311 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9312 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9313 BNXT_FW_HEALTH_WIN_MAP_OFF); 9314 } 9315 9316 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9317 { 9318 struct bnxt_fw_health *fw_health = bp->fw_health; 9319 u32 reg_type; 9320 9321 if (!fw_health) 9322 return; 9323 9324 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9325 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9326 fw_health->status_reliable = false; 9327 9328 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9329 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9330 fw_health->resets_reliable = false; 9331 } 9332 9333 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9334 { 9335 void __iomem *hs; 9336 u32 status_loc; 9337 u32 reg_type; 9338 u32 sig; 9339 9340 if (bp->fw_health) 9341 bp->fw_health->status_reliable = false; 9342 9343 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9344 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9345 9346 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9347 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9348 if (!bp->chip_num) { 9349 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9350 bp->chip_num = readl(bp->bar0 + 9351 BNXT_FW_HEALTH_WIN_BASE + 9352 BNXT_GRC_REG_CHIP_NUM); 9353 } 9354 if (!BNXT_CHIP_P5_PLUS(bp)) 9355 return; 9356 9357 status_loc = BNXT_GRC_REG_STATUS_P5 | 9358 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9359 } else { 9360 status_loc = readl(hs + offsetof(struct hcomm_status, 9361 fw_status_loc)); 9362 } 9363 9364 if (__bnxt_alloc_fw_health(bp)) { 9365 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9366 return; 9367 } 9368 9369 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9370 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9371 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9372 __bnxt_map_fw_health_reg(bp, status_loc); 9373 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9374 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9375 } 9376 9377 bp->fw_health->status_reliable = true; 9378 } 9379 9380 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9381 { 9382 struct bnxt_fw_health *fw_health = bp->fw_health; 9383 u32 reg_base = 0xffffffff; 9384 int i; 9385 9386 bp->fw_health->status_reliable = false; 9387 bp->fw_health->resets_reliable = false; 9388 /* Only pre-map the monitoring GRC registers using window 3 */ 9389 for (i = 0; i < 4; i++) { 9390 u32 reg = fw_health->regs[i]; 9391 9392 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9393 continue; 9394 if (reg_base == 0xffffffff) 9395 reg_base = reg & BNXT_GRC_BASE_MASK; 9396 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9397 return -ERANGE; 9398 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9399 } 9400 bp->fw_health->status_reliable = true; 9401 bp->fw_health->resets_reliable = true; 9402 if (reg_base == 0xffffffff) 9403 return 0; 9404 9405 __bnxt_map_fw_health_reg(bp, reg_base); 9406 return 0; 9407 } 9408 9409 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9410 { 9411 if (!bp->fw_health) 9412 return; 9413 9414 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9415 bp->fw_health->status_reliable = true; 9416 bp->fw_health->resets_reliable = true; 9417 } else { 9418 bnxt_try_map_fw_health_reg(bp); 9419 } 9420 } 9421 9422 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9423 { 9424 struct bnxt_fw_health *fw_health = bp->fw_health; 9425 struct hwrm_error_recovery_qcfg_output *resp; 9426 struct hwrm_error_recovery_qcfg_input *req; 9427 int rc, i; 9428 9429 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9430 return 0; 9431 9432 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9433 if (rc) 9434 return rc; 9435 9436 resp = hwrm_req_hold(bp, req); 9437 rc = hwrm_req_send(bp, req); 9438 if (rc) 9439 goto err_recovery_out; 9440 fw_health->flags = le32_to_cpu(resp->flags); 9441 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9442 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9443 rc = -EINVAL; 9444 goto err_recovery_out; 9445 } 9446 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9447 fw_health->master_func_wait_dsecs = 9448 le32_to_cpu(resp->master_func_wait_period); 9449 fw_health->normal_func_wait_dsecs = 9450 le32_to_cpu(resp->normal_func_wait_period); 9451 fw_health->post_reset_wait_dsecs = 9452 le32_to_cpu(resp->master_func_wait_period_after_reset); 9453 fw_health->post_reset_max_wait_dsecs = 9454 le32_to_cpu(resp->max_bailout_time_after_reset); 9455 fw_health->regs[BNXT_FW_HEALTH_REG] = 9456 le32_to_cpu(resp->fw_health_status_reg); 9457 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9458 le32_to_cpu(resp->fw_heartbeat_reg); 9459 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9460 le32_to_cpu(resp->fw_reset_cnt_reg); 9461 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9462 le32_to_cpu(resp->reset_inprogress_reg); 9463 fw_health->fw_reset_inprog_reg_mask = 9464 le32_to_cpu(resp->reset_inprogress_reg_mask); 9465 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9466 if (fw_health->fw_reset_seq_cnt >= 16) { 9467 rc = -EINVAL; 9468 goto err_recovery_out; 9469 } 9470 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9471 fw_health->fw_reset_seq_regs[i] = 9472 le32_to_cpu(resp->reset_reg[i]); 9473 fw_health->fw_reset_seq_vals[i] = 9474 le32_to_cpu(resp->reset_reg_val[i]); 9475 fw_health->fw_reset_seq_delay_msec[i] = 9476 resp->delay_after_reset[i]; 9477 } 9478 err_recovery_out: 9479 hwrm_req_drop(bp, req); 9480 if (!rc) 9481 rc = bnxt_map_fw_health_regs(bp); 9482 if (rc) 9483 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9484 return rc; 9485 } 9486 9487 static int bnxt_hwrm_func_reset(struct bnxt *bp) 9488 { 9489 struct hwrm_func_reset_input *req; 9490 int rc; 9491 9492 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 9493 if (rc) 9494 return rc; 9495 9496 req->enables = 0; 9497 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 9498 return hwrm_req_send(bp, req); 9499 } 9500 9501 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 9502 { 9503 struct hwrm_nvm_get_dev_info_output nvm_info; 9504 9505 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 9506 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 9507 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 9508 nvm_info.nvm_cfg_ver_upd); 9509 } 9510 9511 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 9512 { 9513 struct hwrm_queue_qportcfg_output *resp; 9514 struct hwrm_queue_qportcfg_input *req; 9515 u8 i, j, *qptr; 9516 bool no_rdma; 9517 int rc = 0; 9518 9519 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 9520 if (rc) 9521 return rc; 9522 9523 resp = hwrm_req_hold(bp, req); 9524 rc = hwrm_req_send(bp, req); 9525 if (rc) 9526 goto qportcfg_exit; 9527 9528 if (!resp->max_configurable_queues) { 9529 rc = -EINVAL; 9530 goto qportcfg_exit; 9531 } 9532 bp->max_tc = resp->max_configurable_queues; 9533 bp->max_lltc = resp->max_configurable_lossless_queues; 9534 if (bp->max_tc > BNXT_MAX_QUEUE) 9535 bp->max_tc = BNXT_MAX_QUEUE; 9536 9537 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 9538 qptr = &resp->queue_id0; 9539 for (i = 0, j = 0; i < bp->max_tc; i++) { 9540 bp->q_info[j].queue_id = *qptr; 9541 bp->q_ids[i] = *qptr++; 9542 bp->q_info[j].queue_profile = *qptr++; 9543 bp->tc_to_qidx[j] = j; 9544 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 9545 (no_rdma && BNXT_PF(bp))) 9546 j++; 9547 } 9548 bp->max_q = bp->max_tc; 9549 bp->max_tc = max_t(u8, j, 1); 9550 9551 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 9552 bp->max_tc = 1; 9553 9554 if (bp->max_lltc > bp->max_tc) 9555 bp->max_lltc = bp->max_tc; 9556 9557 qportcfg_exit: 9558 hwrm_req_drop(bp, req); 9559 return rc; 9560 } 9561 9562 static int bnxt_hwrm_poll(struct bnxt *bp) 9563 { 9564 struct hwrm_ver_get_input *req; 9565 int rc; 9566 9567 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9568 if (rc) 9569 return rc; 9570 9571 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9572 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9573 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9574 9575 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 9576 rc = hwrm_req_send(bp, req); 9577 return rc; 9578 } 9579 9580 static int bnxt_hwrm_ver_get(struct bnxt *bp) 9581 { 9582 struct hwrm_ver_get_output *resp; 9583 struct hwrm_ver_get_input *req; 9584 u16 fw_maj, fw_min, fw_bld, fw_rsv; 9585 u32 dev_caps_cfg, hwrm_ver; 9586 int rc, len; 9587 9588 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9589 if (rc) 9590 return rc; 9591 9592 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9593 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 9594 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9595 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9596 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9597 9598 resp = hwrm_req_hold(bp, req); 9599 rc = hwrm_req_send(bp, req); 9600 if (rc) 9601 goto hwrm_ver_get_exit; 9602 9603 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 9604 9605 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 9606 resp->hwrm_intf_min_8b << 8 | 9607 resp->hwrm_intf_upd_8b; 9608 if (resp->hwrm_intf_maj_8b < 1) { 9609 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 9610 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9611 resp->hwrm_intf_upd_8b); 9612 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 9613 } 9614 9615 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 9616 HWRM_VERSION_UPDATE; 9617 9618 if (bp->hwrm_spec_code > hwrm_ver) 9619 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9620 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 9621 HWRM_VERSION_UPDATE); 9622 else 9623 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9624 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9625 resp->hwrm_intf_upd_8b); 9626 9627 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 9628 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 9629 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 9630 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 9631 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 9632 len = FW_VER_STR_LEN; 9633 } else { 9634 fw_maj = resp->hwrm_fw_maj_8b; 9635 fw_min = resp->hwrm_fw_min_8b; 9636 fw_bld = resp->hwrm_fw_bld_8b; 9637 fw_rsv = resp->hwrm_fw_rsvd_8b; 9638 len = BC_HWRM_STR_LEN; 9639 } 9640 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 9641 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 9642 fw_rsv); 9643 9644 if (strlen(resp->active_pkg_name)) { 9645 int fw_ver_len = strlen(bp->fw_ver_str); 9646 9647 snprintf(bp->fw_ver_str + fw_ver_len, 9648 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 9649 resp->active_pkg_name); 9650 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 9651 } 9652 9653 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 9654 if (!bp->hwrm_cmd_timeout) 9655 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 9656 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 9657 if (!bp->hwrm_cmd_max_timeout) 9658 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 9659 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 9660 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 9661 bp->hwrm_cmd_max_timeout / 1000); 9662 9663 if (resp->hwrm_intf_maj_8b >= 1) { 9664 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 9665 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 9666 } 9667 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 9668 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 9669 9670 bp->chip_num = le16_to_cpu(resp->chip_num); 9671 bp->chip_rev = resp->chip_rev; 9672 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 9673 !resp->chip_metal) 9674 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 9675 9676 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 9677 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 9678 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 9679 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 9680 9681 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 9682 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 9683 9684 if (dev_caps_cfg & 9685 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 9686 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 9687 9688 if (dev_caps_cfg & 9689 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 9690 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 9691 9692 if (dev_caps_cfg & 9693 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 9694 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 9695 9696 hwrm_ver_get_exit: 9697 hwrm_req_drop(bp, req); 9698 return rc; 9699 } 9700 9701 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 9702 { 9703 struct hwrm_fw_set_time_input *req; 9704 struct tm tm; 9705 time64_t now = ktime_get_real_seconds(); 9706 int rc; 9707 9708 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 9709 bp->hwrm_spec_code < 0x10400) 9710 return -EOPNOTSUPP; 9711 9712 time64_to_tm(now, 0, &tm); 9713 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 9714 if (rc) 9715 return rc; 9716 9717 req->year = cpu_to_le16(1900 + tm.tm_year); 9718 req->month = 1 + tm.tm_mon; 9719 req->day = tm.tm_mday; 9720 req->hour = tm.tm_hour; 9721 req->minute = tm.tm_min; 9722 req->second = tm.tm_sec; 9723 return hwrm_req_send(bp, req); 9724 } 9725 9726 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 9727 { 9728 u64 sw_tmp; 9729 9730 hw &= mask; 9731 sw_tmp = (*sw & ~mask) | hw; 9732 if (hw < (*sw & mask)) 9733 sw_tmp += mask + 1; 9734 WRITE_ONCE(*sw, sw_tmp); 9735 } 9736 9737 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 9738 int count, bool ignore_zero) 9739 { 9740 int i; 9741 9742 for (i = 0; i < count; i++) { 9743 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 9744 9745 if (ignore_zero && !hw) 9746 continue; 9747 9748 if (masks[i] == -1ULL) 9749 sw_stats[i] = hw; 9750 else 9751 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 9752 } 9753 } 9754 9755 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 9756 { 9757 if (!stats->hw_stats) 9758 return; 9759 9760 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9761 stats->hw_masks, stats->len / 8, false); 9762 } 9763 9764 static void bnxt_accumulate_all_stats(struct bnxt *bp) 9765 { 9766 struct bnxt_stats_mem *ring0_stats; 9767 bool ignore_zero = false; 9768 int i; 9769 9770 /* Chip bug. Counter intermittently becomes 0. */ 9771 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9772 ignore_zero = true; 9773 9774 for (i = 0; i < bp->cp_nr_rings; i++) { 9775 struct bnxt_napi *bnapi = bp->bnapi[i]; 9776 struct bnxt_cp_ring_info *cpr; 9777 struct bnxt_stats_mem *stats; 9778 9779 cpr = &bnapi->cp_ring; 9780 stats = &cpr->stats; 9781 if (!i) 9782 ring0_stats = stats; 9783 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 9784 ring0_stats->hw_masks, 9785 ring0_stats->len / 8, ignore_zero); 9786 } 9787 if (bp->flags & BNXT_FLAG_PORT_STATS) { 9788 struct bnxt_stats_mem *stats = &bp->port_stats; 9789 __le64 *hw_stats = stats->hw_stats; 9790 u64 *sw_stats = stats->sw_stats; 9791 u64 *masks = stats->hw_masks; 9792 int cnt; 9793 9794 cnt = sizeof(struct rx_port_stats) / 8; 9795 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9796 9797 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9798 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9799 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 9800 cnt = sizeof(struct tx_port_stats) / 8; 9801 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 9802 } 9803 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 9804 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 9805 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 9806 } 9807 } 9808 9809 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 9810 { 9811 struct hwrm_port_qstats_input *req; 9812 struct bnxt_pf_info *pf = &bp->pf; 9813 int rc; 9814 9815 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 9816 return 0; 9817 9818 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9819 return -EOPNOTSUPP; 9820 9821 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 9822 if (rc) 9823 return rc; 9824 9825 req->flags = flags; 9826 req->port_id = cpu_to_le16(pf->port_id); 9827 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 9828 BNXT_TX_PORT_STATS_BYTE_OFFSET); 9829 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 9830 return hwrm_req_send(bp, req); 9831 } 9832 9833 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 9834 { 9835 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 9836 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 9837 struct hwrm_port_qstats_ext_output *resp_qs; 9838 struct hwrm_port_qstats_ext_input *req_qs; 9839 struct bnxt_pf_info *pf = &bp->pf; 9840 u32 tx_stat_size; 9841 int rc; 9842 9843 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 9844 return 0; 9845 9846 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 9847 return -EOPNOTSUPP; 9848 9849 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 9850 if (rc) 9851 return rc; 9852 9853 req_qs->flags = flags; 9854 req_qs->port_id = cpu_to_le16(pf->port_id); 9855 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 9856 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 9857 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 9858 sizeof(struct tx_port_stats_ext) : 0; 9859 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 9860 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 9861 resp_qs = hwrm_req_hold(bp, req_qs); 9862 rc = hwrm_req_send(bp, req_qs); 9863 if (!rc) { 9864 bp->fw_rx_stats_ext_size = 9865 le16_to_cpu(resp_qs->rx_stat_size) / 8; 9866 if (BNXT_FW_MAJ(bp) < 220 && 9867 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 9868 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 9869 9870 bp->fw_tx_stats_ext_size = tx_stat_size ? 9871 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 9872 } else { 9873 bp->fw_rx_stats_ext_size = 0; 9874 bp->fw_tx_stats_ext_size = 0; 9875 } 9876 hwrm_req_drop(bp, req_qs); 9877 9878 if (flags) 9879 return rc; 9880 9881 if (bp->fw_tx_stats_ext_size <= 9882 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 9883 bp->pri2cos_valid = 0; 9884 return rc; 9885 } 9886 9887 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 9888 if (rc) 9889 return rc; 9890 9891 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 9892 9893 resp_qc = hwrm_req_hold(bp, req_qc); 9894 rc = hwrm_req_send(bp, req_qc); 9895 if (!rc) { 9896 u8 *pri2cos; 9897 int i, j; 9898 9899 pri2cos = &resp_qc->pri0_cos_queue_id; 9900 for (i = 0; i < 8; i++) { 9901 u8 queue_id = pri2cos[i]; 9902 u8 queue_idx; 9903 9904 /* Per port queue IDs start from 0, 10, 20, etc */ 9905 queue_idx = queue_id % 10; 9906 if (queue_idx > BNXT_MAX_QUEUE) { 9907 bp->pri2cos_valid = false; 9908 hwrm_req_drop(bp, req_qc); 9909 return rc; 9910 } 9911 for (j = 0; j < bp->max_q; j++) { 9912 if (bp->q_ids[j] == queue_id) 9913 bp->pri2cos_idx[i] = queue_idx; 9914 } 9915 } 9916 bp->pri2cos_valid = true; 9917 } 9918 hwrm_req_drop(bp, req_qc); 9919 9920 return rc; 9921 } 9922 9923 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 9924 { 9925 bnxt_hwrm_tunnel_dst_port_free(bp, 9926 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 9927 bnxt_hwrm_tunnel_dst_port_free(bp, 9928 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 9929 } 9930 9931 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 9932 { 9933 int rc, i; 9934 u32 tpa_flags = 0; 9935 9936 if (set_tpa) 9937 tpa_flags = bp->flags & BNXT_FLAG_TPA; 9938 else if (BNXT_NO_FW_ACCESS(bp)) 9939 return 0; 9940 for (i = 0; i < bp->nr_vnics; i++) { 9941 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 9942 if (rc) { 9943 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 9944 i, rc); 9945 return rc; 9946 } 9947 } 9948 return 0; 9949 } 9950 9951 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 9952 { 9953 int i; 9954 9955 for (i = 0; i < bp->nr_vnics; i++) 9956 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 9957 } 9958 9959 static void bnxt_clear_vnic(struct bnxt *bp) 9960 { 9961 if (!bp->vnic_info) 9962 return; 9963 9964 bnxt_hwrm_clear_vnic_filter(bp); 9965 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 9966 /* clear all RSS setting before free vnic ctx */ 9967 bnxt_hwrm_clear_vnic_rss(bp); 9968 bnxt_hwrm_vnic_ctx_free(bp); 9969 } 9970 /* before free the vnic, undo the vnic tpa settings */ 9971 if (bp->flags & BNXT_FLAG_TPA) 9972 bnxt_set_tpa(bp, false); 9973 bnxt_hwrm_vnic_free(bp); 9974 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 9975 bnxt_hwrm_vnic_ctx_free(bp); 9976 } 9977 9978 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 9979 bool irq_re_init) 9980 { 9981 bnxt_clear_vnic(bp); 9982 bnxt_hwrm_ring_free(bp, close_path); 9983 bnxt_hwrm_ring_grp_free(bp); 9984 if (irq_re_init) { 9985 bnxt_hwrm_stat_ctx_free(bp); 9986 bnxt_hwrm_free_tunnel_ports(bp); 9987 } 9988 } 9989 9990 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 9991 { 9992 struct hwrm_func_cfg_input *req; 9993 u8 evb_mode; 9994 int rc; 9995 9996 if (br_mode == BRIDGE_MODE_VEB) 9997 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 9998 else if (br_mode == BRIDGE_MODE_VEPA) 9999 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 10000 else 10001 return -EINVAL; 10002 10003 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10004 if (rc) 10005 return rc; 10006 10007 req->fid = cpu_to_le16(0xffff); 10008 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10009 req->evb_mode = evb_mode; 10010 return hwrm_req_send(bp, req); 10011 } 10012 10013 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10014 { 10015 struct hwrm_func_cfg_input *req; 10016 int rc; 10017 10018 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10019 return 0; 10020 10021 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10022 if (rc) 10023 return rc; 10024 10025 req->fid = cpu_to_le16(0xffff); 10026 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10027 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10028 if (size == 128) 10029 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10030 10031 return hwrm_req_send(bp, req); 10032 } 10033 10034 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10035 { 10036 int rc; 10037 10038 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10039 goto skip_rss_ctx; 10040 10041 /* allocate context for vnic */ 10042 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10043 if (rc) { 10044 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10045 vnic->vnic_id, rc); 10046 goto vnic_setup_err; 10047 } 10048 bp->rsscos_nr_ctxs++; 10049 10050 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10051 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10052 if (rc) { 10053 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10054 vnic->vnic_id, rc); 10055 goto vnic_setup_err; 10056 } 10057 bp->rsscos_nr_ctxs++; 10058 } 10059 10060 skip_rss_ctx: 10061 /* configure default vnic, ring grp */ 10062 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10063 if (rc) { 10064 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10065 vnic->vnic_id, rc); 10066 goto vnic_setup_err; 10067 } 10068 10069 /* Enable RSS hashing on vnic */ 10070 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10071 if (rc) { 10072 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10073 vnic->vnic_id, rc); 10074 goto vnic_setup_err; 10075 } 10076 10077 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10078 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10079 if (rc) { 10080 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10081 vnic->vnic_id, rc); 10082 } 10083 } 10084 10085 vnic_setup_err: 10086 return rc; 10087 } 10088 10089 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10090 { 10091 int rc; 10092 10093 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10094 if (rc) { 10095 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10096 vnic->vnic_id, rc); 10097 return rc; 10098 } 10099 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10100 if (rc) 10101 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10102 vnic->vnic_id, rc); 10103 return rc; 10104 } 10105 10106 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10107 { 10108 int rc, i, nr_ctxs; 10109 10110 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10111 for (i = 0; i < nr_ctxs; i++) { 10112 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10113 if (rc) { 10114 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10115 vnic->vnic_id, i, rc); 10116 break; 10117 } 10118 bp->rsscos_nr_ctxs++; 10119 } 10120 if (i < nr_ctxs) 10121 return -ENOMEM; 10122 10123 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10124 if (rc) 10125 return rc; 10126 10127 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10128 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10129 if (rc) { 10130 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10131 vnic->vnic_id, rc); 10132 } 10133 } 10134 return rc; 10135 } 10136 10137 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10138 { 10139 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10140 return __bnxt_setup_vnic_p5(bp, vnic); 10141 else 10142 return __bnxt_setup_vnic(bp, vnic); 10143 } 10144 10145 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10146 struct bnxt_vnic_info *vnic, 10147 u16 start_rx_ring_idx, int rx_rings) 10148 { 10149 int rc; 10150 10151 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10152 if (rc) { 10153 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10154 vnic->vnic_id, rc); 10155 return rc; 10156 } 10157 return bnxt_setup_vnic(bp, vnic); 10158 } 10159 10160 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10161 { 10162 struct bnxt_vnic_info *vnic; 10163 int i, rc = 0; 10164 10165 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10166 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10167 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10168 } 10169 10170 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10171 return 0; 10172 10173 for (i = 0; i < bp->rx_nr_rings; i++) { 10174 u16 vnic_id = i + 1; 10175 u16 ring_id = i; 10176 10177 if (vnic_id >= bp->nr_vnics) 10178 break; 10179 10180 vnic = &bp->vnic_info[vnic_id]; 10181 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10182 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10183 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10184 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10185 break; 10186 } 10187 return rc; 10188 } 10189 10190 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10191 bool all) 10192 { 10193 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10194 struct bnxt_filter_base *usr_fltr, *tmp; 10195 struct bnxt_ntuple_filter *ntp_fltr; 10196 int i; 10197 10198 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10199 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10200 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10201 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10202 } 10203 if (!all) 10204 return; 10205 10206 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10207 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10208 usr_fltr->fw_vnic_id == rss_ctx->index) { 10209 ntp_fltr = container_of(usr_fltr, 10210 struct bnxt_ntuple_filter, 10211 base); 10212 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10213 bnxt_del_ntp_filter(bp, ntp_fltr); 10214 bnxt_del_one_usr_fltr(bp, usr_fltr); 10215 } 10216 } 10217 10218 if (vnic->rss_table) 10219 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10220 vnic->rss_table, 10221 vnic->rss_table_dma_addr); 10222 kfree(rss_ctx->rss_indir_tbl); 10223 list_del(&rss_ctx->list); 10224 bp->num_rss_ctx--; 10225 clear_bit(rss_ctx->index, bp->rss_ctx_bmap); 10226 kfree(rss_ctx); 10227 } 10228 10229 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10230 { 10231 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10232 struct bnxt_rss_ctx *rss_ctx, *tmp; 10233 10234 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) { 10235 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10236 10237 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10238 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10239 __bnxt_setup_vnic_p5(bp, vnic)) { 10240 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10241 rss_ctx->index); 10242 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10243 } 10244 } 10245 } 10246 10247 struct bnxt_rss_ctx *bnxt_alloc_rss_ctx(struct bnxt *bp) 10248 { 10249 struct bnxt_rss_ctx *rss_ctx = NULL; 10250 10251 rss_ctx = kzalloc(sizeof(*rss_ctx), GFP_KERNEL); 10252 if (rss_ctx) { 10253 rss_ctx->vnic.rss_ctx = rss_ctx; 10254 list_add_tail(&rss_ctx->list, &bp->rss_ctx_list); 10255 bp->num_rss_ctx++; 10256 } 10257 return rss_ctx; 10258 } 10259 10260 void bnxt_clear_rss_ctxs(struct bnxt *bp, bool all) 10261 { 10262 struct bnxt_rss_ctx *rss_ctx, *tmp; 10263 10264 list_for_each_entry_safe(rss_ctx, tmp, &bp->rss_ctx_list, list) 10265 bnxt_del_one_rss_ctx(bp, rss_ctx, all); 10266 10267 if (all) 10268 bitmap_free(bp->rss_ctx_bmap); 10269 } 10270 10271 static void bnxt_init_multi_rss_ctx(struct bnxt *bp) 10272 { 10273 bp->rss_ctx_bmap = bitmap_zalloc(BNXT_RSS_CTX_BMAP_LEN, GFP_KERNEL); 10274 if (bp->rss_ctx_bmap) { 10275 /* burn index 0 since we cannot have context 0 */ 10276 __set_bit(0, bp->rss_ctx_bmap); 10277 INIT_LIST_HEAD(&bp->rss_ctx_list); 10278 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 10279 } 10280 } 10281 10282 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10283 static bool bnxt_promisc_ok(struct bnxt *bp) 10284 { 10285 #ifdef CONFIG_BNXT_SRIOV 10286 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10287 return false; 10288 #endif 10289 return true; 10290 } 10291 10292 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10293 { 10294 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10295 unsigned int rc = 0; 10296 10297 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10298 if (rc) { 10299 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10300 rc); 10301 return rc; 10302 } 10303 10304 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10305 if (rc) { 10306 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10307 rc); 10308 return rc; 10309 } 10310 return rc; 10311 } 10312 10313 static int bnxt_cfg_rx_mode(struct bnxt *); 10314 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10315 10316 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10317 { 10318 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10319 int rc = 0; 10320 unsigned int rx_nr_rings = bp->rx_nr_rings; 10321 10322 if (irq_re_init) { 10323 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10324 if (rc) { 10325 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10326 rc); 10327 goto err_out; 10328 } 10329 } 10330 10331 rc = bnxt_hwrm_ring_alloc(bp); 10332 if (rc) { 10333 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10334 goto err_out; 10335 } 10336 10337 rc = bnxt_hwrm_ring_grp_alloc(bp); 10338 if (rc) { 10339 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10340 goto err_out; 10341 } 10342 10343 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10344 rx_nr_rings--; 10345 10346 /* default vnic 0 */ 10347 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10348 if (rc) { 10349 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10350 goto err_out; 10351 } 10352 10353 if (BNXT_VF(bp)) 10354 bnxt_hwrm_func_qcfg(bp); 10355 10356 rc = bnxt_setup_vnic(bp, vnic); 10357 if (rc) 10358 goto err_out; 10359 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10360 bnxt_hwrm_update_rss_hash_cfg(bp); 10361 10362 if (bp->flags & BNXT_FLAG_RFS) { 10363 rc = bnxt_alloc_rfs_vnics(bp); 10364 if (rc) 10365 goto err_out; 10366 } 10367 10368 if (bp->flags & BNXT_FLAG_TPA) { 10369 rc = bnxt_set_tpa(bp, true); 10370 if (rc) 10371 goto err_out; 10372 } 10373 10374 if (BNXT_VF(bp)) 10375 bnxt_update_vf_mac(bp); 10376 10377 /* Filter for default vnic 0 */ 10378 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10379 if (rc) { 10380 if (BNXT_VF(bp) && rc == -ENODEV) 10381 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10382 else 10383 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10384 goto err_out; 10385 } 10386 vnic->uc_filter_count = 1; 10387 10388 vnic->rx_mask = 0; 10389 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10390 goto skip_rx_mask; 10391 10392 if (bp->dev->flags & IFF_BROADCAST) 10393 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10394 10395 if (bp->dev->flags & IFF_PROMISC) 10396 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10397 10398 if (bp->dev->flags & IFF_ALLMULTI) { 10399 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10400 vnic->mc_list_count = 0; 10401 } else if (bp->dev->flags & IFF_MULTICAST) { 10402 u32 mask = 0; 10403 10404 bnxt_mc_list_updated(bp, &mask); 10405 vnic->rx_mask |= mask; 10406 } 10407 10408 rc = bnxt_cfg_rx_mode(bp); 10409 if (rc) 10410 goto err_out; 10411 10412 skip_rx_mask: 10413 rc = bnxt_hwrm_set_coal(bp); 10414 if (rc) 10415 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10416 rc); 10417 10418 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10419 rc = bnxt_setup_nitroa0_vnic(bp); 10420 if (rc) 10421 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10422 rc); 10423 } 10424 10425 if (BNXT_VF(bp)) { 10426 bnxt_hwrm_func_qcfg(bp); 10427 netdev_update_features(bp->dev); 10428 } 10429 10430 return 0; 10431 10432 err_out: 10433 bnxt_hwrm_resource_free(bp, 0, true); 10434 10435 return rc; 10436 } 10437 10438 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10439 { 10440 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10441 return 0; 10442 } 10443 10444 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10445 { 10446 bnxt_init_cp_rings(bp); 10447 bnxt_init_rx_rings(bp); 10448 bnxt_init_tx_rings(bp); 10449 bnxt_init_ring_grps(bp, irq_re_init); 10450 bnxt_init_vnics(bp); 10451 10452 return bnxt_init_chip(bp, irq_re_init); 10453 } 10454 10455 static int bnxt_set_real_num_queues(struct bnxt *bp) 10456 { 10457 int rc; 10458 struct net_device *dev = bp->dev; 10459 10460 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10461 bp->tx_nr_rings_xdp); 10462 if (rc) 10463 return rc; 10464 10465 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10466 if (rc) 10467 return rc; 10468 10469 #ifdef CONFIG_RFS_ACCEL 10470 if (bp->flags & BNXT_FLAG_RFS) 10471 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 10472 #endif 10473 10474 return rc; 10475 } 10476 10477 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10478 bool shared) 10479 { 10480 int _rx = *rx, _tx = *tx; 10481 10482 if (shared) { 10483 *rx = min_t(int, _rx, max); 10484 *tx = min_t(int, _tx, max); 10485 } else { 10486 if (max < 2) 10487 return -ENOMEM; 10488 10489 while (_rx + _tx > max) { 10490 if (_rx > _tx && _rx > 1) 10491 _rx--; 10492 else if (_tx > 1) 10493 _tx--; 10494 } 10495 *rx = _rx; 10496 *tx = _tx; 10497 } 10498 return 0; 10499 } 10500 10501 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 10502 { 10503 return (tx - tx_xdp) / tx_sets + tx_xdp; 10504 } 10505 10506 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 10507 { 10508 int tcs = bp->num_tc; 10509 10510 if (!tcs) 10511 tcs = 1; 10512 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 10513 } 10514 10515 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 10516 { 10517 int tcs = bp->num_tc; 10518 10519 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 10520 bp->tx_nr_rings_xdp; 10521 } 10522 10523 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10524 bool sh) 10525 { 10526 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 10527 10528 if (tx_cp != *tx) { 10529 int tx_saved = tx_cp, rc; 10530 10531 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 10532 if (rc) 10533 return rc; 10534 if (tx_cp != tx_saved) 10535 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 10536 return 0; 10537 } 10538 return __bnxt_trim_rings(bp, rx, tx, max, sh); 10539 } 10540 10541 static void bnxt_setup_msix(struct bnxt *bp) 10542 { 10543 const int len = sizeof(bp->irq_tbl[0].name); 10544 struct net_device *dev = bp->dev; 10545 int tcs, i; 10546 10547 tcs = bp->num_tc; 10548 if (tcs) { 10549 int i, off, count; 10550 10551 for (i = 0; i < tcs; i++) { 10552 count = bp->tx_nr_rings_per_tc; 10553 off = BNXT_TC_TO_RING_BASE(bp, i); 10554 netdev_set_tc_queue(dev, i, count, off); 10555 } 10556 } 10557 10558 for (i = 0; i < bp->cp_nr_rings; i++) { 10559 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10560 char *attr; 10561 10562 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 10563 attr = "TxRx"; 10564 else if (i < bp->rx_nr_rings) 10565 attr = "rx"; 10566 else 10567 attr = "tx"; 10568 10569 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 10570 attr, i); 10571 bp->irq_tbl[map_idx].handler = bnxt_msix; 10572 } 10573 } 10574 10575 static void bnxt_setup_inta(struct bnxt *bp) 10576 { 10577 const int len = sizeof(bp->irq_tbl[0].name); 10578 10579 if (bp->num_tc) { 10580 netdev_reset_tc(bp->dev); 10581 bp->num_tc = 0; 10582 } 10583 10584 snprintf(bp->irq_tbl[0].name, len, "%s-%s-%d", bp->dev->name, "TxRx", 10585 0); 10586 bp->irq_tbl[0].handler = bnxt_inta; 10587 } 10588 10589 static int bnxt_init_int_mode(struct bnxt *bp); 10590 10591 static int bnxt_setup_int_mode(struct bnxt *bp) 10592 { 10593 int rc; 10594 10595 if (!bp->irq_tbl) { 10596 rc = bnxt_init_int_mode(bp); 10597 if (rc || !bp->irq_tbl) 10598 return rc ?: -ENODEV; 10599 } 10600 10601 if (bp->flags & BNXT_FLAG_USING_MSIX) 10602 bnxt_setup_msix(bp); 10603 else 10604 bnxt_setup_inta(bp); 10605 10606 rc = bnxt_set_real_num_queues(bp); 10607 return rc; 10608 } 10609 10610 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 10611 { 10612 return bp->hw_resc.max_rsscos_ctxs; 10613 } 10614 10615 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 10616 { 10617 return bp->hw_resc.max_vnics; 10618 } 10619 10620 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 10621 { 10622 return bp->hw_resc.max_stat_ctxs; 10623 } 10624 10625 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 10626 { 10627 return bp->hw_resc.max_cp_rings; 10628 } 10629 10630 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 10631 { 10632 unsigned int cp = bp->hw_resc.max_cp_rings; 10633 10634 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10635 cp -= bnxt_get_ulp_msix_num(bp); 10636 10637 return cp; 10638 } 10639 10640 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 10641 { 10642 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10643 10644 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10645 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 10646 10647 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 10648 } 10649 10650 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 10651 { 10652 bp->hw_resc.max_irqs = max_irqs; 10653 } 10654 10655 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 10656 { 10657 unsigned int cp; 10658 10659 cp = bnxt_get_max_func_cp_rings_for_en(bp); 10660 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10661 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 10662 else 10663 return cp - bp->cp_nr_rings; 10664 } 10665 10666 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 10667 { 10668 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 10669 } 10670 10671 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 10672 { 10673 int max_irq = bnxt_get_max_func_irqs(bp); 10674 int total_req = bp->cp_nr_rings + num; 10675 10676 if (max_irq < total_req) { 10677 num = max_irq - bp->cp_nr_rings; 10678 if (num <= 0) 10679 return 0; 10680 } 10681 return num; 10682 } 10683 10684 static int bnxt_get_num_msix(struct bnxt *bp) 10685 { 10686 if (!BNXT_NEW_RM(bp)) 10687 return bnxt_get_max_func_irqs(bp); 10688 10689 return bnxt_nq_rings_in_use(bp); 10690 } 10691 10692 static int bnxt_init_msix(struct bnxt *bp) 10693 { 10694 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp; 10695 struct msix_entry *msix_ent; 10696 10697 total_vecs = bnxt_get_num_msix(bp); 10698 max = bnxt_get_max_func_irqs(bp); 10699 if (total_vecs > max) 10700 total_vecs = max; 10701 10702 if (!total_vecs) 10703 return 0; 10704 10705 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL); 10706 if (!msix_ent) 10707 return -ENOMEM; 10708 10709 for (i = 0; i < total_vecs; i++) { 10710 msix_ent[i].entry = i; 10711 msix_ent[i].vector = 0; 10712 } 10713 10714 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 10715 min = 2; 10716 10717 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs); 10718 ulp_msix = bnxt_get_ulp_msix_num(bp); 10719 if (total_vecs < 0 || total_vecs < ulp_msix) { 10720 rc = -ENODEV; 10721 goto msix_setup_exit; 10722 } 10723 10724 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL); 10725 if (bp->irq_tbl) { 10726 for (i = 0; i < total_vecs; i++) 10727 bp->irq_tbl[i].vector = msix_ent[i].vector; 10728 10729 bp->total_irqs = total_vecs; 10730 /* Trim rings based upon num of vectors allocated */ 10731 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 10732 total_vecs - ulp_msix, min == 1); 10733 if (rc) 10734 goto msix_setup_exit; 10735 10736 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 10737 bp->cp_nr_rings = (min == 1) ? 10738 max_t(int, tx_cp, bp->rx_nr_rings) : 10739 tx_cp + bp->rx_nr_rings; 10740 10741 } else { 10742 rc = -ENOMEM; 10743 goto msix_setup_exit; 10744 } 10745 bp->flags |= BNXT_FLAG_USING_MSIX; 10746 kfree(msix_ent); 10747 return 0; 10748 10749 msix_setup_exit: 10750 netdev_err(bp->dev, "bnxt_init_msix err: %x\n", rc); 10751 kfree(bp->irq_tbl); 10752 bp->irq_tbl = NULL; 10753 pci_disable_msix(bp->pdev); 10754 kfree(msix_ent); 10755 return rc; 10756 } 10757 10758 static int bnxt_init_inta(struct bnxt *bp) 10759 { 10760 bp->irq_tbl = kzalloc(sizeof(struct bnxt_irq), GFP_KERNEL); 10761 if (!bp->irq_tbl) 10762 return -ENOMEM; 10763 10764 bp->total_irqs = 1; 10765 bp->rx_nr_rings = 1; 10766 bp->tx_nr_rings = 1; 10767 bp->cp_nr_rings = 1; 10768 bp->flags |= BNXT_FLAG_SHARED_RINGS; 10769 bp->irq_tbl[0].vector = bp->pdev->irq; 10770 return 0; 10771 } 10772 10773 static int bnxt_init_int_mode(struct bnxt *bp) 10774 { 10775 int rc = -ENODEV; 10776 10777 if (bp->flags & BNXT_FLAG_MSIX_CAP) 10778 rc = bnxt_init_msix(bp); 10779 10780 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) { 10781 /* fallback to INTA */ 10782 rc = bnxt_init_inta(bp); 10783 } 10784 return rc; 10785 } 10786 10787 static void bnxt_clear_int_mode(struct bnxt *bp) 10788 { 10789 if (bp->flags & BNXT_FLAG_USING_MSIX) 10790 pci_disable_msix(bp->pdev); 10791 10792 kfree(bp->irq_tbl); 10793 bp->irq_tbl = NULL; 10794 bp->flags &= ~BNXT_FLAG_USING_MSIX; 10795 } 10796 10797 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 10798 { 10799 bool irq_cleared = false; 10800 int tcs = bp->num_tc; 10801 int irqs_required; 10802 int rc; 10803 10804 if (!bnxt_need_reserve_rings(bp)) 10805 return 0; 10806 10807 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 10808 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 10809 10810 if (ulp_msix > bp->ulp_num_msix_want) 10811 ulp_msix = bp->ulp_num_msix_want; 10812 irqs_required = ulp_msix + bp->cp_nr_rings; 10813 } else { 10814 irqs_required = bnxt_get_num_msix(bp); 10815 } 10816 10817 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 10818 bnxt_ulp_irq_stop(bp); 10819 bnxt_clear_int_mode(bp); 10820 irq_cleared = true; 10821 } 10822 rc = __bnxt_reserve_rings(bp); 10823 if (irq_cleared) { 10824 if (!rc) 10825 rc = bnxt_init_int_mode(bp); 10826 bnxt_ulp_irq_restart(bp, rc); 10827 } 10828 if (rc) { 10829 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 10830 return rc; 10831 } 10832 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 10833 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 10834 netdev_err(bp->dev, "tx ring reservation failure\n"); 10835 netdev_reset_tc(bp->dev); 10836 bp->num_tc = 0; 10837 if (bp->tx_nr_rings_xdp) 10838 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 10839 else 10840 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 10841 return -ENOMEM; 10842 } 10843 return 0; 10844 } 10845 10846 static void bnxt_free_irq(struct bnxt *bp) 10847 { 10848 struct bnxt_irq *irq; 10849 int i; 10850 10851 #ifdef CONFIG_RFS_ACCEL 10852 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 10853 bp->dev->rx_cpu_rmap = NULL; 10854 #endif 10855 if (!bp->irq_tbl || !bp->bnapi) 10856 return; 10857 10858 for (i = 0; i < bp->cp_nr_rings; i++) { 10859 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10860 10861 irq = &bp->irq_tbl[map_idx]; 10862 if (irq->requested) { 10863 if (irq->have_cpumask) { 10864 irq_set_affinity_hint(irq->vector, NULL); 10865 free_cpumask_var(irq->cpu_mask); 10866 irq->have_cpumask = 0; 10867 } 10868 free_irq(irq->vector, bp->bnapi[i]); 10869 } 10870 10871 irq->requested = 0; 10872 } 10873 } 10874 10875 static int bnxt_request_irq(struct bnxt *bp) 10876 { 10877 int i, j, rc = 0; 10878 unsigned long flags = 0; 10879 #ifdef CONFIG_RFS_ACCEL 10880 struct cpu_rmap *rmap; 10881 #endif 10882 10883 rc = bnxt_setup_int_mode(bp); 10884 if (rc) { 10885 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 10886 rc); 10887 return rc; 10888 } 10889 #ifdef CONFIG_RFS_ACCEL 10890 rmap = bp->dev->rx_cpu_rmap; 10891 #endif 10892 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) 10893 flags = IRQF_SHARED; 10894 10895 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 10896 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10897 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 10898 10899 #ifdef CONFIG_RFS_ACCEL 10900 if (rmap && bp->bnapi[i]->rx_ring) { 10901 rc = irq_cpu_rmap_add(rmap, irq->vector); 10902 if (rc) 10903 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 10904 j); 10905 j++; 10906 } 10907 #endif 10908 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 10909 bp->bnapi[i]); 10910 if (rc) 10911 break; 10912 10913 netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector); 10914 irq->requested = 1; 10915 10916 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 10917 int numa_node = dev_to_node(&bp->pdev->dev); 10918 10919 irq->have_cpumask = 1; 10920 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 10921 irq->cpu_mask); 10922 rc = irq_set_affinity_hint(irq->vector, irq->cpu_mask); 10923 if (rc) { 10924 netdev_warn(bp->dev, 10925 "Set affinity failed, IRQ = %d\n", 10926 irq->vector); 10927 break; 10928 } 10929 } 10930 } 10931 return rc; 10932 } 10933 10934 static void bnxt_del_napi(struct bnxt *bp) 10935 { 10936 int i; 10937 10938 if (!bp->bnapi) 10939 return; 10940 10941 for (i = 0; i < bp->rx_nr_rings; i++) 10942 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 10943 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 10944 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 10945 10946 for (i = 0; i < bp->cp_nr_rings; i++) { 10947 struct bnxt_napi *bnapi = bp->bnapi[i]; 10948 10949 __netif_napi_del(&bnapi->napi); 10950 } 10951 /* We called __netif_napi_del(), we need 10952 * to respect an RCU grace period before freeing napi structures. 10953 */ 10954 synchronize_net(); 10955 } 10956 10957 static void bnxt_init_napi(struct bnxt *bp) 10958 { 10959 int i; 10960 unsigned int cp_nr_rings = bp->cp_nr_rings; 10961 struct bnxt_napi *bnapi; 10962 10963 if (bp->flags & BNXT_FLAG_USING_MSIX) { 10964 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 10965 10966 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10967 poll_fn = bnxt_poll_p5; 10968 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10969 cp_nr_rings--; 10970 for (i = 0; i < cp_nr_rings; i++) { 10971 bnapi = bp->bnapi[i]; 10972 netif_napi_add(bp->dev, &bnapi->napi, poll_fn); 10973 } 10974 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10975 bnapi = bp->bnapi[cp_nr_rings]; 10976 netif_napi_add(bp->dev, &bnapi->napi, 10977 bnxt_poll_nitroa0); 10978 } 10979 } else { 10980 bnapi = bp->bnapi[0]; 10981 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll); 10982 } 10983 } 10984 10985 static void bnxt_disable_napi(struct bnxt *bp) 10986 { 10987 int i; 10988 10989 if (!bp->bnapi || 10990 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 10991 return; 10992 10993 for (i = 0; i < bp->cp_nr_rings; i++) { 10994 struct bnxt_napi *bnapi = bp->bnapi[i]; 10995 struct bnxt_cp_ring_info *cpr; 10996 10997 cpr = &bnapi->cp_ring; 10998 if (bnapi->tx_fault) 10999 cpr->sw_stats->tx.tx_resets++; 11000 if (bnapi->in_reset) 11001 cpr->sw_stats->rx.rx_resets++; 11002 napi_disable(&bnapi->napi); 11003 if (bnapi->rx_ring) 11004 cancel_work_sync(&cpr->dim.work); 11005 } 11006 } 11007 11008 static void bnxt_enable_napi(struct bnxt *bp) 11009 { 11010 int i; 11011 11012 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11013 for (i = 0; i < bp->cp_nr_rings; i++) { 11014 struct bnxt_napi *bnapi = bp->bnapi[i]; 11015 struct bnxt_cp_ring_info *cpr; 11016 11017 bnapi->tx_fault = 0; 11018 11019 cpr = &bnapi->cp_ring; 11020 bnapi->in_reset = false; 11021 11022 if (bnapi->rx_ring) { 11023 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11024 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11025 } 11026 napi_enable(&bnapi->napi); 11027 } 11028 } 11029 11030 void bnxt_tx_disable(struct bnxt *bp) 11031 { 11032 int i; 11033 struct bnxt_tx_ring_info *txr; 11034 11035 if (bp->tx_ring) { 11036 for (i = 0; i < bp->tx_nr_rings; i++) { 11037 txr = &bp->tx_ring[i]; 11038 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11039 } 11040 } 11041 /* Make sure napi polls see @dev_state change */ 11042 synchronize_net(); 11043 /* Drop carrier first to prevent TX timeout */ 11044 netif_carrier_off(bp->dev); 11045 /* Stop all TX queues */ 11046 netif_tx_disable(bp->dev); 11047 } 11048 11049 void bnxt_tx_enable(struct bnxt *bp) 11050 { 11051 int i; 11052 struct bnxt_tx_ring_info *txr; 11053 11054 for (i = 0; i < bp->tx_nr_rings; i++) { 11055 txr = &bp->tx_ring[i]; 11056 WRITE_ONCE(txr->dev_state, 0); 11057 } 11058 /* Make sure napi polls see @dev_state change */ 11059 synchronize_net(); 11060 netif_tx_wake_all_queues(bp->dev); 11061 if (BNXT_LINK_IS_UP(bp)) 11062 netif_carrier_on(bp->dev); 11063 } 11064 11065 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11066 { 11067 u8 active_fec = link_info->active_fec_sig_mode & 11068 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11069 11070 switch (active_fec) { 11071 default: 11072 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11073 return "None"; 11074 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11075 return "Clause 74 BaseR"; 11076 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11077 return "Clause 91 RS(528,514)"; 11078 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11079 return "Clause 91 RS544_1XN"; 11080 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11081 return "Clause 91 RS(544,514)"; 11082 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11083 return "Clause 91 RS272_1XN"; 11084 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11085 return "Clause 91 RS(272,257)"; 11086 } 11087 } 11088 11089 void bnxt_report_link(struct bnxt *bp) 11090 { 11091 if (BNXT_LINK_IS_UP(bp)) { 11092 const char *signal = ""; 11093 const char *flow_ctrl; 11094 const char *duplex; 11095 u32 speed; 11096 u16 fec; 11097 11098 netif_carrier_on(bp->dev); 11099 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11100 if (speed == SPEED_UNKNOWN) { 11101 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11102 return; 11103 } 11104 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11105 duplex = "full"; 11106 else 11107 duplex = "half"; 11108 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11109 flow_ctrl = "ON - receive & transmit"; 11110 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11111 flow_ctrl = "ON - transmit"; 11112 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11113 flow_ctrl = "ON - receive"; 11114 else 11115 flow_ctrl = "none"; 11116 if (bp->link_info.phy_qcfg_resp.option_flags & 11117 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11118 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11119 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11120 switch (sig_mode) { 11121 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11122 signal = "(NRZ) "; 11123 break; 11124 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11125 signal = "(PAM4 56Gbps) "; 11126 break; 11127 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11128 signal = "(PAM4 112Gbps) "; 11129 break; 11130 default: 11131 break; 11132 } 11133 } 11134 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11135 speed, signal, duplex, flow_ctrl); 11136 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11137 netdev_info(bp->dev, "EEE is %s\n", 11138 bp->eee.eee_active ? "active" : 11139 "not active"); 11140 fec = bp->link_info.fec_cfg; 11141 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11142 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11143 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11144 bnxt_report_fec(&bp->link_info)); 11145 } else { 11146 netif_carrier_off(bp->dev); 11147 netdev_err(bp->dev, "NIC Link is Down\n"); 11148 } 11149 } 11150 11151 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11152 { 11153 if (!resp->supported_speeds_auto_mode && 11154 !resp->supported_speeds_force_mode && 11155 !resp->supported_pam4_speeds_auto_mode && 11156 !resp->supported_pam4_speeds_force_mode && 11157 !resp->supported_speeds2_auto_mode && 11158 !resp->supported_speeds2_force_mode) 11159 return true; 11160 return false; 11161 } 11162 11163 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11164 { 11165 struct bnxt_link_info *link_info = &bp->link_info; 11166 struct hwrm_port_phy_qcaps_output *resp; 11167 struct hwrm_port_phy_qcaps_input *req; 11168 int rc = 0; 11169 11170 if (bp->hwrm_spec_code < 0x10201) 11171 return 0; 11172 11173 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11174 if (rc) 11175 return rc; 11176 11177 resp = hwrm_req_hold(bp, req); 11178 rc = hwrm_req_send(bp, req); 11179 if (rc) 11180 goto hwrm_phy_qcaps_exit; 11181 11182 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11183 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11184 struct ethtool_keee *eee = &bp->eee; 11185 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11186 11187 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11188 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11189 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11190 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11191 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11192 } 11193 11194 if (bp->hwrm_spec_code >= 0x10a01) { 11195 if (bnxt_phy_qcaps_no_speed(resp)) { 11196 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11197 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11198 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11199 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11200 netdev_info(bp->dev, "Ethernet link enabled\n"); 11201 /* Phy re-enabled, reprobe the speeds */ 11202 link_info->support_auto_speeds = 0; 11203 link_info->support_pam4_auto_speeds = 0; 11204 link_info->support_auto_speeds2 = 0; 11205 } 11206 } 11207 if (resp->supported_speeds_auto_mode) 11208 link_info->support_auto_speeds = 11209 le16_to_cpu(resp->supported_speeds_auto_mode); 11210 if (resp->supported_pam4_speeds_auto_mode) 11211 link_info->support_pam4_auto_speeds = 11212 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11213 if (resp->supported_speeds2_auto_mode) 11214 link_info->support_auto_speeds2 = 11215 le16_to_cpu(resp->supported_speeds2_auto_mode); 11216 11217 bp->port_count = resp->port_cnt; 11218 11219 hwrm_phy_qcaps_exit: 11220 hwrm_req_drop(bp, req); 11221 return rc; 11222 } 11223 11224 static bool bnxt_support_dropped(u16 advertising, u16 supported) 11225 { 11226 u16 diff = advertising ^ supported; 11227 11228 return ((supported | diff) != supported); 11229 } 11230 11231 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 11232 { 11233 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 11234 11235 /* Check if any advertised speeds are no longer supported. The caller 11236 * holds the link_lock mutex, so we can modify link_info settings. 11237 */ 11238 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11239 if (bnxt_support_dropped(link_info->advertising, 11240 link_info->support_auto_speeds2)) { 11241 link_info->advertising = link_info->support_auto_speeds2; 11242 return true; 11243 } 11244 return false; 11245 } 11246 if (bnxt_support_dropped(link_info->advertising, 11247 link_info->support_auto_speeds)) { 11248 link_info->advertising = link_info->support_auto_speeds; 11249 return true; 11250 } 11251 if (bnxt_support_dropped(link_info->advertising_pam4, 11252 link_info->support_pam4_auto_speeds)) { 11253 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 11254 return true; 11255 } 11256 return false; 11257 } 11258 11259 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 11260 { 11261 struct bnxt_link_info *link_info = &bp->link_info; 11262 struct hwrm_port_phy_qcfg_output *resp; 11263 struct hwrm_port_phy_qcfg_input *req; 11264 u8 link_state = link_info->link_state; 11265 bool support_changed; 11266 int rc; 11267 11268 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 11269 if (rc) 11270 return rc; 11271 11272 resp = hwrm_req_hold(bp, req); 11273 rc = hwrm_req_send(bp, req); 11274 if (rc) { 11275 hwrm_req_drop(bp, req); 11276 if (BNXT_VF(bp) && rc == -ENODEV) { 11277 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 11278 rc = 0; 11279 } 11280 return rc; 11281 } 11282 11283 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 11284 link_info->phy_link_status = resp->link; 11285 link_info->duplex = resp->duplex_cfg; 11286 if (bp->hwrm_spec_code >= 0x10800) 11287 link_info->duplex = resp->duplex_state; 11288 link_info->pause = resp->pause; 11289 link_info->auto_mode = resp->auto_mode; 11290 link_info->auto_pause_setting = resp->auto_pause; 11291 link_info->lp_pause = resp->link_partner_adv_pause; 11292 link_info->force_pause_setting = resp->force_pause; 11293 link_info->duplex_setting = resp->duplex_cfg; 11294 if (link_info->phy_link_status == BNXT_LINK_LINK) { 11295 link_info->link_speed = le16_to_cpu(resp->link_speed); 11296 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 11297 link_info->active_lanes = resp->active_lanes; 11298 } else { 11299 link_info->link_speed = 0; 11300 link_info->active_lanes = 0; 11301 } 11302 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 11303 link_info->force_pam4_link_speed = 11304 le16_to_cpu(resp->force_pam4_link_speed); 11305 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 11306 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 11307 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 11308 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 11309 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 11310 link_info->auto_pam4_link_speeds = 11311 le16_to_cpu(resp->auto_pam4_link_speed_mask); 11312 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 11313 link_info->lp_auto_link_speeds = 11314 le16_to_cpu(resp->link_partner_adv_speeds); 11315 link_info->lp_auto_pam4_link_speeds = 11316 resp->link_partner_pam4_adv_speeds; 11317 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 11318 link_info->phy_ver[0] = resp->phy_maj; 11319 link_info->phy_ver[1] = resp->phy_min; 11320 link_info->phy_ver[2] = resp->phy_bld; 11321 link_info->media_type = resp->media_type; 11322 link_info->phy_type = resp->phy_type; 11323 link_info->transceiver = resp->xcvr_pkg_type; 11324 link_info->phy_addr = resp->eee_config_phy_addr & 11325 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 11326 link_info->module_status = resp->module_status; 11327 11328 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 11329 struct ethtool_keee *eee = &bp->eee; 11330 u16 fw_speeds; 11331 11332 eee->eee_active = 0; 11333 if (resp->eee_config_phy_addr & 11334 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 11335 eee->eee_active = 1; 11336 fw_speeds = le16_to_cpu( 11337 resp->link_partner_adv_eee_link_speed_mask); 11338 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 11339 } 11340 11341 /* Pull initial EEE config */ 11342 if (!chng_link_state) { 11343 if (resp->eee_config_phy_addr & 11344 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 11345 eee->eee_enabled = 1; 11346 11347 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 11348 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 11349 11350 if (resp->eee_config_phy_addr & 11351 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 11352 __le32 tmr; 11353 11354 eee->tx_lpi_enabled = 1; 11355 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 11356 eee->tx_lpi_timer = le32_to_cpu(tmr) & 11357 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 11358 } 11359 } 11360 } 11361 11362 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 11363 if (bp->hwrm_spec_code >= 0x10504) { 11364 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 11365 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 11366 } 11367 /* TODO: need to add more logic to report VF link */ 11368 if (chng_link_state) { 11369 if (link_info->phy_link_status == BNXT_LINK_LINK) 11370 link_info->link_state = BNXT_LINK_STATE_UP; 11371 else 11372 link_info->link_state = BNXT_LINK_STATE_DOWN; 11373 if (link_state != link_info->link_state) 11374 bnxt_report_link(bp); 11375 } else { 11376 /* always link down if not require to update link state */ 11377 link_info->link_state = BNXT_LINK_STATE_DOWN; 11378 } 11379 hwrm_req_drop(bp, req); 11380 11381 if (!BNXT_PHY_CFG_ABLE(bp)) 11382 return 0; 11383 11384 support_changed = bnxt_support_speed_dropped(link_info); 11385 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 11386 bnxt_hwrm_set_link_setting(bp, true, false); 11387 return 0; 11388 } 11389 11390 static void bnxt_get_port_module_status(struct bnxt *bp) 11391 { 11392 struct bnxt_link_info *link_info = &bp->link_info; 11393 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 11394 u8 module_status; 11395 11396 if (bnxt_update_link(bp, true)) 11397 return; 11398 11399 module_status = link_info->module_status; 11400 switch (module_status) { 11401 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 11402 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 11403 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 11404 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 11405 bp->pf.port_id); 11406 if (bp->hwrm_spec_code >= 0x10201) { 11407 netdev_warn(bp->dev, "Module part number %s\n", 11408 resp->phy_vendor_partnumber); 11409 } 11410 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 11411 netdev_warn(bp->dev, "TX is disabled\n"); 11412 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 11413 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 11414 } 11415 } 11416 11417 static void 11418 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11419 { 11420 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 11421 if (bp->hwrm_spec_code >= 0x10201) 11422 req->auto_pause = 11423 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 11424 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11425 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 11426 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11427 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 11428 req->enables |= 11429 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11430 } else { 11431 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11432 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 11433 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11434 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 11435 req->enables |= 11436 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 11437 if (bp->hwrm_spec_code >= 0x10201) { 11438 req->auto_pause = req->force_pause; 11439 req->enables |= cpu_to_le32( 11440 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11441 } 11442 } 11443 } 11444 11445 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11446 { 11447 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 11448 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 11449 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11450 req->enables |= 11451 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 11452 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 11453 } else if (bp->link_info.advertising) { 11454 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 11455 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 11456 } 11457 if (bp->link_info.advertising_pam4) { 11458 req->enables |= 11459 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 11460 req->auto_link_pam4_speed_mask = 11461 cpu_to_le16(bp->link_info.advertising_pam4); 11462 } 11463 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 11464 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 11465 } else { 11466 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 11467 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11468 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 11469 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 11470 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 11471 (u32)bp->link_info.req_link_speed); 11472 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 11473 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11474 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 11475 } else { 11476 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11477 } 11478 } 11479 11480 /* tell chimp that the setting takes effect immediately */ 11481 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 11482 } 11483 11484 int bnxt_hwrm_set_pause(struct bnxt *bp) 11485 { 11486 struct hwrm_port_phy_cfg_input *req; 11487 int rc; 11488 11489 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11490 if (rc) 11491 return rc; 11492 11493 bnxt_hwrm_set_pause_common(bp, req); 11494 11495 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 11496 bp->link_info.force_link_chng) 11497 bnxt_hwrm_set_link_common(bp, req); 11498 11499 rc = hwrm_req_send(bp, req); 11500 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 11501 /* since changing of pause setting doesn't trigger any link 11502 * change event, the driver needs to update the current pause 11503 * result upon successfully return of the phy_cfg command 11504 */ 11505 bp->link_info.pause = 11506 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 11507 bp->link_info.auto_pause_setting = 0; 11508 if (!bp->link_info.force_link_chng) 11509 bnxt_report_link(bp); 11510 } 11511 bp->link_info.force_link_chng = false; 11512 return rc; 11513 } 11514 11515 static void bnxt_hwrm_set_eee(struct bnxt *bp, 11516 struct hwrm_port_phy_cfg_input *req) 11517 { 11518 struct ethtool_keee *eee = &bp->eee; 11519 11520 if (eee->eee_enabled) { 11521 u16 eee_speeds; 11522 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 11523 11524 if (eee->tx_lpi_enabled) 11525 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 11526 else 11527 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 11528 11529 req->flags |= cpu_to_le32(flags); 11530 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 11531 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 11532 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 11533 } else { 11534 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 11535 } 11536 } 11537 11538 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 11539 { 11540 struct hwrm_port_phy_cfg_input *req; 11541 int rc; 11542 11543 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11544 if (rc) 11545 return rc; 11546 11547 if (set_pause) 11548 bnxt_hwrm_set_pause_common(bp, req); 11549 11550 bnxt_hwrm_set_link_common(bp, req); 11551 11552 if (set_eee) 11553 bnxt_hwrm_set_eee(bp, req); 11554 return hwrm_req_send(bp, req); 11555 } 11556 11557 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 11558 { 11559 struct hwrm_port_phy_cfg_input *req; 11560 int rc; 11561 11562 if (!BNXT_SINGLE_PF(bp)) 11563 return 0; 11564 11565 if (pci_num_vf(bp->pdev) && 11566 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 11567 return 0; 11568 11569 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11570 if (rc) 11571 return rc; 11572 11573 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 11574 rc = hwrm_req_send(bp, req); 11575 if (!rc) { 11576 mutex_lock(&bp->link_lock); 11577 /* Device is not obliged link down in certain scenarios, even 11578 * when forced. Setting the state unknown is consistent with 11579 * driver startup and will force link state to be reported 11580 * during subsequent open based on PORT_PHY_QCFG. 11581 */ 11582 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 11583 mutex_unlock(&bp->link_lock); 11584 } 11585 return rc; 11586 } 11587 11588 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 11589 { 11590 #ifdef CONFIG_TEE_BNXT_FW 11591 int rc = tee_bnxt_fw_load(); 11592 11593 if (rc) 11594 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 11595 11596 return rc; 11597 #else 11598 netdev_err(bp->dev, "OP-TEE not supported\n"); 11599 return -ENODEV; 11600 #endif 11601 } 11602 11603 static int bnxt_try_recover_fw(struct bnxt *bp) 11604 { 11605 if (bp->fw_health && bp->fw_health->status_reliable) { 11606 int retry = 0, rc; 11607 u32 sts; 11608 11609 do { 11610 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11611 rc = bnxt_hwrm_poll(bp); 11612 if (!BNXT_FW_IS_BOOTING(sts) && 11613 !BNXT_FW_IS_RECOVERING(sts)) 11614 break; 11615 retry++; 11616 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 11617 11618 if (!BNXT_FW_IS_HEALTHY(sts)) { 11619 netdev_err(bp->dev, 11620 "Firmware not responding, status: 0x%x\n", 11621 sts); 11622 rc = -ENODEV; 11623 } 11624 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 11625 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 11626 return bnxt_fw_reset_via_optee(bp); 11627 } 11628 return rc; 11629 } 11630 11631 return -ENODEV; 11632 } 11633 11634 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 11635 { 11636 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11637 11638 if (!BNXT_NEW_RM(bp)) 11639 return; /* no resource reservations required */ 11640 11641 hw_resc->resv_cp_rings = 0; 11642 hw_resc->resv_stat_ctxs = 0; 11643 hw_resc->resv_irqs = 0; 11644 hw_resc->resv_tx_rings = 0; 11645 hw_resc->resv_rx_rings = 0; 11646 hw_resc->resv_hw_ring_grps = 0; 11647 hw_resc->resv_vnics = 0; 11648 hw_resc->resv_rsscos_ctxs = 0; 11649 if (!fw_reset) { 11650 bp->tx_nr_rings = 0; 11651 bp->rx_nr_rings = 0; 11652 } 11653 } 11654 11655 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 11656 { 11657 int rc; 11658 11659 if (!BNXT_NEW_RM(bp)) 11660 return 0; /* no resource reservations required */ 11661 11662 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 11663 if (rc) 11664 netdev_err(bp->dev, "resc_qcaps failed\n"); 11665 11666 bnxt_clear_reservations(bp, fw_reset); 11667 11668 return rc; 11669 } 11670 11671 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 11672 { 11673 struct hwrm_func_drv_if_change_output *resp; 11674 struct hwrm_func_drv_if_change_input *req; 11675 bool fw_reset = !bp->irq_tbl; 11676 bool resc_reinit = false; 11677 int rc, retry = 0; 11678 u32 flags = 0; 11679 11680 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 11681 return 0; 11682 11683 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 11684 if (rc) 11685 return rc; 11686 11687 if (up) 11688 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 11689 resp = hwrm_req_hold(bp, req); 11690 11691 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 11692 while (retry < BNXT_FW_IF_RETRY) { 11693 rc = hwrm_req_send(bp, req); 11694 if (rc != -EAGAIN) 11695 break; 11696 11697 msleep(50); 11698 retry++; 11699 } 11700 11701 if (rc == -EAGAIN) { 11702 hwrm_req_drop(bp, req); 11703 return rc; 11704 } else if (!rc) { 11705 flags = le32_to_cpu(resp->flags); 11706 } else if (up) { 11707 rc = bnxt_try_recover_fw(bp); 11708 fw_reset = true; 11709 } 11710 hwrm_req_drop(bp, req); 11711 if (rc) 11712 return rc; 11713 11714 if (!up) { 11715 bnxt_inv_fw_health_reg(bp); 11716 return 0; 11717 } 11718 11719 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 11720 resc_reinit = true; 11721 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 11722 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 11723 fw_reset = true; 11724 else 11725 bnxt_remap_fw_health_regs(bp); 11726 11727 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 11728 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 11729 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11730 return -ENODEV; 11731 } 11732 if (resc_reinit || fw_reset) { 11733 if (fw_reset) { 11734 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11735 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11736 bnxt_ulp_irq_stop(bp); 11737 bnxt_free_ctx_mem(bp); 11738 bnxt_dcb_free(bp); 11739 rc = bnxt_fw_init_one(bp); 11740 if (rc) { 11741 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11742 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11743 return rc; 11744 } 11745 bnxt_clear_int_mode(bp); 11746 rc = bnxt_init_int_mode(bp); 11747 if (rc) { 11748 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11749 netdev_err(bp->dev, "init int mode failed\n"); 11750 return rc; 11751 } 11752 } 11753 rc = bnxt_cancel_reservations(bp, fw_reset); 11754 } 11755 return rc; 11756 } 11757 11758 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 11759 { 11760 struct hwrm_port_led_qcaps_output *resp; 11761 struct hwrm_port_led_qcaps_input *req; 11762 struct bnxt_pf_info *pf = &bp->pf; 11763 int rc; 11764 11765 bp->num_leds = 0; 11766 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 11767 return 0; 11768 11769 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 11770 if (rc) 11771 return rc; 11772 11773 req->port_id = cpu_to_le16(pf->port_id); 11774 resp = hwrm_req_hold(bp, req); 11775 rc = hwrm_req_send(bp, req); 11776 if (rc) { 11777 hwrm_req_drop(bp, req); 11778 return rc; 11779 } 11780 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 11781 int i; 11782 11783 bp->num_leds = resp->num_leds; 11784 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 11785 bp->num_leds); 11786 for (i = 0; i < bp->num_leds; i++) { 11787 struct bnxt_led_info *led = &bp->leds[i]; 11788 __le16 caps = led->led_state_caps; 11789 11790 if (!led->led_group_id || 11791 !BNXT_LED_ALT_BLINK_CAP(caps)) { 11792 bp->num_leds = 0; 11793 break; 11794 } 11795 } 11796 } 11797 hwrm_req_drop(bp, req); 11798 return 0; 11799 } 11800 11801 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 11802 { 11803 struct hwrm_wol_filter_alloc_output *resp; 11804 struct hwrm_wol_filter_alloc_input *req; 11805 int rc; 11806 11807 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 11808 if (rc) 11809 return rc; 11810 11811 req->port_id = cpu_to_le16(bp->pf.port_id); 11812 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 11813 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 11814 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 11815 11816 resp = hwrm_req_hold(bp, req); 11817 rc = hwrm_req_send(bp, req); 11818 if (!rc) 11819 bp->wol_filter_id = resp->wol_filter_id; 11820 hwrm_req_drop(bp, req); 11821 return rc; 11822 } 11823 11824 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 11825 { 11826 struct hwrm_wol_filter_free_input *req; 11827 int rc; 11828 11829 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 11830 if (rc) 11831 return rc; 11832 11833 req->port_id = cpu_to_le16(bp->pf.port_id); 11834 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 11835 req->wol_filter_id = bp->wol_filter_id; 11836 11837 return hwrm_req_send(bp, req); 11838 } 11839 11840 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 11841 { 11842 struct hwrm_wol_filter_qcfg_output *resp; 11843 struct hwrm_wol_filter_qcfg_input *req; 11844 u16 next_handle = 0; 11845 int rc; 11846 11847 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 11848 if (rc) 11849 return rc; 11850 11851 req->port_id = cpu_to_le16(bp->pf.port_id); 11852 req->handle = cpu_to_le16(handle); 11853 resp = hwrm_req_hold(bp, req); 11854 rc = hwrm_req_send(bp, req); 11855 if (!rc) { 11856 next_handle = le16_to_cpu(resp->next_handle); 11857 if (next_handle != 0) { 11858 if (resp->wol_type == 11859 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 11860 bp->wol = 1; 11861 bp->wol_filter_id = resp->wol_filter_id; 11862 } 11863 } 11864 } 11865 hwrm_req_drop(bp, req); 11866 return next_handle; 11867 } 11868 11869 static void bnxt_get_wol_settings(struct bnxt *bp) 11870 { 11871 u16 handle = 0; 11872 11873 bp->wol = 0; 11874 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 11875 return; 11876 11877 do { 11878 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 11879 } while (handle && handle != 0xffff); 11880 } 11881 11882 static bool bnxt_eee_config_ok(struct bnxt *bp) 11883 { 11884 struct ethtool_keee *eee = &bp->eee; 11885 struct bnxt_link_info *link_info = &bp->link_info; 11886 11887 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 11888 return true; 11889 11890 if (eee->eee_enabled) { 11891 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 11892 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 11893 11894 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 11895 11896 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11897 eee->eee_enabled = 0; 11898 return false; 11899 } 11900 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 11901 linkmode_and(eee->advertised, advertising, 11902 eee->supported); 11903 return false; 11904 } 11905 } 11906 return true; 11907 } 11908 11909 static int bnxt_update_phy_setting(struct bnxt *bp) 11910 { 11911 int rc; 11912 bool update_link = false; 11913 bool update_pause = false; 11914 bool update_eee = false; 11915 struct bnxt_link_info *link_info = &bp->link_info; 11916 11917 rc = bnxt_update_link(bp, true); 11918 if (rc) { 11919 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 11920 rc); 11921 return rc; 11922 } 11923 if (!BNXT_SINGLE_PF(bp)) 11924 return 0; 11925 11926 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11927 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 11928 link_info->req_flow_ctrl) 11929 update_pause = true; 11930 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 11931 link_info->force_pause_setting != link_info->req_flow_ctrl) 11932 update_pause = true; 11933 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 11934 if (BNXT_AUTO_MODE(link_info->auto_mode)) 11935 update_link = true; 11936 if (bnxt_force_speed_updated(link_info)) 11937 update_link = true; 11938 if (link_info->req_duplex != link_info->duplex_setting) 11939 update_link = true; 11940 } else { 11941 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 11942 update_link = true; 11943 if (bnxt_auto_speed_updated(link_info)) 11944 update_link = true; 11945 } 11946 11947 /* The last close may have shutdown the link, so need to call 11948 * PHY_CFG to bring it back up. 11949 */ 11950 if (!BNXT_LINK_IS_UP(bp)) 11951 update_link = true; 11952 11953 if (!bnxt_eee_config_ok(bp)) 11954 update_eee = true; 11955 11956 if (update_link) 11957 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 11958 else if (update_pause) 11959 rc = bnxt_hwrm_set_pause(bp); 11960 if (rc) { 11961 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 11962 rc); 11963 return rc; 11964 } 11965 11966 return rc; 11967 } 11968 11969 /* Common routine to pre-map certain register block to different GRC window. 11970 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows 11971 * in PF and 3 windows in VF that can be customized to map in different 11972 * register blocks. 11973 */ 11974 static void bnxt_preset_reg_win(struct bnxt *bp) 11975 { 11976 if (BNXT_PF(bp)) { 11977 /* CAG registers map to GRC window #4 */ 11978 writel(BNXT_CAG_REG_BASE, 11979 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12); 11980 } 11981 } 11982 11983 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 11984 11985 static int bnxt_reinit_after_abort(struct bnxt *bp) 11986 { 11987 int rc; 11988 11989 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11990 return -EBUSY; 11991 11992 if (bp->dev->reg_state == NETREG_UNREGISTERED) 11993 return -ENODEV; 11994 11995 rc = bnxt_fw_init_one(bp); 11996 if (!rc) { 11997 bnxt_clear_int_mode(bp); 11998 rc = bnxt_init_int_mode(bp); 11999 if (!rc) { 12000 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12001 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12002 } 12003 } 12004 return rc; 12005 } 12006 12007 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 12008 { 12009 struct bnxt_ntuple_filter *ntp_fltr; 12010 struct bnxt_l2_filter *l2_fltr; 12011 12012 if (list_empty(&fltr->list)) 12013 return; 12014 12015 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 12016 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 12017 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 12018 atomic_inc(&l2_fltr->refcnt); 12019 ntp_fltr->l2_fltr = l2_fltr; 12020 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 12021 bnxt_del_ntp_filter(bp, ntp_fltr); 12022 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12023 fltr->sw_id); 12024 } 12025 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12026 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12027 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12028 bnxt_del_l2_filter(bp, l2_fltr); 12029 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12030 fltr->sw_id); 12031 } 12032 } 12033 } 12034 12035 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12036 { 12037 struct bnxt_filter_base *usr_fltr, *tmp; 12038 12039 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12040 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12041 } 12042 12043 static int bnxt_set_xps_mapping(struct bnxt *bp) 12044 { 12045 int numa_node = dev_to_node(&bp->pdev->dev); 12046 unsigned int q_idx, map_idx, cpu, i; 12047 const struct cpumask *cpu_mask_ptr; 12048 int nr_cpus = num_online_cpus(); 12049 cpumask_t *q_map; 12050 int rc = 0; 12051 12052 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12053 if (!q_map) 12054 return -ENOMEM; 12055 12056 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12057 * Each TC has the same number of TX queues. The nth TX queue for each 12058 * TC will have the same CPU mask. 12059 */ 12060 for (i = 0; i < nr_cpus; i++) { 12061 map_idx = i % bp->tx_nr_rings_per_tc; 12062 cpu = cpumask_local_spread(i, numa_node); 12063 cpu_mask_ptr = get_cpu_mask(cpu); 12064 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12065 } 12066 12067 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12068 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12069 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12070 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12071 if (rc) { 12072 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12073 q_idx); 12074 break; 12075 } 12076 } 12077 12078 kfree(q_map); 12079 12080 return rc; 12081 } 12082 12083 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12084 { 12085 int rc = 0; 12086 12087 bnxt_preset_reg_win(bp); 12088 netif_carrier_off(bp->dev); 12089 if (irq_re_init) { 12090 /* Reserve rings now if none were reserved at driver probe. */ 12091 rc = bnxt_init_dflt_ring_mode(bp); 12092 if (rc) { 12093 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12094 return rc; 12095 } 12096 } 12097 rc = bnxt_reserve_rings(bp, irq_re_init); 12098 if (rc) 12099 return rc; 12100 if ((bp->flags & BNXT_FLAG_RFS) && 12101 !(bp->flags & BNXT_FLAG_USING_MSIX)) { 12102 /* disable RFS if falling back to INTA */ 12103 bp->dev->hw_features &= ~NETIF_F_NTUPLE; 12104 bp->flags &= ~BNXT_FLAG_RFS; 12105 } 12106 12107 rc = bnxt_alloc_mem(bp, irq_re_init); 12108 if (rc) { 12109 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12110 goto open_err_free_mem; 12111 } 12112 12113 if (irq_re_init) { 12114 bnxt_init_napi(bp); 12115 rc = bnxt_request_irq(bp); 12116 if (rc) { 12117 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12118 goto open_err_irq; 12119 } 12120 } 12121 12122 rc = bnxt_init_nic(bp, irq_re_init); 12123 if (rc) { 12124 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12125 goto open_err_irq; 12126 } 12127 12128 bnxt_enable_napi(bp); 12129 bnxt_debug_dev_init(bp); 12130 12131 if (link_re_init) { 12132 mutex_lock(&bp->link_lock); 12133 rc = bnxt_update_phy_setting(bp); 12134 mutex_unlock(&bp->link_lock); 12135 if (rc) { 12136 netdev_warn(bp->dev, "failed to update phy settings\n"); 12137 if (BNXT_SINGLE_PF(bp)) { 12138 bp->link_info.phy_retry = true; 12139 bp->link_info.phy_retry_expires = 12140 jiffies + 5 * HZ; 12141 } 12142 } 12143 } 12144 12145 if (irq_re_init) { 12146 udp_tunnel_nic_reset_ntf(bp->dev); 12147 rc = bnxt_set_xps_mapping(bp); 12148 if (rc) 12149 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12150 } 12151 12152 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12153 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12154 static_branch_enable(&bnxt_xdp_locking_key); 12155 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12156 static_branch_disable(&bnxt_xdp_locking_key); 12157 } 12158 set_bit(BNXT_STATE_OPEN, &bp->state); 12159 bnxt_enable_int(bp); 12160 /* Enable TX queues */ 12161 bnxt_tx_enable(bp); 12162 mod_timer(&bp->timer, jiffies + bp->current_interval); 12163 /* Poll link status and check for SFP+ module status */ 12164 mutex_lock(&bp->link_lock); 12165 bnxt_get_port_module_status(bp); 12166 mutex_unlock(&bp->link_lock); 12167 12168 /* VF-reps may need to be re-opened after the PF is re-opened */ 12169 if (BNXT_PF(bp)) 12170 bnxt_vf_reps_open(bp); 12171 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 12172 WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS); 12173 bnxt_ptp_init_rtc(bp, true); 12174 bnxt_ptp_cfg_tstamp_filters(bp); 12175 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12176 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12177 bnxt_cfg_usr_fltrs(bp); 12178 return 0; 12179 12180 open_err_irq: 12181 bnxt_del_napi(bp); 12182 12183 open_err_free_mem: 12184 bnxt_free_skbs(bp); 12185 bnxt_free_irq(bp); 12186 bnxt_free_mem(bp, true); 12187 return rc; 12188 } 12189 12190 /* rtnl_lock held */ 12191 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12192 { 12193 int rc = 0; 12194 12195 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12196 rc = -EIO; 12197 if (!rc) 12198 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12199 if (rc) { 12200 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12201 dev_close(bp->dev); 12202 } 12203 return rc; 12204 } 12205 12206 /* rtnl_lock held, open the NIC half way by allocating all resources, but 12207 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 12208 * self tests. 12209 */ 12210 int bnxt_half_open_nic(struct bnxt *bp) 12211 { 12212 int rc = 0; 12213 12214 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12215 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12216 rc = -ENODEV; 12217 goto half_open_err; 12218 } 12219 12220 rc = bnxt_alloc_mem(bp, true); 12221 if (rc) { 12222 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12223 goto half_open_err; 12224 } 12225 bnxt_init_napi(bp); 12226 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12227 rc = bnxt_init_nic(bp, true); 12228 if (rc) { 12229 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12230 bnxt_del_napi(bp); 12231 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12232 goto half_open_err; 12233 } 12234 return 0; 12235 12236 half_open_err: 12237 bnxt_free_skbs(bp); 12238 bnxt_free_mem(bp, true); 12239 dev_close(bp->dev); 12240 return rc; 12241 } 12242 12243 /* rtnl_lock held, this call can only be made after a previous successful 12244 * call to bnxt_half_open_nic(). 12245 */ 12246 void bnxt_half_close_nic(struct bnxt *bp) 12247 { 12248 bnxt_hwrm_resource_free(bp, false, true); 12249 bnxt_del_napi(bp); 12250 bnxt_free_skbs(bp); 12251 bnxt_free_mem(bp, true); 12252 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12253 } 12254 12255 void bnxt_reenable_sriov(struct bnxt *bp) 12256 { 12257 if (BNXT_PF(bp)) { 12258 struct bnxt_pf_info *pf = &bp->pf; 12259 int n = pf->active_vfs; 12260 12261 if (n) 12262 bnxt_cfg_hw_sriov(bp, &n, true); 12263 } 12264 } 12265 12266 static int bnxt_open(struct net_device *dev) 12267 { 12268 struct bnxt *bp = netdev_priv(dev); 12269 int rc; 12270 12271 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12272 rc = bnxt_reinit_after_abort(bp); 12273 if (rc) { 12274 if (rc == -EBUSY) 12275 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 12276 else 12277 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 12278 return -ENODEV; 12279 } 12280 } 12281 12282 rc = bnxt_hwrm_if_change(bp, true); 12283 if (rc) 12284 return rc; 12285 12286 rc = __bnxt_open_nic(bp, true, true); 12287 if (rc) { 12288 bnxt_hwrm_if_change(bp, false); 12289 } else { 12290 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 12291 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12292 bnxt_queue_sp_work(bp, 12293 BNXT_RESTART_ULP_SP_EVENT); 12294 } 12295 } 12296 12297 return rc; 12298 } 12299 12300 static bool bnxt_drv_busy(struct bnxt *bp) 12301 { 12302 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 12303 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 12304 } 12305 12306 static void bnxt_get_ring_stats(struct bnxt *bp, 12307 struct rtnl_link_stats64 *stats); 12308 12309 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 12310 bool link_re_init) 12311 { 12312 /* Close the VF-reps before closing PF */ 12313 if (BNXT_PF(bp)) 12314 bnxt_vf_reps_close(bp); 12315 12316 /* Change device state to avoid TX queue wake up's */ 12317 bnxt_tx_disable(bp); 12318 12319 clear_bit(BNXT_STATE_OPEN, &bp->state); 12320 smp_mb__after_atomic(); 12321 while (bnxt_drv_busy(bp)) 12322 msleep(20); 12323 12324 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12325 bnxt_clear_rss_ctxs(bp, false); 12326 /* Flush rings and disable interrupts */ 12327 bnxt_shutdown_nic(bp, irq_re_init); 12328 12329 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 12330 12331 bnxt_debug_dev_exit(bp); 12332 bnxt_disable_napi(bp); 12333 del_timer_sync(&bp->timer); 12334 bnxt_free_skbs(bp); 12335 12336 /* Save ring stats before shutdown */ 12337 if (bp->bnapi && irq_re_init) { 12338 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 12339 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 12340 } 12341 if (irq_re_init) { 12342 bnxt_free_irq(bp); 12343 bnxt_del_napi(bp); 12344 } 12345 bnxt_free_mem(bp, irq_re_init); 12346 } 12347 12348 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12349 { 12350 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12351 /* If we get here, it means firmware reset is in progress 12352 * while we are trying to close. We can safely proceed with 12353 * the close because we are holding rtnl_lock(). Some firmware 12354 * messages may fail as we proceed to close. We set the 12355 * ABORT_ERR flag here so that the FW reset thread will later 12356 * abort when it gets the rtnl_lock() and sees the flag. 12357 */ 12358 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 12359 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12360 } 12361 12362 #ifdef CONFIG_BNXT_SRIOV 12363 if (bp->sriov_cfg) { 12364 int rc; 12365 12366 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 12367 !bp->sriov_cfg, 12368 BNXT_SRIOV_CFG_WAIT_TMO); 12369 if (!rc) 12370 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 12371 else if (rc < 0) 12372 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 12373 } 12374 #endif 12375 __bnxt_close_nic(bp, irq_re_init, link_re_init); 12376 } 12377 12378 static int bnxt_close(struct net_device *dev) 12379 { 12380 struct bnxt *bp = netdev_priv(dev); 12381 12382 bnxt_close_nic(bp, true, true); 12383 bnxt_hwrm_shutdown_link(bp); 12384 bnxt_hwrm_if_change(bp, false); 12385 return 0; 12386 } 12387 12388 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 12389 u16 *val) 12390 { 12391 struct hwrm_port_phy_mdio_read_output *resp; 12392 struct hwrm_port_phy_mdio_read_input *req; 12393 int rc; 12394 12395 if (bp->hwrm_spec_code < 0x10a00) 12396 return -EOPNOTSUPP; 12397 12398 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 12399 if (rc) 12400 return rc; 12401 12402 req->port_id = cpu_to_le16(bp->pf.port_id); 12403 req->phy_addr = phy_addr; 12404 req->reg_addr = cpu_to_le16(reg & 0x1f); 12405 if (mdio_phy_id_is_c45(phy_addr)) { 12406 req->cl45_mdio = 1; 12407 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12408 req->dev_addr = mdio_phy_id_devad(phy_addr); 12409 req->reg_addr = cpu_to_le16(reg); 12410 } 12411 12412 resp = hwrm_req_hold(bp, req); 12413 rc = hwrm_req_send(bp, req); 12414 if (!rc) 12415 *val = le16_to_cpu(resp->reg_data); 12416 hwrm_req_drop(bp, req); 12417 return rc; 12418 } 12419 12420 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 12421 u16 val) 12422 { 12423 struct hwrm_port_phy_mdio_write_input *req; 12424 int rc; 12425 12426 if (bp->hwrm_spec_code < 0x10a00) 12427 return -EOPNOTSUPP; 12428 12429 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 12430 if (rc) 12431 return rc; 12432 12433 req->port_id = cpu_to_le16(bp->pf.port_id); 12434 req->phy_addr = phy_addr; 12435 req->reg_addr = cpu_to_le16(reg & 0x1f); 12436 if (mdio_phy_id_is_c45(phy_addr)) { 12437 req->cl45_mdio = 1; 12438 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12439 req->dev_addr = mdio_phy_id_devad(phy_addr); 12440 req->reg_addr = cpu_to_le16(reg); 12441 } 12442 req->reg_data = cpu_to_le16(val); 12443 12444 return hwrm_req_send(bp, req); 12445 } 12446 12447 /* rtnl_lock held */ 12448 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12449 { 12450 struct mii_ioctl_data *mdio = if_mii(ifr); 12451 struct bnxt *bp = netdev_priv(dev); 12452 int rc; 12453 12454 switch (cmd) { 12455 case SIOCGMIIPHY: 12456 mdio->phy_id = bp->link_info.phy_addr; 12457 12458 fallthrough; 12459 case SIOCGMIIREG: { 12460 u16 mii_regval = 0; 12461 12462 if (!netif_running(dev)) 12463 return -EAGAIN; 12464 12465 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 12466 &mii_regval); 12467 mdio->val_out = mii_regval; 12468 return rc; 12469 } 12470 12471 case SIOCSMIIREG: 12472 if (!netif_running(dev)) 12473 return -EAGAIN; 12474 12475 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 12476 mdio->val_in); 12477 12478 case SIOCSHWTSTAMP: 12479 return bnxt_hwtstamp_set(dev, ifr); 12480 12481 case SIOCGHWTSTAMP: 12482 return bnxt_hwtstamp_get(dev, ifr); 12483 12484 default: 12485 /* do nothing */ 12486 break; 12487 } 12488 return -EOPNOTSUPP; 12489 } 12490 12491 static void bnxt_get_ring_stats(struct bnxt *bp, 12492 struct rtnl_link_stats64 *stats) 12493 { 12494 int i; 12495 12496 for (i = 0; i < bp->cp_nr_rings; i++) { 12497 struct bnxt_napi *bnapi = bp->bnapi[i]; 12498 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12499 u64 *sw = cpr->stats.sw_stats; 12500 12501 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 12502 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12503 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 12504 12505 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 12506 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 12507 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 12508 12509 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 12510 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 12511 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 12512 12513 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 12514 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 12515 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 12516 12517 stats->rx_missed_errors += 12518 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 12519 12520 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12521 12522 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 12523 12524 stats->rx_dropped += 12525 cpr->sw_stats->rx.rx_netpoll_discards + 12526 cpr->sw_stats->rx.rx_oom_discards; 12527 } 12528 } 12529 12530 static void bnxt_add_prev_stats(struct bnxt *bp, 12531 struct rtnl_link_stats64 *stats) 12532 { 12533 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 12534 12535 stats->rx_packets += prev_stats->rx_packets; 12536 stats->tx_packets += prev_stats->tx_packets; 12537 stats->rx_bytes += prev_stats->rx_bytes; 12538 stats->tx_bytes += prev_stats->tx_bytes; 12539 stats->rx_missed_errors += prev_stats->rx_missed_errors; 12540 stats->multicast += prev_stats->multicast; 12541 stats->rx_dropped += prev_stats->rx_dropped; 12542 stats->tx_dropped += prev_stats->tx_dropped; 12543 } 12544 12545 static void 12546 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 12547 { 12548 struct bnxt *bp = netdev_priv(dev); 12549 12550 set_bit(BNXT_STATE_READ_STATS, &bp->state); 12551 /* Make sure bnxt_close_nic() sees that we are reading stats before 12552 * we check the BNXT_STATE_OPEN flag. 12553 */ 12554 smp_mb__after_atomic(); 12555 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12556 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12557 *stats = bp->net_stats_prev; 12558 return; 12559 } 12560 12561 bnxt_get_ring_stats(bp, stats); 12562 bnxt_add_prev_stats(bp, stats); 12563 12564 if (bp->flags & BNXT_FLAG_PORT_STATS) { 12565 u64 *rx = bp->port_stats.sw_stats; 12566 u64 *tx = bp->port_stats.sw_stats + 12567 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 12568 12569 stats->rx_crc_errors = 12570 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 12571 stats->rx_frame_errors = 12572 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 12573 stats->rx_length_errors = 12574 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 12575 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 12576 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 12577 stats->rx_errors = 12578 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 12579 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 12580 stats->collisions = 12581 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 12582 stats->tx_fifo_errors = 12583 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 12584 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 12585 } 12586 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12587 } 12588 12589 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 12590 struct bnxt_total_ring_err_stats *stats, 12591 struct bnxt_cp_ring_info *cpr) 12592 { 12593 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 12594 u64 *hw_stats = cpr->stats.sw_stats; 12595 12596 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 12597 stats->rx_total_resets += sw_stats->rx.rx_resets; 12598 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 12599 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 12600 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 12601 stats->rx_total_ring_discards += 12602 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 12603 stats->tx_total_resets += sw_stats->tx.tx_resets; 12604 stats->tx_total_ring_discards += 12605 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 12606 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 12607 } 12608 12609 void bnxt_get_ring_err_stats(struct bnxt *bp, 12610 struct bnxt_total_ring_err_stats *stats) 12611 { 12612 int i; 12613 12614 for (i = 0; i < bp->cp_nr_rings; i++) 12615 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 12616 } 12617 12618 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 12619 { 12620 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12621 struct net_device *dev = bp->dev; 12622 struct netdev_hw_addr *ha; 12623 u8 *haddr; 12624 int mc_count = 0; 12625 bool update = false; 12626 int off = 0; 12627 12628 netdev_for_each_mc_addr(ha, dev) { 12629 if (mc_count >= BNXT_MAX_MC_ADDRS) { 12630 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12631 vnic->mc_list_count = 0; 12632 return false; 12633 } 12634 haddr = ha->addr; 12635 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 12636 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 12637 update = true; 12638 } 12639 off += ETH_ALEN; 12640 mc_count++; 12641 } 12642 if (mc_count) 12643 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12644 12645 if (mc_count != vnic->mc_list_count) { 12646 vnic->mc_list_count = mc_count; 12647 update = true; 12648 } 12649 return update; 12650 } 12651 12652 static bool bnxt_uc_list_updated(struct bnxt *bp) 12653 { 12654 struct net_device *dev = bp->dev; 12655 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12656 struct netdev_hw_addr *ha; 12657 int off = 0; 12658 12659 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 12660 return true; 12661 12662 netdev_for_each_uc_addr(ha, dev) { 12663 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 12664 return true; 12665 12666 off += ETH_ALEN; 12667 } 12668 return false; 12669 } 12670 12671 static void bnxt_set_rx_mode(struct net_device *dev) 12672 { 12673 struct bnxt *bp = netdev_priv(dev); 12674 struct bnxt_vnic_info *vnic; 12675 bool mc_update = false; 12676 bool uc_update; 12677 u32 mask; 12678 12679 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 12680 return; 12681 12682 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12683 mask = vnic->rx_mask; 12684 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 12685 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 12686 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 12687 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 12688 12689 if (dev->flags & IFF_PROMISC) 12690 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12691 12692 uc_update = bnxt_uc_list_updated(bp); 12693 12694 if (dev->flags & IFF_BROADCAST) 12695 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 12696 if (dev->flags & IFF_ALLMULTI) { 12697 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12698 vnic->mc_list_count = 0; 12699 } else if (dev->flags & IFF_MULTICAST) { 12700 mc_update = bnxt_mc_list_updated(bp, &mask); 12701 } 12702 12703 if (mask != vnic->rx_mask || uc_update || mc_update) { 12704 vnic->rx_mask = mask; 12705 12706 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12707 } 12708 } 12709 12710 static int bnxt_cfg_rx_mode(struct bnxt *bp) 12711 { 12712 struct net_device *dev = bp->dev; 12713 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12714 struct netdev_hw_addr *ha; 12715 int i, off = 0, rc; 12716 bool uc_update; 12717 12718 netif_addr_lock_bh(dev); 12719 uc_update = bnxt_uc_list_updated(bp); 12720 netif_addr_unlock_bh(dev); 12721 12722 if (!uc_update) 12723 goto skip_uc; 12724 12725 for (i = 1; i < vnic->uc_filter_count; i++) { 12726 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 12727 12728 bnxt_hwrm_l2_filter_free(bp, fltr); 12729 bnxt_del_l2_filter(bp, fltr); 12730 } 12731 12732 vnic->uc_filter_count = 1; 12733 12734 netif_addr_lock_bh(dev); 12735 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 12736 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12737 } else { 12738 netdev_for_each_uc_addr(ha, dev) { 12739 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 12740 off += ETH_ALEN; 12741 vnic->uc_filter_count++; 12742 } 12743 } 12744 netif_addr_unlock_bh(dev); 12745 12746 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 12747 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 12748 if (rc) { 12749 if (BNXT_VF(bp) && rc == -ENODEV) { 12750 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12751 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 12752 else 12753 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 12754 rc = 0; 12755 } else { 12756 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 12757 } 12758 vnic->uc_filter_count = i; 12759 return rc; 12760 } 12761 } 12762 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12763 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 12764 12765 skip_uc: 12766 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 12767 !bnxt_promisc_ok(bp)) 12768 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12769 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12770 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 12771 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 12772 rc); 12773 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12774 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12775 vnic->mc_list_count = 0; 12776 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 12777 } 12778 if (rc) 12779 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 12780 rc); 12781 12782 return rc; 12783 } 12784 12785 static bool bnxt_can_reserve_rings(struct bnxt *bp) 12786 { 12787 #ifdef CONFIG_BNXT_SRIOV 12788 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 12789 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12790 12791 /* No minimum rings were provisioned by the PF. Don't 12792 * reserve rings by default when device is down. 12793 */ 12794 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 12795 return true; 12796 12797 if (!netif_running(bp->dev)) 12798 return false; 12799 } 12800 #endif 12801 return true; 12802 } 12803 12804 /* If the chip and firmware supports RFS */ 12805 static bool bnxt_rfs_supported(struct bnxt *bp) 12806 { 12807 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 12808 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 12809 return true; 12810 return false; 12811 } 12812 /* 212 firmware is broken for aRFS */ 12813 if (BNXT_FW_MAJ(bp) == 212) 12814 return false; 12815 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 12816 return true; 12817 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 12818 return true; 12819 return false; 12820 } 12821 12822 /* If runtime conditions support RFS */ 12823 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 12824 { 12825 struct bnxt_hw_rings hwr = {0}; 12826 int max_vnics, max_rss_ctxs; 12827 12828 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 12829 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 12830 return bnxt_rfs_supported(bp); 12831 12832 if (!(bp->flags & BNXT_FLAG_MSIX_CAP) || !bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 12833 return false; 12834 12835 hwr.grp = bp->rx_nr_rings; 12836 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 12837 if (new_rss_ctx) 12838 hwr.vnic++; 12839 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 12840 max_vnics = bnxt_get_max_func_vnics(bp); 12841 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 12842 12843 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 12844 if (bp->rx_nr_rings > 1) 12845 netdev_warn(bp->dev, 12846 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 12847 min(max_rss_ctxs - 1, max_vnics - 1)); 12848 return false; 12849 } 12850 12851 if (!BNXT_NEW_RM(bp)) 12852 return true; 12853 12854 if (hwr.vnic == bp->hw_resc.resv_vnics && 12855 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12856 return true; 12857 12858 bnxt_hwrm_reserve_rings(bp, &hwr); 12859 if (hwr.vnic <= bp->hw_resc.resv_vnics && 12860 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 12861 return true; 12862 12863 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 12864 hwr.vnic = 1; 12865 hwr.rss_ctx = 0; 12866 bnxt_hwrm_reserve_rings(bp, &hwr); 12867 return false; 12868 } 12869 12870 static netdev_features_t bnxt_fix_features(struct net_device *dev, 12871 netdev_features_t features) 12872 { 12873 struct bnxt *bp = netdev_priv(dev); 12874 netdev_features_t vlan_features; 12875 12876 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 12877 features &= ~NETIF_F_NTUPLE; 12878 12879 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 12880 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 12881 12882 if (!(features & NETIF_F_GRO)) 12883 features &= ~NETIF_F_GRO_HW; 12884 12885 if (features & NETIF_F_GRO_HW) 12886 features &= ~NETIF_F_LRO; 12887 12888 /* Both CTAG and STAG VLAN accelaration on the RX side have to be 12889 * turned on or off together. 12890 */ 12891 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 12892 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 12893 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12894 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12895 else if (vlan_features) 12896 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 12897 } 12898 #ifdef CONFIG_BNXT_SRIOV 12899 if (BNXT_VF(bp) && bp->vf.vlan) 12900 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 12901 #endif 12902 return features; 12903 } 12904 12905 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 12906 bool link_re_init, u32 flags, bool update_tpa) 12907 { 12908 bnxt_close_nic(bp, irq_re_init, link_re_init); 12909 bp->flags = flags; 12910 if (update_tpa) 12911 bnxt_set_ring_params(bp); 12912 return bnxt_open_nic(bp, irq_re_init, link_re_init); 12913 } 12914 12915 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 12916 { 12917 bool update_tpa = false, update_ntuple = false; 12918 struct bnxt *bp = netdev_priv(dev); 12919 u32 flags = bp->flags; 12920 u32 changes; 12921 int rc = 0; 12922 bool re_init = false; 12923 12924 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 12925 if (features & NETIF_F_GRO_HW) 12926 flags |= BNXT_FLAG_GRO; 12927 else if (features & NETIF_F_LRO) 12928 flags |= BNXT_FLAG_LRO; 12929 12930 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 12931 flags &= ~BNXT_FLAG_TPA; 12932 12933 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 12934 flags |= BNXT_FLAG_STRIP_VLAN; 12935 12936 if (features & NETIF_F_NTUPLE) 12937 flags |= BNXT_FLAG_RFS; 12938 else 12939 bnxt_clear_usr_fltrs(bp, true); 12940 12941 changes = flags ^ bp->flags; 12942 if (changes & BNXT_FLAG_TPA) { 12943 update_tpa = true; 12944 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 12945 (flags & BNXT_FLAG_TPA) == 0 || 12946 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 12947 re_init = true; 12948 } 12949 12950 if (changes & ~BNXT_FLAG_TPA) 12951 re_init = true; 12952 12953 if (changes & BNXT_FLAG_RFS) 12954 update_ntuple = true; 12955 12956 if (flags != bp->flags) { 12957 u32 old_flags = bp->flags; 12958 12959 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12960 bp->flags = flags; 12961 if (update_tpa) 12962 bnxt_set_ring_params(bp); 12963 return rc; 12964 } 12965 12966 if (update_ntuple) 12967 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 12968 12969 if (re_init) 12970 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 12971 12972 if (update_tpa) { 12973 bp->flags = flags; 12974 rc = bnxt_set_tpa(bp, 12975 (flags & BNXT_FLAG_TPA) ? 12976 true : false); 12977 if (rc) 12978 bp->flags = old_flags; 12979 } 12980 } 12981 return rc; 12982 } 12983 12984 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 12985 u8 **nextp) 12986 { 12987 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 12988 struct hop_jumbo_hdr *jhdr; 12989 int hdr_count = 0; 12990 u8 *nexthdr; 12991 int start; 12992 12993 /* Check that there are at most 2 IPv6 extension headers, no 12994 * fragment header, and each is <= 64 bytes. 12995 */ 12996 start = nw_off + sizeof(*ip6h); 12997 nexthdr = &ip6h->nexthdr; 12998 while (ipv6_ext_hdr(*nexthdr)) { 12999 struct ipv6_opt_hdr *hp; 13000 int hdrlen; 13001 13002 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 13003 *nexthdr == NEXTHDR_FRAGMENT) 13004 return false; 13005 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 13006 skb_headlen(skb), NULL); 13007 if (!hp) 13008 return false; 13009 if (*nexthdr == NEXTHDR_AUTH) 13010 hdrlen = ipv6_authlen(hp); 13011 else 13012 hdrlen = ipv6_optlen(hp); 13013 13014 if (hdrlen > 64) 13015 return false; 13016 13017 /* The ext header may be a hop-by-hop header inserted for 13018 * big TCP purposes. This will be removed before sending 13019 * from NIC, so do not count it. 13020 */ 13021 if (*nexthdr == NEXTHDR_HOP) { 13022 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 13023 goto increment_hdr; 13024 13025 jhdr = (struct hop_jumbo_hdr *)hp; 13026 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 13027 jhdr->nexthdr != IPPROTO_TCP) 13028 goto increment_hdr; 13029 13030 goto next_hdr; 13031 } 13032 increment_hdr: 13033 hdr_count++; 13034 next_hdr: 13035 nexthdr = &hp->nexthdr; 13036 start += hdrlen; 13037 } 13038 if (nextp) { 13039 /* Caller will check inner protocol */ 13040 if (skb->encapsulation) { 13041 *nextp = nexthdr; 13042 return true; 13043 } 13044 *nextp = NULL; 13045 } 13046 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13047 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13048 } 13049 13050 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13051 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13052 { 13053 struct udphdr *uh = udp_hdr(skb); 13054 __be16 udp_port = uh->dest; 13055 13056 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13057 udp_port != bp->vxlan_gpe_port) 13058 return false; 13059 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13060 struct ethhdr *eh = inner_eth_hdr(skb); 13061 13062 switch (eh->h_proto) { 13063 case htons(ETH_P_IP): 13064 return true; 13065 case htons(ETH_P_IPV6): 13066 return bnxt_exthdr_check(bp, skb, 13067 skb_inner_network_offset(skb), 13068 NULL); 13069 } 13070 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13071 return true; 13072 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13073 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13074 NULL); 13075 } 13076 return false; 13077 } 13078 13079 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13080 { 13081 switch (l4_proto) { 13082 case IPPROTO_UDP: 13083 return bnxt_udp_tunl_check(bp, skb); 13084 case IPPROTO_IPIP: 13085 return true; 13086 case IPPROTO_GRE: { 13087 switch (skb->inner_protocol) { 13088 default: 13089 return false; 13090 case htons(ETH_P_IP): 13091 return true; 13092 case htons(ETH_P_IPV6): 13093 fallthrough; 13094 } 13095 } 13096 case IPPROTO_IPV6: 13097 /* Check ext headers of inner ipv6 */ 13098 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13099 NULL); 13100 } 13101 return false; 13102 } 13103 13104 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13105 struct net_device *dev, 13106 netdev_features_t features) 13107 { 13108 struct bnxt *bp = netdev_priv(dev); 13109 u8 *l4_proto; 13110 13111 features = vlan_features_check(skb, features); 13112 switch (vlan_get_protocol(skb)) { 13113 case htons(ETH_P_IP): 13114 if (!skb->encapsulation) 13115 return features; 13116 l4_proto = &ip_hdr(skb)->protocol; 13117 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13118 return features; 13119 break; 13120 case htons(ETH_P_IPV6): 13121 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13122 &l4_proto)) 13123 break; 13124 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13125 return features; 13126 break; 13127 } 13128 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13129 } 13130 13131 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13132 u32 *reg_buf) 13133 { 13134 struct hwrm_dbg_read_direct_output *resp; 13135 struct hwrm_dbg_read_direct_input *req; 13136 __le32 *dbg_reg_buf; 13137 dma_addr_t mapping; 13138 int rc, i; 13139 13140 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13141 if (rc) 13142 return rc; 13143 13144 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13145 &mapping); 13146 if (!dbg_reg_buf) { 13147 rc = -ENOMEM; 13148 goto dbg_rd_reg_exit; 13149 } 13150 13151 req->host_dest_addr = cpu_to_le64(mapping); 13152 13153 resp = hwrm_req_hold(bp, req); 13154 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13155 req->read_len32 = cpu_to_le32(num_words); 13156 13157 rc = hwrm_req_send(bp, req); 13158 if (rc || resp->error_code) { 13159 rc = -EIO; 13160 goto dbg_rd_reg_exit; 13161 } 13162 for (i = 0; i < num_words; i++) 13163 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13164 13165 dbg_rd_reg_exit: 13166 hwrm_req_drop(bp, req); 13167 return rc; 13168 } 13169 13170 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13171 u32 ring_id, u32 *prod, u32 *cons) 13172 { 13173 struct hwrm_dbg_ring_info_get_output *resp; 13174 struct hwrm_dbg_ring_info_get_input *req; 13175 int rc; 13176 13177 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13178 if (rc) 13179 return rc; 13180 13181 req->ring_type = ring_type; 13182 req->fw_ring_id = cpu_to_le32(ring_id); 13183 resp = hwrm_req_hold(bp, req); 13184 rc = hwrm_req_send(bp, req); 13185 if (!rc) { 13186 *prod = le32_to_cpu(resp->producer_index); 13187 *cons = le32_to_cpu(resp->consumer_index); 13188 } 13189 hwrm_req_drop(bp, req); 13190 return rc; 13191 } 13192 13193 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13194 { 13195 struct bnxt_tx_ring_info *txr; 13196 int i = bnapi->index, j; 13197 13198 bnxt_for_each_napi_tx(j, bnapi, txr) 13199 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13200 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13201 txr->tx_cons); 13202 } 13203 13204 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13205 { 13206 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13207 int i = bnapi->index; 13208 13209 if (!rxr) 13210 return; 13211 13212 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13213 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13214 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13215 rxr->rx_sw_agg_prod); 13216 } 13217 13218 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13219 { 13220 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13221 int i = bnapi->index; 13222 13223 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13224 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13225 } 13226 13227 static void bnxt_dbg_dump_states(struct bnxt *bp) 13228 { 13229 int i; 13230 struct bnxt_napi *bnapi; 13231 13232 for (i = 0; i < bp->cp_nr_rings; i++) { 13233 bnapi = bp->bnapi[i]; 13234 if (netif_msg_drv(bp)) { 13235 bnxt_dump_tx_sw_state(bnapi); 13236 bnxt_dump_rx_sw_state(bnapi); 13237 bnxt_dump_cp_sw_state(bnapi); 13238 } 13239 } 13240 } 13241 13242 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 13243 { 13244 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 13245 struct hwrm_ring_reset_input *req; 13246 struct bnxt_napi *bnapi = rxr->bnapi; 13247 struct bnxt_cp_ring_info *cpr; 13248 u16 cp_ring_id; 13249 int rc; 13250 13251 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 13252 if (rc) 13253 return rc; 13254 13255 cpr = &bnapi->cp_ring; 13256 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 13257 req->cmpl_ring = cpu_to_le16(cp_ring_id); 13258 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 13259 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 13260 return hwrm_req_send_silent(bp, req); 13261 } 13262 13263 static void bnxt_reset_task(struct bnxt *bp, bool silent) 13264 { 13265 if (!silent) 13266 bnxt_dbg_dump_states(bp); 13267 if (netif_running(bp->dev)) { 13268 bnxt_close_nic(bp, !silent, false); 13269 bnxt_open_nic(bp, !silent, false); 13270 } 13271 } 13272 13273 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 13274 { 13275 struct bnxt *bp = netdev_priv(dev); 13276 13277 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 13278 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 13279 } 13280 13281 static void bnxt_fw_health_check(struct bnxt *bp) 13282 { 13283 struct bnxt_fw_health *fw_health = bp->fw_health; 13284 struct pci_dev *pdev = bp->pdev; 13285 u32 val; 13286 13287 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13288 return; 13289 13290 /* Make sure it is enabled before checking the tmr_counter. */ 13291 smp_rmb(); 13292 if (fw_health->tmr_counter) { 13293 fw_health->tmr_counter--; 13294 return; 13295 } 13296 13297 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13298 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 13299 fw_health->arrests++; 13300 goto fw_reset; 13301 } 13302 13303 fw_health->last_fw_heartbeat = val; 13304 13305 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13306 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 13307 fw_health->discoveries++; 13308 goto fw_reset; 13309 } 13310 13311 fw_health->tmr_counter = fw_health->tmr_multiplier; 13312 return; 13313 13314 fw_reset: 13315 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 13316 } 13317 13318 static void bnxt_timer(struct timer_list *t) 13319 { 13320 struct bnxt *bp = from_timer(bp, t, timer); 13321 struct net_device *dev = bp->dev; 13322 13323 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 13324 return; 13325 13326 if (atomic_read(&bp->intr_sem) != 0) 13327 goto bnxt_restart_timer; 13328 13329 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 13330 bnxt_fw_health_check(bp); 13331 13332 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 13333 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 13334 13335 if (bnxt_tc_flower_enabled(bp)) 13336 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 13337 13338 #ifdef CONFIG_RFS_ACCEL 13339 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 13340 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13341 #endif /*CONFIG_RFS_ACCEL*/ 13342 13343 if (bp->link_info.phy_retry) { 13344 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 13345 bp->link_info.phy_retry = false; 13346 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 13347 } else { 13348 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 13349 } 13350 } 13351 13352 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13353 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13354 13355 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 13356 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 13357 13358 bnxt_restart_timer: 13359 mod_timer(&bp->timer, jiffies + bp->current_interval); 13360 } 13361 13362 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 13363 { 13364 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 13365 * set. If the device is being closed, bnxt_close() may be holding 13366 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 13367 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 13368 */ 13369 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13370 rtnl_lock(); 13371 } 13372 13373 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 13374 { 13375 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13376 rtnl_unlock(); 13377 } 13378 13379 /* Only called from bnxt_sp_task() */ 13380 static void bnxt_reset(struct bnxt *bp, bool silent) 13381 { 13382 bnxt_rtnl_lock_sp(bp); 13383 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 13384 bnxt_reset_task(bp, silent); 13385 bnxt_rtnl_unlock_sp(bp); 13386 } 13387 13388 /* Only called from bnxt_sp_task() */ 13389 static void bnxt_rx_ring_reset(struct bnxt *bp) 13390 { 13391 int i; 13392 13393 bnxt_rtnl_lock_sp(bp); 13394 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13395 bnxt_rtnl_unlock_sp(bp); 13396 return; 13397 } 13398 /* Disable and flush TPA before resetting the RX ring */ 13399 if (bp->flags & BNXT_FLAG_TPA) 13400 bnxt_set_tpa(bp, false); 13401 for (i = 0; i < bp->rx_nr_rings; i++) { 13402 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 13403 struct bnxt_cp_ring_info *cpr; 13404 int rc; 13405 13406 if (!rxr->bnapi->in_reset) 13407 continue; 13408 13409 rc = bnxt_hwrm_rx_ring_reset(bp, i); 13410 if (rc) { 13411 if (rc == -EINVAL || rc == -EOPNOTSUPP) 13412 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 13413 else 13414 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 13415 rc); 13416 bnxt_reset_task(bp, true); 13417 break; 13418 } 13419 bnxt_free_one_rx_ring_skbs(bp, i); 13420 rxr->rx_prod = 0; 13421 rxr->rx_agg_prod = 0; 13422 rxr->rx_sw_agg_prod = 0; 13423 rxr->rx_next_cons = 0; 13424 rxr->bnapi->in_reset = false; 13425 bnxt_alloc_one_rx_ring(bp, i); 13426 cpr = &rxr->bnapi->cp_ring; 13427 cpr->sw_stats->rx.rx_resets++; 13428 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13429 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 13430 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 13431 } 13432 if (bp->flags & BNXT_FLAG_TPA) 13433 bnxt_set_tpa(bp, true); 13434 bnxt_rtnl_unlock_sp(bp); 13435 } 13436 13437 static void bnxt_fw_fatal_close(struct bnxt *bp) 13438 { 13439 bnxt_tx_disable(bp); 13440 bnxt_disable_napi(bp); 13441 bnxt_disable_int_sync(bp); 13442 bnxt_free_irq(bp); 13443 bnxt_clear_int_mode(bp); 13444 pci_disable_device(bp->pdev); 13445 } 13446 13447 static void bnxt_fw_reset_close(struct bnxt *bp) 13448 { 13449 /* When firmware is in fatal state, quiesce device and disable 13450 * bus master to prevent any potential bad DMAs before freeing 13451 * kernel memory. 13452 */ 13453 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 13454 u16 val = 0; 13455 13456 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13457 if (val == 0xffff) 13458 bp->fw_reset_min_dsecs = 0; 13459 bnxt_fw_fatal_close(bp); 13460 } 13461 __bnxt_close_nic(bp, true, false); 13462 bnxt_vf_reps_free(bp); 13463 bnxt_clear_int_mode(bp); 13464 bnxt_hwrm_func_drv_unrgtr(bp); 13465 if (pci_is_enabled(bp->pdev)) 13466 pci_disable_device(bp->pdev); 13467 bnxt_free_ctx_mem(bp); 13468 } 13469 13470 static bool is_bnxt_fw_ok(struct bnxt *bp) 13471 { 13472 struct bnxt_fw_health *fw_health = bp->fw_health; 13473 bool no_heartbeat = false, has_reset = false; 13474 u32 val; 13475 13476 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13477 if (val == fw_health->last_fw_heartbeat) 13478 no_heartbeat = true; 13479 13480 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13481 if (val != fw_health->last_fw_reset_cnt) 13482 has_reset = true; 13483 13484 if (!no_heartbeat && has_reset) 13485 return true; 13486 13487 return false; 13488 } 13489 13490 /* rtnl_lock is acquired before calling this function */ 13491 static void bnxt_force_fw_reset(struct bnxt *bp) 13492 { 13493 struct bnxt_fw_health *fw_health = bp->fw_health; 13494 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13495 u32 wait_dsecs; 13496 13497 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 13498 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13499 return; 13500 13501 if (ptp) { 13502 spin_lock_bh(&ptp->ptp_lock); 13503 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13504 spin_unlock_bh(&ptp->ptp_lock); 13505 } else { 13506 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13507 } 13508 bnxt_fw_reset_close(bp); 13509 wait_dsecs = fw_health->master_func_wait_dsecs; 13510 if (fw_health->primary) { 13511 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 13512 wait_dsecs = 0; 13513 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13514 } else { 13515 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 13516 wait_dsecs = fw_health->normal_func_wait_dsecs; 13517 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13518 } 13519 13520 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 13521 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 13522 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13523 } 13524 13525 void bnxt_fw_exception(struct bnxt *bp) 13526 { 13527 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 13528 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13529 bnxt_ulp_stop(bp); 13530 bnxt_rtnl_lock_sp(bp); 13531 bnxt_force_fw_reset(bp); 13532 bnxt_rtnl_unlock_sp(bp); 13533 } 13534 13535 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 13536 * < 0 on error. 13537 */ 13538 static int bnxt_get_registered_vfs(struct bnxt *bp) 13539 { 13540 #ifdef CONFIG_BNXT_SRIOV 13541 int rc; 13542 13543 if (!BNXT_PF(bp)) 13544 return 0; 13545 13546 rc = bnxt_hwrm_func_qcfg(bp); 13547 if (rc) { 13548 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 13549 return rc; 13550 } 13551 if (bp->pf.registered_vfs) 13552 return bp->pf.registered_vfs; 13553 if (bp->sriov_cfg) 13554 return 1; 13555 #endif 13556 return 0; 13557 } 13558 13559 void bnxt_fw_reset(struct bnxt *bp) 13560 { 13561 bnxt_ulp_stop(bp); 13562 bnxt_rtnl_lock_sp(bp); 13563 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 13564 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13565 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13566 int n = 0, tmo; 13567 13568 if (ptp) { 13569 spin_lock_bh(&ptp->ptp_lock); 13570 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13571 spin_unlock_bh(&ptp->ptp_lock); 13572 } else { 13573 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13574 } 13575 if (bp->pf.active_vfs && 13576 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 13577 n = bnxt_get_registered_vfs(bp); 13578 if (n < 0) { 13579 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 13580 n); 13581 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13582 dev_close(bp->dev); 13583 goto fw_reset_exit; 13584 } else if (n > 0) { 13585 u16 vf_tmo_dsecs = n * 10; 13586 13587 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 13588 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 13589 bp->fw_reset_state = 13590 BNXT_FW_RESET_STATE_POLL_VF; 13591 bnxt_queue_fw_reset_work(bp, HZ / 10); 13592 goto fw_reset_exit; 13593 } 13594 bnxt_fw_reset_close(bp); 13595 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13596 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13597 tmo = HZ / 10; 13598 } else { 13599 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13600 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13601 } 13602 bnxt_queue_fw_reset_work(bp, tmo); 13603 } 13604 fw_reset_exit: 13605 bnxt_rtnl_unlock_sp(bp); 13606 } 13607 13608 static void bnxt_chk_missed_irq(struct bnxt *bp) 13609 { 13610 int i; 13611 13612 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13613 return; 13614 13615 for (i = 0; i < bp->cp_nr_rings; i++) { 13616 struct bnxt_napi *bnapi = bp->bnapi[i]; 13617 struct bnxt_cp_ring_info *cpr; 13618 u32 fw_ring_id; 13619 int j; 13620 13621 if (!bnapi) 13622 continue; 13623 13624 cpr = &bnapi->cp_ring; 13625 for (j = 0; j < cpr->cp_ring_count; j++) { 13626 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 13627 u32 val[2]; 13628 13629 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 13630 continue; 13631 13632 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 13633 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 13634 continue; 13635 } 13636 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 13637 bnxt_dbg_hwrm_ring_info_get(bp, 13638 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 13639 fw_ring_id, &val[0], &val[1]); 13640 cpr->sw_stats->cmn.missed_irqs++; 13641 } 13642 } 13643 } 13644 13645 static void bnxt_cfg_ntp_filters(struct bnxt *); 13646 13647 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 13648 { 13649 struct bnxt_link_info *link_info = &bp->link_info; 13650 13651 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 13652 link_info->autoneg = BNXT_AUTONEG_SPEED; 13653 if (bp->hwrm_spec_code >= 0x10201) { 13654 if (link_info->auto_pause_setting & 13655 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 13656 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13657 } else { 13658 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13659 } 13660 bnxt_set_auto_speed(link_info); 13661 } else { 13662 bnxt_set_force_speed(link_info); 13663 link_info->req_duplex = link_info->duplex_setting; 13664 } 13665 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 13666 link_info->req_flow_ctrl = 13667 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 13668 else 13669 link_info->req_flow_ctrl = link_info->force_pause_setting; 13670 } 13671 13672 static void bnxt_fw_echo_reply(struct bnxt *bp) 13673 { 13674 struct bnxt_fw_health *fw_health = bp->fw_health; 13675 struct hwrm_func_echo_response_input *req; 13676 int rc; 13677 13678 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 13679 if (rc) 13680 return; 13681 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 13682 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 13683 hwrm_req_send(bp, req); 13684 } 13685 13686 static void bnxt_ulp_restart(struct bnxt *bp) 13687 { 13688 bnxt_ulp_stop(bp); 13689 bnxt_ulp_start(bp, 0); 13690 } 13691 13692 static void bnxt_sp_task(struct work_struct *work) 13693 { 13694 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 13695 13696 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13697 smp_mb__after_atomic(); 13698 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13699 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13700 return; 13701 } 13702 13703 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 13704 bnxt_ulp_restart(bp); 13705 bnxt_reenable_sriov(bp); 13706 } 13707 13708 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 13709 bnxt_cfg_rx_mode(bp); 13710 13711 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 13712 bnxt_cfg_ntp_filters(bp); 13713 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 13714 bnxt_hwrm_exec_fwd_req(bp); 13715 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13716 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13717 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 13718 bnxt_hwrm_port_qstats(bp, 0); 13719 bnxt_hwrm_port_qstats_ext(bp, 0); 13720 bnxt_accumulate_all_stats(bp); 13721 } 13722 13723 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 13724 int rc; 13725 13726 mutex_lock(&bp->link_lock); 13727 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 13728 &bp->sp_event)) 13729 bnxt_hwrm_phy_qcaps(bp); 13730 13731 rc = bnxt_update_link(bp, true); 13732 if (rc) 13733 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 13734 rc); 13735 13736 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 13737 &bp->sp_event)) 13738 bnxt_init_ethtool_link_settings(bp); 13739 mutex_unlock(&bp->link_lock); 13740 } 13741 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 13742 int rc; 13743 13744 mutex_lock(&bp->link_lock); 13745 rc = bnxt_update_phy_setting(bp); 13746 mutex_unlock(&bp->link_lock); 13747 if (rc) { 13748 netdev_warn(bp->dev, "update phy settings retry failed\n"); 13749 } else { 13750 bp->link_info.phy_retry = false; 13751 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 13752 } 13753 } 13754 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 13755 mutex_lock(&bp->link_lock); 13756 bnxt_get_port_module_status(bp); 13757 mutex_unlock(&bp->link_lock); 13758 } 13759 13760 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 13761 bnxt_tc_flow_stats_work(bp); 13762 13763 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 13764 bnxt_chk_missed_irq(bp); 13765 13766 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 13767 bnxt_fw_echo_reply(bp); 13768 13769 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 13770 bnxt_hwmon_notify_event(bp); 13771 13772 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 13773 * must be the last functions to be called before exiting. 13774 */ 13775 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 13776 bnxt_reset(bp, false); 13777 13778 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 13779 bnxt_reset(bp, true); 13780 13781 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 13782 bnxt_rx_ring_reset(bp); 13783 13784 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 13785 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 13786 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 13787 bnxt_devlink_health_fw_report(bp); 13788 else 13789 bnxt_fw_reset(bp); 13790 } 13791 13792 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 13793 if (!is_bnxt_fw_ok(bp)) 13794 bnxt_devlink_health_fw_report(bp); 13795 } 13796 13797 smp_mb__before_atomic(); 13798 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13799 } 13800 13801 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 13802 int *max_cp); 13803 13804 /* Under rtnl_lock */ 13805 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 13806 int tx_xdp) 13807 { 13808 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 13809 struct bnxt_hw_rings hwr = {0}; 13810 int rx_rings = rx; 13811 13812 if (tcs) 13813 tx_sets = tcs; 13814 13815 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 13816 13817 if (max_rx < rx_rings) 13818 return -ENOMEM; 13819 13820 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13821 rx_rings <<= 1; 13822 13823 hwr.rx = rx_rings; 13824 hwr.tx = tx * tx_sets + tx_xdp; 13825 if (max_tx < hwr.tx) 13826 return -ENOMEM; 13827 13828 hwr.vnic = bnxt_get_total_vnics(bp, rx); 13829 13830 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 13831 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 13832 if (max_cp < hwr.cp) 13833 return -ENOMEM; 13834 hwr.stat = hwr.cp; 13835 if (BNXT_NEW_RM(bp)) { 13836 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 13837 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 13838 hwr.grp = rx; 13839 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13840 } 13841 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 13842 hwr.cp_p5 = hwr.tx + rx; 13843 return bnxt_hwrm_check_rings(bp, &hwr); 13844 } 13845 13846 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 13847 { 13848 if (bp->bar2) { 13849 pci_iounmap(pdev, bp->bar2); 13850 bp->bar2 = NULL; 13851 } 13852 13853 if (bp->bar1) { 13854 pci_iounmap(pdev, bp->bar1); 13855 bp->bar1 = NULL; 13856 } 13857 13858 if (bp->bar0) { 13859 pci_iounmap(pdev, bp->bar0); 13860 bp->bar0 = NULL; 13861 } 13862 } 13863 13864 static void bnxt_cleanup_pci(struct bnxt *bp) 13865 { 13866 bnxt_unmap_bars(bp, bp->pdev); 13867 pci_release_regions(bp->pdev); 13868 if (pci_is_enabled(bp->pdev)) 13869 pci_disable_device(bp->pdev); 13870 } 13871 13872 static void bnxt_init_dflt_coal(struct bnxt *bp) 13873 { 13874 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 13875 struct bnxt_coal *coal; 13876 u16 flags = 0; 13877 13878 if (coal_cap->cmpl_params & 13879 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 13880 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 13881 13882 /* Tick values in micro seconds. 13883 * 1 coal_buf x bufs_per_record = 1 completion record. 13884 */ 13885 coal = &bp->rx_coal; 13886 coal->coal_ticks = 10; 13887 coal->coal_bufs = 30; 13888 coal->coal_ticks_irq = 1; 13889 coal->coal_bufs_irq = 2; 13890 coal->idle_thresh = 50; 13891 coal->bufs_per_record = 2; 13892 coal->budget = 64; /* NAPI budget */ 13893 coal->flags = flags; 13894 13895 coal = &bp->tx_coal; 13896 coal->coal_ticks = 28; 13897 coal->coal_bufs = 30; 13898 coal->coal_ticks_irq = 2; 13899 coal->coal_bufs_irq = 2; 13900 coal->bufs_per_record = 1; 13901 coal->flags = flags; 13902 13903 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 13904 } 13905 13906 /* FW that pre-reserves 1 VNIC per function */ 13907 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 13908 { 13909 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 13910 13911 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13912 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 13913 return true; 13914 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13915 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 13916 return true; 13917 return false; 13918 } 13919 13920 static int bnxt_fw_init_one_p1(struct bnxt *bp) 13921 { 13922 int rc; 13923 13924 bp->fw_cap = 0; 13925 rc = bnxt_hwrm_ver_get(bp); 13926 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 13927 * so wait before continuing with recovery. 13928 */ 13929 if (rc) 13930 msleep(100); 13931 bnxt_try_map_fw_health_reg(bp); 13932 if (rc) { 13933 rc = bnxt_try_recover_fw(bp); 13934 if (rc) 13935 return rc; 13936 rc = bnxt_hwrm_ver_get(bp); 13937 if (rc) 13938 return rc; 13939 } 13940 13941 bnxt_nvm_cfg_ver_get(bp); 13942 13943 rc = bnxt_hwrm_func_reset(bp); 13944 if (rc) 13945 return -ENODEV; 13946 13947 bnxt_hwrm_fw_set_time(bp); 13948 return 0; 13949 } 13950 13951 static int bnxt_fw_init_one_p2(struct bnxt *bp) 13952 { 13953 int rc; 13954 13955 /* Get the MAX capabilities for this function */ 13956 rc = bnxt_hwrm_func_qcaps(bp); 13957 if (rc) { 13958 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 13959 rc); 13960 return -ENODEV; 13961 } 13962 13963 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 13964 if (rc) 13965 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 13966 rc); 13967 13968 if (bnxt_alloc_fw_health(bp)) { 13969 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 13970 } else { 13971 rc = bnxt_hwrm_error_recovery_qcfg(bp); 13972 if (rc) 13973 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 13974 rc); 13975 } 13976 13977 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 13978 if (rc) 13979 return -ENODEV; 13980 13981 if (bnxt_fw_pre_resv_vnics(bp)) 13982 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 13983 13984 bnxt_hwrm_func_qcfg(bp); 13985 bnxt_hwrm_vnic_qcaps(bp); 13986 bnxt_hwrm_port_led_qcaps(bp); 13987 bnxt_ethtool_init(bp); 13988 if (bp->fw_cap & BNXT_FW_CAP_PTP) 13989 __bnxt_hwrm_ptp_qcfg(bp); 13990 bnxt_dcb_init(bp); 13991 bnxt_hwmon_init(bp); 13992 return 0; 13993 } 13994 13995 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 13996 { 13997 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 13998 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 13999 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 14000 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 14001 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 14002 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 14003 bp->rss_hash_delta = bp->rss_hash_cfg; 14004 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 14005 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 14006 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 14007 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 14008 } 14009 } 14010 14011 static void bnxt_set_dflt_rfs(struct bnxt *bp) 14012 { 14013 struct net_device *dev = bp->dev; 14014 14015 dev->hw_features &= ~NETIF_F_NTUPLE; 14016 dev->features &= ~NETIF_F_NTUPLE; 14017 bp->flags &= ~BNXT_FLAG_RFS; 14018 if (bnxt_rfs_supported(bp)) { 14019 dev->hw_features |= NETIF_F_NTUPLE; 14020 if (bnxt_rfs_capable(bp, false)) { 14021 bp->flags |= BNXT_FLAG_RFS; 14022 dev->features |= NETIF_F_NTUPLE; 14023 } 14024 } 14025 } 14026 14027 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14028 { 14029 struct pci_dev *pdev = bp->pdev; 14030 14031 bnxt_set_dflt_rss_hash_type(bp); 14032 bnxt_set_dflt_rfs(bp); 14033 14034 bnxt_get_wol_settings(bp); 14035 if (bp->flags & BNXT_FLAG_WOL_CAP) 14036 device_set_wakeup_enable(&pdev->dev, bp->wol); 14037 else 14038 device_set_wakeup_capable(&pdev->dev, false); 14039 14040 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14041 bnxt_hwrm_coal_params_qcaps(bp); 14042 } 14043 14044 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14045 14046 int bnxt_fw_init_one(struct bnxt *bp) 14047 { 14048 int rc; 14049 14050 rc = bnxt_fw_init_one_p1(bp); 14051 if (rc) { 14052 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14053 return rc; 14054 } 14055 rc = bnxt_fw_init_one_p2(bp); 14056 if (rc) { 14057 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14058 return rc; 14059 } 14060 rc = bnxt_probe_phy(bp, false); 14061 if (rc) 14062 return rc; 14063 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14064 if (rc) 14065 return rc; 14066 14067 bnxt_fw_init_one_p3(bp); 14068 return 0; 14069 } 14070 14071 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14072 { 14073 struct bnxt_fw_health *fw_health = bp->fw_health; 14074 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14075 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14076 u32 reg_type, reg_off, delay_msecs; 14077 14078 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14079 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14080 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14081 switch (reg_type) { 14082 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14083 pci_write_config_dword(bp->pdev, reg_off, val); 14084 break; 14085 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14086 writel(reg_off & BNXT_GRC_BASE_MASK, 14087 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14088 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14089 fallthrough; 14090 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14091 writel(val, bp->bar0 + reg_off); 14092 break; 14093 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14094 writel(val, bp->bar1 + reg_off); 14095 break; 14096 } 14097 if (delay_msecs) { 14098 pci_read_config_dword(bp->pdev, 0, &val); 14099 msleep(delay_msecs); 14100 } 14101 } 14102 14103 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14104 { 14105 struct hwrm_func_qcfg_output *resp; 14106 struct hwrm_func_qcfg_input *req; 14107 bool result = true; /* firmware will enforce if unknown */ 14108 14109 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14110 return result; 14111 14112 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14113 return result; 14114 14115 req->fid = cpu_to_le16(0xffff); 14116 resp = hwrm_req_hold(bp, req); 14117 if (!hwrm_req_send(bp, req)) 14118 result = !!(le16_to_cpu(resp->flags) & 14119 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14120 hwrm_req_drop(bp, req); 14121 return result; 14122 } 14123 14124 static void bnxt_reset_all(struct bnxt *bp) 14125 { 14126 struct bnxt_fw_health *fw_health = bp->fw_health; 14127 int i, rc; 14128 14129 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14130 bnxt_fw_reset_via_optee(bp); 14131 bp->fw_reset_timestamp = jiffies; 14132 return; 14133 } 14134 14135 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14136 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14137 bnxt_fw_reset_writel(bp, i); 14138 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14139 struct hwrm_fw_reset_input *req; 14140 14141 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14142 if (!rc) { 14143 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14144 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14145 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14146 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14147 rc = hwrm_req_send(bp, req); 14148 } 14149 if (rc != -ENODEV) 14150 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14151 } 14152 bp->fw_reset_timestamp = jiffies; 14153 } 14154 14155 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14156 { 14157 return time_after(jiffies, bp->fw_reset_timestamp + 14158 (bp->fw_reset_max_dsecs * HZ / 10)); 14159 } 14160 14161 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14162 { 14163 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14164 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14165 bnxt_dl_health_fw_status_update(bp, false); 14166 bp->fw_reset_state = 0; 14167 dev_close(bp->dev); 14168 } 14169 14170 static void bnxt_fw_reset_task(struct work_struct *work) 14171 { 14172 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14173 int rc = 0; 14174 14175 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14176 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14177 return; 14178 } 14179 14180 switch (bp->fw_reset_state) { 14181 case BNXT_FW_RESET_STATE_POLL_VF: { 14182 int n = bnxt_get_registered_vfs(bp); 14183 int tmo; 14184 14185 if (n < 0) { 14186 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14187 n, jiffies_to_msecs(jiffies - 14188 bp->fw_reset_timestamp)); 14189 goto fw_reset_abort; 14190 } else if (n > 0) { 14191 if (bnxt_fw_reset_timeout(bp)) { 14192 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14193 bp->fw_reset_state = 0; 14194 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 14195 n); 14196 goto ulp_start; 14197 } 14198 bnxt_queue_fw_reset_work(bp, HZ / 10); 14199 return; 14200 } 14201 bp->fw_reset_timestamp = jiffies; 14202 rtnl_lock(); 14203 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 14204 bnxt_fw_reset_abort(bp, rc); 14205 rtnl_unlock(); 14206 goto ulp_start; 14207 } 14208 bnxt_fw_reset_close(bp); 14209 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14210 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14211 tmo = HZ / 10; 14212 } else { 14213 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14214 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14215 } 14216 rtnl_unlock(); 14217 bnxt_queue_fw_reset_work(bp, tmo); 14218 return; 14219 } 14220 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 14221 u32 val; 14222 14223 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14224 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 14225 !bnxt_fw_reset_timeout(bp)) { 14226 bnxt_queue_fw_reset_work(bp, HZ / 5); 14227 return; 14228 } 14229 14230 if (!bp->fw_health->primary) { 14231 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 14232 14233 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14234 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14235 return; 14236 } 14237 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14238 } 14239 fallthrough; 14240 case BNXT_FW_RESET_STATE_RESET_FW: 14241 bnxt_reset_all(bp); 14242 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14243 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 14244 return; 14245 case BNXT_FW_RESET_STATE_ENABLE_DEV: 14246 bnxt_inv_fw_health_reg(bp); 14247 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 14248 !bp->fw_reset_min_dsecs) { 14249 u16 val; 14250 14251 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14252 if (val == 0xffff) { 14253 if (bnxt_fw_reset_timeout(bp)) { 14254 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 14255 rc = -ETIMEDOUT; 14256 goto fw_reset_abort; 14257 } 14258 bnxt_queue_fw_reset_work(bp, HZ / 1000); 14259 return; 14260 } 14261 } 14262 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14263 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 14264 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 14265 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 14266 bnxt_dl_remote_reload(bp); 14267 if (pci_enable_device(bp->pdev)) { 14268 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 14269 rc = -ENODEV; 14270 goto fw_reset_abort; 14271 } 14272 pci_set_master(bp->pdev); 14273 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 14274 fallthrough; 14275 case BNXT_FW_RESET_STATE_POLL_FW: 14276 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 14277 rc = bnxt_hwrm_poll(bp); 14278 if (rc) { 14279 if (bnxt_fw_reset_timeout(bp)) { 14280 netdev_err(bp->dev, "Firmware reset aborted\n"); 14281 goto fw_reset_abort_status; 14282 } 14283 bnxt_queue_fw_reset_work(bp, HZ / 5); 14284 return; 14285 } 14286 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 14287 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 14288 fallthrough; 14289 case BNXT_FW_RESET_STATE_OPENING: 14290 while (!rtnl_trylock()) { 14291 bnxt_queue_fw_reset_work(bp, HZ / 10); 14292 return; 14293 } 14294 rc = bnxt_open(bp->dev); 14295 if (rc) { 14296 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 14297 bnxt_fw_reset_abort(bp, rc); 14298 rtnl_unlock(); 14299 goto ulp_start; 14300 } 14301 14302 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 14303 bp->fw_health->enabled) { 14304 bp->fw_health->last_fw_reset_cnt = 14305 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14306 } 14307 bp->fw_reset_state = 0; 14308 /* Make sure fw_reset_state is 0 before clearing the flag */ 14309 smp_mb__before_atomic(); 14310 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14311 bnxt_ptp_reapply_pps(bp); 14312 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 14313 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 14314 bnxt_dl_health_fw_recovery_done(bp); 14315 bnxt_dl_health_fw_status_update(bp, true); 14316 } 14317 rtnl_unlock(); 14318 bnxt_ulp_start(bp, 0); 14319 bnxt_reenable_sriov(bp); 14320 rtnl_lock(); 14321 bnxt_vf_reps_alloc(bp); 14322 bnxt_vf_reps_open(bp); 14323 rtnl_unlock(); 14324 break; 14325 } 14326 return; 14327 14328 fw_reset_abort_status: 14329 if (bp->fw_health->status_reliable || 14330 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 14331 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14332 14333 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 14334 } 14335 fw_reset_abort: 14336 rtnl_lock(); 14337 bnxt_fw_reset_abort(bp, rc); 14338 rtnl_unlock(); 14339 ulp_start: 14340 bnxt_ulp_start(bp, rc); 14341 } 14342 14343 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 14344 { 14345 int rc; 14346 struct bnxt *bp = netdev_priv(dev); 14347 14348 SET_NETDEV_DEV(dev, &pdev->dev); 14349 14350 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 14351 rc = pci_enable_device(pdev); 14352 if (rc) { 14353 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 14354 goto init_err; 14355 } 14356 14357 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 14358 dev_err(&pdev->dev, 14359 "Cannot find PCI device base address, aborting\n"); 14360 rc = -ENODEV; 14361 goto init_err_disable; 14362 } 14363 14364 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 14365 if (rc) { 14366 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 14367 goto init_err_disable; 14368 } 14369 14370 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 14371 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 14372 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 14373 rc = -EIO; 14374 goto init_err_release; 14375 } 14376 14377 pci_set_master(pdev); 14378 14379 bp->dev = dev; 14380 bp->pdev = pdev; 14381 14382 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 14383 * determines the BAR size. 14384 */ 14385 bp->bar0 = pci_ioremap_bar(pdev, 0); 14386 if (!bp->bar0) { 14387 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 14388 rc = -ENOMEM; 14389 goto init_err_release; 14390 } 14391 14392 bp->bar2 = pci_ioremap_bar(pdev, 4); 14393 if (!bp->bar2) { 14394 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 14395 rc = -ENOMEM; 14396 goto init_err_release; 14397 } 14398 14399 INIT_WORK(&bp->sp_task, bnxt_sp_task); 14400 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 14401 14402 spin_lock_init(&bp->ntp_fltr_lock); 14403 #if BITS_PER_LONG == 32 14404 spin_lock_init(&bp->db_lock); 14405 #endif 14406 14407 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 14408 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 14409 14410 timer_setup(&bp->timer, bnxt_timer, 0); 14411 bp->current_interval = BNXT_TIMER_INTERVAL; 14412 14413 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 14414 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 14415 14416 clear_bit(BNXT_STATE_OPEN, &bp->state); 14417 return 0; 14418 14419 init_err_release: 14420 bnxt_unmap_bars(bp, pdev); 14421 pci_release_regions(pdev); 14422 14423 init_err_disable: 14424 pci_disable_device(pdev); 14425 14426 init_err: 14427 return rc; 14428 } 14429 14430 /* rtnl_lock held */ 14431 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 14432 { 14433 struct sockaddr *addr = p; 14434 struct bnxt *bp = netdev_priv(dev); 14435 int rc = 0; 14436 14437 if (!is_valid_ether_addr(addr->sa_data)) 14438 return -EADDRNOTAVAIL; 14439 14440 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 14441 return 0; 14442 14443 rc = bnxt_approve_mac(bp, addr->sa_data, true); 14444 if (rc) 14445 return rc; 14446 14447 eth_hw_addr_set(dev, addr->sa_data); 14448 bnxt_clear_usr_fltrs(bp, true); 14449 if (netif_running(dev)) { 14450 bnxt_close_nic(bp, false, false); 14451 rc = bnxt_open_nic(bp, false, false); 14452 } 14453 14454 return rc; 14455 } 14456 14457 /* rtnl_lock held */ 14458 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 14459 { 14460 struct bnxt *bp = netdev_priv(dev); 14461 14462 if (netif_running(dev)) 14463 bnxt_close_nic(bp, true, false); 14464 14465 WRITE_ONCE(dev->mtu, new_mtu); 14466 bnxt_set_ring_params(bp); 14467 14468 if (netif_running(dev)) 14469 return bnxt_open_nic(bp, true, false); 14470 14471 return 0; 14472 } 14473 14474 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 14475 { 14476 struct bnxt *bp = netdev_priv(dev); 14477 bool sh = false; 14478 int rc, tx_cp; 14479 14480 if (tc > bp->max_tc) { 14481 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 14482 tc, bp->max_tc); 14483 return -EINVAL; 14484 } 14485 14486 if (bp->num_tc == tc) 14487 return 0; 14488 14489 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 14490 sh = true; 14491 14492 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 14493 sh, tc, bp->tx_nr_rings_xdp); 14494 if (rc) 14495 return rc; 14496 14497 /* Needs to close the device and do hw resource re-allocations */ 14498 if (netif_running(bp->dev)) 14499 bnxt_close_nic(bp, true, false); 14500 14501 if (tc) { 14502 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 14503 netdev_set_num_tc(dev, tc); 14504 bp->num_tc = tc; 14505 } else { 14506 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14507 netdev_reset_tc(dev); 14508 bp->num_tc = 0; 14509 } 14510 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 14511 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 14512 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 14513 tx_cp + bp->rx_nr_rings; 14514 14515 if (netif_running(bp->dev)) 14516 return bnxt_open_nic(bp, true, false); 14517 14518 return 0; 14519 } 14520 14521 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 14522 void *cb_priv) 14523 { 14524 struct bnxt *bp = cb_priv; 14525 14526 if (!bnxt_tc_flower_enabled(bp) || 14527 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 14528 return -EOPNOTSUPP; 14529 14530 switch (type) { 14531 case TC_SETUP_CLSFLOWER: 14532 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 14533 default: 14534 return -EOPNOTSUPP; 14535 } 14536 } 14537 14538 LIST_HEAD(bnxt_block_cb_list); 14539 14540 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 14541 void *type_data) 14542 { 14543 struct bnxt *bp = netdev_priv(dev); 14544 14545 switch (type) { 14546 case TC_SETUP_BLOCK: 14547 return flow_block_cb_setup_simple(type_data, 14548 &bnxt_block_cb_list, 14549 bnxt_setup_tc_block_cb, 14550 bp, bp, true); 14551 case TC_SETUP_QDISC_MQPRIO: { 14552 struct tc_mqprio_qopt *mqprio = type_data; 14553 14554 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 14555 14556 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 14557 } 14558 default: 14559 return -EOPNOTSUPP; 14560 } 14561 } 14562 14563 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 14564 const struct sk_buff *skb) 14565 { 14566 struct bnxt_vnic_info *vnic; 14567 14568 if (skb) 14569 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 14570 14571 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 14572 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 14573 } 14574 14575 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 14576 u32 idx) 14577 { 14578 struct hlist_head *head; 14579 int bit_id; 14580 14581 spin_lock_bh(&bp->ntp_fltr_lock); 14582 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 14583 if (bit_id < 0) { 14584 spin_unlock_bh(&bp->ntp_fltr_lock); 14585 return -ENOMEM; 14586 } 14587 14588 fltr->base.sw_id = (u16)bit_id; 14589 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 14590 fltr->base.flags |= BNXT_ACT_RING_DST; 14591 head = &bp->ntp_fltr_hash_tbl[idx]; 14592 hlist_add_head_rcu(&fltr->base.hash, head); 14593 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 14594 bnxt_insert_usr_fltr(bp, &fltr->base); 14595 bp->ntp_fltr_count++; 14596 spin_unlock_bh(&bp->ntp_fltr_lock); 14597 return 0; 14598 } 14599 14600 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 14601 struct bnxt_ntuple_filter *f2) 14602 { 14603 struct bnxt_flow_masks *masks1 = &f1->fmasks; 14604 struct bnxt_flow_masks *masks2 = &f2->fmasks; 14605 struct flow_keys *keys1 = &f1->fkeys; 14606 struct flow_keys *keys2 = &f2->fkeys; 14607 14608 if (keys1->basic.n_proto != keys2->basic.n_proto || 14609 keys1->basic.ip_proto != keys2->basic.ip_proto) 14610 return false; 14611 14612 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 14613 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 14614 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 14615 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 14616 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 14617 return false; 14618 } else { 14619 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 14620 &keys2->addrs.v6addrs.src) || 14621 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 14622 &masks2->addrs.v6addrs.src) || 14623 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 14624 &keys2->addrs.v6addrs.dst) || 14625 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 14626 &masks2->addrs.v6addrs.dst)) 14627 return false; 14628 } 14629 14630 return keys1->ports.src == keys2->ports.src && 14631 masks1->ports.src == masks2->ports.src && 14632 keys1->ports.dst == keys2->ports.dst && 14633 masks1->ports.dst == masks2->ports.dst && 14634 keys1->control.flags == keys2->control.flags && 14635 f1->l2_fltr == f2->l2_fltr; 14636 } 14637 14638 struct bnxt_ntuple_filter * 14639 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 14640 struct bnxt_ntuple_filter *fltr, u32 idx) 14641 { 14642 struct bnxt_ntuple_filter *f; 14643 struct hlist_head *head; 14644 14645 head = &bp->ntp_fltr_hash_tbl[idx]; 14646 hlist_for_each_entry_rcu(f, head, base.hash) { 14647 if (bnxt_fltr_match(f, fltr)) 14648 return f; 14649 } 14650 return NULL; 14651 } 14652 14653 #ifdef CONFIG_RFS_ACCEL 14654 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 14655 u16 rxq_index, u32 flow_id) 14656 { 14657 struct bnxt *bp = netdev_priv(dev); 14658 struct bnxt_ntuple_filter *fltr, *new_fltr; 14659 struct flow_keys *fkeys; 14660 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 14661 struct bnxt_l2_filter *l2_fltr; 14662 int rc = 0, idx; 14663 u32 flags; 14664 14665 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 14666 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 14667 atomic_inc(&l2_fltr->refcnt); 14668 } else { 14669 struct bnxt_l2_key key; 14670 14671 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 14672 key.vlan = 0; 14673 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 14674 if (!l2_fltr) 14675 return -EINVAL; 14676 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 14677 bnxt_del_l2_filter(bp, l2_fltr); 14678 return -EINVAL; 14679 } 14680 } 14681 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 14682 if (!new_fltr) { 14683 bnxt_del_l2_filter(bp, l2_fltr); 14684 return -ENOMEM; 14685 } 14686 14687 fkeys = &new_fltr->fkeys; 14688 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 14689 rc = -EPROTONOSUPPORT; 14690 goto err_free; 14691 } 14692 14693 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 14694 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 14695 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 14696 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 14697 rc = -EPROTONOSUPPORT; 14698 goto err_free; 14699 } 14700 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 14701 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 14702 if (bp->hwrm_spec_code < 0x10601) { 14703 rc = -EPROTONOSUPPORT; 14704 goto err_free; 14705 } 14706 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 14707 } 14708 flags = fkeys->control.flags; 14709 if (((flags & FLOW_DIS_ENCAPSULATION) && 14710 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 14711 rc = -EPROTONOSUPPORT; 14712 goto err_free; 14713 } 14714 new_fltr->l2_fltr = l2_fltr; 14715 14716 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 14717 rcu_read_lock(); 14718 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 14719 if (fltr) { 14720 rc = fltr->base.sw_id; 14721 rcu_read_unlock(); 14722 goto err_free; 14723 } 14724 rcu_read_unlock(); 14725 14726 new_fltr->flow_id = flow_id; 14727 new_fltr->base.rxq = rxq_index; 14728 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 14729 if (!rc) { 14730 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14731 return new_fltr->base.sw_id; 14732 } 14733 14734 err_free: 14735 bnxt_del_l2_filter(bp, l2_fltr); 14736 kfree(new_fltr); 14737 return rc; 14738 } 14739 #endif 14740 14741 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 14742 { 14743 spin_lock_bh(&bp->ntp_fltr_lock); 14744 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 14745 spin_unlock_bh(&bp->ntp_fltr_lock); 14746 return; 14747 } 14748 hlist_del_rcu(&fltr->base.hash); 14749 bnxt_del_one_usr_fltr(bp, &fltr->base); 14750 bp->ntp_fltr_count--; 14751 spin_unlock_bh(&bp->ntp_fltr_lock); 14752 bnxt_del_l2_filter(bp, fltr->l2_fltr); 14753 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 14754 kfree_rcu(fltr, base.rcu); 14755 } 14756 14757 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 14758 { 14759 #ifdef CONFIG_RFS_ACCEL 14760 int i; 14761 14762 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 14763 struct hlist_head *head; 14764 struct hlist_node *tmp; 14765 struct bnxt_ntuple_filter *fltr; 14766 int rc; 14767 14768 head = &bp->ntp_fltr_hash_tbl[i]; 14769 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 14770 bool del = false; 14771 14772 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 14773 if (fltr->base.flags & BNXT_ACT_NO_AGING) 14774 continue; 14775 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 14776 fltr->flow_id, 14777 fltr->base.sw_id)) { 14778 bnxt_hwrm_cfa_ntuple_filter_free(bp, 14779 fltr); 14780 del = true; 14781 } 14782 } else { 14783 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 14784 fltr); 14785 if (rc) 14786 del = true; 14787 else 14788 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 14789 } 14790 14791 if (del) 14792 bnxt_del_ntp_filter(bp, fltr); 14793 } 14794 } 14795 #endif 14796 } 14797 14798 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 14799 unsigned int entry, struct udp_tunnel_info *ti) 14800 { 14801 struct bnxt *bp = netdev_priv(netdev); 14802 unsigned int cmd; 14803 14804 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14805 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 14806 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14807 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 14808 else 14809 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 14810 14811 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 14812 } 14813 14814 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 14815 unsigned int entry, struct udp_tunnel_info *ti) 14816 { 14817 struct bnxt *bp = netdev_priv(netdev); 14818 unsigned int cmd; 14819 14820 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 14821 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 14822 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 14823 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 14824 else 14825 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 14826 14827 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 14828 } 14829 14830 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 14831 .set_port = bnxt_udp_tunnel_set_port, 14832 .unset_port = bnxt_udp_tunnel_unset_port, 14833 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14834 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14835 .tables = { 14836 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14837 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14838 }, 14839 }, bnxt_udp_tunnels_p7 = { 14840 .set_port = bnxt_udp_tunnel_set_port, 14841 .unset_port = bnxt_udp_tunnel_unset_port, 14842 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 14843 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 14844 .tables = { 14845 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 14846 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 14847 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 14848 }, 14849 }; 14850 14851 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 14852 struct net_device *dev, u32 filter_mask, 14853 int nlflags) 14854 { 14855 struct bnxt *bp = netdev_priv(dev); 14856 14857 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 14858 nlflags, filter_mask, NULL); 14859 } 14860 14861 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 14862 u16 flags, struct netlink_ext_ack *extack) 14863 { 14864 struct bnxt *bp = netdev_priv(dev); 14865 struct nlattr *attr, *br_spec; 14866 int rem, rc = 0; 14867 14868 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 14869 return -EOPNOTSUPP; 14870 14871 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 14872 if (!br_spec) 14873 return -EINVAL; 14874 14875 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 14876 u16 mode; 14877 14878 mode = nla_get_u16(attr); 14879 if (mode == bp->br_mode) 14880 break; 14881 14882 rc = bnxt_hwrm_set_br_mode(bp, mode); 14883 if (!rc) 14884 bp->br_mode = mode; 14885 break; 14886 } 14887 return rc; 14888 } 14889 14890 int bnxt_get_port_parent_id(struct net_device *dev, 14891 struct netdev_phys_item_id *ppid) 14892 { 14893 struct bnxt *bp = netdev_priv(dev); 14894 14895 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 14896 return -EOPNOTSUPP; 14897 14898 /* The PF and it's VF-reps only support the switchdev framework */ 14899 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 14900 return -EOPNOTSUPP; 14901 14902 ppid->id_len = sizeof(bp->dsn); 14903 memcpy(ppid->id, bp->dsn, ppid->id_len); 14904 14905 return 0; 14906 } 14907 14908 static const struct net_device_ops bnxt_netdev_ops = { 14909 .ndo_open = bnxt_open, 14910 .ndo_start_xmit = bnxt_start_xmit, 14911 .ndo_stop = bnxt_close, 14912 .ndo_get_stats64 = bnxt_get_stats64, 14913 .ndo_set_rx_mode = bnxt_set_rx_mode, 14914 .ndo_eth_ioctl = bnxt_ioctl, 14915 .ndo_validate_addr = eth_validate_addr, 14916 .ndo_set_mac_address = bnxt_change_mac_addr, 14917 .ndo_change_mtu = bnxt_change_mtu, 14918 .ndo_fix_features = bnxt_fix_features, 14919 .ndo_set_features = bnxt_set_features, 14920 .ndo_features_check = bnxt_features_check, 14921 .ndo_tx_timeout = bnxt_tx_timeout, 14922 #ifdef CONFIG_BNXT_SRIOV 14923 .ndo_get_vf_config = bnxt_get_vf_config, 14924 .ndo_set_vf_mac = bnxt_set_vf_mac, 14925 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 14926 .ndo_set_vf_rate = bnxt_set_vf_bw, 14927 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 14928 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 14929 .ndo_set_vf_trust = bnxt_set_vf_trust, 14930 #endif 14931 .ndo_setup_tc = bnxt_setup_tc, 14932 #ifdef CONFIG_RFS_ACCEL 14933 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 14934 #endif 14935 .ndo_bpf = bnxt_xdp, 14936 .ndo_xdp_xmit = bnxt_xdp_xmit, 14937 .ndo_bridge_getlink = bnxt_bridge_getlink, 14938 .ndo_bridge_setlink = bnxt_bridge_setlink, 14939 }; 14940 14941 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 14942 struct netdev_queue_stats_rx *stats) 14943 { 14944 struct bnxt *bp = netdev_priv(dev); 14945 struct bnxt_cp_ring_info *cpr; 14946 u64 *sw; 14947 14948 cpr = &bp->bnapi[i]->cp_ring; 14949 sw = cpr->stats.sw_stats; 14950 14951 stats->packets = 0; 14952 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 14953 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 14954 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 14955 14956 stats->bytes = 0; 14957 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 14958 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 14959 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 14960 14961 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 14962 } 14963 14964 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 14965 struct netdev_queue_stats_tx *stats) 14966 { 14967 struct bnxt *bp = netdev_priv(dev); 14968 struct bnxt_napi *bnapi; 14969 u64 *sw; 14970 14971 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 14972 sw = bnapi->cp_ring.stats.sw_stats; 14973 14974 stats->packets = 0; 14975 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 14976 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 14977 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 14978 14979 stats->bytes = 0; 14980 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 14981 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 14982 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 14983 } 14984 14985 static void bnxt_get_base_stats(struct net_device *dev, 14986 struct netdev_queue_stats_rx *rx, 14987 struct netdev_queue_stats_tx *tx) 14988 { 14989 struct bnxt *bp = netdev_priv(dev); 14990 14991 rx->packets = bp->net_stats_prev.rx_packets; 14992 rx->bytes = bp->net_stats_prev.rx_bytes; 14993 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 14994 14995 tx->packets = bp->net_stats_prev.tx_packets; 14996 tx->bytes = bp->net_stats_prev.tx_bytes; 14997 } 14998 14999 static const struct netdev_stat_ops bnxt_stat_ops = { 15000 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 15001 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 15002 .get_base_stats = bnxt_get_base_stats, 15003 }; 15004 15005 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 15006 { 15007 u16 mem_size; 15008 15009 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 15010 mem_size = rxr->rx_agg_bmap_size / 8; 15011 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 15012 if (!rxr->rx_agg_bmap) 15013 return -ENOMEM; 15014 15015 return 0; 15016 } 15017 15018 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 15019 { 15020 struct bnxt_rx_ring_info *rxr, *clone; 15021 struct bnxt *bp = netdev_priv(dev); 15022 struct bnxt_ring_struct *ring; 15023 int rc; 15024 15025 rxr = &bp->rx_ring[idx]; 15026 clone = qmem; 15027 memcpy(clone, rxr, sizeof(*rxr)); 15028 bnxt_init_rx_ring_struct(bp, clone); 15029 bnxt_reset_rx_ring_struct(bp, clone); 15030 15031 clone->rx_prod = 0; 15032 clone->rx_agg_prod = 0; 15033 clone->rx_sw_agg_prod = 0; 15034 clone->rx_next_cons = 0; 15035 15036 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15037 if (rc) 15038 return rc; 15039 15040 ring = &clone->rx_ring_struct; 15041 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15042 if (rc) 15043 goto err_free_rx_ring; 15044 15045 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15046 ring = &clone->rx_agg_ring_struct; 15047 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15048 if (rc) 15049 goto err_free_rx_agg_ring; 15050 15051 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15052 if (rc) 15053 goto err_free_rx_agg_ring; 15054 } 15055 15056 bnxt_init_one_rx_ring_rxbd(bp, clone); 15057 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15058 15059 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15060 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15061 bnxt_alloc_one_rx_ring_page(bp, clone, idx); 15062 15063 return 0; 15064 15065 err_free_rx_agg_ring: 15066 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15067 err_free_rx_ring: 15068 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15069 clone->page_pool->p.napi = NULL; 15070 page_pool_destroy(clone->page_pool); 15071 clone->page_pool = NULL; 15072 return rc; 15073 } 15074 15075 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15076 { 15077 struct bnxt_rx_ring_info *rxr = qmem; 15078 struct bnxt *bp = netdev_priv(dev); 15079 struct bnxt_ring_struct *ring; 15080 15081 bnxt_free_one_rx_ring(bp, rxr); 15082 bnxt_free_one_rx_agg_ring(bp, rxr); 15083 15084 page_pool_destroy(rxr->page_pool); 15085 rxr->page_pool = NULL; 15086 15087 ring = &rxr->rx_ring_struct; 15088 bnxt_free_ring(bp, &ring->ring_mem); 15089 15090 ring = &rxr->rx_agg_ring_struct; 15091 bnxt_free_ring(bp, &ring->ring_mem); 15092 15093 kfree(rxr->rx_agg_bmap); 15094 rxr->rx_agg_bmap = NULL; 15095 } 15096 15097 static void bnxt_copy_rx_ring(struct bnxt *bp, 15098 struct bnxt_rx_ring_info *dst, 15099 struct bnxt_rx_ring_info *src) 15100 { 15101 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15102 struct bnxt_ring_struct *dst_ring, *src_ring; 15103 int i; 15104 15105 dst_ring = &dst->rx_ring_struct; 15106 dst_rmem = &dst_ring->ring_mem; 15107 src_ring = &src->rx_ring_struct; 15108 src_rmem = &src_ring->ring_mem; 15109 15110 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15111 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15112 WARN_ON(dst_rmem->flags != src_rmem->flags); 15113 WARN_ON(dst_rmem->depth != src_rmem->depth); 15114 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15115 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15116 15117 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15118 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15119 *dst_rmem->vmem = *src_rmem->vmem; 15120 for (i = 0; i < dst_rmem->nr_pages; i++) { 15121 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15122 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15123 } 15124 15125 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15126 return; 15127 15128 dst_ring = &dst->rx_agg_ring_struct; 15129 dst_rmem = &dst_ring->ring_mem; 15130 src_ring = &src->rx_agg_ring_struct; 15131 src_rmem = &src_ring->ring_mem; 15132 15133 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15134 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15135 WARN_ON(dst_rmem->flags != src_rmem->flags); 15136 WARN_ON(dst_rmem->depth != src_rmem->depth); 15137 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15138 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15139 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 15140 15141 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15142 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15143 *dst_rmem->vmem = *src_rmem->vmem; 15144 for (i = 0; i < dst_rmem->nr_pages; i++) { 15145 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15146 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15147 } 15148 15149 dst->rx_agg_bmap = src->rx_agg_bmap; 15150 } 15151 15152 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 15153 { 15154 struct bnxt *bp = netdev_priv(dev); 15155 struct bnxt_rx_ring_info *rxr, *clone; 15156 struct bnxt_cp_ring_info *cpr; 15157 int rc; 15158 15159 rxr = &bp->rx_ring[idx]; 15160 clone = qmem; 15161 15162 rxr->rx_prod = clone->rx_prod; 15163 rxr->rx_agg_prod = clone->rx_agg_prod; 15164 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 15165 rxr->rx_next_cons = clone->rx_next_cons; 15166 rxr->page_pool = clone->page_pool; 15167 15168 bnxt_copy_rx_ring(bp, rxr, clone); 15169 15170 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 15171 if (rc) 15172 return rc; 15173 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 15174 if (rc) 15175 goto err_free_hwrm_rx_ring; 15176 15177 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 15178 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15179 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 15180 15181 napi_enable(&rxr->bnapi->napi); 15182 15183 cpr = &rxr->bnapi->cp_ring; 15184 cpr->sw_stats->rx.rx_resets++; 15185 15186 return 0; 15187 15188 err_free_hwrm_rx_ring: 15189 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15190 return rc; 15191 } 15192 15193 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 15194 { 15195 struct bnxt *bp = netdev_priv(dev); 15196 struct bnxt_rx_ring_info *rxr; 15197 15198 rxr = &bp->rx_ring[idx]; 15199 napi_disable(&rxr->bnapi->napi); 15200 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15201 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 15202 rxr->rx_next_cons = 0; 15203 page_pool_disable_direct_recycling(rxr->page_pool); 15204 15205 memcpy(qmem, rxr, sizeof(*rxr)); 15206 bnxt_init_rx_ring_struct(bp, qmem); 15207 15208 return 0; 15209 } 15210 15211 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 15212 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 15213 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 15214 .ndo_queue_mem_free = bnxt_queue_mem_free, 15215 .ndo_queue_start = bnxt_queue_start, 15216 .ndo_queue_stop = bnxt_queue_stop, 15217 }; 15218 15219 static void bnxt_remove_one(struct pci_dev *pdev) 15220 { 15221 struct net_device *dev = pci_get_drvdata(pdev); 15222 struct bnxt *bp = netdev_priv(dev); 15223 15224 if (BNXT_PF(bp)) 15225 bnxt_sriov_disable(bp); 15226 15227 bnxt_rdma_aux_device_del(bp); 15228 15229 bnxt_ptp_clear(bp); 15230 unregister_netdev(dev); 15231 15232 bnxt_rdma_aux_device_uninit(bp); 15233 15234 bnxt_free_l2_filters(bp, true); 15235 bnxt_free_ntp_fltrs(bp, true); 15236 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 15237 bnxt_clear_rss_ctxs(bp, true); 15238 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15239 /* Flush any pending tasks */ 15240 cancel_work_sync(&bp->sp_task); 15241 cancel_delayed_work_sync(&bp->fw_reset_task); 15242 bp->sp_event = 0; 15243 15244 bnxt_dl_fw_reporters_destroy(bp); 15245 bnxt_dl_unregister(bp); 15246 bnxt_shutdown_tc(bp); 15247 15248 bnxt_clear_int_mode(bp); 15249 bnxt_hwrm_func_drv_unrgtr(bp); 15250 bnxt_free_hwrm_resources(bp); 15251 bnxt_hwmon_uninit(bp); 15252 bnxt_ethtool_free(bp); 15253 bnxt_dcb_free(bp); 15254 kfree(bp->ptp_cfg); 15255 bp->ptp_cfg = NULL; 15256 kfree(bp->fw_health); 15257 bp->fw_health = NULL; 15258 bnxt_cleanup_pci(bp); 15259 bnxt_free_ctx_mem(bp); 15260 kfree(bp->rss_indir_tbl); 15261 bp->rss_indir_tbl = NULL; 15262 bnxt_free_port_stats(bp); 15263 free_netdev(dev); 15264 } 15265 15266 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 15267 { 15268 int rc = 0; 15269 struct bnxt_link_info *link_info = &bp->link_info; 15270 15271 bp->phy_flags = 0; 15272 rc = bnxt_hwrm_phy_qcaps(bp); 15273 if (rc) { 15274 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 15275 rc); 15276 return rc; 15277 } 15278 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 15279 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 15280 else 15281 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 15282 if (!fw_dflt) 15283 return 0; 15284 15285 mutex_lock(&bp->link_lock); 15286 rc = bnxt_update_link(bp, false); 15287 if (rc) { 15288 mutex_unlock(&bp->link_lock); 15289 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 15290 rc); 15291 return rc; 15292 } 15293 15294 /* Older firmware does not have supported_auto_speeds, so assume 15295 * that all supported speeds can be autonegotiated. 15296 */ 15297 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 15298 link_info->support_auto_speeds = link_info->support_speeds; 15299 15300 bnxt_init_ethtool_link_settings(bp); 15301 mutex_unlock(&bp->link_lock); 15302 return 0; 15303 } 15304 15305 static int bnxt_get_max_irq(struct pci_dev *pdev) 15306 { 15307 u16 ctrl; 15308 15309 if (!pdev->msix_cap) 15310 return 1; 15311 15312 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 15313 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 15314 } 15315 15316 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15317 int *max_cp) 15318 { 15319 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 15320 int max_ring_grps = 0, max_irq; 15321 15322 *max_tx = hw_resc->max_tx_rings; 15323 *max_rx = hw_resc->max_rx_rings; 15324 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 15325 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 15326 bnxt_get_ulp_msix_num_in_use(bp), 15327 hw_resc->max_stat_ctxs - 15328 bnxt_get_ulp_stat_ctxs_in_use(bp)); 15329 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 15330 *max_cp = min_t(int, *max_cp, max_irq); 15331 max_ring_grps = hw_resc->max_hw_ring_grps; 15332 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 15333 *max_cp -= 1; 15334 *max_rx -= 2; 15335 } 15336 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15337 *max_rx >>= 1; 15338 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 15339 int rc; 15340 15341 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 15342 if (rc) { 15343 *max_rx = 0; 15344 *max_tx = 0; 15345 } 15346 /* On P5 chips, max_cp output param should be available NQs */ 15347 *max_cp = max_irq; 15348 } 15349 *max_rx = min_t(int, *max_rx, max_ring_grps); 15350 } 15351 15352 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 15353 { 15354 int rx, tx, cp; 15355 15356 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 15357 *max_rx = rx; 15358 *max_tx = tx; 15359 if (!rx || !tx || !cp) 15360 return -ENOMEM; 15361 15362 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 15363 } 15364 15365 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15366 bool shared) 15367 { 15368 int rc; 15369 15370 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15371 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 15372 /* Not enough rings, try disabling agg rings. */ 15373 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 15374 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15375 if (rc) { 15376 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 15377 bp->flags |= BNXT_FLAG_AGG_RINGS; 15378 return rc; 15379 } 15380 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 15381 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15382 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15383 bnxt_set_ring_params(bp); 15384 } 15385 15386 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 15387 int max_cp, max_stat, max_irq; 15388 15389 /* Reserve minimum resources for RoCE */ 15390 max_cp = bnxt_get_max_func_cp_rings(bp); 15391 max_stat = bnxt_get_max_func_stat_ctxs(bp); 15392 max_irq = bnxt_get_max_func_irqs(bp); 15393 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 15394 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 15395 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 15396 return 0; 15397 15398 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 15399 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 15400 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 15401 max_cp = min_t(int, max_cp, max_irq); 15402 max_cp = min_t(int, max_cp, max_stat); 15403 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 15404 if (rc) 15405 rc = 0; 15406 } 15407 return rc; 15408 } 15409 15410 /* In initial default shared ring setting, each shared ring must have a 15411 * RX/TX ring pair. 15412 */ 15413 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 15414 { 15415 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 15416 bp->rx_nr_rings = bp->cp_nr_rings; 15417 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 15418 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15419 } 15420 15421 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 15422 { 15423 int dflt_rings, max_rx_rings, max_tx_rings, rc; 15424 int avail_msix; 15425 15426 if (!bnxt_can_reserve_rings(bp)) 15427 return 0; 15428 15429 if (sh) 15430 bp->flags |= BNXT_FLAG_SHARED_RINGS; 15431 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 15432 /* Reduce default rings on multi-port cards so that total default 15433 * rings do not exceed CPU count. 15434 */ 15435 if (bp->port_count > 1) { 15436 int max_rings = 15437 max_t(int, num_online_cpus() / bp->port_count, 1); 15438 15439 dflt_rings = min_t(int, dflt_rings, max_rings); 15440 } 15441 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 15442 if (rc) 15443 return rc; 15444 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 15445 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 15446 if (sh) 15447 bnxt_trim_dflt_sh_rings(bp); 15448 else 15449 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 15450 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15451 15452 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 15453 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 15454 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 15455 15456 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 15457 bnxt_set_dflt_ulp_stat_ctxs(bp); 15458 } 15459 15460 rc = __bnxt_reserve_rings(bp); 15461 if (rc && rc != -ENODEV) 15462 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 15463 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15464 if (sh) 15465 bnxt_trim_dflt_sh_rings(bp); 15466 15467 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 15468 if (bnxt_need_reserve_rings(bp)) { 15469 rc = __bnxt_reserve_rings(bp); 15470 if (rc && rc != -ENODEV) 15471 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 15472 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15473 } 15474 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 15475 bp->rx_nr_rings++; 15476 bp->cp_nr_rings++; 15477 } 15478 if (rc) { 15479 bp->tx_nr_rings = 0; 15480 bp->rx_nr_rings = 0; 15481 } 15482 return rc; 15483 } 15484 15485 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 15486 { 15487 int rc; 15488 15489 if (bp->tx_nr_rings) 15490 return 0; 15491 15492 bnxt_ulp_irq_stop(bp); 15493 bnxt_clear_int_mode(bp); 15494 rc = bnxt_set_dflt_rings(bp, true); 15495 if (rc) { 15496 if (BNXT_VF(bp) && rc == -ENODEV) 15497 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15498 else 15499 netdev_err(bp->dev, "Not enough rings available.\n"); 15500 goto init_dflt_ring_err; 15501 } 15502 rc = bnxt_init_int_mode(bp); 15503 if (rc) 15504 goto init_dflt_ring_err; 15505 15506 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15507 15508 bnxt_set_dflt_rfs(bp); 15509 15510 init_dflt_ring_err: 15511 bnxt_ulp_irq_restart(bp, rc); 15512 return rc; 15513 } 15514 15515 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 15516 { 15517 int rc; 15518 15519 ASSERT_RTNL(); 15520 bnxt_hwrm_func_qcaps(bp); 15521 15522 if (netif_running(bp->dev)) 15523 __bnxt_close_nic(bp, true, false); 15524 15525 bnxt_ulp_irq_stop(bp); 15526 bnxt_clear_int_mode(bp); 15527 rc = bnxt_init_int_mode(bp); 15528 bnxt_ulp_irq_restart(bp, rc); 15529 15530 if (netif_running(bp->dev)) { 15531 if (rc) 15532 dev_close(bp->dev); 15533 else 15534 rc = bnxt_open_nic(bp, true, false); 15535 } 15536 15537 return rc; 15538 } 15539 15540 static int bnxt_init_mac_addr(struct bnxt *bp) 15541 { 15542 int rc = 0; 15543 15544 if (BNXT_PF(bp)) { 15545 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 15546 } else { 15547 #ifdef CONFIG_BNXT_SRIOV 15548 struct bnxt_vf_info *vf = &bp->vf; 15549 bool strict_approval = true; 15550 15551 if (is_valid_ether_addr(vf->mac_addr)) { 15552 /* overwrite netdev dev_addr with admin VF MAC */ 15553 eth_hw_addr_set(bp->dev, vf->mac_addr); 15554 /* Older PF driver or firmware may not approve this 15555 * correctly. 15556 */ 15557 strict_approval = false; 15558 } else { 15559 eth_hw_addr_random(bp->dev); 15560 } 15561 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 15562 #endif 15563 } 15564 return rc; 15565 } 15566 15567 static void bnxt_vpd_read_info(struct bnxt *bp) 15568 { 15569 struct pci_dev *pdev = bp->pdev; 15570 unsigned int vpd_size, kw_len; 15571 int pos, size; 15572 u8 *vpd_data; 15573 15574 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 15575 if (IS_ERR(vpd_data)) { 15576 pci_warn(pdev, "Unable to read VPD\n"); 15577 return; 15578 } 15579 15580 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15581 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 15582 if (pos < 0) 15583 goto read_sn; 15584 15585 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15586 memcpy(bp->board_partno, &vpd_data[pos], size); 15587 15588 read_sn: 15589 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15590 PCI_VPD_RO_KEYWORD_SERIALNO, 15591 &kw_len); 15592 if (pos < 0) 15593 goto exit; 15594 15595 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15596 memcpy(bp->board_serialno, &vpd_data[pos], size); 15597 exit: 15598 kfree(vpd_data); 15599 } 15600 15601 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 15602 { 15603 struct pci_dev *pdev = bp->pdev; 15604 u64 qword; 15605 15606 qword = pci_get_dsn(pdev); 15607 if (!qword) { 15608 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 15609 return -EOPNOTSUPP; 15610 } 15611 15612 put_unaligned_le64(qword, dsn); 15613 15614 bp->flags |= BNXT_FLAG_DSN_VALID; 15615 return 0; 15616 } 15617 15618 static int bnxt_map_db_bar(struct bnxt *bp) 15619 { 15620 if (!bp->db_size) 15621 return -ENODEV; 15622 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 15623 if (!bp->bar1) 15624 return -ENOMEM; 15625 return 0; 15626 } 15627 15628 void bnxt_print_device_info(struct bnxt *bp) 15629 { 15630 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 15631 board_info[bp->board_idx].name, 15632 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 15633 15634 pcie_print_link_status(bp->pdev); 15635 } 15636 15637 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 15638 { 15639 struct bnxt_hw_resc *hw_resc; 15640 struct net_device *dev; 15641 struct bnxt *bp; 15642 int rc, max_irqs; 15643 15644 if (pci_is_bridge(pdev)) 15645 return -ENODEV; 15646 15647 /* Clear any pending DMA transactions from crash kernel 15648 * while loading driver in capture kernel. 15649 */ 15650 if (is_kdump_kernel()) { 15651 pci_clear_master(pdev); 15652 pcie_flr(pdev); 15653 } 15654 15655 max_irqs = bnxt_get_max_irq(pdev); 15656 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 15657 max_irqs); 15658 if (!dev) 15659 return -ENOMEM; 15660 15661 bp = netdev_priv(dev); 15662 bp->board_idx = ent->driver_data; 15663 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 15664 bnxt_set_max_func_irqs(bp, max_irqs); 15665 15666 if (bnxt_vf_pciid(bp->board_idx)) 15667 bp->flags |= BNXT_FLAG_VF; 15668 15669 /* No devlink port registration in case of a VF */ 15670 if (BNXT_PF(bp)) 15671 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 15672 15673 if (pdev->msix_cap) 15674 bp->flags |= BNXT_FLAG_MSIX_CAP; 15675 15676 rc = bnxt_init_board(pdev, dev); 15677 if (rc < 0) 15678 goto init_err_free; 15679 15680 dev->netdev_ops = &bnxt_netdev_ops; 15681 dev->stat_ops = &bnxt_stat_ops; 15682 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 15683 dev->ethtool_ops = &bnxt_ethtool_ops; 15684 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 15685 pci_set_drvdata(pdev, dev); 15686 15687 rc = bnxt_alloc_hwrm_resources(bp); 15688 if (rc) 15689 goto init_err_pci_clean; 15690 15691 mutex_init(&bp->hwrm_cmd_lock); 15692 mutex_init(&bp->link_lock); 15693 15694 rc = bnxt_fw_init_one_p1(bp); 15695 if (rc) 15696 goto init_err_pci_clean; 15697 15698 if (BNXT_PF(bp)) 15699 bnxt_vpd_read_info(bp); 15700 15701 if (BNXT_CHIP_P5_PLUS(bp)) { 15702 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 15703 if (BNXT_CHIP_P7(bp)) 15704 bp->flags |= BNXT_FLAG_CHIP_P7; 15705 } 15706 15707 rc = bnxt_alloc_rss_indir_tbl(bp, NULL); 15708 if (rc) 15709 goto init_err_pci_clean; 15710 15711 rc = bnxt_fw_init_one_p2(bp); 15712 if (rc) 15713 goto init_err_pci_clean; 15714 15715 rc = bnxt_map_db_bar(bp); 15716 if (rc) { 15717 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 15718 rc); 15719 goto init_err_pci_clean; 15720 } 15721 15722 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15723 NETIF_F_TSO | NETIF_F_TSO6 | 15724 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15725 NETIF_F_GSO_IPXIP4 | 15726 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15727 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 15728 NETIF_F_RXCSUM | NETIF_F_GRO; 15729 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15730 dev->hw_features |= NETIF_F_GSO_UDP_L4; 15731 15732 if (BNXT_SUPPORTS_TPA(bp)) 15733 dev->hw_features |= NETIF_F_LRO; 15734 15735 dev->hw_enc_features = 15736 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 15737 NETIF_F_TSO | NETIF_F_TSO6 | 15738 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 15739 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 15740 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 15741 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 15742 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 15743 if (bp->flags & BNXT_FLAG_CHIP_P7) 15744 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 15745 else 15746 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 15747 15748 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 15749 NETIF_F_GSO_GRE_CSUM; 15750 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 15751 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 15752 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 15753 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 15754 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 15755 if (BNXT_SUPPORTS_TPA(bp)) 15756 dev->hw_features |= NETIF_F_GRO_HW; 15757 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 15758 if (dev->features & NETIF_F_GRO_HW) 15759 dev->features &= ~NETIF_F_LRO; 15760 dev->priv_flags |= IFF_UNICAST_FLT; 15761 15762 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 15763 if (bp->tso_max_segs) 15764 netif_set_tso_max_segs(dev, bp->tso_max_segs); 15765 15766 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 15767 NETDEV_XDP_ACT_RX_SG; 15768 15769 #ifdef CONFIG_BNXT_SRIOV 15770 init_waitqueue_head(&bp->sriov_cfg_wait); 15771 #endif 15772 if (BNXT_SUPPORTS_TPA(bp)) { 15773 bp->gro_func = bnxt_gro_func_5730x; 15774 if (BNXT_CHIP_P4(bp)) 15775 bp->gro_func = bnxt_gro_func_5731x; 15776 else if (BNXT_CHIP_P5_PLUS(bp)) 15777 bp->gro_func = bnxt_gro_func_5750x; 15778 } 15779 if (!BNXT_CHIP_P4_PLUS(bp)) 15780 bp->flags |= BNXT_FLAG_DOUBLE_DB; 15781 15782 rc = bnxt_init_mac_addr(bp); 15783 if (rc) { 15784 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 15785 rc = -EADDRNOTAVAIL; 15786 goto init_err_pci_clean; 15787 } 15788 15789 if (BNXT_PF(bp)) { 15790 /* Read the adapter's DSN to use as the eswitch switch_id */ 15791 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 15792 } 15793 15794 /* MTU range: 60 - FW defined max */ 15795 dev->min_mtu = ETH_ZLEN; 15796 dev->max_mtu = bp->max_mtu; 15797 15798 rc = bnxt_probe_phy(bp, true); 15799 if (rc) 15800 goto init_err_pci_clean; 15801 15802 hw_resc = &bp->hw_resc; 15803 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 15804 BNXT_L2_FLTR_MAX_FLTR; 15805 /* Older firmware may not report these filters properly */ 15806 if (bp->max_fltr < BNXT_MAX_FLTR) 15807 bp->max_fltr = BNXT_MAX_FLTR; 15808 bnxt_init_l2_fltr_tbl(bp); 15809 bnxt_set_rx_skb_mode(bp, false); 15810 bnxt_set_tpa_flags(bp); 15811 bnxt_set_ring_params(bp); 15812 bnxt_rdma_aux_device_init(bp); 15813 rc = bnxt_set_dflt_rings(bp, true); 15814 if (rc) { 15815 if (BNXT_VF(bp) && rc == -ENODEV) { 15816 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15817 } else { 15818 netdev_err(bp->dev, "Not enough rings available.\n"); 15819 rc = -ENOMEM; 15820 } 15821 goto init_err_pci_clean; 15822 } 15823 15824 bnxt_fw_init_one_p3(bp); 15825 15826 bnxt_init_dflt_coal(bp); 15827 15828 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 15829 bp->flags |= BNXT_FLAG_STRIP_VLAN; 15830 15831 rc = bnxt_init_int_mode(bp); 15832 if (rc) 15833 goto init_err_pci_clean; 15834 15835 /* No TC has been set yet and rings may have been trimmed due to 15836 * limited MSIX, so we re-initialize the TX rings per TC. 15837 */ 15838 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15839 15840 if (BNXT_PF(bp)) { 15841 if (!bnxt_pf_wq) { 15842 bnxt_pf_wq = 15843 create_singlethread_workqueue("bnxt_pf_wq"); 15844 if (!bnxt_pf_wq) { 15845 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 15846 rc = -ENOMEM; 15847 goto init_err_pci_clean; 15848 } 15849 } 15850 rc = bnxt_init_tc(bp); 15851 if (rc) 15852 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 15853 rc); 15854 } 15855 15856 bnxt_inv_fw_health_reg(bp); 15857 rc = bnxt_dl_register(bp); 15858 if (rc) 15859 goto init_err_dl; 15860 15861 INIT_LIST_HEAD(&bp->usr_fltr_list); 15862 15863 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 15864 bnxt_init_multi_rss_ctx(bp); 15865 15866 15867 rc = register_netdev(dev); 15868 if (rc) 15869 goto init_err_cleanup; 15870 15871 bnxt_dl_fw_reporters_create(bp); 15872 15873 bnxt_rdma_aux_device_add(bp); 15874 15875 bnxt_print_device_info(bp); 15876 15877 pci_save_state(pdev); 15878 15879 return 0; 15880 init_err_cleanup: 15881 bnxt_rdma_aux_device_uninit(bp); 15882 bnxt_dl_unregister(bp); 15883 init_err_dl: 15884 bnxt_shutdown_tc(bp); 15885 bnxt_clear_int_mode(bp); 15886 15887 init_err_pci_clean: 15888 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 15889 bnxt_clear_rss_ctxs(bp, true); 15890 bnxt_hwrm_func_drv_unrgtr(bp); 15891 bnxt_free_hwrm_resources(bp); 15892 bnxt_hwmon_uninit(bp); 15893 bnxt_ethtool_free(bp); 15894 bnxt_ptp_clear(bp); 15895 kfree(bp->ptp_cfg); 15896 bp->ptp_cfg = NULL; 15897 kfree(bp->fw_health); 15898 bp->fw_health = NULL; 15899 bnxt_cleanup_pci(bp); 15900 bnxt_free_ctx_mem(bp); 15901 kfree(bp->rss_indir_tbl); 15902 bp->rss_indir_tbl = NULL; 15903 15904 init_err_free: 15905 free_netdev(dev); 15906 return rc; 15907 } 15908 15909 static void bnxt_shutdown(struct pci_dev *pdev) 15910 { 15911 struct net_device *dev = pci_get_drvdata(pdev); 15912 struct bnxt *bp; 15913 15914 if (!dev) 15915 return; 15916 15917 rtnl_lock(); 15918 bp = netdev_priv(dev); 15919 if (!bp) 15920 goto shutdown_exit; 15921 15922 if (netif_running(dev)) 15923 dev_close(dev); 15924 15925 bnxt_clear_int_mode(bp); 15926 pci_disable_device(pdev); 15927 15928 if (system_state == SYSTEM_POWER_OFF) { 15929 pci_wake_from_d3(pdev, bp->wol); 15930 pci_set_power_state(pdev, PCI_D3hot); 15931 } 15932 15933 shutdown_exit: 15934 rtnl_unlock(); 15935 } 15936 15937 #ifdef CONFIG_PM_SLEEP 15938 static int bnxt_suspend(struct device *device) 15939 { 15940 struct net_device *dev = dev_get_drvdata(device); 15941 struct bnxt *bp = netdev_priv(dev); 15942 int rc = 0; 15943 15944 bnxt_ulp_stop(bp); 15945 15946 rtnl_lock(); 15947 if (netif_running(dev)) { 15948 netif_device_detach(dev); 15949 rc = bnxt_close(dev); 15950 } 15951 bnxt_hwrm_func_drv_unrgtr(bp); 15952 pci_disable_device(bp->pdev); 15953 bnxt_free_ctx_mem(bp); 15954 rtnl_unlock(); 15955 return rc; 15956 } 15957 15958 static int bnxt_resume(struct device *device) 15959 { 15960 struct net_device *dev = dev_get_drvdata(device); 15961 struct bnxt *bp = netdev_priv(dev); 15962 int rc = 0; 15963 15964 rtnl_lock(); 15965 rc = pci_enable_device(bp->pdev); 15966 if (rc) { 15967 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 15968 rc); 15969 goto resume_exit; 15970 } 15971 pci_set_master(bp->pdev); 15972 if (bnxt_hwrm_ver_get(bp)) { 15973 rc = -ENODEV; 15974 goto resume_exit; 15975 } 15976 rc = bnxt_hwrm_func_reset(bp); 15977 if (rc) { 15978 rc = -EBUSY; 15979 goto resume_exit; 15980 } 15981 15982 rc = bnxt_hwrm_func_qcaps(bp); 15983 if (rc) 15984 goto resume_exit; 15985 15986 bnxt_clear_reservations(bp, true); 15987 15988 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 15989 rc = -ENODEV; 15990 goto resume_exit; 15991 } 15992 15993 bnxt_get_wol_settings(bp); 15994 if (netif_running(dev)) { 15995 rc = bnxt_open(dev); 15996 if (!rc) 15997 netif_device_attach(dev); 15998 } 15999 16000 resume_exit: 16001 rtnl_unlock(); 16002 bnxt_ulp_start(bp, rc); 16003 if (!rc) 16004 bnxt_reenable_sriov(bp); 16005 return rc; 16006 } 16007 16008 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 16009 #define BNXT_PM_OPS (&bnxt_pm_ops) 16010 16011 #else 16012 16013 #define BNXT_PM_OPS NULL 16014 16015 #endif /* CONFIG_PM_SLEEP */ 16016 16017 /** 16018 * bnxt_io_error_detected - called when PCI error is detected 16019 * @pdev: Pointer to PCI device 16020 * @state: The current pci connection state 16021 * 16022 * This function is called after a PCI bus error affecting 16023 * this device has been detected. 16024 */ 16025 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 16026 pci_channel_state_t state) 16027 { 16028 struct net_device *netdev = pci_get_drvdata(pdev); 16029 struct bnxt *bp = netdev_priv(netdev); 16030 bool abort = false; 16031 16032 netdev_info(netdev, "PCI I/O error detected\n"); 16033 16034 bnxt_ulp_stop(bp); 16035 16036 rtnl_lock(); 16037 netif_device_detach(netdev); 16038 16039 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16040 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16041 abort = true; 16042 } 16043 16044 if (abort || state == pci_channel_io_perm_failure) { 16045 rtnl_unlock(); 16046 return PCI_ERS_RESULT_DISCONNECT; 16047 } 16048 16049 /* Link is not reliable anymore if state is pci_channel_io_frozen 16050 * so we disable bus master to prevent any potential bad DMAs before 16051 * freeing kernel memory. 16052 */ 16053 if (state == pci_channel_io_frozen) { 16054 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 16055 bnxt_fw_fatal_close(bp); 16056 } 16057 16058 if (netif_running(netdev)) 16059 __bnxt_close_nic(bp, true, true); 16060 16061 if (pci_is_enabled(pdev)) 16062 pci_disable_device(pdev); 16063 bnxt_free_ctx_mem(bp); 16064 rtnl_unlock(); 16065 16066 /* Request a slot slot reset. */ 16067 return PCI_ERS_RESULT_NEED_RESET; 16068 } 16069 16070 /** 16071 * bnxt_io_slot_reset - called after the pci bus has been reset. 16072 * @pdev: Pointer to PCI device 16073 * 16074 * Restart the card from scratch, as if from a cold-boot. 16075 * At this point, the card has exprienced a hard reset, 16076 * followed by fixups by BIOS, and has its config space 16077 * set up identically to what it was at cold boot. 16078 */ 16079 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 16080 { 16081 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 16082 struct net_device *netdev = pci_get_drvdata(pdev); 16083 struct bnxt *bp = netdev_priv(netdev); 16084 int retry = 0; 16085 int err = 0; 16086 int off; 16087 16088 netdev_info(bp->dev, "PCI Slot Reset\n"); 16089 16090 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 16091 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 16092 msleep(900); 16093 16094 rtnl_lock(); 16095 16096 if (pci_enable_device(pdev)) { 16097 dev_err(&pdev->dev, 16098 "Cannot re-enable PCI device after reset.\n"); 16099 } else { 16100 pci_set_master(pdev); 16101 /* Upon fatal error, our device internal logic that latches to 16102 * BAR value is getting reset and will restore only upon 16103 * rewritting the BARs. 16104 * 16105 * As pci_restore_state() does not re-write the BARs if the 16106 * value is same as saved value earlier, driver needs to 16107 * write the BARs to 0 to force restore, in case of fatal error. 16108 */ 16109 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 16110 &bp->state)) { 16111 for (off = PCI_BASE_ADDRESS_0; 16112 off <= PCI_BASE_ADDRESS_5; off += 4) 16113 pci_write_config_dword(bp->pdev, off, 0); 16114 } 16115 pci_restore_state(pdev); 16116 pci_save_state(pdev); 16117 16118 bnxt_inv_fw_health_reg(bp); 16119 bnxt_try_map_fw_health_reg(bp); 16120 16121 /* In some PCIe AER scenarios, firmware may take up to 16122 * 10 seconds to become ready in the worst case. 16123 */ 16124 do { 16125 err = bnxt_try_recover_fw(bp); 16126 if (!err) 16127 break; 16128 retry++; 16129 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 16130 16131 if (err) { 16132 dev_err(&pdev->dev, "Firmware not ready\n"); 16133 goto reset_exit; 16134 } 16135 16136 err = bnxt_hwrm_func_reset(bp); 16137 if (!err) 16138 result = PCI_ERS_RESULT_RECOVERED; 16139 16140 bnxt_ulp_irq_stop(bp); 16141 bnxt_clear_int_mode(bp); 16142 err = bnxt_init_int_mode(bp); 16143 bnxt_ulp_irq_restart(bp, err); 16144 } 16145 16146 reset_exit: 16147 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16148 bnxt_clear_reservations(bp, true); 16149 rtnl_unlock(); 16150 16151 return result; 16152 } 16153 16154 /** 16155 * bnxt_io_resume - called when traffic can start flowing again. 16156 * @pdev: Pointer to PCI device 16157 * 16158 * This callback is called when the error recovery driver tells 16159 * us that its OK to resume normal operation. 16160 */ 16161 static void bnxt_io_resume(struct pci_dev *pdev) 16162 { 16163 struct net_device *netdev = pci_get_drvdata(pdev); 16164 struct bnxt *bp = netdev_priv(netdev); 16165 int err; 16166 16167 netdev_info(bp->dev, "PCI Slot Resume\n"); 16168 rtnl_lock(); 16169 16170 err = bnxt_hwrm_func_qcaps(bp); 16171 if (!err && netif_running(netdev)) 16172 err = bnxt_open(netdev); 16173 16174 if (!err) 16175 netif_device_attach(netdev); 16176 16177 rtnl_unlock(); 16178 bnxt_ulp_start(bp, err); 16179 if (!err) 16180 bnxt_reenable_sriov(bp); 16181 } 16182 16183 static const struct pci_error_handlers bnxt_err_handler = { 16184 .error_detected = bnxt_io_error_detected, 16185 .slot_reset = bnxt_io_slot_reset, 16186 .resume = bnxt_io_resume 16187 }; 16188 16189 static struct pci_driver bnxt_pci_driver = { 16190 .name = DRV_MODULE_NAME, 16191 .id_table = bnxt_pci_tbl, 16192 .probe = bnxt_init_one, 16193 .remove = bnxt_remove_one, 16194 .shutdown = bnxt_shutdown, 16195 .driver.pm = BNXT_PM_OPS, 16196 .err_handler = &bnxt_err_handler, 16197 #if defined(CONFIG_BNXT_SRIOV) 16198 .sriov_configure = bnxt_sriov_configure, 16199 #endif 16200 }; 16201 16202 static int __init bnxt_init(void) 16203 { 16204 int err; 16205 16206 bnxt_debug_init(); 16207 err = pci_register_driver(&bnxt_pci_driver); 16208 if (err) { 16209 bnxt_debug_exit(); 16210 return err; 16211 } 16212 16213 return 0; 16214 } 16215 16216 static void __exit bnxt_exit(void) 16217 { 16218 pci_unregister_driver(&bnxt_pci_driver); 16219 if (bnxt_pf_wq) 16220 destroy_workqueue(bnxt_pf_wq); 16221 bnxt_debug_exit(); 16222 } 16223 16224 module_init(bnxt_init); 16225 module_exit(bnxt_exit); 16226