1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_lock.h> 58 #include <net/netdev_queues.h> 59 #include <net/netdev_rx_queue.h> 60 #include <linux/pci-tph.h> 61 62 #include "bnxt_hsi.h" 63 #include "bnxt.h" 64 #include "bnxt_hwrm.h" 65 #include "bnxt_ulp.h" 66 #include "bnxt_sriov.h" 67 #include "bnxt_ethtool.h" 68 #include "bnxt_dcb.h" 69 #include "bnxt_xdp.h" 70 #include "bnxt_ptp.h" 71 #include "bnxt_vfr.h" 72 #include "bnxt_tc.h" 73 #include "bnxt_devlink.h" 74 #include "bnxt_debugfs.h" 75 #include "bnxt_coredump.h" 76 #include "bnxt_hwmon.h" 77 78 #define BNXT_TX_TIMEOUT (5 * HZ) 79 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 80 NETIF_MSG_TX_ERR) 81 82 MODULE_IMPORT_NS("NETDEV_INTERNAL"); 83 MODULE_LICENSE("GPL"); 84 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 85 86 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 87 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 88 89 #define BNXT_TX_PUSH_THRESH 164 90 91 /* indexed by enum board_idx */ 92 static const struct { 93 char *name; 94 } board_info[] = { 95 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 96 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 97 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 98 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 99 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 100 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 101 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 102 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 103 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 104 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 105 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 106 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 108 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 109 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 110 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 111 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 112 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 113 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 114 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 115 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 116 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 117 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 118 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 119 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 120 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 121 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 122 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 123 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 124 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 125 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 126 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 127 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 128 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 129 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 130 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 131 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 132 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 133 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 134 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 135 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 136 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 137 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 138 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 139 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 140 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 141 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 142 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 143 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 144 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 145 }; 146 147 static const struct pci_device_id bnxt_pci_tbl[] = { 148 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 149 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 150 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 151 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 152 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 153 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 154 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 155 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 156 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 157 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 158 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 160 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 163 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 164 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 165 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 166 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 167 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 168 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 169 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 170 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 171 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 172 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 175 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 179 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 180 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 181 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 182 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 183 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 184 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 185 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 186 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 187 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 188 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 189 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 190 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 193 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 194 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 195 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 196 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 197 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 198 #ifdef CONFIG_BNXT_SRIOV 199 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 201 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 202 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 203 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 205 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 207 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 208 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 209 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 212 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 214 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 216 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 217 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 218 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 219 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 220 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 221 #endif 222 { 0 } 223 }; 224 225 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 226 227 static const u16 bnxt_vf_req_snif[] = { 228 HWRM_FUNC_CFG, 229 HWRM_FUNC_VF_CFG, 230 HWRM_PORT_PHY_QCFG, 231 HWRM_CFA_L2_FILTER_ALLOC, 232 }; 233 234 static const u16 bnxt_async_events_arr[] = { 235 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 236 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 238 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 239 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 240 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 241 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 242 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 243 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 244 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 245 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 246 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 247 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 248 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 249 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 250 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 251 ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER, 252 }; 253 254 const u16 bnxt_bstore_to_trace[] = { 255 [BNXT_CTX_SRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT_TRACE, 256 [BNXT_CTX_SRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT2_TRACE, 257 [BNXT_CTX_CRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT_TRACE, 258 [BNXT_CTX_CRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT2_TRACE, 259 [BNXT_CTX_RIGP0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP0_TRACE, 260 [BNXT_CTX_L2HWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_L2_HWRM_TRACE, 261 [BNXT_CTX_REHWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_ROCE_HWRM_TRACE, 262 [BNXT_CTX_CA0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA0_TRACE, 263 [BNXT_CTX_CA1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA1_TRACE, 264 [BNXT_CTX_CA2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA2_TRACE, 265 [BNXT_CTX_RIGP1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP1_TRACE, 266 }; 267 268 static struct workqueue_struct *bnxt_pf_wq; 269 270 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 271 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 272 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 273 274 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 275 .ports = { 276 .src = 0, 277 .dst = 0, 278 }, 279 .addrs = { 280 .v6addrs = { 281 .src = BNXT_IPV6_MASK_NONE, 282 .dst = BNXT_IPV6_MASK_NONE, 283 }, 284 }, 285 }; 286 287 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 288 .ports = { 289 .src = cpu_to_be16(0xffff), 290 .dst = cpu_to_be16(0xffff), 291 }, 292 .addrs = { 293 .v6addrs = { 294 .src = BNXT_IPV6_MASK_ALL, 295 .dst = BNXT_IPV6_MASK_ALL, 296 }, 297 }, 298 }; 299 300 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 301 .ports = { 302 .src = cpu_to_be16(0xffff), 303 .dst = cpu_to_be16(0xffff), 304 }, 305 .addrs = { 306 .v4addrs = { 307 .src = cpu_to_be32(0xffffffff), 308 .dst = cpu_to_be32(0xffffffff), 309 }, 310 }, 311 }; 312 313 static bool bnxt_vf_pciid(enum board_idx idx) 314 { 315 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 316 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 317 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 318 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 319 } 320 321 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 322 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 323 324 #define BNXT_DB_CQ(db, idx) \ 325 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 326 327 #define BNXT_DB_NQ_P5(db, idx) \ 328 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 329 (db)->doorbell) 330 331 #define BNXT_DB_NQ_P7(db, idx) \ 332 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 333 DB_RING_IDX(db, idx), (db)->doorbell) 334 335 #define BNXT_DB_CQ_ARM(db, idx) \ 336 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 337 338 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 339 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 340 DB_RING_IDX(db, idx), (db)->doorbell) 341 342 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 343 { 344 if (bp->flags & BNXT_FLAG_CHIP_P7) 345 BNXT_DB_NQ_P7(db, idx); 346 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 347 BNXT_DB_NQ_P5(db, idx); 348 else 349 BNXT_DB_CQ(db, idx); 350 } 351 352 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 353 { 354 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 355 BNXT_DB_NQ_ARM_P5(db, idx); 356 else 357 BNXT_DB_CQ_ARM(db, idx); 358 } 359 360 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 361 { 362 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 363 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 364 DB_RING_IDX(db, idx), db->doorbell); 365 else 366 BNXT_DB_CQ(db, idx); 367 } 368 369 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 370 { 371 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 372 return; 373 374 if (BNXT_PF(bp)) 375 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 376 else 377 schedule_delayed_work(&bp->fw_reset_task, delay); 378 } 379 380 static void __bnxt_queue_sp_work(struct bnxt *bp) 381 { 382 if (BNXT_PF(bp)) 383 queue_work(bnxt_pf_wq, &bp->sp_task); 384 else 385 schedule_work(&bp->sp_task); 386 } 387 388 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 389 { 390 set_bit(event, &bp->sp_event); 391 __bnxt_queue_sp_work(bp); 392 } 393 394 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 395 { 396 if (!rxr->bnapi->in_reset) { 397 rxr->bnapi->in_reset = true; 398 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 399 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 400 else 401 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 402 __bnxt_queue_sp_work(bp); 403 } 404 rxr->rx_next_cons = 0xffff; 405 } 406 407 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 408 u16 curr) 409 { 410 struct bnxt_napi *bnapi = txr->bnapi; 411 412 if (bnapi->tx_fault) 413 return; 414 415 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 416 txr->txq_index, txr->tx_hw_cons, 417 txr->tx_cons, txr->tx_prod, curr); 418 WARN_ON_ONCE(1); 419 bnapi->tx_fault = 1; 420 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 421 } 422 423 const u16 bnxt_lhint_arr[] = { 424 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 425 TX_BD_FLAGS_LHINT_512_TO_1023, 426 TX_BD_FLAGS_LHINT_1024_TO_2047, 427 TX_BD_FLAGS_LHINT_1024_TO_2047, 428 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 429 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 430 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 431 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 432 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 433 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 434 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 435 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 436 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 437 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 438 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 439 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 440 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 441 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 442 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 443 }; 444 445 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 446 { 447 struct metadata_dst *md_dst = skb_metadata_dst(skb); 448 449 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 450 return 0; 451 452 return md_dst->u.port_info.port_id; 453 } 454 455 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 456 u16 prod) 457 { 458 /* Sync BD data before updating doorbell */ 459 wmb(); 460 bnxt_db_write(bp, &txr->tx_db, prod); 461 txr->kick_pending = 0; 462 } 463 464 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 465 { 466 struct bnxt *bp = netdev_priv(dev); 467 struct tx_bd *txbd, *txbd0; 468 struct tx_bd_ext *txbd1; 469 struct netdev_queue *txq; 470 int i; 471 dma_addr_t mapping; 472 unsigned int length, pad = 0; 473 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 474 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 475 struct pci_dev *pdev = bp->pdev; 476 u16 prod, last_frag, txts_prod; 477 struct bnxt_tx_ring_info *txr; 478 struct bnxt_sw_tx_bd *tx_buf; 479 __le32 lflags = 0; 480 481 i = skb_get_queue_mapping(skb); 482 if (unlikely(i >= bp->tx_nr_rings)) { 483 dev_kfree_skb_any(skb); 484 dev_core_stats_tx_dropped_inc(dev); 485 return NETDEV_TX_OK; 486 } 487 488 txq = netdev_get_tx_queue(dev, i); 489 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 490 prod = txr->tx_prod; 491 492 #if (MAX_SKB_FRAGS > TX_MAX_FRAGS) 493 if (skb_shinfo(skb)->nr_frags > TX_MAX_FRAGS) { 494 netdev_warn_once(dev, "SKB has too many (%d) fragments, max supported is %d. SKB will be linearized.\n", 495 skb_shinfo(skb)->nr_frags, TX_MAX_FRAGS); 496 if (skb_linearize(skb)) { 497 dev_kfree_skb_any(skb); 498 dev_core_stats_tx_dropped_inc(dev); 499 return NETDEV_TX_OK; 500 } 501 } 502 #endif 503 free_size = bnxt_tx_avail(bp, txr); 504 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 505 /* We must have raced with NAPI cleanup */ 506 if (net_ratelimit() && txr->kick_pending) 507 netif_warn(bp, tx_err, dev, 508 "bnxt: ring busy w/ flush pending!\n"); 509 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 510 bp->tx_wake_thresh)) 511 return NETDEV_TX_BUSY; 512 } 513 514 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 515 goto tx_free; 516 517 length = skb->len; 518 len = skb_headlen(skb); 519 last_frag = skb_shinfo(skb)->nr_frags; 520 521 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 522 523 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 524 tx_buf->skb = skb; 525 tx_buf->nr_frags = last_frag; 526 527 vlan_tag_flags = 0; 528 cfa_action = bnxt_xmit_get_cfa_action(skb); 529 if (skb_vlan_tag_present(skb)) { 530 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 531 skb_vlan_tag_get(skb); 532 /* Currently supports 8021Q, 8021AD vlan offloads 533 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 534 */ 535 if (skb->vlan_proto == htons(ETH_P_8021Q)) 536 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 537 } 538 539 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 540 ptp->tx_tstamp_en) { 541 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 542 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 543 tx_buf->is_ts_pkt = 1; 544 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 545 } else if (!skb_is_gso(skb)) { 546 u16 seq_id, hdr_off; 547 548 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 549 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 550 if (vlan_tag_flags) 551 hdr_off += VLAN_HLEN; 552 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 553 tx_buf->is_ts_pkt = 1; 554 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 555 556 ptp->txts_req[txts_prod].tx_seqid = seq_id; 557 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 558 tx_buf->txts_prod = txts_prod; 559 } 560 } 561 } 562 if (unlikely(skb->no_fcs)) 563 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 564 565 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 566 !lflags) { 567 struct tx_push_buffer *tx_push_buf = txr->tx_push; 568 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 569 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 570 void __iomem *db = txr->tx_db.doorbell; 571 void *pdata = tx_push_buf->data; 572 u64 *end; 573 int j, push_len; 574 575 /* Set COAL_NOW to be ready quickly for the next push */ 576 tx_push->tx_bd_len_flags_type = 577 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 578 TX_BD_TYPE_LONG_TX_BD | 579 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 580 TX_BD_FLAGS_COAL_NOW | 581 TX_BD_FLAGS_PACKET_END | 582 TX_BD_CNT(2)); 583 584 if (skb->ip_summed == CHECKSUM_PARTIAL) 585 tx_push1->tx_bd_hsize_lflags = 586 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 587 else 588 tx_push1->tx_bd_hsize_lflags = 0; 589 590 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 591 tx_push1->tx_bd_cfa_action = 592 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 593 594 end = pdata + length; 595 end = PTR_ALIGN(end, 8) - 1; 596 *end = 0; 597 598 skb_copy_from_linear_data(skb, pdata, len); 599 pdata += len; 600 for (j = 0; j < last_frag; j++) { 601 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 602 void *fptr; 603 604 fptr = skb_frag_address_safe(frag); 605 if (!fptr) 606 goto normal_tx; 607 608 memcpy(pdata, fptr, skb_frag_size(frag)); 609 pdata += skb_frag_size(frag); 610 } 611 612 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 613 txbd->tx_bd_haddr = txr->data_mapping; 614 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 615 prod = NEXT_TX(prod); 616 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 617 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 618 memcpy(txbd, tx_push1, sizeof(*txbd)); 619 prod = NEXT_TX(prod); 620 tx_push->doorbell = 621 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 622 DB_RING_IDX(&txr->tx_db, prod)); 623 WRITE_ONCE(txr->tx_prod, prod); 624 625 tx_buf->is_push = 1; 626 netdev_tx_sent_queue(txq, skb->len); 627 wmb(); /* Sync is_push and byte queue before pushing data */ 628 629 push_len = (length + sizeof(*tx_push) + 7) / 8; 630 if (push_len > 16) { 631 __iowrite64_copy(db, tx_push_buf, 16); 632 __iowrite32_copy(db + 4, tx_push_buf + 1, 633 (push_len - 16) << 1); 634 } else { 635 __iowrite64_copy(db, tx_push_buf, push_len); 636 } 637 638 goto tx_done; 639 } 640 641 normal_tx: 642 if (length < BNXT_MIN_PKT_SIZE) { 643 pad = BNXT_MIN_PKT_SIZE - length; 644 if (skb_pad(skb, pad)) 645 /* SKB already freed. */ 646 goto tx_kick_pending; 647 length = BNXT_MIN_PKT_SIZE; 648 } 649 650 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 651 652 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 653 goto tx_free; 654 655 dma_unmap_addr_set(tx_buf, mapping, mapping); 656 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 657 TX_BD_CNT(last_frag + 2); 658 659 txbd->tx_bd_haddr = cpu_to_le64(mapping); 660 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 661 662 prod = NEXT_TX(prod); 663 txbd1 = (struct tx_bd_ext *) 664 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 665 666 txbd1->tx_bd_hsize_lflags = lflags; 667 if (skb_is_gso(skb)) { 668 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 669 u32 hdr_len; 670 671 if (skb->encapsulation) { 672 if (udp_gso) 673 hdr_len = skb_inner_transport_offset(skb) + 674 sizeof(struct udphdr); 675 else 676 hdr_len = skb_inner_tcp_all_headers(skb); 677 } else if (udp_gso) { 678 hdr_len = skb_transport_offset(skb) + 679 sizeof(struct udphdr); 680 } else { 681 hdr_len = skb_tcp_all_headers(skb); 682 } 683 684 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 685 TX_BD_FLAGS_T_IPID | 686 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 687 length = skb_shinfo(skb)->gso_size; 688 txbd1->tx_bd_mss = cpu_to_le32(length); 689 length += hdr_len; 690 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 691 txbd1->tx_bd_hsize_lflags |= 692 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 693 txbd1->tx_bd_mss = 0; 694 } 695 696 length >>= 9; 697 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 698 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 699 skb->len); 700 i = 0; 701 goto tx_dma_error; 702 } 703 flags |= bnxt_lhint_arr[length]; 704 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 705 706 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 707 txbd1->tx_bd_cfa_action = 708 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 709 txbd0 = txbd; 710 for (i = 0; i < last_frag; i++) { 711 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 712 713 prod = NEXT_TX(prod); 714 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 715 716 len = skb_frag_size(frag); 717 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 718 DMA_TO_DEVICE); 719 720 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 721 goto tx_dma_error; 722 723 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 724 dma_unmap_addr_set(tx_buf, mapping, mapping); 725 726 txbd->tx_bd_haddr = cpu_to_le64(mapping); 727 728 flags = len << TX_BD_LEN_SHIFT; 729 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 730 } 731 732 flags &= ~TX_BD_LEN; 733 txbd->tx_bd_len_flags_type = 734 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 735 TX_BD_FLAGS_PACKET_END); 736 737 netdev_tx_sent_queue(txq, skb->len); 738 739 skb_tx_timestamp(skb); 740 741 prod = NEXT_TX(prod); 742 WRITE_ONCE(txr->tx_prod, prod); 743 744 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 745 bnxt_txr_db_kick(bp, txr, prod); 746 } else { 747 if (free_size >= bp->tx_wake_thresh) 748 txbd0->tx_bd_len_flags_type |= 749 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 750 txr->kick_pending = 1; 751 } 752 753 tx_done: 754 755 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 756 if (netdev_xmit_more() && !tx_buf->is_push) { 757 txbd0->tx_bd_len_flags_type &= 758 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 759 bnxt_txr_db_kick(bp, txr, prod); 760 } 761 762 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 763 bp->tx_wake_thresh); 764 } 765 return NETDEV_TX_OK; 766 767 tx_dma_error: 768 last_frag = i; 769 770 /* start back at beginning and unmap skb */ 771 prod = txr->tx_prod; 772 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 773 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 774 skb_headlen(skb), DMA_TO_DEVICE); 775 prod = NEXT_TX(prod); 776 777 /* unmap remaining mapped pages */ 778 for (i = 0; i < last_frag; i++) { 779 prod = NEXT_TX(prod); 780 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 781 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 782 skb_frag_size(&skb_shinfo(skb)->frags[i]), 783 DMA_TO_DEVICE); 784 } 785 786 tx_free: 787 dev_kfree_skb_any(skb); 788 tx_kick_pending: 789 if (BNXT_TX_PTP_IS_SET(lflags)) { 790 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].is_ts_pkt = 0; 791 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 792 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 793 /* set SKB to err so PTP worker will clean up */ 794 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 795 } 796 if (txr->kick_pending) 797 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 798 txr->tx_buf_ring[RING_TX(bp, txr->tx_prod)].skb = NULL; 799 dev_core_stats_tx_dropped_inc(dev); 800 return NETDEV_TX_OK; 801 } 802 803 /* Returns true if some remaining TX packets not processed. */ 804 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 805 int budget) 806 { 807 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 808 struct pci_dev *pdev = bp->pdev; 809 u16 hw_cons = txr->tx_hw_cons; 810 unsigned int tx_bytes = 0; 811 u16 cons = txr->tx_cons; 812 int tx_pkts = 0; 813 bool rc = false; 814 815 while (RING_TX(bp, cons) != hw_cons) { 816 struct bnxt_sw_tx_bd *tx_buf; 817 struct sk_buff *skb; 818 bool is_ts_pkt; 819 int j, last; 820 821 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 822 skb = tx_buf->skb; 823 824 if (unlikely(!skb)) { 825 bnxt_sched_reset_txr(bp, txr, cons); 826 return rc; 827 } 828 829 is_ts_pkt = tx_buf->is_ts_pkt; 830 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 831 rc = true; 832 break; 833 } 834 835 cons = NEXT_TX(cons); 836 tx_pkts++; 837 tx_bytes += skb->len; 838 tx_buf->skb = NULL; 839 tx_buf->is_ts_pkt = 0; 840 841 if (tx_buf->is_push) { 842 tx_buf->is_push = 0; 843 goto next_tx_int; 844 } 845 846 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 847 skb_headlen(skb), DMA_TO_DEVICE); 848 last = tx_buf->nr_frags; 849 850 for (j = 0; j < last; j++) { 851 cons = NEXT_TX(cons); 852 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 853 dma_unmap_page( 854 &pdev->dev, 855 dma_unmap_addr(tx_buf, mapping), 856 skb_frag_size(&skb_shinfo(skb)->frags[j]), 857 DMA_TO_DEVICE); 858 } 859 if (unlikely(is_ts_pkt)) { 860 if (BNXT_CHIP_P5(bp)) { 861 /* PTP worker takes ownership of the skb */ 862 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 863 skb = NULL; 864 } 865 } 866 867 next_tx_int: 868 cons = NEXT_TX(cons); 869 870 dev_consume_skb_any(skb); 871 } 872 873 WRITE_ONCE(txr->tx_cons, cons); 874 875 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 876 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 877 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 878 879 return rc; 880 } 881 882 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 883 { 884 struct bnxt_tx_ring_info *txr; 885 bool more = false; 886 int i; 887 888 bnxt_for_each_napi_tx(i, bnapi, txr) { 889 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 890 more |= __bnxt_tx_int(bp, txr, budget); 891 } 892 if (!more) 893 bnapi->events &= ~BNXT_TX_CMP_EVENT; 894 } 895 896 static bool bnxt_separate_head_pool(struct bnxt_rx_ring_info *rxr) 897 { 898 return rxr->need_head_pool || PAGE_SIZE > BNXT_RX_PAGE_SIZE; 899 } 900 901 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 902 struct bnxt_rx_ring_info *rxr, 903 unsigned int *offset, 904 gfp_t gfp) 905 { 906 struct page *page; 907 908 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 909 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 910 BNXT_RX_PAGE_SIZE); 911 } else { 912 page = page_pool_dev_alloc_pages(rxr->page_pool); 913 *offset = 0; 914 } 915 if (!page) 916 return NULL; 917 918 *mapping = page_pool_get_dma_addr(page) + *offset; 919 return page; 920 } 921 922 static netmem_ref __bnxt_alloc_rx_netmem(struct bnxt *bp, dma_addr_t *mapping, 923 struct bnxt_rx_ring_info *rxr, 924 gfp_t gfp) 925 { 926 netmem_ref netmem; 927 928 netmem = page_pool_alloc_netmems(rxr->page_pool, gfp); 929 if (!netmem) 930 return 0; 931 932 *mapping = page_pool_get_dma_addr_netmem(netmem); 933 return netmem; 934 } 935 936 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 937 struct bnxt_rx_ring_info *rxr, 938 gfp_t gfp) 939 { 940 unsigned int offset; 941 struct page *page; 942 943 page = page_pool_alloc_frag(rxr->head_pool, &offset, 944 bp->rx_buf_size, gfp); 945 if (!page) 946 return NULL; 947 948 *mapping = page_pool_get_dma_addr(page) + bp->rx_dma_offset + offset; 949 return page_address(page) + offset; 950 } 951 952 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 953 u16 prod, gfp_t gfp) 954 { 955 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 956 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 957 dma_addr_t mapping; 958 959 if (BNXT_RX_PAGE_MODE(bp)) { 960 unsigned int offset; 961 struct page *page = 962 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 963 964 if (!page) 965 return -ENOMEM; 966 967 mapping += bp->rx_dma_offset; 968 rx_buf->data = page; 969 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 970 } else { 971 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, gfp); 972 973 if (!data) 974 return -ENOMEM; 975 976 rx_buf->data = data; 977 rx_buf->data_ptr = data + bp->rx_offset; 978 } 979 rx_buf->mapping = mapping; 980 981 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 982 return 0; 983 } 984 985 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 986 { 987 u16 prod = rxr->rx_prod; 988 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 989 struct bnxt *bp = rxr->bnapi->bp; 990 struct rx_bd *cons_bd, *prod_bd; 991 992 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 993 cons_rx_buf = &rxr->rx_buf_ring[cons]; 994 995 prod_rx_buf->data = data; 996 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 997 998 prod_rx_buf->mapping = cons_rx_buf->mapping; 999 1000 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1001 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 1002 1003 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 1004 } 1005 1006 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1007 { 1008 u16 next, max = rxr->rx_agg_bmap_size; 1009 1010 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 1011 if (next >= max) 1012 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 1013 return next; 1014 } 1015 1016 static int bnxt_alloc_rx_netmem(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1017 u16 prod, gfp_t gfp) 1018 { 1019 struct rx_bd *rxbd = 1020 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1021 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 1022 u16 sw_prod = rxr->rx_sw_agg_prod; 1023 unsigned int offset = 0; 1024 dma_addr_t mapping; 1025 netmem_ref netmem; 1026 1027 netmem = __bnxt_alloc_rx_netmem(bp, &mapping, rxr, gfp); 1028 if (!netmem) 1029 return -ENOMEM; 1030 1031 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1032 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1033 1034 __set_bit(sw_prod, rxr->rx_agg_bmap); 1035 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1036 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1037 1038 rx_agg_buf->netmem = netmem; 1039 rx_agg_buf->offset = offset; 1040 rx_agg_buf->mapping = mapping; 1041 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1042 rxbd->rx_bd_opaque = sw_prod; 1043 return 0; 1044 } 1045 1046 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1047 struct bnxt_cp_ring_info *cpr, 1048 u16 cp_cons, u16 curr) 1049 { 1050 struct rx_agg_cmp *agg; 1051 1052 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1053 agg = (struct rx_agg_cmp *) 1054 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1055 return agg; 1056 } 1057 1058 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1059 struct bnxt_rx_ring_info *rxr, 1060 u16 agg_id, u16 curr) 1061 { 1062 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1063 1064 return &tpa_info->agg_arr[curr]; 1065 } 1066 1067 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1068 u16 start, u32 agg_bufs, bool tpa) 1069 { 1070 struct bnxt_napi *bnapi = cpr->bnapi; 1071 struct bnxt *bp = bnapi->bp; 1072 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1073 u16 prod = rxr->rx_agg_prod; 1074 u16 sw_prod = rxr->rx_sw_agg_prod; 1075 bool p5_tpa = false; 1076 u32 i; 1077 1078 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1079 p5_tpa = true; 1080 1081 for (i = 0; i < agg_bufs; i++) { 1082 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1083 struct rx_agg_cmp *agg; 1084 struct rx_bd *prod_bd; 1085 netmem_ref netmem; 1086 u16 cons; 1087 1088 if (p5_tpa) 1089 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1090 else 1091 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1092 cons = agg->rx_agg_cmp_opaque; 1093 __clear_bit(cons, rxr->rx_agg_bmap); 1094 1095 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1096 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1097 1098 __set_bit(sw_prod, rxr->rx_agg_bmap); 1099 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1100 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1101 1102 /* It is possible for sw_prod to be equal to cons, so 1103 * set cons_rx_buf->netmem to 0 first. 1104 */ 1105 netmem = cons_rx_buf->netmem; 1106 cons_rx_buf->netmem = 0; 1107 prod_rx_buf->netmem = netmem; 1108 prod_rx_buf->offset = cons_rx_buf->offset; 1109 1110 prod_rx_buf->mapping = cons_rx_buf->mapping; 1111 1112 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1113 1114 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1115 prod_bd->rx_bd_opaque = sw_prod; 1116 1117 prod = NEXT_RX_AGG(prod); 1118 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1119 } 1120 rxr->rx_agg_prod = prod; 1121 rxr->rx_sw_agg_prod = sw_prod; 1122 } 1123 1124 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1125 struct bnxt_rx_ring_info *rxr, 1126 u16 cons, void *data, u8 *data_ptr, 1127 dma_addr_t dma_addr, 1128 unsigned int offset_and_len) 1129 { 1130 unsigned int len = offset_and_len & 0xffff; 1131 struct page *page = data; 1132 u16 prod = rxr->rx_prod; 1133 struct sk_buff *skb; 1134 int err; 1135 1136 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1137 if (unlikely(err)) { 1138 bnxt_reuse_rx_data(rxr, cons, data); 1139 return NULL; 1140 } 1141 dma_addr -= bp->rx_dma_offset; 1142 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1143 bp->rx_dir); 1144 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1145 if (!skb) { 1146 page_pool_recycle_direct(rxr->page_pool, page); 1147 return NULL; 1148 } 1149 skb_mark_for_recycle(skb); 1150 skb_reserve(skb, bp->rx_offset); 1151 __skb_put(skb, len); 1152 1153 return skb; 1154 } 1155 1156 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1157 struct bnxt_rx_ring_info *rxr, 1158 u16 cons, void *data, u8 *data_ptr, 1159 dma_addr_t dma_addr, 1160 unsigned int offset_and_len) 1161 { 1162 unsigned int payload = offset_and_len >> 16; 1163 unsigned int len = offset_and_len & 0xffff; 1164 skb_frag_t *frag; 1165 struct page *page = data; 1166 u16 prod = rxr->rx_prod; 1167 struct sk_buff *skb; 1168 int off, err; 1169 1170 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1171 if (unlikely(err)) { 1172 bnxt_reuse_rx_data(rxr, cons, data); 1173 return NULL; 1174 } 1175 dma_addr -= bp->rx_dma_offset; 1176 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1177 bp->rx_dir); 1178 1179 if (unlikely(!payload)) 1180 payload = eth_get_headlen(bp->dev, data_ptr, len); 1181 1182 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1183 if (!skb) { 1184 page_pool_recycle_direct(rxr->page_pool, page); 1185 return NULL; 1186 } 1187 1188 skb_mark_for_recycle(skb); 1189 off = (void *)data_ptr - page_address(page); 1190 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1191 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1192 payload + NET_IP_ALIGN); 1193 1194 frag = &skb_shinfo(skb)->frags[0]; 1195 skb_frag_size_sub(frag, payload); 1196 skb_frag_off_add(frag, payload); 1197 skb->data_len -= payload; 1198 skb->tail += payload; 1199 1200 return skb; 1201 } 1202 1203 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1204 struct bnxt_rx_ring_info *rxr, u16 cons, 1205 void *data, u8 *data_ptr, 1206 dma_addr_t dma_addr, 1207 unsigned int offset_and_len) 1208 { 1209 u16 prod = rxr->rx_prod; 1210 struct sk_buff *skb; 1211 int err; 1212 1213 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1214 if (unlikely(err)) { 1215 bnxt_reuse_rx_data(rxr, cons, data); 1216 return NULL; 1217 } 1218 1219 skb = napi_build_skb(data, bp->rx_buf_size); 1220 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1221 bp->rx_dir); 1222 if (!skb) { 1223 page_pool_free_va(rxr->head_pool, data, true); 1224 return NULL; 1225 } 1226 1227 skb_mark_for_recycle(skb); 1228 skb_reserve(skb, bp->rx_offset); 1229 skb_put(skb, offset_and_len & 0xffff); 1230 return skb; 1231 } 1232 1233 static u32 __bnxt_rx_agg_netmems(struct bnxt *bp, 1234 struct bnxt_cp_ring_info *cpr, 1235 u16 idx, u32 agg_bufs, bool tpa, 1236 struct sk_buff *skb, 1237 struct xdp_buff *xdp) 1238 { 1239 struct bnxt_napi *bnapi = cpr->bnapi; 1240 struct skb_shared_info *shinfo; 1241 struct bnxt_rx_ring_info *rxr; 1242 u32 i, total_frag_len = 0; 1243 bool p5_tpa = false; 1244 u16 prod; 1245 1246 rxr = bnapi->rx_ring; 1247 prod = rxr->rx_agg_prod; 1248 1249 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1250 p5_tpa = true; 1251 1252 if (skb) 1253 shinfo = skb_shinfo(skb); 1254 else 1255 shinfo = xdp_get_shared_info_from_buff(xdp); 1256 1257 for (i = 0; i < agg_bufs; i++) { 1258 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1259 struct rx_agg_cmp *agg; 1260 u16 cons, frag_len; 1261 netmem_ref netmem; 1262 1263 if (p5_tpa) 1264 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1265 else 1266 agg = bnxt_get_agg(bp, cpr, idx, i); 1267 cons = agg->rx_agg_cmp_opaque; 1268 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1269 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1270 1271 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1272 if (skb) { 1273 skb_add_rx_frag_netmem(skb, i, cons_rx_buf->netmem, 1274 cons_rx_buf->offset, 1275 frag_len, BNXT_RX_PAGE_SIZE); 1276 } else { 1277 skb_frag_t *frag = &shinfo->frags[i]; 1278 1279 skb_frag_fill_netmem_desc(frag, cons_rx_buf->netmem, 1280 cons_rx_buf->offset, 1281 frag_len); 1282 shinfo->nr_frags = i + 1; 1283 } 1284 __clear_bit(cons, rxr->rx_agg_bmap); 1285 1286 /* It is possible for bnxt_alloc_rx_netmem() to allocate 1287 * a sw_prod index that equals the cons index, so we 1288 * need to clear the cons entry now. 1289 */ 1290 netmem = cons_rx_buf->netmem; 1291 cons_rx_buf->netmem = 0; 1292 1293 if (xdp && netmem_is_pfmemalloc(netmem)) 1294 xdp_buff_set_frag_pfmemalloc(xdp); 1295 1296 if (bnxt_alloc_rx_netmem(bp, rxr, prod, GFP_ATOMIC) != 0) { 1297 if (skb) { 1298 skb->len -= frag_len; 1299 skb->data_len -= frag_len; 1300 skb->truesize -= BNXT_RX_PAGE_SIZE; 1301 } 1302 1303 --shinfo->nr_frags; 1304 cons_rx_buf->netmem = netmem; 1305 1306 /* Update prod since possibly some netmems have been 1307 * allocated already. 1308 */ 1309 rxr->rx_agg_prod = prod; 1310 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1311 return 0; 1312 } 1313 1314 page_pool_dma_sync_netmem_for_cpu(rxr->page_pool, netmem, 0, 1315 BNXT_RX_PAGE_SIZE); 1316 1317 total_frag_len += frag_len; 1318 prod = NEXT_RX_AGG(prod); 1319 } 1320 rxr->rx_agg_prod = prod; 1321 return total_frag_len; 1322 } 1323 1324 static struct sk_buff *bnxt_rx_agg_netmems_skb(struct bnxt *bp, 1325 struct bnxt_cp_ring_info *cpr, 1326 struct sk_buff *skb, u16 idx, 1327 u32 agg_bufs, bool tpa) 1328 { 1329 u32 total_frag_len = 0; 1330 1331 total_frag_len = __bnxt_rx_agg_netmems(bp, cpr, idx, agg_bufs, tpa, 1332 skb, NULL); 1333 if (!total_frag_len) { 1334 skb_mark_for_recycle(skb); 1335 dev_kfree_skb(skb); 1336 return NULL; 1337 } 1338 1339 return skb; 1340 } 1341 1342 static u32 bnxt_rx_agg_netmems_xdp(struct bnxt *bp, 1343 struct bnxt_cp_ring_info *cpr, 1344 struct xdp_buff *xdp, u16 idx, 1345 u32 agg_bufs, bool tpa) 1346 { 1347 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1348 u32 total_frag_len = 0; 1349 1350 if (!xdp_buff_has_frags(xdp)) 1351 shinfo->nr_frags = 0; 1352 1353 total_frag_len = __bnxt_rx_agg_netmems(bp, cpr, idx, agg_bufs, tpa, 1354 NULL, xdp); 1355 if (total_frag_len) { 1356 xdp_buff_set_frags_flag(xdp); 1357 shinfo->nr_frags = agg_bufs; 1358 shinfo->xdp_frags_size = total_frag_len; 1359 } 1360 return total_frag_len; 1361 } 1362 1363 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1364 u8 agg_bufs, u32 *raw_cons) 1365 { 1366 u16 last; 1367 struct rx_agg_cmp *agg; 1368 1369 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1370 last = RING_CMP(*raw_cons); 1371 agg = (struct rx_agg_cmp *) 1372 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1373 return RX_AGG_CMP_VALID(agg, *raw_cons); 1374 } 1375 1376 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1377 unsigned int len, 1378 dma_addr_t mapping) 1379 { 1380 struct bnxt *bp = bnapi->bp; 1381 struct pci_dev *pdev = bp->pdev; 1382 struct sk_buff *skb; 1383 1384 skb = napi_alloc_skb(&bnapi->napi, len); 1385 if (!skb) 1386 return NULL; 1387 1388 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copybreak, 1389 bp->rx_dir); 1390 1391 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1392 len + NET_IP_ALIGN); 1393 1394 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copybreak, 1395 bp->rx_dir); 1396 1397 skb_put(skb, len); 1398 1399 return skb; 1400 } 1401 1402 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1403 unsigned int len, 1404 dma_addr_t mapping) 1405 { 1406 return bnxt_copy_data(bnapi, data, len, mapping); 1407 } 1408 1409 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1410 struct xdp_buff *xdp, 1411 unsigned int len, 1412 dma_addr_t mapping) 1413 { 1414 unsigned int metasize = 0; 1415 u8 *data = xdp->data; 1416 struct sk_buff *skb; 1417 1418 len = xdp->data_end - xdp->data_meta; 1419 metasize = xdp->data - xdp->data_meta; 1420 data = xdp->data_meta; 1421 1422 skb = bnxt_copy_data(bnapi, data, len, mapping); 1423 if (!skb) 1424 return skb; 1425 1426 if (metasize) { 1427 skb_metadata_set(skb, metasize); 1428 __skb_pull(skb, metasize); 1429 } 1430 1431 return skb; 1432 } 1433 1434 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1435 u32 *raw_cons, void *cmp) 1436 { 1437 struct rx_cmp *rxcmp = cmp; 1438 u32 tmp_raw_cons = *raw_cons; 1439 u8 cmp_type, agg_bufs = 0; 1440 1441 cmp_type = RX_CMP_TYPE(rxcmp); 1442 1443 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1444 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1445 RX_CMP_AGG_BUFS) >> 1446 RX_CMP_AGG_BUFS_SHIFT; 1447 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1448 struct rx_tpa_end_cmp *tpa_end = cmp; 1449 1450 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1451 return 0; 1452 1453 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1454 } 1455 1456 if (agg_bufs) { 1457 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1458 return -EBUSY; 1459 } 1460 *raw_cons = tmp_raw_cons; 1461 return 0; 1462 } 1463 1464 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1465 { 1466 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1467 u16 idx = agg_id & MAX_TPA_P5_MASK; 1468 1469 if (test_bit(idx, map->agg_idx_bmap)) 1470 idx = find_first_zero_bit(map->agg_idx_bmap, 1471 BNXT_AGG_IDX_BMAP_SIZE); 1472 __set_bit(idx, map->agg_idx_bmap); 1473 map->agg_id_tbl[agg_id] = idx; 1474 return idx; 1475 } 1476 1477 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1478 { 1479 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1480 1481 __clear_bit(idx, map->agg_idx_bmap); 1482 } 1483 1484 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1485 { 1486 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1487 1488 return map->agg_id_tbl[agg_id]; 1489 } 1490 1491 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1492 struct rx_tpa_start_cmp *tpa_start, 1493 struct rx_tpa_start_cmp_ext *tpa_start1) 1494 { 1495 tpa_info->cfa_code_valid = 1; 1496 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1497 tpa_info->vlan_valid = 0; 1498 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1499 tpa_info->vlan_valid = 1; 1500 tpa_info->metadata = 1501 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1502 } 1503 } 1504 1505 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1506 struct rx_tpa_start_cmp *tpa_start, 1507 struct rx_tpa_start_cmp_ext *tpa_start1) 1508 { 1509 tpa_info->vlan_valid = 0; 1510 if (TPA_START_VLAN_VALID(tpa_start)) { 1511 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1512 u32 vlan_proto = ETH_P_8021Q; 1513 1514 tpa_info->vlan_valid = 1; 1515 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1516 vlan_proto = ETH_P_8021AD; 1517 tpa_info->metadata = vlan_proto << 16 | 1518 TPA_START_METADATA0_TCI(tpa_start1); 1519 } 1520 } 1521 1522 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1523 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1524 struct rx_tpa_start_cmp_ext *tpa_start1) 1525 { 1526 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1527 struct bnxt_tpa_info *tpa_info; 1528 u16 cons, prod, agg_id; 1529 struct rx_bd *prod_bd; 1530 dma_addr_t mapping; 1531 1532 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1533 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1534 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1535 } else { 1536 agg_id = TPA_START_AGG_ID(tpa_start); 1537 } 1538 cons = tpa_start->rx_tpa_start_cmp_opaque; 1539 prod = rxr->rx_prod; 1540 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1541 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1542 tpa_info = &rxr->rx_tpa[agg_id]; 1543 1544 if (unlikely(cons != rxr->rx_next_cons || 1545 TPA_START_ERROR(tpa_start))) { 1546 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1547 cons, rxr->rx_next_cons, 1548 TPA_START_ERROR_CODE(tpa_start1)); 1549 bnxt_sched_reset_rxr(bp, rxr); 1550 return; 1551 } 1552 prod_rx_buf->data = tpa_info->data; 1553 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1554 1555 mapping = tpa_info->mapping; 1556 prod_rx_buf->mapping = mapping; 1557 1558 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1559 1560 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1561 1562 tpa_info->data = cons_rx_buf->data; 1563 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1564 cons_rx_buf->data = NULL; 1565 tpa_info->mapping = cons_rx_buf->mapping; 1566 1567 tpa_info->len = 1568 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1569 RX_TPA_START_CMP_LEN_SHIFT; 1570 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1571 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1572 tpa_info->gso_type = SKB_GSO_TCPV4; 1573 if (TPA_START_IS_IPV6(tpa_start1)) 1574 tpa_info->gso_type = SKB_GSO_TCPV6; 1575 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1576 else if (!BNXT_CHIP_P4_PLUS(bp) && 1577 TPA_START_HASH_TYPE(tpa_start) == 3) 1578 tpa_info->gso_type = SKB_GSO_TCPV6; 1579 tpa_info->rss_hash = 1580 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1581 } else { 1582 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1583 tpa_info->gso_type = 0; 1584 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1585 } 1586 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1587 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1588 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1589 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1590 else 1591 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1592 tpa_info->agg_count = 0; 1593 1594 rxr->rx_prod = NEXT_RX(prod); 1595 cons = RING_RX(bp, NEXT_RX(cons)); 1596 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1597 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1598 1599 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1600 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1601 cons_rx_buf->data = NULL; 1602 } 1603 1604 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1605 { 1606 if (agg_bufs) 1607 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1608 } 1609 1610 #ifdef CONFIG_INET 1611 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1612 { 1613 struct udphdr *uh = NULL; 1614 1615 if (ip_proto == htons(ETH_P_IP)) { 1616 struct iphdr *iph = (struct iphdr *)skb->data; 1617 1618 if (iph->protocol == IPPROTO_UDP) 1619 uh = (struct udphdr *)(iph + 1); 1620 } else { 1621 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1622 1623 if (iph->nexthdr == IPPROTO_UDP) 1624 uh = (struct udphdr *)(iph + 1); 1625 } 1626 if (uh) { 1627 if (uh->check) 1628 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1629 else 1630 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1631 } 1632 } 1633 #endif 1634 1635 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1636 int payload_off, int tcp_ts, 1637 struct sk_buff *skb) 1638 { 1639 #ifdef CONFIG_INET 1640 struct tcphdr *th; 1641 int len, nw_off; 1642 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1643 u32 hdr_info = tpa_info->hdr_info; 1644 bool loopback = false; 1645 1646 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1647 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1648 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1649 1650 /* If the packet is an internal loopback packet, the offsets will 1651 * have an extra 4 bytes. 1652 */ 1653 if (inner_mac_off == 4) { 1654 loopback = true; 1655 } else if (inner_mac_off > 4) { 1656 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1657 ETH_HLEN - 2)); 1658 1659 /* We only support inner iPv4/ipv6. If we don't see the 1660 * correct protocol ID, it must be a loopback packet where 1661 * the offsets are off by 4. 1662 */ 1663 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1664 loopback = true; 1665 } 1666 if (loopback) { 1667 /* internal loopback packet, subtract all offsets by 4 */ 1668 inner_ip_off -= 4; 1669 inner_mac_off -= 4; 1670 outer_ip_off -= 4; 1671 } 1672 1673 nw_off = inner_ip_off - ETH_HLEN; 1674 skb_set_network_header(skb, nw_off); 1675 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1676 struct ipv6hdr *iph = ipv6_hdr(skb); 1677 1678 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1679 len = skb->len - skb_transport_offset(skb); 1680 th = tcp_hdr(skb); 1681 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1682 } else { 1683 struct iphdr *iph = ip_hdr(skb); 1684 1685 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1686 len = skb->len - skb_transport_offset(skb); 1687 th = tcp_hdr(skb); 1688 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1689 } 1690 1691 if (inner_mac_off) { /* tunnel */ 1692 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1693 ETH_HLEN - 2)); 1694 1695 bnxt_gro_tunnel(skb, proto); 1696 } 1697 #endif 1698 return skb; 1699 } 1700 1701 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1702 int payload_off, int tcp_ts, 1703 struct sk_buff *skb) 1704 { 1705 #ifdef CONFIG_INET 1706 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1707 u32 hdr_info = tpa_info->hdr_info; 1708 int iphdr_len, nw_off; 1709 1710 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1711 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1712 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1713 1714 nw_off = inner_ip_off - ETH_HLEN; 1715 skb_set_network_header(skb, nw_off); 1716 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1717 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1718 skb_set_transport_header(skb, nw_off + iphdr_len); 1719 1720 if (inner_mac_off) { /* tunnel */ 1721 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1722 ETH_HLEN - 2)); 1723 1724 bnxt_gro_tunnel(skb, proto); 1725 } 1726 #endif 1727 return skb; 1728 } 1729 1730 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1731 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1732 1733 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1734 int payload_off, int tcp_ts, 1735 struct sk_buff *skb) 1736 { 1737 #ifdef CONFIG_INET 1738 struct tcphdr *th; 1739 int len, nw_off, tcp_opt_len = 0; 1740 1741 if (tcp_ts) 1742 tcp_opt_len = 12; 1743 1744 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1745 struct iphdr *iph; 1746 1747 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1748 ETH_HLEN; 1749 skb_set_network_header(skb, nw_off); 1750 iph = ip_hdr(skb); 1751 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1752 len = skb->len - skb_transport_offset(skb); 1753 th = tcp_hdr(skb); 1754 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1755 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1756 struct ipv6hdr *iph; 1757 1758 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1759 ETH_HLEN; 1760 skb_set_network_header(skb, nw_off); 1761 iph = ipv6_hdr(skb); 1762 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1763 len = skb->len - skb_transport_offset(skb); 1764 th = tcp_hdr(skb); 1765 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1766 } else { 1767 dev_kfree_skb_any(skb); 1768 return NULL; 1769 } 1770 1771 if (nw_off) /* tunnel */ 1772 bnxt_gro_tunnel(skb, skb->protocol); 1773 #endif 1774 return skb; 1775 } 1776 1777 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1778 struct bnxt_tpa_info *tpa_info, 1779 struct rx_tpa_end_cmp *tpa_end, 1780 struct rx_tpa_end_cmp_ext *tpa_end1, 1781 struct sk_buff *skb) 1782 { 1783 #ifdef CONFIG_INET 1784 int payload_off; 1785 u16 segs; 1786 1787 segs = TPA_END_TPA_SEGS(tpa_end); 1788 if (segs == 1) 1789 return skb; 1790 1791 NAPI_GRO_CB(skb)->count = segs; 1792 skb_shinfo(skb)->gso_size = 1793 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1794 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1795 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1796 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1797 else 1798 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1799 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1800 if (likely(skb)) 1801 tcp_gro_complete(skb); 1802 #endif 1803 return skb; 1804 } 1805 1806 /* Given the cfa_code of a received packet determine which 1807 * netdev (vf-rep or PF) the packet is destined to. 1808 */ 1809 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1810 { 1811 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1812 1813 /* if vf-rep dev is NULL, the must belongs to the PF */ 1814 return dev ? dev : bp->dev; 1815 } 1816 1817 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1818 struct bnxt_cp_ring_info *cpr, 1819 u32 *raw_cons, 1820 struct rx_tpa_end_cmp *tpa_end, 1821 struct rx_tpa_end_cmp_ext *tpa_end1, 1822 u8 *event) 1823 { 1824 struct bnxt_napi *bnapi = cpr->bnapi; 1825 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1826 struct net_device *dev = bp->dev; 1827 u8 *data_ptr, agg_bufs; 1828 unsigned int len; 1829 struct bnxt_tpa_info *tpa_info; 1830 dma_addr_t mapping; 1831 struct sk_buff *skb; 1832 u16 idx = 0, agg_id; 1833 void *data; 1834 bool gro; 1835 1836 if (unlikely(bnapi->in_reset)) { 1837 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1838 1839 if (rc < 0) 1840 return ERR_PTR(-EBUSY); 1841 return NULL; 1842 } 1843 1844 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1845 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1846 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1847 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1848 tpa_info = &rxr->rx_tpa[agg_id]; 1849 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1850 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1851 agg_bufs, tpa_info->agg_count); 1852 agg_bufs = tpa_info->agg_count; 1853 } 1854 tpa_info->agg_count = 0; 1855 *event |= BNXT_AGG_EVENT; 1856 bnxt_free_agg_idx(rxr, agg_id); 1857 idx = agg_id; 1858 gro = !!(bp->flags & BNXT_FLAG_GRO); 1859 } else { 1860 agg_id = TPA_END_AGG_ID(tpa_end); 1861 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1862 tpa_info = &rxr->rx_tpa[agg_id]; 1863 idx = RING_CMP(*raw_cons); 1864 if (agg_bufs) { 1865 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1866 return ERR_PTR(-EBUSY); 1867 1868 *event |= BNXT_AGG_EVENT; 1869 idx = NEXT_CMP(idx); 1870 } 1871 gro = !!TPA_END_GRO(tpa_end); 1872 } 1873 data = tpa_info->data; 1874 data_ptr = tpa_info->data_ptr; 1875 prefetch(data_ptr); 1876 len = tpa_info->len; 1877 mapping = tpa_info->mapping; 1878 1879 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1880 bnxt_abort_tpa(cpr, idx, agg_bufs); 1881 if (agg_bufs > MAX_SKB_FRAGS) 1882 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1883 agg_bufs, (int)MAX_SKB_FRAGS); 1884 return NULL; 1885 } 1886 1887 if (len <= bp->rx_copybreak) { 1888 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1889 if (!skb) { 1890 bnxt_abort_tpa(cpr, idx, agg_bufs); 1891 cpr->sw_stats->rx.rx_oom_discards += 1; 1892 return NULL; 1893 } 1894 } else { 1895 u8 *new_data; 1896 dma_addr_t new_mapping; 1897 1898 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, rxr, 1899 GFP_ATOMIC); 1900 if (!new_data) { 1901 bnxt_abort_tpa(cpr, idx, agg_bufs); 1902 cpr->sw_stats->rx.rx_oom_discards += 1; 1903 return NULL; 1904 } 1905 1906 tpa_info->data = new_data; 1907 tpa_info->data_ptr = new_data + bp->rx_offset; 1908 tpa_info->mapping = new_mapping; 1909 1910 skb = napi_build_skb(data, bp->rx_buf_size); 1911 dma_sync_single_for_cpu(&bp->pdev->dev, mapping, 1912 bp->rx_buf_use_size, bp->rx_dir); 1913 1914 if (!skb) { 1915 page_pool_free_va(rxr->head_pool, data, true); 1916 bnxt_abort_tpa(cpr, idx, agg_bufs); 1917 cpr->sw_stats->rx.rx_oom_discards += 1; 1918 return NULL; 1919 } 1920 skb_mark_for_recycle(skb); 1921 skb_reserve(skb, bp->rx_offset); 1922 skb_put(skb, len); 1923 } 1924 1925 if (agg_bufs) { 1926 skb = bnxt_rx_agg_netmems_skb(bp, cpr, skb, idx, agg_bufs, 1927 true); 1928 if (!skb) { 1929 /* Page reuse already handled by bnxt_rx_pages(). */ 1930 cpr->sw_stats->rx.rx_oom_discards += 1; 1931 return NULL; 1932 } 1933 } 1934 1935 if (tpa_info->cfa_code_valid) 1936 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1937 skb->protocol = eth_type_trans(skb, dev); 1938 1939 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1940 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1941 1942 if (tpa_info->vlan_valid && 1943 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1944 __be16 vlan_proto = htons(tpa_info->metadata >> 1945 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1946 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1947 1948 if (eth_type_vlan(vlan_proto)) { 1949 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1950 } else { 1951 dev_kfree_skb(skb); 1952 return NULL; 1953 } 1954 } 1955 1956 skb_checksum_none_assert(skb); 1957 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1958 skb->ip_summed = CHECKSUM_UNNECESSARY; 1959 skb->csum_level = 1960 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1961 } 1962 1963 if (gro) 1964 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1965 1966 return skb; 1967 } 1968 1969 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1970 struct rx_agg_cmp *rx_agg) 1971 { 1972 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1973 struct bnxt_tpa_info *tpa_info; 1974 1975 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1976 tpa_info = &rxr->rx_tpa[agg_id]; 1977 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1978 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1979 } 1980 1981 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1982 struct sk_buff *skb) 1983 { 1984 skb_mark_for_recycle(skb); 1985 1986 if (skb->dev != bp->dev) { 1987 /* this packet belongs to a vf-rep */ 1988 bnxt_vf_rep_rx(bp, skb); 1989 return; 1990 } 1991 skb_record_rx_queue(skb, bnapi->index); 1992 napi_gro_receive(&bnapi->napi, skb); 1993 } 1994 1995 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1996 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1997 { 1998 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1999 2000 if (BNXT_PTP_RX_TS_VALID(flags)) 2001 goto ts_valid; 2002 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 2003 return false; 2004 2005 ts_valid: 2006 *cmpl_ts = ts; 2007 return true; 2008 } 2009 2010 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 2011 struct rx_cmp *rxcmp, 2012 struct rx_cmp_ext *rxcmp1) 2013 { 2014 __be16 vlan_proto; 2015 u16 vtag; 2016 2017 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 2018 __le32 flags2 = rxcmp1->rx_cmp_flags2; 2019 u32 meta_data; 2020 2021 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 2022 return skb; 2023 2024 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 2025 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 2026 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 2027 if (eth_type_vlan(vlan_proto)) 2028 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2029 else 2030 goto vlan_err; 2031 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2032 if (RX_CMP_VLAN_VALID(rxcmp)) { 2033 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 2034 2035 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 2036 vlan_proto = htons(ETH_P_8021Q); 2037 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 2038 vlan_proto = htons(ETH_P_8021AD); 2039 else 2040 goto vlan_err; 2041 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 2042 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2043 } 2044 } 2045 return skb; 2046 vlan_err: 2047 dev_kfree_skb(skb); 2048 return NULL; 2049 } 2050 2051 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 2052 struct rx_cmp *rxcmp) 2053 { 2054 u8 ext_op; 2055 2056 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2057 switch (ext_op) { 2058 case EXT_OP_INNER_4: 2059 case EXT_OP_OUTER_4: 2060 case EXT_OP_INNFL_3: 2061 case EXT_OP_OUTFL_3: 2062 return PKT_HASH_TYPE_L4; 2063 default: 2064 return PKT_HASH_TYPE_L3; 2065 } 2066 } 2067 2068 /* returns the following: 2069 * 1 - 1 packet successfully received 2070 * 0 - successful TPA_START, packet not completed yet 2071 * -EBUSY - completion ring does not have all the agg buffers yet 2072 * -ENOMEM - packet aborted due to out of memory 2073 * -EIO - packet aborted due to hw error indicated in BD 2074 */ 2075 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2076 u32 *raw_cons, u8 *event) 2077 { 2078 struct bnxt_napi *bnapi = cpr->bnapi; 2079 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2080 struct net_device *dev = bp->dev; 2081 struct rx_cmp *rxcmp; 2082 struct rx_cmp_ext *rxcmp1; 2083 u32 tmp_raw_cons = *raw_cons; 2084 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2085 struct skb_shared_info *sinfo; 2086 struct bnxt_sw_rx_bd *rx_buf; 2087 unsigned int len; 2088 u8 *data_ptr, agg_bufs, cmp_type; 2089 bool xdp_active = false; 2090 dma_addr_t dma_addr; 2091 struct sk_buff *skb; 2092 struct xdp_buff xdp; 2093 u32 flags, misc; 2094 u32 cmpl_ts; 2095 void *data; 2096 int rc = 0; 2097 2098 rxcmp = (struct rx_cmp *) 2099 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2100 2101 cmp_type = RX_CMP_TYPE(rxcmp); 2102 2103 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2104 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2105 goto next_rx_no_prod_no_len; 2106 } 2107 2108 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2109 cp_cons = RING_CMP(tmp_raw_cons); 2110 rxcmp1 = (struct rx_cmp_ext *) 2111 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2112 2113 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2114 return -EBUSY; 2115 2116 /* The valid test of the entry must be done first before 2117 * reading any further. 2118 */ 2119 dma_rmb(); 2120 prod = rxr->rx_prod; 2121 2122 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2123 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2124 bnxt_tpa_start(bp, rxr, cmp_type, 2125 (struct rx_tpa_start_cmp *)rxcmp, 2126 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2127 2128 *event |= BNXT_RX_EVENT; 2129 goto next_rx_no_prod_no_len; 2130 2131 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2132 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2133 (struct rx_tpa_end_cmp *)rxcmp, 2134 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2135 2136 if (IS_ERR(skb)) 2137 return -EBUSY; 2138 2139 rc = -ENOMEM; 2140 if (likely(skb)) { 2141 bnxt_deliver_skb(bp, bnapi, skb); 2142 rc = 1; 2143 } 2144 *event |= BNXT_RX_EVENT; 2145 goto next_rx_no_prod_no_len; 2146 } 2147 2148 cons = rxcmp->rx_cmp_opaque; 2149 if (unlikely(cons != rxr->rx_next_cons)) { 2150 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2151 2152 /* 0xffff is forced error, don't print it */ 2153 if (rxr->rx_next_cons != 0xffff) 2154 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2155 cons, rxr->rx_next_cons); 2156 bnxt_sched_reset_rxr(bp, rxr); 2157 if (rc1) 2158 return rc1; 2159 goto next_rx_no_prod_no_len; 2160 } 2161 rx_buf = &rxr->rx_buf_ring[cons]; 2162 data = rx_buf->data; 2163 data_ptr = rx_buf->data_ptr; 2164 prefetch(data_ptr); 2165 2166 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2167 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2168 2169 if (agg_bufs) { 2170 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2171 return -EBUSY; 2172 2173 cp_cons = NEXT_CMP(cp_cons); 2174 *event |= BNXT_AGG_EVENT; 2175 } 2176 *event |= BNXT_RX_EVENT; 2177 2178 rx_buf->data = NULL; 2179 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2180 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2181 2182 bnxt_reuse_rx_data(rxr, cons, data); 2183 if (agg_bufs) 2184 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2185 false); 2186 2187 rc = -EIO; 2188 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2189 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2190 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2191 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2192 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2193 rx_err); 2194 bnxt_sched_reset_rxr(bp, rxr); 2195 } 2196 } 2197 goto next_rx_no_len; 2198 } 2199 2200 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2201 len = flags >> RX_CMP_LEN_SHIFT; 2202 dma_addr = rx_buf->mapping; 2203 2204 if (bnxt_xdp_attached(bp, rxr)) { 2205 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2206 if (agg_bufs) { 2207 u32 frag_len = bnxt_rx_agg_netmems_xdp(bp, cpr, &xdp, 2208 cp_cons, 2209 agg_bufs, 2210 false); 2211 if (!frag_len) 2212 goto oom_next_rx; 2213 2214 } 2215 xdp_active = true; 2216 } 2217 2218 if (xdp_active) { 2219 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2220 rc = 1; 2221 goto next_rx; 2222 } 2223 if (xdp_buff_has_frags(&xdp)) { 2224 sinfo = xdp_get_shared_info_from_buff(&xdp); 2225 agg_bufs = sinfo->nr_frags; 2226 } else { 2227 agg_bufs = 0; 2228 } 2229 } 2230 2231 if (len <= bp->rx_copybreak) { 2232 if (!xdp_active) 2233 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2234 else 2235 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2236 bnxt_reuse_rx_data(rxr, cons, data); 2237 if (!skb) { 2238 if (agg_bufs) { 2239 if (!xdp_active) 2240 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2241 agg_bufs, false); 2242 else 2243 bnxt_xdp_buff_frags_free(rxr, &xdp); 2244 } 2245 goto oom_next_rx; 2246 } 2247 } else { 2248 u32 payload; 2249 2250 if (rx_buf->data_ptr == data_ptr) 2251 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2252 else 2253 payload = 0; 2254 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2255 payload | len); 2256 if (!skb) 2257 goto oom_next_rx; 2258 } 2259 2260 if (agg_bufs) { 2261 if (!xdp_active) { 2262 skb = bnxt_rx_agg_netmems_skb(bp, cpr, skb, cp_cons, 2263 agg_bufs, false); 2264 if (!skb) 2265 goto oom_next_rx; 2266 } else { 2267 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, 2268 rxr->page_pool, &xdp); 2269 if (!skb) { 2270 /* we should be able to free the old skb here */ 2271 bnxt_xdp_buff_frags_free(rxr, &xdp); 2272 goto oom_next_rx; 2273 } 2274 } 2275 } 2276 2277 if (RX_CMP_HASH_VALID(rxcmp)) { 2278 enum pkt_hash_types type; 2279 2280 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2281 type = bnxt_rss_ext_op(bp, rxcmp); 2282 } else { 2283 u32 itypes = RX_CMP_ITYPES(rxcmp); 2284 2285 if (itypes == RX_CMP_FLAGS_ITYPE_TCP || 2286 itypes == RX_CMP_FLAGS_ITYPE_UDP) 2287 type = PKT_HASH_TYPE_L4; 2288 else 2289 type = PKT_HASH_TYPE_L3; 2290 } 2291 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2292 } 2293 2294 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2295 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2296 skb->protocol = eth_type_trans(skb, dev); 2297 2298 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2299 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2300 if (!skb) 2301 goto next_rx; 2302 } 2303 2304 skb_checksum_none_assert(skb); 2305 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2306 if (dev->features & NETIF_F_RXCSUM) { 2307 skb->ip_summed = CHECKSUM_UNNECESSARY; 2308 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2309 } 2310 } else { 2311 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2312 if (dev->features & NETIF_F_RXCSUM) 2313 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2314 } 2315 } 2316 2317 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2318 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2319 u64 ns, ts; 2320 2321 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2322 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2323 2324 ns = bnxt_timecounter_cyc2time(ptp, ts); 2325 memset(skb_hwtstamps(skb), 0, 2326 sizeof(*skb_hwtstamps(skb))); 2327 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2328 } 2329 } 2330 } 2331 bnxt_deliver_skb(bp, bnapi, skb); 2332 rc = 1; 2333 2334 next_rx: 2335 cpr->rx_packets += 1; 2336 cpr->rx_bytes += len; 2337 2338 next_rx_no_len: 2339 rxr->rx_prod = NEXT_RX(prod); 2340 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2341 2342 next_rx_no_prod_no_len: 2343 *raw_cons = tmp_raw_cons; 2344 2345 return rc; 2346 2347 oom_next_rx: 2348 cpr->sw_stats->rx.rx_oom_discards += 1; 2349 rc = -ENOMEM; 2350 goto next_rx; 2351 } 2352 2353 /* In netpoll mode, if we are using a combined completion ring, we need to 2354 * discard the rx packets and recycle the buffers. 2355 */ 2356 static int bnxt_force_rx_discard(struct bnxt *bp, 2357 struct bnxt_cp_ring_info *cpr, 2358 u32 *raw_cons, u8 *event) 2359 { 2360 u32 tmp_raw_cons = *raw_cons; 2361 struct rx_cmp_ext *rxcmp1; 2362 struct rx_cmp *rxcmp; 2363 u16 cp_cons; 2364 u8 cmp_type; 2365 int rc; 2366 2367 cp_cons = RING_CMP(tmp_raw_cons); 2368 rxcmp = (struct rx_cmp *) 2369 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2370 2371 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2372 cp_cons = RING_CMP(tmp_raw_cons); 2373 rxcmp1 = (struct rx_cmp_ext *) 2374 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2375 2376 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2377 return -EBUSY; 2378 2379 /* The valid test of the entry must be done first before 2380 * reading any further. 2381 */ 2382 dma_rmb(); 2383 cmp_type = RX_CMP_TYPE(rxcmp); 2384 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2385 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2386 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2387 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2388 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2389 struct rx_tpa_end_cmp_ext *tpa_end1; 2390 2391 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2392 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2393 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2394 } 2395 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2396 if (rc && rc != -EBUSY) 2397 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2398 return rc; 2399 } 2400 2401 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2402 { 2403 struct bnxt_fw_health *fw_health = bp->fw_health; 2404 u32 reg = fw_health->regs[reg_idx]; 2405 u32 reg_type, reg_off, val = 0; 2406 2407 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2408 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2409 switch (reg_type) { 2410 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2411 pci_read_config_dword(bp->pdev, reg_off, &val); 2412 break; 2413 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2414 reg_off = fw_health->mapped_regs[reg_idx]; 2415 fallthrough; 2416 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2417 val = readl(bp->bar0 + reg_off); 2418 break; 2419 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2420 val = readl(bp->bar1 + reg_off); 2421 break; 2422 } 2423 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2424 val &= fw_health->fw_reset_inprog_reg_mask; 2425 return val; 2426 } 2427 2428 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2429 { 2430 int i; 2431 2432 for (i = 0; i < bp->rx_nr_rings; i++) { 2433 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2434 struct bnxt_ring_grp_info *grp_info; 2435 2436 grp_info = &bp->grp_info[grp_idx]; 2437 if (grp_info->agg_fw_ring_id == ring_id) 2438 return grp_idx; 2439 } 2440 return INVALID_HW_RING_ID; 2441 } 2442 2443 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2444 { 2445 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2446 2447 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2448 return link_info->force_link_speed2; 2449 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2450 return link_info->force_pam4_link_speed; 2451 return link_info->force_link_speed; 2452 } 2453 2454 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2455 { 2456 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2457 2458 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2459 link_info->req_link_speed = link_info->force_link_speed2; 2460 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2461 switch (link_info->req_link_speed) { 2462 case BNXT_LINK_SPEED_50GB_PAM4: 2463 case BNXT_LINK_SPEED_100GB_PAM4: 2464 case BNXT_LINK_SPEED_200GB_PAM4: 2465 case BNXT_LINK_SPEED_400GB_PAM4: 2466 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2467 break; 2468 case BNXT_LINK_SPEED_100GB_PAM4_112: 2469 case BNXT_LINK_SPEED_200GB_PAM4_112: 2470 case BNXT_LINK_SPEED_400GB_PAM4_112: 2471 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2472 break; 2473 default: 2474 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2475 } 2476 return; 2477 } 2478 link_info->req_link_speed = link_info->force_link_speed; 2479 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2480 if (link_info->force_pam4_link_speed) { 2481 link_info->req_link_speed = link_info->force_pam4_link_speed; 2482 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2483 } 2484 } 2485 2486 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2487 { 2488 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2489 2490 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2491 link_info->advertising = link_info->auto_link_speeds2; 2492 return; 2493 } 2494 link_info->advertising = link_info->auto_link_speeds; 2495 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2496 } 2497 2498 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2499 { 2500 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2501 2502 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2503 if (link_info->req_link_speed != link_info->force_link_speed2) 2504 return true; 2505 return false; 2506 } 2507 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2508 link_info->req_link_speed != link_info->force_link_speed) 2509 return true; 2510 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2511 link_info->req_link_speed != link_info->force_pam4_link_speed) 2512 return true; 2513 return false; 2514 } 2515 2516 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2517 { 2518 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2519 2520 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2521 if (link_info->advertising != link_info->auto_link_speeds2) 2522 return true; 2523 return false; 2524 } 2525 if (link_info->advertising != link_info->auto_link_speeds || 2526 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2527 return true; 2528 return false; 2529 } 2530 2531 bool bnxt_bs_trace_avail(struct bnxt *bp, u16 type) 2532 { 2533 u32 flags = bp->ctx->ctx_arr[type].flags; 2534 2535 return (flags & BNXT_CTX_MEM_TYPE_VALID) && 2536 ((flags & BNXT_CTX_MEM_FW_TRACE) || 2537 (flags & BNXT_CTX_MEM_FW_BIN_TRACE)); 2538 } 2539 2540 static void bnxt_bs_trace_init(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm) 2541 { 2542 u32 mem_size, pages, rem_bytes, magic_byte_offset; 2543 u16 trace_type = bnxt_bstore_to_trace[ctxm->type]; 2544 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 2545 struct bnxt_ring_mem_info *rmem, *rmem_pg_tbl; 2546 struct bnxt_bs_trace_info *bs_trace; 2547 int last_pg; 2548 2549 if (ctxm->instance_bmap && ctxm->instance_bmap > 1) 2550 return; 2551 2552 mem_size = ctxm->max_entries * ctxm->entry_size; 2553 rem_bytes = mem_size % BNXT_PAGE_SIZE; 2554 pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 2555 2556 last_pg = (pages - 1) & (MAX_CTX_PAGES - 1); 2557 magic_byte_offset = (rem_bytes ? rem_bytes : BNXT_PAGE_SIZE) - 1; 2558 2559 rmem = &ctx_pg[0].ring_mem; 2560 bs_trace = &bp->bs_trace[trace_type]; 2561 bs_trace->ctx_type = ctxm->type; 2562 bs_trace->trace_type = trace_type; 2563 if (pages > MAX_CTX_PAGES) { 2564 int last_pg_dir = rmem->nr_pages - 1; 2565 2566 rmem_pg_tbl = &ctx_pg[0].ctx_pg_tbl[last_pg_dir]->ring_mem; 2567 bs_trace->magic_byte = rmem_pg_tbl->pg_arr[last_pg]; 2568 } else { 2569 bs_trace->magic_byte = rmem->pg_arr[last_pg]; 2570 } 2571 bs_trace->magic_byte += magic_byte_offset; 2572 *bs_trace->magic_byte = BNXT_TRACE_BUF_MAGIC_BYTE; 2573 } 2574 2575 #define BNXT_EVENT_BUF_PRODUCER_TYPE(data1) \ 2576 (((data1) & ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_MASK) >>\ 2577 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_SFT) 2578 2579 #define BNXT_EVENT_BUF_PRODUCER_OFFSET(data2) \ 2580 (((data2) & \ 2581 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_MASK) >>\ 2582 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_SFT) 2583 2584 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2585 ((data2) & \ 2586 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2587 2588 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2589 (((data2) & \ 2590 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2591 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2592 2593 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2594 ((data1) & \ 2595 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2596 2597 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2598 (((data1) & \ 2599 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2600 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2601 2602 /* Return true if the workqueue has to be scheduled */ 2603 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2604 { 2605 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2606 2607 switch (err_type) { 2608 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2609 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2610 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2611 break; 2612 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2613 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2614 break; 2615 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2616 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2617 break; 2618 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2619 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2620 char *threshold_type; 2621 bool notify = false; 2622 char *dir_str; 2623 2624 switch (type) { 2625 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2626 threshold_type = "warning"; 2627 break; 2628 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2629 threshold_type = "critical"; 2630 break; 2631 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2632 threshold_type = "fatal"; 2633 break; 2634 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2635 threshold_type = "shutdown"; 2636 break; 2637 default: 2638 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2639 return false; 2640 } 2641 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2642 dir_str = "above"; 2643 notify = true; 2644 } else { 2645 dir_str = "below"; 2646 } 2647 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2648 dir_str, threshold_type); 2649 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2650 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2651 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2652 if (notify) { 2653 bp->thermal_threshold_type = type; 2654 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2655 return true; 2656 } 2657 return false; 2658 } 2659 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2660 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2661 break; 2662 default: 2663 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2664 err_type); 2665 break; 2666 } 2667 return false; 2668 } 2669 2670 #define BNXT_GET_EVENT_PORT(data) \ 2671 ((data) & \ 2672 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2673 2674 #define BNXT_EVENT_RING_TYPE(data2) \ 2675 ((data2) & \ 2676 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2677 2678 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2679 (BNXT_EVENT_RING_TYPE(data2) == \ 2680 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2681 2682 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2683 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2684 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2685 2686 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2687 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2688 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2689 2690 #define BNXT_PHC_BITS 48 2691 2692 static int bnxt_async_event_process(struct bnxt *bp, 2693 struct hwrm_async_event_cmpl *cmpl) 2694 { 2695 u16 event_id = le16_to_cpu(cmpl->event_id); 2696 u32 data1 = le32_to_cpu(cmpl->event_data1); 2697 u32 data2 = le32_to_cpu(cmpl->event_data2); 2698 2699 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2700 event_id, data1, data2); 2701 2702 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2703 switch (event_id) { 2704 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2705 struct bnxt_link_info *link_info = &bp->link_info; 2706 2707 if (BNXT_VF(bp)) 2708 goto async_event_process_exit; 2709 2710 /* print unsupported speed warning in forced speed mode only */ 2711 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2712 (data1 & 0x20000)) { 2713 u16 fw_speed = bnxt_get_force_speed(link_info); 2714 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2715 2716 if (speed != SPEED_UNKNOWN) 2717 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2718 speed); 2719 } 2720 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2721 } 2722 fallthrough; 2723 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2724 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2725 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2726 fallthrough; 2727 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2728 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2729 break; 2730 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2731 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2732 break; 2733 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2734 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2735 2736 if (BNXT_VF(bp)) 2737 break; 2738 2739 if (bp->pf.port_id != port_id) 2740 break; 2741 2742 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2743 break; 2744 } 2745 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2746 if (BNXT_PF(bp)) 2747 goto async_event_process_exit; 2748 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2749 break; 2750 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2751 char *type_str = "Solicited"; 2752 2753 if (!bp->fw_health) 2754 goto async_event_process_exit; 2755 2756 bp->fw_reset_timestamp = jiffies; 2757 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2758 if (!bp->fw_reset_min_dsecs) 2759 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2760 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2761 if (!bp->fw_reset_max_dsecs) 2762 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2763 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2764 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2765 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2766 type_str = "Fatal"; 2767 bp->fw_health->fatalities++; 2768 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2769 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2770 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2771 type_str = "Non-fatal"; 2772 bp->fw_health->survivals++; 2773 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2774 } 2775 netif_warn(bp, hw, bp->dev, 2776 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2777 type_str, data1, data2, 2778 bp->fw_reset_min_dsecs * 100, 2779 bp->fw_reset_max_dsecs * 100); 2780 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2781 break; 2782 } 2783 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2784 struct bnxt_fw_health *fw_health = bp->fw_health; 2785 char *status_desc = "healthy"; 2786 u32 status; 2787 2788 if (!fw_health) 2789 goto async_event_process_exit; 2790 2791 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2792 fw_health->enabled = false; 2793 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2794 break; 2795 } 2796 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2797 fw_health->tmr_multiplier = 2798 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2799 bp->current_interval * 10); 2800 fw_health->tmr_counter = fw_health->tmr_multiplier; 2801 if (!fw_health->enabled) 2802 fw_health->last_fw_heartbeat = 2803 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2804 fw_health->last_fw_reset_cnt = 2805 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2806 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2807 if (status != BNXT_FW_STATUS_HEALTHY) 2808 status_desc = "unhealthy"; 2809 netif_info(bp, drv, bp->dev, 2810 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2811 fw_health->primary ? "primary" : "backup", status, 2812 status_desc, fw_health->last_fw_reset_cnt); 2813 if (!fw_health->enabled) { 2814 /* Make sure tmr_counter is set and visible to 2815 * bnxt_health_check() before setting enabled to true. 2816 */ 2817 smp_wmb(); 2818 fw_health->enabled = true; 2819 } 2820 goto async_event_process_exit; 2821 } 2822 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2823 netif_notice(bp, hw, bp->dev, 2824 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2825 data1, data2); 2826 goto async_event_process_exit; 2827 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2828 struct bnxt_rx_ring_info *rxr; 2829 u16 grp_idx; 2830 2831 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2832 goto async_event_process_exit; 2833 2834 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2835 BNXT_EVENT_RING_TYPE(data2), data1); 2836 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2837 goto async_event_process_exit; 2838 2839 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2840 if (grp_idx == INVALID_HW_RING_ID) { 2841 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2842 data1); 2843 goto async_event_process_exit; 2844 } 2845 rxr = bp->bnapi[grp_idx]->rx_ring; 2846 bnxt_sched_reset_rxr(bp, rxr); 2847 goto async_event_process_exit; 2848 } 2849 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2850 struct bnxt_fw_health *fw_health = bp->fw_health; 2851 2852 netif_notice(bp, hw, bp->dev, 2853 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2854 data1, data2); 2855 if (fw_health) { 2856 fw_health->echo_req_data1 = data1; 2857 fw_health->echo_req_data2 = data2; 2858 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2859 break; 2860 } 2861 goto async_event_process_exit; 2862 } 2863 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2864 bnxt_ptp_pps_event(bp, data1, data2); 2865 goto async_event_process_exit; 2866 } 2867 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2868 if (bnxt_event_error_report(bp, data1, data2)) 2869 break; 2870 goto async_event_process_exit; 2871 } 2872 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2873 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2874 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2875 if (BNXT_PTP_USE_RTC(bp)) { 2876 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2877 unsigned long flags; 2878 u64 ns; 2879 2880 if (!ptp) 2881 goto async_event_process_exit; 2882 2883 bnxt_ptp_update_current_time(bp); 2884 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2885 BNXT_PHC_BITS) | ptp->current_time); 2886 write_seqlock_irqsave(&ptp->ptp_lock, flags); 2887 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2888 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 2889 } 2890 break; 2891 } 2892 goto async_event_process_exit; 2893 } 2894 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2895 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2896 2897 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2898 goto async_event_process_exit; 2899 } 2900 case ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER: { 2901 u16 type = (u16)BNXT_EVENT_BUF_PRODUCER_TYPE(data1); 2902 u32 offset = BNXT_EVENT_BUF_PRODUCER_OFFSET(data2); 2903 2904 bnxt_bs_trace_check_wrap(&bp->bs_trace[type], offset); 2905 goto async_event_process_exit; 2906 } 2907 default: 2908 goto async_event_process_exit; 2909 } 2910 __bnxt_queue_sp_work(bp); 2911 async_event_process_exit: 2912 bnxt_ulp_async_events(bp, cmpl); 2913 return 0; 2914 } 2915 2916 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2917 { 2918 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2919 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2920 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2921 (struct hwrm_fwd_req_cmpl *)txcmp; 2922 2923 switch (cmpl_type) { 2924 case CMPL_BASE_TYPE_HWRM_DONE: 2925 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2926 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2927 break; 2928 2929 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2930 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2931 2932 if ((vf_id < bp->pf.first_vf_id) || 2933 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2934 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2935 vf_id); 2936 return -EINVAL; 2937 } 2938 2939 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2940 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2941 break; 2942 2943 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2944 bnxt_async_event_process(bp, 2945 (struct hwrm_async_event_cmpl *)txcmp); 2946 break; 2947 2948 default: 2949 break; 2950 } 2951 2952 return 0; 2953 } 2954 2955 static bool bnxt_vnic_is_active(struct bnxt *bp) 2956 { 2957 struct bnxt_vnic_info *vnic = &bp->vnic_info[0]; 2958 2959 return vnic->fw_vnic_id != INVALID_HW_RING_ID && vnic->mru > 0; 2960 } 2961 2962 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2963 { 2964 struct bnxt_napi *bnapi = dev_instance; 2965 struct bnxt *bp = bnapi->bp; 2966 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2967 u32 cons = RING_CMP(cpr->cp_raw_cons); 2968 2969 cpr->event_ctr++; 2970 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2971 napi_schedule(&bnapi->napi); 2972 return IRQ_HANDLED; 2973 } 2974 2975 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2976 { 2977 u32 raw_cons = cpr->cp_raw_cons; 2978 u16 cons = RING_CMP(raw_cons); 2979 struct tx_cmp *txcmp; 2980 2981 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2982 2983 return TX_CMP_VALID(txcmp, raw_cons); 2984 } 2985 2986 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2987 int budget) 2988 { 2989 struct bnxt_napi *bnapi = cpr->bnapi; 2990 u32 raw_cons = cpr->cp_raw_cons; 2991 u32 cons; 2992 int rx_pkts = 0; 2993 u8 event = 0; 2994 struct tx_cmp *txcmp; 2995 2996 cpr->has_more_work = 0; 2997 cpr->had_work_done = 1; 2998 while (1) { 2999 u8 cmp_type; 3000 int rc; 3001 3002 cons = RING_CMP(raw_cons); 3003 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3004 3005 if (!TX_CMP_VALID(txcmp, raw_cons)) 3006 break; 3007 3008 /* The valid test of the entry must be done first before 3009 * reading any further. 3010 */ 3011 dma_rmb(); 3012 cmp_type = TX_CMP_TYPE(txcmp); 3013 if (cmp_type == CMP_TYPE_TX_L2_CMP || 3014 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 3015 u32 opaque = txcmp->tx_cmp_opaque; 3016 struct bnxt_tx_ring_info *txr; 3017 u16 tx_freed; 3018 3019 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 3020 event |= BNXT_TX_CMP_EVENT; 3021 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 3022 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 3023 else 3024 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 3025 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 3026 bp->tx_ring_mask; 3027 /* return full budget so NAPI will complete. */ 3028 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 3029 rx_pkts = budget; 3030 raw_cons = NEXT_RAW_CMP(raw_cons); 3031 if (budget) 3032 cpr->has_more_work = 1; 3033 break; 3034 } 3035 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 3036 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 3037 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 3038 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 3039 if (likely(budget)) 3040 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3041 else 3042 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 3043 &event); 3044 if (likely(rc >= 0)) 3045 rx_pkts += rc; 3046 /* Increment rx_pkts when rc is -ENOMEM to count towards 3047 * the NAPI budget. Otherwise, we may potentially loop 3048 * here forever if we consistently cannot allocate 3049 * buffers. 3050 */ 3051 else if (rc == -ENOMEM && budget) 3052 rx_pkts++; 3053 else if (rc == -EBUSY) /* partial completion */ 3054 break; 3055 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 3056 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 3057 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 3058 bnxt_hwrm_handler(bp, txcmp); 3059 } 3060 raw_cons = NEXT_RAW_CMP(raw_cons); 3061 3062 if (rx_pkts && rx_pkts == budget) { 3063 cpr->has_more_work = 1; 3064 break; 3065 } 3066 } 3067 3068 if (event & BNXT_REDIRECT_EVENT) { 3069 xdp_do_flush(); 3070 event &= ~BNXT_REDIRECT_EVENT; 3071 } 3072 3073 if (event & BNXT_TX_EVENT) { 3074 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 3075 u16 prod = txr->tx_prod; 3076 3077 /* Sync BD data before updating doorbell */ 3078 wmb(); 3079 3080 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 3081 event &= ~BNXT_TX_EVENT; 3082 } 3083 3084 cpr->cp_raw_cons = raw_cons; 3085 bnapi->events |= event; 3086 return rx_pkts; 3087 } 3088 3089 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3090 int budget) 3091 { 3092 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 3093 bnapi->tx_int(bp, bnapi, budget); 3094 3095 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 3096 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3097 3098 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3099 bnapi->events &= ~BNXT_RX_EVENT; 3100 } 3101 if (bnapi->events & BNXT_AGG_EVENT) { 3102 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3103 3104 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3105 bnapi->events &= ~BNXT_AGG_EVENT; 3106 } 3107 } 3108 3109 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3110 int budget) 3111 { 3112 struct bnxt_napi *bnapi = cpr->bnapi; 3113 int rx_pkts; 3114 3115 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3116 3117 /* ACK completion ring before freeing tx ring and producing new 3118 * buffers in rx/agg rings to prevent overflowing the completion 3119 * ring. 3120 */ 3121 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3122 3123 __bnxt_poll_work_done(bp, bnapi, budget); 3124 return rx_pkts; 3125 } 3126 3127 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3128 { 3129 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3130 struct bnxt *bp = bnapi->bp; 3131 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3132 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3133 struct tx_cmp *txcmp; 3134 struct rx_cmp_ext *rxcmp1; 3135 u32 cp_cons, tmp_raw_cons; 3136 u32 raw_cons = cpr->cp_raw_cons; 3137 bool flush_xdp = false; 3138 u32 rx_pkts = 0; 3139 u8 event = 0; 3140 3141 while (1) { 3142 int rc; 3143 3144 cp_cons = RING_CMP(raw_cons); 3145 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3146 3147 if (!TX_CMP_VALID(txcmp, raw_cons)) 3148 break; 3149 3150 /* The valid test of the entry must be done first before 3151 * reading any further. 3152 */ 3153 dma_rmb(); 3154 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3155 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3156 cp_cons = RING_CMP(tmp_raw_cons); 3157 rxcmp1 = (struct rx_cmp_ext *) 3158 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3159 3160 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3161 break; 3162 3163 /* force an error to recycle the buffer */ 3164 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3165 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3166 3167 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3168 if (likely(rc == -EIO) && budget) 3169 rx_pkts++; 3170 else if (rc == -EBUSY) /* partial completion */ 3171 break; 3172 if (event & BNXT_REDIRECT_EVENT) 3173 flush_xdp = true; 3174 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3175 CMPL_BASE_TYPE_HWRM_DONE)) { 3176 bnxt_hwrm_handler(bp, txcmp); 3177 } else { 3178 netdev_err(bp->dev, 3179 "Invalid completion received on special ring\n"); 3180 } 3181 raw_cons = NEXT_RAW_CMP(raw_cons); 3182 3183 if (rx_pkts == budget) 3184 break; 3185 } 3186 3187 cpr->cp_raw_cons = raw_cons; 3188 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3189 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3190 3191 if (event & BNXT_AGG_EVENT) 3192 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3193 if (flush_xdp) 3194 xdp_do_flush(); 3195 3196 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3197 napi_complete_done(napi, rx_pkts); 3198 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3199 } 3200 return rx_pkts; 3201 } 3202 3203 static int bnxt_poll(struct napi_struct *napi, int budget) 3204 { 3205 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3206 struct bnxt *bp = bnapi->bp; 3207 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3208 int work_done = 0; 3209 3210 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3211 napi_complete(napi); 3212 return 0; 3213 } 3214 while (1) { 3215 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3216 3217 if (work_done >= budget) { 3218 if (!budget) 3219 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3220 break; 3221 } 3222 3223 if (!bnxt_has_work(bp, cpr)) { 3224 if (napi_complete_done(napi, work_done)) 3225 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3226 break; 3227 } 3228 } 3229 if ((bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3230 struct dim_sample dim_sample = {}; 3231 3232 dim_update_sample(cpr->event_ctr, 3233 cpr->rx_packets, 3234 cpr->rx_bytes, 3235 &dim_sample); 3236 net_dim(&cpr->dim, &dim_sample); 3237 } 3238 return work_done; 3239 } 3240 3241 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3242 { 3243 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3244 int i, work_done = 0; 3245 3246 for (i = 0; i < cpr->cp_ring_count; i++) { 3247 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3248 3249 if (cpr2->had_nqe_notify) { 3250 work_done += __bnxt_poll_work(bp, cpr2, 3251 budget - work_done); 3252 cpr->has_more_work |= cpr2->has_more_work; 3253 } 3254 } 3255 return work_done; 3256 } 3257 3258 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3259 u64 dbr_type, int budget) 3260 { 3261 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3262 int i; 3263 3264 for (i = 0; i < cpr->cp_ring_count; i++) { 3265 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3266 struct bnxt_db_info *db; 3267 3268 if (cpr2->had_work_done) { 3269 u32 tgl = 0; 3270 3271 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3272 cpr2->had_nqe_notify = 0; 3273 tgl = cpr2->toggle; 3274 } 3275 db = &cpr2->cp_db; 3276 bnxt_writeq(bp, 3277 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3278 DB_RING_IDX(db, cpr2->cp_raw_cons), 3279 db->doorbell); 3280 cpr2->had_work_done = 0; 3281 } 3282 } 3283 __bnxt_poll_work_done(bp, bnapi, budget); 3284 } 3285 3286 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3287 { 3288 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3289 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3290 struct bnxt_cp_ring_info *cpr_rx; 3291 u32 raw_cons = cpr->cp_raw_cons; 3292 struct bnxt *bp = bnapi->bp; 3293 struct nqe_cn *nqcmp; 3294 int work_done = 0; 3295 u32 cons; 3296 3297 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3298 napi_complete(napi); 3299 return 0; 3300 } 3301 if (cpr->has_more_work) { 3302 cpr->has_more_work = 0; 3303 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3304 } 3305 while (1) { 3306 u16 type; 3307 3308 cons = RING_CMP(raw_cons); 3309 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3310 3311 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3312 if (cpr->has_more_work) 3313 break; 3314 3315 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3316 budget); 3317 cpr->cp_raw_cons = raw_cons; 3318 if (napi_complete_done(napi, work_done)) 3319 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3320 cpr->cp_raw_cons); 3321 goto poll_done; 3322 } 3323 3324 /* The valid test of the entry must be done first before 3325 * reading any further. 3326 */ 3327 dma_rmb(); 3328 3329 type = le16_to_cpu(nqcmp->type); 3330 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3331 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3332 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3333 struct bnxt_cp_ring_info *cpr2; 3334 3335 /* No more budget for RX work */ 3336 if (budget && work_done >= budget && 3337 cq_type == BNXT_NQ_HDL_TYPE_RX) 3338 break; 3339 3340 idx = BNXT_NQ_HDL_IDX(idx); 3341 cpr2 = &cpr->cp_ring_arr[idx]; 3342 cpr2->had_nqe_notify = 1; 3343 cpr2->toggle = NQE_CN_TOGGLE(type); 3344 work_done += __bnxt_poll_work(bp, cpr2, 3345 budget - work_done); 3346 cpr->has_more_work |= cpr2->has_more_work; 3347 } else { 3348 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3349 } 3350 raw_cons = NEXT_RAW_CMP(raw_cons); 3351 } 3352 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3353 if (raw_cons != cpr->cp_raw_cons) { 3354 cpr->cp_raw_cons = raw_cons; 3355 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3356 } 3357 poll_done: 3358 cpr_rx = &cpr->cp_ring_arr[0]; 3359 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3360 (bp->flags & BNXT_FLAG_DIM) && bnxt_vnic_is_active(bp)) { 3361 struct dim_sample dim_sample = {}; 3362 3363 dim_update_sample(cpr->event_ctr, 3364 cpr_rx->rx_packets, 3365 cpr_rx->rx_bytes, 3366 &dim_sample); 3367 net_dim(&cpr->dim, &dim_sample); 3368 } 3369 return work_done; 3370 } 3371 3372 static void bnxt_free_one_tx_ring_skbs(struct bnxt *bp, 3373 struct bnxt_tx_ring_info *txr, int idx) 3374 { 3375 int i, max_idx; 3376 struct pci_dev *pdev = bp->pdev; 3377 3378 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3379 3380 for (i = 0; i < max_idx;) { 3381 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[i]; 3382 struct sk_buff *skb; 3383 int j, last; 3384 3385 if (idx < bp->tx_nr_rings_xdp && 3386 tx_buf->action == XDP_REDIRECT) { 3387 dma_unmap_single(&pdev->dev, 3388 dma_unmap_addr(tx_buf, mapping), 3389 dma_unmap_len(tx_buf, len), 3390 DMA_TO_DEVICE); 3391 xdp_return_frame(tx_buf->xdpf); 3392 tx_buf->action = 0; 3393 tx_buf->xdpf = NULL; 3394 i++; 3395 continue; 3396 } 3397 3398 skb = tx_buf->skb; 3399 if (!skb) { 3400 i++; 3401 continue; 3402 } 3403 3404 tx_buf->skb = NULL; 3405 3406 if (tx_buf->is_push) { 3407 dev_kfree_skb(skb); 3408 i += 2; 3409 continue; 3410 } 3411 3412 dma_unmap_single(&pdev->dev, 3413 dma_unmap_addr(tx_buf, mapping), 3414 skb_headlen(skb), 3415 DMA_TO_DEVICE); 3416 3417 last = tx_buf->nr_frags; 3418 i += 2; 3419 for (j = 0; j < last; j++, i++) { 3420 int ring_idx = i & bp->tx_ring_mask; 3421 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 3422 3423 tx_buf = &txr->tx_buf_ring[ring_idx]; 3424 dma_unmap_page(&pdev->dev, 3425 dma_unmap_addr(tx_buf, mapping), 3426 skb_frag_size(frag), DMA_TO_DEVICE); 3427 } 3428 dev_kfree_skb(skb); 3429 } 3430 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, idx)); 3431 } 3432 3433 static void bnxt_free_tx_skbs(struct bnxt *bp) 3434 { 3435 int i; 3436 3437 if (!bp->tx_ring) 3438 return; 3439 3440 for (i = 0; i < bp->tx_nr_rings; i++) { 3441 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3442 3443 if (!txr->tx_buf_ring) 3444 continue; 3445 3446 bnxt_free_one_tx_ring_skbs(bp, txr, i); 3447 } 3448 } 3449 3450 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3451 { 3452 int i, max_idx; 3453 3454 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3455 3456 for (i = 0; i < max_idx; i++) { 3457 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3458 void *data = rx_buf->data; 3459 3460 if (!data) 3461 continue; 3462 3463 rx_buf->data = NULL; 3464 if (BNXT_RX_PAGE_MODE(bp)) 3465 page_pool_recycle_direct(rxr->page_pool, data); 3466 else 3467 page_pool_free_va(rxr->head_pool, data, true); 3468 } 3469 } 3470 3471 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3472 { 3473 int i, max_idx; 3474 3475 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3476 3477 for (i = 0; i < max_idx; i++) { 3478 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3479 netmem_ref netmem = rx_agg_buf->netmem; 3480 3481 if (!netmem) 3482 continue; 3483 3484 rx_agg_buf->netmem = 0; 3485 __clear_bit(i, rxr->rx_agg_bmap); 3486 3487 page_pool_recycle_direct_netmem(rxr->page_pool, netmem); 3488 } 3489 } 3490 3491 static void bnxt_free_one_tpa_info_data(struct bnxt *bp, 3492 struct bnxt_rx_ring_info *rxr) 3493 { 3494 int i; 3495 3496 for (i = 0; i < bp->max_tpa; i++) { 3497 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3498 u8 *data = tpa_info->data; 3499 3500 if (!data) 3501 continue; 3502 3503 tpa_info->data = NULL; 3504 page_pool_free_va(rxr->head_pool, data, false); 3505 } 3506 } 3507 3508 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, 3509 struct bnxt_rx_ring_info *rxr) 3510 { 3511 struct bnxt_tpa_idx_map *map; 3512 3513 if (!rxr->rx_tpa) 3514 goto skip_rx_tpa_free; 3515 3516 bnxt_free_one_tpa_info_data(bp, rxr); 3517 3518 skip_rx_tpa_free: 3519 if (!rxr->rx_buf_ring) 3520 goto skip_rx_buf_free; 3521 3522 bnxt_free_one_rx_ring(bp, rxr); 3523 3524 skip_rx_buf_free: 3525 if (!rxr->rx_agg_ring) 3526 goto skip_rx_agg_free; 3527 3528 bnxt_free_one_rx_agg_ring(bp, rxr); 3529 3530 skip_rx_agg_free: 3531 map = rxr->rx_tpa_idx_map; 3532 if (map) 3533 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3534 } 3535 3536 static void bnxt_free_rx_skbs(struct bnxt *bp) 3537 { 3538 int i; 3539 3540 if (!bp->rx_ring) 3541 return; 3542 3543 for (i = 0; i < bp->rx_nr_rings; i++) 3544 bnxt_free_one_rx_ring_skbs(bp, &bp->rx_ring[i]); 3545 } 3546 3547 static void bnxt_free_skbs(struct bnxt *bp) 3548 { 3549 bnxt_free_tx_skbs(bp); 3550 bnxt_free_rx_skbs(bp); 3551 } 3552 3553 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3554 { 3555 u8 init_val = ctxm->init_value; 3556 u16 offset = ctxm->init_offset; 3557 u8 *p2 = p; 3558 int i; 3559 3560 if (!init_val) 3561 return; 3562 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3563 memset(p, init_val, len); 3564 return; 3565 } 3566 for (i = 0; i < len; i += ctxm->entry_size) 3567 *(p2 + i + offset) = init_val; 3568 } 3569 3570 static size_t __bnxt_copy_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem, 3571 void *buf, size_t offset, size_t head, 3572 size_t tail) 3573 { 3574 int i, head_page, start_idx, source_offset; 3575 size_t len, rem_len, total_len, max_bytes; 3576 3577 head_page = head / rmem->page_size; 3578 source_offset = head % rmem->page_size; 3579 total_len = (tail - head) & MAX_CTX_BYTES_MASK; 3580 if (!total_len) 3581 total_len = MAX_CTX_BYTES; 3582 start_idx = head_page % MAX_CTX_PAGES; 3583 max_bytes = (rmem->nr_pages - start_idx) * rmem->page_size - 3584 source_offset; 3585 total_len = min(total_len, max_bytes); 3586 rem_len = total_len; 3587 3588 for (i = start_idx; rem_len; i++, source_offset = 0) { 3589 len = min((size_t)(rmem->page_size - source_offset), rem_len); 3590 if (buf) 3591 memcpy(buf + offset, rmem->pg_arr[i] + source_offset, 3592 len); 3593 offset += len; 3594 rem_len -= len; 3595 } 3596 return total_len; 3597 } 3598 3599 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3600 { 3601 struct pci_dev *pdev = bp->pdev; 3602 int i; 3603 3604 if (!rmem->pg_arr) 3605 goto skip_pages; 3606 3607 for (i = 0; i < rmem->nr_pages; i++) { 3608 if (!rmem->pg_arr[i]) 3609 continue; 3610 3611 dma_free_coherent(&pdev->dev, rmem->page_size, 3612 rmem->pg_arr[i], rmem->dma_arr[i]); 3613 3614 rmem->pg_arr[i] = NULL; 3615 } 3616 skip_pages: 3617 if (rmem->pg_tbl) { 3618 size_t pg_tbl_size = rmem->nr_pages * 8; 3619 3620 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3621 pg_tbl_size = rmem->page_size; 3622 dma_free_coherent(&pdev->dev, pg_tbl_size, 3623 rmem->pg_tbl, rmem->pg_tbl_map); 3624 rmem->pg_tbl = NULL; 3625 } 3626 if (rmem->vmem_size && *rmem->vmem) { 3627 vfree(*rmem->vmem); 3628 *rmem->vmem = NULL; 3629 } 3630 } 3631 3632 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3633 { 3634 struct pci_dev *pdev = bp->pdev; 3635 u64 valid_bit = 0; 3636 int i; 3637 3638 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3639 valid_bit = PTU_PTE_VALID; 3640 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3641 size_t pg_tbl_size = rmem->nr_pages * 8; 3642 3643 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3644 pg_tbl_size = rmem->page_size; 3645 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3646 &rmem->pg_tbl_map, 3647 GFP_KERNEL); 3648 if (!rmem->pg_tbl) 3649 return -ENOMEM; 3650 } 3651 3652 for (i = 0; i < rmem->nr_pages; i++) { 3653 u64 extra_bits = valid_bit; 3654 3655 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3656 rmem->page_size, 3657 &rmem->dma_arr[i], 3658 GFP_KERNEL); 3659 if (!rmem->pg_arr[i]) 3660 return -ENOMEM; 3661 3662 if (rmem->ctx_mem) 3663 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3664 rmem->page_size); 3665 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3666 if (i == rmem->nr_pages - 2 && 3667 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3668 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3669 else if (i == rmem->nr_pages - 1 && 3670 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3671 extra_bits |= PTU_PTE_LAST; 3672 rmem->pg_tbl[i] = 3673 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3674 } 3675 } 3676 3677 if (rmem->vmem_size) { 3678 *rmem->vmem = vzalloc(rmem->vmem_size); 3679 if (!(*rmem->vmem)) 3680 return -ENOMEM; 3681 } 3682 return 0; 3683 } 3684 3685 static void bnxt_free_one_tpa_info(struct bnxt *bp, 3686 struct bnxt_rx_ring_info *rxr) 3687 { 3688 int i; 3689 3690 kfree(rxr->rx_tpa_idx_map); 3691 rxr->rx_tpa_idx_map = NULL; 3692 if (rxr->rx_tpa) { 3693 for (i = 0; i < bp->max_tpa; i++) { 3694 kfree(rxr->rx_tpa[i].agg_arr); 3695 rxr->rx_tpa[i].agg_arr = NULL; 3696 } 3697 } 3698 kfree(rxr->rx_tpa); 3699 rxr->rx_tpa = NULL; 3700 } 3701 3702 static void bnxt_free_tpa_info(struct bnxt *bp) 3703 { 3704 int i; 3705 3706 for (i = 0; i < bp->rx_nr_rings; i++) { 3707 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3708 3709 bnxt_free_one_tpa_info(bp, rxr); 3710 } 3711 } 3712 3713 static int bnxt_alloc_one_tpa_info(struct bnxt *bp, 3714 struct bnxt_rx_ring_info *rxr) 3715 { 3716 struct rx_agg_cmp *agg; 3717 int i; 3718 3719 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3720 GFP_KERNEL); 3721 if (!rxr->rx_tpa) 3722 return -ENOMEM; 3723 3724 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3725 return 0; 3726 for (i = 0; i < bp->max_tpa; i++) { 3727 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3728 if (!agg) 3729 return -ENOMEM; 3730 rxr->rx_tpa[i].agg_arr = agg; 3731 } 3732 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3733 GFP_KERNEL); 3734 if (!rxr->rx_tpa_idx_map) 3735 return -ENOMEM; 3736 3737 return 0; 3738 } 3739 3740 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3741 { 3742 int i, rc; 3743 3744 bp->max_tpa = MAX_TPA; 3745 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3746 if (!bp->max_tpa_v2) 3747 return 0; 3748 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3749 } 3750 3751 for (i = 0; i < bp->rx_nr_rings; i++) { 3752 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3753 3754 rc = bnxt_alloc_one_tpa_info(bp, rxr); 3755 if (rc) 3756 return rc; 3757 } 3758 return 0; 3759 } 3760 3761 static void bnxt_free_rx_rings(struct bnxt *bp) 3762 { 3763 int i; 3764 3765 if (!bp->rx_ring) 3766 return; 3767 3768 bnxt_free_tpa_info(bp); 3769 for (i = 0; i < bp->rx_nr_rings; i++) { 3770 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3771 struct bnxt_ring_struct *ring; 3772 3773 if (rxr->xdp_prog) 3774 bpf_prog_put(rxr->xdp_prog); 3775 3776 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3777 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3778 3779 page_pool_destroy(rxr->page_pool); 3780 if (bnxt_separate_head_pool(rxr)) 3781 page_pool_destroy(rxr->head_pool); 3782 rxr->page_pool = rxr->head_pool = NULL; 3783 3784 kfree(rxr->rx_agg_bmap); 3785 rxr->rx_agg_bmap = NULL; 3786 3787 ring = &rxr->rx_ring_struct; 3788 bnxt_free_ring(bp, &ring->ring_mem); 3789 3790 ring = &rxr->rx_agg_ring_struct; 3791 bnxt_free_ring(bp, &ring->ring_mem); 3792 } 3793 } 3794 3795 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3796 struct bnxt_rx_ring_info *rxr, 3797 int numa_node) 3798 { 3799 struct page_pool_params pp = { 0 }; 3800 struct page_pool *pool; 3801 3802 pp.pool_size = bp->rx_agg_ring_size; 3803 if (BNXT_RX_PAGE_MODE(bp)) 3804 pp.pool_size += bp->rx_ring_size; 3805 pp.nid = numa_node; 3806 pp.napi = &rxr->bnapi->napi; 3807 pp.netdev = bp->dev; 3808 pp.dev = &bp->pdev->dev; 3809 pp.dma_dir = bp->rx_dir; 3810 pp.max_len = PAGE_SIZE; 3811 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV | 3812 PP_FLAG_ALLOW_UNREADABLE_NETMEM; 3813 pp.queue_idx = rxr->bnapi->index; 3814 3815 pool = page_pool_create(&pp); 3816 if (IS_ERR(pool)) 3817 return PTR_ERR(pool); 3818 rxr->page_pool = pool; 3819 3820 rxr->need_head_pool = page_pool_is_unreadable(pool); 3821 if (bnxt_separate_head_pool(rxr)) { 3822 pp.pool_size = max(bp->rx_ring_size, 1024); 3823 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3824 pool = page_pool_create(&pp); 3825 if (IS_ERR(pool)) 3826 goto err_destroy_pp; 3827 } 3828 rxr->head_pool = pool; 3829 3830 return 0; 3831 3832 err_destroy_pp: 3833 page_pool_destroy(rxr->page_pool); 3834 rxr->page_pool = NULL; 3835 return PTR_ERR(pool); 3836 } 3837 3838 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3839 { 3840 u16 mem_size; 3841 3842 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3843 mem_size = rxr->rx_agg_bmap_size / 8; 3844 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3845 if (!rxr->rx_agg_bmap) 3846 return -ENOMEM; 3847 3848 return 0; 3849 } 3850 3851 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3852 { 3853 int numa_node = dev_to_node(&bp->pdev->dev); 3854 int i, rc = 0, agg_rings = 0, cpu; 3855 3856 if (!bp->rx_ring) 3857 return -ENOMEM; 3858 3859 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3860 agg_rings = 1; 3861 3862 for (i = 0; i < bp->rx_nr_rings; i++) { 3863 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3864 struct bnxt_ring_struct *ring; 3865 int cpu_node; 3866 3867 ring = &rxr->rx_ring_struct; 3868 3869 cpu = cpumask_local_spread(i, numa_node); 3870 cpu_node = cpu_to_node(cpu); 3871 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3872 i, cpu_node); 3873 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3874 if (rc) 3875 return rc; 3876 3877 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3878 if (rc < 0) 3879 return rc; 3880 3881 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3882 MEM_TYPE_PAGE_POOL, 3883 rxr->page_pool); 3884 if (rc) { 3885 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3886 return rc; 3887 } 3888 3889 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3890 if (rc) 3891 return rc; 3892 3893 ring->grp_idx = i; 3894 if (agg_rings) { 3895 ring = &rxr->rx_agg_ring_struct; 3896 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3897 if (rc) 3898 return rc; 3899 3900 ring->grp_idx = i; 3901 rc = bnxt_alloc_rx_agg_bmap(bp, rxr); 3902 if (rc) 3903 return rc; 3904 } 3905 } 3906 if (bp->flags & BNXT_FLAG_TPA) 3907 rc = bnxt_alloc_tpa_info(bp); 3908 return rc; 3909 } 3910 3911 static void bnxt_free_tx_rings(struct bnxt *bp) 3912 { 3913 int i; 3914 struct pci_dev *pdev = bp->pdev; 3915 3916 if (!bp->tx_ring) 3917 return; 3918 3919 for (i = 0; i < bp->tx_nr_rings; i++) { 3920 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3921 struct bnxt_ring_struct *ring; 3922 3923 if (txr->tx_push) { 3924 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3925 txr->tx_push, txr->tx_push_mapping); 3926 txr->tx_push = NULL; 3927 } 3928 3929 ring = &txr->tx_ring_struct; 3930 3931 bnxt_free_ring(bp, &ring->ring_mem); 3932 } 3933 } 3934 3935 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3936 ((tc) * (bp)->tx_nr_rings_per_tc) 3937 3938 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3939 ((tx) % (bp)->tx_nr_rings_per_tc) 3940 3941 #define BNXT_RING_TO_TC(bp, tx) \ 3942 ((tx) / (bp)->tx_nr_rings_per_tc) 3943 3944 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3945 { 3946 int i, j, rc; 3947 struct pci_dev *pdev = bp->pdev; 3948 3949 bp->tx_push_size = 0; 3950 if (bp->tx_push_thresh) { 3951 int push_size; 3952 3953 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3954 bp->tx_push_thresh); 3955 3956 if (push_size > 256) { 3957 push_size = 0; 3958 bp->tx_push_thresh = 0; 3959 } 3960 3961 bp->tx_push_size = push_size; 3962 } 3963 3964 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3965 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3966 struct bnxt_ring_struct *ring; 3967 u8 qidx; 3968 3969 ring = &txr->tx_ring_struct; 3970 3971 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3972 if (rc) 3973 return rc; 3974 3975 ring->grp_idx = txr->bnapi->index; 3976 if (bp->tx_push_size) { 3977 dma_addr_t mapping; 3978 3979 /* One pre-allocated DMA buffer to backup 3980 * TX push operation 3981 */ 3982 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3983 bp->tx_push_size, 3984 &txr->tx_push_mapping, 3985 GFP_KERNEL); 3986 3987 if (!txr->tx_push) 3988 return -ENOMEM; 3989 3990 mapping = txr->tx_push_mapping + 3991 sizeof(struct tx_push_bd); 3992 txr->data_mapping = cpu_to_le64(mapping); 3993 } 3994 qidx = bp->tc_to_qidx[j]; 3995 ring->queue_id = bp->q_info[qidx].queue_id; 3996 spin_lock_init(&txr->xdp_tx_lock); 3997 if (i < bp->tx_nr_rings_xdp) 3998 continue; 3999 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 4000 j++; 4001 } 4002 return 0; 4003 } 4004 4005 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 4006 { 4007 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4008 4009 kfree(cpr->cp_desc_ring); 4010 cpr->cp_desc_ring = NULL; 4011 ring->ring_mem.pg_arr = NULL; 4012 kfree(cpr->cp_desc_mapping); 4013 cpr->cp_desc_mapping = NULL; 4014 ring->ring_mem.dma_arr = NULL; 4015 } 4016 4017 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 4018 { 4019 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 4020 if (!cpr->cp_desc_ring) 4021 return -ENOMEM; 4022 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 4023 GFP_KERNEL); 4024 if (!cpr->cp_desc_mapping) 4025 return -ENOMEM; 4026 return 0; 4027 } 4028 4029 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 4030 { 4031 int i; 4032 4033 if (!bp->bnapi) 4034 return; 4035 for (i = 0; i < bp->cp_nr_rings; i++) { 4036 struct bnxt_napi *bnapi = bp->bnapi[i]; 4037 4038 if (!bnapi) 4039 continue; 4040 bnxt_free_cp_arrays(&bnapi->cp_ring); 4041 } 4042 } 4043 4044 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 4045 { 4046 int i, n = bp->cp_nr_pages; 4047 4048 for (i = 0; i < bp->cp_nr_rings; i++) { 4049 struct bnxt_napi *bnapi = bp->bnapi[i]; 4050 int rc; 4051 4052 if (!bnapi) 4053 continue; 4054 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 4055 if (rc) 4056 return rc; 4057 } 4058 return 0; 4059 } 4060 4061 static void bnxt_free_cp_rings(struct bnxt *bp) 4062 { 4063 int i; 4064 4065 if (!bp->bnapi) 4066 return; 4067 4068 for (i = 0; i < bp->cp_nr_rings; i++) { 4069 struct bnxt_napi *bnapi = bp->bnapi[i]; 4070 struct bnxt_cp_ring_info *cpr; 4071 struct bnxt_ring_struct *ring; 4072 int j; 4073 4074 if (!bnapi) 4075 continue; 4076 4077 cpr = &bnapi->cp_ring; 4078 ring = &cpr->cp_ring_struct; 4079 4080 bnxt_free_ring(bp, &ring->ring_mem); 4081 4082 if (!cpr->cp_ring_arr) 4083 continue; 4084 4085 for (j = 0; j < cpr->cp_ring_count; j++) { 4086 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4087 4088 ring = &cpr2->cp_ring_struct; 4089 bnxt_free_ring(bp, &ring->ring_mem); 4090 bnxt_free_cp_arrays(cpr2); 4091 } 4092 kfree(cpr->cp_ring_arr); 4093 cpr->cp_ring_arr = NULL; 4094 cpr->cp_ring_count = 0; 4095 } 4096 } 4097 4098 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 4099 struct bnxt_cp_ring_info *cpr) 4100 { 4101 struct bnxt_ring_mem_info *rmem; 4102 struct bnxt_ring_struct *ring; 4103 int rc; 4104 4105 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 4106 if (rc) { 4107 bnxt_free_cp_arrays(cpr); 4108 return -ENOMEM; 4109 } 4110 ring = &cpr->cp_ring_struct; 4111 rmem = &ring->ring_mem; 4112 rmem->nr_pages = bp->cp_nr_pages; 4113 rmem->page_size = HW_CMPD_RING_SIZE; 4114 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4115 rmem->dma_arr = cpr->cp_desc_mapping; 4116 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 4117 rc = bnxt_alloc_ring(bp, rmem); 4118 if (rc) { 4119 bnxt_free_ring(bp, rmem); 4120 bnxt_free_cp_arrays(cpr); 4121 } 4122 return rc; 4123 } 4124 4125 static int bnxt_alloc_cp_rings(struct bnxt *bp) 4126 { 4127 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 4128 int i, j, rc, ulp_msix; 4129 int tcs = bp->num_tc; 4130 4131 if (!tcs) 4132 tcs = 1; 4133 ulp_msix = bnxt_get_ulp_msix_num(bp); 4134 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 4135 struct bnxt_napi *bnapi = bp->bnapi[i]; 4136 struct bnxt_cp_ring_info *cpr, *cpr2; 4137 struct bnxt_ring_struct *ring; 4138 int cp_count = 0, k; 4139 int rx = 0, tx = 0; 4140 4141 if (!bnapi) 4142 continue; 4143 4144 cpr = &bnapi->cp_ring; 4145 cpr->bnapi = bnapi; 4146 ring = &cpr->cp_ring_struct; 4147 4148 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4149 if (rc) 4150 return rc; 4151 4152 ring->map_idx = ulp_msix + i; 4153 4154 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4155 continue; 4156 4157 if (i < bp->rx_nr_rings) { 4158 cp_count++; 4159 rx = 1; 4160 } 4161 if (i < bp->tx_nr_rings_xdp) { 4162 cp_count++; 4163 tx = 1; 4164 } else if ((sh && i < bp->tx_nr_rings) || 4165 (!sh && i >= bp->rx_nr_rings)) { 4166 cp_count += tcs; 4167 tx = 1; 4168 } 4169 4170 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 4171 GFP_KERNEL); 4172 if (!cpr->cp_ring_arr) 4173 return -ENOMEM; 4174 cpr->cp_ring_count = cp_count; 4175 4176 for (k = 0; k < cp_count; k++) { 4177 cpr2 = &cpr->cp_ring_arr[k]; 4178 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 4179 if (rc) 4180 return rc; 4181 cpr2->bnapi = bnapi; 4182 cpr2->sw_stats = cpr->sw_stats; 4183 cpr2->cp_idx = k; 4184 if (!k && rx) { 4185 bp->rx_ring[i].rx_cpr = cpr2; 4186 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4187 } else { 4188 int n, tc = k - rx; 4189 4190 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4191 bp->tx_ring[n].tx_cpr = cpr2; 4192 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4193 } 4194 } 4195 if (tx) 4196 j++; 4197 } 4198 return 0; 4199 } 4200 4201 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4202 struct bnxt_rx_ring_info *rxr) 4203 { 4204 struct bnxt_ring_mem_info *rmem; 4205 struct bnxt_ring_struct *ring; 4206 4207 ring = &rxr->rx_ring_struct; 4208 rmem = &ring->ring_mem; 4209 rmem->nr_pages = bp->rx_nr_pages; 4210 rmem->page_size = HW_RXBD_RING_SIZE; 4211 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4212 rmem->dma_arr = rxr->rx_desc_mapping; 4213 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4214 rmem->vmem = (void **)&rxr->rx_buf_ring; 4215 4216 ring = &rxr->rx_agg_ring_struct; 4217 rmem = &ring->ring_mem; 4218 rmem->nr_pages = bp->rx_agg_nr_pages; 4219 rmem->page_size = HW_RXBD_RING_SIZE; 4220 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4221 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4222 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4223 rmem->vmem = (void **)&rxr->rx_agg_ring; 4224 } 4225 4226 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4227 struct bnxt_rx_ring_info *rxr) 4228 { 4229 struct bnxt_ring_mem_info *rmem; 4230 struct bnxt_ring_struct *ring; 4231 int i; 4232 4233 rxr->page_pool->p.napi = NULL; 4234 rxr->page_pool = NULL; 4235 rxr->head_pool->p.napi = NULL; 4236 rxr->head_pool = NULL; 4237 memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info)); 4238 4239 ring = &rxr->rx_ring_struct; 4240 rmem = &ring->ring_mem; 4241 rmem->pg_tbl = NULL; 4242 rmem->pg_tbl_map = 0; 4243 for (i = 0; i < rmem->nr_pages; i++) { 4244 rmem->pg_arr[i] = NULL; 4245 rmem->dma_arr[i] = 0; 4246 } 4247 *rmem->vmem = NULL; 4248 4249 ring = &rxr->rx_agg_ring_struct; 4250 rmem = &ring->ring_mem; 4251 rmem->pg_tbl = NULL; 4252 rmem->pg_tbl_map = 0; 4253 for (i = 0; i < rmem->nr_pages; i++) { 4254 rmem->pg_arr[i] = NULL; 4255 rmem->dma_arr[i] = 0; 4256 } 4257 *rmem->vmem = NULL; 4258 } 4259 4260 static void bnxt_init_ring_struct(struct bnxt *bp) 4261 { 4262 int i, j; 4263 4264 for (i = 0; i < bp->cp_nr_rings; i++) { 4265 struct bnxt_napi *bnapi = bp->bnapi[i]; 4266 struct bnxt_ring_mem_info *rmem; 4267 struct bnxt_cp_ring_info *cpr; 4268 struct bnxt_rx_ring_info *rxr; 4269 struct bnxt_tx_ring_info *txr; 4270 struct bnxt_ring_struct *ring; 4271 4272 if (!bnapi) 4273 continue; 4274 4275 cpr = &bnapi->cp_ring; 4276 ring = &cpr->cp_ring_struct; 4277 rmem = &ring->ring_mem; 4278 rmem->nr_pages = bp->cp_nr_pages; 4279 rmem->page_size = HW_CMPD_RING_SIZE; 4280 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4281 rmem->dma_arr = cpr->cp_desc_mapping; 4282 rmem->vmem_size = 0; 4283 4284 rxr = bnapi->rx_ring; 4285 if (!rxr) 4286 goto skip_rx; 4287 4288 ring = &rxr->rx_ring_struct; 4289 rmem = &ring->ring_mem; 4290 rmem->nr_pages = bp->rx_nr_pages; 4291 rmem->page_size = HW_RXBD_RING_SIZE; 4292 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4293 rmem->dma_arr = rxr->rx_desc_mapping; 4294 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4295 rmem->vmem = (void **)&rxr->rx_buf_ring; 4296 4297 ring = &rxr->rx_agg_ring_struct; 4298 rmem = &ring->ring_mem; 4299 rmem->nr_pages = bp->rx_agg_nr_pages; 4300 rmem->page_size = HW_RXBD_RING_SIZE; 4301 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4302 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4303 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4304 rmem->vmem = (void **)&rxr->rx_agg_ring; 4305 4306 skip_rx: 4307 bnxt_for_each_napi_tx(j, bnapi, txr) { 4308 ring = &txr->tx_ring_struct; 4309 rmem = &ring->ring_mem; 4310 rmem->nr_pages = bp->tx_nr_pages; 4311 rmem->page_size = HW_TXBD_RING_SIZE; 4312 rmem->pg_arr = (void **)txr->tx_desc_ring; 4313 rmem->dma_arr = txr->tx_desc_mapping; 4314 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4315 rmem->vmem = (void **)&txr->tx_buf_ring; 4316 } 4317 } 4318 } 4319 4320 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4321 { 4322 int i; 4323 u32 prod; 4324 struct rx_bd **rx_buf_ring; 4325 4326 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4327 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4328 int j; 4329 struct rx_bd *rxbd; 4330 4331 rxbd = rx_buf_ring[i]; 4332 if (!rxbd) 4333 continue; 4334 4335 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4336 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4337 rxbd->rx_bd_opaque = prod; 4338 } 4339 } 4340 } 4341 4342 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4343 struct bnxt_rx_ring_info *rxr, 4344 int ring_nr) 4345 { 4346 u32 prod; 4347 int i; 4348 4349 prod = rxr->rx_prod; 4350 for (i = 0; i < bp->rx_ring_size; i++) { 4351 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4352 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4353 ring_nr, i, bp->rx_ring_size); 4354 break; 4355 } 4356 prod = NEXT_RX(prod); 4357 } 4358 rxr->rx_prod = prod; 4359 } 4360 4361 static void bnxt_alloc_one_rx_ring_netmem(struct bnxt *bp, 4362 struct bnxt_rx_ring_info *rxr, 4363 int ring_nr) 4364 { 4365 u32 prod; 4366 int i; 4367 4368 prod = rxr->rx_agg_prod; 4369 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4370 if (bnxt_alloc_rx_netmem(bp, rxr, prod, GFP_KERNEL)) { 4371 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4372 ring_nr, i, bp->rx_ring_size); 4373 break; 4374 } 4375 prod = NEXT_RX_AGG(prod); 4376 } 4377 rxr->rx_agg_prod = prod; 4378 } 4379 4380 static int bnxt_alloc_one_tpa_info_data(struct bnxt *bp, 4381 struct bnxt_rx_ring_info *rxr) 4382 { 4383 dma_addr_t mapping; 4384 u8 *data; 4385 int i; 4386 4387 for (i = 0; i < bp->max_tpa; i++) { 4388 data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, 4389 GFP_KERNEL); 4390 if (!data) 4391 return -ENOMEM; 4392 4393 rxr->rx_tpa[i].data = data; 4394 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4395 rxr->rx_tpa[i].mapping = mapping; 4396 } 4397 4398 return 0; 4399 } 4400 4401 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4402 { 4403 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4404 int rc; 4405 4406 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4407 4408 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4409 return 0; 4410 4411 bnxt_alloc_one_rx_ring_netmem(bp, rxr, ring_nr); 4412 4413 if (rxr->rx_tpa) { 4414 rc = bnxt_alloc_one_tpa_info_data(bp, rxr); 4415 if (rc) 4416 return rc; 4417 } 4418 return 0; 4419 } 4420 4421 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4422 struct bnxt_rx_ring_info *rxr) 4423 { 4424 struct bnxt_ring_struct *ring; 4425 u32 type; 4426 4427 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4428 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4429 4430 if (NET_IP_ALIGN == 2) 4431 type |= RX_BD_FLAGS_SOP; 4432 4433 ring = &rxr->rx_ring_struct; 4434 bnxt_init_rxbd_pages(ring, type); 4435 ring->fw_ring_id = INVALID_HW_RING_ID; 4436 } 4437 4438 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4439 struct bnxt_rx_ring_info *rxr) 4440 { 4441 struct bnxt_ring_struct *ring; 4442 u32 type; 4443 4444 ring = &rxr->rx_agg_ring_struct; 4445 ring->fw_ring_id = INVALID_HW_RING_ID; 4446 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4447 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4448 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4449 4450 bnxt_init_rxbd_pages(ring, type); 4451 } 4452 } 4453 4454 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4455 { 4456 struct bnxt_rx_ring_info *rxr; 4457 4458 rxr = &bp->rx_ring[ring_nr]; 4459 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4460 4461 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4462 &rxr->bnapi->napi); 4463 4464 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4465 bpf_prog_add(bp->xdp_prog, 1); 4466 rxr->xdp_prog = bp->xdp_prog; 4467 } 4468 4469 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4470 4471 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4472 } 4473 4474 static void bnxt_init_cp_rings(struct bnxt *bp) 4475 { 4476 int i, j; 4477 4478 for (i = 0; i < bp->cp_nr_rings; i++) { 4479 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4480 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4481 4482 ring->fw_ring_id = INVALID_HW_RING_ID; 4483 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4484 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4485 if (!cpr->cp_ring_arr) 4486 continue; 4487 for (j = 0; j < cpr->cp_ring_count; j++) { 4488 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4489 4490 ring = &cpr2->cp_ring_struct; 4491 ring->fw_ring_id = INVALID_HW_RING_ID; 4492 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4493 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4494 } 4495 } 4496 } 4497 4498 static int bnxt_init_rx_rings(struct bnxt *bp) 4499 { 4500 int i, rc = 0; 4501 4502 if (BNXT_RX_PAGE_MODE(bp)) { 4503 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4504 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4505 } else { 4506 bp->rx_offset = BNXT_RX_OFFSET; 4507 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4508 } 4509 4510 for (i = 0; i < bp->rx_nr_rings; i++) { 4511 rc = bnxt_init_one_rx_ring(bp, i); 4512 if (rc) 4513 break; 4514 } 4515 4516 return rc; 4517 } 4518 4519 static int bnxt_init_tx_rings(struct bnxt *bp) 4520 { 4521 u16 i; 4522 4523 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4524 BNXT_MIN_TX_DESC_CNT); 4525 4526 for (i = 0; i < bp->tx_nr_rings; i++) { 4527 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4528 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4529 4530 ring->fw_ring_id = INVALID_HW_RING_ID; 4531 4532 if (i >= bp->tx_nr_rings_xdp) 4533 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4534 NETDEV_QUEUE_TYPE_TX, 4535 &txr->bnapi->napi); 4536 } 4537 4538 return 0; 4539 } 4540 4541 static void bnxt_free_ring_grps(struct bnxt *bp) 4542 { 4543 kfree(bp->grp_info); 4544 bp->grp_info = NULL; 4545 } 4546 4547 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4548 { 4549 int i; 4550 4551 if (irq_re_init) { 4552 bp->grp_info = kcalloc(bp->cp_nr_rings, 4553 sizeof(struct bnxt_ring_grp_info), 4554 GFP_KERNEL); 4555 if (!bp->grp_info) 4556 return -ENOMEM; 4557 } 4558 for (i = 0; i < bp->cp_nr_rings; i++) { 4559 if (irq_re_init) 4560 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4561 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4562 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4563 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4564 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4565 } 4566 return 0; 4567 } 4568 4569 static void bnxt_free_vnics(struct bnxt *bp) 4570 { 4571 kfree(bp->vnic_info); 4572 bp->vnic_info = NULL; 4573 bp->nr_vnics = 0; 4574 } 4575 4576 static int bnxt_alloc_vnics(struct bnxt *bp) 4577 { 4578 int num_vnics = 1; 4579 4580 #ifdef CONFIG_RFS_ACCEL 4581 if (bp->flags & BNXT_FLAG_RFS) { 4582 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4583 num_vnics++; 4584 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4585 num_vnics += bp->rx_nr_rings; 4586 } 4587 #endif 4588 4589 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4590 num_vnics++; 4591 4592 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4593 GFP_KERNEL); 4594 if (!bp->vnic_info) 4595 return -ENOMEM; 4596 4597 bp->nr_vnics = num_vnics; 4598 return 0; 4599 } 4600 4601 static void bnxt_init_vnics(struct bnxt *bp) 4602 { 4603 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4604 int i; 4605 4606 for (i = 0; i < bp->nr_vnics; i++) { 4607 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4608 int j; 4609 4610 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4611 vnic->vnic_id = i; 4612 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4613 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4614 4615 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4616 4617 if (bp->vnic_info[i].rss_hash_key) { 4618 if (i == BNXT_VNIC_DEFAULT) { 4619 u8 *key = (void *)vnic->rss_hash_key; 4620 int k; 4621 4622 if (!bp->rss_hash_key_valid && 4623 !bp->rss_hash_key_updated) { 4624 get_random_bytes(bp->rss_hash_key, 4625 HW_HASH_KEY_SIZE); 4626 bp->rss_hash_key_updated = true; 4627 } 4628 4629 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4630 HW_HASH_KEY_SIZE); 4631 4632 if (!bp->rss_hash_key_updated) 4633 continue; 4634 4635 bp->rss_hash_key_updated = false; 4636 bp->rss_hash_key_valid = true; 4637 4638 bp->toeplitz_prefix = 0; 4639 for (k = 0; k < 8; k++) { 4640 bp->toeplitz_prefix <<= 8; 4641 bp->toeplitz_prefix |= key[k]; 4642 } 4643 } else { 4644 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4645 HW_HASH_KEY_SIZE); 4646 } 4647 } 4648 } 4649 } 4650 4651 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4652 { 4653 int pages; 4654 4655 pages = ring_size / desc_per_pg; 4656 4657 if (!pages) 4658 return 1; 4659 4660 pages++; 4661 4662 while (pages & (pages - 1)) 4663 pages++; 4664 4665 return pages; 4666 } 4667 4668 void bnxt_set_tpa_flags(struct bnxt *bp) 4669 { 4670 bp->flags &= ~BNXT_FLAG_TPA; 4671 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4672 return; 4673 if (bp->dev->features & NETIF_F_LRO) 4674 bp->flags |= BNXT_FLAG_LRO; 4675 else if (bp->dev->features & NETIF_F_GRO_HW) 4676 bp->flags |= BNXT_FLAG_GRO; 4677 } 4678 4679 static void bnxt_init_ring_params(struct bnxt *bp) 4680 { 4681 unsigned int rx_size; 4682 4683 bp->rx_copybreak = BNXT_DEFAULT_RX_COPYBREAK; 4684 /* Try to fit 4 chunks into a 4k page */ 4685 rx_size = SZ_1K - 4686 NET_SKB_PAD - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4687 bp->dev->cfg->hds_thresh = max(BNXT_DEFAULT_RX_COPYBREAK, rx_size); 4688 } 4689 4690 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4691 * be set on entry. 4692 */ 4693 void bnxt_set_ring_params(struct bnxt *bp) 4694 { 4695 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4696 u32 agg_factor = 0, agg_ring_size = 0; 4697 4698 /* 8 for CRC and VLAN */ 4699 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4700 4701 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4702 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4703 4704 ring_size = bp->rx_ring_size; 4705 bp->rx_agg_ring_size = 0; 4706 bp->rx_agg_nr_pages = 0; 4707 4708 if (bp->flags & BNXT_FLAG_TPA || bp->flags & BNXT_FLAG_HDS) 4709 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4710 4711 bp->flags &= ~BNXT_FLAG_JUMBO; 4712 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4713 u32 jumbo_factor; 4714 4715 bp->flags |= BNXT_FLAG_JUMBO; 4716 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4717 if (jumbo_factor > agg_factor) 4718 agg_factor = jumbo_factor; 4719 } 4720 if (agg_factor) { 4721 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4722 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4723 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4724 bp->rx_ring_size, ring_size); 4725 bp->rx_ring_size = ring_size; 4726 } 4727 agg_ring_size = ring_size * agg_factor; 4728 4729 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4730 RX_DESC_CNT); 4731 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4732 u32 tmp = agg_ring_size; 4733 4734 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4735 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4736 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4737 tmp, agg_ring_size); 4738 } 4739 bp->rx_agg_ring_size = agg_ring_size; 4740 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4741 4742 if (BNXT_RX_PAGE_MODE(bp)) { 4743 rx_space = PAGE_SIZE; 4744 rx_size = PAGE_SIZE - 4745 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4746 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4747 } else { 4748 rx_size = max3(BNXT_DEFAULT_RX_COPYBREAK, 4749 bp->rx_copybreak, 4750 bp->dev->cfg_pending->hds_thresh); 4751 rx_size = SKB_DATA_ALIGN(rx_size + NET_IP_ALIGN); 4752 rx_space = rx_size + NET_SKB_PAD + 4753 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4754 } 4755 } 4756 4757 bp->rx_buf_use_size = rx_size; 4758 bp->rx_buf_size = rx_space; 4759 4760 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4761 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4762 4763 ring_size = bp->tx_ring_size; 4764 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4765 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4766 4767 max_rx_cmpl = bp->rx_ring_size; 4768 /* MAX TPA needs to be added because TPA_START completions are 4769 * immediately recycled, so the TPA completions are not bound by 4770 * the RX ring size. 4771 */ 4772 if (bp->flags & BNXT_FLAG_TPA) 4773 max_rx_cmpl += bp->max_tpa; 4774 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4775 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4776 bp->cp_ring_size = ring_size; 4777 4778 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4779 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4780 bp->cp_nr_pages = MAX_CP_PAGES; 4781 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4782 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4783 ring_size, bp->cp_ring_size); 4784 } 4785 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4786 bp->cp_ring_mask = bp->cp_bit - 1; 4787 } 4788 4789 /* Changing allocation mode of RX rings. 4790 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4791 */ 4792 static void __bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4793 { 4794 struct net_device *dev = bp->dev; 4795 4796 if (page_mode) { 4797 bp->flags &= ~(BNXT_FLAG_AGG_RINGS | BNXT_FLAG_NO_AGG_RINGS); 4798 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4799 4800 if (bp->xdp_prog->aux->xdp_has_frags) 4801 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4802 else 4803 dev->max_mtu = 4804 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4805 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4806 bp->flags |= BNXT_FLAG_JUMBO; 4807 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4808 } else { 4809 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4810 bp->rx_skb_func = bnxt_rx_page_skb; 4811 } 4812 bp->rx_dir = DMA_BIDIRECTIONAL; 4813 } else { 4814 dev->max_mtu = bp->max_mtu; 4815 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4816 bp->rx_dir = DMA_FROM_DEVICE; 4817 bp->rx_skb_func = bnxt_rx_skb; 4818 } 4819 } 4820 4821 void bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4822 { 4823 __bnxt_set_rx_skb_mode(bp, page_mode); 4824 4825 if (!page_mode) { 4826 int rx, tx; 4827 4828 bnxt_get_max_rings(bp, &rx, &tx, true); 4829 if (rx > 1) { 4830 bp->flags &= ~BNXT_FLAG_NO_AGG_RINGS; 4831 bp->dev->hw_features |= NETIF_F_LRO; 4832 } 4833 } 4834 4835 /* Update LRO and GRO_HW availability */ 4836 netdev_update_features(bp->dev); 4837 } 4838 4839 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4840 { 4841 int i; 4842 struct bnxt_vnic_info *vnic; 4843 struct pci_dev *pdev = bp->pdev; 4844 4845 if (!bp->vnic_info) 4846 return; 4847 4848 for (i = 0; i < bp->nr_vnics; i++) { 4849 vnic = &bp->vnic_info[i]; 4850 4851 kfree(vnic->fw_grp_ids); 4852 vnic->fw_grp_ids = NULL; 4853 4854 kfree(vnic->uc_list); 4855 vnic->uc_list = NULL; 4856 4857 if (vnic->mc_list) { 4858 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4859 vnic->mc_list, vnic->mc_list_mapping); 4860 vnic->mc_list = NULL; 4861 } 4862 4863 if (vnic->rss_table) { 4864 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4865 vnic->rss_table, 4866 vnic->rss_table_dma_addr); 4867 vnic->rss_table = NULL; 4868 } 4869 4870 vnic->rss_hash_key = NULL; 4871 vnic->flags = 0; 4872 } 4873 } 4874 4875 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4876 { 4877 int i, rc = 0, size; 4878 struct bnxt_vnic_info *vnic; 4879 struct pci_dev *pdev = bp->pdev; 4880 int max_rings; 4881 4882 for (i = 0; i < bp->nr_vnics; i++) { 4883 vnic = &bp->vnic_info[i]; 4884 4885 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4886 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4887 4888 if (mem_size > 0) { 4889 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4890 if (!vnic->uc_list) { 4891 rc = -ENOMEM; 4892 goto out; 4893 } 4894 } 4895 } 4896 4897 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4898 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4899 vnic->mc_list = 4900 dma_alloc_coherent(&pdev->dev, 4901 vnic->mc_list_size, 4902 &vnic->mc_list_mapping, 4903 GFP_KERNEL); 4904 if (!vnic->mc_list) { 4905 rc = -ENOMEM; 4906 goto out; 4907 } 4908 } 4909 4910 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4911 goto vnic_skip_grps; 4912 4913 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4914 max_rings = bp->rx_nr_rings; 4915 else 4916 max_rings = 1; 4917 4918 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4919 if (!vnic->fw_grp_ids) { 4920 rc = -ENOMEM; 4921 goto out; 4922 } 4923 vnic_skip_grps: 4924 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4925 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4926 continue; 4927 4928 /* Allocate rss table and hash key */ 4929 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4930 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4931 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4932 4933 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4934 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4935 vnic->rss_table_size, 4936 &vnic->rss_table_dma_addr, 4937 GFP_KERNEL); 4938 if (!vnic->rss_table) { 4939 rc = -ENOMEM; 4940 goto out; 4941 } 4942 4943 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4944 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4945 } 4946 return 0; 4947 4948 out: 4949 return rc; 4950 } 4951 4952 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4953 { 4954 struct bnxt_hwrm_wait_token *token; 4955 4956 dma_pool_destroy(bp->hwrm_dma_pool); 4957 bp->hwrm_dma_pool = NULL; 4958 4959 rcu_read_lock(); 4960 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4961 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4962 rcu_read_unlock(); 4963 } 4964 4965 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4966 { 4967 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4968 BNXT_HWRM_DMA_SIZE, 4969 BNXT_HWRM_DMA_ALIGN, 0); 4970 if (!bp->hwrm_dma_pool) 4971 return -ENOMEM; 4972 4973 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4974 4975 return 0; 4976 } 4977 4978 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4979 { 4980 kfree(stats->hw_masks); 4981 stats->hw_masks = NULL; 4982 kfree(stats->sw_stats); 4983 stats->sw_stats = NULL; 4984 if (stats->hw_stats) { 4985 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4986 stats->hw_stats_map); 4987 stats->hw_stats = NULL; 4988 } 4989 } 4990 4991 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4992 bool alloc_masks) 4993 { 4994 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4995 &stats->hw_stats_map, GFP_KERNEL); 4996 if (!stats->hw_stats) 4997 return -ENOMEM; 4998 4999 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 5000 if (!stats->sw_stats) 5001 goto stats_mem_err; 5002 5003 if (alloc_masks) { 5004 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 5005 if (!stats->hw_masks) 5006 goto stats_mem_err; 5007 } 5008 return 0; 5009 5010 stats_mem_err: 5011 bnxt_free_stats_mem(bp, stats); 5012 return -ENOMEM; 5013 } 5014 5015 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 5016 { 5017 int i; 5018 5019 for (i = 0; i < count; i++) 5020 mask_arr[i] = mask; 5021 } 5022 5023 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 5024 { 5025 int i; 5026 5027 for (i = 0; i < count; i++) 5028 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 5029 } 5030 5031 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 5032 struct bnxt_stats_mem *stats) 5033 { 5034 struct hwrm_func_qstats_ext_output *resp; 5035 struct hwrm_func_qstats_ext_input *req; 5036 __le64 *hw_masks; 5037 int rc; 5038 5039 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 5040 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5041 return -EOPNOTSUPP; 5042 5043 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 5044 if (rc) 5045 return rc; 5046 5047 req->fid = cpu_to_le16(0xffff); 5048 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5049 5050 resp = hwrm_req_hold(bp, req); 5051 rc = hwrm_req_send(bp, req); 5052 if (!rc) { 5053 hw_masks = &resp->rx_ucast_pkts; 5054 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 5055 } 5056 hwrm_req_drop(bp, req); 5057 return rc; 5058 } 5059 5060 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 5061 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 5062 5063 static void bnxt_init_stats(struct bnxt *bp) 5064 { 5065 struct bnxt_napi *bnapi = bp->bnapi[0]; 5066 struct bnxt_cp_ring_info *cpr; 5067 struct bnxt_stats_mem *stats; 5068 __le64 *rx_stats, *tx_stats; 5069 int rc, rx_count, tx_count; 5070 u64 *rx_masks, *tx_masks; 5071 u64 mask; 5072 u8 flags; 5073 5074 cpr = &bnapi->cp_ring; 5075 stats = &cpr->stats; 5076 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 5077 if (rc) { 5078 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5079 mask = (1ULL << 48) - 1; 5080 else 5081 mask = -1ULL; 5082 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 5083 } 5084 if (bp->flags & BNXT_FLAG_PORT_STATS) { 5085 stats = &bp->port_stats; 5086 rx_stats = stats->hw_stats; 5087 rx_masks = stats->hw_masks; 5088 rx_count = sizeof(struct rx_port_stats) / 8; 5089 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5090 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 5091 tx_count = sizeof(struct tx_port_stats) / 8; 5092 5093 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 5094 rc = bnxt_hwrm_port_qstats(bp, flags); 5095 if (rc) { 5096 mask = (1ULL << 40) - 1; 5097 5098 bnxt_fill_masks(rx_masks, mask, rx_count); 5099 bnxt_fill_masks(tx_masks, mask, tx_count); 5100 } else { 5101 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5102 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 5103 bnxt_hwrm_port_qstats(bp, 0); 5104 } 5105 } 5106 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 5107 stats = &bp->rx_port_stats_ext; 5108 rx_stats = stats->hw_stats; 5109 rx_masks = stats->hw_masks; 5110 rx_count = sizeof(struct rx_port_stats_ext) / 8; 5111 stats = &bp->tx_port_stats_ext; 5112 tx_stats = stats->hw_stats; 5113 tx_masks = stats->hw_masks; 5114 tx_count = sizeof(struct tx_port_stats_ext) / 8; 5115 5116 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 5117 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 5118 if (rc) { 5119 mask = (1ULL << 40) - 1; 5120 5121 bnxt_fill_masks(rx_masks, mask, rx_count); 5122 if (tx_stats) 5123 bnxt_fill_masks(tx_masks, mask, tx_count); 5124 } else { 5125 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 5126 if (tx_stats) 5127 bnxt_copy_hw_masks(tx_masks, tx_stats, 5128 tx_count); 5129 bnxt_hwrm_port_qstats_ext(bp, 0); 5130 } 5131 } 5132 } 5133 5134 static void bnxt_free_port_stats(struct bnxt *bp) 5135 { 5136 bp->flags &= ~BNXT_FLAG_PORT_STATS; 5137 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 5138 5139 bnxt_free_stats_mem(bp, &bp->port_stats); 5140 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 5141 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 5142 } 5143 5144 static void bnxt_free_ring_stats(struct bnxt *bp) 5145 { 5146 int i; 5147 5148 if (!bp->bnapi) 5149 return; 5150 5151 for (i = 0; i < bp->cp_nr_rings; i++) { 5152 struct bnxt_napi *bnapi = bp->bnapi[i]; 5153 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5154 5155 bnxt_free_stats_mem(bp, &cpr->stats); 5156 5157 kfree(cpr->sw_stats); 5158 cpr->sw_stats = NULL; 5159 } 5160 } 5161 5162 static int bnxt_alloc_stats(struct bnxt *bp) 5163 { 5164 u32 size, i; 5165 int rc; 5166 5167 size = bp->hw_ring_stats_size; 5168 5169 for (i = 0; i < bp->cp_nr_rings; i++) { 5170 struct bnxt_napi *bnapi = bp->bnapi[i]; 5171 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5172 5173 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 5174 if (!cpr->sw_stats) 5175 return -ENOMEM; 5176 5177 cpr->stats.len = size; 5178 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 5179 if (rc) 5180 return rc; 5181 5182 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 5183 } 5184 5185 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 5186 return 0; 5187 5188 if (bp->port_stats.hw_stats) 5189 goto alloc_ext_stats; 5190 5191 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 5192 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 5193 if (rc) 5194 return rc; 5195 5196 bp->flags |= BNXT_FLAG_PORT_STATS; 5197 5198 alloc_ext_stats: 5199 /* Display extended statistics only if FW supports it */ 5200 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 5201 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 5202 return 0; 5203 5204 if (bp->rx_port_stats_ext.hw_stats) 5205 goto alloc_tx_ext_stats; 5206 5207 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 5208 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 5209 /* Extended stats are optional */ 5210 if (rc) 5211 return 0; 5212 5213 alloc_tx_ext_stats: 5214 if (bp->tx_port_stats_ext.hw_stats) 5215 return 0; 5216 5217 if (bp->hwrm_spec_code >= 0x10902 || 5218 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 5219 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 5220 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 5221 /* Extended stats are optional */ 5222 if (rc) 5223 return 0; 5224 } 5225 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5226 return 0; 5227 } 5228 5229 static void bnxt_clear_ring_indices(struct bnxt *bp) 5230 { 5231 int i, j; 5232 5233 if (!bp->bnapi) 5234 return; 5235 5236 for (i = 0; i < bp->cp_nr_rings; i++) { 5237 struct bnxt_napi *bnapi = bp->bnapi[i]; 5238 struct bnxt_cp_ring_info *cpr; 5239 struct bnxt_rx_ring_info *rxr; 5240 struct bnxt_tx_ring_info *txr; 5241 5242 if (!bnapi) 5243 continue; 5244 5245 cpr = &bnapi->cp_ring; 5246 cpr->cp_raw_cons = 0; 5247 5248 bnxt_for_each_napi_tx(j, bnapi, txr) { 5249 txr->tx_prod = 0; 5250 txr->tx_cons = 0; 5251 txr->tx_hw_cons = 0; 5252 } 5253 5254 rxr = bnapi->rx_ring; 5255 if (rxr) { 5256 rxr->rx_prod = 0; 5257 rxr->rx_agg_prod = 0; 5258 rxr->rx_sw_agg_prod = 0; 5259 rxr->rx_next_cons = 0; 5260 } 5261 bnapi->events = 0; 5262 } 5263 } 5264 5265 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5266 { 5267 u8 type = fltr->type, flags = fltr->flags; 5268 5269 INIT_LIST_HEAD(&fltr->list); 5270 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5271 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5272 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5273 } 5274 5275 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5276 { 5277 if (!list_empty(&fltr->list)) 5278 list_del_init(&fltr->list); 5279 } 5280 5281 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5282 { 5283 struct bnxt_filter_base *usr_fltr, *tmp; 5284 5285 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5286 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5287 continue; 5288 bnxt_del_one_usr_fltr(bp, usr_fltr); 5289 } 5290 } 5291 5292 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5293 { 5294 hlist_del(&fltr->hash); 5295 bnxt_del_one_usr_fltr(bp, fltr); 5296 if (fltr->flags) { 5297 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5298 bp->ntp_fltr_count--; 5299 } 5300 kfree(fltr); 5301 } 5302 5303 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5304 { 5305 int i; 5306 5307 netdev_assert_locked(bp->dev); 5308 5309 /* Under netdev instance lock and all our NAPIs have been disabled. 5310 * It's safe to delete the hash table. 5311 */ 5312 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5313 struct hlist_head *head; 5314 struct hlist_node *tmp; 5315 struct bnxt_ntuple_filter *fltr; 5316 5317 head = &bp->ntp_fltr_hash_tbl[i]; 5318 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5319 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5320 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5321 !list_empty(&fltr->base.list))) 5322 continue; 5323 bnxt_del_fltr(bp, &fltr->base); 5324 } 5325 } 5326 if (!all) 5327 return; 5328 5329 bitmap_free(bp->ntp_fltr_bmap); 5330 bp->ntp_fltr_bmap = NULL; 5331 bp->ntp_fltr_count = 0; 5332 } 5333 5334 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5335 { 5336 int i, rc = 0; 5337 5338 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5339 return 0; 5340 5341 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5342 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5343 5344 bp->ntp_fltr_count = 0; 5345 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5346 5347 if (!bp->ntp_fltr_bmap) 5348 rc = -ENOMEM; 5349 5350 return rc; 5351 } 5352 5353 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5354 { 5355 int i; 5356 5357 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5358 struct hlist_head *head; 5359 struct hlist_node *tmp; 5360 struct bnxt_l2_filter *fltr; 5361 5362 head = &bp->l2_fltr_hash_tbl[i]; 5363 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5364 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5365 !list_empty(&fltr->base.list))) 5366 continue; 5367 bnxt_del_fltr(bp, &fltr->base); 5368 } 5369 } 5370 } 5371 5372 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5373 { 5374 int i; 5375 5376 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5377 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5378 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5379 } 5380 5381 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5382 { 5383 bnxt_free_vnic_attributes(bp); 5384 bnxt_free_tx_rings(bp); 5385 bnxt_free_rx_rings(bp); 5386 bnxt_free_cp_rings(bp); 5387 bnxt_free_all_cp_arrays(bp); 5388 bnxt_free_ntp_fltrs(bp, false); 5389 bnxt_free_l2_filters(bp, false); 5390 if (irq_re_init) { 5391 bnxt_free_ring_stats(bp); 5392 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5393 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5394 bnxt_free_port_stats(bp); 5395 bnxt_free_ring_grps(bp); 5396 bnxt_free_vnics(bp); 5397 kfree(bp->tx_ring_map); 5398 bp->tx_ring_map = NULL; 5399 kfree(bp->tx_ring); 5400 bp->tx_ring = NULL; 5401 kfree(bp->rx_ring); 5402 bp->rx_ring = NULL; 5403 kfree(bp->bnapi); 5404 bp->bnapi = NULL; 5405 } else { 5406 bnxt_clear_ring_indices(bp); 5407 } 5408 } 5409 5410 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5411 { 5412 int i, j, rc, size, arr_size; 5413 void *bnapi; 5414 5415 if (irq_re_init) { 5416 /* Allocate bnapi mem pointer array and mem block for 5417 * all queues 5418 */ 5419 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5420 bp->cp_nr_rings); 5421 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5422 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5423 if (!bnapi) 5424 return -ENOMEM; 5425 5426 bp->bnapi = bnapi; 5427 bnapi += arr_size; 5428 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5429 bp->bnapi[i] = bnapi; 5430 bp->bnapi[i]->index = i; 5431 bp->bnapi[i]->bp = bp; 5432 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5433 struct bnxt_cp_ring_info *cpr = 5434 &bp->bnapi[i]->cp_ring; 5435 5436 cpr->cp_ring_struct.ring_mem.flags = 5437 BNXT_RMEM_RING_PTE_FLAG; 5438 } 5439 } 5440 5441 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5442 sizeof(struct bnxt_rx_ring_info), 5443 GFP_KERNEL); 5444 if (!bp->rx_ring) 5445 return -ENOMEM; 5446 5447 for (i = 0; i < bp->rx_nr_rings; i++) { 5448 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5449 5450 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5451 rxr->rx_ring_struct.ring_mem.flags = 5452 BNXT_RMEM_RING_PTE_FLAG; 5453 rxr->rx_agg_ring_struct.ring_mem.flags = 5454 BNXT_RMEM_RING_PTE_FLAG; 5455 } else { 5456 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5457 } 5458 rxr->bnapi = bp->bnapi[i]; 5459 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5460 } 5461 5462 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5463 sizeof(struct bnxt_tx_ring_info), 5464 GFP_KERNEL); 5465 if (!bp->tx_ring) 5466 return -ENOMEM; 5467 5468 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5469 GFP_KERNEL); 5470 5471 if (!bp->tx_ring_map) 5472 return -ENOMEM; 5473 5474 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5475 j = 0; 5476 else 5477 j = bp->rx_nr_rings; 5478 5479 for (i = 0; i < bp->tx_nr_rings; i++) { 5480 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5481 struct bnxt_napi *bnapi2; 5482 5483 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5484 txr->tx_ring_struct.ring_mem.flags = 5485 BNXT_RMEM_RING_PTE_FLAG; 5486 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5487 if (i >= bp->tx_nr_rings_xdp) { 5488 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5489 5490 bnapi2 = bp->bnapi[k]; 5491 txr->txq_index = i - bp->tx_nr_rings_xdp; 5492 txr->tx_napi_idx = 5493 BNXT_RING_TO_TC(bp, txr->txq_index); 5494 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5495 bnapi2->tx_int = bnxt_tx_int; 5496 } else { 5497 bnapi2 = bp->bnapi[j]; 5498 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5499 bnapi2->tx_ring[0] = txr; 5500 bnapi2->tx_int = bnxt_tx_int_xdp; 5501 j++; 5502 } 5503 txr->bnapi = bnapi2; 5504 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5505 txr->tx_cpr = &bnapi2->cp_ring; 5506 } 5507 5508 rc = bnxt_alloc_stats(bp); 5509 if (rc) 5510 goto alloc_mem_err; 5511 bnxt_init_stats(bp); 5512 5513 rc = bnxt_alloc_ntp_fltrs(bp); 5514 if (rc) 5515 goto alloc_mem_err; 5516 5517 rc = bnxt_alloc_vnics(bp); 5518 if (rc) 5519 goto alloc_mem_err; 5520 } 5521 5522 rc = bnxt_alloc_all_cp_arrays(bp); 5523 if (rc) 5524 goto alloc_mem_err; 5525 5526 bnxt_init_ring_struct(bp); 5527 5528 rc = bnxt_alloc_rx_rings(bp); 5529 if (rc) 5530 goto alloc_mem_err; 5531 5532 rc = bnxt_alloc_tx_rings(bp); 5533 if (rc) 5534 goto alloc_mem_err; 5535 5536 rc = bnxt_alloc_cp_rings(bp); 5537 if (rc) 5538 goto alloc_mem_err; 5539 5540 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5541 BNXT_VNIC_MCAST_FLAG | 5542 BNXT_VNIC_UCAST_FLAG; 5543 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5544 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5545 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5546 5547 rc = bnxt_alloc_vnic_attributes(bp); 5548 if (rc) 5549 goto alloc_mem_err; 5550 return 0; 5551 5552 alloc_mem_err: 5553 bnxt_free_mem(bp, true); 5554 return rc; 5555 } 5556 5557 static void bnxt_disable_int(struct bnxt *bp) 5558 { 5559 int i; 5560 5561 if (!bp->bnapi) 5562 return; 5563 5564 for (i = 0; i < bp->cp_nr_rings; i++) { 5565 struct bnxt_napi *bnapi = bp->bnapi[i]; 5566 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5567 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5568 5569 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5570 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5571 } 5572 } 5573 5574 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5575 { 5576 struct bnxt_napi *bnapi = bp->bnapi[n]; 5577 struct bnxt_cp_ring_info *cpr; 5578 5579 cpr = &bnapi->cp_ring; 5580 return cpr->cp_ring_struct.map_idx; 5581 } 5582 5583 static void bnxt_disable_int_sync(struct bnxt *bp) 5584 { 5585 int i; 5586 5587 if (!bp->irq_tbl) 5588 return; 5589 5590 atomic_inc(&bp->intr_sem); 5591 5592 bnxt_disable_int(bp); 5593 for (i = 0; i < bp->cp_nr_rings; i++) { 5594 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5595 5596 synchronize_irq(bp->irq_tbl[map_idx].vector); 5597 } 5598 } 5599 5600 static void bnxt_enable_int(struct bnxt *bp) 5601 { 5602 int i; 5603 5604 atomic_set(&bp->intr_sem, 0); 5605 for (i = 0; i < bp->cp_nr_rings; i++) { 5606 struct bnxt_napi *bnapi = bp->bnapi[i]; 5607 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5608 5609 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5610 } 5611 } 5612 5613 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5614 bool async_only) 5615 { 5616 DECLARE_BITMAP(async_events_bmap, 256); 5617 u32 *events = (u32 *)async_events_bmap; 5618 struct hwrm_func_drv_rgtr_output *resp; 5619 struct hwrm_func_drv_rgtr_input *req; 5620 u32 flags; 5621 int rc, i; 5622 5623 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5624 if (rc) 5625 return rc; 5626 5627 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5628 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5629 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5630 5631 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5632 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5633 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5634 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5635 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5636 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5637 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5638 if (bp->fw_cap & BNXT_FW_CAP_NPAR_1_2) 5639 flags |= FUNC_DRV_RGTR_REQ_FLAGS_NPAR_1_2_SUPPORT; 5640 req->flags = cpu_to_le32(flags); 5641 req->ver_maj_8b = DRV_VER_MAJ; 5642 req->ver_min_8b = DRV_VER_MIN; 5643 req->ver_upd_8b = DRV_VER_UPD; 5644 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5645 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5646 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5647 5648 if (BNXT_PF(bp)) { 5649 u32 data[8]; 5650 int i; 5651 5652 memset(data, 0, sizeof(data)); 5653 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5654 u16 cmd = bnxt_vf_req_snif[i]; 5655 unsigned int bit, idx; 5656 5657 idx = cmd / 32; 5658 bit = cmd % 32; 5659 data[idx] |= 1 << bit; 5660 } 5661 5662 for (i = 0; i < 8; i++) 5663 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5664 5665 req->enables |= 5666 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5667 } 5668 5669 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5670 req->flags |= cpu_to_le32( 5671 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5672 5673 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5674 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5675 u16 event_id = bnxt_async_events_arr[i]; 5676 5677 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5678 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5679 continue; 5680 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5681 !bp->ptp_cfg) 5682 continue; 5683 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5684 } 5685 if (bmap && bmap_size) { 5686 for (i = 0; i < bmap_size; i++) { 5687 if (test_bit(i, bmap)) 5688 __set_bit(i, async_events_bmap); 5689 } 5690 } 5691 for (i = 0; i < 8; i++) 5692 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5693 5694 if (async_only) 5695 req->enables = 5696 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5697 5698 resp = hwrm_req_hold(bp, req); 5699 rc = hwrm_req_send(bp, req); 5700 if (!rc) { 5701 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5702 if (resp->flags & 5703 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5704 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5705 } 5706 hwrm_req_drop(bp, req); 5707 return rc; 5708 } 5709 5710 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5711 { 5712 struct hwrm_func_drv_unrgtr_input *req; 5713 int rc; 5714 5715 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5716 return 0; 5717 5718 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5719 if (rc) 5720 return rc; 5721 return hwrm_req_send(bp, req); 5722 } 5723 5724 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5725 5726 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5727 { 5728 struct hwrm_tunnel_dst_port_free_input *req; 5729 int rc; 5730 5731 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5732 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5733 return 0; 5734 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5735 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5736 return 0; 5737 5738 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5739 if (rc) 5740 return rc; 5741 5742 req->tunnel_type = tunnel_type; 5743 5744 switch (tunnel_type) { 5745 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5746 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5747 bp->vxlan_port = 0; 5748 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5749 break; 5750 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5751 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5752 bp->nge_port = 0; 5753 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5754 break; 5755 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5756 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5757 bp->vxlan_gpe_port = 0; 5758 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5759 break; 5760 default: 5761 break; 5762 } 5763 5764 rc = hwrm_req_send(bp, req); 5765 if (rc) 5766 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5767 rc); 5768 if (bp->flags & BNXT_FLAG_TPA) 5769 bnxt_set_tpa(bp, true); 5770 return rc; 5771 } 5772 5773 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5774 u8 tunnel_type) 5775 { 5776 struct hwrm_tunnel_dst_port_alloc_output *resp; 5777 struct hwrm_tunnel_dst_port_alloc_input *req; 5778 int rc; 5779 5780 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5781 if (rc) 5782 return rc; 5783 5784 req->tunnel_type = tunnel_type; 5785 req->tunnel_dst_port_val = port; 5786 5787 resp = hwrm_req_hold(bp, req); 5788 rc = hwrm_req_send(bp, req); 5789 if (rc) { 5790 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5791 rc); 5792 goto err_out; 5793 } 5794 5795 switch (tunnel_type) { 5796 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5797 bp->vxlan_port = port; 5798 bp->vxlan_fw_dst_port_id = 5799 le16_to_cpu(resp->tunnel_dst_port_id); 5800 break; 5801 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5802 bp->nge_port = port; 5803 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5804 break; 5805 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5806 bp->vxlan_gpe_port = port; 5807 bp->vxlan_gpe_fw_dst_port_id = 5808 le16_to_cpu(resp->tunnel_dst_port_id); 5809 break; 5810 default: 5811 break; 5812 } 5813 if (bp->flags & BNXT_FLAG_TPA) 5814 bnxt_set_tpa(bp, true); 5815 5816 err_out: 5817 hwrm_req_drop(bp, req); 5818 return rc; 5819 } 5820 5821 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5822 { 5823 struct hwrm_cfa_l2_set_rx_mask_input *req; 5824 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5825 int rc; 5826 5827 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5828 if (rc) 5829 return rc; 5830 5831 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5832 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5833 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5834 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5835 } 5836 req->mask = cpu_to_le32(vnic->rx_mask); 5837 return hwrm_req_send_silent(bp, req); 5838 } 5839 5840 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5841 { 5842 if (!atomic_dec_and_test(&fltr->refcnt)) 5843 return; 5844 spin_lock_bh(&bp->ntp_fltr_lock); 5845 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5846 spin_unlock_bh(&bp->ntp_fltr_lock); 5847 return; 5848 } 5849 hlist_del_rcu(&fltr->base.hash); 5850 bnxt_del_one_usr_fltr(bp, &fltr->base); 5851 if (fltr->base.flags) { 5852 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5853 bp->ntp_fltr_count--; 5854 } 5855 spin_unlock_bh(&bp->ntp_fltr_lock); 5856 kfree_rcu(fltr, base.rcu); 5857 } 5858 5859 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5860 struct bnxt_l2_key *key, 5861 u32 idx) 5862 { 5863 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5864 struct bnxt_l2_filter *fltr; 5865 5866 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5867 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5868 5869 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5870 l2_key->vlan == key->vlan) 5871 return fltr; 5872 } 5873 return NULL; 5874 } 5875 5876 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5877 struct bnxt_l2_key *key, 5878 u32 idx) 5879 { 5880 struct bnxt_l2_filter *fltr = NULL; 5881 5882 rcu_read_lock(); 5883 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5884 if (fltr) 5885 atomic_inc(&fltr->refcnt); 5886 rcu_read_unlock(); 5887 return fltr; 5888 } 5889 5890 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5891 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5892 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5893 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5894 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5895 5896 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5897 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5898 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5899 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5900 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5901 5902 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5903 { 5904 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5905 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5906 return sizeof(fkeys->addrs.v4addrs) + 5907 sizeof(fkeys->ports); 5908 5909 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5910 return sizeof(fkeys->addrs.v4addrs); 5911 } 5912 5913 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5914 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5915 return sizeof(fkeys->addrs.v6addrs) + 5916 sizeof(fkeys->ports); 5917 5918 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5919 return sizeof(fkeys->addrs.v6addrs); 5920 } 5921 5922 return 0; 5923 } 5924 5925 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5926 const unsigned char *key) 5927 { 5928 u64 prefix = bp->toeplitz_prefix, hash = 0; 5929 struct bnxt_ipv4_tuple tuple4; 5930 struct bnxt_ipv6_tuple tuple6; 5931 int i, j, len = 0; 5932 u8 *four_tuple; 5933 5934 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5935 if (!len) 5936 return 0; 5937 5938 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5939 tuple4.v4addrs = fkeys->addrs.v4addrs; 5940 tuple4.ports = fkeys->ports; 5941 four_tuple = (unsigned char *)&tuple4; 5942 } else { 5943 tuple6.v6addrs = fkeys->addrs.v6addrs; 5944 tuple6.ports = fkeys->ports; 5945 four_tuple = (unsigned char *)&tuple6; 5946 } 5947 5948 for (i = 0, j = 8; i < len; i++, j++) { 5949 u8 byte = four_tuple[i]; 5950 int bit; 5951 5952 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5953 if (byte & 0x80) 5954 hash ^= prefix; 5955 } 5956 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5957 } 5958 5959 /* The valid part of the hash is in the upper 32 bits. */ 5960 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5961 } 5962 5963 #ifdef CONFIG_RFS_ACCEL 5964 static struct bnxt_l2_filter * 5965 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5966 { 5967 struct bnxt_l2_filter *fltr; 5968 u32 idx; 5969 5970 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5971 BNXT_L2_FLTR_HASH_MASK; 5972 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5973 return fltr; 5974 } 5975 #endif 5976 5977 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5978 struct bnxt_l2_key *key, u32 idx) 5979 { 5980 struct hlist_head *head; 5981 5982 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5983 fltr->l2_key.vlan = key->vlan; 5984 fltr->base.type = BNXT_FLTR_TYPE_L2; 5985 if (fltr->base.flags) { 5986 int bit_id; 5987 5988 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5989 bp->max_fltr, 0); 5990 if (bit_id < 0) 5991 return -ENOMEM; 5992 fltr->base.sw_id = (u16)bit_id; 5993 bp->ntp_fltr_count++; 5994 } 5995 head = &bp->l2_fltr_hash_tbl[idx]; 5996 hlist_add_head_rcu(&fltr->base.hash, head); 5997 bnxt_insert_usr_fltr(bp, &fltr->base); 5998 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5999 atomic_set(&fltr->refcnt, 1); 6000 return 0; 6001 } 6002 6003 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 6004 struct bnxt_l2_key *key, 6005 gfp_t gfp) 6006 { 6007 struct bnxt_l2_filter *fltr; 6008 u32 idx; 6009 int rc; 6010 6011 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6012 BNXT_L2_FLTR_HASH_MASK; 6013 fltr = bnxt_lookup_l2_filter(bp, key, idx); 6014 if (fltr) 6015 return fltr; 6016 6017 fltr = kzalloc(sizeof(*fltr), gfp); 6018 if (!fltr) 6019 return ERR_PTR(-ENOMEM); 6020 spin_lock_bh(&bp->ntp_fltr_lock); 6021 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6022 spin_unlock_bh(&bp->ntp_fltr_lock); 6023 if (rc) { 6024 bnxt_del_l2_filter(bp, fltr); 6025 fltr = ERR_PTR(rc); 6026 } 6027 return fltr; 6028 } 6029 6030 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 6031 struct bnxt_l2_key *key, 6032 u16 flags) 6033 { 6034 struct bnxt_l2_filter *fltr; 6035 u32 idx; 6036 int rc; 6037 6038 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 6039 BNXT_L2_FLTR_HASH_MASK; 6040 spin_lock_bh(&bp->ntp_fltr_lock); 6041 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 6042 if (fltr) { 6043 fltr = ERR_PTR(-EEXIST); 6044 goto l2_filter_exit; 6045 } 6046 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 6047 if (!fltr) { 6048 fltr = ERR_PTR(-ENOMEM); 6049 goto l2_filter_exit; 6050 } 6051 fltr->base.flags = flags; 6052 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 6053 if (rc) { 6054 spin_unlock_bh(&bp->ntp_fltr_lock); 6055 bnxt_del_l2_filter(bp, fltr); 6056 return ERR_PTR(rc); 6057 } 6058 6059 l2_filter_exit: 6060 spin_unlock_bh(&bp->ntp_fltr_lock); 6061 return fltr; 6062 } 6063 6064 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 6065 { 6066 #ifdef CONFIG_BNXT_SRIOV 6067 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 6068 6069 return vf->fw_fid; 6070 #else 6071 return INVALID_HW_RING_ID; 6072 #endif 6073 } 6074 6075 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6076 { 6077 struct hwrm_cfa_l2_filter_free_input *req; 6078 u16 target_id = 0xffff; 6079 int rc; 6080 6081 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6082 struct bnxt_pf_info *pf = &bp->pf; 6083 6084 if (fltr->base.vf_idx >= pf->active_vfs) 6085 return -EINVAL; 6086 6087 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6088 if (target_id == INVALID_HW_RING_ID) 6089 return -EINVAL; 6090 } 6091 6092 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 6093 if (rc) 6094 return rc; 6095 6096 req->target_id = cpu_to_le16(target_id); 6097 req->l2_filter_id = fltr->base.filter_id; 6098 return hwrm_req_send(bp, req); 6099 } 6100 6101 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 6102 { 6103 struct hwrm_cfa_l2_filter_alloc_output *resp; 6104 struct hwrm_cfa_l2_filter_alloc_input *req; 6105 u16 target_id = 0xffff; 6106 int rc; 6107 6108 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 6109 struct bnxt_pf_info *pf = &bp->pf; 6110 6111 if (fltr->base.vf_idx >= pf->active_vfs) 6112 return -EINVAL; 6113 6114 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 6115 } 6116 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 6117 if (rc) 6118 return rc; 6119 6120 req->target_id = cpu_to_le16(target_id); 6121 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 6122 6123 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 6124 req->flags |= 6125 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 6126 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 6127 req->enables = 6128 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 6129 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 6130 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 6131 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 6132 eth_broadcast_addr(req->l2_addr_mask); 6133 6134 if (fltr->l2_key.vlan) { 6135 req->enables |= 6136 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 6137 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 6138 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 6139 req->num_vlans = 1; 6140 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 6141 req->l2_ivlan_mask = cpu_to_le16(0xfff); 6142 } 6143 6144 resp = hwrm_req_hold(bp, req); 6145 rc = hwrm_req_send(bp, req); 6146 if (!rc) { 6147 fltr->base.filter_id = resp->l2_filter_id; 6148 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 6149 } 6150 hwrm_req_drop(bp, req); 6151 return rc; 6152 } 6153 6154 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 6155 struct bnxt_ntuple_filter *fltr) 6156 { 6157 struct hwrm_cfa_ntuple_filter_free_input *req; 6158 int rc; 6159 6160 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 6161 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 6162 if (rc) 6163 return rc; 6164 6165 req->ntuple_filter_id = fltr->base.filter_id; 6166 return hwrm_req_send(bp, req); 6167 } 6168 6169 #define BNXT_NTP_FLTR_FLAGS \ 6170 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 6171 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 6172 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 6173 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 6174 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 6175 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 6176 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 6177 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 6178 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 6179 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 6180 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 6181 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 6182 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 6183 6184 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 6185 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 6186 6187 void bnxt_fill_ipv6_mask(__be32 mask[4]) 6188 { 6189 int i; 6190 6191 for (i = 0; i < 4; i++) 6192 mask[i] = cpu_to_be32(~0); 6193 } 6194 6195 static void 6196 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 6197 struct hwrm_cfa_ntuple_filter_alloc_input *req, 6198 struct bnxt_ntuple_filter *fltr) 6199 { 6200 u16 rxq = fltr->base.rxq; 6201 6202 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 6203 struct ethtool_rxfh_context *ctx; 6204 struct bnxt_rss_ctx *rss_ctx; 6205 struct bnxt_vnic_info *vnic; 6206 6207 ctx = xa_load(&bp->dev->ethtool->rss_ctx, 6208 fltr->base.fw_vnic_id); 6209 if (ctx) { 6210 rss_ctx = ethtool_rxfh_context_priv(ctx); 6211 vnic = &rss_ctx->vnic; 6212 6213 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6214 } 6215 return; 6216 } 6217 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 6218 struct bnxt_vnic_info *vnic; 6219 u32 enables; 6220 6221 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 6222 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6223 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 6224 req->enables |= cpu_to_le32(enables); 6225 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 6226 } else { 6227 u32 flags; 6228 6229 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6230 req->flags |= cpu_to_le32(flags); 6231 req->dst_id = cpu_to_le16(rxq); 6232 } 6233 } 6234 6235 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6236 struct bnxt_ntuple_filter *fltr) 6237 { 6238 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6239 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6240 struct bnxt_flow_masks *masks = &fltr->fmasks; 6241 struct flow_keys *keys = &fltr->fkeys; 6242 struct bnxt_l2_filter *l2_fltr; 6243 struct bnxt_vnic_info *vnic; 6244 int rc; 6245 6246 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6247 if (rc) 6248 return rc; 6249 6250 l2_fltr = fltr->l2_fltr; 6251 req->l2_filter_id = l2_fltr->base.filter_id; 6252 6253 if (fltr->base.flags & BNXT_ACT_DROP) { 6254 req->flags = 6255 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6256 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6257 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6258 } else { 6259 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6260 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6261 } 6262 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6263 6264 req->ethertype = htons(ETH_P_IP); 6265 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6266 req->ip_protocol = keys->basic.ip_proto; 6267 6268 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6269 req->ethertype = htons(ETH_P_IPV6); 6270 req->ip_addr_type = 6271 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6272 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6273 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6274 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6275 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6276 } else { 6277 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6278 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6279 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6280 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6281 } 6282 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6283 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6284 req->tunnel_type = 6285 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6286 } 6287 6288 req->src_port = keys->ports.src; 6289 req->src_port_mask = masks->ports.src; 6290 req->dst_port = keys->ports.dst; 6291 req->dst_port_mask = masks->ports.dst; 6292 6293 resp = hwrm_req_hold(bp, req); 6294 rc = hwrm_req_send(bp, req); 6295 if (!rc) 6296 fltr->base.filter_id = resp->ntuple_filter_id; 6297 hwrm_req_drop(bp, req); 6298 return rc; 6299 } 6300 6301 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6302 const u8 *mac_addr) 6303 { 6304 struct bnxt_l2_filter *fltr; 6305 struct bnxt_l2_key key; 6306 int rc; 6307 6308 ether_addr_copy(key.dst_mac_addr, mac_addr); 6309 key.vlan = 0; 6310 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6311 if (IS_ERR(fltr)) 6312 return PTR_ERR(fltr); 6313 6314 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6315 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6316 if (rc) 6317 bnxt_del_l2_filter(bp, fltr); 6318 else 6319 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6320 return rc; 6321 } 6322 6323 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6324 { 6325 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6326 6327 /* Any associated ntuple filters will also be cleared by firmware. */ 6328 for (i = 0; i < num_of_vnics; i++) { 6329 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6330 6331 for (j = 0; j < vnic->uc_filter_count; j++) { 6332 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6333 6334 bnxt_hwrm_l2_filter_free(bp, fltr); 6335 bnxt_del_l2_filter(bp, fltr); 6336 } 6337 vnic->uc_filter_count = 0; 6338 } 6339 } 6340 6341 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6342 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6343 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6344 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6345 6346 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6347 struct hwrm_vnic_tpa_cfg_input *req) 6348 { 6349 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6350 6351 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6352 return; 6353 6354 if (bp->vxlan_port) 6355 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6356 if (bp->vxlan_gpe_port) 6357 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6358 if (bp->nge_port) 6359 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6360 6361 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6362 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6363 } 6364 6365 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6366 u32 tpa_flags) 6367 { 6368 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6369 struct hwrm_vnic_tpa_cfg_input *req; 6370 int rc; 6371 6372 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6373 return 0; 6374 6375 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6376 if (rc) 6377 return rc; 6378 6379 if (tpa_flags) { 6380 u16 mss = bp->dev->mtu - 40; 6381 u32 nsegs, n, segs = 0, flags; 6382 6383 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6384 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6385 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6386 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6387 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6388 if (tpa_flags & BNXT_FLAG_GRO) 6389 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6390 6391 req->flags = cpu_to_le32(flags); 6392 6393 req->enables = 6394 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6395 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6396 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6397 6398 /* Number of segs are log2 units, and first packet is not 6399 * included as part of this units. 6400 */ 6401 if (mss <= BNXT_RX_PAGE_SIZE) { 6402 n = BNXT_RX_PAGE_SIZE / mss; 6403 nsegs = (MAX_SKB_FRAGS - 1) * n; 6404 } else { 6405 n = mss / BNXT_RX_PAGE_SIZE; 6406 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6407 n++; 6408 nsegs = (MAX_SKB_FRAGS - n) / n; 6409 } 6410 6411 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6412 segs = MAX_TPA_SEGS_P5; 6413 max_aggs = bp->max_tpa; 6414 } else { 6415 segs = ilog2(nsegs); 6416 } 6417 req->max_agg_segs = cpu_to_le16(segs); 6418 req->max_aggs = cpu_to_le16(max_aggs); 6419 6420 req->min_agg_len = cpu_to_le32(512); 6421 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6422 } 6423 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6424 6425 return hwrm_req_send(bp, req); 6426 } 6427 6428 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6429 { 6430 struct bnxt_ring_grp_info *grp_info; 6431 6432 grp_info = &bp->grp_info[ring->grp_idx]; 6433 return grp_info->cp_fw_ring_id; 6434 } 6435 6436 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6437 { 6438 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6439 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6440 else 6441 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6442 } 6443 6444 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6445 { 6446 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6447 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6448 else 6449 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6450 } 6451 6452 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6453 { 6454 int entries; 6455 6456 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6457 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6458 else 6459 entries = HW_HASH_INDEX_SIZE; 6460 6461 bp->rss_indir_tbl_entries = entries; 6462 bp->rss_indir_tbl = 6463 kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6464 if (!bp->rss_indir_tbl) 6465 return -ENOMEM; 6466 6467 return 0; 6468 } 6469 6470 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, 6471 struct ethtool_rxfh_context *rss_ctx) 6472 { 6473 u16 max_rings, max_entries, pad, i; 6474 u32 *rss_indir_tbl; 6475 6476 if (!bp->rx_nr_rings) 6477 return; 6478 6479 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6480 max_rings = bp->rx_nr_rings - 1; 6481 else 6482 max_rings = bp->rx_nr_rings; 6483 6484 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6485 if (rss_ctx) 6486 rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx); 6487 else 6488 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6489 6490 for (i = 0; i < max_entries; i++) 6491 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6492 6493 pad = bp->rss_indir_tbl_entries - max_entries; 6494 if (pad) 6495 memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl)); 6496 } 6497 6498 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6499 { 6500 u32 i, tbl_size, max_ring = 0; 6501 6502 if (!bp->rss_indir_tbl) 6503 return 0; 6504 6505 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6506 for (i = 0; i < tbl_size; i++) 6507 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6508 return max_ring; 6509 } 6510 6511 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6512 { 6513 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6514 if (!rx_rings) 6515 return 0; 6516 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6517 BNXT_RSS_TABLE_ENTRIES_P5); 6518 } 6519 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6520 return 2; 6521 return 1; 6522 } 6523 6524 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6525 { 6526 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6527 u16 i, j; 6528 6529 /* Fill the RSS indirection table with ring group ids */ 6530 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6531 if (!no_rss) 6532 j = bp->rss_indir_tbl[i]; 6533 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6534 } 6535 } 6536 6537 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6538 struct bnxt_vnic_info *vnic) 6539 { 6540 __le16 *ring_tbl = vnic->rss_table; 6541 struct bnxt_rx_ring_info *rxr; 6542 u16 tbl_size, i; 6543 6544 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6545 6546 for (i = 0; i < tbl_size; i++) { 6547 u16 ring_id, j; 6548 6549 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6550 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6551 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6552 j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 6553 else 6554 j = bp->rss_indir_tbl[i]; 6555 rxr = &bp->rx_ring[j]; 6556 6557 ring_id = rxr->rx_ring_struct.fw_ring_id; 6558 *ring_tbl++ = cpu_to_le16(ring_id); 6559 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6560 *ring_tbl++ = cpu_to_le16(ring_id); 6561 } 6562 } 6563 6564 static void 6565 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6566 struct bnxt_vnic_info *vnic) 6567 { 6568 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6569 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6570 if (bp->flags & BNXT_FLAG_CHIP_P7) 6571 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6572 } else { 6573 bnxt_fill_hw_rss_tbl(bp, vnic); 6574 } 6575 6576 if (bp->rss_hash_delta) { 6577 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6578 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6579 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6580 else 6581 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6582 } else { 6583 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6584 } 6585 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6586 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6587 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6588 } 6589 6590 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6591 bool set_rss) 6592 { 6593 struct hwrm_vnic_rss_cfg_input *req; 6594 int rc; 6595 6596 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6597 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6598 return 0; 6599 6600 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6601 if (rc) 6602 return rc; 6603 6604 if (set_rss) 6605 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6606 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6607 return hwrm_req_send(bp, req); 6608 } 6609 6610 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6611 struct bnxt_vnic_info *vnic, bool set_rss) 6612 { 6613 struct hwrm_vnic_rss_cfg_input *req; 6614 dma_addr_t ring_tbl_map; 6615 u32 i, nr_ctxs; 6616 int rc; 6617 6618 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6619 if (rc) 6620 return rc; 6621 6622 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6623 if (!set_rss) 6624 return hwrm_req_send(bp, req); 6625 6626 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6627 ring_tbl_map = vnic->rss_table_dma_addr; 6628 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6629 6630 hwrm_req_hold(bp, req); 6631 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6632 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6633 req->ring_table_pair_index = i; 6634 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6635 rc = hwrm_req_send(bp, req); 6636 if (rc) 6637 goto exit; 6638 } 6639 6640 exit: 6641 hwrm_req_drop(bp, req); 6642 return rc; 6643 } 6644 6645 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6646 { 6647 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6648 struct hwrm_vnic_rss_qcfg_output *resp; 6649 struct hwrm_vnic_rss_qcfg_input *req; 6650 6651 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6652 return; 6653 6654 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6655 /* all contexts configured to same hash_type, zero always exists */ 6656 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6657 resp = hwrm_req_hold(bp, req); 6658 if (!hwrm_req_send(bp, req)) { 6659 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6660 bp->rss_hash_delta = 0; 6661 } 6662 hwrm_req_drop(bp, req); 6663 } 6664 6665 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6666 { 6667 u16 hds_thresh = (u16)bp->dev->cfg_pending->hds_thresh; 6668 struct hwrm_vnic_plcmodes_cfg_input *req; 6669 int rc; 6670 6671 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6672 if (rc) 6673 return rc; 6674 6675 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6676 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6677 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6678 6679 if (!BNXT_RX_PAGE_MODE(bp) && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 6680 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6681 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6682 req->enables |= 6683 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6684 req->hds_threshold = cpu_to_le16(hds_thresh); 6685 } 6686 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6687 return hwrm_req_send(bp, req); 6688 } 6689 6690 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6691 struct bnxt_vnic_info *vnic, 6692 u16 ctx_idx) 6693 { 6694 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6695 6696 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6697 return; 6698 6699 req->rss_cos_lb_ctx_id = 6700 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6701 6702 hwrm_req_send(bp, req); 6703 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6704 } 6705 6706 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6707 { 6708 int i, j; 6709 6710 for (i = 0; i < bp->nr_vnics; i++) { 6711 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6712 6713 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6714 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6715 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6716 } 6717 } 6718 bp->rsscos_nr_ctxs = 0; 6719 } 6720 6721 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6722 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6723 { 6724 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6725 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6726 int rc; 6727 6728 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6729 if (rc) 6730 return rc; 6731 6732 resp = hwrm_req_hold(bp, req); 6733 rc = hwrm_req_send(bp, req); 6734 if (!rc) 6735 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6736 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6737 hwrm_req_drop(bp, req); 6738 6739 return rc; 6740 } 6741 6742 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6743 { 6744 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6745 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6746 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6747 } 6748 6749 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6750 { 6751 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6752 struct hwrm_vnic_cfg_input *req; 6753 unsigned int ring = 0, grp_idx; 6754 u16 def_vlan = 0; 6755 int rc; 6756 6757 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6758 if (rc) 6759 return rc; 6760 6761 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6762 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6763 6764 req->default_rx_ring_id = 6765 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6766 req->default_cmpl_ring_id = 6767 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6768 req->enables = 6769 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6770 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6771 goto vnic_mru; 6772 } 6773 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6774 /* Only RSS support for now TBD: COS & LB */ 6775 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6776 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6777 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6778 VNIC_CFG_REQ_ENABLES_MRU); 6779 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6780 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6781 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6782 VNIC_CFG_REQ_ENABLES_MRU); 6783 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6784 } else { 6785 req->rss_rule = cpu_to_le16(0xffff); 6786 } 6787 6788 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6789 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6790 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6791 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6792 } else { 6793 req->cos_rule = cpu_to_le16(0xffff); 6794 } 6795 6796 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6797 ring = 0; 6798 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6799 ring = vnic->vnic_id - 1; 6800 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6801 ring = bp->rx_nr_rings - 1; 6802 6803 grp_idx = bp->rx_ring[ring].bnapi->index; 6804 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6805 req->lb_rule = cpu_to_le16(0xffff); 6806 vnic_mru: 6807 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 6808 req->mru = cpu_to_le16(vnic->mru); 6809 6810 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6811 #ifdef CONFIG_BNXT_SRIOV 6812 if (BNXT_VF(bp)) 6813 def_vlan = bp->vf.vlan; 6814 #endif 6815 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6816 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6817 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6818 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6819 6820 return hwrm_req_send(bp, req); 6821 } 6822 6823 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6824 struct bnxt_vnic_info *vnic) 6825 { 6826 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6827 struct hwrm_vnic_free_input *req; 6828 6829 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6830 return; 6831 6832 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6833 6834 hwrm_req_send(bp, req); 6835 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6836 } 6837 } 6838 6839 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6840 { 6841 u16 i; 6842 6843 for (i = 0; i < bp->nr_vnics; i++) 6844 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6845 } 6846 6847 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6848 unsigned int start_rx_ring_idx, 6849 unsigned int nr_rings) 6850 { 6851 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6852 struct hwrm_vnic_alloc_output *resp; 6853 struct hwrm_vnic_alloc_input *req; 6854 int rc; 6855 6856 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6857 if (rc) 6858 return rc; 6859 6860 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6861 goto vnic_no_ring_grps; 6862 6863 /* map ring groups to this vnic */ 6864 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6865 grp_idx = bp->rx_ring[i].bnapi->index; 6866 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6867 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6868 j, nr_rings); 6869 break; 6870 } 6871 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6872 } 6873 6874 vnic_no_ring_grps: 6875 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6876 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6877 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6878 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6879 6880 resp = hwrm_req_hold(bp, req); 6881 rc = hwrm_req_send(bp, req); 6882 if (!rc) 6883 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6884 hwrm_req_drop(bp, req); 6885 return rc; 6886 } 6887 6888 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6889 { 6890 struct hwrm_vnic_qcaps_output *resp; 6891 struct hwrm_vnic_qcaps_input *req; 6892 int rc; 6893 6894 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6895 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6896 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6897 if (bp->hwrm_spec_code < 0x10600) 6898 return 0; 6899 6900 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6901 if (rc) 6902 return rc; 6903 6904 resp = hwrm_req_hold(bp, req); 6905 rc = hwrm_req_send(bp, req); 6906 if (!rc) { 6907 u32 flags = le32_to_cpu(resp->flags); 6908 6909 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6910 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6911 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6912 if (flags & 6913 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6914 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6915 6916 /* Older P5 fw before EXT_HW_STATS support did not set 6917 * VLAN_STRIP_CAP properly. 6918 */ 6919 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6920 (BNXT_CHIP_P5(bp) && 6921 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6922 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6923 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6924 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6925 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6926 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6927 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6928 if (bp->max_tpa_v2) { 6929 if (BNXT_CHIP_P5(bp)) 6930 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6931 else 6932 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6933 } 6934 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6935 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6936 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6937 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6938 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6939 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6940 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6941 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6942 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6943 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6944 if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP) 6945 bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH; 6946 } 6947 hwrm_req_drop(bp, req); 6948 return rc; 6949 } 6950 6951 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6952 { 6953 struct hwrm_ring_grp_alloc_output *resp; 6954 struct hwrm_ring_grp_alloc_input *req; 6955 int rc; 6956 u16 i; 6957 6958 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6959 return 0; 6960 6961 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6962 if (rc) 6963 return rc; 6964 6965 resp = hwrm_req_hold(bp, req); 6966 for (i = 0; i < bp->rx_nr_rings; i++) { 6967 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6968 6969 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6970 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6971 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6972 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6973 6974 rc = hwrm_req_send(bp, req); 6975 6976 if (rc) 6977 break; 6978 6979 bp->grp_info[grp_idx].fw_grp_id = 6980 le32_to_cpu(resp->ring_group_id); 6981 } 6982 hwrm_req_drop(bp, req); 6983 return rc; 6984 } 6985 6986 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6987 { 6988 struct hwrm_ring_grp_free_input *req; 6989 u16 i; 6990 6991 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6992 return; 6993 6994 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6995 return; 6996 6997 hwrm_req_hold(bp, req); 6998 for (i = 0; i < bp->cp_nr_rings; i++) { 6999 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 7000 continue; 7001 req->ring_group_id = 7002 cpu_to_le32(bp->grp_info[i].fw_grp_id); 7003 7004 hwrm_req_send(bp, req); 7005 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 7006 } 7007 hwrm_req_drop(bp, req); 7008 } 7009 7010 static void bnxt_set_rx_ring_params_p5(struct bnxt *bp, u32 ring_type, 7011 struct hwrm_ring_alloc_input *req, 7012 struct bnxt_ring_struct *ring) 7013 { 7014 struct bnxt_ring_grp_info *grp_info = &bp->grp_info[ring->grp_idx]; 7015 u32 enables = RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID | 7016 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID; 7017 7018 if (ring_type == HWRM_RING_ALLOC_AGG) { 7019 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 7020 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 7021 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 7022 enables |= RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID; 7023 } else { 7024 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 7025 if (NET_IP_ALIGN == 2) 7026 req->flags = 7027 cpu_to_le16(RING_ALLOC_REQ_FLAGS_RX_SOP_PAD); 7028 } 7029 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7030 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7031 req->enables |= cpu_to_le32(enables); 7032 } 7033 7034 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 7035 struct bnxt_ring_struct *ring, 7036 u32 ring_type, u32 map_index) 7037 { 7038 struct hwrm_ring_alloc_output *resp; 7039 struct hwrm_ring_alloc_input *req; 7040 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 7041 struct bnxt_ring_grp_info *grp_info; 7042 int rc, err = 0; 7043 u16 ring_id; 7044 7045 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 7046 if (rc) 7047 goto exit; 7048 7049 req->enables = 0; 7050 if (rmem->nr_pages > 1) { 7051 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 7052 /* Page size is in log2 units */ 7053 req->page_size = BNXT_PAGE_SHIFT; 7054 req->page_tbl_depth = 1; 7055 } else { 7056 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 7057 } 7058 req->fbo = 0; 7059 /* Association of ring index with doorbell index and MSIX number */ 7060 req->logical_id = cpu_to_le16(map_index); 7061 7062 switch (ring_type) { 7063 case HWRM_RING_ALLOC_TX: { 7064 struct bnxt_tx_ring_info *txr; 7065 u16 flags = 0; 7066 7067 txr = container_of(ring, struct bnxt_tx_ring_info, 7068 tx_ring_struct); 7069 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 7070 /* Association of transmit ring with completion ring */ 7071 grp_info = &bp->grp_info[ring->grp_idx]; 7072 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 7073 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 7074 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 7075 req->queue_id = cpu_to_le16(ring->queue_id); 7076 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 7077 req->cmpl_coal_cnt = 7078 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 7079 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 7080 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 7081 req->flags = cpu_to_le16(flags); 7082 break; 7083 } 7084 case HWRM_RING_ALLOC_RX: 7085 case HWRM_RING_ALLOC_AGG: 7086 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 7087 req->length = (ring_type == HWRM_RING_ALLOC_RX) ? 7088 cpu_to_le32(bp->rx_ring_mask + 1) : 7089 cpu_to_le32(bp->rx_agg_ring_mask + 1); 7090 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7091 bnxt_set_rx_ring_params_p5(bp, ring_type, req, ring); 7092 break; 7093 case HWRM_RING_ALLOC_CMPL: 7094 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 7095 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7096 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7097 /* Association of cp ring with nq */ 7098 grp_info = &bp->grp_info[map_index]; 7099 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 7100 req->cq_handle = cpu_to_le64(ring->handle); 7101 req->enables |= cpu_to_le32( 7102 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 7103 } else { 7104 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7105 } 7106 break; 7107 case HWRM_RING_ALLOC_NQ: 7108 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 7109 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 7110 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 7111 break; 7112 default: 7113 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 7114 ring_type); 7115 return -1; 7116 } 7117 7118 resp = hwrm_req_hold(bp, req); 7119 rc = hwrm_req_send(bp, req); 7120 err = le16_to_cpu(resp->error_code); 7121 ring_id = le16_to_cpu(resp->ring_id); 7122 hwrm_req_drop(bp, req); 7123 7124 exit: 7125 if (rc || err) { 7126 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 7127 ring_type, rc, err); 7128 return -EIO; 7129 } 7130 ring->fw_ring_id = ring_id; 7131 return rc; 7132 } 7133 7134 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 7135 { 7136 int rc; 7137 7138 if (BNXT_PF(bp)) { 7139 struct hwrm_func_cfg_input *req; 7140 7141 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 7142 if (rc) 7143 return rc; 7144 7145 req->fid = cpu_to_le16(0xffff); 7146 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7147 req->async_event_cr = cpu_to_le16(idx); 7148 return hwrm_req_send(bp, req); 7149 } else { 7150 struct hwrm_func_vf_cfg_input *req; 7151 7152 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 7153 if (rc) 7154 return rc; 7155 7156 req->enables = 7157 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7158 req->async_event_cr = cpu_to_le16(idx); 7159 return hwrm_req_send(bp, req); 7160 } 7161 } 7162 7163 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 7164 u32 ring_type) 7165 { 7166 switch (ring_type) { 7167 case HWRM_RING_ALLOC_TX: 7168 db->db_ring_mask = bp->tx_ring_mask; 7169 break; 7170 case HWRM_RING_ALLOC_RX: 7171 db->db_ring_mask = bp->rx_ring_mask; 7172 break; 7173 case HWRM_RING_ALLOC_AGG: 7174 db->db_ring_mask = bp->rx_agg_ring_mask; 7175 break; 7176 case HWRM_RING_ALLOC_CMPL: 7177 case HWRM_RING_ALLOC_NQ: 7178 db->db_ring_mask = bp->cp_ring_mask; 7179 break; 7180 } 7181 if (bp->flags & BNXT_FLAG_CHIP_P7) { 7182 db->db_epoch_mask = db->db_ring_mask + 1; 7183 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 7184 } 7185 } 7186 7187 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 7188 u32 map_idx, u32 xid) 7189 { 7190 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7191 switch (ring_type) { 7192 case HWRM_RING_ALLOC_TX: 7193 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 7194 break; 7195 case HWRM_RING_ALLOC_RX: 7196 case HWRM_RING_ALLOC_AGG: 7197 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 7198 break; 7199 case HWRM_RING_ALLOC_CMPL: 7200 db->db_key64 = DBR_PATH_L2; 7201 break; 7202 case HWRM_RING_ALLOC_NQ: 7203 db->db_key64 = DBR_PATH_L2; 7204 break; 7205 } 7206 db->db_key64 |= (u64)xid << DBR_XID_SFT; 7207 7208 if (bp->flags & BNXT_FLAG_CHIP_P7) 7209 db->db_key64 |= DBR_VALID; 7210 7211 db->doorbell = bp->bar1 + bp->db_offset; 7212 } else { 7213 db->doorbell = bp->bar1 + map_idx * 0x80; 7214 switch (ring_type) { 7215 case HWRM_RING_ALLOC_TX: 7216 db->db_key32 = DB_KEY_TX; 7217 break; 7218 case HWRM_RING_ALLOC_RX: 7219 case HWRM_RING_ALLOC_AGG: 7220 db->db_key32 = DB_KEY_RX; 7221 break; 7222 case HWRM_RING_ALLOC_CMPL: 7223 db->db_key32 = DB_KEY_CP; 7224 break; 7225 } 7226 } 7227 bnxt_set_db_mask(bp, db, ring_type); 7228 } 7229 7230 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7231 struct bnxt_rx_ring_info *rxr) 7232 { 7233 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7234 struct bnxt_napi *bnapi = rxr->bnapi; 7235 u32 type = HWRM_RING_ALLOC_RX; 7236 u32 map_idx = bnapi->index; 7237 int rc; 7238 7239 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7240 if (rc) 7241 return rc; 7242 7243 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7244 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7245 7246 return 0; 7247 } 7248 7249 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7250 struct bnxt_rx_ring_info *rxr) 7251 { 7252 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7253 u32 type = HWRM_RING_ALLOC_AGG; 7254 u32 grp_idx = ring->grp_idx; 7255 u32 map_idx; 7256 int rc; 7257 7258 map_idx = grp_idx + bp->rx_nr_rings; 7259 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7260 if (rc) 7261 return rc; 7262 7263 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7264 ring->fw_ring_id); 7265 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7266 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7267 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7268 7269 return 0; 7270 } 7271 7272 static int bnxt_hwrm_cp_ring_alloc_p5(struct bnxt *bp, 7273 struct bnxt_cp_ring_info *cpr) 7274 { 7275 const u32 type = HWRM_RING_ALLOC_CMPL; 7276 struct bnxt_napi *bnapi = cpr->bnapi; 7277 struct bnxt_ring_struct *ring; 7278 u32 map_idx = bnapi->index; 7279 int rc; 7280 7281 ring = &cpr->cp_ring_struct; 7282 ring->handle = BNXT_SET_NQ_HDL(cpr); 7283 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7284 if (rc) 7285 return rc; 7286 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7287 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7288 return 0; 7289 } 7290 7291 static int bnxt_hwrm_tx_ring_alloc(struct bnxt *bp, 7292 struct bnxt_tx_ring_info *txr, u32 tx_idx) 7293 { 7294 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7295 const u32 type = HWRM_RING_ALLOC_TX; 7296 int rc; 7297 7298 rc = hwrm_ring_alloc_send_msg(bp, ring, type, tx_idx); 7299 if (rc) 7300 return rc; 7301 bnxt_set_db(bp, &txr->tx_db, type, tx_idx, ring->fw_ring_id); 7302 return 0; 7303 } 7304 7305 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7306 { 7307 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7308 int i, rc = 0; 7309 u32 type; 7310 7311 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7312 type = HWRM_RING_ALLOC_NQ; 7313 else 7314 type = HWRM_RING_ALLOC_CMPL; 7315 for (i = 0; i < bp->cp_nr_rings; i++) { 7316 struct bnxt_napi *bnapi = bp->bnapi[i]; 7317 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7318 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7319 u32 map_idx = ring->map_idx; 7320 unsigned int vector; 7321 7322 vector = bp->irq_tbl[map_idx].vector; 7323 disable_irq_nosync(vector); 7324 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7325 if (rc) { 7326 enable_irq(vector); 7327 goto err_out; 7328 } 7329 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7330 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7331 enable_irq(vector); 7332 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7333 7334 if (!i) { 7335 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7336 if (rc) 7337 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7338 } 7339 } 7340 7341 for (i = 0; i < bp->tx_nr_rings; i++) { 7342 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7343 7344 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7345 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 7346 if (rc) 7347 goto err_out; 7348 } 7349 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, i); 7350 if (rc) 7351 goto err_out; 7352 } 7353 7354 for (i = 0; i < bp->rx_nr_rings; i++) { 7355 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7356 7357 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7358 if (rc) 7359 goto err_out; 7360 /* If we have agg rings, post agg buffers first. */ 7361 if (!agg_rings) 7362 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7363 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7364 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 7365 if (rc) 7366 goto err_out; 7367 } 7368 } 7369 7370 if (agg_rings) { 7371 for (i = 0; i < bp->rx_nr_rings; i++) { 7372 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7373 if (rc) 7374 goto err_out; 7375 } 7376 } 7377 err_out: 7378 return rc; 7379 } 7380 7381 static void bnxt_cancel_dim(struct bnxt *bp) 7382 { 7383 int i; 7384 7385 /* DIM work is initialized in bnxt_enable_napi(). Proceed only 7386 * if NAPI is enabled. 7387 */ 7388 if (!bp->bnapi || test_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 7389 return; 7390 7391 /* Make sure NAPI sees that the VNIC is disabled */ 7392 synchronize_net(); 7393 for (i = 0; i < bp->rx_nr_rings; i++) { 7394 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7395 struct bnxt_napi *bnapi = rxr->bnapi; 7396 7397 cancel_work_sync(&bnapi->cp_ring.dim.work); 7398 } 7399 } 7400 7401 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7402 struct bnxt_ring_struct *ring, 7403 u32 ring_type, int cmpl_ring_id) 7404 { 7405 struct hwrm_ring_free_output *resp; 7406 struct hwrm_ring_free_input *req; 7407 u16 error_code = 0; 7408 int rc; 7409 7410 if (BNXT_NO_FW_ACCESS(bp)) 7411 return 0; 7412 7413 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7414 if (rc) 7415 goto exit; 7416 7417 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7418 req->ring_type = ring_type; 7419 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7420 7421 resp = hwrm_req_hold(bp, req); 7422 rc = hwrm_req_send(bp, req); 7423 error_code = le16_to_cpu(resp->error_code); 7424 hwrm_req_drop(bp, req); 7425 exit: 7426 if (rc || error_code) { 7427 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7428 ring_type, rc, error_code); 7429 return -EIO; 7430 } 7431 return 0; 7432 } 7433 7434 static void bnxt_hwrm_tx_ring_free(struct bnxt *bp, 7435 struct bnxt_tx_ring_info *txr, 7436 bool close_path) 7437 { 7438 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7439 u32 cmpl_ring_id; 7440 7441 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7442 return; 7443 7444 cmpl_ring_id = close_path ? bnxt_cp_ring_for_tx(bp, txr) : 7445 INVALID_HW_RING_ID; 7446 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_TX, 7447 cmpl_ring_id); 7448 ring->fw_ring_id = INVALID_HW_RING_ID; 7449 } 7450 7451 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7452 struct bnxt_rx_ring_info *rxr, 7453 bool close_path) 7454 { 7455 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7456 u32 grp_idx = rxr->bnapi->index; 7457 u32 cmpl_ring_id; 7458 7459 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7460 return; 7461 7462 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7463 hwrm_ring_free_send_msg(bp, ring, 7464 RING_FREE_REQ_RING_TYPE_RX, 7465 close_path ? cmpl_ring_id : 7466 INVALID_HW_RING_ID); 7467 ring->fw_ring_id = INVALID_HW_RING_ID; 7468 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7469 } 7470 7471 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7472 struct bnxt_rx_ring_info *rxr, 7473 bool close_path) 7474 { 7475 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7476 u32 grp_idx = rxr->bnapi->index; 7477 u32 type, cmpl_ring_id; 7478 7479 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7480 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7481 else 7482 type = RING_FREE_REQ_RING_TYPE_RX; 7483 7484 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7485 return; 7486 7487 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7488 hwrm_ring_free_send_msg(bp, ring, type, 7489 close_path ? cmpl_ring_id : 7490 INVALID_HW_RING_ID); 7491 ring->fw_ring_id = INVALID_HW_RING_ID; 7492 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7493 } 7494 7495 static void bnxt_hwrm_cp_ring_free(struct bnxt *bp, 7496 struct bnxt_cp_ring_info *cpr) 7497 { 7498 struct bnxt_ring_struct *ring; 7499 7500 ring = &cpr->cp_ring_struct; 7501 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7502 return; 7503 7504 hwrm_ring_free_send_msg(bp, ring, RING_FREE_REQ_RING_TYPE_L2_CMPL, 7505 INVALID_HW_RING_ID); 7506 ring->fw_ring_id = INVALID_HW_RING_ID; 7507 } 7508 7509 static void bnxt_clear_one_cp_ring(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 7510 { 7511 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7512 int i, size = ring->ring_mem.page_size; 7513 7514 cpr->cp_raw_cons = 0; 7515 cpr->toggle = 0; 7516 7517 for (i = 0; i < bp->cp_nr_pages; i++) 7518 if (cpr->cp_desc_ring[i]) 7519 memset(cpr->cp_desc_ring[i], 0, size); 7520 } 7521 7522 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7523 { 7524 u32 type; 7525 int i; 7526 7527 if (!bp->bnapi) 7528 return; 7529 7530 for (i = 0; i < bp->tx_nr_rings; i++) 7531 bnxt_hwrm_tx_ring_free(bp, &bp->tx_ring[i], close_path); 7532 7533 bnxt_cancel_dim(bp); 7534 for (i = 0; i < bp->rx_nr_rings; i++) { 7535 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7536 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7537 } 7538 7539 /* The completion rings are about to be freed. After that the 7540 * IRQ doorbell will not work anymore. So we need to disable 7541 * IRQ here. 7542 */ 7543 bnxt_disable_int_sync(bp); 7544 7545 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7546 type = RING_FREE_REQ_RING_TYPE_NQ; 7547 else 7548 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7549 for (i = 0; i < bp->cp_nr_rings; i++) { 7550 struct bnxt_napi *bnapi = bp->bnapi[i]; 7551 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7552 struct bnxt_ring_struct *ring; 7553 int j; 7554 7555 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) 7556 bnxt_hwrm_cp_ring_free(bp, &cpr->cp_ring_arr[j]); 7557 7558 ring = &cpr->cp_ring_struct; 7559 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7560 hwrm_ring_free_send_msg(bp, ring, type, 7561 INVALID_HW_RING_ID); 7562 ring->fw_ring_id = INVALID_HW_RING_ID; 7563 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7564 } 7565 } 7566 } 7567 7568 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7569 bool shared); 7570 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7571 bool shared); 7572 7573 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7574 { 7575 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7576 struct hwrm_func_qcfg_output *resp; 7577 struct hwrm_func_qcfg_input *req; 7578 int rc; 7579 7580 if (bp->hwrm_spec_code < 0x10601) 7581 return 0; 7582 7583 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7584 if (rc) 7585 return rc; 7586 7587 req->fid = cpu_to_le16(0xffff); 7588 resp = hwrm_req_hold(bp, req); 7589 rc = hwrm_req_send(bp, req); 7590 if (rc) { 7591 hwrm_req_drop(bp, req); 7592 return rc; 7593 } 7594 7595 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7596 if (BNXT_NEW_RM(bp)) { 7597 u16 cp, stats; 7598 7599 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7600 hw_resc->resv_hw_ring_grps = 7601 le32_to_cpu(resp->alloc_hw_ring_grps); 7602 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7603 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7604 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7605 stats = le16_to_cpu(resp->alloc_stat_ctx); 7606 hw_resc->resv_irqs = cp; 7607 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7608 int rx = hw_resc->resv_rx_rings; 7609 int tx = hw_resc->resv_tx_rings; 7610 7611 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7612 rx >>= 1; 7613 if (cp < (rx + tx)) { 7614 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7615 if (rc) 7616 goto get_rings_exit; 7617 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7618 rx <<= 1; 7619 hw_resc->resv_rx_rings = rx; 7620 hw_resc->resv_tx_rings = tx; 7621 } 7622 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7623 hw_resc->resv_hw_ring_grps = rx; 7624 } 7625 hw_resc->resv_cp_rings = cp; 7626 hw_resc->resv_stat_ctxs = stats; 7627 } 7628 get_rings_exit: 7629 hwrm_req_drop(bp, req); 7630 return rc; 7631 } 7632 7633 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7634 { 7635 struct hwrm_func_qcfg_output *resp; 7636 struct hwrm_func_qcfg_input *req; 7637 int rc; 7638 7639 if (bp->hwrm_spec_code < 0x10601) 7640 return 0; 7641 7642 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7643 if (rc) 7644 return rc; 7645 7646 req->fid = cpu_to_le16(fid); 7647 resp = hwrm_req_hold(bp, req); 7648 rc = hwrm_req_send(bp, req); 7649 if (!rc) 7650 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7651 7652 hwrm_req_drop(bp, req); 7653 return rc; 7654 } 7655 7656 static bool bnxt_rfs_supported(struct bnxt *bp); 7657 7658 static struct hwrm_func_cfg_input * 7659 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7660 { 7661 struct hwrm_func_cfg_input *req; 7662 u32 enables = 0; 7663 7664 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7665 return NULL; 7666 7667 req->fid = cpu_to_le16(0xffff); 7668 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7669 req->num_tx_rings = cpu_to_le16(hwr->tx); 7670 if (BNXT_NEW_RM(bp)) { 7671 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7672 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7673 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7674 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7675 enables |= hwr->cp_p5 ? 7676 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7677 } else { 7678 enables |= hwr->cp ? 7679 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7680 enables |= hwr->grp ? 7681 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7682 } 7683 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7684 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7685 0; 7686 req->num_rx_rings = cpu_to_le16(hwr->rx); 7687 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7688 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7689 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7690 req->num_msix = cpu_to_le16(hwr->cp); 7691 } else { 7692 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7693 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7694 } 7695 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7696 req->num_vnics = cpu_to_le16(hwr->vnic); 7697 } 7698 req->enables = cpu_to_le32(enables); 7699 return req; 7700 } 7701 7702 static struct hwrm_func_vf_cfg_input * 7703 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7704 { 7705 struct hwrm_func_vf_cfg_input *req; 7706 u32 enables = 0; 7707 7708 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7709 return NULL; 7710 7711 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7712 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7713 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7714 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7715 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7716 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7717 enables |= hwr->cp_p5 ? 7718 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7719 } else { 7720 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7721 enables |= hwr->grp ? 7722 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7723 } 7724 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7725 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7726 7727 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7728 req->num_tx_rings = cpu_to_le16(hwr->tx); 7729 req->num_rx_rings = cpu_to_le16(hwr->rx); 7730 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7731 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7732 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7733 } else { 7734 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7735 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7736 } 7737 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7738 req->num_vnics = cpu_to_le16(hwr->vnic); 7739 7740 req->enables = cpu_to_le32(enables); 7741 return req; 7742 } 7743 7744 static int 7745 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7746 { 7747 struct hwrm_func_cfg_input *req; 7748 int rc; 7749 7750 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7751 if (!req) 7752 return -ENOMEM; 7753 7754 if (!req->enables) { 7755 hwrm_req_drop(bp, req); 7756 return 0; 7757 } 7758 7759 rc = hwrm_req_send(bp, req); 7760 if (rc) 7761 return rc; 7762 7763 if (bp->hwrm_spec_code < 0x10601) 7764 bp->hw_resc.resv_tx_rings = hwr->tx; 7765 7766 return bnxt_hwrm_get_rings(bp); 7767 } 7768 7769 static int 7770 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7771 { 7772 struct hwrm_func_vf_cfg_input *req; 7773 int rc; 7774 7775 if (!BNXT_NEW_RM(bp)) { 7776 bp->hw_resc.resv_tx_rings = hwr->tx; 7777 return 0; 7778 } 7779 7780 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7781 if (!req) 7782 return -ENOMEM; 7783 7784 rc = hwrm_req_send(bp, req); 7785 if (rc) 7786 return rc; 7787 7788 return bnxt_hwrm_get_rings(bp); 7789 } 7790 7791 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7792 { 7793 if (BNXT_PF(bp)) 7794 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7795 else 7796 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7797 } 7798 7799 int bnxt_nq_rings_in_use(struct bnxt *bp) 7800 { 7801 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7802 } 7803 7804 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7805 { 7806 int cp; 7807 7808 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7809 return bnxt_nq_rings_in_use(bp); 7810 7811 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7812 return cp; 7813 } 7814 7815 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7816 { 7817 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7818 } 7819 7820 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7821 { 7822 if (!hwr->grp) 7823 return 0; 7824 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7825 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7826 7827 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7828 rss_ctx *= hwr->vnic; 7829 return rss_ctx; 7830 } 7831 if (BNXT_VF(bp)) 7832 return BNXT_VF_MAX_RSS_CTX; 7833 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7834 return hwr->grp + 1; 7835 return 1; 7836 } 7837 7838 /* Check if a default RSS map needs to be setup. This function is only 7839 * used on older firmware that does not require reserving RX rings. 7840 */ 7841 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7842 { 7843 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7844 7845 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7846 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7847 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7848 if (!netif_is_rxfh_configured(bp->dev)) 7849 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7850 } 7851 } 7852 7853 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7854 { 7855 if (bp->flags & BNXT_FLAG_RFS) { 7856 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7857 return 2 + bp->num_rss_ctx; 7858 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7859 return rx_rings + 1; 7860 } 7861 return 1; 7862 } 7863 7864 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7865 { 7866 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7867 int cp = bnxt_cp_rings_in_use(bp); 7868 int nq = bnxt_nq_rings_in_use(bp); 7869 int rx = bp->rx_nr_rings, stat; 7870 int vnic, grp = rx; 7871 7872 /* Old firmware does not need RX ring reservations but we still 7873 * need to setup a default RSS map when needed. With new firmware 7874 * we go through RX ring reservations first and then set up the 7875 * RSS map for the successfully reserved RX rings when needed. 7876 */ 7877 if (!BNXT_NEW_RM(bp)) 7878 bnxt_check_rss_tbl_no_rmgr(bp); 7879 7880 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7881 bp->hwrm_spec_code >= 0x10601) 7882 return true; 7883 7884 if (!BNXT_NEW_RM(bp)) 7885 return false; 7886 7887 vnic = bnxt_get_total_vnics(bp, rx); 7888 7889 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7890 rx <<= 1; 7891 stat = bnxt_get_func_stat_ctxs(bp); 7892 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7893 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7894 (hw_resc->resv_hw_ring_grps != grp && 7895 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7896 return true; 7897 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7898 hw_resc->resv_irqs != nq) 7899 return true; 7900 return false; 7901 } 7902 7903 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7904 { 7905 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7906 7907 hwr->tx = hw_resc->resv_tx_rings; 7908 if (BNXT_NEW_RM(bp)) { 7909 hwr->rx = hw_resc->resv_rx_rings; 7910 hwr->cp = hw_resc->resv_irqs; 7911 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7912 hwr->cp_p5 = hw_resc->resv_cp_rings; 7913 hwr->grp = hw_resc->resv_hw_ring_grps; 7914 hwr->vnic = hw_resc->resv_vnics; 7915 hwr->stat = hw_resc->resv_stat_ctxs; 7916 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7917 } 7918 } 7919 7920 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7921 { 7922 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7923 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7924 } 7925 7926 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7927 7928 static int __bnxt_reserve_rings(struct bnxt *bp) 7929 { 7930 struct bnxt_hw_rings hwr = {0}; 7931 int rx_rings, old_rx_rings, rc; 7932 int cp = bp->cp_nr_rings; 7933 int ulp_msix = 0; 7934 bool sh = false; 7935 int tx_cp; 7936 7937 if (!bnxt_need_reserve_rings(bp)) 7938 return 0; 7939 7940 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7941 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7942 if (!ulp_msix) 7943 bnxt_set_ulp_stat_ctxs(bp, 0); 7944 7945 if (ulp_msix > bp->ulp_num_msix_want) 7946 ulp_msix = bp->ulp_num_msix_want; 7947 hwr.cp = cp + ulp_msix; 7948 } else { 7949 hwr.cp = bnxt_nq_rings_in_use(bp); 7950 } 7951 7952 hwr.tx = bp->tx_nr_rings; 7953 hwr.rx = bp->rx_nr_rings; 7954 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7955 sh = true; 7956 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7957 hwr.cp_p5 = hwr.rx + hwr.tx; 7958 7959 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7960 7961 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7962 hwr.rx <<= 1; 7963 hwr.grp = bp->rx_nr_rings; 7964 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7965 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7966 old_rx_rings = bp->hw_resc.resv_rx_rings; 7967 7968 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7969 if (rc) 7970 return rc; 7971 7972 bnxt_copy_reserved_rings(bp, &hwr); 7973 7974 rx_rings = hwr.rx; 7975 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7976 if (hwr.rx >= 2) { 7977 rx_rings = hwr.rx >> 1; 7978 } else { 7979 if (netif_running(bp->dev)) 7980 return -ENOMEM; 7981 7982 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7983 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7984 bp->dev->hw_features &= ~NETIF_F_LRO; 7985 bp->dev->features &= ~NETIF_F_LRO; 7986 bnxt_set_ring_params(bp); 7987 } 7988 } 7989 rx_rings = min_t(int, rx_rings, hwr.grp); 7990 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7991 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7992 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7993 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7994 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7995 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7996 hwr.rx = rx_rings << 1; 7997 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7998 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7999 bp->tx_nr_rings = hwr.tx; 8000 8001 /* If we cannot reserve all the RX rings, reset the RSS map only 8002 * if absolutely necessary 8003 */ 8004 if (rx_rings != bp->rx_nr_rings) { 8005 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 8006 rx_rings, bp->rx_nr_rings); 8007 if (netif_is_rxfh_configured(bp->dev) && 8008 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 8009 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 8010 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 8011 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 8012 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 8013 } 8014 } 8015 bp->rx_nr_rings = rx_rings; 8016 bp->cp_nr_rings = hwr.cp; 8017 8018 if (!bnxt_rings_ok(bp, &hwr)) 8019 return -ENOMEM; 8020 8021 if (old_rx_rings != bp->hw_resc.resv_rx_rings && 8022 !netif_is_rxfh_configured(bp->dev)) 8023 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 8024 8025 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 8026 int resv_msix, resv_ctx, ulp_ctxs; 8027 struct bnxt_hw_resc *hw_resc; 8028 8029 hw_resc = &bp->hw_resc; 8030 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 8031 ulp_msix = min_t(int, resv_msix, ulp_msix); 8032 bnxt_set_ulp_msix_num(bp, ulp_msix); 8033 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 8034 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 8035 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 8036 } 8037 8038 return rc; 8039 } 8040 8041 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8042 { 8043 struct hwrm_func_vf_cfg_input *req; 8044 u32 flags; 8045 8046 if (!BNXT_NEW_RM(bp)) 8047 return 0; 8048 8049 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 8050 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 8051 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8052 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8053 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8054 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 8055 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 8056 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8057 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8058 8059 req->flags = cpu_to_le32(flags); 8060 return hwrm_req_send_silent(bp, req); 8061 } 8062 8063 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8064 { 8065 struct hwrm_func_cfg_input *req; 8066 u32 flags; 8067 8068 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 8069 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 8070 if (BNXT_NEW_RM(bp)) { 8071 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 8072 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 8073 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 8074 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 8075 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 8076 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 8077 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 8078 else 8079 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 8080 } 8081 8082 req->flags = cpu_to_le32(flags); 8083 return hwrm_req_send_silent(bp, req); 8084 } 8085 8086 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 8087 { 8088 if (bp->hwrm_spec_code < 0x10801) 8089 return 0; 8090 8091 if (BNXT_PF(bp)) 8092 return bnxt_hwrm_check_pf_rings(bp, hwr); 8093 8094 return bnxt_hwrm_check_vf_rings(bp, hwr); 8095 } 8096 8097 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 8098 { 8099 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8100 struct hwrm_ring_aggint_qcaps_output *resp; 8101 struct hwrm_ring_aggint_qcaps_input *req; 8102 int rc; 8103 8104 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 8105 coal_cap->num_cmpl_dma_aggr_max = 63; 8106 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 8107 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 8108 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 8109 coal_cap->int_lat_tmr_min_max = 65535; 8110 coal_cap->int_lat_tmr_max_max = 65535; 8111 coal_cap->num_cmpl_aggr_int_max = 65535; 8112 coal_cap->timer_units = 80; 8113 8114 if (bp->hwrm_spec_code < 0x10902) 8115 return; 8116 8117 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 8118 return; 8119 8120 resp = hwrm_req_hold(bp, req); 8121 rc = hwrm_req_send_silent(bp, req); 8122 if (!rc) { 8123 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 8124 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 8125 coal_cap->num_cmpl_dma_aggr_max = 8126 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 8127 coal_cap->num_cmpl_dma_aggr_during_int_max = 8128 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 8129 coal_cap->cmpl_aggr_dma_tmr_max = 8130 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 8131 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 8132 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 8133 coal_cap->int_lat_tmr_min_max = 8134 le16_to_cpu(resp->int_lat_tmr_min_max); 8135 coal_cap->int_lat_tmr_max_max = 8136 le16_to_cpu(resp->int_lat_tmr_max_max); 8137 coal_cap->num_cmpl_aggr_int_max = 8138 le16_to_cpu(resp->num_cmpl_aggr_int_max); 8139 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 8140 } 8141 hwrm_req_drop(bp, req); 8142 } 8143 8144 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 8145 { 8146 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8147 8148 return usec * 1000 / coal_cap->timer_units; 8149 } 8150 8151 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 8152 struct bnxt_coal *hw_coal, 8153 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8154 { 8155 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8156 u16 val, tmr, max, flags = hw_coal->flags; 8157 u32 cmpl_params = coal_cap->cmpl_params; 8158 8159 max = hw_coal->bufs_per_record * 128; 8160 if (hw_coal->budget) 8161 max = hw_coal->bufs_per_record * hw_coal->budget; 8162 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 8163 8164 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 8165 req->num_cmpl_aggr_int = cpu_to_le16(val); 8166 8167 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 8168 req->num_cmpl_dma_aggr = cpu_to_le16(val); 8169 8170 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 8171 coal_cap->num_cmpl_dma_aggr_during_int_max); 8172 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 8173 8174 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 8175 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 8176 req->int_lat_tmr_max = cpu_to_le16(tmr); 8177 8178 /* min timer set to 1/2 of interrupt timer */ 8179 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 8180 val = tmr / 2; 8181 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 8182 req->int_lat_tmr_min = cpu_to_le16(val); 8183 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8184 } 8185 8186 /* buf timer set to 1/4 of interrupt timer */ 8187 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 8188 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 8189 8190 if (cmpl_params & 8191 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 8192 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 8193 val = clamp_t(u16, tmr, 1, 8194 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 8195 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 8196 req->enables |= 8197 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 8198 } 8199 8200 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 8201 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 8202 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 8203 req->flags = cpu_to_le16(flags); 8204 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 8205 } 8206 8207 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 8208 struct bnxt_coal *hw_coal) 8209 { 8210 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 8211 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8212 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8213 u32 nq_params = coal_cap->nq_params; 8214 u16 tmr; 8215 int rc; 8216 8217 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 8218 return 0; 8219 8220 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8221 if (rc) 8222 return rc; 8223 8224 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 8225 req->flags = 8226 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 8227 8228 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 8229 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 8230 req->int_lat_tmr_min = cpu_to_le16(tmr); 8231 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8232 return hwrm_req_send(bp, req); 8233 } 8234 8235 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 8236 { 8237 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 8238 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8239 struct bnxt_coal coal; 8240 int rc; 8241 8242 /* Tick values in micro seconds. 8243 * 1 coal_buf x bufs_per_record = 1 completion record. 8244 */ 8245 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 8246 8247 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 8248 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 8249 8250 if (!bnapi->rx_ring) 8251 return -ENODEV; 8252 8253 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8254 if (rc) 8255 return rc; 8256 8257 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 8258 8259 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 8260 8261 return hwrm_req_send(bp, req_rx); 8262 } 8263 8264 static int 8265 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8266 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8267 { 8268 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 8269 8270 req->ring_id = cpu_to_le16(ring_id); 8271 return hwrm_req_send(bp, req); 8272 } 8273 8274 static int 8275 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8276 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8277 { 8278 struct bnxt_tx_ring_info *txr; 8279 int i, rc; 8280 8281 bnxt_for_each_napi_tx(i, bnapi, txr) { 8282 u16 ring_id; 8283 8284 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8285 req->ring_id = cpu_to_le16(ring_id); 8286 rc = hwrm_req_send(bp, req); 8287 if (rc) 8288 return rc; 8289 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8290 return 0; 8291 } 8292 return 0; 8293 } 8294 8295 int bnxt_hwrm_set_coal(struct bnxt *bp) 8296 { 8297 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8298 int i, rc; 8299 8300 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8301 if (rc) 8302 return rc; 8303 8304 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8305 if (rc) { 8306 hwrm_req_drop(bp, req_rx); 8307 return rc; 8308 } 8309 8310 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8311 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8312 8313 hwrm_req_hold(bp, req_rx); 8314 hwrm_req_hold(bp, req_tx); 8315 for (i = 0; i < bp->cp_nr_rings; i++) { 8316 struct bnxt_napi *bnapi = bp->bnapi[i]; 8317 struct bnxt_coal *hw_coal; 8318 8319 if (!bnapi->rx_ring) 8320 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8321 else 8322 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8323 if (rc) 8324 break; 8325 8326 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8327 continue; 8328 8329 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8330 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8331 if (rc) 8332 break; 8333 } 8334 if (bnapi->rx_ring) 8335 hw_coal = &bp->rx_coal; 8336 else 8337 hw_coal = &bp->tx_coal; 8338 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8339 } 8340 hwrm_req_drop(bp, req_rx); 8341 hwrm_req_drop(bp, req_tx); 8342 return rc; 8343 } 8344 8345 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8346 { 8347 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8348 struct hwrm_stat_ctx_free_input *req; 8349 int i; 8350 8351 if (!bp->bnapi) 8352 return; 8353 8354 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8355 return; 8356 8357 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8358 return; 8359 if (BNXT_FW_MAJ(bp) <= 20) { 8360 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8361 hwrm_req_drop(bp, req); 8362 return; 8363 } 8364 hwrm_req_hold(bp, req0); 8365 } 8366 hwrm_req_hold(bp, req); 8367 for (i = 0; i < bp->cp_nr_rings; i++) { 8368 struct bnxt_napi *bnapi = bp->bnapi[i]; 8369 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8370 8371 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8372 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8373 if (req0) { 8374 req0->stat_ctx_id = req->stat_ctx_id; 8375 hwrm_req_send(bp, req0); 8376 } 8377 hwrm_req_send(bp, req); 8378 8379 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8380 } 8381 } 8382 hwrm_req_drop(bp, req); 8383 if (req0) 8384 hwrm_req_drop(bp, req0); 8385 } 8386 8387 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8388 { 8389 struct hwrm_stat_ctx_alloc_output *resp; 8390 struct hwrm_stat_ctx_alloc_input *req; 8391 int rc, i; 8392 8393 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8394 return 0; 8395 8396 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8397 if (rc) 8398 return rc; 8399 8400 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8401 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8402 8403 resp = hwrm_req_hold(bp, req); 8404 for (i = 0; i < bp->cp_nr_rings; i++) { 8405 struct bnxt_napi *bnapi = bp->bnapi[i]; 8406 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8407 8408 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8409 8410 rc = hwrm_req_send(bp, req); 8411 if (rc) 8412 break; 8413 8414 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8415 8416 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8417 } 8418 hwrm_req_drop(bp, req); 8419 return rc; 8420 } 8421 8422 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8423 { 8424 struct hwrm_func_qcfg_output *resp; 8425 struct hwrm_func_qcfg_input *req; 8426 u16 flags; 8427 int rc; 8428 8429 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8430 if (rc) 8431 return rc; 8432 8433 req->fid = cpu_to_le16(0xffff); 8434 resp = hwrm_req_hold(bp, req); 8435 rc = hwrm_req_send(bp, req); 8436 if (rc) 8437 goto func_qcfg_exit; 8438 8439 flags = le16_to_cpu(resp->flags); 8440 #ifdef CONFIG_BNXT_SRIOV 8441 if (BNXT_VF(bp)) { 8442 struct bnxt_vf_info *vf = &bp->vf; 8443 8444 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8445 if (flags & FUNC_QCFG_RESP_FLAGS_TRUSTED_VF) 8446 vf->flags |= BNXT_VF_TRUST; 8447 else 8448 vf->flags &= ~BNXT_VF_TRUST; 8449 } else { 8450 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8451 } 8452 #endif 8453 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8454 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8455 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8456 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8457 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8458 } 8459 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8460 bp->flags |= BNXT_FLAG_MULTI_HOST; 8461 8462 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8463 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8464 8465 if (flags & FUNC_QCFG_RESP_FLAGS_ENABLE_RDMA_SRIOV) 8466 bp->fw_cap |= BNXT_FW_CAP_ENABLE_RDMA_SRIOV; 8467 8468 switch (resp->port_partition_type) { 8469 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8470 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_2: 8471 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8472 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8473 bp->port_partition_type = resp->port_partition_type; 8474 break; 8475 } 8476 if (bp->hwrm_spec_code < 0x10707 || 8477 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8478 bp->br_mode = BRIDGE_MODE_VEB; 8479 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8480 bp->br_mode = BRIDGE_MODE_VEPA; 8481 else 8482 bp->br_mode = BRIDGE_MODE_UNDEF; 8483 8484 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8485 if (!bp->max_mtu) 8486 bp->max_mtu = BNXT_MAX_MTU; 8487 8488 if (bp->db_size) 8489 goto func_qcfg_exit; 8490 8491 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8492 if (BNXT_CHIP_P5(bp)) { 8493 if (BNXT_PF(bp)) 8494 bp->db_offset = DB_PF_OFFSET_P5; 8495 else 8496 bp->db_offset = DB_VF_OFFSET_P5; 8497 } 8498 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8499 1024); 8500 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8501 bp->db_size <= bp->db_offset) 8502 bp->db_size = pci_resource_len(bp->pdev, 2); 8503 8504 func_qcfg_exit: 8505 hwrm_req_drop(bp, req); 8506 return rc; 8507 } 8508 8509 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8510 u8 init_val, u8 init_offset, 8511 bool init_mask_set) 8512 { 8513 ctxm->init_value = init_val; 8514 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8515 if (init_mask_set) 8516 ctxm->init_offset = init_offset * 4; 8517 else 8518 ctxm->init_value = 0; 8519 } 8520 8521 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8522 { 8523 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8524 u16 type; 8525 8526 for (type = 0; type < ctx_max; type++) { 8527 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8528 int n = 1; 8529 8530 if (!ctxm->max_entries || ctxm->pg_info) 8531 continue; 8532 8533 if (ctxm->instance_bmap) 8534 n = hweight32(ctxm->instance_bmap); 8535 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8536 if (!ctxm->pg_info) 8537 return -ENOMEM; 8538 } 8539 return 0; 8540 } 8541 8542 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 8543 struct bnxt_ctx_mem_type *ctxm, bool force); 8544 8545 #define BNXT_CTX_INIT_VALID(flags) \ 8546 (!!((flags) & \ 8547 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8548 8549 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8550 { 8551 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8552 struct hwrm_func_backing_store_qcaps_v2_input *req; 8553 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8554 u16 type; 8555 int rc; 8556 8557 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8558 if (rc) 8559 return rc; 8560 8561 if (!ctx) { 8562 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8563 if (!ctx) 8564 return -ENOMEM; 8565 bp->ctx = ctx; 8566 } 8567 8568 resp = hwrm_req_hold(bp, req); 8569 8570 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8571 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8572 u8 init_val, init_off, i; 8573 u32 max_entries; 8574 u16 entry_size; 8575 __le32 *p; 8576 u32 flags; 8577 8578 req->type = cpu_to_le16(type); 8579 rc = hwrm_req_send(bp, req); 8580 if (rc) 8581 goto ctx_done; 8582 flags = le32_to_cpu(resp->flags); 8583 type = le16_to_cpu(resp->next_valid_type); 8584 if (!(flags & BNXT_CTX_MEM_TYPE_VALID)) { 8585 bnxt_free_one_ctx_mem(bp, ctxm, true); 8586 continue; 8587 } 8588 entry_size = le16_to_cpu(resp->entry_size); 8589 max_entries = le32_to_cpu(resp->max_num_entries); 8590 if (ctxm->mem_valid) { 8591 if (!(flags & BNXT_CTX_MEM_PERSIST) || 8592 ctxm->entry_size != entry_size || 8593 ctxm->max_entries != max_entries) 8594 bnxt_free_one_ctx_mem(bp, ctxm, true); 8595 else 8596 continue; 8597 } 8598 ctxm->type = le16_to_cpu(resp->type); 8599 ctxm->entry_size = entry_size; 8600 ctxm->flags = flags; 8601 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8602 ctxm->entry_multiple = resp->entry_multiple; 8603 ctxm->max_entries = max_entries; 8604 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8605 init_val = resp->ctx_init_value; 8606 init_off = resp->ctx_init_offset; 8607 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8608 BNXT_CTX_INIT_VALID(flags)); 8609 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8610 BNXT_MAX_SPLIT_ENTRY); 8611 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8612 i++, p++) 8613 ctxm->split[i] = le32_to_cpu(*p); 8614 } 8615 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8616 8617 ctx_done: 8618 hwrm_req_drop(bp, req); 8619 return rc; 8620 } 8621 8622 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8623 { 8624 struct hwrm_func_backing_store_qcaps_output *resp; 8625 struct hwrm_func_backing_store_qcaps_input *req; 8626 int rc; 8627 8628 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || 8629 (bp->ctx && bp->ctx->flags & BNXT_CTX_FLAG_INITED)) 8630 return 0; 8631 8632 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8633 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8634 8635 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8636 if (rc) 8637 return rc; 8638 8639 resp = hwrm_req_hold(bp, req); 8640 rc = hwrm_req_send_silent(bp, req); 8641 if (!rc) { 8642 struct bnxt_ctx_mem_type *ctxm; 8643 struct bnxt_ctx_mem_info *ctx; 8644 u8 init_val, init_idx = 0; 8645 u16 init_mask; 8646 8647 ctx = bp->ctx; 8648 if (!ctx) { 8649 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8650 if (!ctx) { 8651 rc = -ENOMEM; 8652 goto ctx_err; 8653 } 8654 bp->ctx = ctx; 8655 } 8656 init_val = resp->ctx_kind_initializer; 8657 init_mask = le16_to_cpu(resp->ctx_init_mask); 8658 8659 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8660 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8661 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8662 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8663 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8664 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8665 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8666 (init_mask & (1 << init_idx++)) != 0); 8667 8668 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8669 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8670 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8671 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8672 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8673 (init_mask & (1 << init_idx++)) != 0); 8674 8675 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8676 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8677 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8678 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8679 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8680 (init_mask & (1 << init_idx++)) != 0); 8681 8682 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8683 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8684 ctxm->max_entries = ctxm->vnic_entries + 8685 le16_to_cpu(resp->vnic_max_ring_table_entries); 8686 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8687 bnxt_init_ctx_initializer(ctxm, init_val, 8688 resp->vnic_init_offset, 8689 (init_mask & (1 << init_idx++)) != 0); 8690 8691 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8692 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8693 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8694 bnxt_init_ctx_initializer(ctxm, init_val, 8695 resp->stat_init_offset, 8696 (init_mask & (1 << init_idx++)) != 0); 8697 8698 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8699 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8700 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8701 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8702 ctxm->entry_multiple = resp->tqm_entries_multiple; 8703 if (!ctxm->entry_multiple) 8704 ctxm->entry_multiple = 1; 8705 8706 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8707 8708 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8709 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8710 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8711 ctxm->mrav_num_entries_units = 8712 le16_to_cpu(resp->mrav_num_entries_units); 8713 bnxt_init_ctx_initializer(ctxm, init_val, 8714 resp->mrav_init_offset, 8715 (init_mask & (1 << init_idx++)) != 0); 8716 8717 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8718 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8719 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8720 8721 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8722 if (!ctx->tqm_fp_rings_count) 8723 ctx->tqm_fp_rings_count = bp->max_q; 8724 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8725 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8726 8727 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8728 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8729 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8730 8731 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8732 } else { 8733 rc = 0; 8734 } 8735 ctx_err: 8736 hwrm_req_drop(bp, req); 8737 return rc; 8738 } 8739 8740 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8741 __le64 *pg_dir) 8742 { 8743 if (!rmem->nr_pages) 8744 return; 8745 8746 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8747 if (rmem->depth >= 1) { 8748 if (rmem->depth == 2) 8749 *pg_attr |= 2; 8750 else 8751 *pg_attr |= 1; 8752 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8753 } else { 8754 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8755 } 8756 } 8757 8758 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8759 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8760 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8761 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8762 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8763 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8764 8765 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8766 { 8767 struct hwrm_func_backing_store_cfg_input *req; 8768 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8769 struct bnxt_ctx_pg_info *ctx_pg; 8770 struct bnxt_ctx_mem_type *ctxm; 8771 void **__req = (void **)&req; 8772 u32 req_len = sizeof(*req); 8773 __le32 *num_entries; 8774 __le64 *pg_dir; 8775 u32 flags = 0; 8776 u8 *pg_attr; 8777 u32 ena; 8778 int rc; 8779 int i; 8780 8781 if (!ctx) 8782 return 0; 8783 8784 if (req_len > bp->hwrm_max_ext_req_len) 8785 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8786 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8787 if (rc) 8788 return rc; 8789 8790 req->enables = cpu_to_le32(enables); 8791 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8792 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8793 ctx_pg = ctxm->pg_info; 8794 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8795 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8796 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8797 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8798 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8799 &req->qpc_pg_size_qpc_lvl, 8800 &req->qpc_page_dir); 8801 8802 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8803 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8804 } 8805 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8806 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8807 ctx_pg = ctxm->pg_info; 8808 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8809 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8810 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8811 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8812 &req->srq_pg_size_srq_lvl, 8813 &req->srq_page_dir); 8814 } 8815 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8816 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8817 ctx_pg = ctxm->pg_info; 8818 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8819 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8820 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8821 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8822 &req->cq_pg_size_cq_lvl, 8823 &req->cq_page_dir); 8824 } 8825 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8826 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8827 ctx_pg = ctxm->pg_info; 8828 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8829 req->vnic_num_ring_table_entries = 8830 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8831 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8832 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8833 &req->vnic_pg_size_vnic_lvl, 8834 &req->vnic_page_dir); 8835 } 8836 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8837 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8838 ctx_pg = ctxm->pg_info; 8839 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8840 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8841 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8842 &req->stat_pg_size_stat_lvl, 8843 &req->stat_page_dir); 8844 } 8845 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8846 u32 units; 8847 8848 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8849 ctx_pg = ctxm->pg_info; 8850 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8851 units = ctxm->mrav_num_entries_units; 8852 if (units) { 8853 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8854 u32 entries; 8855 8856 num_mr = ctx_pg->entries - num_ah; 8857 entries = ((num_mr / units) << 16) | (num_ah / units); 8858 req->mrav_num_entries = cpu_to_le32(entries); 8859 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8860 } 8861 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8862 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8863 &req->mrav_pg_size_mrav_lvl, 8864 &req->mrav_page_dir); 8865 } 8866 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8867 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8868 ctx_pg = ctxm->pg_info; 8869 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8870 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8871 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8872 &req->tim_pg_size_tim_lvl, 8873 &req->tim_page_dir); 8874 } 8875 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8876 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8877 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8878 pg_dir = &req->tqm_sp_page_dir, 8879 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8880 ctx_pg = ctxm->pg_info; 8881 i < BNXT_MAX_TQM_RINGS; 8882 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8883 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8884 if (!(enables & ena)) 8885 continue; 8886 8887 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8888 *num_entries = cpu_to_le32(ctx_pg->entries); 8889 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8890 } 8891 req->flags = cpu_to_le32(flags); 8892 return hwrm_req_send(bp, req); 8893 } 8894 8895 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8896 struct bnxt_ctx_pg_info *ctx_pg) 8897 { 8898 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8899 8900 rmem->page_size = BNXT_PAGE_SIZE; 8901 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8902 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8903 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8904 if (rmem->depth >= 1) 8905 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8906 return bnxt_alloc_ring(bp, rmem); 8907 } 8908 8909 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8910 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8911 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8912 { 8913 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8914 int rc; 8915 8916 if (!mem_size) 8917 return -EINVAL; 8918 8919 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8920 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8921 ctx_pg->nr_pages = 0; 8922 return -EINVAL; 8923 } 8924 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8925 int nr_tbls, i; 8926 8927 rmem->depth = 2; 8928 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8929 GFP_KERNEL); 8930 if (!ctx_pg->ctx_pg_tbl) 8931 return -ENOMEM; 8932 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8933 rmem->nr_pages = nr_tbls; 8934 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8935 if (rc) 8936 return rc; 8937 for (i = 0; i < nr_tbls; i++) { 8938 struct bnxt_ctx_pg_info *pg_tbl; 8939 8940 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8941 if (!pg_tbl) 8942 return -ENOMEM; 8943 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8944 rmem = &pg_tbl->ring_mem; 8945 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8946 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8947 rmem->depth = 1; 8948 rmem->nr_pages = MAX_CTX_PAGES; 8949 rmem->ctx_mem = ctxm; 8950 if (i == (nr_tbls - 1)) { 8951 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8952 8953 if (rem) 8954 rmem->nr_pages = rem; 8955 } 8956 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8957 if (rc) 8958 break; 8959 } 8960 } else { 8961 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8962 if (rmem->nr_pages > 1 || depth) 8963 rmem->depth = 1; 8964 rmem->ctx_mem = ctxm; 8965 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8966 } 8967 return rc; 8968 } 8969 8970 static size_t bnxt_copy_ctx_pg_tbls(struct bnxt *bp, 8971 struct bnxt_ctx_pg_info *ctx_pg, 8972 void *buf, size_t offset, size_t head, 8973 size_t tail) 8974 { 8975 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8976 size_t nr_pages = ctx_pg->nr_pages; 8977 int page_size = rmem->page_size; 8978 size_t len = 0, total_len = 0; 8979 u16 depth = rmem->depth; 8980 8981 tail %= nr_pages * page_size; 8982 do { 8983 if (depth > 1) { 8984 int i = head / (page_size * MAX_CTX_PAGES); 8985 struct bnxt_ctx_pg_info *pg_tbl; 8986 8987 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8988 rmem = &pg_tbl->ring_mem; 8989 } 8990 len = __bnxt_copy_ring(bp, rmem, buf, offset, head, tail); 8991 head += len; 8992 offset += len; 8993 total_len += len; 8994 if (head >= nr_pages * page_size) 8995 head = 0; 8996 } while (head != tail); 8997 return total_len; 8998 } 8999 9000 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 9001 struct bnxt_ctx_pg_info *ctx_pg) 9002 { 9003 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 9004 9005 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 9006 ctx_pg->ctx_pg_tbl) { 9007 int i, nr_tbls = rmem->nr_pages; 9008 9009 for (i = 0; i < nr_tbls; i++) { 9010 struct bnxt_ctx_pg_info *pg_tbl; 9011 struct bnxt_ring_mem_info *rmem2; 9012 9013 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 9014 if (!pg_tbl) 9015 continue; 9016 rmem2 = &pg_tbl->ring_mem; 9017 bnxt_free_ring(bp, rmem2); 9018 ctx_pg->ctx_pg_arr[i] = NULL; 9019 kfree(pg_tbl); 9020 ctx_pg->ctx_pg_tbl[i] = NULL; 9021 } 9022 kfree(ctx_pg->ctx_pg_tbl); 9023 ctx_pg->ctx_pg_tbl = NULL; 9024 } 9025 bnxt_free_ring(bp, rmem); 9026 ctx_pg->nr_pages = 0; 9027 } 9028 9029 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 9030 struct bnxt_ctx_mem_type *ctxm, u32 entries, 9031 u8 pg_lvl) 9032 { 9033 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9034 int i, rc = 0, n = 1; 9035 u32 mem_size; 9036 9037 if (!ctxm->entry_size || !ctx_pg) 9038 return -EINVAL; 9039 if (ctxm->instance_bmap) 9040 n = hweight32(ctxm->instance_bmap); 9041 if (ctxm->entry_multiple) 9042 entries = roundup(entries, ctxm->entry_multiple); 9043 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 9044 mem_size = entries * ctxm->entry_size; 9045 for (i = 0; i < n && !rc; i++) { 9046 ctx_pg[i].entries = entries; 9047 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 9048 ctxm->init_value ? ctxm : NULL); 9049 } 9050 if (!rc) 9051 ctxm->mem_valid = 1; 9052 return rc; 9053 } 9054 9055 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 9056 struct bnxt_ctx_mem_type *ctxm, 9057 bool last) 9058 { 9059 struct hwrm_func_backing_store_cfg_v2_input *req; 9060 u32 instance_bmap = ctxm->instance_bmap; 9061 int i, j, rc = 0, n = 1; 9062 __le32 *p; 9063 9064 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 9065 return 0; 9066 9067 if (instance_bmap) 9068 n = hweight32(ctxm->instance_bmap); 9069 else 9070 instance_bmap = 1; 9071 9072 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 9073 if (rc) 9074 return rc; 9075 hwrm_req_hold(bp, req); 9076 req->type = cpu_to_le16(ctxm->type); 9077 req->entry_size = cpu_to_le16(ctxm->entry_size); 9078 if ((ctxm->flags & BNXT_CTX_MEM_PERSIST) && 9079 bnxt_bs_trace_avail(bp, ctxm->type)) { 9080 struct bnxt_bs_trace_info *bs_trace; 9081 u32 enables; 9082 9083 enables = FUNC_BACKING_STORE_CFG_V2_REQ_ENABLES_NEXT_BS_OFFSET; 9084 req->enables = cpu_to_le32(enables); 9085 bs_trace = &bp->bs_trace[bnxt_bstore_to_trace[ctxm->type]]; 9086 req->next_bs_offset = cpu_to_le32(bs_trace->last_offset); 9087 } 9088 req->subtype_valid_cnt = ctxm->split_entry_cnt; 9089 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 9090 p[i] = cpu_to_le32(ctxm->split[i]); 9091 for (i = 0, j = 0; j < n && !rc; i++) { 9092 struct bnxt_ctx_pg_info *ctx_pg; 9093 9094 if (!(instance_bmap & (1 << i))) 9095 continue; 9096 req->instance = cpu_to_le16(i); 9097 ctx_pg = &ctxm->pg_info[j++]; 9098 if (!ctx_pg->entries) 9099 continue; 9100 req->num_entries = cpu_to_le32(ctx_pg->entries); 9101 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 9102 &req->page_size_pbl_level, 9103 &req->page_dir); 9104 if (last && j == n) 9105 req->flags = 9106 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 9107 rc = hwrm_req_send(bp, req); 9108 } 9109 hwrm_req_drop(bp, req); 9110 return rc; 9111 } 9112 9113 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 9114 { 9115 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9116 struct bnxt_ctx_mem_type *ctxm; 9117 u16 last_type = BNXT_CTX_INV; 9118 int rc = 0; 9119 u16 type; 9120 9121 for (type = BNXT_CTX_SRT; type <= BNXT_CTX_RIGP1; type++) { 9122 ctxm = &ctx->ctx_arr[type]; 9123 if (!bnxt_bs_trace_avail(bp, type)) 9124 continue; 9125 if (!ctxm->mem_valid) { 9126 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, 9127 ctxm->max_entries, 1); 9128 if (rc) { 9129 netdev_warn(bp->dev, "Unable to setup ctx page for type:0x%x.\n", 9130 type); 9131 continue; 9132 } 9133 bnxt_bs_trace_init(bp, ctxm); 9134 } 9135 last_type = type; 9136 } 9137 9138 if (last_type == BNXT_CTX_INV) { 9139 if (!ena) 9140 return 0; 9141 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 9142 last_type = BNXT_CTX_MAX - 1; 9143 else 9144 last_type = BNXT_CTX_L2_MAX - 1; 9145 } 9146 ctx->ctx_arr[last_type].last = 1; 9147 9148 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 9149 ctxm = &ctx->ctx_arr[type]; 9150 9151 if (!ctxm->mem_valid) 9152 continue; 9153 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 9154 if (rc) 9155 return rc; 9156 } 9157 return 0; 9158 } 9159 9160 /** 9161 * __bnxt_copy_ctx_mem - copy host context memory 9162 * @bp: The driver context 9163 * @ctxm: The pointer to the context memory type 9164 * @buf: The destination buffer or NULL to just obtain the length 9165 * @offset: The buffer offset to copy the data to 9166 * @head: The head offset of context memory to copy from 9167 * @tail: The tail offset (last byte + 1) of context memory to end the copy 9168 * 9169 * This function is called for debugging purposes to dump the host context 9170 * used by the chip. 9171 * 9172 * Return: Length of memory copied 9173 */ 9174 static size_t __bnxt_copy_ctx_mem(struct bnxt *bp, 9175 struct bnxt_ctx_mem_type *ctxm, void *buf, 9176 size_t offset, size_t head, size_t tail) 9177 { 9178 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 9179 size_t len = 0, total_len = 0; 9180 int i, n = 1; 9181 9182 if (!ctx_pg) 9183 return 0; 9184 9185 if (ctxm->instance_bmap) 9186 n = hweight32(ctxm->instance_bmap); 9187 for (i = 0; i < n; i++) { 9188 len = bnxt_copy_ctx_pg_tbls(bp, &ctx_pg[i], buf, offset, head, 9189 tail); 9190 offset += len; 9191 total_len += len; 9192 } 9193 return total_len; 9194 } 9195 9196 size_t bnxt_copy_ctx_mem(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm, 9197 void *buf, size_t offset) 9198 { 9199 size_t tail = ctxm->max_entries * ctxm->entry_size; 9200 9201 return __bnxt_copy_ctx_mem(bp, ctxm, buf, offset, 0, tail); 9202 } 9203 9204 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 9205 struct bnxt_ctx_mem_type *ctxm, bool force) 9206 { 9207 struct bnxt_ctx_pg_info *ctx_pg; 9208 int i, n = 1; 9209 9210 ctxm->last = 0; 9211 9212 if (ctxm->mem_valid && !force && (ctxm->flags & BNXT_CTX_MEM_PERSIST)) 9213 return; 9214 9215 ctx_pg = ctxm->pg_info; 9216 if (ctx_pg) { 9217 if (ctxm->instance_bmap) 9218 n = hweight32(ctxm->instance_bmap); 9219 for (i = 0; i < n; i++) 9220 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 9221 9222 kfree(ctx_pg); 9223 ctxm->pg_info = NULL; 9224 ctxm->mem_valid = 0; 9225 } 9226 memset(ctxm, 0, sizeof(*ctxm)); 9227 } 9228 9229 void bnxt_free_ctx_mem(struct bnxt *bp, bool force) 9230 { 9231 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9232 u16 type; 9233 9234 if (!ctx) 9235 return; 9236 9237 for (type = 0; type < BNXT_CTX_V2_MAX; type++) 9238 bnxt_free_one_ctx_mem(bp, &ctx->ctx_arr[type], force); 9239 9240 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 9241 if (force) { 9242 kfree(ctx); 9243 bp->ctx = NULL; 9244 } 9245 } 9246 9247 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 9248 { 9249 struct bnxt_ctx_mem_type *ctxm; 9250 struct bnxt_ctx_mem_info *ctx; 9251 u32 l2_qps, qp1_qps, max_qps; 9252 u32 ena, entries_sp, entries; 9253 u32 srqs, max_srqs, min; 9254 u32 num_mr, num_ah; 9255 u32 extra_srqs = 0; 9256 u32 extra_qps = 0; 9257 u32 fast_qpmd_qps; 9258 u8 pg_lvl = 1; 9259 int i, rc; 9260 9261 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 9262 if (rc) { 9263 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 9264 rc); 9265 return rc; 9266 } 9267 ctx = bp->ctx; 9268 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 9269 return 0; 9270 9271 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9272 l2_qps = ctxm->qp_l2_entries; 9273 qp1_qps = ctxm->qp_qp1_entries; 9274 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 9275 max_qps = ctxm->max_entries; 9276 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9277 srqs = ctxm->srq_l2_entries; 9278 max_srqs = ctxm->max_entries; 9279 ena = 0; 9280 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 9281 pg_lvl = 2; 9282 if (BNXT_SW_RES_LMT(bp)) { 9283 extra_qps = max_qps - l2_qps - qp1_qps; 9284 extra_srqs = max_srqs - srqs; 9285 } else { 9286 extra_qps = min_t(u32, 65536, 9287 max_qps - l2_qps - qp1_qps); 9288 /* allocate extra qps if fw supports RoCE fast qp 9289 * destroy feature 9290 */ 9291 extra_qps += fast_qpmd_qps; 9292 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 9293 } 9294 if (fast_qpmd_qps) 9295 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 9296 } 9297 9298 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9299 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 9300 pg_lvl); 9301 if (rc) 9302 return rc; 9303 9304 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9305 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 9306 if (rc) 9307 return rc; 9308 9309 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 9310 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 9311 extra_qps * 2, pg_lvl); 9312 if (rc) 9313 return rc; 9314 9315 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 9316 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9317 if (rc) 9318 return rc; 9319 9320 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 9321 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9322 if (rc) 9323 return rc; 9324 9325 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 9326 goto skip_rdma; 9327 9328 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 9329 if (BNXT_SW_RES_LMT(bp) && 9330 ctxm->split_entry_cnt == BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1) { 9331 num_ah = ctxm->mrav_av_entries; 9332 num_mr = ctxm->max_entries - num_ah; 9333 } else { 9334 /* 128K extra is needed to accommodate static AH context 9335 * allocation by f/w. 9336 */ 9337 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 9338 num_ah = min_t(u32, num_mr, 1024 * 128); 9339 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 9340 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 9341 ctxm->mrav_av_entries = num_ah; 9342 } 9343 9344 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 9345 if (rc) 9346 return rc; 9347 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 9348 9349 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 9350 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 9351 if (rc) 9352 return rc; 9353 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 9354 9355 skip_rdma: 9356 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 9357 min = ctxm->min_entries; 9358 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 9359 2 * (extra_qps + qp1_qps) + min; 9360 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 9361 if (rc) 9362 return rc; 9363 9364 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 9365 entries = l2_qps + 2 * (extra_qps + qp1_qps); 9366 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 9367 if (rc) 9368 return rc; 9369 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 9370 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 9371 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 9372 9373 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 9374 rc = bnxt_backing_store_cfg_v2(bp, ena); 9375 else 9376 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 9377 if (rc) { 9378 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 9379 rc); 9380 return rc; 9381 } 9382 ctx->flags |= BNXT_CTX_FLAG_INITED; 9383 return 0; 9384 } 9385 9386 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp) 9387 { 9388 struct hwrm_dbg_crashdump_medium_cfg_input *req; 9389 u16 page_attr; 9390 int rc; 9391 9392 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9393 return 0; 9394 9395 rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG); 9396 if (rc) 9397 return rc; 9398 9399 if (BNXT_PAGE_SIZE == 0x2000) 9400 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K; 9401 else if (BNXT_PAGE_SIZE == 0x10000) 9402 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K; 9403 else 9404 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K; 9405 req->pg_size_lvl = cpu_to_le16(page_attr | 9406 bp->fw_crash_mem->ring_mem.depth); 9407 req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map); 9408 req->size = cpu_to_le32(bp->fw_crash_len); 9409 req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR); 9410 return hwrm_req_send(bp, req); 9411 } 9412 9413 static void bnxt_free_crash_dump_mem(struct bnxt *bp) 9414 { 9415 if (bp->fw_crash_mem) { 9416 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9417 kfree(bp->fw_crash_mem); 9418 bp->fw_crash_mem = NULL; 9419 } 9420 } 9421 9422 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp) 9423 { 9424 u32 mem_size = 0; 9425 int rc; 9426 9427 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9428 return 0; 9429 9430 rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size); 9431 if (rc) 9432 return rc; 9433 9434 mem_size = round_up(mem_size, 4); 9435 9436 /* keep and use the existing pages */ 9437 if (bp->fw_crash_mem && 9438 mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE) 9439 goto alloc_done; 9440 9441 if (bp->fw_crash_mem) 9442 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9443 else 9444 bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem), 9445 GFP_KERNEL); 9446 if (!bp->fw_crash_mem) 9447 return -ENOMEM; 9448 9449 rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL); 9450 if (rc) { 9451 bnxt_free_crash_dump_mem(bp); 9452 return rc; 9453 } 9454 9455 alloc_done: 9456 bp->fw_crash_len = mem_size; 9457 return 0; 9458 } 9459 9460 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 9461 { 9462 struct hwrm_func_resource_qcaps_output *resp; 9463 struct hwrm_func_resource_qcaps_input *req; 9464 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9465 int rc; 9466 9467 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 9468 if (rc) 9469 return rc; 9470 9471 req->fid = cpu_to_le16(0xffff); 9472 resp = hwrm_req_hold(bp, req); 9473 rc = hwrm_req_send_silent(bp, req); 9474 if (rc) 9475 goto hwrm_func_resc_qcaps_exit; 9476 9477 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 9478 if (!all) 9479 goto hwrm_func_resc_qcaps_exit; 9480 9481 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 9482 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9483 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 9484 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9485 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 9486 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9487 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 9488 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9489 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 9490 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 9491 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 9492 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9493 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 9494 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9495 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 9496 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9497 9498 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 9499 u16 max_msix = le16_to_cpu(resp->max_msix); 9500 9501 hw_resc->max_nqs = max_msix; 9502 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 9503 } 9504 9505 if (BNXT_PF(bp)) { 9506 struct bnxt_pf_info *pf = &bp->pf; 9507 9508 pf->vf_resv_strategy = 9509 le16_to_cpu(resp->vf_reservation_strategy); 9510 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 9511 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 9512 } 9513 hwrm_func_resc_qcaps_exit: 9514 hwrm_req_drop(bp, req); 9515 return rc; 9516 } 9517 9518 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9519 { 9520 struct hwrm_port_mac_ptp_qcfg_output *resp; 9521 struct hwrm_port_mac_ptp_qcfg_input *req; 9522 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9523 u8 flags; 9524 int rc; 9525 9526 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9527 rc = -ENODEV; 9528 goto no_ptp; 9529 } 9530 9531 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9532 if (rc) 9533 goto no_ptp; 9534 9535 req->port_id = cpu_to_le16(bp->pf.port_id); 9536 resp = hwrm_req_hold(bp, req); 9537 rc = hwrm_req_send(bp, req); 9538 if (rc) 9539 goto exit; 9540 9541 flags = resp->flags; 9542 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9543 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9544 rc = -ENODEV; 9545 goto exit; 9546 } 9547 if (!ptp) { 9548 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9549 if (!ptp) { 9550 rc = -ENOMEM; 9551 goto exit; 9552 } 9553 ptp->bp = bp; 9554 bp->ptp_cfg = ptp; 9555 } 9556 9557 if (flags & 9558 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9559 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9560 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9561 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9562 } else if (BNXT_CHIP_P5(bp)) { 9563 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9564 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9565 } else { 9566 rc = -ENODEV; 9567 goto exit; 9568 } 9569 ptp->rtc_configured = 9570 (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9571 rc = bnxt_ptp_init(bp); 9572 if (rc) 9573 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9574 exit: 9575 hwrm_req_drop(bp, req); 9576 if (!rc) 9577 return 0; 9578 9579 no_ptp: 9580 bnxt_ptp_clear(bp); 9581 kfree(ptp); 9582 bp->ptp_cfg = NULL; 9583 return rc; 9584 } 9585 9586 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9587 { 9588 struct hwrm_func_qcaps_output *resp; 9589 struct hwrm_func_qcaps_input *req; 9590 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9591 u32 flags, flags_ext, flags_ext2; 9592 int rc; 9593 9594 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9595 if (rc) 9596 return rc; 9597 9598 req->fid = cpu_to_le16(0xffff); 9599 resp = hwrm_req_hold(bp, req); 9600 rc = hwrm_req_send(bp, req); 9601 if (rc) 9602 goto hwrm_func_qcaps_exit; 9603 9604 flags = le32_to_cpu(resp->flags); 9605 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9606 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9607 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9608 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9609 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9610 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9611 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9612 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9613 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9614 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9615 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9616 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9617 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9618 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9619 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9620 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9621 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9622 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9623 9624 flags_ext = le32_to_cpu(resp->flags_ext); 9625 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9626 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9627 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9628 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9629 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9630 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9631 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9632 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9633 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9634 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9635 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_NPAR_1_2_SUPPORTED) 9636 bp->fw_cap |= BNXT_FW_CAP_NPAR_1_2; 9637 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED)) 9638 bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP; 9639 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9640 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9641 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9642 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9643 9644 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9645 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9646 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9647 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9648 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9649 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9650 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9651 if (flags_ext2 & 9652 FUNC_QCAPS_RESP_FLAGS_EXT2_SW_MAX_RESOURCE_LIMITS_SUPPORTED) 9653 bp->fw_cap |= BNXT_FW_CAP_SW_MAX_RESOURCE_LIMITS; 9654 if (BNXT_PF(bp) && 9655 (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_ROCE_VF_RESOURCE_MGMT_SUPPORTED)) 9656 bp->fw_cap |= BNXT_FW_CAP_ROCE_VF_RESC_MGMT_SUPPORTED; 9657 9658 bp->tx_push_thresh = 0; 9659 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9660 BNXT_FW_MAJ(bp) > 217) 9661 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9662 9663 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9664 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9665 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9666 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9667 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9668 if (!hw_resc->max_hw_ring_grps) 9669 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9670 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9671 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9672 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9673 9674 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9675 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9676 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9677 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9678 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9679 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9680 9681 if (BNXT_PF(bp)) { 9682 struct bnxt_pf_info *pf = &bp->pf; 9683 9684 pf->fw_fid = le16_to_cpu(resp->fid); 9685 pf->port_id = le16_to_cpu(resp->port_id); 9686 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9687 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9688 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9689 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9690 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9691 bp->flags |= BNXT_FLAG_WOL_CAP; 9692 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9693 bp->fw_cap |= BNXT_FW_CAP_PTP; 9694 } else { 9695 bnxt_ptp_clear(bp); 9696 kfree(bp->ptp_cfg); 9697 bp->ptp_cfg = NULL; 9698 } 9699 } else { 9700 #ifdef CONFIG_BNXT_SRIOV 9701 struct bnxt_vf_info *vf = &bp->vf; 9702 9703 vf->fw_fid = le16_to_cpu(resp->fid); 9704 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9705 #endif 9706 } 9707 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9708 9709 hwrm_func_qcaps_exit: 9710 hwrm_req_drop(bp, req); 9711 return rc; 9712 } 9713 9714 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9715 { 9716 struct hwrm_dbg_qcaps_output *resp; 9717 struct hwrm_dbg_qcaps_input *req; 9718 int rc; 9719 9720 bp->fw_dbg_cap = 0; 9721 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9722 return; 9723 9724 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9725 if (rc) 9726 return; 9727 9728 req->fid = cpu_to_le16(0xffff); 9729 resp = hwrm_req_hold(bp, req); 9730 rc = hwrm_req_send(bp, req); 9731 if (rc) 9732 goto hwrm_dbg_qcaps_exit; 9733 9734 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9735 9736 hwrm_dbg_qcaps_exit: 9737 hwrm_req_drop(bp, req); 9738 } 9739 9740 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9741 9742 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9743 { 9744 int rc; 9745 9746 rc = __bnxt_hwrm_func_qcaps(bp); 9747 if (rc) 9748 return rc; 9749 9750 bnxt_hwrm_dbg_qcaps(bp); 9751 9752 rc = bnxt_hwrm_queue_qportcfg(bp); 9753 if (rc) { 9754 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9755 return rc; 9756 } 9757 if (bp->hwrm_spec_code >= 0x10803) { 9758 rc = bnxt_alloc_ctx_mem(bp); 9759 if (rc) 9760 return rc; 9761 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9762 if (!rc) 9763 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9764 } 9765 return 0; 9766 } 9767 9768 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9769 { 9770 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9771 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9772 u32 flags; 9773 int rc; 9774 9775 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9776 return 0; 9777 9778 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9779 if (rc) 9780 return rc; 9781 9782 resp = hwrm_req_hold(bp, req); 9783 rc = hwrm_req_send(bp, req); 9784 if (rc) 9785 goto hwrm_cfa_adv_qcaps_exit; 9786 9787 flags = le32_to_cpu(resp->flags); 9788 if (flags & 9789 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9790 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9791 9792 if (flags & 9793 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9794 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9795 9796 if (flags & 9797 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9798 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9799 9800 hwrm_cfa_adv_qcaps_exit: 9801 hwrm_req_drop(bp, req); 9802 return rc; 9803 } 9804 9805 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9806 { 9807 if (bp->fw_health) 9808 return 0; 9809 9810 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9811 if (!bp->fw_health) 9812 return -ENOMEM; 9813 9814 mutex_init(&bp->fw_health->lock); 9815 return 0; 9816 } 9817 9818 static int bnxt_alloc_fw_health(struct bnxt *bp) 9819 { 9820 int rc; 9821 9822 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9823 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9824 return 0; 9825 9826 rc = __bnxt_alloc_fw_health(bp); 9827 if (rc) { 9828 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9829 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9830 return rc; 9831 } 9832 9833 return 0; 9834 } 9835 9836 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9837 { 9838 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9839 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9840 BNXT_FW_HEALTH_WIN_MAP_OFF); 9841 } 9842 9843 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9844 { 9845 struct bnxt_fw_health *fw_health = bp->fw_health; 9846 u32 reg_type; 9847 9848 if (!fw_health) 9849 return; 9850 9851 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9852 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9853 fw_health->status_reliable = false; 9854 9855 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9856 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9857 fw_health->resets_reliable = false; 9858 } 9859 9860 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9861 { 9862 void __iomem *hs; 9863 u32 status_loc; 9864 u32 reg_type; 9865 u32 sig; 9866 9867 if (bp->fw_health) 9868 bp->fw_health->status_reliable = false; 9869 9870 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9871 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9872 9873 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9874 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9875 if (!bp->chip_num) { 9876 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9877 bp->chip_num = readl(bp->bar0 + 9878 BNXT_FW_HEALTH_WIN_BASE + 9879 BNXT_GRC_REG_CHIP_NUM); 9880 } 9881 if (!BNXT_CHIP_P5_PLUS(bp)) 9882 return; 9883 9884 status_loc = BNXT_GRC_REG_STATUS_P5 | 9885 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9886 } else { 9887 status_loc = readl(hs + offsetof(struct hcomm_status, 9888 fw_status_loc)); 9889 } 9890 9891 if (__bnxt_alloc_fw_health(bp)) { 9892 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9893 return; 9894 } 9895 9896 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9897 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9898 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9899 __bnxt_map_fw_health_reg(bp, status_loc); 9900 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9901 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9902 } 9903 9904 bp->fw_health->status_reliable = true; 9905 } 9906 9907 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9908 { 9909 struct bnxt_fw_health *fw_health = bp->fw_health; 9910 u32 reg_base = 0xffffffff; 9911 int i; 9912 9913 bp->fw_health->status_reliable = false; 9914 bp->fw_health->resets_reliable = false; 9915 /* Only pre-map the monitoring GRC registers using window 3 */ 9916 for (i = 0; i < 4; i++) { 9917 u32 reg = fw_health->regs[i]; 9918 9919 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9920 continue; 9921 if (reg_base == 0xffffffff) 9922 reg_base = reg & BNXT_GRC_BASE_MASK; 9923 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9924 return -ERANGE; 9925 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9926 } 9927 bp->fw_health->status_reliable = true; 9928 bp->fw_health->resets_reliable = true; 9929 if (reg_base == 0xffffffff) 9930 return 0; 9931 9932 __bnxt_map_fw_health_reg(bp, reg_base); 9933 return 0; 9934 } 9935 9936 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9937 { 9938 if (!bp->fw_health) 9939 return; 9940 9941 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9942 bp->fw_health->status_reliable = true; 9943 bp->fw_health->resets_reliable = true; 9944 } else { 9945 bnxt_try_map_fw_health_reg(bp); 9946 } 9947 } 9948 9949 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9950 { 9951 struct bnxt_fw_health *fw_health = bp->fw_health; 9952 struct hwrm_error_recovery_qcfg_output *resp; 9953 struct hwrm_error_recovery_qcfg_input *req; 9954 int rc, i; 9955 9956 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9957 return 0; 9958 9959 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9960 if (rc) 9961 return rc; 9962 9963 resp = hwrm_req_hold(bp, req); 9964 rc = hwrm_req_send(bp, req); 9965 if (rc) 9966 goto err_recovery_out; 9967 fw_health->flags = le32_to_cpu(resp->flags); 9968 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9969 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9970 rc = -EINVAL; 9971 goto err_recovery_out; 9972 } 9973 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9974 fw_health->master_func_wait_dsecs = 9975 le32_to_cpu(resp->master_func_wait_period); 9976 fw_health->normal_func_wait_dsecs = 9977 le32_to_cpu(resp->normal_func_wait_period); 9978 fw_health->post_reset_wait_dsecs = 9979 le32_to_cpu(resp->master_func_wait_period_after_reset); 9980 fw_health->post_reset_max_wait_dsecs = 9981 le32_to_cpu(resp->max_bailout_time_after_reset); 9982 fw_health->regs[BNXT_FW_HEALTH_REG] = 9983 le32_to_cpu(resp->fw_health_status_reg); 9984 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9985 le32_to_cpu(resp->fw_heartbeat_reg); 9986 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9987 le32_to_cpu(resp->fw_reset_cnt_reg); 9988 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9989 le32_to_cpu(resp->reset_inprogress_reg); 9990 fw_health->fw_reset_inprog_reg_mask = 9991 le32_to_cpu(resp->reset_inprogress_reg_mask); 9992 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9993 if (fw_health->fw_reset_seq_cnt >= 16) { 9994 rc = -EINVAL; 9995 goto err_recovery_out; 9996 } 9997 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9998 fw_health->fw_reset_seq_regs[i] = 9999 le32_to_cpu(resp->reset_reg[i]); 10000 fw_health->fw_reset_seq_vals[i] = 10001 le32_to_cpu(resp->reset_reg_val[i]); 10002 fw_health->fw_reset_seq_delay_msec[i] = 10003 resp->delay_after_reset[i]; 10004 } 10005 err_recovery_out: 10006 hwrm_req_drop(bp, req); 10007 if (!rc) 10008 rc = bnxt_map_fw_health_regs(bp); 10009 if (rc) 10010 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 10011 return rc; 10012 } 10013 10014 static int bnxt_hwrm_func_reset(struct bnxt *bp) 10015 { 10016 struct hwrm_func_reset_input *req; 10017 int rc; 10018 10019 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 10020 if (rc) 10021 return rc; 10022 10023 req->enables = 0; 10024 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 10025 return hwrm_req_send(bp, req); 10026 } 10027 10028 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 10029 { 10030 struct hwrm_nvm_get_dev_info_output nvm_info; 10031 10032 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 10033 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 10034 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 10035 nvm_info.nvm_cfg_ver_upd); 10036 } 10037 10038 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 10039 { 10040 struct hwrm_queue_qportcfg_output *resp; 10041 struct hwrm_queue_qportcfg_input *req; 10042 u8 i, j, *qptr; 10043 bool no_rdma; 10044 int rc = 0; 10045 10046 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 10047 if (rc) 10048 return rc; 10049 10050 resp = hwrm_req_hold(bp, req); 10051 rc = hwrm_req_send(bp, req); 10052 if (rc) 10053 goto qportcfg_exit; 10054 10055 if (!resp->max_configurable_queues) { 10056 rc = -EINVAL; 10057 goto qportcfg_exit; 10058 } 10059 bp->max_tc = resp->max_configurable_queues; 10060 bp->max_lltc = resp->max_configurable_lossless_queues; 10061 if (bp->max_tc > BNXT_MAX_QUEUE) 10062 bp->max_tc = BNXT_MAX_QUEUE; 10063 10064 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 10065 qptr = &resp->queue_id0; 10066 for (i = 0, j = 0; i < bp->max_tc; i++) { 10067 bp->q_info[j].queue_id = *qptr; 10068 bp->q_ids[i] = *qptr++; 10069 bp->q_info[j].queue_profile = *qptr++; 10070 bp->tc_to_qidx[j] = j; 10071 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 10072 (no_rdma && BNXT_PF(bp))) 10073 j++; 10074 } 10075 bp->max_q = bp->max_tc; 10076 bp->max_tc = max_t(u8, j, 1); 10077 10078 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 10079 bp->max_tc = 1; 10080 10081 if (bp->max_lltc > bp->max_tc) 10082 bp->max_lltc = bp->max_tc; 10083 10084 qportcfg_exit: 10085 hwrm_req_drop(bp, req); 10086 return rc; 10087 } 10088 10089 static int bnxt_hwrm_poll(struct bnxt *bp) 10090 { 10091 struct hwrm_ver_get_input *req; 10092 int rc; 10093 10094 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10095 if (rc) 10096 return rc; 10097 10098 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10099 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10100 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10101 10102 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 10103 rc = hwrm_req_send(bp, req); 10104 return rc; 10105 } 10106 10107 static int bnxt_hwrm_ver_get(struct bnxt *bp) 10108 { 10109 struct hwrm_ver_get_output *resp; 10110 struct hwrm_ver_get_input *req; 10111 u16 fw_maj, fw_min, fw_bld, fw_rsv; 10112 u32 dev_caps_cfg, hwrm_ver; 10113 int rc, len, max_tmo_secs; 10114 10115 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 10116 if (rc) 10117 return rc; 10118 10119 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 10120 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 10121 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 10122 req->hwrm_intf_min = HWRM_VERSION_MINOR; 10123 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 10124 10125 resp = hwrm_req_hold(bp, req); 10126 rc = hwrm_req_send(bp, req); 10127 if (rc) 10128 goto hwrm_ver_get_exit; 10129 10130 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 10131 10132 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 10133 resp->hwrm_intf_min_8b << 8 | 10134 resp->hwrm_intf_upd_8b; 10135 if (resp->hwrm_intf_maj_8b < 1) { 10136 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 10137 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10138 resp->hwrm_intf_upd_8b); 10139 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 10140 } 10141 10142 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 10143 HWRM_VERSION_UPDATE; 10144 10145 if (bp->hwrm_spec_code > hwrm_ver) 10146 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10147 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 10148 HWRM_VERSION_UPDATE); 10149 else 10150 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 10151 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 10152 resp->hwrm_intf_upd_8b); 10153 10154 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 10155 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 10156 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 10157 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 10158 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 10159 len = FW_VER_STR_LEN; 10160 } else { 10161 fw_maj = resp->hwrm_fw_maj_8b; 10162 fw_min = resp->hwrm_fw_min_8b; 10163 fw_bld = resp->hwrm_fw_bld_8b; 10164 fw_rsv = resp->hwrm_fw_rsvd_8b; 10165 len = BC_HWRM_STR_LEN; 10166 } 10167 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 10168 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 10169 fw_rsv); 10170 10171 if (strlen(resp->active_pkg_name)) { 10172 int fw_ver_len = strlen(bp->fw_ver_str); 10173 10174 snprintf(bp->fw_ver_str + fw_ver_len, 10175 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 10176 resp->active_pkg_name); 10177 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 10178 } 10179 10180 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 10181 if (!bp->hwrm_cmd_timeout) 10182 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 10183 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 10184 if (!bp->hwrm_cmd_max_timeout) 10185 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 10186 max_tmo_secs = bp->hwrm_cmd_max_timeout / 1000; 10187 #ifdef CONFIG_DETECT_HUNG_TASK 10188 if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT || 10189 max_tmo_secs > CONFIG_DEFAULT_HUNG_TASK_TIMEOUT) { 10190 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog (kernel default %ds)\n", 10191 max_tmo_secs, CONFIG_DEFAULT_HUNG_TASK_TIMEOUT); 10192 } 10193 #endif 10194 10195 if (resp->hwrm_intf_maj_8b >= 1) { 10196 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 10197 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 10198 } 10199 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 10200 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 10201 10202 bp->chip_num = le16_to_cpu(resp->chip_num); 10203 bp->chip_rev = resp->chip_rev; 10204 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 10205 !resp->chip_metal) 10206 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 10207 10208 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 10209 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 10210 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 10211 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 10212 10213 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 10214 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 10215 10216 if (dev_caps_cfg & 10217 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 10218 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 10219 10220 if (dev_caps_cfg & 10221 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 10222 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 10223 10224 if (dev_caps_cfg & 10225 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 10226 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 10227 10228 hwrm_ver_get_exit: 10229 hwrm_req_drop(bp, req); 10230 return rc; 10231 } 10232 10233 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 10234 { 10235 struct hwrm_fw_set_time_input *req; 10236 struct tm tm; 10237 time64_t now = ktime_get_real_seconds(); 10238 int rc; 10239 10240 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 10241 bp->hwrm_spec_code < 0x10400) 10242 return -EOPNOTSUPP; 10243 10244 time64_to_tm(now, 0, &tm); 10245 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 10246 if (rc) 10247 return rc; 10248 10249 req->year = cpu_to_le16(1900 + tm.tm_year); 10250 req->month = 1 + tm.tm_mon; 10251 req->day = tm.tm_mday; 10252 req->hour = tm.tm_hour; 10253 req->minute = tm.tm_min; 10254 req->second = tm.tm_sec; 10255 return hwrm_req_send(bp, req); 10256 } 10257 10258 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 10259 { 10260 u64 sw_tmp; 10261 10262 hw &= mask; 10263 sw_tmp = (*sw & ~mask) | hw; 10264 if (hw < (*sw & mask)) 10265 sw_tmp += mask + 1; 10266 WRITE_ONCE(*sw, sw_tmp); 10267 } 10268 10269 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 10270 int count, bool ignore_zero) 10271 { 10272 int i; 10273 10274 for (i = 0; i < count; i++) { 10275 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 10276 10277 if (ignore_zero && !hw) 10278 continue; 10279 10280 if (masks[i] == -1ULL) 10281 sw_stats[i] = hw; 10282 else 10283 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 10284 } 10285 } 10286 10287 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 10288 { 10289 if (!stats->hw_stats) 10290 return; 10291 10292 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10293 stats->hw_masks, stats->len / 8, false); 10294 } 10295 10296 static void bnxt_accumulate_all_stats(struct bnxt *bp) 10297 { 10298 struct bnxt_stats_mem *ring0_stats; 10299 bool ignore_zero = false; 10300 int i; 10301 10302 /* Chip bug. Counter intermittently becomes 0. */ 10303 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10304 ignore_zero = true; 10305 10306 for (i = 0; i < bp->cp_nr_rings; i++) { 10307 struct bnxt_napi *bnapi = bp->bnapi[i]; 10308 struct bnxt_cp_ring_info *cpr; 10309 struct bnxt_stats_mem *stats; 10310 10311 cpr = &bnapi->cp_ring; 10312 stats = &cpr->stats; 10313 if (!i) 10314 ring0_stats = stats; 10315 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10316 ring0_stats->hw_masks, 10317 ring0_stats->len / 8, ignore_zero); 10318 } 10319 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10320 struct bnxt_stats_mem *stats = &bp->port_stats; 10321 __le64 *hw_stats = stats->hw_stats; 10322 u64 *sw_stats = stats->sw_stats; 10323 u64 *masks = stats->hw_masks; 10324 int cnt; 10325 10326 cnt = sizeof(struct rx_port_stats) / 8; 10327 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10328 10329 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10330 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10331 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10332 cnt = sizeof(struct tx_port_stats) / 8; 10333 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10334 } 10335 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 10336 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 10337 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 10338 } 10339 } 10340 10341 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 10342 { 10343 struct hwrm_port_qstats_input *req; 10344 struct bnxt_pf_info *pf = &bp->pf; 10345 int rc; 10346 10347 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 10348 return 0; 10349 10350 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10351 return -EOPNOTSUPP; 10352 10353 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 10354 if (rc) 10355 return rc; 10356 10357 req->flags = flags; 10358 req->port_id = cpu_to_le16(pf->port_id); 10359 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 10360 BNXT_TX_PORT_STATS_BYTE_OFFSET); 10361 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 10362 return hwrm_req_send(bp, req); 10363 } 10364 10365 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 10366 { 10367 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 10368 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 10369 struct hwrm_port_qstats_ext_output *resp_qs; 10370 struct hwrm_port_qstats_ext_input *req_qs; 10371 struct bnxt_pf_info *pf = &bp->pf; 10372 u32 tx_stat_size; 10373 int rc; 10374 10375 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 10376 return 0; 10377 10378 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10379 return -EOPNOTSUPP; 10380 10381 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 10382 if (rc) 10383 return rc; 10384 10385 req_qs->flags = flags; 10386 req_qs->port_id = cpu_to_le16(pf->port_id); 10387 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 10388 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 10389 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 10390 sizeof(struct tx_port_stats_ext) : 0; 10391 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 10392 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 10393 resp_qs = hwrm_req_hold(bp, req_qs); 10394 rc = hwrm_req_send(bp, req_qs); 10395 if (!rc) { 10396 bp->fw_rx_stats_ext_size = 10397 le16_to_cpu(resp_qs->rx_stat_size) / 8; 10398 if (BNXT_FW_MAJ(bp) < 220 && 10399 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 10400 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 10401 10402 bp->fw_tx_stats_ext_size = tx_stat_size ? 10403 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 10404 } else { 10405 bp->fw_rx_stats_ext_size = 0; 10406 bp->fw_tx_stats_ext_size = 0; 10407 } 10408 hwrm_req_drop(bp, req_qs); 10409 10410 if (flags) 10411 return rc; 10412 10413 if (bp->fw_tx_stats_ext_size <= 10414 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 10415 bp->pri2cos_valid = 0; 10416 return rc; 10417 } 10418 10419 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 10420 if (rc) 10421 return rc; 10422 10423 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 10424 10425 resp_qc = hwrm_req_hold(bp, req_qc); 10426 rc = hwrm_req_send(bp, req_qc); 10427 if (!rc) { 10428 u8 *pri2cos; 10429 int i, j; 10430 10431 pri2cos = &resp_qc->pri0_cos_queue_id; 10432 for (i = 0; i < 8; i++) { 10433 u8 queue_id = pri2cos[i]; 10434 u8 queue_idx; 10435 10436 /* Per port queue IDs start from 0, 10, 20, etc */ 10437 queue_idx = queue_id % 10; 10438 if (queue_idx > BNXT_MAX_QUEUE) { 10439 bp->pri2cos_valid = false; 10440 hwrm_req_drop(bp, req_qc); 10441 return rc; 10442 } 10443 for (j = 0; j < bp->max_q; j++) { 10444 if (bp->q_ids[j] == queue_id) 10445 bp->pri2cos_idx[i] = queue_idx; 10446 } 10447 } 10448 bp->pri2cos_valid = true; 10449 } 10450 hwrm_req_drop(bp, req_qc); 10451 10452 return rc; 10453 } 10454 10455 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 10456 { 10457 bnxt_hwrm_tunnel_dst_port_free(bp, 10458 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 10459 bnxt_hwrm_tunnel_dst_port_free(bp, 10460 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 10461 } 10462 10463 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 10464 { 10465 int rc, i; 10466 u32 tpa_flags = 0; 10467 10468 if (set_tpa) 10469 tpa_flags = bp->flags & BNXT_FLAG_TPA; 10470 else if (BNXT_NO_FW_ACCESS(bp)) 10471 return 0; 10472 for (i = 0; i < bp->nr_vnics; i++) { 10473 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 10474 if (rc) { 10475 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 10476 i, rc); 10477 return rc; 10478 } 10479 } 10480 return 0; 10481 } 10482 10483 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 10484 { 10485 int i; 10486 10487 for (i = 0; i < bp->nr_vnics; i++) 10488 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 10489 } 10490 10491 static void bnxt_clear_vnic(struct bnxt *bp) 10492 { 10493 if (!bp->vnic_info) 10494 return; 10495 10496 bnxt_hwrm_clear_vnic_filter(bp); 10497 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 10498 /* clear all RSS setting before free vnic ctx */ 10499 bnxt_hwrm_clear_vnic_rss(bp); 10500 bnxt_hwrm_vnic_ctx_free(bp); 10501 } 10502 /* before free the vnic, undo the vnic tpa settings */ 10503 if (bp->flags & BNXT_FLAG_TPA) 10504 bnxt_set_tpa(bp, false); 10505 bnxt_hwrm_vnic_free(bp); 10506 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10507 bnxt_hwrm_vnic_ctx_free(bp); 10508 } 10509 10510 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 10511 bool irq_re_init) 10512 { 10513 bnxt_clear_vnic(bp); 10514 bnxt_hwrm_ring_free(bp, close_path); 10515 bnxt_hwrm_ring_grp_free(bp); 10516 if (irq_re_init) { 10517 bnxt_hwrm_stat_ctx_free(bp); 10518 bnxt_hwrm_free_tunnel_ports(bp); 10519 } 10520 } 10521 10522 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 10523 { 10524 struct hwrm_func_cfg_input *req; 10525 u8 evb_mode; 10526 int rc; 10527 10528 if (br_mode == BRIDGE_MODE_VEB) 10529 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 10530 else if (br_mode == BRIDGE_MODE_VEPA) 10531 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 10532 else 10533 return -EINVAL; 10534 10535 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10536 if (rc) 10537 return rc; 10538 10539 req->fid = cpu_to_le16(0xffff); 10540 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10541 req->evb_mode = evb_mode; 10542 return hwrm_req_send(bp, req); 10543 } 10544 10545 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10546 { 10547 struct hwrm_func_cfg_input *req; 10548 int rc; 10549 10550 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10551 return 0; 10552 10553 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10554 if (rc) 10555 return rc; 10556 10557 req->fid = cpu_to_le16(0xffff); 10558 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10559 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10560 if (size == 128) 10561 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10562 10563 return hwrm_req_send(bp, req); 10564 } 10565 10566 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10567 { 10568 int rc; 10569 10570 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10571 goto skip_rss_ctx; 10572 10573 /* allocate context for vnic */ 10574 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10575 if (rc) { 10576 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10577 vnic->vnic_id, rc); 10578 goto vnic_setup_err; 10579 } 10580 bp->rsscos_nr_ctxs++; 10581 10582 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10583 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10584 if (rc) { 10585 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10586 vnic->vnic_id, rc); 10587 goto vnic_setup_err; 10588 } 10589 bp->rsscos_nr_ctxs++; 10590 } 10591 10592 skip_rss_ctx: 10593 /* configure default vnic, ring grp */ 10594 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10595 if (rc) { 10596 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10597 vnic->vnic_id, rc); 10598 goto vnic_setup_err; 10599 } 10600 10601 /* Enable RSS hashing on vnic */ 10602 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10603 if (rc) { 10604 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10605 vnic->vnic_id, rc); 10606 goto vnic_setup_err; 10607 } 10608 10609 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10610 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10611 if (rc) { 10612 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10613 vnic->vnic_id, rc); 10614 } 10615 } 10616 10617 vnic_setup_err: 10618 return rc; 10619 } 10620 10621 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10622 u8 valid) 10623 { 10624 struct hwrm_vnic_update_input *req; 10625 int rc; 10626 10627 rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE); 10628 if (rc) 10629 return rc; 10630 10631 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 10632 10633 if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID) 10634 req->mru = cpu_to_le16(vnic->mru); 10635 10636 req->enables = cpu_to_le32(valid); 10637 10638 return hwrm_req_send(bp, req); 10639 } 10640 10641 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10642 { 10643 int rc; 10644 10645 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10646 if (rc) { 10647 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10648 vnic->vnic_id, rc); 10649 return rc; 10650 } 10651 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10652 if (rc) 10653 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10654 vnic->vnic_id, rc); 10655 return rc; 10656 } 10657 10658 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10659 { 10660 int rc, i, nr_ctxs; 10661 10662 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10663 for (i = 0; i < nr_ctxs; i++) { 10664 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10665 if (rc) { 10666 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10667 vnic->vnic_id, i, rc); 10668 break; 10669 } 10670 bp->rsscos_nr_ctxs++; 10671 } 10672 if (i < nr_ctxs) 10673 return -ENOMEM; 10674 10675 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10676 if (rc) 10677 return rc; 10678 10679 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10680 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10681 if (rc) { 10682 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10683 vnic->vnic_id, rc); 10684 } 10685 } 10686 return rc; 10687 } 10688 10689 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10690 { 10691 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10692 return __bnxt_setup_vnic_p5(bp, vnic); 10693 else 10694 return __bnxt_setup_vnic(bp, vnic); 10695 } 10696 10697 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10698 struct bnxt_vnic_info *vnic, 10699 u16 start_rx_ring_idx, int rx_rings) 10700 { 10701 int rc; 10702 10703 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10704 if (rc) { 10705 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10706 vnic->vnic_id, rc); 10707 return rc; 10708 } 10709 return bnxt_setup_vnic(bp, vnic); 10710 } 10711 10712 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10713 { 10714 struct bnxt_vnic_info *vnic; 10715 int i, rc = 0; 10716 10717 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10718 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10719 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10720 } 10721 10722 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10723 return 0; 10724 10725 for (i = 0; i < bp->rx_nr_rings; i++) { 10726 u16 vnic_id = i + 1; 10727 u16 ring_id = i; 10728 10729 if (vnic_id >= bp->nr_vnics) 10730 break; 10731 10732 vnic = &bp->vnic_info[vnic_id]; 10733 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10734 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10735 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10736 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10737 break; 10738 } 10739 return rc; 10740 } 10741 10742 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10743 bool all) 10744 { 10745 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10746 struct bnxt_filter_base *usr_fltr, *tmp; 10747 struct bnxt_ntuple_filter *ntp_fltr; 10748 int i; 10749 10750 if (netif_running(bp->dev)) { 10751 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10752 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10753 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10754 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10755 } 10756 } 10757 if (!all) 10758 return; 10759 10760 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10761 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10762 usr_fltr->fw_vnic_id == rss_ctx->index) { 10763 ntp_fltr = container_of(usr_fltr, 10764 struct bnxt_ntuple_filter, 10765 base); 10766 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10767 bnxt_del_ntp_filter(bp, ntp_fltr); 10768 bnxt_del_one_usr_fltr(bp, usr_fltr); 10769 } 10770 } 10771 10772 if (vnic->rss_table) 10773 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10774 vnic->rss_table, 10775 vnic->rss_table_dma_addr); 10776 bp->num_rss_ctx--; 10777 } 10778 10779 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10780 { 10781 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10782 struct ethtool_rxfh_context *ctx; 10783 unsigned long context; 10784 10785 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10786 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10787 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10788 10789 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10790 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10791 __bnxt_setup_vnic_p5(bp, vnic)) { 10792 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10793 rss_ctx->index); 10794 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10795 ethtool_rxfh_context_lost(bp->dev, rss_ctx->index); 10796 } 10797 } 10798 } 10799 10800 static void bnxt_clear_rss_ctxs(struct bnxt *bp) 10801 { 10802 struct ethtool_rxfh_context *ctx; 10803 unsigned long context; 10804 10805 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10806 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10807 10808 bnxt_del_one_rss_ctx(bp, rss_ctx, false); 10809 } 10810 } 10811 10812 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10813 static bool bnxt_promisc_ok(struct bnxt *bp) 10814 { 10815 #ifdef CONFIG_BNXT_SRIOV 10816 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10817 return false; 10818 #endif 10819 return true; 10820 } 10821 10822 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10823 { 10824 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10825 unsigned int rc = 0; 10826 10827 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10828 if (rc) { 10829 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10830 rc); 10831 return rc; 10832 } 10833 10834 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10835 if (rc) { 10836 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10837 rc); 10838 return rc; 10839 } 10840 return rc; 10841 } 10842 10843 static int bnxt_cfg_rx_mode(struct bnxt *); 10844 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10845 10846 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10847 { 10848 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10849 int rc = 0; 10850 unsigned int rx_nr_rings = bp->rx_nr_rings; 10851 10852 if (irq_re_init) { 10853 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10854 if (rc) { 10855 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10856 rc); 10857 goto err_out; 10858 } 10859 } 10860 10861 rc = bnxt_hwrm_ring_alloc(bp); 10862 if (rc) { 10863 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10864 goto err_out; 10865 } 10866 10867 rc = bnxt_hwrm_ring_grp_alloc(bp); 10868 if (rc) { 10869 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10870 goto err_out; 10871 } 10872 10873 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10874 rx_nr_rings--; 10875 10876 /* default vnic 0 */ 10877 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10878 if (rc) { 10879 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10880 goto err_out; 10881 } 10882 10883 if (BNXT_VF(bp)) 10884 bnxt_hwrm_func_qcfg(bp); 10885 10886 rc = bnxt_setup_vnic(bp, vnic); 10887 if (rc) 10888 goto err_out; 10889 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10890 bnxt_hwrm_update_rss_hash_cfg(bp); 10891 10892 if (bp->flags & BNXT_FLAG_RFS) { 10893 rc = bnxt_alloc_rfs_vnics(bp); 10894 if (rc) 10895 goto err_out; 10896 } 10897 10898 if (bp->flags & BNXT_FLAG_TPA) { 10899 rc = bnxt_set_tpa(bp, true); 10900 if (rc) 10901 goto err_out; 10902 } 10903 10904 if (BNXT_VF(bp)) 10905 bnxt_update_vf_mac(bp); 10906 10907 /* Filter for default vnic 0 */ 10908 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10909 if (rc) { 10910 if (BNXT_VF(bp) && rc == -ENODEV) 10911 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10912 else 10913 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10914 goto err_out; 10915 } 10916 vnic->uc_filter_count = 1; 10917 10918 vnic->rx_mask = 0; 10919 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10920 goto skip_rx_mask; 10921 10922 if (bp->dev->flags & IFF_BROADCAST) 10923 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10924 10925 if (bp->dev->flags & IFF_PROMISC) 10926 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10927 10928 if (bp->dev->flags & IFF_ALLMULTI) { 10929 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10930 vnic->mc_list_count = 0; 10931 } else if (bp->dev->flags & IFF_MULTICAST) { 10932 u32 mask = 0; 10933 10934 bnxt_mc_list_updated(bp, &mask); 10935 vnic->rx_mask |= mask; 10936 } 10937 10938 rc = bnxt_cfg_rx_mode(bp); 10939 if (rc) 10940 goto err_out; 10941 10942 skip_rx_mask: 10943 rc = bnxt_hwrm_set_coal(bp); 10944 if (rc) 10945 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10946 rc); 10947 10948 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10949 rc = bnxt_setup_nitroa0_vnic(bp); 10950 if (rc) 10951 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10952 rc); 10953 } 10954 10955 if (BNXT_VF(bp)) { 10956 bnxt_hwrm_func_qcfg(bp); 10957 netdev_update_features(bp->dev); 10958 } 10959 10960 return 0; 10961 10962 err_out: 10963 bnxt_hwrm_resource_free(bp, 0, true); 10964 10965 return rc; 10966 } 10967 10968 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10969 { 10970 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10971 return 0; 10972 } 10973 10974 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10975 { 10976 bnxt_init_cp_rings(bp); 10977 bnxt_init_rx_rings(bp); 10978 bnxt_init_tx_rings(bp); 10979 bnxt_init_ring_grps(bp, irq_re_init); 10980 bnxt_init_vnics(bp); 10981 10982 return bnxt_init_chip(bp, irq_re_init); 10983 } 10984 10985 static int bnxt_set_real_num_queues(struct bnxt *bp) 10986 { 10987 int rc; 10988 struct net_device *dev = bp->dev; 10989 10990 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10991 bp->tx_nr_rings_xdp); 10992 if (rc) 10993 return rc; 10994 10995 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10996 if (rc) 10997 return rc; 10998 10999 #ifdef CONFIG_RFS_ACCEL 11000 if (bp->flags & BNXT_FLAG_RFS) 11001 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 11002 #endif 11003 11004 return rc; 11005 } 11006 11007 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11008 bool shared) 11009 { 11010 int _rx = *rx, _tx = *tx; 11011 11012 if (shared) { 11013 *rx = min_t(int, _rx, max); 11014 *tx = min_t(int, _tx, max); 11015 } else { 11016 if (max < 2) 11017 return -ENOMEM; 11018 11019 while (_rx + _tx > max) { 11020 if (_rx > _tx && _rx > 1) 11021 _rx--; 11022 else if (_tx > 1) 11023 _tx--; 11024 } 11025 *rx = _rx; 11026 *tx = _tx; 11027 } 11028 return 0; 11029 } 11030 11031 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 11032 { 11033 return (tx - tx_xdp) / tx_sets + tx_xdp; 11034 } 11035 11036 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 11037 { 11038 int tcs = bp->num_tc; 11039 11040 if (!tcs) 11041 tcs = 1; 11042 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 11043 } 11044 11045 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 11046 { 11047 int tcs = bp->num_tc; 11048 11049 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 11050 bp->tx_nr_rings_xdp; 11051 } 11052 11053 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 11054 bool sh) 11055 { 11056 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 11057 11058 if (tx_cp != *tx) { 11059 int tx_saved = tx_cp, rc; 11060 11061 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 11062 if (rc) 11063 return rc; 11064 if (tx_cp != tx_saved) 11065 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 11066 return 0; 11067 } 11068 return __bnxt_trim_rings(bp, rx, tx, max, sh); 11069 } 11070 11071 static void bnxt_setup_msix(struct bnxt *bp) 11072 { 11073 const int len = sizeof(bp->irq_tbl[0].name); 11074 struct net_device *dev = bp->dev; 11075 int tcs, i; 11076 11077 tcs = bp->num_tc; 11078 if (tcs) { 11079 int i, off, count; 11080 11081 for (i = 0; i < tcs; i++) { 11082 count = bp->tx_nr_rings_per_tc; 11083 off = BNXT_TC_TO_RING_BASE(bp, i); 11084 netdev_set_tc_queue(dev, i, count, off); 11085 } 11086 } 11087 11088 for (i = 0; i < bp->cp_nr_rings; i++) { 11089 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11090 char *attr; 11091 11092 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 11093 attr = "TxRx"; 11094 else if (i < bp->rx_nr_rings) 11095 attr = "rx"; 11096 else 11097 attr = "tx"; 11098 11099 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 11100 attr, i); 11101 bp->irq_tbl[map_idx].handler = bnxt_msix; 11102 } 11103 } 11104 11105 static int bnxt_init_int_mode(struct bnxt *bp); 11106 11107 static int bnxt_change_msix(struct bnxt *bp, int total) 11108 { 11109 struct msi_map map; 11110 int i; 11111 11112 /* add MSIX to the end if needed */ 11113 for (i = bp->total_irqs; i < total; i++) { 11114 map = pci_msix_alloc_irq_at(bp->pdev, i, NULL); 11115 if (map.index < 0) 11116 return bp->total_irqs; 11117 bp->irq_tbl[i].vector = map.virq; 11118 bp->total_irqs++; 11119 } 11120 11121 /* trim MSIX from the end if needed */ 11122 for (i = bp->total_irqs; i > total; i--) { 11123 map.index = i - 1; 11124 map.virq = bp->irq_tbl[i - 1].vector; 11125 pci_msix_free_irq(bp->pdev, map); 11126 bp->total_irqs--; 11127 } 11128 return bp->total_irqs; 11129 } 11130 11131 static int bnxt_setup_int_mode(struct bnxt *bp) 11132 { 11133 int rc; 11134 11135 if (!bp->irq_tbl) { 11136 rc = bnxt_init_int_mode(bp); 11137 if (rc || !bp->irq_tbl) 11138 return rc ?: -ENODEV; 11139 } 11140 11141 bnxt_setup_msix(bp); 11142 11143 rc = bnxt_set_real_num_queues(bp); 11144 return rc; 11145 } 11146 11147 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 11148 { 11149 return bp->hw_resc.max_rsscos_ctxs; 11150 } 11151 11152 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 11153 { 11154 return bp->hw_resc.max_vnics; 11155 } 11156 11157 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 11158 { 11159 return bp->hw_resc.max_stat_ctxs; 11160 } 11161 11162 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 11163 { 11164 return bp->hw_resc.max_cp_rings; 11165 } 11166 11167 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 11168 { 11169 unsigned int cp = bp->hw_resc.max_cp_rings; 11170 11171 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 11172 cp -= bnxt_get_ulp_msix_num(bp); 11173 11174 return cp; 11175 } 11176 11177 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 11178 { 11179 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11180 11181 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11182 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 11183 11184 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 11185 } 11186 11187 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 11188 { 11189 bp->hw_resc.max_irqs = max_irqs; 11190 } 11191 11192 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 11193 { 11194 unsigned int cp; 11195 11196 cp = bnxt_get_max_func_cp_rings_for_en(bp); 11197 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11198 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 11199 else 11200 return cp - bp->cp_nr_rings; 11201 } 11202 11203 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 11204 { 11205 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 11206 } 11207 11208 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 11209 { 11210 int max_irq = bnxt_get_max_func_irqs(bp); 11211 int total_req = bp->cp_nr_rings + num; 11212 11213 if (max_irq < total_req) { 11214 num = max_irq - bp->cp_nr_rings; 11215 if (num <= 0) 11216 return 0; 11217 } 11218 return num; 11219 } 11220 11221 static int bnxt_get_num_msix(struct bnxt *bp) 11222 { 11223 if (!BNXT_NEW_RM(bp)) 11224 return bnxt_get_max_func_irqs(bp); 11225 11226 return bnxt_nq_rings_in_use(bp); 11227 } 11228 11229 static int bnxt_init_int_mode(struct bnxt *bp) 11230 { 11231 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size; 11232 11233 total_vecs = bnxt_get_num_msix(bp); 11234 max = bnxt_get_max_func_irqs(bp); 11235 if (total_vecs > max) 11236 total_vecs = max; 11237 11238 if (!total_vecs) 11239 return 0; 11240 11241 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 11242 min = 2; 11243 11244 total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs, 11245 PCI_IRQ_MSIX); 11246 ulp_msix = bnxt_get_ulp_msix_num(bp); 11247 if (total_vecs < 0 || total_vecs < ulp_msix) { 11248 rc = -ENODEV; 11249 goto msix_setup_exit; 11250 } 11251 11252 tbl_size = total_vecs; 11253 if (pci_msix_can_alloc_dyn(bp->pdev)) 11254 tbl_size = max; 11255 bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL); 11256 if (bp->irq_tbl) { 11257 for (i = 0; i < total_vecs; i++) 11258 bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i); 11259 11260 bp->total_irqs = total_vecs; 11261 /* Trim rings based upon num of vectors allocated */ 11262 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 11263 total_vecs - ulp_msix, min == 1); 11264 if (rc) 11265 goto msix_setup_exit; 11266 11267 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 11268 bp->cp_nr_rings = (min == 1) ? 11269 max_t(int, tx_cp, bp->rx_nr_rings) : 11270 tx_cp + bp->rx_nr_rings; 11271 11272 } else { 11273 rc = -ENOMEM; 11274 goto msix_setup_exit; 11275 } 11276 return 0; 11277 11278 msix_setup_exit: 11279 netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc); 11280 kfree(bp->irq_tbl); 11281 bp->irq_tbl = NULL; 11282 pci_free_irq_vectors(bp->pdev); 11283 return rc; 11284 } 11285 11286 static void bnxt_clear_int_mode(struct bnxt *bp) 11287 { 11288 pci_free_irq_vectors(bp->pdev); 11289 11290 kfree(bp->irq_tbl); 11291 bp->irq_tbl = NULL; 11292 } 11293 11294 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 11295 { 11296 bool irq_cleared = false; 11297 bool irq_change = false; 11298 int tcs = bp->num_tc; 11299 int irqs_required; 11300 int rc; 11301 11302 if (!bnxt_need_reserve_rings(bp)) 11303 return 0; 11304 11305 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 11306 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 11307 11308 if (ulp_msix > bp->ulp_num_msix_want) 11309 ulp_msix = bp->ulp_num_msix_want; 11310 irqs_required = ulp_msix + bp->cp_nr_rings; 11311 } else { 11312 irqs_required = bnxt_get_num_msix(bp); 11313 } 11314 11315 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 11316 irq_change = true; 11317 if (!pci_msix_can_alloc_dyn(bp->pdev)) { 11318 bnxt_ulp_irq_stop(bp); 11319 bnxt_clear_int_mode(bp); 11320 irq_cleared = true; 11321 } 11322 } 11323 rc = __bnxt_reserve_rings(bp); 11324 if (irq_cleared) { 11325 if (!rc) 11326 rc = bnxt_init_int_mode(bp); 11327 bnxt_ulp_irq_restart(bp, rc); 11328 } else if (irq_change && !rc) { 11329 if (bnxt_change_msix(bp, irqs_required) != irqs_required) 11330 rc = -ENOSPC; 11331 } 11332 if (rc) { 11333 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 11334 return rc; 11335 } 11336 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 11337 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 11338 netdev_err(bp->dev, "tx ring reservation failure\n"); 11339 netdev_reset_tc(bp->dev); 11340 bp->num_tc = 0; 11341 if (bp->tx_nr_rings_xdp) 11342 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 11343 else 11344 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11345 return -ENOMEM; 11346 } 11347 return 0; 11348 } 11349 11350 static void bnxt_tx_queue_stop(struct bnxt *bp, int idx) 11351 { 11352 struct bnxt_tx_ring_info *txr; 11353 struct netdev_queue *txq; 11354 struct bnxt_napi *bnapi; 11355 int i; 11356 11357 bnapi = bp->bnapi[idx]; 11358 bnxt_for_each_napi_tx(i, bnapi, txr) { 11359 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11360 synchronize_net(); 11361 11362 if (!(bnapi->flags & BNXT_NAPI_FLAG_XDP)) { 11363 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11364 if (txq) { 11365 __netif_tx_lock_bh(txq); 11366 netif_tx_stop_queue(txq); 11367 __netif_tx_unlock_bh(txq); 11368 } 11369 } 11370 11371 if (!bp->tph_mode) 11372 continue; 11373 11374 bnxt_hwrm_tx_ring_free(bp, txr, true); 11375 bnxt_hwrm_cp_ring_free(bp, txr->tx_cpr); 11376 bnxt_free_one_tx_ring_skbs(bp, txr, txr->txq_index); 11377 bnxt_clear_one_cp_ring(bp, txr->tx_cpr); 11378 } 11379 } 11380 11381 static int bnxt_tx_queue_start(struct bnxt *bp, int idx) 11382 { 11383 struct bnxt_tx_ring_info *txr; 11384 struct netdev_queue *txq; 11385 struct bnxt_napi *bnapi; 11386 int rc, i; 11387 11388 bnapi = bp->bnapi[idx]; 11389 /* All rings have been reserved and previously allocated. 11390 * Reallocating with the same parameters should never fail. 11391 */ 11392 bnxt_for_each_napi_tx(i, bnapi, txr) { 11393 if (!bp->tph_mode) 11394 goto start_tx; 11395 11396 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, txr->tx_cpr); 11397 if (rc) 11398 return rc; 11399 11400 rc = bnxt_hwrm_tx_ring_alloc(bp, txr, false); 11401 if (rc) 11402 return rc; 11403 11404 txr->tx_prod = 0; 11405 txr->tx_cons = 0; 11406 txr->tx_hw_cons = 0; 11407 start_tx: 11408 WRITE_ONCE(txr->dev_state, 0); 11409 synchronize_net(); 11410 11411 if (bnapi->flags & BNXT_NAPI_FLAG_XDP) 11412 continue; 11413 11414 txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 11415 if (txq) 11416 netif_tx_start_queue(txq); 11417 } 11418 11419 return 0; 11420 } 11421 11422 static void bnxt_irq_affinity_notify(struct irq_affinity_notify *notify, 11423 const cpumask_t *mask) 11424 { 11425 struct bnxt_irq *irq; 11426 u16 tag; 11427 int err; 11428 11429 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11430 11431 if (!irq->bp->tph_mode) 11432 return; 11433 11434 cpumask_copy(irq->cpu_mask, mask); 11435 11436 if (irq->ring_nr >= irq->bp->rx_nr_rings) 11437 return; 11438 11439 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11440 cpumask_first(irq->cpu_mask), &tag)) 11441 return; 11442 11443 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag)) 11444 return; 11445 11446 netdev_lock(irq->bp->dev); 11447 if (netif_running(irq->bp->dev)) { 11448 err = netdev_rx_queue_restart(irq->bp->dev, irq->ring_nr); 11449 if (err) 11450 netdev_err(irq->bp->dev, 11451 "RX queue restart failed: err=%d\n", err); 11452 } 11453 netdev_unlock(irq->bp->dev); 11454 } 11455 11456 static void bnxt_irq_affinity_release(struct kref *ref) 11457 { 11458 struct irq_affinity_notify *notify = 11459 container_of(ref, struct irq_affinity_notify, kref); 11460 struct bnxt_irq *irq; 11461 11462 irq = container_of(notify, struct bnxt_irq, affinity_notify); 11463 11464 if (!irq->bp->tph_mode) 11465 return; 11466 11467 if (pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, 0)) { 11468 netdev_err(irq->bp->dev, 11469 "Setting ST=0 for MSIX entry %d failed\n", 11470 irq->msix_nr); 11471 return; 11472 } 11473 } 11474 11475 static void bnxt_release_irq_notifier(struct bnxt_irq *irq) 11476 { 11477 irq_set_affinity_notifier(irq->vector, NULL); 11478 } 11479 11480 static void bnxt_register_irq_notifier(struct bnxt *bp, struct bnxt_irq *irq) 11481 { 11482 struct irq_affinity_notify *notify; 11483 11484 irq->bp = bp; 11485 11486 /* Nothing to do if TPH is not enabled */ 11487 if (!bp->tph_mode) 11488 return; 11489 11490 /* Register IRQ affinity notifier */ 11491 notify = &irq->affinity_notify; 11492 notify->irq = irq->vector; 11493 notify->notify = bnxt_irq_affinity_notify; 11494 notify->release = bnxt_irq_affinity_release; 11495 11496 irq_set_affinity_notifier(irq->vector, notify); 11497 } 11498 11499 static void bnxt_free_irq(struct bnxt *bp) 11500 { 11501 struct bnxt_irq *irq; 11502 int i; 11503 11504 #ifdef CONFIG_RFS_ACCEL 11505 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 11506 bp->dev->rx_cpu_rmap = NULL; 11507 #endif 11508 if (!bp->irq_tbl || !bp->bnapi) 11509 return; 11510 11511 for (i = 0; i < bp->cp_nr_rings; i++) { 11512 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11513 11514 irq = &bp->irq_tbl[map_idx]; 11515 if (irq->requested) { 11516 if (irq->have_cpumask) { 11517 irq_update_affinity_hint(irq->vector, NULL); 11518 free_cpumask_var(irq->cpu_mask); 11519 irq->have_cpumask = 0; 11520 } 11521 11522 bnxt_release_irq_notifier(irq); 11523 11524 free_irq(irq->vector, bp->bnapi[i]); 11525 } 11526 11527 irq->requested = 0; 11528 } 11529 11530 /* Disable TPH support */ 11531 pcie_disable_tph(bp->pdev); 11532 bp->tph_mode = 0; 11533 } 11534 11535 static int bnxt_request_irq(struct bnxt *bp) 11536 { 11537 int i, j, rc = 0; 11538 unsigned long flags = 0; 11539 #ifdef CONFIG_RFS_ACCEL 11540 struct cpu_rmap *rmap; 11541 #endif 11542 11543 rc = bnxt_setup_int_mode(bp); 11544 if (rc) { 11545 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 11546 rc); 11547 return rc; 11548 } 11549 #ifdef CONFIG_RFS_ACCEL 11550 rmap = bp->dev->rx_cpu_rmap; 11551 #endif 11552 11553 /* Enable TPH support as part of IRQ request */ 11554 rc = pcie_enable_tph(bp->pdev, PCI_TPH_ST_IV_MODE); 11555 if (!rc) 11556 bp->tph_mode = PCI_TPH_ST_IV_MODE; 11557 11558 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 11559 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11560 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 11561 11562 #ifdef CONFIG_RFS_ACCEL 11563 if (rmap && bp->bnapi[i]->rx_ring) { 11564 rc = irq_cpu_rmap_add(rmap, irq->vector); 11565 if (rc) 11566 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 11567 j); 11568 j++; 11569 } 11570 #endif 11571 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 11572 bp->bnapi[i]); 11573 if (rc) 11574 break; 11575 11576 netif_napi_set_irq_locked(&bp->bnapi[i]->napi, irq->vector); 11577 irq->requested = 1; 11578 11579 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 11580 int numa_node = dev_to_node(&bp->pdev->dev); 11581 u16 tag; 11582 11583 irq->have_cpumask = 1; 11584 irq->msix_nr = map_idx; 11585 irq->ring_nr = i; 11586 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 11587 irq->cpu_mask); 11588 rc = irq_update_affinity_hint(irq->vector, irq->cpu_mask); 11589 if (rc) { 11590 netdev_warn(bp->dev, 11591 "Update affinity hint failed, IRQ = %d\n", 11592 irq->vector); 11593 break; 11594 } 11595 11596 bnxt_register_irq_notifier(bp, irq); 11597 11598 /* Init ST table entry */ 11599 if (pcie_tph_get_cpu_st(irq->bp->pdev, TPH_MEM_TYPE_VM, 11600 cpumask_first(irq->cpu_mask), 11601 &tag)) 11602 continue; 11603 11604 pcie_tph_set_st_entry(irq->bp->pdev, irq->msix_nr, tag); 11605 } 11606 } 11607 return rc; 11608 } 11609 11610 static void bnxt_del_napi(struct bnxt *bp) 11611 { 11612 int i; 11613 11614 if (!bp->bnapi) 11615 return; 11616 11617 for (i = 0; i < bp->rx_nr_rings; i++) 11618 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 11619 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 11620 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 11621 11622 for (i = 0; i < bp->cp_nr_rings; i++) { 11623 struct bnxt_napi *bnapi = bp->bnapi[i]; 11624 11625 __netif_napi_del_locked(&bnapi->napi); 11626 } 11627 /* We called __netif_napi_del_locked(), we need 11628 * to respect an RCU grace period before freeing napi structures. 11629 */ 11630 synchronize_net(); 11631 } 11632 11633 static void bnxt_init_napi(struct bnxt *bp) 11634 { 11635 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 11636 unsigned int cp_nr_rings = bp->cp_nr_rings; 11637 struct bnxt_napi *bnapi; 11638 int i; 11639 11640 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11641 poll_fn = bnxt_poll_p5; 11642 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 11643 cp_nr_rings--; 11644 for (i = 0; i < cp_nr_rings; i++) { 11645 bnapi = bp->bnapi[i]; 11646 netif_napi_add_config_locked(bp->dev, &bnapi->napi, poll_fn, 11647 bnapi->index); 11648 } 11649 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11650 bnapi = bp->bnapi[cp_nr_rings]; 11651 netif_napi_add_locked(bp->dev, &bnapi->napi, bnxt_poll_nitroa0); 11652 } 11653 } 11654 11655 static void bnxt_disable_napi(struct bnxt *bp) 11656 { 11657 int i; 11658 11659 if (!bp->bnapi || 11660 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 11661 return; 11662 11663 for (i = 0; i < bp->cp_nr_rings; i++) { 11664 struct bnxt_napi *bnapi = bp->bnapi[i]; 11665 struct bnxt_cp_ring_info *cpr; 11666 11667 cpr = &bnapi->cp_ring; 11668 if (bnapi->tx_fault) 11669 cpr->sw_stats->tx.tx_resets++; 11670 if (bnapi->in_reset) 11671 cpr->sw_stats->rx.rx_resets++; 11672 napi_disable_locked(&bnapi->napi); 11673 } 11674 } 11675 11676 static void bnxt_enable_napi(struct bnxt *bp) 11677 { 11678 int i; 11679 11680 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11681 for (i = 0; i < bp->cp_nr_rings; i++) { 11682 struct bnxt_napi *bnapi = bp->bnapi[i]; 11683 struct bnxt_cp_ring_info *cpr; 11684 11685 bnapi->tx_fault = 0; 11686 11687 cpr = &bnapi->cp_ring; 11688 bnapi->in_reset = false; 11689 11690 if (bnapi->rx_ring) { 11691 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11692 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11693 } 11694 napi_enable_locked(&bnapi->napi); 11695 } 11696 } 11697 11698 void bnxt_tx_disable(struct bnxt *bp) 11699 { 11700 int i; 11701 struct bnxt_tx_ring_info *txr; 11702 11703 if (bp->tx_ring) { 11704 for (i = 0; i < bp->tx_nr_rings; i++) { 11705 txr = &bp->tx_ring[i]; 11706 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11707 } 11708 } 11709 /* Make sure napi polls see @dev_state change */ 11710 synchronize_net(); 11711 /* Drop carrier first to prevent TX timeout */ 11712 netif_carrier_off(bp->dev); 11713 /* Stop all TX queues */ 11714 netif_tx_disable(bp->dev); 11715 } 11716 11717 void bnxt_tx_enable(struct bnxt *bp) 11718 { 11719 int i; 11720 struct bnxt_tx_ring_info *txr; 11721 11722 for (i = 0; i < bp->tx_nr_rings; i++) { 11723 txr = &bp->tx_ring[i]; 11724 WRITE_ONCE(txr->dev_state, 0); 11725 } 11726 /* Make sure napi polls see @dev_state change */ 11727 synchronize_net(); 11728 netif_tx_wake_all_queues(bp->dev); 11729 if (BNXT_LINK_IS_UP(bp)) 11730 netif_carrier_on(bp->dev); 11731 } 11732 11733 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11734 { 11735 u8 active_fec = link_info->active_fec_sig_mode & 11736 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11737 11738 switch (active_fec) { 11739 default: 11740 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11741 return "None"; 11742 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11743 return "Clause 74 BaseR"; 11744 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11745 return "Clause 91 RS(528,514)"; 11746 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11747 return "Clause 91 RS544_1XN"; 11748 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11749 return "Clause 91 RS(544,514)"; 11750 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11751 return "Clause 91 RS272_1XN"; 11752 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11753 return "Clause 91 RS(272,257)"; 11754 } 11755 } 11756 11757 void bnxt_report_link(struct bnxt *bp) 11758 { 11759 if (BNXT_LINK_IS_UP(bp)) { 11760 const char *signal = ""; 11761 const char *flow_ctrl; 11762 const char *duplex; 11763 u32 speed; 11764 u16 fec; 11765 11766 netif_carrier_on(bp->dev); 11767 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11768 if (speed == SPEED_UNKNOWN) { 11769 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11770 return; 11771 } 11772 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11773 duplex = "full"; 11774 else 11775 duplex = "half"; 11776 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11777 flow_ctrl = "ON - receive & transmit"; 11778 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11779 flow_ctrl = "ON - transmit"; 11780 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11781 flow_ctrl = "ON - receive"; 11782 else 11783 flow_ctrl = "none"; 11784 if (bp->link_info.phy_qcfg_resp.option_flags & 11785 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11786 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11787 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11788 switch (sig_mode) { 11789 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11790 signal = "(NRZ) "; 11791 break; 11792 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11793 signal = "(PAM4 56Gbps) "; 11794 break; 11795 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11796 signal = "(PAM4 112Gbps) "; 11797 break; 11798 default: 11799 break; 11800 } 11801 } 11802 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11803 speed, signal, duplex, flow_ctrl); 11804 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11805 netdev_info(bp->dev, "EEE is %s\n", 11806 bp->eee.eee_active ? "active" : 11807 "not active"); 11808 fec = bp->link_info.fec_cfg; 11809 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11810 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11811 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11812 bnxt_report_fec(&bp->link_info)); 11813 } else { 11814 netif_carrier_off(bp->dev); 11815 netdev_err(bp->dev, "NIC Link is Down\n"); 11816 } 11817 } 11818 11819 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11820 { 11821 if (!resp->supported_speeds_auto_mode && 11822 !resp->supported_speeds_force_mode && 11823 !resp->supported_pam4_speeds_auto_mode && 11824 !resp->supported_pam4_speeds_force_mode && 11825 !resp->supported_speeds2_auto_mode && 11826 !resp->supported_speeds2_force_mode) 11827 return true; 11828 return false; 11829 } 11830 11831 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11832 { 11833 struct bnxt_link_info *link_info = &bp->link_info; 11834 struct hwrm_port_phy_qcaps_output *resp; 11835 struct hwrm_port_phy_qcaps_input *req; 11836 int rc = 0; 11837 11838 if (bp->hwrm_spec_code < 0x10201) 11839 return 0; 11840 11841 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11842 if (rc) 11843 return rc; 11844 11845 resp = hwrm_req_hold(bp, req); 11846 rc = hwrm_req_send(bp, req); 11847 if (rc) 11848 goto hwrm_phy_qcaps_exit; 11849 11850 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11851 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11852 struct ethtool_keee *eee = &bp->eee; 11853 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11854 11855 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11856 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11857 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11858 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11859 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11860 } 11861 11862 if (bp->hwrm_spec_code >= 0x10a01) { 11863 if (bnxt_phy_qcaps_no_speed(resp)) { 11864 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11865 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11866 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11867 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11868 netdev_info(bp->dev, "Ethernet link enabled\n"); 11869 /* Phy re-enabled, reprobe the speeds */ 11870 link_info->support_auto_speeds = 0; 11871 link_info->support_pam4_auto_speeds = 0; 11872 link_info->support_auto_speeds2 = 0; 11873 } 11874 } 11875 if (resp->supported_speeds_auto_mode) 11876 link_info->support_auto_speeds = 11877 le16_to_cpu(resp->supported_speeds_auto_mode); 11878 if (resp->supported_pam4_speeds_auto_mode) 11879 link_info->support_pam4_auto_speeds = 11880 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11881 if (resp->supported_speeds2_auto_mode) 11882 link_info->support_auto_speeds2 = 11883 le16_to_cpu(resp->supported_speeds2_auto_mode); 11884 11885 bp->port_count = resp->port_cnt; 11886 11887 hwrm_phy_qcaps_exit: 11888 hwrm_req_drop(bp, req); 11889 return rc; 11890 } 11891 11892 static void bnxt_hwrm_mac_qcaps(struct bnxt *bp) 11893 { 11894 struct hwrm_port_mac_qcaps_output *resp; 11895 struct hwrm_port_mac_qcaps_input *req; 11896 int rc; 11897 11898 if (bp->hwrm_spec_code < 0x10a03) 11899 return; 11900 11901 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_QCAPS); 11902 if (rc) 11903 return; 11904 11905 resp = hwrm_req_hold(bp, req); 11906 rc = hwrm_req_send_silent(bp, req); 11907 if (!rc) 11908 bp->mac_flags = resp->flags; 11909 hwrm_req_drop(bp, req); 11910 } 11911 11912 static bool bnxt_support_dropped(u16 advertising, u16 supported) 11913 { 11914 u16 diff = advertising ^ supported; 11915 11916 return ((supported | diff) != supported); 11917 } 11918 11919 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 11920 { 11921 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 11922 11923 /* Check if any advertised speeds are no longer supported. The caller 11924 * holds the link_lock mutex, so we can modify link_info settings. 11925 */ 11926 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11927 if (bnxt_support_dropped(link_info->advertising, 11928 link_info->support_auto_speeds2)) { 11929 link_info->advertising = link_info->support_auto_speeds2; 11930 return true; 11931 } 11932 return false; 11933 } 11934 if (bnxt_support_dropped(link_info->advertising, 11935 link_info->support_auto_speeds)) { 11936 link_info->advertising = link_info->support_auto_speeds; 11937 return true; 11938 } 11939 if (bnxt_support_dropped(link_info->advertising_pam4, 11940 link_info->support_pam4_auto_speeds)) { 11941 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 11942 return true; 11943 } 11944 return false; 11945 } 11946 11947 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 11948 { 11949 struct bnxt_link_info *link_info = &bp->link_info; 11950 struct hwrm_port_phy_qcfg_output *resp; 11951 struct hwrm_port_phy_qcfg_input *req; 11952 u8 link_state = link_info->link_state; 11953 bool support_changed; 11954 int rc; 11955 11956 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 11957 if (rc) 11958 return rc; 11959 11960 resp = hwrm_req_hold(bp, req); 11961 rc = hwrm_req_send(bp, req); 11962 if (rc) { 11963 hwrm_req_drop(bp, req); 11964 if (BNXT_VF(bp) && rc == -ENODEV) { 11965 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 11966 rc = 0; 11967 } 11968 return rc; 11969 } 11970 11971 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 11972 link_info->phy_link_status = resp->link; 11973 link_info->duplex = resp->duplex_cfg; 11974 if (bp->hwrm_spec_code >= 0x10800) 11975 link_info->duplex = resp->duplex_state; 11976 link_info->pause = resp->pause; 11977 link_info->auto_mode = resp->auto_mode; 11978 link_info->auto_pause_setting = resp->auto_pause; 11979 link_info->lp_pause = resp->link_partner_adv_pause; 11980 link_info->force_pause_setting = resp->force_pause; 11981 link_info->duplex_setting = resp->duplex_cfg; 11982 if (link_info->phy_link_status == BNXT_LINK_LINK) { 11983 link_info->link_speed = le16_to_cpu(resp->link_speed); 11984 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 11985 link_info->active_lanes = resp->active_lanes; 11986 } else { 11987 link_info->link_speed = 0; 11988 link_info->active_lanes = 0; 11989 } 11990 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 11991 link_info->force_pam4_link_speed = 11992 le16_to_cpu(resp->force_pam4_link_speed); 11993 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 11994 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 11995 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 11996 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 11997 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 11998 link_info->auto_pam4_link_speeds = 11999 le16_to_cpu(resp->auto_pam4_link_speed_mask); 12000 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 12001 link_info->lp_auto_link_speeds = 12002 le16_to_cpu(resp->link_partner_adv_speeds); 12003 link_info->lp_auto_pam4_link_speeds = 12004 resp->link_partner_pam4_adv_speeds; 12005 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 12006 link_info->phy_ver[0] = resp->phy_maj; 12007 link_info->phy_ver[1] = resp->phy_min; 12008 link_info->phy_ver[2] = resp->phy_bld; 12009 link_info->media_type = resp->media_type; 12010 link_info->phy_type = resp->phy_type; 12011 link_info->transceiver = resp->xcvr_pkg_type; 12012 link_info->phy_addr = resp->eee_config_phy_addr & 12013 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 12014 link_info->module_status = resp->module_status; 12015 12016 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 12017 struct ethtool_keee *eee = &bp->eee; 12018 u16 fw_speeds; 12019 12020 eee->eee_active = 0; 12021 if (resp->eee_config_phy_addr & 12022 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 12023 eee->eee_active = 1; 12024 fw_speeds = le16_to_cpu( 12025 resp->link_partner_adv_eee_link_speed_mask); 12026 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 12027 } 12028 12029 /* Pull initial EEE config */ 12030 if (!chng_link_state) { 12031 if (resp->eee_config_phy_addr & 12032 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 12033 eee->eee_enabled = 1; 12034 12035 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 12036 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 12037 12038 if (resp->eee_config_phy_addr & 12039 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 12040 __le32 tmr; 12041 12042 eee->tx_lpi_enabled = 1; 12043 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 12044 eee->tx_lpi_timer = le32_to_cpu(tmr) & 12045 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 12046 } 12047 } 12048 } 12049 12050 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 12051 if (bp->hwrm_spec_code >= 0x10504) { 12052 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 12053 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 12054 } 12055 /* TODO: need to add more logic to report VF link */ 12056 if (chng_link_state) { 12057 if (link_info->phy_link_status == BNXT_LINK_LINK) 12058 link_info->link_state = BNXT_LINK_STATE_UP; 12059 else 12060 link_info->link_state = BNXT_LINK_STATE_DOWN; 12061 if (link_state != link_info->link_state) 12062 bnxt_report_link(bp); 12063 } else { 12064 /* always link down if not require to update link state */ 12065 link_info->link_state = BNXT_LINK_STATE_DOWN; 12066 } 12067 hwrm_req_drop(bp, req); 12068 12069 if (!BNXT_PHY_CFG_ABLE(bp)) 12070 return 0; 12071 12072 support_changed = bnxt_support_speed_dropped(link_info); 12073 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 12074 bnxt_hwrm_set_link_setting(bp, true, false); 12075 return 0; 12076 } 12077 12078 static void bnxt_get_port_module_status(struct bnxt *bp) 12079 { 12080 struct bnxt_link_info *link_info = &bp->link_info; 12081 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 12082 u8 module_status; 12083 12084 if (bnxt_update_link(bp, true)) 12085 return; 12086 12087 module_status = link_info->module_status; 12088 switch (module_status) { 12089 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 12090 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 12091 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 12092 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 12093 bp->pf.port_id); 12094 if (bp->hwrm_spec_code >= 0x10201) { 12095 netdev_warn(bp->dev, "Module part number %s\n", 12096 resp->phy_vendor_partnumber); 12097 } 12098 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 12099 netdev_warn(bp->dev, "TX is disabled\n"); 12100 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 12101 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 12102 } 12103 } 12104 12105 static void 12106 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12107 { 12108 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 12109 if (bp->hwrm_spec_code >= 0x10201) 12110 req->auto_pause = 12111 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 12112 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12113 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 12114 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12115 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 12116 req->enables |= 12117 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12118 } else { 12119 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 12120 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 12121 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 12122 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 12123 req->enables |= 12124 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 12125 if (bp->hwrm_spec_code >= 0x10201) { 12126 req->auto_pause = req->force_pause; 12127 req->enables |= cpu_to_le32( 12128 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 12129 } 12130 } 12131 } 12132 12133 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 12134 { 12135 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 12136 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 12137 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12138 req->enables |= 12139 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 12140 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 12141 } else if (bp->link_info.advertising) { 12142 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 12143 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 12144 } 12145 if (bp->link_info.advertising_pam4) { 12146 req->enables |= 12147 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 12148 req->auto_link_pam4_speed_mask = 12149 cpu_to_le16(bp->link_info.advertising_pam4); 12150 } 12151 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 12152 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 12153 } else { 12154 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 12155 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 12156 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 12157 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 12158 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 12159 (u32)bp->link_info.req_link_speed); 12160 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 12161 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12162 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 12163 } else { 12164 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 12165 } 12166 } 12167 12168 /* tell chimp that the setting takes effect immediately */ 12169 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 12170 } 12171 12172 int bnxt_hwrm_set_pause(struct bnxt *bp) 12173 { 12174 struct hwrm_port_phy_cfg_input *req; 12175 int rc; 12176 12177 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12178 if (rc) 12179 return rc; 12180 12181 bnxt_hwrm_set_pause_common(bp, req); 12182 12183 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 12184 bp->link_info.force_link_chng) 12185 bnxt_hwrm_set_link_common(bp, req); 12186 12187 rc = hwrm_req_send(bp, req); 12188 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 12189 /* since changing of pause setting doesn't trigger any link 12190 * change event, the driver needs to update the current pause 12191 * result upon successfully return of the phy_cfg command 12192 */ 12193 bp->link_info.pause = 12194 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 12195 bp->link_info.auto_pause_setting = 0; 12196 if (!bp->link_info.force_link_chng) 12197 bnxt_report_link(bp); 12198 } 12199 bp->link_info.force_link_chng = false; 12200 return rc; 12201 } 12202 12203 static void bnxt_hwrm_set_eee(struct bnxt *bp, 12204 struct hwrm_port_phy_cfg_input *req) 12205 { 12206 struct ethtool_keee *eee = &bp->eee; 12207 12208 if (eee->eee_enabled) { 12209 u16 eee_speeds; 12210 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 12211 12212 if (eee->tx_lpi_enabled) 12213 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 12214 else 12215 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 12216 12217 req->flags |= cpu_to_le32(flags); 12218 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 12219 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 12220 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 12221 } else { 12222 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 12223 } 12224 } 12225 12226 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 12227 { 12228 struct hwrm_port_phy_cfg_input *req; 12229 int rc; 12230 12231 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12232 if (rc) 12233 return rc; 12234 12235 if (set_pause) 12236 bnxt_hwrm_set_pause_common(bp, req); 12237 12238 bnxt_hwrm_set_link_common(bp, req); 12239 12240 if (set_eee) 12241 bnxt_hwrm_set_eee(bp, req); 12242 return hwrm_req_send(bp, req); 12243 } 12244 12245 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 12246 { 12247 struct hwrm_port_phy_cfg_input *req; 12248 int rc; 12249 12250 if (!BNXT_SINGLE_PF(bp)) 12251 return 0; 12252 12253 if (pci_num_vf(bp->pdev) && 12254 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 12255 return 0; 12256 12257 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 12258 if (rc) 12259 return rc; 12260 12261 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 12262 rc = hwrm_req_send(bp, req); 12263 if (!rc) { 12264 mutex_lock(&bp->link_lock); 12265 /* Device is not obliged link down in certain scenarios, even 12266 * when forced. Setting the state unknown is consistent with 12267 * driver startup and will force link state to be reported 12268 * during subsequent open based on PORT_PHY_QCFG. 12269 */ 12270 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 12271 mutex_unlock(&bp->link_lock); 12272 } 12273 return rc; 12274 } 12275 12276 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 12277 { 12278 #ifdef CONFIG_TEE_BNXT_FW 12279 int rc = tee_bnxt_fw_load(); 12280 12281 if (rc) 12282 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 12283 12284 return rc; 12285 #else 12286 netdev_err(bp->dev, "OP-TEE not supported\n"); 12287 return -ENODEV; 12288 #endif 12289 } 12290 12291 static int bnxt_try_recover_fw(struct bnxt *bp) 12292 { 12293 if (bp->fw_health && bp->fw_health->status_reliable) { 12294 int retry = 0, rc; 12295 u32 sts; 12296 12297 do { 12298 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 12299 rc = bnxt_hwrm_poll(bp); 12300 if (!BNXT_FW_IS_BOOTING(sts) && 12301 !BNXT_FW_IS_RECOVERING(sts)) 12302 break; 12303 retry++; 12304 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 12305 12306 if (!BNXT_FW_IS_HEALTHY(sts)) { 12307 netdev_err(bp->dev, 12308 "Firmware not responding, status: 0x%x\n", 12309 sts); 12310 rc = -ENODEV; 12311 } 12312 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 12313 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 12314 return bnxt_fw_reset_via_optee(bp); 12315 } 12316 return rc; 12317 } 12318 12319 return -ENODEV; 12320 } 12321 12322 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 12323 { 12324 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 12325 12326 if (!BNXT_NEW_RM(bp)) 12327 return; /* no resource reservations required */ 12328 12329 hw_resc->resv_cp_rings = 0; 12330 hw_resc->resv_stat_ctxs = 0; 12331 hw_resc->resv_irqs = 0; 12332 hw_resc->resv_tx_rings = 0; 12333 hw_resc->resv_rx_rings = 0; 12334 hw_resc->resv_hw_ring_grps = 0; 12335 hw_resc->resv_vnics = 0; 12336 hw_resc->resv_rsscos_ctxs = 0; 12337 if (!fw_reset) { 12338 bp->tx_nr_rings = 0; 12339 bp->rx_nr_rings = 0; 12340 } 12341 } 12342 12343 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 12344 { 12345 int rc; 12346 12347 if (!BNXT_NEW_RM(bp)) 12348 return 0; /* no resource reservations required */ 12349 12350 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 12351 if (rc) 12352 netdev_err(bp->dev, "resc_qcaps failed\n"); 12353 12354 bnxt_clear_reservations(bp, fw_reset); 12355 12356 return rc; 12357 } 12358 12359 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 12360 { 12361 struct hwrm_func_drv_if_change_output *resp; 12362 struct hwrm_func_drv_if_change_input *req; 12363 bool fw_reset = !bp->irq_tbl; 12364 bool resc_reinit = false; 12365 bool caps_change = false; 12366 int rc, retry = 0; 12367 u32 flags = 0; 12368 12369 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 12370 return 0; 12371 12372 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 12373 if (rc) 12374 return rc; 12375 12376 if (up) 12377 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 12378 resp = hwrm_req_hold(bp, req); 12379 12380 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 12381 while (retry < BNXT_FW_IF_RETRY) { 12382 rc = hwrm_req_send(bp, req); 12383 if (rc != -EAGAIN) 12384 break; 12385 12386 msleep(50); 12387 retry++; 12388 } 12389 12390 if (rc == -EAGAIN) { 12391 hwrm_req_drop(bp, req); 12392 return rc; 12393 } else if (!rc) { 12394 flags = le32_to_cpu(resp->flags); 12395 } else if (up) { 12396 rc = bnxt_try_recover_fw(bp); 12397 fw_reset = true; 12398 } 12399 hwrm_req_drop(bp, req); 12400 if (rc) 12401 return rc; 12402 12403 if (!up) { 12404 bnxt_inv_fw_health_reg(bp); 12405 return 0; 12406 } 12407 12408 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 12409 resc_reinit = true; 12410 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 12411 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 12412 fw_reset = true; 12413 else 12414 bnxt_remap_fw_health_regs(bp); 12415 12416 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 12417 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 12418 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12419 return -ENODEV; 12420 } 12421 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_CAPS_CHANGE) 12422 caps_change = true; 12423 12424 if (resc_reinit || fw_reset || caps_change) { 12425 if (fw_reset || caps_change) { 12426 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12427 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12428 bnxt_ulp_irq_stop(bp); 12429 bnxt_free_ctx_mem(bp, false); 12430 bnxt_dcb_free(bp); 12431 rc = bnxt_fw_init_one(bp); 12432 if (rc) { 12433 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12434 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12435 return rc; 12436 } 12437 bnxt_clear_int_mode(bp); 12438 rc = bnxt_init_int_mode(bp); 12439 if (rc) { 12440 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12441 netdev_err(bp->dev, "init int mode failed\n"); 12442 return rc; 12443 } 12444 } 12445 rc = bnxt_cancel_reservations(bp, fw_reset); 12446 } 12447 return rc; 12448 } 12449 12450 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 12451 { 12452 struct hwrm_port_led_qcaps_output *resp; 12453 struct hwrm_port_led_qcaps_input *req; 12454 struct bnxt_pf_info *pf = &bp->pf; 12455 int rc; 12456 12457 bp->num_leds = 0; 12458 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 12459 return 0; 12460 12461 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 12462 if (rc) 12463 return rc; 12464 12465 req->port_id = cpu_to_le16(pf->port_id); 12466 resp = hwrm_req_hold(bp, req); 12467 rc = hwrm_req_send(bp, req); 12468 if (rc) { 12469 hwrm_req_drop(bp, req); 12470 return rc; 12471 } 12472 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 12473 int i; 12474 12475 bp->num_leds = resp->num_leds; 12476 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 12477 bp->num_leds); 12478 for (i = 0; i < bp->num_leds; i++) { 12479 struct bnxt_led_info *led = &bp->leds[i]; 12480 __le16 caps = led->led_state_caps; 12481 12482 if (!led->led_group_id || 12483 !BNXT_LED_ALT_BLINK_CAP(caps)) { 12484 bp->num_leds = 0; 12485 break; 12486 } 12487 } 12488 } 12489 hwrm_req_drop(bp, req); 12490 return 0; 12491 } 12492 12493 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 12494 { 12495 struct hwrm_wol_filter_alloc_output *resp; 12496 struct hwrm_wol_filter_alloc_input *req; 12497 int rc; 12498 12499 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 12500 if (rc) 12501 return rc; 12502 12503 req->port_id = cpu_to_le16(bp->pf.port_id); 12504 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 12505 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 12506 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 12507 12508 resp = hwrm_req_hold(bp, req); 12509 rc = hwrm_req_send(bp, req); 12510 if (!rc) 12511 bp->wol_filter_id = resp->wol_filter_id; 12512 hwrm_req_drop(bp, req); 12513 return rc; 12514 } 12515 12516 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 12517 { 12518 struct hwrm_wol_filter_free_input *req; 12519 int rc; 12520 12521 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 12522 if (rc) 12523 return rc; 12524 12525 req->port_id = cpu_to_le16(bp->pf.port_id); 12526 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 12527 req->wol_filter_id = bp->wol_filter_id; 12528 12529 return hwrm_req_send(bp, req); 12530 } 12531 12532 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 12533 { 12534 struct hwrm_wol_filter_qcfg_output *resp; 12535 struct hwrm_wol_filter_qcfg_input *req; 12536 u16 next_handle = 0; 12537 int rc; 12538 12539 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 12540 if (rc) 12541 return rc; 12542 12543 req->port_id = cpu_to_le16(bp->pf.port_id); 12544 req->handle = cpu_to_le16(handle); 12545 resp = hwrm_req_hold(bp, req); 12546 rc = hwrm_req_send(bp, req); 12547 if (!rc) { 12548 next_handle = le16_to_cpu(resp->next_handle); 12549 if (next_handle != 0) { 12550 if (resp->wol_type == 12551 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 12552 bp->wol = 1; 12553 bp->wol_filter_id = resp->wol_filter_id; 12554 } 12555 } 12556 } 12557 hwrm_req_drop(bp, req); 12558 return next_handle; 12559 } 12560 12561 static void bnxt_get_wol_settings(struct bnxt *bp) 12562 { 12563 u16 handle = 0; 12564 12565 bp->wol = 0; 12566 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 12567 return; 12568 12569 do { 12570 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 12571 } while (handle && handle != 0xffff); 12572 } 12573 12574 static bool bnxt_eee_config_ok(struct bnxt *bp) 12575 { 12576 struct ethtool_keee *eee = &bp->eee; 12577 struct bnxt_link_info *link_info = &bp->link_info; 12578 12579 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 12580 return true; 12581 12582 if (eee->eee_enabled) { 12583 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 12584 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 12585 12586 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 12587 12588 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12589 eee->eee_enabled = 0; 12590 return false; 12591 } 12592 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 12593 linkmode_and(eee->advertised, advertising, 12594 eee->supported); 12595 return false; 12596 } 12597 } 12598 return true; 12599 } 12600 12601 static int bnxt_update_phy_setting(struct bnxt *bp) 12602 { 12603 int rc; 12604 bool update_link = false; 12605 bool update_pause = false; 12606 bool update_eee = false; 12607 struct bnxt_link_info *link_info = &bp->link_info; 12608 12609 rc = bnxt_update_link(bp, true); 12610 if (rc) { 12611 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 12612 rc); 12613 return rc; 12614 } 12615 if (!BNXT_SINGLE_PF(bp)) 12616 return 0; 12617 12618 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12619 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 12620 link_info->req_flow_ctrl) 12621 update_pause = true; 12622 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12623 link_info->force_pause_setting != link_info->req_flow_ctrl) 12624 update_pause = true; 12625 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12626 if (BNXT_AUTO_MODE(link_info->auto_mode)) 12627 update_link = true; 12628 if (bnxt_force_speed_updated(link_info)) 12629 update_link = true; 12630 if (link_info->req_duplex != link_info->duplex_setting) 12631 update_link = true; 12632 } else { 12633 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 12634 update_link = true; 12635 if (bnxt_auto_speed_updated(link_info)) 12636 update_link = true; 12637 } 12638 12639 /* The last close may have shutdown the link, so need to call 12640 * PHY_CFG to bring it back up. 12641 */ 12642 if (!BNXT_LINK_IS_UP(bp)) 12643 update_link = true; 12644 12645 if (!bnxt_eee_config_ok(bp)) 12646 update_eee = true; 12647 12648 if (update_link) 12649 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 12650 else if (update_pause) 12651 rc = bnxt_hwrm_set_pause(bp); 12652 if (rc) { 12653 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 12654 rc); 12655 return rc; 12656 } 12657 12658 return rc; 12659 } 12660 12661 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 12662 12663 static int bnxt_reinit_after_abort(struct bnxt *bp) 12664 { 12665 int rc; 12666 12667 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12668 return -EBUSY; 12669 12670 if (bp->dev->reg_state == NETREG_UNREGISTERED) 12671 return -ENODEV; 12672 12673 rc = bnxt_fw_init_one(bp); 12674 if (!rc) { 12675 bnxt_clear_int_mode(bp); 12676 rc = bnxt_init_int_mode(bp); 12677 if (!rc) { 12678 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12679 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12680 } 12681 } 12682 return rc; 12683 } 12684 12685 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 12686 { 12687 struct bnxt_ntuple_filter *ntp_fltr; 12688 struct bnxt_l2_filter *l2_fltr; 12689 12690 if (list_empty(&fltr->list)) 12691 return; 12692 12693 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 12694 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 12695 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 12696 atomic_inc(&l2_fltr->refcnt); 12697 ntp_fltr->l2_fltr = l2_fltr; 12698 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 12699 bnxt_del_ntp_filter(bp, ntp_fltr); 12700 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12701 fltr->sw_id); 12702 } 12703 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12704 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12705 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12706 bnxt_del_l2_filter(bp, l2_fltr); 12707 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12708 fltr->sw_id); 12709 } 12710 } 12711 } 12712 12713 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12714 { 12715 struct bnxt_filter_base *usr_fltr, *tmp; 12716 12717 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12718 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12719 } 12720 12721 static int bnxt_set_xps_mapping(struct bnxt *bp) 12722 { 12723 int numa_node = dev_to_node(&bp->pdev->dev); 12724 unsigned int q_idx, map_idx, cpu, i; 12725 const struct cpumask *cpu_mask_ptr; 12726 int nr_cpus = num_online_cpus(); 12727 cpumask_t *q_map; 12728 int rc = 0; 12729 12730 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12731 if (!q_map) 12732 return -ENOMEM; 12733 12734 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12735 * Each TC has the same number of TX queues. The nth TX queue for each 12736 * TC will have the same CPU mask. 12737 */ 12738 for (i = 0; i < nr_cpus; i++) { 12739 map_idx = i % bp->tx_nr_rings_per_tc; 12740 cpu = cpumask_local_spread(i, numa_node); 12741 cpu_mask_ptr = get_cpu_mask(cpu); 12742 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12743 } 12744 12745 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12746 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12747 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12748 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12749 if (rc) { 12750 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12751 q_idx); 12752 break; 12753 } 12754 } 12755 12756 kfree(q_map); 12757 12758 return rc; 12759 } 12760 12761 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12762 { 12763 int rc = 0; 12764 12765 netif_carrier_off(bp->dev); 12766 if (irq_re_init) { 12767 /* Reserve rings now if none were reserved at driver probe. */ 12768 rc = bnxt_init_dflt_ring_mode(bp); 12769 if (rc) { 12770 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12771 return rc; 12772 } 12773 } 12774 rc = bnxt_reserve_rings(bp, irq_re_init); 12775 if (rc) 12776 return rc; 12777 12778 rc = bnxt_alloc_mem(bp, irq_re_init); 12779 if (rc) { 12780 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12781 goto open_err_free_mem; 12782 } 12783 12784 if (irq_re_init) { 12785 bnxt_init_napi(bp); 12786 rc = bnxt_request_irq(bp); 12787 if (rc) { 12788 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12789 goto open_err_irq; 12790 } 12791 } 12792 12793 rc = bnxt_init_nic(bp, irq_re_init); 12794 if (rc) { 12795 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12796 goto open_err_irq; 12797 } 12798 12799 bnxt_enable_napi(bp); 12800 bnxt_debug_dev_init(bp); 12801 12802 if (link_re_init) { 12803 mutex_lock(&bp->link_lock); 12804 rc = bnxt_update_phy_setting(bp); 12805 mutex_unlock(&bp->link_lock); 12806 if (rc) { 12807 netdev_warn(bp->dev, "failed to update phy settings\n"); 12808 if (BNXT_SINGLE_PF(bp)) { 12809 bp->link_info.phy_retry = true; 12810 bp->link_info.phy_retry_expires = 12811 jiffies + 5 * HZ; 12812 } 12813 } 12814 } 12815 12816 if (irq_re_init) { 12817 udp_tunnel_nic_reset_ntf(bp->dev); 12818 rc = bnxt_set_xps_mapping(bp); 12819 if (rc) 12820 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12821 } 12822 12823 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12824 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12825 static_branch_enable(&bnxt_xdp_locking_key); 12826 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12827 static_branch_disable(&bnxt_xdp_locking_key); 12828 } 12829 set_bit(BNXT_STATE_OPEN, &bp->state); 12830 bnxt_enable_int(bp); 12831 /* Enable TX queues */ 12832 bnxt_tx_enable(bp); 12833 mod_timer(&bp->timer, jiffies + bp->current_interval); 12834 /* Poll link status and check for SFP+ module status */ 12835 mutex_lock(&bp->link_lock); 12836 bnxt_get_port_module_status(bp); 12837 mutex_unlock(&bp->link_lock); 12838 12839 /* VF-reps may need to be re-opened after the PF is re-opened */ 12840 if (BNXT_PF(bp)) 12841 bnxt_vf_reps_open(bp); 12842 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 12843 WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS); 12844 bnxt_ptp_init_rtc(bp, true); 12845 bnxt_ptp_cfg_tstamp_filters(bp); 12846 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12847 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12848 bnxt_cfg_usr_fltrs(bp); 12849 return 0; 12850 12851 open_err_irq: 12852 bnxt_del_napi(bp); 12853 12854 open_err_free_mem: 12855 bnxt_free_skbs(bp); 12856 bnxt_free_irq(bp); 12857 bnxt_free_mem(bp, true); 12858 return rc; 12859 } 12860 12861 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12862 { 12863 int rc = 0; 12864 12865 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12866 rc = -EIO; 12867 if (!rc) 12868 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12869 if (rc) { 12870 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12871 netif_close(bp->dev); 12872 } 12873 return rc; 12874 } 12875 12876 /* netdev instance lock held, open the NIC half way by allocating all 12877 * resources, but NAPI, IRQ, and TX are not enabled. This is mainly used 12878 * for offline self tests. 12879 */ 12880 int bnxt_half_open_nic(struct bnxt *bp) 12881 { 12882 int rc = 0; 12883 12884 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12885 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12886 rc = -ENODEV; 12887 goto half_open_err; 12888 } 12889 12890 rc = bnxt_alloc_mem(bp, true); 12891 if (rc) { 12892 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12893 goto half_open_err; 12894 } 12895 bnxt_init_napi(bp); 12896 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12897 rc = bnxt_init_nic(bp, true); 12898 if (rc) { 12899 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12900 bnxt_del_napi(bp); 12901 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12902 goto half_open_err; 12903 } 12904 return 0; 12905 12906 half_open_err: 12907 bnxt_free_skbs(bp); 12908 bnxt_free_mem(bp, true); 12909 netif_close(bp->dev); 12910 return rc; 12911 } 12912 12913 /* netdev instance lock held, this call can only be made after a previous 12914 * successful call to bnxt_half_open_nic(). 12915 */ 12916 void bnxt_half_close_nic(struct bnxt *bp) 12917 { 12918 bnxt_hwrm_resource_free(bp, false, true); 12919 bnxt_del_napi(bp); 12920 bnxt_free_skbs(bp); 12921 bnxt_free_mem(bp, true); 12922 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12923 } 12924 12925 void bnxt_reenable_sriov(struct bnxt *bp) 12926 { 12927 if (BNXT_PF(bp)) { 12928 struct bnxt_pf_info *pf = &bp->pf; 12929 int n = pf->active_vfs; 12930 12931 if (n) 12932 bnxt_cfg_hw_sriov(bp, &n, true); 12933 } 12934 } 12935 12936 static int bnxt_open(struct net_device *dev) 12937 { 12938 struct bnxt *bp = netdev_priv(dev); 12939 int rc; 12940 12941 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12942 rc = bnxt_reinit_after_abort(bp); 12943 if (rc) { 12944 if (rc == -EBUSY) 12945 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 12946 else 12947 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 12948 return -ENODEV; 12949 } 12950 } 12951 12952 rc = bnxt_hwrm_if_change(bp, true); 12953 if (rc) 12954 return rc; 12955 12956 rc = __bnxt_open_nic(bp, true, true); 12957 if (rc) { 12958 bnxt_hwrm_if_change(bp, false); 12959 } else { 12960 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 12961 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12962 bnxt_queue_sp_work(bp, 12963 BNXT_RESTART_ULP_SP_EVENT); 12964 } 12965 } 12966 12967 return rc; 12968 } 12969 12970 static bool bnxt_drv_busy(struct bnxt *bp) 12971 { 12972 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 12973 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 12974 } 12975 12976 static void bnxt_get_ring_stats(struct bnxt *bp, 12977 struct rtnl_link_stats64 *stats); 12978 12979 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 12980 bool link_re_init) 12981 { 12982 /* Close the VF-reps before closing PF */ 12983 if (BNXT_PF(bp)) 12984 bnxt_vf_reps_close(bp); 12985 12986 /* Change device state to avoid TX queue wake up's */ 12987 bnxt_tx_disable(bp); 12988 12989 clear_bit(BNXT_STATE_OPEN, &bp->state); 12990 smp_mb__after_atomic(); 12991 while (bnxt_drv_busy(bp)) 12992 msleep(20); 12993 12994 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12995 bnxt_clear_rss_ctxs(bp); 12996 /* Flush rings and disable interrupts */ 12997 bnxt_shutdown_nic(bp, irq_re_init); 12998 12999 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 13000 13001 bnxt_debug_dev_exit(bp); 13002 bnxt_disable_napi(bp); 13003 timer_delete_sync(&bp->timer); 13004 bnxt_free_skbs(bp); 13005 13006 /* Save ring stats before shutdown */ 13007 if (bp->bnapi && irq_re_init) { 13008 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 13009 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 13010 } 13011 if (irq_re_init) { 13012 bnxt_free_irq(bp); 13013 bnxt_del_napi(bp); 13014 } 13015 bnxt_free_mem(bp, irq_re_init); 13016 } 13017 13018 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 13019 { 13020 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13021 /* If we get here, it means firmware reset is in progress 13022 * while we are trying to close. We can safely proceed with 13023 * the close because we are holding netdev instance lock. 13024 * Some firmware messages may fail as we proceed to close. 13025 * We set the ABORT_ERR flag here so that the FW reset thread 13026 * will later abort when it gets the netdev instance lock 13027 * and sees the flag. 13028 */ 13029 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 13030 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 13031 } 13032 13033 #ifdef CONFIG_BNXT_SRIOV 13034 if (bp->sriov_cfg) { 13035 int rc; 13036 13037 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 13038 !bp->sriov_cfg, 13039 BNXT_SRIOV_CFG_WAIT_TMO); 13040 if (!rc) 13041 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 13042 else if (rc < 0) 13043 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 13044 } 13045 #endif 13046 __bnxt_close_nic(bp, irq_re_init, link_re_init); 13047 } 13048 13049 static int bnxt_close(struct net_device *dev) 13050 { 13051 struct bnxt *bp = netdev_priv(dev); 13052 13053 bnxt_close_nic(bp, true, true); 13054 bnxt_hwrm_shutdown_link(bp); 13055 bnxt_hwrm_if_change(bp, false); 13056 return 0; 13057 } 13058 13059 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 13060 u16 *val) 13061 { 13062 struct hwrm_port_phy_mdio_read_output *resp; 13063 struct hwrm_port_phy_mdio_read_input *req; 13064 int rc; 13065 13066 if (bp->hwrm_spec_code < 0x10a00) 13067 return -EOPNOTSUPP; 13068 13069 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 13070 if (rc) 13071 return rc; 13072 13073 req->port_id = cpu_to_le16(bp->pf.port_id); 13074 req->phy_addr = phy_addr; 13075 req->reg_addr = cpu_to_le16(reg & 0x1f); 13076 if (mdio_phy_id_is_c45(phy_addr)) { 13077 req->cl45_mdio = 1; 13078 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13079 req->dev_addr = mdio_phy_id_devad(phy_addr); 13080 req->reg_addr = cpu_to_le16(reg); 13081 } 13082 13083 resp = hwrm_req_hold(bp, req); 13084 rc = hwrm_req_send(bp, req); 13085 if (!rc) 13086 *val = le16_to_cpu(resp->reg_data); 13087 hwrm_req_drop(bp, req); 13088 return rc; 13089 } 13090 13091 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 13092 u16 val) 13093 { 13094 struct hwrm_port_phy_mdio_write_input *req; 13095 int rc; 13096 13097 if (bp->hwrm_spec_code < 0x10a00) 13098 return -EOPNOTSUPP; 13099 13100 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 13101 if (rc) 13102 return rc; 13103 13104 req->port_id = cpu_to_le16(bp->pf.port_id); 13105 req->phy_addr = phy_addr; 13106 req->reg_addr = cpu_to_le16(reg & 0x1f); 13107 if (mdio_phy_id_is_c45(phy_addr)) { 13108 req->cl45_mdio = 1; 13109 req->phy_addr = mdio_phy_id_prtad(phy_addr); 13110 req->dev_addr = mdio_phy_id_devad(phy_addr); 13111 req->reg_addr = cpu_to_le16(reg); 13112 } 13113 req->reg_data = cpu_to_le16(val); 13114 13115 return hwrm_req_send(bp, req); 13116 } 13117 13118 /* netdev instance lock held */ 13119 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 13120 { 13121 struct mii_ioctl_data *mdio = if_mii(ifr); 13122 struct bnxt *bp = netdev_priv(dev); 13123 int rc; 13124 13125 switch (cmd) { 13126 case SIOCGMIIPHY: 13127 mdio->phy_id = bp->link_info.phy_addr; 13128 13129 fallthrough; 13130 case SIOCGMIIREG: { 13131 u16 mii_regval = 0; 13132 13133 if (!netif_running(dev)) 13134 return -EAGAIN; 13135 13136 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 13137 &mii_regval); 13138 mdio->val_out = mii_regval; 13139 return rc; 13140 } 13141 13142 case SIOCSMIIREG: 13143 if (!netif_running(dev)) 13144 return -EAGAIN; 13145 13146 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 13147 mdio->val_in); 13148 13149 case SIOCSHWTSTAMP: 13150 return bnxt_hwtstamp_set(dev, ifr); 13151 13152 case SIOCGHWTSTAMP: 13153 return bnxt_hwtstamp_get(dev, ifr); 13154 13155 default: 13156 /* do nothing */ 13157 break; 13158 } 13159 return -EOPNOTSUPP; 13160 } 13161 13162 static void bnxt_get_ring_stats(struct bnxt *bp, 13163 struct rtnl_link_stats64 *stats) 13164 { 13165 int i; 13166 13167 for (i = 0; i < bp->cp_nr_rings; i++) { 13168 struct bnxt_napi *bnapi = bp->bnapi[i]; 13169 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13170 u64 *sw = cpr->stats.sw_stats; 13171 13172 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 13173 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13174 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 13175 13176 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 13177 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 13178 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 13179 13180 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 13181 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 13182 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 13183 13184 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 13185 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 13186 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 13187 13188 stats->rx_missed_errors += 13189 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 13190 13191 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 13192 13193 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 13194 13195 stats->rx_dropped += 13196 cpr->sw_stats->rx.rx_netpoll_discards + 13197 cpr->sw_stats->rx.rx_oom_discards; 13198 } 13199 } 13200 13201 static void bnxt_add_prev_stats(struct bnxt *bp, 13202 struct rtnl_link_stats64 *stats) 13203 { 13204 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 13205 13206 stats->rx_packets += prev_stats->rx_packets; 13207 stats->tx_packets += prev_stats->tx_packets; 13208 stats->rx_bytes += prev_stats->rx_bytes; 13209 stats->tx_bytes += prev_stats->tx_bytes; 13210 stats->rx_missed_errors += prev_stats->rx_missed_errors; 13211 stats->multicast += prev_stats->multicast; 13212 stats->rx_dropped += prev_stats->rx_dropped; 13213 stats->tx_dropped += prev_stats->tx_dropped; 13214 } 13215 13216 static void 13217 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 13218 { 13219 struct bnxt *bp = netdev_priv(dev); 13220 13221 set_bit(BNXT_STATE_READ_STATS, &bp->state); 13222 /* Make sure bnxt_close_nic() sees that we are reading stats before 13223 * we check the BNXT_STATE_OPEN flag. 13224 */ 13225 smp_mb__after_atomic(); 13226 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13227 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13228 *stats = bp->net_stats_prev; 13229 return; 13230 } 13231 13232 bnxt_get_ring_stats(bp, stats); 13233 bnxt_add_prev_stats(bp, stats); 13234 13235 if (bp->flags & BNXT_FLAG_PORT_STATS) { 13236 u64 *rx = bp->port_stats.sw_stats; 13237 u64 *tx = bp->port_stats.sw_stats + 13238 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 13239 13240 stats->rx_crc_errors = 13241 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 13242 stats->rx_frame_errors = 13243 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 13244 stats->rx_length_errors = 13245 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 13246 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 13247 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 13248 stats->rx_errors = 13249 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 13250 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 13251 stats->collisions = 13252 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 13253 stats->tx_fifo_errors = 13254 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 13255 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 13256 } 13257 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 13258 } 13259 13260 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 13261 struct bnxt_total_ring_err_stats *stats, 13262 struct bnxt_cp_ring_info *cpr) 13263 { 13264 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 13265 u64 *hw_stats = cpr->stats.sw_stats; 13266 13267 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 13268 stats->rx_total_resets += sw_stats->rx.rx_resets; 13269 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 13270 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 13271 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 13272 stats->rx_total_ring_discards += 13273 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 13274 stats->tx_total_resets += sw_stats->tx.tx_resets; 13275 stats->tx_total_ring_discards += 13276 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 13277 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 13278 } 13279 13280 void bnxt_get_ring_err_stats(struct bnxt *bp, 13281 struct bnxt_total_ring_err_stats *stats) 13282 { 13283 int i; 13284 13285 for (i = 0; i < bp->cp_nr_rings; i++) 13286 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 13287 } 13288 13289 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 13290 { 13291 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13292 struct net_device *dev = bp->dev; 13293 struct netdev_hw_addr *ha; 13294 u8 *haddr; 13295 int mc_count = 0; 13296 bool update = false; 13297 int off = 0; 13298 13299 netdev_for_each_mc_addr(ha, dev) { 13300 if (mc_count >= BNXT_MAX_MC_ADDRS) { 13301 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13302 vnic->mc_list_count = 0; 13303 return false; 13304 } 13305 haddr = ha->addr; 13306 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 13307 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 13308 update = true; 13309 } 13310 off += ETH_ALEN; 13311 mc_count++; 13312 } 13313 if (mc_count) 13314 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13315 13316 if (mc_count != vnic->mc_list_count) { 13317 vnic->mc_list_count = mc_count; 13318 update = true; 13319 } 13320 return update; 13321 } 13322 13323 static bool bnxt_uc_list_updated(struct bnxt *bp) 13324 { 13325 struct net_device *dev = bp->dev; 13326 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13327 struct netdev_hw_addr *ha; 13328 int off = 0; 13329 13330 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 13331 return true; 13332 13333 netdev_for_each_uc_addr(ha, dev) { 13334 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 13335 return true; 13336 13337 off += ETH_ALEN; 13338 } 13339 return false; 13340 } 13341 13342 static void bnxt_set_rx_mode(struct net_device *dev) 13343 { 13344 struct bnxt *bp = netdev_priv(dev); 13345 struct bnxt_vnic_info *vnic; 13346 bool mc_update = false; 13347 bool uc_update; 13348 u32 mask; 13349 13350 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 13351 return; 13352 13353 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13354 mask = vnic->rx_mask; 13355 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 13356 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 13357 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 13358 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 13359 13360 if (dev->flags & IFF_PROMISC) 13361 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13362 13363 uc_update = bnxt_uc_list_updated(bp); 13364 13365 if (dev->flags & IFF_BROADCAST) 13366 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 13367 if (dev->flags & IFF_ALLMULTI) { 13368 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13369 vnic->mc_list_count = 0; 13370 } else if (dev->flags & IFF_MULTICAST) { 13371 mc_update = bnxt_mc_list_updated(bp, &mask); 13372 } 13373 13374 if (mask != vnic->rx_mask || uc_update || mc_update) { 13375 vnic->rx_mask = mask; 13376 13377 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13378 } 13379 } 13380 13381 static int bnxt_cfg_rx_mode(struct bnxt *bp) 13382 { 13383 struct net_device *dev = bp->dev; 13384 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 13385 struct netdev_hw_addr *ha; 13386 int i, off = 0, rc; 13387 bool uc_update; 13388 13389 netif_addr_lock_bh(dev); 13390 uc_update = bnxt_uc_list_updated(bp); 13391 netif_addr_unlock_bh(dev); 13392 13393 if (!uc_update) 13394 goto skip_uc; 13395 13396 for (i = 1; i < vnic->uc_filter_count; i++) { 13397 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 13398 13399 bnxt_hwrm_l2_filter_free(bp, fltr); 13400 bnxt_del_l2_filter(bp, fltr); 13401 } 13402 13403 vnic->uc_filter_count = 1; 13404 13405 netif_addr_lock_bh(dev); 13406 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 13407 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13408 } else { 13409 netdev_for_each_uc_addr(ha, dev) { 13410 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 13411 off += ETH_ALEN; 13412 vnic->uc_filter_count++; 13413 } 13414 } 13415 netif_addr_unlock_bh(dev); 13416 13417 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 13418 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 13419 if (rc) { 13420 if (BNXT_VF(bp) && rc == -ENODEV) { 13421 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13422 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 13423 else 13424 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 13425 rc = 0; 13426 } else { 13427 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 13428 } 13429 vnic->uc_filter_count = i; 13430 return rc; 13431 } 13432 } 13433 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13434 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 13435 13436 skip_uc: 13437 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 13438 !bnxt_promisc_ok(bp)) 13439 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13440 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13441 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 13442 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 13443 rc); 13444 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13445 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13446 vnic->mc_list_count = 0; 13447 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13448 } 13449 if (rc) 13450 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 13451 rc); 13452 13453 return rc; 13454 } 13455 13456 static bool bnxt_can_reserve_rings(struct bnxt *bp) 13457 { 13458 #ifdef CONFIG_BNXT_SRIOV 13459 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 13460 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13461 13462 /* No minimum rings were provisioned by the PF. Don't 13463 * reserve rings by default when device is down. 13464 */ 13465 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 13466 return true; 13467 13468 if (!netif_running(bp->dev)) 13469 return false; 13470 } 13471 #endif 13472 return true; 13473 } 13474 13475 /* If the chip and firmware supports RFS */ 13476 static bool bnxt_rfs_supported(struct bnxt *bp) 13477 { 13478 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 13479 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 13480 return true; 13481 return false; 13482 } 13483 /* 212 firmware is broken for aRFS */ 13484 if (BNXT_FW_MAJ(bp) == 212) 13485 return false; 13486 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 13487 return true; 13488 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 13489 return true; 13490 return false; 13491 } 13492 13493 /* If runtime conditions support RFS */ 13494 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 13495 { 13496 struct bnxt_hw_rings hwr = {0}; 13497 int max_vnics, max_rss_ctxs; 13498 13499 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13500 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 13501 return bnxt_rfs_supported(bp); 13502 13503 if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 13504 return false; 13505 13506 hwr.grp = bp->rx_nr_rings; 13507 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 13508 if (new_rss_ctx) 13509 hwr.vnic++; 13510 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13511 max_vnics = bnxt_get_max_func_vnics(bp); 13512 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 13513 13514 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 13515 if (bp->rx_nr_rings > 1) 13516 netdev_warn(bp->dev, 13517 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 13518 min(max_rss_ctxs - 1, max_vnics - 1)); 13519 return false; 13520 } 13521 13522 if (!BNXT_NEW_RM(bp)) 13523 return true; 13524 13525 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 13526 * issue that will mess up the default VNIC if we reduce the 13527 * reservations. 13528 */ 13529 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13530 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13531 return true; 13532 13533 bnxt_hwrm_reserve_rings(bp, &hwr); 13534 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13535 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13536 return true; 13537 13538 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 13539 hwr.vnic = 1; 13540 hwr.rss_ctx = 0; 13541 bnxt_hwrm_reserve_rings(bp, &hwr); 13542 return false; 13543 } 13544 13545 static netdev_features_t bnxt_fix_features(struct net_device *dev, 13546 netdev_features_t features) 13547 { 13548 struct bnxt *bp = netdev_priv(dev); 13549 netdev_features_t vlan_features; 13550 13551 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 13552 features &= ~NETIF_F_NTUPLE; 13553 13554 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 13555 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13556 13557 if (!(features & NETIF_F_GRO)) 13558 features &= ~NETIF_F_GRO_HW; 13559 13560 if (features & NETIF_F_GRO_HW) 13561 features &= ~NETIF_F_LRO; 13562 13563 /* Both CTAG and STAG VLAN acceleration on the RX side have to be 13564 * turned on or off together. 13565 */ 13566 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 13567 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 13568 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13569 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13570 else if (vlan_features) 13571 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13572 } 13573 #ifdef CONFIG_BNXT_SRIOV 13574 if (BNXT_VF(bp) && bp->vf.vlan) 13575 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13576 #endif 13577 return features; 13578 } 13579 13580 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 13581 bool link_re_init, u32 flags, bool update_tpa) 13582 { 13583 bnxt_close_nic(bp, irq_re_init, link_re_init); 13584 bp->flags = flags; 13585 if (update_tpa) 13586 bnxt_set_ring_params(bp); 13587 return bnxt_open_nic(bp, irq_re_init, link_re_init); 13588 } 13589 13590 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 13591 { 13592 bool update_tpa = false, update_ntuple = false; 13593 struct bnxt *bp = netdev_priv(dev); 13594 u32 flags = bp->flags; 13595 u32 changes; 13596 int rc = 0; 13597 bool re_init = false; 13598 13599 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 13600 if (features & NETIF_F_GRO_HW) 13601 flags |= BNXT_FLAG_GRO; 13602 else if (features & NETIF_F_LRO) 13603 flags |= BNXT_FLAG_LRO; 13604 13605 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 13606 flags &= ~BNXT_FLAG_TPA; 13607 13608 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13609 flags |= BNXT_FLAG_STRIP_VLAN; 13610 13611 if (features & NETIF_F_NTUPLE) 13612 flags |= BNXT_FLAG_RFS; 13613 else 13614 bnxt_clear_usr_fltrs(bp, true); 13615 13616 changes = flags ^ bp->flags; 13617 if (changes & BNXT_FLAG_TPA) { 13618 update_tpa = true; 13619 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 13620 (flags & BNXT_FLAG_TPA) == 0 || 13621 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13622 re_init = true; 13623 } 13624 13625 if (changes & ~BNXT_FLAG_TPA) 13626 re_init = true; 13627 13628 if (changes & BNXT_FLAG_RFS) 13629 update_ntuple = true; 13630 13631 if (flags != bp->flags) { 13632 u32 old_flags = bp->flags; 13633 13634 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13635 bp->flags = flags; 13636 if (update_tpa) 13637 bnxt_set_ring_params(bp); 13638 return rc; 13639 } 13640 13641 if (update_ntuple) 13642 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 13643 13644 if (re_init) 13645 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 13646 13647 if (update_tpa) { 13648 bp->flags = flags; 13649 rc = bnxt_set_tpa(bp, 13650 (flags & BNXT_FLAG_TPA) ? 13651 true : false); 13652 if (rc) 13653 bp->flags = old_flags; 13654 } 13655 } 13656 return rc; 13657 } 13658 13659 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 13660 u8 **nextp) 13661 { 13662 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 13663 struct hop_jumbo_hdr *jhdr; 13664 int hdr_count = 0; 13665 u8 *nexthdr; 13666 int start; 13667 13668 /* Check that there are at most 2 IPv6 extension headers, no 13669 * fragment header, and each is <= 64 bytes. 13670 */ 13671 start = nw_off + sizeof(*ip6h); 13672 nexthdr = &ip6h->nexthdr; 13673 while (ipv6_ext_hdr(*nexthdr)) { 13674 struct ipv6_opt_hdr *hp; 13675 int hdrlen; 13676 13677 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 13678 *nexthdr == NEXTHDR_FRAGMENT) 13679 return false; 13680 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 13681 skb_headlen(skb), NULL); 13682 if (!hp) 13683 return false; 13684 if (*nexthdr == NEXTHDR_AUTH) 13685 hdrlen = ipv6_authlen(hp); 13686 else 13687 hdrlen = ipv6_optlen(hp); 13688 13689 if (hdrlen > 64) 13690 return false; 13691 13692 /* The ext header may be a hop-by-hop header inserted for 13693 * big TCP purposes. This will be removed before sending 13694 * from NIC, so do not count it. 13695 */ 13696 if (*nexthdr == NEXTHDR_HOP) { 13697 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 13698 goto increment_hdr; 13699 13700 jhdr = (struct hop_jumbo_hdr *)hp; 13701 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 13702 jhdr->nexthdr != IPPROTO_TCP) 13703 goto increment_hdr; 13704 13705 goto next_hdr; 13706 } 13707 increment_hdr: 13708 hdr_count++; 13709 next_hdr: 13710 nexthdr = &hp->nexthdr; 13711 start += hdrlen; 13712 } 13713 if (nextp) { 13714 /* Caller will check inner protocol */ 13715 if (skb->encapsulation) { 13716 *nextp = nexthdr; 13717 return true; 13718 } 13719 *nextp = NULL; 13720 } 13721 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13722 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13723 } 13724 13725 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13726 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13727 { 13728 struct udphdr *uh = udp_hdr(skb); 13729 __be16 udp_port = uh->dest; 13730 13731 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13732 udp_port != bp->vxlan_gpe_port) 13733 return false; 13734 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13735 struct ethhdr *eh = inner_eth_hdr(skb); 13736 13737 switch (eh->h_proto) { 13738 case htons(ETH_P_IP): 13739 return true; 13740 case htons(ETH_P_IPV6): 13741 return bnxt_exthdr_check(bp, skb, 13742 skb_inner_network_offset(skb), 13743 NULL); 13744 } 13745 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13746 return true; 13747 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13748 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13749 NULL); 13750 } 13751 return false; 13752 } 13753 13754 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13755 { 13756 switch (l4_proto) { 13757 case IPPROTO_UDP: 13758 return bnxt_udp_tunl_check(bp, skb); 13759 case IPPROTO_IPIP: 13760 return true; 13761 case IPPROTO_GRE: { 13762 switch (skb->inner_protocol) { 13763 default: 13764 return false; 13765 case htons(ETH_P_IP): 13766 return true; 13767 case htons(ETH_P_IPV6): 13768 fallthrough; 13769 } 13770 } 13771 case IPPROTO_IPV6: 13772 /* Check ext headers of inner ipv6 */ 13773 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13774 NULL); 13775 } 13776 return false; 13777 } 13778 13779 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13780 struct net_device *dev, 13781 netdev_features_t features) 13782 { 13783 struct bnxt *bp = netdev_priv(dev); 13784 u8 *l4_proto; 13785 13786 features = vlan_features_check(skb, features); 13787 switch (vlan_get_protocol(skb)) { 13788 case htons(ETH_P_IP): 13789 if (!skb->encapsulation) 13790 return features; 13791 l4_proto = &ip_hdr(skb)->protocol; 13792 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13793 return features; 13794 break; 13795 case htons(ETH_P_IPV6): 13796 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13797 &l4_proto)) 13798 break; 13799 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13800 return features; 13801 break; 13802 } 13803 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13804 } 13805 13806 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13807 u32 *reg_buf) 13808 { 13809 struct hwrm_dbg_read_direct_output *resp; 13810 struct hwrm_dbg_read_direct_input *req; 13811 __le32 *dbg_reg_buf; 13812 dma_addr_t mapping; 13813 int rc, i; 13814 13815 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13816 if (rc) 13817 return rc; 13818 13819 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13820 &mapping); 13821 if (!dbg_reg_buf) { 13822 rc = -ENOMEM; 13823 goto dbg_rd_reg_exit; 13824 } 13825 13826 req->host_dest_addr = cpu_to_le64(mapping); 13827 13828 resp = hwrm_req_hold(bp, req); 13829 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13830 req->read_len32 = cpu_to_le32(num_words); 13831 13832 rc = hwrm_req_send(bp, req); 13833 if (rc || resp->error_code) { 13834 rc = -EIO; 13835 goto dbg_rd_reg_exit; 13836 } 13837 for (i = 0; i < num_words; i++) 13838 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13839 13840 dbg_rd_reg_exit: 13841 hwrm_req_drop(bp, req); 13842 return rc; 13843 } 13844 13845 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13846 u32 ring_id, u32 *prod, u32 *cons) 13847 { 13848 struct hwrm_dbg_ring_info_get_output *resp; 13849 struct hwrm_dbg_ring_info_get_input *req; 13850 int rc; 13851 13852 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13853 if (rc) 13854 return rc; 13855 13856 req->ring_type = ring_type; 13857 req->fw_ring_id = cpu_to_le32(ring_id); 13858 resp = hwrm_req_hold(bp, req); 13859 rc = hwrm_req_send(bp, req); 13860 if (!rc) { 13861 *prod = le32_to_cpu(resp->producer_index); 13862 *cons = le32_to_cpu(resp->consumer_index); 13863 } 13864 hwrm_req_drop(bp, req); 13865 return rc; 13866 } 13867 13868 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13869 { 13870 struct bnxt_tx_ring_info *txr; 13871 int i = bnapi->index, j; 13872 13873 bnxt_for_each_napi_tx(j, bnapi, txr) 13874 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13875 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13876 txr->tx_cons); 13877 } 13878 13879 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13880 { 13881 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13882 int i = bnapi->index; 13883 13884 if (!rxr) 13885 return; 13886 13887 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13888 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13889 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13890 rxr->rx_sw_agg_prod); 13891 } 13892 13893 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13894 { 13895 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13896 int i = bnapi->index; 13897 13898 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13899 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13900 } 13901 13902 static void bnxt_dbg_dump_states(struct bnxt *bp) 13903 { 13904 int i; 13905 struct bnxt_napi *bnapi; 13906 13907 for (i = 0; i < bp->cp_nr_rings; i++) { 13908 bnapi = bp->bnapi[i]; 13909 if (netif_msg_drv(bp)) { 13910 bnxt_dump_tx_sw_state(bnapi); 13911 bnxt_dump_rx_sw_state(bnapi); 13912 bnxt_dump_cp_sw_state(bnapi); 13913 } 13914 } 13915 } 13916 13917 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 13918 { 13919 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 13920 struct hwrm_ring_reset_input *req; 13921 struct bnxt_napi *bnapi = rxr->bnapi; 13922 struct bnxt_cp_ring_info *cpr; 13923 u16 cp_ring_id; 13924 int rc; 13925 13926 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 13927 if (rc) 13928 return rc; 13929 13930 cpr = &bnapi->cp_ring; 13931 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 13932 req->cmpl_ring = cpu_to_le16(cp_ring_id); 13933 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 13934 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 13935 return hwrm_req_send_silent(bp, req); 13936 } 13937 13938 static void bnxt_reset_task(struct bnxt *bp, bool silent) 13939 { 13940 if (!silent) 13941 bnxt_dbg_dump_states(bp); 13942 if (netif_running(bp->dev)) { 13943 bnxt_close_nic(bp, !silent, false); 13944 bnxt_open_nic(bp, !silent, false); 13945 } 13946 } 13947 13948 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 13949 { 13950 struct bnxt *bp = netdev_priv(dev); 13951 13952 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 13953 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 13954 } 13955 13956 static void bnxt_fw_health_check(struct bnxt *bp) 13957 { 13958 struct bnxt_fw_health *fw_health = bp->fw_health; 13959 struct pci_dev *pdev = bp->pdev; 13960 u32 val; 13961 13962 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13963 return; 13964 13965 /* Make sure it is enabled before checking the tmr_counter. */ 13966 smp_rmb(); 13967 if (fw_health->tmr_counter) { 13968 fw_health->tmr_counter--; 13969 return; 13970 } 13971 13972 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13973 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 13974 fw_health->arrests++; 13975 goto fw_reset; 13976 } 13977 13978 fw_health->last_fw_heartbeat = val; 13979 13980 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13981 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 13982 fw_health->discoveries++; 13983 goto fw_reset; 13984 } 13985 13986 fw_health->tmr_counter = fw_health->tmr_multiplier; 13987 return; 13988 13989 fw_reset: 13990 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 13991 } 13992 13993 static void bnxt_timer(struct timer_list *t) 13994 { 13995 struct bnxt *bp = from_timer(bp, t, timer); 13996 struct net_device *dev = bp->dev; 13997 13998 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 13999 return; 14000 14001 if (atomic_read(&bp->intr_sem) != 0) 14002 goto bnxt_restart_timer; 14003 14004 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 14005 bnxt_fw_health_check(bp); 14006 14007 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 14008 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 14009 14010 if (bnxt_tc_flower_enabled(bp)) 14011 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 14012 14013 #ifdef CONFIG_RFS_ACCEL 14014 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 14015 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 14016 #endif /*CONFIG_RFS_ACCEL*/ 14017 14018 if (bp->link_info.phy_retry) { 14019 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 14020 bp->link_info.phy_retry = false; 14021 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 14022 } else { 14023 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 14024 } 14025 } 14026 14027 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 14028 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 14029 14030 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 14031 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 14032 14033 bnxt_restart_timer: 14034 mod_timer(&bp->timer, jiffies + bp->current_interval); 14035 } 14036 14037 static void bnxt_lock_sp(struct bnxt *bp) 14038 { 14039 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 14040 * set. If the device is being closed, bnxt_close() may be holding 14041 * netdev instance lock and waiting for BNXT_STATE_IN_SP_TASK to clear. 14042 * So we must clear BNXT_STATE_IN_SP_TASK before holding netdev 14043 * instance lock. 14044 */ 14045 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14046 netdev_lock(bp->dev); 14047 } 14048 14049 static void bnxt_unlock_sp(struct bnxt *bp) 14050 { 14051 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14052 netdev_unlock(bp->dev); 14053 } 14054 14055 /* Only called from bnxt_sp_task() */ 14056 static void bnxt_reset(struct bnxt *bp, bool silent) 14057 { 14058 bnxt_lock_sp(bp); 14059 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 14060 bnxt_reset_task(bp, silent); 14061 bnxt_unlock_sp(bp); 14062 } 14063 14064 /* Only called from bnxt_sp_task() */ 14065 static void bnxt_rx_ring_reset(struct bnxt *bp) 14066 { 14067 int i; 14068 14069 bnxt_lock_sp(bp); 14070 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14071 bnxt_unlock_sp(bp); 14072 return; 14073 } 14074 /* Disable and flush TPA before resetting the RX ring */ 14075 if (bp->flags & BNXT_FLAG_TPA) 14076 bnxt_set_tpa(bp, false); 14077 for (i = 0; i < bp->rx_nr_rings; i++) { 14078 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 14079 struct bnxt_cp_ring_info *cpr; 14080 int rc; 14081 14082 if (!rxr->bnapi->in_reset) 14083 continue; 14084 14085 rc = bnxt_hwrm_rx_ring_reset(bp, i); 14086 if (rc) { 14087 if (rc == -EINVAL || rc == -EOPNOTSUPP) 14088 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 14089 else 14090 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 14091 rc); 14092 bnxt_reset_task(bp, true); 14093 break; 14094 } 14095 bnxt_free_one_rx_ring_skbs(bp, rxr); 14096 rxr->rx_prod = 0; 14097 rxr->rx_agg_prod = 0; 14098 rxr->rx_sw_agg_prod = 0; 14099 rxr->rx_next_cons = 0; 14100 rxr->bnapi->in_reset = false; 14101 bnxt_alloc_one_rx_ring(bp, i); 14102 cpr = &rxr->bnapi->cp_ring; 14103 cpr->sw_stats->rx.rx_resets++; 14104 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14105 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 14106 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 14107 } 14108 if (bp->flags & BNXT_FLAG_TPA) 14109 bnxt_set_tpa(bp, true); 14110 bnxt_unlock_sp(bp); 14111 } 14112 14113 static void bnxt_fw_fatal_close(struct bnxt *bp) 14114 { 14115 bnxt_tx_disable(bp); 14116 bnxt_disable_napi(bp); 14117 bnxt_disable_int_sync(bp); 14118 bnxt_free_irq(bp); 14119 bnxt_clear_int_mode(bp); 14120 pci_disable_device(bp->pdev); 14121 } 14122 14123 static void bnxt_fw_reset_close(struct bnxt *bp) 14124 { 14125 /* When firmware is in fatal state, quiesce device and disable 14126 * bus master to prevent any potential bad DMAs before freeing 14127 * kernel memory. 14128 */ 14129 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 14130 u16 val = 0; 14131 14132 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14133 if (val == 0xffff) 14134 bp->fw_reset_min_dsecs = 0; 14135 bnxt_fw_fatal_close(bp); 14136 } 14137 __bnxt_close_nic(bp, true, false); 14138 bnxt_vf_reps_free(bp); 14139 bnxt_clear_int_mode(bp); 14140 bnxt_hwrm_func_drv_unrgtr(bp); 14141 if (pci_is_enabled(bp->pdev)) 14142 pci_disable_device(bp->pdev); 14143 bnxt_free_ctx_mem(bp, false); 14144 } 14145 14146 static bool is_bnxt_fw_ok(struct bnxt *bp) 14147 { 14148 struct bnxt_fw_health *fw_health = bp->fw_health; 14149 bool no_heartbeat = false, has_reset = false; 14150 u32 val; 14151 14152 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 14153 if (val == fw_health->last_fw_heartbeat) 14154 no_heartbeat = true; 14155 14156 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14157 if (val != fw_health->last_fw_reset_cnt) 14158 has_reset = true; 14159 14160 if (!no_heartbeat && has_reset) 14161 return true; 14162 14163 return false; 14164 } 14165 14166 /* netdev instance lock is acquired before calling this function */ 14167 static void bnxt_force_fw_reset(struct bnxt *bp) 14168 { 14169 struct bnxt_fw_health *fw_health = bp->fw_health; 14170 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14171 u32 wait_dsecs; 14172 14173 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 14174 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 14175 return; 14176 14177 /* we have to serialize with bnxt_refclk_read()*/ 14178 if (ptp) { 14179 unsigned long flags; 14180 14181 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14182 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14183 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14184 } else { 14185 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14186 } 14187 bnxt_fw_reset_close(bp); 14188 wait_dsecs = fw_health->master_func_wait_dsecs; 14189 if (fw_health->primary) { 14190 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 14191 wait_dsecs = 0; 14192 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14193 } else { 14194 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 14195 wait_dsecs = fw_health->normal_func_wait_dsecs; 14196 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14197 } 14198 14199 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 14200 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 14201 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14202 } 14203 14204 void bnxt_fw_exception(struct bnxt *bp) 14205 { 14206 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 14207 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14208 bnxt_ulp_stop(bp); 14209 bnxt_lock_sp(bp); 14210 bnxt_force_fw_reset(bp); 14211 bnxt_unlock_sp(bp); 14212 } 14213 14214 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 14215 * < 0 on error. 14216 */ 14217 static int bnxt_get_registered_vfs(struct bnxt *bp) 14218 { 14219 #ifdef CONFIG_BNXT_SRIOV 14220 int rc; 14221 14222 if (!BNXT_PF(bp)) 14223 return 0; 14224 14225 rc = bnxt_hwrm_func_qcfg(bp); 14226 if (rc) { 14227 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 14228 return rc; 14229 } 14230 if (bp->pf.registered_vfs) 14231 return bp->pf.registered_vfs; 14232 if (bp->sriov_cfg) 14233 return 1; 14234 #endif 14235 return 0; 14236 } 14237 14238 void bnxt_fw_reset(struct bnxt *bp) 14239 { 14240 bnxt_ulp_stop(bp); 14241 bnxt_lock_sp(bp); 14242 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 14243 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14244 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 14245 int n = 0, tmo; 14246 14247 /* we have to serialize with bnxt_refclk_read()*/ 14248 if (ptp) { 14249 unsigned long flags; 14250 14251 write_seqlock_irqsave(&ptp->ptp_lock, flags); 14252 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14253 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 14254 } else { 14255 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14256 } 14257 if (bp->pf.active_vfs && 14258 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 14259 n = bnxt_get_registered_vfs(bp); 14260 if (n < 0) { 14261 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 14262 n); 14263 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14264 netif_close(bp->dev); 14265 goto fw_reset_exit; 14266 } else if (n > 0) { 14267 u16 vf_tmo_dsecs = n * 10; 14268 14269 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 14270 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 14271 bp->fw_reset_state = 14272 BNXT_FW_RESET_STATE_POLL_VF; 14273 bnxt_queue_fw_reset_work(bp, HZ / 10); 14274 goto fw_reset_exit; 14275 } 14276 bnxt_fw_reset_close(bp); 14277 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14278 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14279 tmo = HZ / 10; 14280 } else { 14281 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14282 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14283 } 14284 bnxt_queue_fw_reset_work(bp, tmo); 14285 } 14286 fw_reset_exit: 14287 bnxt_unlock_sp(bp); 14288 } 14289 14290 static void bnxt_chk_missed_irq(struct bnxt *bp) 14291 { 14292 int i; 14293 14294 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 14295 return; 14296 14297 for (i = 0; i < bp->cp_nr_rings; i++) { 14298 struct bnxt_napi *bnapi = bp->bnapi[i]; 14299 struct bnxt_cp_ring_info *cpr; 14300 u32 fw_ring_id; 14301 int j; 14302 14303 if (!bnapi) 14304 continue; 14305 14306 cpr = &bnapi->cp_ring; 14307 for (j = 0; j < cpr->cp_ring_count; j++) { 14308 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 14309 u32 val[2]; 14310 14311 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 14312 continue; 14313 14314 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 14315 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 14316 continue; 14317 } 14318 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 14319 bnxt_dbg_hwrm_ring_info_get(bp, 14320 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 14321 fw_ring_id, &val[0], &val[1]); 14322 cpr->sw_stats->cmn.missed_irqs++; 14323 } 14324 } 14325 } 14326 14327 static void bnxt_cfg_ntp_filters(struct bnxt *); 14328 14329 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 14330 { 14331 struct bnxt_link_info *link_info = &bp->link_info; 14332 14333 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 14334 link_info->autoneg = BNXT_AUTONEG_SPEED; 14335 if (bp->hwrm_spec_code >= 0x10201) { 14336 if (link_info->auto_pause_setting & 14337 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 14338 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14339 } else { 14340 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 14341 } 14342 bnxt_set_auto_speed(link_info); 14343 } else { 14344 bnxt_set_force_speed(link_info); 14345 link_info->req_duplex = link_info->duplex_setting; 14346 } 14347 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 14348 link_info->req_flow_ctrl = 14349 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 14350 else 14351 link_info->req_flow_ctrl = link_info->force_pause_setting; 14352 } 14353 14354 static void bnxt_fw_echo_reply(struct bnxt *bp) 14355 { 14356 struct bnxt_fw_health *fw_health = bp->fw_health; 14357 struct hwrm_func_echo_response_input *req; 14358 int rc; 14359 14360 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 14361 if (rc) 14362 return; 14363 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 14364 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 14365 hwrm_req_send(bp, req); 14366 } 14367 14368 static void bnxt_ulp_restart(struct bnxt *bp) 14369 { 14370 bnxt_ulp_stop(bp); 14371 bnxt_ulp_start(bp, 0); 14372 } 14373 14374 static void bnxt_sp_task(struct work_struct *work) 14375 { 14376 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 14377 14378 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14379 smp_mb__after_atomic(); 14380 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 14381 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14382 return; 14383 } 14384 14385 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 14386 bnxt_ulp_restart(bp); 14387 bnxt_reenable_sriov(bp); 14388 } 14389 14390 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 14391 bnxt_cfg_rx_mode(bp); 14392 14393 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 14394 bnxt_cfg_ntp_filters(bp); 14395 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 14396 bnxt_hwrm_exec_fwd_req(bp); 14397 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 14398 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 14399 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 14400 bnxt_hwrm_port_qstats(bp, 0); 14401 bnxt_hwrm_port_qstats_ext(bp, 0); 14402 bnxt_accumulate_all_stats(bp); 14403 } 14404 14405 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 14406 int rc; 14407 14408 mutex_lock(&bp->link_lock); 14409 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 14410 &bp->sp_event)) 14411 bnxt_hwrm_phy_qcaps(bp); 14412 14413 rc = bnxt_update_link(bp, true); 14414 if (rc) 14415 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 14416 rc); 14417 14418 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 14419 &bp->sp_event)) 14420 bnxt_init_ethtool_link_settings(bp); 14421 mutex_unlock(&bp->link_lock); 14422 } 14423 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 14424 int rc; 14425 14426 mutex_lock(&bp->link_lock); 14427 rc = bnxt_update_phy_setting(bp); 14428 mutex_unlock(&bp->link_lock); 14429 if (rc) { 14430 netdev_warn(bp->dev, "update phy settings retry failed\n"); 14431 } else { 14432 bp->link_info.phy_retry = false; 14433 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 14434 } 14435 } 14436 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 14437 mutex_lock(&bp->link_lock); 14438 bnxt_get_port_module_status(bp); 14439 mutex_unlock(&bp->link_lock); 14440 } 14441 14442 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 14443 bnxt_tc_flow_stats_work(bp); 14444 14445 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 14446 bnxt_chk_missed_irq(bp); 14447 14448 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 14449 bnxt_fw_echo_reply(bp); 14450 14451 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 14452 bnxt_hwmon_notify_event(bp); 14453 14454 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 14455 * must be the last functions to be called before exiting. 14456 */ 14457 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 14458 bnxt_reset(bp, false); 14459 14460 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 14461 bnxt_reset(bp, true); 14462 14463 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 14464 bnxt_rx_ring_reset(bp); 14465 14466 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 14467 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 14468 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 14469 bnxt_devlink_health_fw_report(bp); 14470 else 14471 bnxt_fw_reset(bp); 14472 } 14473 14474 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 14475 if (!is_bnxt_fw_ok(bp)) 14476 bnxt_devlink_health_fw_report(bp); 14477 } 14478 14479 smp_mb__before_atomic(); 14480 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14481 } 14482 14483 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14484 int *max_cp); 14485 14486 /* Under netdev instance lock */ 14487 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 14488 int tx_xdp) 14489 { 14490 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 14491 struct bnxt_hw_rings hwr = {0}; 14492 int rx_rings = rx; 14493 int rc; 14494 14495 if (tcs) 14496 tx_sets = tcs; 14497 14498 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 14499 14500 if (max_rx < rx_rings) 14501 return -ENOMEM; 14502 14503 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14504 rx_rings <<= 1; 14505 14506 hwr.rx = rx_rings; 14507 hwr.tx = tx * tx_sets + tx_xdp; 14508 if (max_tx < hwr.tx) 14509 return -ENOMEM; 14510 14511 hwr.vnic = bnxt_get_total_vnics(bp, rx); 14512 14513 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 14514 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 14515 if (max_cp < hwr.cp) 14516 return -ENOMEM; 14517 hwr.stat = hwr.cp; 14518 if (BNXT_NEW_RM(bp)) { 14519 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 14520 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 14521 hwr.grp = rx; 14522 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 14523 } 14524 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 14525 hwr.cp_p5 = hwr.tx + rx; 14526 rc = bnxt_hwrm_check_rings(bp, &hwr); 14527 if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) { 14528 if (!bnxt_ulp_registered(bp->edev)) { 14529 hwr.cp += bnxt_get_ulp_msix_num(bp); 14530 hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp)); 14531 } 14532 if (hwr.cp > bp->total_irqs) { 14533 int total_msix = bnxt_change_msix(bp, hwr.cp); 14534 14535 if (total_msix < hwr.cp) { 14536 netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n", 14537 hwr.cp, total_msix); 14538 rc = -ENOSPC; 14539 } 14540 } 14541 } 14542 return rc; 14543 } 14544 14545 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 14546 { 14547 if (bp->bar2) { 14548 pci_iounmap(pdev, bp->bar2); 14549 bp->bar2 = NULL; 14550 } 14551 14552 if (bp->bar1) { 14553 pci_iounmap(pdev, bp->bar1); 14554 bp->bar1 = NULL; 14555 } 14556 14557 if (bp->bar0) { 14558 pci_iounmap(pdev, bp->bar0); 14559 bp->bar0 = NULL; 14560 } 14561 } 14562 14563 static void bnxt_cleanup_pci(struct bnxt *bp) 14564 { 14565 bnxt_unmap_bars(bp, bp->pdev); 14566 pci_release_regions(bp->pdev); 14567 if (pci_is_enabled(bp->pdev)) 14568 pci_disable_device(bp->pdev); 14569 } 14570 14571 static void bnxt_init_dflt_coal(struct bnxt *bp) 14572 { 14573 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 14574 struct bnxt_coal *coal; 14575 u16 flags = 0; 14576 14577 if (coal_cap->cmpl_params & 14578 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 14579 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 14580 14581 /* Tick values in micro seconds. 14582 * 1 coal_buf x bufs_per_record = 1 completion record. 14583 */ 14584 coal = &bp->rx_coal; 14585 coal->coal_ticks = 10; 14586 coal->coal_bufs = 30; 14587 coal->coal_ticks_irq = 1; 14588 coal->coal_bufs_irq = 2; 14589 coal->idle_thresh = 50; 14590 coal->bufs_per_record = 2; 14591 coal->budget = 64; /* NAPI budget */ 14592 coal->flags = flags; 14593 14594 coal = &bp->tx_coal; 14595 coal->coal_ticks = 28; 14596 coal->coal_bufs = 30; 14597 coal->coal_ticks_irq = 2; 14598 coal->coal_bufs_irq = 2; 14599 coal->bufs_per_record = 1; 14600 coal->flags = flags; 14601 14602 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 14603 } 14604 14605 /* FW that pre-reserves 1 VNIC per function */ 14606 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 14607 { 14608 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 14609 14610 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14611 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 14612 return true; 14613 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14614 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 14615 return true; 14616 return false; 14617 } 14618 14619 static int bnxt_fw_init_one_p1(struct bnxt *bp) 14620 { 14621 int rc; 14622 14623 bp->fw_cap = 0; 14624 rc = bnxt_hwrm_ver_get(bp); 14625 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 14626 * so wait before continuing with recovery. 14627 */ 14628 if (rc) 14629 msleep(100); 14630 bnxt_try_map_fw_health_reg(bp); 14631 if (rc) { 14632 rc = bnxt_try_recover_fw(bp); 14633 if (rc) 14634 return rc; 14635 rc = bnxt_hwrm_ver_get(bp); 14636 if (rc) 14637 return rc; 14638 } 14639 14640 bnxt_nvm_cfg_ver_get(bp); 14641 14642 rc = bnxt_hwrm_func_reset(bp); 14643 if (rc) 14644 return -ENODEV; 14645 14646 bnxt_hwrm_fw_set_time(bp); 14647 return 0; 14648 } 14649 14650 static int bnxt_fw_init_one_p2(struct bnxt *bp) 14651 { 14652 int rc; 14653 14654 /* Get the MAX capabilities for this function */ 14655 rc = bnxt_hwrm_func_qcaps(bp); 14656 if (rc) { 14657 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 14658 rc); 14659 return -ENODEV; 14660 } 14661 14662 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 14663 if (rc) 14664 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 14665 rc); 14666 14667 if (bnxt_alloc_fw_health(bp)) { 14668 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 14669 } else { 14670 rc = bnxt_hwrm_error_recovery_qcfg(bp); 14671 if (rc) 14672 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 14673 rc); 14674 } 14675 14676 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 14677 if (rc) 14678 return -ENODEV; 14679 14680 rc = bnxt_alloc_crash_dump_mem(bp); 14681 if (rc) 14682 netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n", 14683 rc); 14684 if (!rc) { 14685 rc = bnxt_hwrm_crash_dump_mem_cfg(bp); 14686 if (rc) { 14687 bnxt_free_crash_dump_mem(bp); 14688 netdev_warn(bp->dev, 14689 "hwrm crash dump mem failure rc: %d\n", rc); 14690 } 14691 } 14692 14693 if (bnxt_fw_pre_resv_vnics(bp)) 14694 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 14695 14696 bnxt_hwrm_func_qcfg(bp); 14697 bnxt_hwrm_vnic_qcaps(bp); 14698 bnxt_hwrm_port_led_qcaps(bp); 14699 bnxt_ethtool_init(bp); 14700 if (bp->fw_cap & BNXT_FW_CAP_PTP) 14701 __bnxt_hwrm_ptp_qcfg(bp); 14702 bnxt_dcb_init(bp); 14703 bnxt_hwmon_init(bp); 14704 return 0; 14705 } 14706 14707 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 14708 { 14709 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 14710 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 14711 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 14712 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 14713 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 14714 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 14715 bp->rss_hash_delta = bp->rss_hash_cfg; 14716 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 14717 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 14718 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 14719 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 14720 } 14721 } 14722 14723 static void bnxt_set_dflt_rfs(struct bnxt *bp) 14724 { 14725 struct net_device *dev = bp->dev; 14726 14727 dev->hw_features &= ~NETIF_F_NTUPLE; 14728 dev->features &= ~NETIF_F_NTUPLE; 14729 bp->flags &= ~BNXT_FLAG_RFS; 14730 if (bnxt_rfs_supported(bp)) { 14731 dev->hw_features |= NETIF_F_NTUPLE; 14732 if (bnxt_rfs_capable(bp, false)) { 14733 bp->flags |= BNXT_FLAG_RFS; 14734 dev->features |= NETIF_F_NTUPLE; 14735 } 14736 } 14737 } 14738 14739 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14740 { 14741 struct pci_dev *pdev = bp->pdev; 14742 14743 bnxt_set_dflt_rss_hash_type(bp); 14744 bnxt_set_dflt_rfs(bp); 14745 14746 bnxt_get_wol_settings(bp); 14747 if (bp->flags & BNXT_FLAG_WOL_CAP) 14748 device_set_wakeup_enable(&pdev->dev, bp->wol); 14749 else 14750 device_set_wakeup_capable(&pdev->dev, false); 14751 14752 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14753 bnxt_hwrm_coal_params_qcaps(bp); 14754 } 14755 14756 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14757 14758 int bnxt_fw_init_one(struct bnxt *bp) 14759 { 14760 int rc; 14761 14762 rc = bnxt_fw_init_one_p1(bp); 14763 if (rc) { 14764 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14765 return rc; 14766 } 14767 rc = bnxt_fw_init_one_p2(bp); 14768 if (rc) { 14769 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14770 return rc; 14771 } 14772 rc = bnxt_probe_phy(bp, false); 14773 if (rc) 14774 return rc; 14775 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14776 if (rc) 14777 return rc; 14778 14779 bnxt_fw_init_one_p3(bp); 14780 return 0; 14781 } 14782 14783 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14784 { 14785 struct bnxt_fw_health *fw_health = bp->fw_health; 14786 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14787 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14788 u32 reg_type, reg_off, delay_msecs; 14789 14790 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14791 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14792 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14793 switch (reg_type) { 14794 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14795 pci_write_config_dword(bp->pdev, reg_off, val); 14796 break; 14797 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14798 writel(reg_off & BNXT_GRC_BASE_MASK, 14799 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14800 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14801 fallthrough; 14802 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14803 writel(val, bp->bar0 + reg_off); 14804 break; 14805 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14806 writel(val, bp->bar1 + reg_off); 14807 break; 14808 } 14809 if (delay_msecs) { 14810 pci_read_config_dword(bp->pdev, 0, &val); 14811 msleep(delay_msecs); 14812 } 14813 } 14814 14815 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14816 { 14817 struct hwrm_func_qcfg_output *resp; 14818 struct hwrm_func_qcfg_input *req; 14819 bool result = true; /* firmware will enforce if unknown */ 14820 14821 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14822 return result; 14823 14824 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14825 return result; 14826 14827 req->fid = cpu_to_le16(0xffff); 14828 resp = hwrm_req_hold(bp, req); 14829 if (!hwrm_req_send(bp, req)) 14830 result = !!(le16_to_cpu(resp->flags) & 14831 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14832 hwrm_req_drop(bp, req); 14833 return result; 14834 } 14835 14836 static void bnxt_reset_all(struct bnxt *bp) 14837 { 14838 struct bnxt_fw_health *fw_health = bp->fw_health; 14839 int i, rc; 14840 14841 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14842 bnxt_fw_reset_via_optee(bp); 14843 bp->fw_reset_timestamp = jiffies; 14844 return; 14845 } 14846 14847 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14848 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14849 bnxt_fw_reset_writel(bp, i); 14850 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14851 struct hwrm_fw_reset_input *req; 14852 14853 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14854 if (!rc) { 14855 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14856 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14857 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14858 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14859 rc = hwrm_req_send(bp, req); 14860 } 14861 if (rc != -ENODEV) 14862 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14863 } 14864 bp->fw_reset_timestamp = jiffies; 14865 } 14866 14867 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14868 { 14869 return time_after(jiffies, bp->fw_reset_timestamp + 14870 (bp->fw_reset_max_dsecs * HZ / 10)); 14871 } 14872 14873 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14874 { 14875 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14876 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14877 bnxt_dl_health_fw_status_update(bp, false); 14878 bp->fw_reset_state = 0; 14879 netif_close(bp->dev); 14880 } 14881 14882 static void bnxt_fw_reset_task(struct work_struct *work) 14883 { 14884 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14885 int rc = 0; 14886 14887 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14888 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14889 return; 14890 } 14891 14892 switch (bp->fw_reset_state) { 14893 case BNXT_FW_RESET_STATE_POLL_VF: { 14894 int n = bnxt_get_registered_vfs(bp); 14895 int tmo; 14896 14897 if (n < 0) { 14898 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14899 n, jiffies_to_msecs(jiffies - 14900 bp->fw_reset_timestamp)); 14901 goto fw_reset_abort; 14902 } else if (n > 0) { 14903 if (bnxt_fw_reset_timeout(bp)) { 14904 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14905 bp->fw_reset_state = 0; 14906 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 14907 n); 14908 goto ulp_start; 14909 } 14910 bnxt_queue_fw_reset_work(bp, HZ / 10); 14911 return; 14912 } 14913 bp->fw_reset_timestamp = jiffies; 14914 netdev_lock(bp->dev); 14915 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 14916 bnxt_fw_reset_abort(bp, rc); 14917 netdev_unlock(bp->dev); 14918 goto ulp_start; 14919 } 14920 bnxt_fw_reset_close(bp); 14921 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14922 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14923 tmo = HZ / 10; 14924 } else { 14925 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14926 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14927 } 14928 netdev_unlock(bp->dev); 14929 bnxt_queue_fw_reset_work(bp, tmo); 14930 return; 14931 } 14932 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 14933 u32 val; 14934 14935 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14936 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 14937 !bnxt_fw_reset_timeout(bp)) { 14938 bnxt_queue_fw_reset_work(bp, HZ / 5); 14939 return; 14940 } 14941 14942 if (!bp->fw_health->primary) { 14943 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 14944 14945 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14946 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14947 return; 14948 } 14949 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14950 } 14951 fallthrough; 14952 case BNXT_FW_RESET_STATE_RESET_FW: 14953 bnxt_reset_all(bp); 14954 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14955 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 14956 return; 14957 case BNXT_FW_RESET_STATE_ENABLE_DEV: 14958 bnxt_inv_fw_health_reg(bp); 14959 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 14960 !bp->fw_reset_min_dsecs) { 14961 u16 val; 14962 14963 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14964 if (val == 0xffff) { 14965 if (bnxt_fw_reset_timeout(bp)) { 14966 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 14967 rc = -ETIMEDOUT; 14968 goto fw_reset_abort; 14969 } 14970 bnxt_queue_fw_reset_work(bp, HZ / 1000); 14971 return; 14972 } 14973 } 14974 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14975 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 14976 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 14977 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 14978 bnxt_dl_remote_reload(bp); 14979 if (pci_enable_device(bp->pdev)) { 14980 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 14981 rc = -ENODEV; 14982 goto fw_reset_abort; 14983 } 14984 pci_set_master(bp->pdev); 14985 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 14986 fallthrough; 14987 case BNXT_FW_RESET_STATE_POLL_FW: 14988 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 14989 rc = bnxt_hwrm_poll(bp); 14990 if (rc) { 14991 if (bnxt_fw_reset_timeout(bp)) { 14992 netdev_err(bp->dev, "Firmware reset aborted\n"); 14993 goto fw_reset_abort_status; 14994 } 14995 bnxt_queue_fw_reset_work(bp, HZ / 5); 14996 return; 14997 } 14998 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 14999 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 15000 fallthrough; 15001 case BNXT_FW_RESET_STATE_OPENING: 15002 while (!netdev_trylock(bp->dev)) { 15003 bnxt_queue_fw_reset_work(bp, HZ / 10); 15004 return; 15005 } 15006 rc = bnxt_open(bp->dev); 15007 if (rc) { 15008 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 15009 bnxt_fw_reset_abort(bp, rc); 15010 netdev_unlock(bp->dev); 15011 goto ulp_start; 15012 } 15013 15014 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 15015 bp->fw_health->enabled) { 15016 bp->fw_health->last_fw_reset_cnt = 15017 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 15018 } 15019 bp->fw_reset_state = 0; 15020 /* Make sure fw_reset_state is 0 before clearing the flag */ 15021 smp_mb__before_atomic(); 15022 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15023 bnxt_ptp_reapply_pps(bp); 15024 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 15025 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 15026 bnxt_dl_health_fw_recovery_done(bp); 15027 bnxt_dl_health_fw_status_update(bp, true); 15028 } 15029 netdev_unlock(bp->dev); 15030 bnxt_ulp_start(bp, 0); 15031 bnxt_reenable_sriov(bp); 15032 netdev_lock(bp->dev); 15033 bnxt_vf_reps_alloc(bp); 15034 bnxt_vf_reps_open(bp); 15035 netdev_unlock(bp->dev); 15036 break; 15037 } 15038 return; 15039 15040 fw_reset_abort_status: 15041 if (bp->fw_health->status_reliable || 15042 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 15043 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 15044 15045 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 15046 } 15047 fw_reset_abort: 15048 netdev_lock(bp->dev); 15049 bnxt_fw_reset_abort(bp, rc); 15050 netdev_unlock(bp->dev); 15051 ulp_start: 15052 bnxt_ulp_start(bp, rc); 15053 } 15054 15055 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 15056 { 15057 int rc; 15058 struct bnxt *bp = netdev_priv(dev); 15059 15060 SET_NETDEV_DEV(dev, &pdev->dev); 15061 15062 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 15063 rc = pci_enable_device(pdev); 15064 if (rc) { 15065 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 15066 goto init_err; 15067 } 15068 15069 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 15070 dev_err(&pdev->dev, 15071 "Cannot find PCI device base address, aborting\n"); 15072 rc = -ENODEV; 15073 goto init_err_disable; 15074 } 15075 15076 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 15077 if (rc) { 15078 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 15079 goto init_err_disable; 15080 } 15081 15082 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 15083 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 15084 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 15085 rc = -EIO; 15086 goto init_err_release; 15087 } 15088 15089 pci_set_master(pdev); 15090 15091 bp->dev = dev; 15092 bp->pdev = pdev; 15093 15094 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 15095 * determines the BAR size. 15096 */ 15097 bp->bar0 = pci_ioremap_bar(pdev, 0); 15098 if (!bp->bar0) { 15099 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 15100 rc = -ENOMEM; 15101 goto init_err_release; 15102 } 15103 15104 bp->bar2 = pci_ioremap_bar(pdev, 4); 15105 if (!bp->bar2) { 15106 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 15107 rc = -ENOMEM; 15108 goto init_err_release; 15109 } 15110 15111 INIT_WORK(&bp->sp_task, bnxt_sp_task); 15112 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 15113 15114 spin_lock_init(&bp->ntp_fltr_lock); 15115 #if BITS_PER_LONG == 32 15116 spin_lock_init(&bp->db_lock); 15117 #endif 15118 15119 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 15120 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 15121 15122 timer_setup(&bp->timer, bnxt_timer, 0); 15123 bp->current_interval = BNXT_TIMER_INTERVAL; 15124 15125 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 15126 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 15127 15128 clear_bit(BNXT_STATE_OPEN, &bp->state); 15129 return 0; 15130 15131 init_err_release: 15132 bnxt_unmap_bars(bp, pdev); 15133 pci_release_regions(pdev); 15134 15135 init_err_disable: 15136 pci_disable_device(pdev); 15137 15138 init_err: 15139 return rc; 15140 } 15141 15142 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 15143 { 15144 struct sockaddr *addr = p; 15145 struct bnxt *bp = netdev_priv(dev); 15146 int rc = 0; 15147 15148 netdev_assert_locked(dev); 15149 15150 if (!is_valid_ether_addr(addr->sa_data)) 15151 return -EADDRNOTAVAIL; 15152 15153 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 15154 return 0; 15155 15156 rc = bnxt_approve_mac(bp, addr->sa_data, true); 15157 if (rc) 15158 return rc; 15159 15160 eth_hw_addr_set(dev, addr->sa_data); 15161 bnxt_clear_usr_fltrs(bp, true); 15162 if (netif_running(dev)) { 15163 bnxt_close_nic(bp, false, false); 15164 rc = bnxt_open_nic(bp, false, false); 15165 } 15166 15167 return rc; 15168 } 15169 15170 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 15171 { 15172 struct bnxt *bp = netdev_priv(dev); 15173 15174 netdev_assert_locked(dev); 15175 15176 if (netif_running(dev)) 15177 bnxt_close_nic(bp, true, false); 15178 15179 WRITE_ONCE(dev->mtu, new_mtu); 15180 15181 /* MTU change may change the AGG ring settings if an XDP multi-buffer 15182 * program is attached. We need to set the AGG rings settings and 15183 * rx_skb_func accordingly. 15184 */ 15185 if (READ_ONCE(bp->xdp_prog)) 15186 bnxt_set_rx_skb_mode(bp, true); 15187 15188 bnxt_set_ring_params(bp); 15189 15190 if (netif_running(dev)) 15191 return bnxt_open_nic(bp, true, false); 15192 15193 return 0; 15194 } 15195 15196 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 15197 { 15198 struct bnxt *bp = netdev_priv(dev); 15199 bool sh = false; 15200 int rc, tx_cp; 15201 15202 if (tc > bp->max_tc) { 15203 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 15204 tc, bp->max_tc); 15205 return -EINVAL; 15206 } 15207 15208 if (bp->num_tc == tc) 15209 return 0; 15210 15211 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 15212 sh = true; 15213 15214 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 15215 sh, tc, bp->tx_nr_rings_xdp); 15216 if (rc) 15217 return rc; 15218 15219 /* Needs to close the device and do hw resource re-allocations */ 15220 if (netif_running(bp->dev)) 15221 bnxt_close_nic(bp, true, false); 15222 15223 if (tc) { 15224 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 15225 netdev_set_num_tc(dev, tc); 15226 bp->num_tc = tc; 15227 } else { 15228 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15229 netdev_reset_tc(dev); 15230 bp->num_tc = 0; 15231 } 15232 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 15233 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 15234 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 15235 tx_cp + bp->rx_nr_rings; 15236 15237 if (netif_running(bp->dev)) 15238 return bnxt_open_nic(bp, true, false); 15239 15240 return 0; 15241 } 15242 15243 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 15244 void *cb_priv) 15245 { 15246 struct bnxt *bp = cb_priv; 15247 15248 if (!bnxt_tc_flower_enabled(bp) || 15249 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 15250 return -EOPNOTSUPP; 15251 15252 switch (type) { 15253 case TC_SETUP_CLSFLOWER: 15254 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 15255 default: 15256 return -EOPNOTSUPP; 15257 } 15258 } 15259 15260 LIST_HEAD(bnxt_block_cb_list); 15261 15262 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 15263 void *type_data) 15264 { 15265 struct bnxt *bp = netdev_priv(dev); 15266 15267 switch (type) { 15268 case TC_SETUP_BLOCK: 15269 return flow_block_cb_setup_simple(type_data, 15270 &bnxt_block_cb_list, 15271 bnxt_setup_tc_block_cb, 15272 bp, bp, true); 15273 case TC_SETUP_QDISC_MQPRIO: { 15274 struct tc_mqprio_qopt *mqprio = type_data; 15275 15276 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 15277 15278 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 15279 } 15280 default: 15281 return -EOPNOTSUPP; 15282 } 15283 } 15284 15285 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 15286 const struct sk_buff *skb) 15287 { 15288 struct bnxt_vnic_info *vnic; 15289 15290 if (skb) 15291 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 15292 15293 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 15294 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 15295 } 15296 15297 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 15298 u32 idx) 15299 { 15300 struct hlist_head *head; 15301 int bit_id; 15302 15303 spin_lock_bh(&bp->ntp_fltr_lock); 15304 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 15305 if (bit_id < 0) { 15306 spin_unlock_bh(&bp->ntp_fltr_lock); 15307 return -ENOMEM; 15308 } 15309 15310 fltr->base.sw_id = (u16)bit_id; 15311 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 15312 fltr->base.flags |= BNXT_ACT_RING_DST; 15313 head = &bp->ntp_fltr_hash_tbl[idx]; 15314 hlist_add_head_rcu(&fltr->base.hash, head); 15315 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 15316 bnxt_insert_usr_fltr(bp, &fltr->base); 15317 bp->ntp_fltr_count++; 15318 spin_unlock_bh(&bp->ntp_fltr_lock); 15319 return 0; 15320 } 15321 15322 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 15323 struct bnxt_ntuple_filter *f2) 15324 { 15325 struct bnxt_flow_masks *masks1 = &f1->fmasks; 15326 struct bnxt_flow_masks *masks2 = &f2->fmasks; 15327 struct flow_keys *keys1 = &f1->fkeys; 15328 struct flow_keys *keys2 = &f2->fkeys; 15329 15330 if (keys1->basic.n_proto != keys2->basic.n_proto || 15331 keys1->basic.ip_proto != keys2->basic.ip_proto) 15332 return false; 15333 15334 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 15335 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 15336 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 15337 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 15338 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 15339 return false; 15340 } else { 15341 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 15342 &keys2->addrs.v6addrs.src) || 15343 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 15344 &masks2->addrs.v6addrs.src) || 15345 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 15346 &keys2->addrs.v6addrs.dst) || 15347 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 15348 &masks2->addrs.v6addrs.dst)) 15349 return false; 15350 } 15351 15352 return keys1->ports.src == keys2->ports.src && 15353 masks1->ports.src == masks2->ports.src && 15354 keys1->ports.dst == keys2->ports.dst && 15355 masks1->ports.dst == masks2->ports.dst && 15356 keys1->control.flags == keys2->control.flags && 15357 f1->l2_fltr == f2->l2_fltr; 15358 } 15359 15360 struct bnxt_ntuple_filter * 15361 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 15362 struct bnxt_ntuple_filter *fltr, u32 idx) 15363 { 15364 struct bnxt_ntuple_filter *f; 15365 struct hlist_head *head; 15366 15367 head = &bp->ntp_fltr_hash_tbl[idx]; 15368 hlist_for_each_entry_rcu(f, head, base.hash) { 15369 if (bnxt_fltr_match(f, fltr)) 15370 return f; 15371 } 15372 return NULL; 15373 } 15374 15375 #ifdef CONFIG_RFS_ACCEL 15376 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 15377 u16 rxq_index, u32 flow_id) 15378 { 15379 struct bnxt *bp = netdev_priv(dev); 15380 struct bnxt_ntuple_filter *fltr, *new_fltr; 15381 struct flow_keys *fkeys; 15382 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 15383 struct bnxt_l2_filter *l2_fltr; 15384 int rc = 0, idx; 15385 u32 flags; 15386 15387 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 15388 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 15389 atomic_inc(&l2_fltr->refcnt); 15390 } else { 15391 struct bnxt_l2_key key; 15392 15393 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 15394 key.vlan = 0; 15395 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 15396 if (!l2_fltr) 15397 return -EINVAL; 15398 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 15399 bnxt_del_l2_filter(bp, l2_fltr); 15400 return -EINVAL; 15401 } 15402 } 15403 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 15404 if (!new_fltr) { 15405 bnxt_del_l2_filter(bp, l2_fltr); 15406 return -ENOMEM; 15407 } 15408 15409 fkeys = &new_fltr->fkeys; 15410 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 15411 rc = -EPROTONOSUPPORT; 15412 goto err_free; 15413 } 15414 15415 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 15416 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 15417 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 15418 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 15419 rc = -EPROTONOSUPPORT; 15420 goto err_free; 15421 } 15422 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 15423 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 15424 if (bp->hwrm_spec_code < 0x10601) { 15425 rc = -EPROTONOSUPPORT; 15426 goto err_free; 15427 } 15428 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 15429 } 15430 flags = fkeys->control.flags; 15431 if (((flags & FLOW_DIS_ENCAPSULATION) && 15432 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 15433 rc = -EPROTONOSUPPORT; 15434 goto err_free; 15435 } 15436 new_fltr->l2_fltr = l2_fltr; 15437 15438 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 15439 rcu_read_lock(); 15440 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 15441 if (fltr) { 15442 rc = fltr->base.sw_id; 15443 rcu_read_unlock(); 15444 goto err_free; 15445 } 15446 rcu_read_unlock(); 15447 15448 new_fltr->flow_id = flow_id; 15449 new_fltr->base.rxq = rxq_index; 15450 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 15451 if (!rc) { 15452 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 15453 return new_fltr->base.sw_id; 15454 } 15455 15456 err_free: 15457 bnxt_del_l2_filter(bp, l2_fltr); 15458 kfree(new_fltr); 15459 return rc; 15460 } 15461 #endif 15462 15463 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 15464 { 15465 spin_lock_bh(&bp->ntp_fltr_lock); 15466 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 15467 spin_unlock_bh(&bp->ntp_fltr_lock); 15468 return; 15469 } 15470 hlist_del_rcu(&fltr->base.hash); 15471 bnxt_del_one_usr_fltr(bp, &fltr->base); 15472 bp->ntp_fltr_count--; 15473 spin_unlock_bh(&bp->ntp_fltr_lock); 15474 bnxt_del_l2_filter(bp, fltr->l2_fltr); 15475 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 15476 kfree_rcu(fltr, base.rcu); 15477 } 15478 15479 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 15480 { 15481 #ifdef CONFIG_RFS_ACCEL 15482 int i; 15483 15484 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 15485 struct hlist_head *head; 15486 struct hlist_node *tmp; 15487 struct bnxt_ntuple_filter *fltr; 15488 int rc; 15489 15490 head = &bp->ntp_fltr_hash_tbl[i]; 15491 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 15492 bool del = false; 15493 15494 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 15495 if (fltr->base.flags & BNXT_ACT_NO_AGING) 15496 continue; 15497 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 15498 fltr->flow_id, 15499 fltr->base.sw_id)) { 15500 bnxt_hwrm_cfa_ntuple_filter_free(bp, 15501 fltr); 15502 del = true; 15503 } 15504 } else { 15505 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 15506 fltr); 15507 if (rc) 15508 del = true; 15509 else 15510 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 15511 } 15512 15513 if (del) 15514 bnxt_del_ntp_filter(bp, fltr); 15515 } 15516 } 15517 #endif 15518 } 15519 15520 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 15521 unsigned int entry, struct udp_tunnel_info *ti) 15522 { 15523 struct bnxt *bp = netdev_priv(netdev); 15524 unsigned int cmd; 15525 15526 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15527 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 15528 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15529 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 15530 else 15531 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 15532 15533 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 15534 } 15535 15536 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 15537 unsigned int entry, struct udp_tunnel_info *ti) 15538 { 15539 struct bnxt *bp = netdev_priv(netdev); 15540 unsigned int cmd; 15541 15542 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15543 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 15544 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15545 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 15546 else 15547 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 15548 15549 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 15550 } 15551 15552 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 15553 .set_port = bnxt_udp_tunnel_set_port, 15554 .unset_port = bnxt_udp_tunnel_unset_port, 15555 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 15556 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15557 .tables = { 15558 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15559 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15560 }, 15561 }, bnxt_udp_tunnels_p7 = { 15562 .set_port = bnxt_udp_tunnel_set_port, 15563 .unset_port = bnxt_udp_tunnel_unset_port, 15564 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 15565 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15566 .tables = { 15567 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15568 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15569 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 15570 }, 15571 }; 15572 15573 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 15574 struct net_device *dev, u32 filter_mask, 15575 int nlflags) 15576 { 15577 struct bnxt *bp = netdev_priv(dev); 15578 15579 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 15580 nlflags, filter_mask, NULL); 15581 } 15582 15583 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 15584 u16 flags, struct netlink_ext_ack *extack) 15585 { 15586 struct bnxt *bp = netdev_priv(dev); 15587 struct nlattr *attr, *br_spec; 15588 int rem, rc = 0; 15589 15590 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 15591 return -EOPNOTSUPP; 15592 15593 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 15594 if (!br_spec) 15595 return -EINVAL; 15596 15597 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 15598 u16 mode; 15599 15600 mode = nla_get_u16(attr); 15601 if (mode == bp->br_mode) 15602 break; 15603 15604 rc = bnxt_hwrm_set_br_mode(bp, mode); 15605 if (!rc) 15606 bp->br_mode = mode; 15607 break; 15608 } 15609 return rc; 15610 } 15611 15612 int bnxt_get_port_parent_id(struct net_device *dev, 15613 struct netdev_phys_item_id *ppid) 15614 { 15615 struct bnxt *bp = netdev_priv(dev); 15616 15617 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 15618 return -EOPNOTSUPP; 15619 15620 /* The PF and it's VF-reps only support the switchdev framework */ 15621 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 15622 return -EOPNOTSUPP; 15623 15624 ppid->id_len = sizeof(bp->dsn); 15625 memcpy(ppid->id, bp->dsn, ppid->id_len); 15626 15627 return 0; 15628 } 15629 15630 static const struct net_device_ops bnxt_netdev_ops = { 15631 .ndo_open = bnxt_open, 15632 .ndo_start_xmit = bnxt_start_xmit, 15633 .ndo_stop = bnxt_close, 15634 .ndo_get_stats64 = bnxt_get_stats64, 15635 .ndo_set_rx_mode = bnxt_set_rx_mode, 15636 .ndo_eth_ioctl = bnxt_ioctl, 15637 .ndo_validate_addr = eth_validate_addr, 15638 .ndo_set_mac_address = bnxt_change_mac_addr, 15639 .ndo_change_mtu = bnxt_change_mtu, 15640 .ndo_fix_features = bnxt_fix_features, 15641 .ndo_set_features = bnxt_set_features, 15642 .ndo_features_check = bnxt_features_check, 15643 .ndo_tx_timeout = bnxt_tx_timeout, 15644 #ifdef CONFIG_BNXT_SRIOV 15645 .ndo_get_vf_config = bnxt_get_vf_config, 15646 .ndo_set_vf_mac = bnxt_set_vf_mac, 15647 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 15648 .ndo_set_vf_rate = bnxt_set_vf_bw, 15649 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 15650 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 15651 .ndo_set_vf_trust = bnxt_set_vf_trust, 15652 #endif 15653 .ndo_setup_tc = bnxt_setup_tc, 15654 #ifdef CONFIG_RFS_ACCEL 15655 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 15656 #endif 15657 .ndo_bpf = bnxt_xdp, 15658 .ndo_xdp_xmit = bnxt_xdp_xmit, 15659 .ndo_bridge_getlink = bnxt_bridge_getlink, 15660 .ndo_bridge_setlink = bnxt_bridge_setlink, 15661 }; 15662 15663 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 15664 struct netdev_queue_stats_rx *stats) 15665 { 15666 struct bnxt *bp = netdev_priv(dev); 15667 struct bnxt_cp_ring_info *cpr; 15668 u64 *sw; 15669 15670 if (!bp->bnapi) 15671 return; 15672 15673 cpr = &bp->bnapi[i]->cp_ring; 15674 sw = cpr->stats.sw_stats; 15675 15676 stats->packets = 0; 15677 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 15678 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 15679 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 15680 15681 stats->bytes = 0; 15682 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 15683 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 15684 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 15685 15686 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 15687 } 15688 15689 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 15690 struct netdev_queue_stats_tx *stats) 15691 { 15692 struct bnxt *bp = netdev_priv(dev); 15693 struct bnxt_napi *bnapi; 15694 u64 *sw; 15695 15696 if (!bp->tx_ring) 15697 return; 15698 15699 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 15700 sw = bnapi->cp_ring.stats.sw_stats; 15701 15702 stats->packets = 0; 15703 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 15704 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 15705 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 15706 15707 stats->bytes = 0; 15708 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 15709 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 15710 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 15711 } 15712 15713 static void bnxt_get_base_stats(struct net_device *dev, 15714 struct netdev_queue_stats_rx *rx, 15715 struct netdev_queue_stats_tx *tx) 15716 { 15717 struct bnxt *bp = netdev_priv(dev); 15718 15719 rx->packets = bp->net_stats_prev.rx_packets; 15720 rx->bytes = bp->net_stats_prev.rx_bytes; 15721 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 15722 15723 tx->packets = bp->net_stats_prev.tx_packets; 15724 tx->bytes = bp->net_stats_prev.tx_bytes; 15725 } 15726 15727 static const struct netdev_stat_ops bnxt_stat_ops = { 15728 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 15729 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 15730 .get_base_stats = bnxt_get_base_stats, 15731 }; 15732 15733 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 15734 { 15735 struct bnxt_rx_ring_info *rxr, *clone; 15736 struct bnxt *bp = netdev_priv(dev); 15737 struct bnxt_ring_struct *ring; 15738 int rc; 15739 15740 if (!bp->rx_ring) 15741 return -ENETDOWN; 15742 15743 rxr = &bp->rx_ring[idx]; 15744 clone = qmem; 15745 memcpy(clone, rxr, sizeof(*rxr)); 15746 bnxt_init_rx_ring_struct(bp, clone); 15747 bnxt_reset_rx_ring_struct(bp, clone); 15748 15749 clone->rx_prod = 0; 15750 clone->rx_agg_prod = 0; 15751 clone->rx_sw_agg_prod = 0; 15752 clone->rx_next_cons = 0; 15753 clone->need_head_pool = false; 15754 15755 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15756 if (rc) 15757 return rc; 15758 15759 rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0); 15760 if (rc < 0) 15761 goto err_page_pool_destroy; 15762 15763 rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq, 15764 MEM_TYPE_PAGE_POOL, 15765 clone->page_pool); 15766 if (rc) 15767 goto err_rxq_info_unreg; 15768 15769 ring = &clone->rx_ring_struct; 15770 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15771 if (rc) 15772 goto err_free_rx_ring; 15773 15774 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15775 ring = &clone->rx_agg_ring_struct; 15776 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15777 if (rc) 15778 goto err_free_rx_agg_ring; 15779 15780 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15781 if (rc) 15782 goto err_free_rx_agg_ring; 15783 } 15784 15785 if (bp->flags & BNXT_FLAG_TPA) { 15786 rc = bnxt_alloc_one_tpa_info(bp, clone); 15787 if (rc) 15788 goto err_free_tpa_info; 15789 } 15790 15791 bnxt_init_one_rx_ring_rxbd(bp, clone); 15792 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15793 15794 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15795 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15796 bnxt_alloc_one_rx_ring_netmem(bp, clone, idx); 15797 if (bp->flags & BNXT_FLAG_TPA) 15798 bnxt_alloc_one_tpa_info_data(bp, clone); 15799 15800 return 0; 15801 15802 err_free_tpa_info: 15803 bnxt_free_one_tpa_info(bp, clone); 15804 err_free_rx_agg_ring: 15805 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15806 err_free_rx_ring: 15807 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15808 err_rxq_info_unreg: 15809 xdp_rxq_info_unreg(&clone->xdp_rxq); 15810 err_page_pool_destroy: 15811 page_pool_destroy(clone->page_pool); 15812 if (bnxt_separate_head_pool(clone)) 15813 page_pool_destroy(clone->head_pool); 15814 clone->page_pool = NULL; 15815 clone->head_pool = NULL; 15816 return rc; 15817 } 15818 15819 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15820 { 15821 struct bnxt_rx_ring_info *rxr = qmem; 15822 struct bnxt *bp = netdev_priv(dev); 15823 struct bnxt_ring_struct *ring; 15824 15825 bnxt_free_one_rx_ring_skbs(bp, rxr); 15826 bnxt_free_one_tpa_info(bp, rxr); 15827 15828 xdp_rxq_info_unreg(&rxr->xdp_rxq); 15829 15830 page_pool_destroy(rxr->page_pool); 15831 if (bnxt_separate_head_pool(rxr)) 15832 page_pool_destroy(rxr->head_pool); 15833 rxr->page_pool = NULL; 15834 rxr->head_pool = NULL; 15835 15836 ring = &rxr->rx_ring_struct; 15837 bnxt_free_ring(bp, &ring->ring_mem); 15838 15839 ring = &rxr->rx_agg_ring_struct; 15840 bnxt_free_ring(bp, &ring->ring_mem); 15841 15842 kfree(rxr->rx_agg_bmap); 15843 rxr->rx_agg_bmap = NULL; 15844 } 15845 15846 static void bnxt_copy_rx_ring(struct bnxt *bp, 15847 struct bnxt_rx_ring_info *dst, 15848 struct bnxt_rx_ring_info *src) 15849 { 15850 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15851 struct bnxt_ring_struct *dst_ring, *src_ring; 15852 int i; 15853 15854 dst_ring = &dst->rx_ring_struct; 15855 dst_rmem = &dst_ring->ring_mem; 15856 src_ring = &src->rx_ring_struct; 15857 src_rmem = &src_ring->ring_mem; 15858 15859 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15860 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15861 WARN_ON(dst_rmem->flags != src_rmem->flags); 15862 WARN_ON(dst_rmem->depth != src_rmem->depth); 15863 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15864 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15865 15866 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15867 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15868 *dst_rmem->vmem = *src_rmem->vmem; 15869 for (i = 0; i < dst_rmem->nr_pages; i++) { 15870 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15871 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15872 } 15873 15874 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15875 return; 15876 15877 dst_ring = &dst->rx_agg_ring_struct; 15878 dst_rmem = &dst_ring->ring_mem; 15879 src_ring = &src->rx_agg_ring_struct; 15880 src_rmem = &src_ring->ring_mem; 15881 15882 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15883 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15884 WARN_ON(dst_rmem->flags != src_rmem->flags); 15885 WARN_ON(dst_rmem->depth != src_rmem->depth); 15886 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15887 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15888 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 15889 15890 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15891 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15892 *dst_rmem->vmem = *src_rmem->vmem; 15893 for (i = 0; i < dst_rmem->nr_pages; i++) { 15894 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15895 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15896 } 15897 15898 dst->rx_agg_bmap = src->rx_agg_bmap; 15899 } 15900 15901 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 15902 { 15903 struct bnxt *bp = netdev_priv(dev); 15904 struct bnxt_rx_ring_info *rxr, *clone; 15905 struct bnxt_cp_ring_info *cpr; 15906 struct bnxt_vnic_info *vnic; 15907 struct bnxt_napi *bnapi; 15908 int i, rc; 15909 15910 rxr = &bp->rx_ring[idx]; 15911 clone = qmem; 15912 15913 rxr->rx_prod = clone->rx_prod; 15914 rxr->rx_agg_prod = clone->rx_agg_prod; 15915 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 15916 rxr->rx_next_cons = clone->rx_next_cons; 15917 rxr->rx_tpa = clone->rx_tpa; 15918 rxr->rx_tpa_idx_map = clone->rx_tpa_idx_map; 15919 rxr->page_pool = clone->page_pool; 15920 rxr->head_pool = clone->head_pool; 15921 rxr->xdp_rxq = clone->xdp_rxq; 15922 rxr->need_head_pool = clone->need_head_pool; 15923 15924 bnxt_copy_rx_ring(bp, rxr, clone); 15925 15926 bnapi = rxr->bnapi; 15927 cpr = &bnapi->cp_ring; 15928 15929 /* All rings have been reserved and previously allocated. 15930 * Reallocating with the same parameters should never fail. 15931 */ 15932 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 15933 if (rc) 15934 goto err_reset; 15935 15936 if (bp->tph_mode) { 15937 rc = bnxt_hwrm_cp_ring_alloc_p5(bp, rxr->rx_cpr); 15938 if (rc) 15939 goto err_reset; 15940 } 15941 15942 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 15943 if (rc) 15944 goto err_reset; 15945 15946 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 15947 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15948 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 15949 15950 if (bp->flags & BNXT_FLAG_SHARED_RINGS) { 15951 rc = bnxt_tx_queue_start(bp, idx); 15952 if (rc) 15953 goto err_reset; 15954 } 15955 15956 napi_enable_locked(&bnapi->napi); 15957 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 15958 15959 for (i = 0; i < bp->nr_vnics; i++) { 15960 vnic = &bp->vnic_info[i]; 15961 15962 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 15963 if (rc) { 15964 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 15965 vnic->vnic_id, rc); 15966 return rc; 15967 } 15968 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 15969 bnxt_hwrm_vnic_update(bp, vnic, 15970 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 15971 } 15972 15973 return 0; 15974 15975 err_reset: 15976 netdev_err(bp->dev, "Unexpected HWRM error during queue start rc: %d\n", 15977 rc); 15978 napi_enable_locked(&bnapi->napi); 15979 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 15980 bnxt_reset_task(bp, true); 15981 return rc; 15982 } 15983 15984 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 15985 { 15986 struct bnxt *bp = netdev_priv(dev); 15987 struct bnxt_rx_ring_info *rxr; 15988 struct bnxt_cp_ring_info *cpr; 15989 struct bnxt_vnic_info *vnic; 15990 struct bnxt_napi *bnapi; 15991 int i; 15992 15993 for (i = 0; i < bp->nr_vnics; i++) { 15994 vnic = &bp->vnic_info[i]; 15995 vnic->mru = 0; 15996 bnxt_hwrm_vnic_update(bp, vnic, 15997 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 15998 } 15999 /* Make sure NAPI sees that the VNIC is disabled */ 16000 synchronize_net(); 16001 rxr = &bp->rx_ring[idx]; 16002 bnapi = rxr->bnapi; 16003 cpr = &bnapi->cp_ring; 16004 cancel_work_sync(&cpr->dim.work); 16005 bnxt_hwrm_rx_ring_free(bp, rxr, false); 16006 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 16007 page_pool_disable_direct_recycling(rxr->page_pool); 16008 if (bnxt_separate_head_pool(rxr)) 16009 page_pool_disable_direct_recycling(rxr->head_pool); 16010 16011 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 16012 bnxt_tx_queue_stop(bp, idx); 16013 16014 /* Disable NAPI now after freeing the rings because HWRM_RING_FREE 16015 * completion is handled in NAPI to guarantee no more DMA on that ring 16016 * after seeing the completion. 16017 */ 16018 napi_disable_locked(&bnapi->napi); 16019 16020 if (bp->tph_mode) { 16021 bnxt_hwrm_cp_ring_free(bp, rxr->rx_cpr); 16022 bnxt_clear_one_cp_ring(bp, rxr->rx_cpr); 16023 } 16024 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 16025 16026 memcpy(qmem, rxr, sizeof(*rxr)); 16027 bnxt_init_rx_ring_struct(bp, qmem); 16028 16029 return 0; 16030 } 16031 16032 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 16033 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 16034 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 16035 .ndo_queue_mem_free = bnxt_queue_mem_free, 16036 .ndo_queue_start = bnxt_queue_start, 16037 .ndo_queue_stop = bnxt_queue_stop, 16038 }; 16039 16040 static void bnxt_remove_one(struct pci_dev *pdev) 16041 { 16042 struct net_device *dev = pci_get_drvdata(pdev); 16043 struct bnxt *bp = netdev_priv(dev); 16044 16045 if (BNXT_PF(bp)) 16046 bnxt_sriov_disable(bp); 16047 16048 bnxt_rdma_aux_device_del(bp); 16049 16050 bnxt_ptp_clear(bp); 16051 unregister_netdev(dev); 16052 16053 bnxt_rdma_aux_device_uninit(bp); 16054 16055 bnxt_free_l2_filters(bp, true); 16056 bnxt_free_ntp_fltrs(bp, true); 16057 WARN_ON(bp->num_rss_ctx); 16058 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16059 /* Flush any pending tasks */ 16060 cancel_work_sync(&bp->sp_task); 16061 cancel_delayed_work_sync(&bp->fw_reset_task); 16062 bp->sp_event = 0; 16063 16064 bnxt_dl_fw_reporters_destroy(bp); 16065 bnxt_dl_unregister(bp); 16066 bnxt_shutdown_tc(bp); 16067 16068 bnxt_clear_int_mode(bp); 16069 bnxt_hwrm_func_drv_unrgtr(bp); 16070 bnxt_free_hwrm_resources(bp); 16071 bnxt_hwmon_uninit(bp); 16072 bnxt_ethtool_free(bp); 16073 bnxt_dcb_free(bp); 16074 kfree(bp->ptp_cfg); 16075 bp->ptp_cfg = NULL; 16076 kfree(bp->fw_health); 16077 bp->fw_health = NULL; 16078 bnxt_cleanup_pci(bp); 16079 bnxt_free_ctx_mem(bp, true); 16080 bnxt_free_crash_dump_mem(bp); 16081 kfree(bp->rss_indir_tbl); 16082 bp->rss_indir_tbl = NULL; 16083 bnxt_free_port_stats(bp); 16084 free_netdev(dev); 16085 } 16086 16087 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 16088 { 16089 int rc = 0; 16090 struct bnxt_link_info *link_info = &bp->link_info; 16091 16092 bp->phy_flags = 0; 16093 rc = bnxt_hwrm_phy_qcaps(bp); 16094 if (rc) { 16095 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 16096 rc); 16097 return rc; 16098 } 16099 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 16100 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 16101 else 16102 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 16103 16104 bp->mac_flags = 0; 16105 bnxt_hwrm_mac_qcaps(bp); 16106 16107 if (!fw_dflt) 16108 return 0; 16109 16110 mutex_lock(&bp->link_lock); 16111 rc = bnxt_update_link(bp, false); 16112 if (rc) { 16113 mutex_unlock(&bp->link_lock); 16114 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 16115 rc); 16116 return rc; 16117 } 16118 16119 /* Older firmware does not have supported_auto_speeds, so assume 16120 * that all supported speeds can be autonegotiated. 16121 */ 16122 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 16123 link_info->support_auto_speeds = link_info->support_speeds; 16124 16125 bnxt_init_ethtool_link_settings(bp); 16126 mutex_unlock(&bp->link_lock); 16127 return 0; 16128 } 16129 16130 static int bnxt_get_max_irq(struct pci_dev *pdev) 16131 { 16132 u16 ctrl; 16133 16134 if (!pdev->msix_cap) 16135 return 1; 16136 16137 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 16138 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 16139 } 16140 16141 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16142 int *max_cp) 16143 { 16144 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 16145 int max_ring_grps = 0, max_irq; 16146 16147 *max_tx = hw_resc->max_tx_rings; 16148 *max_rx = hw_resc->max_rx_rings; 16149 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 16150 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 16151 bnxt_get_ulp_msix_num_in_use(bp), 16152 hw_resc->max_stat_ctxs - 16153 bnxt_get_ulp_stat_ctxs_in_use(bp)); 16154 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 16155 *max_cp = min_t(int, *max_cp, max_irq); 16156 max_ring_grps = hw_resc->max_hw_ring_grps; 16157 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 16158 *max_cp -= 1; 16159 *max_rx -= 2; 16160 } 16161 if (bp->flags & BNXT_FLAG_AGG_RINGS) 16162 *max_rx >>= 1; 16163 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 16164 int rc; 16165 16166 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 16167 if (rc) { 16168 *max_rx = 0; 16169 *max_tx = 0; 16170 } 16171 /* On P5 chips, max_cp output param should be available NQs */ 16172 *max_cp = max_irq; 16173 } 16174 *max_rx = min_t(int, *max_rx, max_ring_grps); 16175 } 16176 16177 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 16178 { 16179 int rx, tx, cp; 16180 16181 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 16182 *max_rx = rx; 16183 *max_tx = tx; 16184 if (!rx || !tx || !cp) 16185 return -ENOMEM; 16186 16187 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 16188 } 16189 16190 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 16191 bool shared) 16192 { 16193 int rc; 16194 16195 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16196 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 16197 /* Not enough rings, try disabling agg rings. */ 16198 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 16199 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 16200 if (rc) { 16201 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 16202 bp->flags |= BNXT_FLAG_AGG_RINGS; 16203 return rc; 16204 } 16205 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 16206 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16207 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 16208 bnxt_set_ring_params(bp); 16209 } 16210 16211 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 16212 int max_cp, max_stat, max_irq; 16213 16214 /* Reserve minimum resources for RoCE */ 16215 max_cp = bnxt_get_max_func_cp_rings(bp); 16216 max_stat = bnxt_get_max_func_stat_ctxs(bp); 16217 max_irq = bnxt_get_max_func_irqs(bp); 16218 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 16219 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 16220 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 16221 return 0; 16222 16223 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 16224 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 16225 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 16226 max_cp = min_t(int, max_cp, max_irq); 16227 max_cp = min_t(int, max_cp, max_stat); 16228 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 16229 if (rc) 16230 rc = 0; 16231 } 16232 return rc; 16233 } 16234 16235 /* In initial default shared ring setting, each shared ring must have a 16236 * RX/TX ring pair. 16237 */ 16238 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 16239 { 16240 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 16241 bp->rx_nr_rings = bp->cp_nr_rings; 16242 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 16243 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 16244 } 16245 16246 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 16247 { 16248 int dflt_rings, max_rx_rings, max_tx_rings, rc; 16249 int avail_msix; 16250 16251 if (!bnxt_can_reserve_rings(bp)) 16252 return 0; 16253 16254 if (sh) 16255 bp->flags |= BNXT_FLAG_SHARED_RINGS; 16256 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 16257 /* Reduce default rings on multi-port cards so that total default 16258 * rings do not exceed CPU count. 16259 */ 16260 if (bp->port_count > 1) { 16261 int max_rings = 16262 max_t(int, num_online_cpus() / bp->port_count, 1); 16263 16264 dflt_rings = min_t(int, dflt_rings, max_rings); 16265 } 16266 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 16267 if (rc) 16268 return rc; 16269 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 16270 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 16271 if (sh) 16272 bnxt_trim_dflt_sh_rings(bp); 16273 else 16274 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 16275 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 16276 16277 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 16278 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 16279 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 16280 16281 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 16282 bnxt_set_dflt_ulp_stat_ctxs(bp); 16283 } 16284 16285 rc = __bnxt_reserve_rings(bp); 16286 if (rc && rc != -ENODEV) 16287 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 16288 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16289 if (sh) 16290 bnxt_trim_dflt_sh_rings(bp); 16291 16292 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 16293 if (bnxt_need_reserve_rings(bp)) { 16294 rc = __bnxt_reserve_rings(bp); 16295 if (rc && rc != -ENODEV) 16296 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 16297 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16298 } 16299 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 16300 bp->rx_nr_rings++; 16301 bp->cp_nr_rings++; 16302 } 16303 if (rc) { 16304 bp->tx_nr_rings = 0; 16305 bp->rx_nr_rings = 0; 16306 } 16307 return rc; 16308 } 16309 16310 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 16311 { 16312 int rc; 16313 16314 if (bp->tx_nr_rings) 16315 return 0; 16316 16317 bnxt_ulp_irq_stop(bp); 16318 bnxt_clear_int_mode(bp); 16319 rc = bnxt_set_dflt_rings(bp, true); 16320 if (rc) { 16321 if (BNXT_VF(bp) && rc == -ENODEV) 16322 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16323 else 16324 netdev_err(bp->dev, "Not enough rings available.\n"); 16325 goto init_dflt_ring_err; 16326 } 16327 rc = bnxt_init_int_mode(bp); 16328 if (rc) 16329 goto init_dflt_ring_err; 16330 16331 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16332 16333 bnxt_set_dflt_rfs(bp); 16334 16335 init_dflt_ring_err: 16336 bnxt_ulp_irq_restart(bp, rc); 16337 return rc; 16338 } 16339 16340 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 16341 { 16342 int rc; 16343 16344 netdev_ops_assert_locked(bp->dev); 16345 bnxt_hwrm_func_qcaps(bp); 16346 16347 if (netif_running(bp->dev)) 16348 __bnxt_close_nic(bp, true, false); 16349 16350 bnxt_ulp_irq_stop(bp); 16351 bnxt_clear_int_mode(bp); 16352 rc = bnxt_init_int_mode(bp); 16353 bnxt_ulp_irq_restart(bp, rc); 16354 16355 if (netif_running(bp->dev)) { 16356 if (rc) 16357 netif_close(bp->dev); 16358 else 16359 rc = bnxt_open_nic(bp, true, false); 16360 } 16361 16362 return rc; 16363 } 16364 16365 static int bnxt_init_mac_addr(struct bnxt *bp) 16366 { 16367 int rc = 0; 16368 16369 if (BNXT_PF(bp)) { 16370 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 16371 } else { 16372 #ifdef CONFIG_BNXT_SRIOV 16373 struct bnxt_vf_info *vf = &bp->vf; 16374 bool strict_approval = true; 16375 16376 if (is_valid_ether_addr(vf->mac_addr)) { 16377 /* overwrite netdev dev_addr with admin VF MAC */ 16378 eth_hw_addr_set(bp->dev, vf->mac_addr); 16379 /* Older PF driver or firmware may not approve this 16380 * correctly. 16381 */ 16382 strict_approval = false; 16383 } else { 16384 eth_hw_addr_random(bp->dev); 16385 } 16386 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 16387 #endif 16388 } 16389 return rc; 16390 } 16391 16392 static void bnxt_vpd_read_info(struct bnxt *bp) 16393 { 16394 struct pci_dev *pdev = bp->pdev; 16395 unsigned int vpd_size, kw_len; 16396 int pos, size; 16397 u8 *vpd_data; 16398 16399 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 16400 if (IS_ERR(vpd_data)) { 16401 pci_warn(pdev, "Unable to read VPD\n"); 16402 return; 16403 } 16404 16405 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16406 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 16407 if (pos < 0) 16408 goto read_sn; 16409 16410 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16411 memcpy(bp->board_partno, &vpd_data[pos], size); 16412 16413 read_sn: 16414 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 16415 PCI_VPD_RO_KEYWORD_SERIALNO, 16416 &kw_len); 16417 if (pos < 0) 16418 goto exit; 16419 16420 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 16421 memcpy(bp->board_serialno, &vpd_data[pos], size); 16422 exit: 16423 kfree(vpd_data); 16424 } 16425 16426 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 16427 { 16428 struct pci_dev *pdev = bp->pdev; 16429 u64 qword; 16430 16431 qword = pci_get_dsn(pdev); 16432 if (!qword) { 16433 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 16434 return -EOPNOTSUPP; 16435 } 16436 16437 put_unaligned_le64(qword, dsn); 16438 16439 bp->flags |= BNXT_FLAG_DSN_VALID; 16440 return 0; 16441 } 16442 16443 static int bnxt_map_db_bar(struct bnxt *bp) 16444 { 16445 if (!bp->db_size) 16446 return -ENODEV; 16447 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 16448 if (!bp->bar1) 16449 return -ENOMEM; 16450 return 0; 16451 } 16452 16453 void bnxt_print_device_info(struct bnxt *bp) 16454 { 16455 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 16456 board_info[bp->board_idx].name, 16457 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 16458 16459 pcie_print_link_status(bp->pdev); 16460 } 16461 16462 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 16463 { 16464 struct bnxt_hw_resc *hw_resc; 16465 struct net_device *dev; 16466 struct bnxt *bp; 16467 int rc, max_irqs; 16468 16469 if (pci_is_bridge(pdev)) 16470 return -ENODEV; 16471 16472 if (!pdev->msix_cap) { 16473 dev_err(&pdev->dev, "MSIX capability not found, aborting\n"); 16474 return -ENODEV; 16475 } 16476 16477 /* Clear any pending DMA transactions from crash kernel 16478 * while loading driver in capture kernel. 16479 */ 16480 if (is_kdump_kernel()) { 16481 pci_clear_master(pdev); 16482 pcie_flr(pdev); 16483 } 16484 16485 max_irqs = bnxt_get_max_irq(pdev); 16486 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 16487 max_irqs); 16488 if (!dev) 16489 return -ENOMEM; 16490 16491 bp = netdev_priv(dev); 16492 bp->board_idx = ent->driver_data; 16493 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 16494 bnxt_set_max_func_irqs(bp, max_irqs); 16495 16496 if (bnxt_vf_pciid(bp->board_idx)) 16497 bp->flags |= BNXT_FLAG_VF; 16498 16499 /* No devlink port registration in case of a VF */ 16500 if (BNXT_PF(bp)) 16501 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 16502 16503 rc = bnxt_init_board(pdev, dev); 16504 if (rc < 0) 16505 goto init_err_free; 16506 16507 dev->netdev_ops = &bnxt_netdev_ops; 16508 dev->stat_ops = &bnxt_stat_ops; 16509 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 16510 dev->ethtool_ops = &bnxt_ethtool_ops; 16511 pci_set_drvdata(pdev, dev); 16512 16513 rc = bnxt_alloc_hwrm_resources(bp); 16514 if (rc) 16515 goto init_err_pci_clean; 16516 16517 mutex_init(&bp->hwrm_cmd_lock); 16518 mutex_init(&bp->link_lock); 16519 16520 rc = bnxt_fw_init_one_p1(bp); 16521 if (rc) 16522 goto init_err_pci_clean; 16523 16524 if (BNXT_PF(bp)) 16525 bnxt_vpd_read_info(bp); 16526 16527 if (BNXT_CHIP_P5_PLUS(bp)) { 16528 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 16529 if (BNXT_CHIP_P7(bp)) 16530 bp->flags |= BNXT_FLAG_CHIP_P7; 16531 } 16532 16533 rc = bnxt_alloc_rss_indir_tbl(bp); 16534 if (rc) 16535 goto init_err_pci_clean; 16536 16537 rc = bnxt_fw_init_one_p2(bp); 16538 if (rc) 16539 goto init_err_pci_clean; 16540 16541 rc = bnxt_map_db_bar(bp); 16542 if (rc) { 16543 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 16544 rc); 16545 goto init_err_pci_clean; 16546 } 16547 16548 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16549 NETIF_F_TSO | NETIF_F_TSO6 | 16550 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16551 NETIF_F_GSO_IPXIP4 | 16552 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16553 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 16554 NETIF_F_RXCSUM | NETIF_F_GRO; 16555 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16556 dev->hw_features |= NETIF_F_GSO_UDP_L4; 16557 16558 if (BNXT_SUPPORTS_TPA(bp)) 16559 dev->hw_features |= NETIF_F_LRO; 16560 16561 dev->hw_enc_features = 16562 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16563 NETIF_F_TSO | NETIF_F_TSO6 | 16564 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16565 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16566 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 16567 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16568 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 16569 if (bp->flags & BNXT_FLAG_CHIP_P7) 16570 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 16571 else 16572 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 16573 16574 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 16575 NETIF_F_GSO_GRE_CSUM; 16576 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 16577 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 16578 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 16579 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 16580 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 16581 if (BNXT_SUPPORTS_TPA(bp)) 16582 dev->hw_features |= NETIF_F_GRO_HW; 16583 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 16584 if (dev->features & NETIF_F_GRO_HW) 16585 dev->features &= ~NETIF_F_LRO; 16586 dev->priv_flags |= IFF_UNICAST_FLT; 16587 16588 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 16589 if (bp->tso_max_segs) 16590 netif_set_tso_max_segs(dev, bp->tso_max_segs); 16591 16592 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 16593 NETDEV_XDP_ACT_RX_SG; 16594 16595 #ifdef CONFIG_BNXT_SRIOV 16596 init_waitqueue_head(&bp->sriov_cfg_wait); 16597 #endif 16598 if (BNXT_SUPPORTS_TPA(bp)) { 16599 bp->gro_func = bnxt_gro_func_5730x; 16600 if (BNXT_CHIP_P4(bp)) 16601 bp->gro_func = bnxt_gro_func_5731x; 16602 else if (BNXT_CHIP_P5_PLUS(bp)) 16603 bp->gro_func = bnxt_gro_func_5750x; 16604 } 16605 if (!BNXT_CHIP_P4_PLUS(bp)) 16606 bp->flags |= BNXT_FLAG_DOUBLE_DB; 16607 16608 rc = bnxt_init_mac_addr(bp); 16609 if (rc) { 16610 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 16611 rc = -EADDRNOTAVAIL; 16612 goto init_err_pci_clean; 16613 } 16614 16615 if (BNXT_PF(bp)) { 16616 /* Read the adapter's DSN to use as the eswitch switch_id */ 16617 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 16618 } 16619 16620 /* MTU range: 60 - FW defined max */ 16621 dev->min_mtu = ETH_ZLEN; 16622 dev->max_mtu = bp->max_mtu; 16623 16624 rc = bnxt_probe_phy(bp, true); 16625 if (rc) 16626 goto init_err_pci_clean; 16627 16628 hw_resc = &bp->hw_resc; 16629 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 16630 BNXT_L2_FLTR_MAX_FLTR; 16631 /* Older firmware may not report these filters properly */ 16632 if (bp->max_fltr < BNXT_MAX_FLTR) 16633 bp->max_fltr = BNXT_MAX_FLTR; 16634 bnxt_init_l2_fltr_tbl(bp); 16635 __bnxt_set_rx_skb_mode(bp, false); 16636 bnxt_set_tpa_flags(bp); 16637 bnxt_init_ring_params(bp); 16638 bnxt_set_ring_params(bp); 16639 bnxt_rdma_aux_device_init(bp); 16640 rc = bnxt_set_dflt_rings(bp, true); 16641 if (rc) { 16642 if (BNXT_VF(bp) && rc == -ENODEV) { 16643 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16644 } else { 16645 netdev_err(bp->dev, "Not enough rings available.\n"); 16646 rc = -ENOMEM; 16647 } 16648 goto init_err_pci_clean; 16649 } 16650 16651 bnxt_fw_init_one_p3(bp); 16652 16653 bnxt_init_dflt_coal(bp); 16654 16655 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 16656 bp->flags |= BNXT_FLAG_STRIP_VLAN; 16657 16658 rc = bnxt_init_int_mode(bp); 16659 if (rc) 16660 goto init_err_pci_clean; 16661 16662 /* No TC has been set yet and rings may have been trimmed due to 16663 * limited MSIX, so we re-initialize the TX rings per TC. 16664 */ 16665 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16666 16667 if (BNXT_PF(bp)) { 16668 if (!bnxt_pf_wq) { 16669 bnxt_pf_wq = 16670 create_singlethread_workqueue("bnxt_pf_wq"); 16671 if (!bnxt_pf_wq) { 16672 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 16673 rc = -ENOMEM; 16674 goto init_err_pci_clean; 16675 } 16676 } 16677 rc = bnxt_init_tc(bp); 16678 if (rc) 16679 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 16680 rc); 16681 } 16682 16683 bnxt_inv_fw_health_reg(bp); 16684 rc = bnxt_dl_register(bp); 16685 if (rc) 16686 goto init_err_dl; 16687 16688 INIT_LIST_HEAD(&bp->usr_fltr_list); 16689 16690 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 16691 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 16692 if (BNXT_SUPPORTS_QUEUE_API(bp)) 16693 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 16694 dev->request_ops_lock = true; 16695 16696 rc = register_netdev(dev); 16697 if (rc) 16698 goto init_err_cleanup; 16699 16700 bnxt_dl_fw_reporters_create(bp); 16701 16702 bnxt_rdma_aux_device_add(bp); 16703 16704 bnxt_print_device_info(bp); 16705 16706 pci_save_state(pdev); 16707 16708 return 0; 16709 init_err_cleanup: 16710 bnxt_rdma_aux_device_uninit(bp); 16711 bnxt_dl_unregister(bp); 16712 init_err_dl: 16713 bnxt_shutdown_tc(bp); 16714 bnxt_clear_int_mode(bp); 16715 16716 init_err_pci_clean: 16717 bnxt_hwrm_func_drv_unrgtr(bp); 16718 bnxt_free_hwrm_resources(bp); 16719 bnxt_hwmon_uninit(bp); 16720 bnxt_ethtool_free(bp); 16721 bnxt_ptp_clear(bp); 16722 kfree(bp->ptp_cfg); 16723 bp->ptp_cfg = NULL; 16724 kfree(bp->fw_health); 16725 bp->fw_health = NULL; 16726 bnxt_cleanup_pci(bp); 16727 bnxt_free_ctx_mem(bp, true); 16728 bnxt_free_crash_dump_mem(bp); 16729 kfree(bp->rss_indir_tbl); 16730 bp->rss_indir_tbl = NULL; 16731 16732 init_err_free: 16733 free_netdev(dev); 16734 return rc; 16735 } 16736 16737 static void bnxt_shutdown(struct pci_dev *pdev) 16738 { 16739 struct net_device *dev = pci_get_drvdata(pdev); 16740 struct bnxt *bp; 16741 16742 if (!dev) 16743 return; 16744 16745 rtnl_lock(); 16746 netdev_lock(dev); 16747 bp = netdev_priv(dev); 16748 if (!bp) 16749 goto shutdown_exit; 16750 16751 if (netif_running(dev)) 16752 netif_close(dev); 16753 16754 bnxt_ptp_clear(bp); 16755 bnxt_clear_int_mode(bp); 16756 pci_disable_device(pdev); 16757 16758 if (system_state == SYSTEM_POWER_OFF) { 16759 pci_wake_from_d3(pdev, bp->wol); 16760 pci_set_power_state(pdev, PCI_D3hot); 16761 } 16762 16763 shutdown_exit: 16764 netdev_unlock(dev); 16765 rtnl_unlock(); 16766 } 16767 16768 #ifdef CONFIG_PM_SLEEP 16769 static int bnxt_suspend(struct device *device) 16770 { 16771 struct net_device *dev = dev_get_drvdata(device); 16772 struct bnxt *bp = netdev_priv(dev); 16773 int rc = 0; 16774 16775 bnxt_ulp_stop(bp); 16776 16777 netdev_lock(dev); 16778 if (netif_running(dev)) { 16779 netif_device_detach(dev); 16780 rc = bnxt_close(dev); 16781 } 16782 bnxt_hwrm_func_drv_unrgtr(bp); 16783 bnxt_ptp_clear(bp); 16784 pci_disable_device(bp->pdev); 16785 bnxt_free_ctx_mem(bp, false); 16786 netdev_unlock(dev); 16787 return rc; 16788 } 16789 16790 static int bnxt_resume(struct device *device) 16791 { 16792 struct net_device *dev = dev_get_drvdata(device); 16793 struct bnxt *bp = netdev_priv(dev); 16794 int rc = 0; 16795 16796 netdev_lock(dev); 16797 rc = pci_enable_device(bp->pdev); 16798 if (rc) { 16799 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 16800 rc); 16801 goto resume_exit; 16802 } 16803 pci_set_master(bp->pdev); 16804 if (bnxt_hwrm_ver_get(bp)) { 16805 rc = -ENODEV; 16806 goto resume_exit; 16807 } 16808 rc = bnxt_hwrm_func_reset(bp); 16809 if (rc) { 16810 rc = -EBUSY; 16811 goto resume_exit; 16812 } 16813 16814 rc = bnxt_hwrm_func_qcaps(bp); 16815 if (rc) 16816 goto resume_exit; 16817 16818 bnxt_clear_reservations(bp, true); 16819 16820 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 16821 rc = -ENODEV; 16822 goto resume_exit; 16823 } 16824 if (bp->fw_crash_mem) 16825 bnxt_hwrm_crash_dump_mem_cfg(bp); 16826 16827 if (bnxt_ptp_init(bp)) { 16828 kfree(bp->ptp_cfg); 16829 bp->ptp_cfg = NULL; 16830 } 16831 bnxt_get_wol_settings(bp); 16832 if (netif_running(dev)) { 16833 rc = bnxt_open(dev); 16834 if (!rc) 16835 netif_device_attach(dev); 16836 } 16837 16838 resume_exit: 16839 netdev_unlock(bp->dev); 16840 bnxt_ulp_start(bp, rc); 16841 if (!rc) 16842 bnxt_reenable_sriov(bp); 16843 return rc; 16844 } 16845 16846 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 16847 #define BNXT_PM_OPS (&bnxt_pm_ops) 16848 16849 #else 16850 16851 #define BNXT_PM_OPS NULL 16852 16853 #endif /* CONFIG_PM_SLEEP */ 16854 16855 /** 16856 * bnxt_io_error_detected - called when PCI error is detected 16857 * @pdev: Pointer to PCI device 16858 * @state: The current pci connection state 16859 * 16860 * This function is called after a PCI bus error affecting 16861 * this device has been detected. 16862 */ 16863 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 16864 pci_channel_state_t state) 16865 { 16866 struct net_device *netdev = pci_get_drvdata(pdev); 16867 struct bnxt *bp = netdev_priv(netdev); 16868 bool abort = false; 16869 16870 netdev_info(netdev, "PCI I/O error detected\n"); 16871 16872 bnxt_ulp_stop(bp); 16873 16874 netdev_lock(netdev); 16875 netif_device_detach(netdev); 16876 16877 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16878 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16879 abort = true; 16880 } 16881 16882 if (abort || state == pci_channel_io_perm_failure) { 16883 netdev_unlock(netdev); 16884 return PCI_ERS_RESULT_DISCONNECT; 16885 } 16886 16887 /* Link is not reliable anymore if state is pci_channel_io_frozen 16888 * so we disable bus master to prevent any potential bad DMAs before 16889 * freeing kernel memory. 16890 */ 16891 if (state == pci_channel_io_frozen) { 16892 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 16893 bnxt_fw_fatal_close(bp); 16894 } 16895 16896 if (netif_running(netdev)) 16897 __bnxt_close_nic(bp, true, true); 16898 16899 if (pci_is_enabled(pdev)) 16900 pci_disable_device(pdev); 16901 bnxt_free_ctx_mem(bp, false); 16902 netdev_unlock(netdev); 16903 16904 /* Request a slot slot reset. */ 16905 return PCI_ERS_RESULT_NEED_RESET; 16906 } 16907 16908 /** 16909 * bnxt_io_slot_reset - called after the pci bus has been reset. 16910 * @pdev: Pointer to PCI device 16911 * 16912 * Restart the card from scratch, as if from a cold-boot. 16913 * At this point, the card has experienced a hard reset, 16914 * followed by fixups by BIOS, and has its config space 16915 * set up identically to what it was at cold boot. 16916 */ 16917 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 16918 { 16919 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 16920 struct net_device *netdev = pci_get_drvdata(pdev); 16921 struct bnxt *bp = netdev_priv(netdev); 16922 int retry = 0; 16923 int err = 0; 16924 int off; 16925 16926 netdev_info(bp->dev, "PCI Slot Reset\n"); 16927 16928 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 16929 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 16930 msleep(900); 16931 16932 netdev_lock(netdev); 16933 16934 if (pci_enable_device(pdev)) { 16935 dev_err(&pdev->dev, 16936 "Cannot re-enable PCI device after reset.\n"); 16937 } else { 16938 pci_set_master(pdev); 16939 /* Upon fatal error, our device internal logic that latches to 16940 * BAR value is getting reset and will restore only upon 16941 * rewriting the BARs. 16942 * 16943 * As pci_restore_state() does not re-write the BARs if the 16944 * value is same as saved value earlier, driver needs to 16945 * write the BARs to 0 to force restore, in case of fatal error. 16946 */ 16947 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 16948 &bp->state)) { 16949 for (off = PCI_BASE_ADDRESS_0; 16950 off <= PCI_BASE_ADDRESS_5; off += 4) 16951 pci_write_config_dword(bp->pdev, off, 0); 16952 } 16953 pci_restore_state(pdev); 16954 pci_save_state(pdev); 16955 16956 bnxt_inv_fw_health_reg(bp); 16957 bnxt_try_map_fw_health_reg(bp); 16958 16959 /* In some PCIe AER scenarios, firmware may take up to 16960 * 10 seconds to become ready in the worst case. 16961 */ 16962 do { 16963 err = bnxt_try_recover_fw(bp); 16964 if (!err) 16965 break; 16966 retry++; 16967 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 16968 16969 if (err) { 16970 dev_err(&pdev->dev, "Firmware not ready\n"); 16971 goto reset_exit; 16972 } 16973 16974 err = bnxt_hwrm_func_reset(bp); 16975 if (!err) 16976 result = PCI_ERS_RESULT_RECOVERED; 16977 16978 bnxt_ulp_irq_stop(bp); 16979 bnxt_clear_int_mode(bp); 16980 err = bnxt_init_int_mode(bp); 16981 bnxt_ulp_irq_restart(bp, err); 16982 } 16983 16984 reset_exit: 16985 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16986 bnxt_clear_reservations(bp, true); 16987 netdev_unlock(netdev); 16988 16989 return result; 16990 } 16991 16992 /** 16993 * bnxt_io_resume - called when traffic can start flowing again. 16994 * @pdev: Pointer to PCI device 16995 * 16996 * This callback is called when the error recovery driver tells 16997 * us that its OK to resume normal operation. 16998 */ 16999 static void bnxt_io_resume(struct pci_dev *pdev) 17000 { 17001 struct net_device *netdev = pci_get_drvdata(pdev); 17002 struct bnxt *bp = netdev_priv(netdev); 17003 int err; 17004 17005 netdev_info(bp->dev, "PCI Slot Resume\n"); 17006 netdev_lock(netdev); 17007 17008 err = bnxt_hwrm_func_qcaps(bp); 17009 if (!err) { 17010 if (netif_running(netdev)) 17011 err = bnxt_open(netdev); 17012 else 17013 err = bnxt_reserve_rings(bp, true); 17014 } 17015 17016 if (!err) 17017 netif_device_attach(netdev); 17018 17019 netdev_unlock(netdev); 17020 bnxt_ulp_start(bp, err); 17021 if (!err) 17022 bnxt_reenable_sriov(bp); 17023 } 17024 17025 static const struct pci_error_handlers bnxt_err_handler = { 17026 .error_detected = bnxt_io_error_detected, 17027 .slot_reset = bnxt_io_slot_reset, 17028 .resume = bnxt_io_resume 17029 }; 17030 17031 static struct pci_driver bnxt_pci_driver = { 17032 .name = DRV_MODULE_NAME, 17033 .id_table = bnxt_pci_tbl, 17034 .probe = bnxt_init_one, 17035 .remove = bnxt_remove_one, 17036 .shutdown = bnxt_shutdown, 17037 .driver.pm = BNXT_PM_OPS, 17038 .err_handler = &bnxt_err_handler, 17039 #if defined(CONFIG_BNXT_SRIOV) 17040 .sriov_configure = bnxt_sriov_configure, 17041 #endif 17042 }; 17043 17044 static int __init bnxt_init(void) 17045 { 17046 int err; 17047 17048 bnxt_debug_init(); 17049 err = pci_register_driver(&bnxt_pci_driver); 17050 if (err) { 17051 bnxt_debug_exit(); 17052 return err; 17053 } 17054 17055 return 0; 17056 } 17057 17058 static void __exit bnxt_exit(void) 17059 { 17060 pci_unregister_driver(&bnxt_pci_driver); 17061 if (bnxt_pf_wq) 17062 destroy_workqueue(bnxt_pf_wq); 17063 bnxt_debug_exit(); 17064 } 17065 17066 module_init(bnxt_init); 17067 module_exit(bnxt_exit); 17068