1 /* Broadcom NetXtreme-C/E network driver. 2 * 3 * Copyright (c) 2014-2016 Broadcom Corporation 4 * Copyright (c) 2016-2019 Broadcom Limited 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation. 9 */ 10 11 #include <linux/module.h> 12 13 #include <linux/stringify.h> 14 #include <linux/kernel.h> 15 #include <linux/timer.h> 16 #include <linux/errno.h> 17 #include <linux/ioport.h> 18 #include <linux/slab.h> 19 #include <linux/vmalloc.h> 20 #include <linux/interrupt.h> 21 #include <linux/pci.h> 22 #include <linux/netdevice.h> 23 #include <linux/etherdevice.h> 24 #include <linux/skbuff.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/bitops.h> 27 #include <linux/io.h> 28 #include <linux/irq.h> 29 #include <linux/delay.h> 30 #include <asm/byteorder.h> 31 #include <asm/page.h> 32 #include <linux/time.h> 33 #include <linux/mii.h> 34 #include <linux/mdio.h> 35 #include <linux/if.h> 36 #include <linux/if_vlan.h> 37 #include <linux/if_bridge.h> 38 #include <linux/rtc.h> 39 #include <linux/bpf.h> 40 #include <net/gro.h> 41 #include <net/ip.h> 42 #include <net/tcp.h> 43 #include <net/udp.h> 44 #include <net/checksum.h> 45 #include <net/ip6_checksum.h> 46 #include <net/udp_tunnel.h> 47 #include <linux/workqueue.h> 48 #include <linux/prefetch.h> 49 #include <linux/cache.h> 50 #include <linux/log2.h> 51 #include <linux/bitmap.h> 52 #include <linux/cpu_rmap.h> 53 #include <linux/cpumask.h> 54 #include <net/pkt_cls.h> 55 #include <net/page_pool/helpers.h> 56 #include <linux/align.h> 57 #include <net/netdev_queues.h> 58 59 #include "bnxt_hsi.h" 60 #include "bnxt.h" 61 #include "bnxt_hwrm.h" 62 #include "bnxt_ulp.h" 63 #include "bnxt_sriov.h" 64 #include "bnxt_ethtool.h" 65 #include "bnxt_dcb.h" 66 #include "bnxt_xdp.h" 67 #include "bnxt_ptp.h" 68 #include "bnxt_vfr.h" 69 #include "bnxt_tc.h" 70 #include "bnxt_devlink.h" 71 #include "bnxt_debugfs.h" 72 #include "bnxt_coredump.h" 73 #include "bnxt_hwmon.h" 74 75 #define BNXT_TX_TIMEOUT (5 * HZ) 76 #define BNXT_DEF_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_HW | \ 77 NETIF_MSG_TX_ERR) 78 79 MODULE_LICENSE("GPL"); 80 MODULE_DESCRIPTION("Broadcom NetXtreme network driver"); 81 82 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN) 83 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD 84 #define BNXT_RX_COPY_THRESH 256 85 86 #define BNXT_TX_PUSH_THRESH 164 87 88 /* indexed by enum board_idx */ 89 static const struct { 90 char *name; 91 } board_info[] = { 92 [BCM57301] = { "Broadcom BCM57301 NetXtreme-C 10Gb Ethernet" }, 93 [BCM57302] = { "Broadcom BCM57302 NetXtreme-C 10Gb/25Gb Ethernet" }, 94 [BCM57304] = { "Broadcom BCM57304 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 95 [BCM57417_NPAR] = { "Broadcom BCM57417 NetXtreme-E Ethernet Partition" }, 96 [BCM58700] = { "Broadcom BCM58700 Nitro 1Gb/2.5Gb/10Gb Ethernet" }, 97 [BCM57311] = { "Broadcom BCM57311 NetXtreme-C 10Gb Ethernet" }, 98 [BCM57312] = { "Broadcom BCM57312 NetXtreme-C 10Gb/25Gb Ethernet" }, 99 [BCM57402] = { "Broadcom BCM57402 NetXtreme-E 10Gb Ethernet" }, 100 [BCM57404] = { "Broadcom BCM57404 NetXtreme-E 10Gb/25Gb Ethernet" }, 101 [BCM57406] = { "Broadcom BCM57406 NetXtreme-E 10GBase-T Ethernet" }, 102 [BCM57402_NPAR] = { "Broadcom BCM57402 NetXtreme-E Ethernet Partition" }, 103 [BCM57407] = { "Broadcom BCM57407 NetXtreme-E 10GBase-T Ethernet" }, 104 [BCM57412] = { "Broadcom BCM57412 NetXtreme-E 10Gb Ethernet" }, 105 [BCM57414] = { "Broadcom BCM57414 NetXtreme-E 10Gb/25Gb Ethernet" }, 106 [BCM57416] = { "Broadcom BCM57416 NetXtreme-E 10GBase-T Ethernet" }, 107 [BCM57417] = { "Broadcom BCM57417 NetXtreme-E 10GBase-T Ethernet" }, 108 [BCM57412_NPAR] = { "Broadcom BCM57412 NetXtreme-E Ethernet Partition" }, 109 [BCM57314] = { "Broadcom BCM57314 NetXtreme-C 10Gb/25Gb/40Gb/50Gb Ethernet" }, 110 [BCM57417_SFP] = { "Broadcom BCM57417 NetXtreme-E 10Gb/25Gb Ethernet" }, 111 [BCM57416_SFP] = { "Broadcom BCM57416 NetXtreme-E 10Gb Ethernet" }, 112 [BCM57404_NPAR] = { "Broadcom BCM57404 NetXtreme-E Ethernet Partition" }, 113 [BCM57406_NPAR] = { "Broadcom BCM57406 NetXtreme-E Ethernet Partition" }, 114 [BCM57407_SFP] = { "Broadcom BCM57407 NetXtreme-E 25Gb Ethernet" }, 115 [BCM57407_NPAR] = { "Broadcom BCM57407 NetXtreme-E Ethernet Partition" }, 116 [BCM57414_NPAR] = { "Broadcom BCM57414 NetXtreme-E Ethernet Partition" }, 117 [BCM57416_NPAR] = { "Broadcom BCM57416 NetXtreme-E Ethernet Partition" }, 118 [BCM57452] = { "Broadcom BCM57452 NetXtreme-E 10Gb/25Gb/40Gb/50Gb Ethernet" }, 119 [BCM57454] = { "Broadcom BCM57454 NetXtreme-E 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 120 [BCM5745x_NPAR] = { "Broadcom BCM5745x NetXtreme-E Ethernet Partition" }, 121 [BCM57508] = { "Broadcom BCM57508 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 122 [BCM57504] = { "Broadcom BCM57504 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 123 [BCM57502] = { "Broadcom BCM57502 NetXtreme-E 10Gb/25Gb/50Gb Ethernet" }, 124 [BCM57608] = { "Broadcom BCM57608 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 125 [BCM57604] = { "Broadcom BCM57604 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb Ethernet" }, 126 [BCM57602] = { "Broadcom BCM57602 NetXtreme-E 10Gb/25Gb/50Gb/100Gb Ethernet" }, 127 [BCM57601] = { "Broadcom BCM57601 NetXtreme-E 10Gb/25Gb/50Gb/100Gb/200Gb/400Gb Ethernet" }, 128 [BCM57508_NPAR] = { "Broadcom BCM57508 NetXtreme-E Ethernet Partition" }, 129 [BCM57504_NPAR] = { "Broadcom BCM57504 NetXtreme-E Ethernet Partition" }, 130 [BCM57502_NPAR] = { "Broadcom BCM57502 NetXtreme-E Ethernet Partition" }, 131 [BCM58802] = { "Broadcom BCM58802 NetXtreme-S 10Gb/25Gb/40Gb/50Gb Ethernet" }, 132 [BCM58804] = { "Broadcom BCM58804 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 133 [BCM58808] = { "Broadcom BCM58808 NetXtreme-S 10Gb/25Gb/40Gb/50Gb/100Gb Ethernet" }, 134 [NETXTREME_E_VF] = { "Broadcom NetXtreme-E Ethernet Virtual Function" }, 135 [NETXTREME_C_VF] = { "Broadcom NetXtreme-C Ethernet Virtual Function" }, 136 [NETXTREME_S_VF] = { "Broadcom NetXtreme-S Ethernet Virtual Function" }, 137 [NETXTREME_C_VF_HV] = { "Broadcom NetXtreme-C Virtual Function for Hyper-V" }, 138 [NETXTREME_E_VF_HV] = { "Broadcom NetXtreme-E Virtual Function for Hyper-V" }, 139 [NETXTREME_E_P5_VF] = { "Broadcom BCM5750X NetXtreme-E Ethernet Virtual Function" }, 140 [NETXTREME_E_P5_VF_HV] = { "Broadcom BCM5750X NetXtreme-E Virtual Function for Hyper-V" }, 141 [NETXTREME_E_P7_VF] = { "Broadcom BCM5760X Virtual Function" }, 142 }; 143 144 static const struct pci_device_id bnxt_pci_tbl[] = { 145 { PCI_VDEVICE(BROADCOM, 0x1604), .driver_data = BCM5745x_NPAR }, 146 { PCI_VDEVICE(BROADCOM, 0x1605), .driver_data = BCM5745x_NPAR }, 147 { PCI_VDEVICE(BROADCOM, 0x1614), .driver_data = BCM57454 }, 148 { PCI_VDEVICE(BROADCOM, 0x16c0), .driver_data = BCM57417_NPAR }, 149 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 }, 150 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 }, 151 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 }, 152 { PCI_VDEVICE(BROADCOM, 0x16cc), .driver_data = BCM57417_NPAR }, 153 { PCI_VDEVICE(BROADCOM, 0x16cd), .driver_data = BCM58700 }, 154 { PCI_VDEVICE(BROADCOM, 0x16ce), .driver_data = BCM57311 }, 155 { PCI_VDEVICE(BROADCOM, 0x16cf), .driver_data = BCM57312 }, 156 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 }, 157 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 }, 158 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 }, 159 { PCI_VDEVICE(BROADCOM, 0x16d4), .driver_data = BCM57402_NPAR }, 160 { PCI_VDEVICE(BROADCOM, 0x16d5), .driver_data = BCM57407 }, 161 { PCI_VDEVICE(BROADCOM, 0x16d6), .driver_data = BCM57412 }, 162 { PCI_VDEVICE(BROADCOM, 0x16d7), .driver_data = BCM57414 }, 163 { PCI_VDEVICE(BROADCOM, 0x16d8), .driver_data = BCM57416 }, 164 { PCI_VDEVICE(BROADCOM, 0x16d9), .driver_data = BCM57417 }, 165 { PCI_VDEVICE(BROADCOM, 0x16de), .driver_data = BCM57412_NPAR }, 166 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 }, 167 { PCI_VDEVICE(BROADCOM, 0x16e2), .driver_data = BCM57417_SFP }, 168 { PCI_VDEVICE(BROADCOM, 0x16e3), .driver_data = BCM57416_SFP }, 169 { PCI_VDEVICE(BROADCOM, 0x16e7), .driver_data = BCM57404_NPAR }, 170 { PCI_VDEVICE(BROADCOM, 0x16e8), .driver_data = BCM57406_NPAR }, 171 { PCI_VDEVICE(BROADCOM, 0x16e9), .driver_data = BCM57407_SFP }, 172 { PCI_VDEVICE(BROADCOM, 0x16ea), .driver_data = BCM57407_NPAR }, 173 { PCI_VDEVICE(BROADCOM, 0x16eb), .driver_data = BCM57412_NPAR }, 174 { PCI_VDEVICE(BROADCOM, 0x16ec), .driver_data = BCM57414_NPAR }, 175 { PCI_VDEVICE(BROADCOM, 0x16ed), .driver_data = BCM57414_NPAR }, 176 { PCI_VDEVICE(BROADCOM, 0x16ee), .driver_data = BCM57416_NPAR }, 177 { PCI_VDEVICE(BROADCOM, 0x16ef), .driver_data = BCM57416_NPAR }, 178 { PCI_VDEVICE(BROADCOM, 0x16f0), .driver_data = BCM58808 }, 179 { PCI_VDEVICE(BROADCOM, 0x16f1), .driver_data = BCM57452 }, 180 { PCI_VDEVICE(BROADCOM, 0x1750), .driver_data = BCM57508 }, 181 { PCI_VDEVICE(BROADCOM, 0x1751), .driver_data = BCM57504 }, 182 { PCI_VDEVICE(BROADCOM, 0x1752), .driver_data = BCM57502 }, 183 { PCI_VDEVICE(BROADCOM, 0x1760), .driver_data = BCM57608 }, 184 { PCI_VDEVICE(BROADCOM, 0x1761), .driver_data = BCM57604 }, 185 { PCI_VDEVICE(BROADCOM, 0x1762), .driver_data = BCM57602 }, 186 { PCI_VDEVICE(BROADCOM, 0x1763), .driver_data = BCM57601 }, 187 { PCI_VDEVICE(BROADCOM, 0x1800), .driver_data = BCM57502_NPAR }, 188 { PCI_VDEVICE(BROADCOM, 0x1801), .driver_data = BCM57504_NPAR }, 189 { PCI_VDEVICE(BROADCOM, 0x1802), .driver_data = BCM57508_NPAR }, 190 { PCI_VDEVICE(BROADCOM, 0x1803), .driver_data = BCM57502_NPAR }, 191 { PCI_VDEVICE(BROADCOM, 0x1804), .driver_data = BCM57504_NPAR }, 192 { PCI_VDEVICE(BROADCOM, 0x1805), .driver_data = BCM57508_NPAR }, 193 { PCI_VDEVICE(BROADCOM, 0xd802), .driver_data = BCM58802 }, 194 { PCI_VDEVICE(BROADCOM, 0xd804), .driver_data = BCM58804 }, 195 #ifdef CONFIG_BNXT_SRIOV 196 { PCI_VDEVICE(BROADCOM, 0x1606), .driver_data = NETXTREME_E_VF }, 197 { PCI_VDEVICE(BROADCOM, 0x1607), .driver_data = NETXTREME_E_VF_HV }, 198 { PCI_VDEVICE(BROADCOM, 0x1608), .driver_data = NETXTREME_E_VF_HV }, 199 { PCI_VDEVICE(BROADCOM, 0x1609), .driver_data = NETXTREME_E_VF }, 200 { PCI_VDEVICE(BROADCOM, 0x16bd), .driver_data = NETXTREME_E_VF_HV }, 201 { PCI_VDEVICE(BROADCOM, 0x16c1), .driver_data = NETXTREME_E_VF }, 202 { PCI_VDEVICE(BROADCOM, 0x16c2), .driver_data = NETXTREME_C_VF_HV }, 203 { PCI_VDEVICE(BROADCOM, 0x16c3), .driver_data = NETXTREME_C_VF_HV }, 204 { PCI_VDEVICE(BROADCOM, 0x16c4), .driver_data = NETXTREME_E_VF_HV }, 205 { PCI_VDEVICE(BROADCOM, 0x16c5), .driver_data = NETXTREME_E_VF_HV }, 206 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = NETXTREME_C_VF }, 207 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = NETXTREME_E_VF }, 208 { PCI_VDEVICE(BROADCOM, 0x16dc), .driver_data = NETXTREME_E_VF }, 209 { PCI_VDEVICE(BROADCOM, 0x16e1), .driver_data = NETXTREME_C_VF }, 210 { PCI_VDEVICE(BROADCOM, 0x16e5), .driver_data = NETXTREME_C_VF }, 211 { PCI_VDEVICE(BROADCOM, 0x16e6), .driver_data = NETXTREME_C_VF_HV }, 212 { PCI_VDEVICE(BROADCOM, 0x1806), .driver_data = NETXTREME_E_P5_VF }, 213 { PCI_VDEVICE(BROADCOM, 0x1807), .driver_data = NETXTREME_E_P5_VF }, 214 { PCI_VDEVICE(BROADCOM, 0x1808), .driver_data = NETXTREME_E_P5_VF_HV }, 215 { PCI_VDEVICE(BROADCOM, 0x1809), .driver_data = NETXTREME_E_P5_VF_HV }, 216 { PCI_VDEVICE(BROADCOM, 0x1819), .driver_data = NETXTREME_E_P7_VF }, 217 { PCI_VDEVICE(BROADCOM, 0xd800), .driver_data = NETXTREME_S_VF }, 218 #endif 219 { 0 } 220 }; 221 222 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl); 223 224 static const u16 bnxt_vf_req_snif[] = { 225 HWRM_FUNC_CFG, 226 HWRM_FUNC_VF_CFG, 227 HWRM_PORT_PHY_QCFG, 228 HWRM_CFA_L2_FILTER_ALLOC, 229 }; 230 231 static const u16 bnxt_async_events_arr[] = { 232 ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE, 233 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE, 234 ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD, 235 ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED, 236 ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE, 237 ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE, 238 ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE, 239 ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY, 240 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY, 241 ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION, 242 ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE, 243 ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG, 244 ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST, 245 ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP, 246 ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT, 247 ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE, 248 ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER, 249 }; 250 251 const u16 bnxt_bstore_to_trace[] = { 252 [BNXT_CTX_SRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT_TRACE, 253 [BNXT_CTX_SRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_SRT2_TRACE, 254 [BNXT_CTX_CRT] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT_TRACE, 255 [BNXT_CTX_CRT2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CRT2_TRACE, 256 [BNXT_CTX_RIGP0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP0_TRACE, 257 [BNXT_CTX_L2HWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_L2_HWRM_TRACE, 258 [BNXT_CTX_REHWRM] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_ROCE_HWRM_TRACE, 259 [BNXT_CTX_CA0] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA0_TRACE, 260 [BNXT_CTX_CA1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA1_TRACE, 261 [BNXT_CTX_CA2] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_CA2_TRACE, 262 [BNXT_CTX_RIGP1] = DBG_LOG_BUFFER_FLUSH_REQ_TYPE_RIGP1_TRACE, 263 }; 264 265 static struct workqueue_struct *bnxt_pf_wq; 266 267 #define BNXT_IPV6_MASK_ALL {{{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, \ 268 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }}} 269 #define BNXT_IPV6_MASK_NONE {{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }}} 270 271 const struct bnxt_flow_masks BNXT_FLOW_MASK_NONE = { 272 .ports = { 273 .src = 0, 274 .dst = 0, 275 }, 276 .addrs = { 277 .v6addrs = { 278 .src = BNXT_IPV6_MASK_NONE, 279 .dst = BNXT_IPV6_MASK_NONE, 280 }, 281 }, 282 }; 283 284 const struct bnxt_flow_masks BNXT_FLOW_IPV6_MASK_ALL = { 285 .ports = { 286 .src = cpu_to_be16(0xffff), 287 .dst = cpu_to_be16(0xffff), 288 }, 289 .addrs = { 290 .v6addrs = { 291 .src = BNXT_IPV6_MASK_ALL, 292 .dst = BNXT_IPV6_MASK_ALL, 293 }, 294 }, 295 }; 296 297 const struct bnxt_flow_masks BNXT_FLOW_IPV4_MASK_ALL = { 298 .ports = { 299 .src = cpu_to_be16(0xffff), 300 .dst = cpu_to_be16(0xffff), 301 }, 302 .addrs = { 303 .v4addrs = { 304 .src = cpu_to_be32(0xffffffff), 305 .dst = cpu_to_be32(0xffffffff), 306 }, 307 }, 308 }; 309 310 static bool bnxt_vf_pciid(enum board_idx idx) 311 { 312 return (idx == NETXTREME_C_VF || idx == NETXTREME_E_VF || 313 idx == NETXTREME_S_VF || idx == NETXTREME_C_VF_HV || 314 idx == NETXTREME_E_VF_HV || idx == NETXTREME_E_P5_VF || 315 idx == NETXTREME_E_P5_VF_HV || idx == NETXTREME_E_P7_VF); 316 } 317 318 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID) 319 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS) 320 321 #define BNXT_DB_CQ(db, idx) \ 322 writel(DB_CP_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 323 324 #define BNXT_DB_NQ_P5(db, idx) \ 325 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ | DB_RING_IDX(db, idx),\ 326 (db)->doorbell) 327 328 #define BNXT_DB_NQ_P7(db, idx) \ 329 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_MASK | \ 330 DB_RING_IDX(db, idx), (db)->doorbell) 331 332 #define BNXT_DB_CQ_ARM(db, idx) \ 333 writel(DB_CP_REARM_FLAGS | DB_RING_IDX(db, idx), (db)->doorbell) 334 335 #define BNXT_DB_NQ_ARM_P5(db, idx) \ 336 bnxt_writeq(bp, (db)->db_key64 | DBR_TYPE_NQ_ARM | \ 337 DB_RING_IDX(db, idx), (db)->doorbell) 338 339 static void bnxt_db_nq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 340 { 341 if (bp->flags & BNXT_FLAG_CHIP_P7) 342 BNXT_DB_NQ_P7(db, idx); 343 else if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 344 BNXT_DB_NQ_P5(db, idx); 345 else 346 BNXT_DB_CQ(db, idx); 347 } 348 349 static void bnxt_db_nq_arm(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 350 { 351 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 352 BNXT_DB_NQ_ARM_P5(db, idx); 353 else 354 BNXT_DB_CQ_ARM(db, idx); 355 } 356 357 static void bnxt_db_cq(struct bnxt *bp, struct bnxt_db_info *db, u32 idx) 358 { 359 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 360 bnxt_writeq(bp, db->db_key64 | DBR_TYPE_CQ_ARMALL | 361 DB_RING_IDX(db, idx), db->doorbell); 362 else 363 BNXT_DB_CQ(db, idx); 364 } 365 366 static void bnxt_queue_fw_reset_work(struct bnxt *bp, unsigned long delay) 367 { 368 if (!(test_bit(BNXT_STATE_IN_FW_RESET, &bp->state))) 369 return; 370 371 if (BNXT_PF(bp)) 372 queue_delayed_work(bnxt_pf_wq, &bp->fw_reset_task, delay); 373 else 374 schedule_delayed_work(&bp->fw_reset_task, delay); 375 } 376 377 static void __bnxt_queue_sp_work(struct bnxt *bp) 378 { 379 if (BNXT_PF(bp)) 380 queue_work(bnxt_pf_wq, &bp->sp_task); 381 else 382 schedule_work(&bp->sp_task); 383 } 384 385 static void bnxt_queue_sp_work(struct bnxt *bp, unsigned int event) 386 { 387 set_bit(event, &bp->sp_event); 388 __bnxt_queue_sp_work(bp); 389 } 390 391 static void bnxt_sched_reset_rxr(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 392 { 393 if (!rxr->bnapi->in_reset) { 394 rxr->bnapi->in_reset = true; 395 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 396 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event); 397 else 398 set_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event); 399 __bnxt_queue_sp_work(bp); 400 } 401 rxr->rx_next_cons = 0xffff; 402 } 403 404 void bnxt_sched_reset_txr(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 405 u16 curr) 406 { 407 struct bnxt_napi *bnapi = txr->bnapi; 408 409 if (bnapi->tx_fault) 410 return; 411 412 netdev_err(bp->dev, "Invalid Tx completion (ring:%d tx_hw_cons:%u cons:%u prod:%u curr:%u)", 413 txr->txq_index, txr->tx_hw_cons, 414 txr->tx_cons, txr->tx_prod, curr); 415 WARN_ON_ONCE(1); 416 bnapi->tx_fault = 1; 417 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 418 } 419 420 const u16 bnxt_lhint_arr[] = { 421 TX_BD_FLAGS_LHINT_512_AND_SMALLER, 422 TX_BD_FLAGS_LHINT_512_TO_1023, 423 TX_BD_FLAGS_LHINT_1024_TO_2047, 424 TX_BD_FLAGS_LHINT_1024_TO_2047, 425 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 426 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 427 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 428 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 429 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 430 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 431 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 432 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 433 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 434 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 435 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 436 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 437 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 438 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 439 TX_BD_FLAGS_LHINT_2048_AND_LARGER, 440 }; 441 442 static u16 bnxt_xmit_get_cfa_action(struct sk_buff *skb) 443 { 444 struct metadata_dst *md_dst = skb_metadata_dst(skb); 445 446 if (!md_dst || md_dst->type != METADATA_HW_PORT_MUX) 447 return 0; 448 449 return md_dst->u.port_info.port_id; 450 } 451 452 static void bnxt_txr_db_kick(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 453 u16 prod) 454 { 455 /* Sync BD data before updating doorbell */ 456 wmb(); 457 bnxt_db_write(bp, &txr->tx_db, prod); 458 txr->kick_pending = 0; 459 } 460 461 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev) 462 { 463 struct bnxt *bp = netdev_priv(dev); 464 struct tx_bd *txbd, *txbd0; 465 struct tx_bd_ext *txbd1; 466 struct netdev_queue *txq; 467 int i; 468 dma_addr_t mapping; 469 unsigned int length, pad = 0; 470 u32 len, free_size, vlan_tag_flags, cfa_action, flags; 471 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 472 struct pci_dev *pdev = bp->pdev; 473 u16 prod, last_frag, txts_prod; 474 struct bnxt_tx_ring_info *txr; 475 struct bnxt_sw_tx_bd *tx_buf; 476 __le32 lflags = 0; 477 478 i = skb_get_queue_mapping(skb); 479 if (unlikely(i >= bp->tx_nr_rings)) { 480 dev_kfree_skb_any(skb); 481 dev_core_stats_tx_dropped_inc(dev); 482 return NETDEV_TX_OK; 483 } 484 485 txq = netdev_get_tx_queue(dev, i); 486 txr = &bp->tx_ring[bp->tx_ring_map[i]]; 487 prod = txr->tx_prod; 488 489 free_size = bnxt_tx_avail(bp, txr); 490 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) { 491 /* We must have raced with NAPI cleanup */ 492 if (net_ratelimit() && txr->kick_pending) 493 netif_warn(bp, tx_err, dev, 494 "bnxt: ring busy w/ flush pending!\n"); 495 if (!netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 496 bp->tx_wake_thresh)) 497 return NETDEV_TX_BUSY; 498 } 499 500 if (unlikely(ipv6_hopopt_jumbo_remove(skb))) 501 goto tx_free; 502 503 length = skb->len; 504 len = skb_headlen(skb); 505 last_frag = skb_shinfo(skb)->nr_frags; 506 507 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 508 509 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 510 tx_buf->skb = skb; 511 tx_buf->nr_frags = last_frag; 512 513 vlan_tag_flags = 0; 514 cfa_action = bnxt_xmit_get_cfa_action(skb); 515 if (skb_vlan_tag_present(skb)) { 516 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN | 517 skb_vlan_tag_get(skb); 518 /* Currently supports 8021Q, 8021AD vlan offloads 519 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated 520 */ 521 if (skb->vlan_proto == htons(ETH_P_8021Q)) 522 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT; 523 } 524 525 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && ptp && 526 ptp->tx_tstamp_en) { 527 if (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) { 528 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 529 tx_buf->is_ts_pkt = 1; 530 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 531 } else if (!skb_is_gso(skb)) { 532 u16 seq_id, hdr_off; 533 534 if (!bnxt_ptp_parse(skb, &seq_id, &hdr_off) && 535 !bnxt_ptp_get_txts_prod(ptp, &txts_prod)) { 536 if (vlan_tag_flags) 537 hdr_off += VLAN_HLEN; 538 lflags |= cpu_to_le32(TX_BD_FLAGS_STAMP); 539 tx_buf->is_ts_pkt = 1; 540 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 541 542 ptp->txts_req[txts_prod].tx_seqid = seq_id; 543 ptp->txts_req[txts_prod].tx_hdr_off = hdr_off; 544 tx_buf->txts_prod = txts_prod; 545 } 546 } 547 } 548 if (unlikely(skb->no_fcs)) 549 lflags |= cpu_to_le32(TX_BD_FLAGS_NO_CRC); 550 551 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh && 552 !lflags) { 553 struct tx_push_buffer *tx_push_buf = txr->tx_push; 554 struct tx_push_bd *tx_push = &tx_push_buf->push_bd; 555 struct tx_bd_ext *tx_push1 = &tx_push->txbd2; 556 void __iomem *db = txr->tx_db.doorbell; 557 void *pdata = tx_push_buf->data; 558 u64 *end; 559 int j, push_len; 560 561 /* Set COAL_NOW to be ready quickly for the next push */ 562 tx_push->tx_bd_len_flags_type = 563 cpu_to_le32((length << TX_BD_LEN_SHIFT) | 564 TX_BD_TYPE_LONG_TX_BD | 565 TX_BD_FLAGS_LHINT_512_AND_SMALLER | 566 TX_BD_FLAGS_COAL_NOW | 567 TX_BD_FLAGS_PACKET_END | 568 (2 << TX_BD_FLAGS_BD_CNT_SHIFT)); 569 570 if (skb->ip_summed == CHECKSUM_PARTIAL) 571 tx_push1->tx_bd_hsize_lflags = 572 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 573 else 574 tx_push1->tx_bd_hsize_lflags = 0; 575 576 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 577 tx_push1->tx_bd_cfa_action = 578 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 579 580 end = pdata + length; 581 end = PTR_ALIGN(end, 8) - 1; 582 *end = 0; 583 584 skb_copy_from_linear_data(skb, pdata, len); 585 pdata += len; 586 for (j = 0; j < last_frag; j++) { 587 skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; 588 void *fptr; 589 590 fptr = skb_frag_address_safe(frag); 591 if (!fptr) 592 goto normal_tx; 593 594 memcpy(pdata, fptr, skb_frag_size(frag)); 595 pdata += skb_frag_size(frag); 596 } 597 598 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type; 599 txbd->tx_bd_haddr = txr->data_mapping; 600 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2); 601 prod = NEXT_TX(prod); 602 tx_push->tx_bd_opaque = txbd->tx_bd_opaque; 603 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 604 memcpy(txbd, tx_push1, sizeof(*txbd)); 605 prod = NEXT_TX(prod); 606 tx_push->doorbell = 607 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | 608 DB_RING_IDX(&txr->tx_db, prod)); 609 WRITE_ONCE(txr->tx_prod, prod); 610 611 tx_buf->is_push = 1; 612 netdev_tx_sent_queue(txq, skb->len); 613 wmb(); /* Sync is_push and byte queue before pushing data */ 614 615 push_len = (length + sizeof(*tx_push) + 7) / 8; 616 if (push_len > 16) { 617 __iowrite64_copy(db, tx_push_buf, 16); 618 __iowrite32_copy(db + 4, tx_push_buf + 1, 619 (push_len - 16) << 1); 620 } else { 621 __iowrite64_copy(db, tx_push_buf, push_len); 622 } 623 624 goto tx_done; 625 } 626 627 normal_tx: 628 if (length < BNXT_MIN_PKT_SIZE) { 629 pad = BNXT_MIN_PKT_SIZE - length; 630 if (skb_pad(skb, pad)) 631 /* SKB already freed. */ 632 goto tx_kick_pending; 633 length = BNXT_MIN_PKT_SIZE; 634 } 635 636 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE); 637 638 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 639 goto tx_free; 640 641 dma_unmap_addr_set(tx_buf, mapping, mapping); 642 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD | 643 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT); 644 645 txbd->tx_bd_haddr = cpu_to_le64(mapping); 646 txbd->tx_bd_opaque = SET_TX_OPAQUE(bp, txr, prod, 2 + last_frag); 647 648 prod = NEXT_TX(prod); 649 txbd1 = (struct tx_bd_ext *) 650 &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 651 652 txbd1->tx_bd_hsize_lflags = lflags; 653 if (skb_is_gso(skb)) { 654 bool udp_gso = !!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4); 655 u32 hdr_len; 656 657 if (skb->encapsulation) { 658 if (udp_gso) 659 hdr_len = skb_inner_transport_offset(skb) + 660 sizeof(struct udphdr); 661 else 662 hdr_len = skb_inner_tcp_all_headers(skb); 663 } else if (udp_gso) { 664 hdr_len = skb_transport_offset(skb) + 665 sizeof(struct udphdr); 666 } else { 667 hdr_len = skb_tcp_all_headers(skb); 668 } 669 670 txbd1->tx_bd_hsize_lflags |= cpu_to_le32(TX_BD_FLAGS_LSO | 671 TX_BD_FLAGS_T_IPID | 672 (hdr_len << (TX_BD_HSIZE_SHIFT - 1))); 673 length = skb_shinfo(skb)->gso_size; 674 txbd1->tx_bd_mss = cpu_to_le32(length); 675 length += hdr_len; 676 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 677 txbd1->tx_bd_hsize_lflags |= 678 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM); 679 txbd1->tx_bd_mss = 0; 680 } 681 682 length >>= 9; 683 if (unlikely(length >= ARRAY_SIZE(bnxt_lhint_arr))) { 684 dev_warn_ratelimited(&pdev->dev, "Dropped oversize %d bytes TX packet.\n", 685 skb->len); 686 i = 0; 687 goto tx_dma_error; 688 } 689 flags |= bnxt_lhint_arr[length]; 690 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 691 692 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags); 693 txbd1->tx_bd_cfa_action = 694 cpu_to_le32(cfa_action << TX_BD_CFA_ACTION_SHIFT); 695 txbd0 = txbd; 696 for (i = 0; i < last_frag; i++) { 697 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 698 699 prod = NEXT_TX(prod); 700 txbd = &txr->tx_desc_ring[TX_RING(bp, prod)][TX_IDX(prod)]; 701 702 len = skb_frag_size(frag); 703 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len, 704 DMA_TO_DEVICE); 705 706 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) 707 goto tx_dma_error; 708 709 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 710 dma_unmap_addr_set(tx_buf, mapping, mapping); 711 712 txbd->tx_bd_haddr = cpu_to_le64(mapping); 713 714 flags = len << TX_BD_LEN_SHIFT; 715 txbd->tx_bd_len_flags_type = cpu_to_le32(flags); 716 } 717 718 flags &= ~TX_BD_LEN; 719 txbd->tx_bd_len_flags_type = 720 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags | 721 TX_BD_FLAGS_PACKET_END); 722 723 netdev_tx_sent_queue(txq, skb->len); 724 725 skb_tx_timestamp(skb); 726 727 prod = NEXT_TX(prod); 728 WRITE_ONCE(txr->tx_prod, prod); 729 730 if (!netdev_xmit_more() || netif_xmit_stopped(txq)) { 731 bnxt_txr_db_kick(bp, txr, prod); 732 } else { 733 if (free_size >= bp->tx_wake_thresh) 734 txbd0->tx_bd_len_flags_type |= 735 cpu_to_le32(TX_BD_FLAGS_NO_CMPL); 736 txr->kick_pending = 1; 737 } 738 739 tx_done: 740 741 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) { 742 if (netdev_xmit_more() && !tx_buf->is_push) { 743 txbd0->tx_bd_len_flags_type &= 744 cpu_to_le32(~TX_BD_FLAGS_NO_CMPL); 745 bnxt_txr_db_kick(bp, txr, prod); 746 } 747 748 netif_txq_try_stop(txq, bnxt_tx_avail(bp, txr), 749 bp->tx_wake_thresh); 750 } 751 return NETDEV_TX_OK; 752 753 tx_dma_error: 754 last_frag = i; 755 756 /* start back at beginning and unmap skb */ 757 prod = txr->tx_prod; 758 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 759 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 760 skb_headlen(skb), DMA_TO_DEVICE); 761 prod = NEXT_TX(prod); 762 763 /* unmap remaining mapped pages */ 764 for (i = 0; i < last_frag; i++) { 765 prod = NEXT_TX(prod); 766 tx_buf = &txr->tx_buf_ring[RING_TX(bp, prod)]; 767 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 768 skb_frag_size(&skb_shinfo(skb)->frags[i]), 769 DMA_TO_DEVICE); 770 } 771 772 tx_free: 773 dev_kfree_skb_any(skb); 774 tx_kick_pending: 775 if (BNXT_TX_PTP_IS_SET(lflags)) { 776 txr->tx_buf_ring[txr->tx_prod].is_ts_pkt = 0; 777 atomic64_inc(&bp->ptp_cfg->stats.ts_err); 778 if (!(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 779 /* set SKB to err so PTP worker will clean up */ 780 ptp->txts_req[txts_prod].tx_skb = ERR_PTR(-EIO); 781 } 782 if (txr->kick_pending) 783 bnxt_txr_db_kick(bp, txr, txr->tx_prod); 784 txr->tx_buf_ring[txr->tx_prod].skb = NULL; 785 dev_core_stats_tx_dropped_inc(dev); 786 return NETDEV_TX_OK; 787 } 788 789 /* Returns true if some remaining TX packets not processed. */ 790 static bool __bnxt_tx_int(struct bnxt *bp, struct bnxt_tx_ring_info *txr, 791 int budget) 792 { 793 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, txr->txq_index); 794 struct pci_dev *pdev = bp->pdev; 795 u16 hw_cons = txr->tx_hw_cons; 796 unsigned int tx_bytes = 0; 797 u16 cons = txr->tx_cons; 798 int tx_pkts = 0; 799 bool rc = false; 800 801 while (RING_TX(bp, cons) != hw_cons) { 802 struct bnxt_sw_tx_bd *tx_buf; 803 struct sk_buff *skb; 804 bool is_ts_pkt; 805 int j, last; 806 807 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 808 skb = tx_buf->skb; 809 810 if (unlikely(!skb)) { 811 bnxt_sched_reset_txr(bp, txr, cons); 812 return rc; 813 } 814 815 is_ts_pkt = tx_buf->is_ts_pkt; 816 if (is_ts_pkt && (bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) { 817 rc = true; 818 break; 819 } 820 821 cons = NEXT_TX(cons); 822 tx_pkts++; 823 tx_bytes += skb->len; 824 tx_buf->skb = NULL; 825 tx_buf->is_ts_pkt = 0; 826 827 if (tx_buf->is_push) { 828 tx_buf->is_push = 0; 829 goto next_tx_int; 830 } 831 832 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping), 833 skb_headlen(skb), DMA_TO_DEVICE); 834 last = tx_buf->nr_frags; 835 836 for (j = 0; j < last; j++) { 837 cons = NEXT_TX(cons); 838 tx_buf = &txr->tx_buf_ring[RING_TX(bp, cons)]; 839 dma_unmap_page( 840 &pdev->dev, 841 dma_unmap_addr(tx_buf, mapping), 842 skb_frag_size(&skb_shinfo(skb)->frags[j]), 843 DMA_TO_DEVICE); 844 } 845 if (unlikely(is_ts_pkt)) { 846 if (BNXT_CHIP_P5(bp)) { 847 /* PTP worker takes ownership of the skb */ 848 bnxt_get_tx_ts_p5(bp, skb, tx_buf->txts_prod); 849 skb = NULL; 850 } 851 } 852 853 next_tx_int: 854 cons = NEXT_TX(cons); 855 856 dev_consume_skb_any(skb); 857 } 858 859 WRITE_ONCE(txr->tx_cons, cons); 860 861 __netif_txq_completed_wake(txq, tx_pkts, tx_bytes, 862 bnxt_tx_avail(bp, txr), bp->tx_wake_thresh, 863 READ_ONCE(txr->dev_state) == BNXT_DEV_STATE_CLOSING); 864 865 return rc; 866 } 867 868 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 869 { 870 struct bnxt_tx_ring_info *txr; 871 bool more = false; 872 int i; 873 874 bnxt_for_each_napi_tx(i, bnapi, txr) { 875 if (txr->tx_hw_cons != RING_TX(bp, txr->tx_cons)) 876 more |= __bnxt_tx_int(bp, txr, budget); 877 } 878 if (!more) 879 bnapi->events &= ~BNXT_TX_CMP_EVENT; 880 } 881 882 static bool bnxt_separate_head_pool(void) 883 { 884 return PAGE_SIZE > BNXT_RX_PAGE_SIZE; 885 } 886 887 static struct page *__bnxt_alloc_rx_page(struct bnxt *bp, dma_addr_t *mapping, 888 struct bnxt_rx_ring_info *rxr, 889 unsigned int *offset, 890 gfp_t gfp) 891 { 892 struct page *page; 893 894 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) { 895 page = page_pool_dev_alloc_frag(rxr->page_pool, offset, 896 BNXT_RX_PAGE_SIZE); 897 } else { 898 page = page_pool_dev_alloc_pages(rxr->page_pool); 899 *offset = 0; 900 } 901 if (!page) 902 return NULL; 903 904 *mapping = page_pool_get_dma_addr(page) + *offset; 905 return page; 906 } 907 908 static inline u8 *__bnxt_alloc_rx_frag(struct bnxt *bp, dma_addr_t *mapping, 909 struct bnxt_rx_ring_info *rxr, 910 gfp_t gfp) 911 { 912 unsigned int offset; 913 struct page *page; 914 915 page = page_pool_alloc_frag(rxr->head_pool, &offset, 916 bp->rx_buf_size, gfp); 917 if (!page) 918 return NULL; 919 920 *mapping = page_pool_get_dma_addr(page) + bp->rx_dma_offset + offset; 921 return page_address(page) + offset; 922 } 923 924 int bnxt_alloc_rx_data(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 925 u16 prod, gfp_t gfp) 926 { 927 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 928 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 929 dma_addr_t mapping; 930 931 if (BNXT_RX_PAGE_MODE(bp)) { 932 unsigned int offset; 933 struct page *page = 934 __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 935 936 if (!page) 937 return -ENOMEM; 938 939 mapping += bp->rx_dma_offset; 940 rx_buf->data = page; 941 rx_buf->data_ptr = page_address(page) + offset + bp->rx_offset; 942 } else { 943 u8 *data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, gfp); 944 945 if (!data) 946 return -ENOMEM; 947 948 rx_buf->data = data; 949 rx_buf->data_ptr = data + bp->rx_offset; 950 } 951 rx_buf->mapping = mapping; 952 953 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 954 return 0; 955 } 956 957 void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons, void *data) 958 { 959 u16 prod = rxr->rx_prod; 960 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 961 struct bnxt *bp = rxr->bnapi->bp; 962 struct rx_bd *cons_bd, *prod_bd; 963 964 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 965 cons_rx_buf = &rxr->rx_buf_ring[cons]; 966 967 prod_rx_buf->data = data; 968 prod_rx_buf->data_ptr = cons_rx_buf->data_ptr; 969 970 prod_rx_buf->mapping = cons_rx_buf->mapping; 971 972 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 973 cons_bd = &rxr->rx_desc_ring[RX_RING(bp, cons)][RX_IDX(cons)]; 974 975 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr; 976 } 977 978 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 979 { 980 u16 next, max = rxr->rx_agg_bmap_size; 981 982 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx); 983 if (next >= max) 984 next = find_first_zero_bit(rxr->rx_agg_bmap, max); 985 return next; 986 } 987 988 static inline int bnxt_alloc_rx_page(struct bnxt *bp, 989 struct bnxt_rx_ring_info *rxr, 990 u16 prod, gfp_t gfp) 991 { 992 struct rx_bd *rxbd = 993 &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 994 struct bnxt_sw_rx_agg_bd *rx_agg_buf; 995 struct page *page; 996 dma_addr_t mapping; 997 u16 sw_prod = rxr->rx_sw_agg_prod; 998 unsigned int offset = 0; 999 1000 page = __bnxt_alloc_rx_page(bp, &mapping, rxr, &offset, gfp); 1001 1002 if (!page) 1003 return -ENOMEM; 1004 1005 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1006 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1007 1008 __set_bit(sw_prod, rxr->rx_agg_bmap); 1009 rx_agg_buf = &rxr->rx_agg_ring[sw_prod]; 1010 rxr->rx_sw_agg_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1011 1012 rx_agg_buf->page = page; 1013 rx_agg_buf->offset = offset; 1014 rx_agg_buf->mapping = mapping; 1015 rxbd->rx_bd_haddr = cpu_to_le64(mapping); 1016 rxbd->rx_bd_opaque = sw_prod; 1017 return 0; 1018 } 1019 1020 static struct rx_agg_cmp *bnxt_get_agg(struct bnxt *bp, 1021 struct bnxt_cp_ring_info *cpr, 1022 u16 cp_cons, u16 curr) 1023 { 1024 struct rx_agg_cmp *agg; 1025 1026 cp_cons = RING_CMP(ADV_RAW_CMP(cp_cons, curr)); 1027 agg = (struct rx_agg_cmp *) 1028 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 1029 return agg; 1030 } 1031 1032 static struct rx_agg_cmp *bnxt_get_tpa_agg_p5(struct bnxt *bp, 1033 struct bnxt_rx_ring_info *rxr, 1034 u16 agg_id, u16 curr) 1035 { 1036 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[agg_id]; 1037 1038 return &tpa_info->agg_arr[curr]; 1039 } 1040 1041 static void bnxt_reuse_rx_agg_bufs(struct bnxt_cp_ring_info *cpr, u16 idx, 1042 u16 start, u32 agg_bufs, bool tpa) 1043 { 1044 struct bnxt_napi *bnapi = cpr->bnapi; 1045 struct bnxt *bp = bnapi->bp; 1046 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1047 u16 prod = rxr->rx_agg_prod; 1048 u16 sw_prod = rxr->rx_sw_agg_prod; 1049 bool p5_tpa = false; 1050 u32 i; 1051 1052 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1053 p5_tpa = true; 1054 1055 for (i = 0; i < agg_bufs; i++) { 1056 u16 cons; 1057 struct rx_agg_cmp *agg; 1058 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf; 1059 struct rx_bd *prod_bd; 1060 struct page *page; 1061 1062 if (p5_tpa) 1063 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, start + i); 1064 else 1065 agg = bnxt_get_agg(bp, cpr, idx, start + i); 1066 cons = agg->rx_agg_cmp_opaque; 1067 __clear_bit(cons, rxr->rx_agg_bmap); 1068 1069 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap))) 1070 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod); 1071 1072 __set_bit(sw_prod, rxr->rx_agg_bmap); 1073 prod_rx_buf = &rxr->rx_agg_ring[sw_prod]; 1074 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1075 1076 /* It is possible for sw_prod to be equal to cons, so 1077 * set cons_rx_buf->page to NULL first. 1078 */ 1079 page = cons_rx_buf->page; 1080 cons_rx_buf->page = NULL; 1081 prod_rx_buf->page = page; 1082 prod_rx_buf->offset = cons_rx_buf->offset; 1083 1084 prod_rx_buf->mapping = cons_rx_buf->mapping; 1085 1086 prod_bd = &rxr->rx_agg_desc_ring[RX_AGG_RING(bp, prod)][RX_IDX(prod)]; 1087 1088 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping); 1089 prod_bd->rx_bd_opaque = sw_prod; 1090 1091 prod = NEXT_RX_AGG(prod); 1092 sw_prod = RING_RX_AGG(bp, NEXT_RX_AGG(sw_prod)); 1093 } 1094 rxr->rx_agg_prod = prod; 1095 rxr->rx_sw_agg_prod = sw_prod; 1096 } 1097 1098 static struct sk_buff *bnxt_rx_multi_page_skb(struct bnxt *bp, 1099 struct bnxt_rx_ring_info *rxr, 1100 u16 cons, void *data, u8 *data_ptr, 1101 dma_addr_t dma_addr, 1102 unsigned int offset_and_len) 1103 { 1104 unsigned int len = offset_and_len & 0xffff; 1105 struct page *page = data; 1106 u16 prod = rxr->rx_prod; 1107 struct sk_buff *skb; 1108 int err; 1109 1110 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1111 if (unlikely(err)) { 1112 bnxt_reuse_rx_data(rxr, cons, data); 1113 return NULL; 1114 } 1115 dma_addr -= bp->rx_dma_offset; 1116 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1117 bp->rx_dir); 1118 skb = napi_build_skb(data_ptr - bp->rx_offset, BNXT_RX_PAGE_SIZE); 1119 if (!skb) { 1120 page_pool_recycle_direct(rxr->page_pool, page); 1121 return NULL; 1122 } 1123 skb_mark_for_recycle(skb); 1124 skb_reserve(skb, bp->rx_offset); 1125 __skb_put(skb, len); 1126 1127 return skb; 1128 } 1129 1130 static struct sk_buff *bnxt_rx_page_skb(struct bnxt *bp, 1131 struct bnxt_rx_ring_info *rxr, 1132 u16 cons, void *data, u8 *data_ptr, 1133 dma_addr_t dma_addr, 1134 unsigned int offset_and_len) 1135 { 1136 unsigned int payload = offset_and_len >> 16; 1137 unsigned int len = offset_and_len & 0xffff; 1138 skb_frag_t *frag; 1139 struct page *page = data; 1140 u16 prod = rxr->rx_prod; 1141 struct sk_buff *skb; 1142 int off, err; 1143 1144 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1145 if (unlikely(err)) { 1146 bnxt_reuse_rx_data(rxr, cons, data); 1147 return NULL; 1148 } 1149 dma_addr -= bp->rx_dma_offset; 1150 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, BNXT_RX_PAGE_SIZE, 1151 bp->rx_dir); 1152 1153 if (unlikely(!payload)) 1154 payload = eth_get_headlen(bp->dev, data_ptr, len); 1155 1156 skb = napi_alloc_skb(&rxr->bnapi->napi, payload); 1157 if (!skb) { 1158 page_pool_recycle_direct(rxr->page_pool, page); 1159 return NULL; 1160 } 1161 1162 skb_mark_for_recycle(skb); 1163 off = (void *)data_ptr - page_address(page); 1164 skb_add_rx_frag(skb, 0, page, off, len, BNXT_RX_PAGE_SIZE); 1165 memcpy(skb->data - NET_IP_ALIGN, data_ptr - NET_IP_ALIGN, 1166 payload + NET_IP_ALIGN); 1167 1168 frag = &skb_shinfo(skb)->frags[0]; 1169 skb_frag_size_sub(frag, payload); 1170 skb_frag_off_add(frag, payload); 1171 skb->data_len -= payload; 1172 skb->tail += payload; 1173 1174 return skb; 1175 } 1176 1177 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp, 1178 struct bnxt_rx_ring_info *rxr, u16 cons, 1179 void *data, u8 *data_ptr, 1180 dma_addr_t dma_addr, 1181 unsigned int offset_and_len) 1182 { 1183 u16 prod = rxr->rx_prod; 1184 struct sk_buff *skb; 1185 int err; 1186 1187 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC); 1188 if (unlikely(err)) { 1189 bnxt_reuse_rx_data(rxr, cons, data); 1190 return NULL; 1191 } 1192 1193 skb = napi_build_skb(data, bp->rx_buf_size); 1194 dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size, 1195 bp->rx_dir); 1196 if (!skb) { 1197 page_pool_free_va(rxr->head_pool, data, true); 1198 return NULL; 1199 } 1200 1201 skb_mark_for_recycle(skb); 1202 skb_reserve(skb, bp->rx_offset); 1203 skb_put(skb, offset_and_len & 0xffff); 1204 return skb; 1205 } 1206 1207 static u32 __bnxt_rx_agg_pages(struct bnxt *bp, 1208 struct bnxt_cp_ring_info *cpr, 1209 struct skb_shared_info *shinfo, 1210 u16 idx, u32 agg_bufs, bool tpa, 1211 struct xdp_buff *xdp) 1212 { 1213 struct bnxt_napi *bnapi = cpr->bnapi; 1214 struct pci_dev *pdev = bp->pdev; 1215 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1216 u16 prod = rxr->rx_agg_prod; 1217 u32 i, total_frag_len = 0; 1218 bool p5_tpa = false; 1219 1220 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && tpa) 1221 p5_tpa = true; 1222 1223 for (i = 0; i < agg_bufs; i++) { 1224 skb_frag_t *frag = &shinfo->frags[i]; 1225 u16 cons, frag_len; 1226 struct rx_agg_cmp *agg; 1227 struct bnxt_sw_rx_agg_bd *cons_rx_buf; 1228 struct page *page; 1229 dma_addr_t mapping; 1230 1231 if (p5_tpa) 1232 agg = bnxt_get_tpa_agg_p5(bp, rxr, idx, i); 1233 else 1234 agg = bnxt_get_agg(bp, cpr, idx, i); 1235 cons = agg->rx_agg_cmp_opaque; 1236 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) & 1237 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT; 1238 1239 cons_rx_buf = &rxr->rx_agg_ring[cons]; 1240 skb_frag_fill_page_desc(frag, cons_rx_buf->page, 1241 cons_rx_buf->offset, frag_len); 1242 shinfo->nr_frags = i + 1; 1243 __clear_bit(cons, rxr->rx_agg_bmap); 1244 1245 /* It is possible for bnxt_alloc_rx_page() to allocate 1246 * a sw_prod index that equals the cons index, so we 1247 * need to clear the cons entry now. 1248 */ 1249 mapping = cons_rx_buf->mapping; 1250 page = cons_rx_buf->page; 1251 cons_rx_buf->page = NULL; 1252 1253 if (xdp && page_is_pfmemalloc(page)) 1254 xdp_buff_set_frag_pfmemalloc(xdp); 1255 1256 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) { 1257 --shinfo->nr_frags; 1258 cons_rx_buf->page = page; 1259 1260 /* Update prod since possibly some pages have been 1261 * allocated already. 1262 */ 1263 rxr->rx_agg_prod = prod; 1264 bnxt_reuse_rx_agg_bufs(cpr, idx, i, agg_bufs - i, tpa); 1265 return 0; 1266 } 1267 1268 dma_sync_single_for_cpu(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE, 1269 bp->rx_dir); 1270 1271 total_frag_len += frag_len; 1272 prod = NEXT_RX_AGG(prod); 1273 } 1274 rxr->rx_agg_prod = prod; 1275 return total_frag_len; 1276 } 1277 1278 static struct sk_buff *bnxt_rx_agg_pages_skb(struct bnxt *bp, 1279 struct bnxt_cp_ring_info *cpr, 1280 struct sk_buff *skb, u16 idx, 1281 u32 agg_bufs, bool tpa) 1282 { 1283 struct skb_shared_info *shinfo = skb_shinfo(skb); 1284 u32 total_frag_len = 0; 1285 1286 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, idx, 1287 agg_bufs, tpa, NULL); 1288 if (!total_frag_len) { 1289 skb_mark_for_recycle(skb); 1290 dev_kfree_skb(skb); 1291 return NULL; 1292 } 1293 1294 skb->data_len += total_frag_len; 1295 skb->len += total_frag_len; 1296 skb->truesize += BNXT_RX_PAGE_SIZE * agg_bufs; 1297 return skb; 1298 } 1299 1300 static u32 bnxt_rx_agg_pages_xdp(struct bnxt *bp, 1301 struct bnxt_cp_ring_info *cpr, 1302 struct xdp_buff *xdp, u16 idx, 1303 u32 agg_bufs, bool tpa) 1304 { 1305 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp); 1306 u32 total_frag_len = 0; 1307 1308 if (!xdp_buff_has_frags(xdp)) 1309 shinfo->nr_frags = 0; 1310 1311 total_frag_len = __bnxt_rx_agg_pages(bp, cpr, shinfo, 1312 idx, agg_bufs, tpa, xdp); 1313 if (total_frag_len) { 1314 xdp_buff_set_frags_flag(xdp); 1315 shinfo->nr_frags = agg_bufs; 1316 shinfo->xdp_frags_size = total_frag_len; 1317 } 1318 return total_frag_len; 1319 } 1320 1321 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1322 u8 agg_bufs, u32 *raw_cons) 1323 { 1324 u16 last; 1325 struct rx_agg_cmp *agg; 1326 1327 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs); 1328 last = RING_CMP(*raw_cons); 1329 agg = (struct rx_agg_cmp *) 1330 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)]; 1331 return RX_AGG_CMP_VALID(agg, *raw_cons); 1332 } 1333 1334 static struct sk_buff *bnxt_copy_data(struct bnxt_napi *bnapi, u8 *data, 1335 unsigned int len, 1336 dma_addr_t mapping) 1337 { 1338 struct bnxt *bp = bnapi->bp; 1339 struct pci_dev *pdev = bp->pdev; 1340 struct sk_buff *skb; 1341 1342 skb = napi_alloc_skb(&bnapi->napi, len); 1343 if (!skb) 1344 return NULL; 1345 1346 dma_sync_single_for_cpu(&pdev->dev, mapping, bp->rx_copy_thresh, 1347 bp->rx_dir); 1348 1349 memcpy(skb->data - NET_IP_ALIGN, data - NET_IP_ALIGN, 1350 len + NET_IP_ALIGN); 1351 1352 dma_sync_single_for_device(&pdev->dev, mapping, bp->rx_copy_thresh, 1353 bp->rx_dir); 1354 1355 skb_put(skb, len); 1356 1357 return skb; 1358 } 1359 1360 static struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data, 1361 unsigned int len, 1362 dma_addr_t mapping) 1363 { 1364 return bnxt_copy_data(bnapi, data, len, mapping); 1365 } 1366 1367 static struct sk_buff *bnxt_copy_xdp(struct bnxt_napi *bnapi, 1368 struct xdp_buff *xdp, 1369 unsigned int len, 1370 dma_addr_t mapping) 1371 { 1372 unsigned int metasize = 0; 1373 u8 *data = xdp->data; 1374 struct sk_buff *skb; 1375 1376 len = xdp->data_end - xdp->data_meta; 1377 metasize = xdp->data - xdp->data_meta; 1378 data = xdp->data_meta; 1379 1380 skb = bnxt_copy_data(bnapi, data, len, mapping); 1381 if (!skb) 1382 return skb; 1383 1384 if (metasize) { 1385 skb_metadata_set(skb, metasize); 1386 __skb_pull(skb, metasize); 1387 } 1388 1389 return skb; 1390 } 1391 1392 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 1393 u32 *raw_cons, void *cmp) 1394 { 1395 struct rx_cmp *rxcmp = cmp; 1396 u32 tmp_raw_cons = *raw_cons; 1397 u8 cmp_type, agg_bufs = 0; 1398 1399 cmp_type = RX_CMP_TYPE(rxcmp); 1400 1401 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1402 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & 1403 RX_CMP_AGG_BUFS) >> 1404 RX_CMP_AGG_BUFS_SHIFT; 1405 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 1406 struct rx_tpa_end_cmp *tpa_end = cmp; 1407 1408 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1409 return 0; 1410 1411 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1412 } 1413 1414 if (agg_bufs) { 1415 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 1416 return -EBUSY; 1417 } 1418 *raw_cons = tmp_raw_cons; 1419 return 0; 1420 } 1421 1422 static u16 bnxt_alloc_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1423 { 1424 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1425 u16 idx = agg_id & MAX_TPA_P5_MASK; 1426 1427 if (test_bit(idx, map->agg_idx_bmap)) 1428 idx = find_first_zero_bit(map->agg_idx_bmap, 1429 BNXT_AGG_IDX_BMAP_SIZE); 1430 __set_bit(idx, map->agg_idx_bmap); 1431 map->agg_id_tbl[agg_id] = idx; 1432 return idx; 1433 } 1434 1435 static void bnxt_free_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx) 1436 { 1437 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1438 1439 __clear_bit(idx, map->agg_idx_bmap); 1440 } 1441 1442 static u16 bnxt_lookup_agg_idx(struct bnxt_rx_ring_info *rxr, u16 agg_id) 1443 { 1444 struct bnxt_tpa_idx_map *map = rxr->rx_tpa_idx_map; 1445 1446 return map->agg_id_tbl[agg_id]; 1447 } 1448 1449 static void bnxt_tpa_metadata(struct bnxt_tpa_info *tpa_info, 1450 struct rx_tpa_start_cmp *tpa_start, 1451 struct rx_tpa_start_cmp_ext *tpa_start1) 1452 { 1453 tpa_info->cfa_code_valid = 1; 1454 tpa_info->cfa_code = TPA_START_CFA_CODE(tpa_start1); 1455 tpa_info->vlan_valid = 0; 1456 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) { 1457 tpa_info->vlan_valid = 1; 1458 tpa_info->metadata = 1459 le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata); 1460 } 1461 } 1462 1463 static void bnxt_tpa_metadata_v2(struct bnxt_tpa_info *tpa_info, 1464 struct rx_tpa_start_cmp *tpa_start, 1465 struct rx_tpa_start_cmp_ext *tpa_start1) 1466 { 1467 tpa_info->vlan_valid = 0; 1468 if (TPA_START_VLAN_VALID(tpa_start)) { 1469 u32 tpid_sel = TPA_START_VLAN_TPID_SEL(tpa_start); 1470 u32 vlan_proto = ETH_P_8021Q; 1471 1472 tpa_info->vlan_valid = 1; 1473 if (tpid_sel == RX_TPA_START_METADATA1_TPID_8021AD) 1474 vlan_proto = ETH_P_8021AD; 1475 tpa_info->metadata = vlan_proto << 16 | 1476 TPA_START_METADATA0_TCI(tpa_start1); 1477 } 1478 } 1479 1480 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1481 u8 cmp_type, struct rx_tpa_start_cmp *tpa_start, 1482 struct rx_tpa_start_cmp_ext *tpa_start1) 1483 { 1484 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf; 1485 struct bnxt_tpa_info *tpa_info; 1486 u16 cons, prod, agg_id; 1487 struct rx_bd *prod_bd; 1488 dma_addr_t mapping; 1489 1490 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1491 agg_id = TPA_START_AGG_ID_P5(tpa_start); 1492 agg_id = bnxt_alloc_agg_idx(rxr, agg_id); 1493 } else { 1494 agg_id = TPA_START_AGG_ID(tpa_start); 1495 } 1496 cons = tpa_start->rx_tpa_start_cmp_opaque; 1497 prod = rxr->rx_prod; 1498 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1499 prod_rx_buf = &rxr->rx_buf_ring[RING_RX(bp, prod)]; 1500 tpa_info = &rxr->rx_tpa[agg_id]; 1501 1502 if (unlikely(cons != rxr->rx_next_cons || 1503 TPA_START_ERROR(tpa_start))) { 1504 netdev_warn(bp->dev, "TPA cons %x, expected cons %x, error code %x\n", 1505 cons, rxr->rx_next_cons, 1506 TPA_START_ERROR_CODE(tpa_start1)); 1507 bnxt_sched_reset_rxr(bp, rxr); 1508 return; 1509 } 1510 prod_rx_buf->data = tpa_info->data; 1511 prod_rx_buf->data_ptr = tpa_info->data_ptr; 1512 1513 mapping = tpa_info->mapping; 1514 prod_rx_buf->mapping = mapping; 1515 1516 prod_bd = &rxr->rx_desc_ring[RX_RING(bp, prod)][RX_IDX(prod)]; 1517 1518 prod_bd->rx_bd_haddr = cpu_to_le64(mapping); 1519 1520 tpa_info->data = cons_rx_buf->data; 1521 tpa_info->data_ptr = cons_rx_buf->data_ptr; 1522 cons_rx_buf->data = NULL; 1523 tpa_info->mapping = cons_rx_buf->mapping; 1524 1525 tpa_info->len = 1526 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >> 1527 RX_TPA_START_CMP_LEN_SHIFT; 1528 if (likely(TPA_START_HASH_VALID(tpa_start))) { 1529 tpa_info->hash_type = PKT_HASH_TYPE_L4; 1530 tpa_info->gso_type = SKB_GSO_TCPV4; 1531 if (TPA_START_IS_IPV6(tpa_start1)) 1532 tpa_info->gso_type = SKB_GSO_TCPV6; 1533 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */ 1534 else if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP && 1535 TPA_START_HASH_TYPE(tpa_start) == 3) 1536 tpa_info->gso_type = SKB_GSO_TCPV6; 1537 tpa_info->rss_hash = 1538 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash); 1539 } else { 1540 tpa_info->hash_type = PKT_HASH_TYPE_NONE; 1541 tpa_info->gso_type = 0; 1542 netif_warn(bp, rx_err, bp->dev, "TPA packet without valid hash\n"); 1543 } 1544 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2); 1545 tpa_info->hdr_info = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_hdr_info); 1546 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) 1547 bnxt_tpa_metadata(tpa_info, tpa_start, tpa_start1); 1548 else 1549 bnxt_tpa_metadata_v2(tpa_info, tpa_start, tpa_start1); 1550 tpa_info->agg_count = 0; 1551 1552 rxr->rx_prod = NEXT_RX(prod); 1553 cons = RING_RX(bp, NEXT_RX(cons)); 1554 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 1555 cons_rx_buf = &rxr->rx_buf_ring[cons]; 1556 1557 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data); 1558 rxr->rx_prod = NEXT_RX(rxr->rx_prod); 1559 cons_rx_buf->data = NULL; 1560 } 1561 1562 static void bnxt_abort_tpa(struct bnxt_cp_ring_info *cpr, u16 idx, u32 agg_bufs) 1563 { 1564 if (agg_bufs) 1565 bnxt_reuse_rx_agg_bufs(cpr, idx, 0, agg_bufs, true); 1566 } 1567 1568 #ifdef CONFIG_INET 1569 static void bnxt_gro_tunnel(struct sk_buff *skb, __be16 ip_proto) 1570 { 1571 struct udphdr *uh = NULL; 1572 1573 if (ip_proto == htons(ETH_P_IP)) { 1574 struct iphdr *iph = (struct iphdr *)skb->data; 1575 1576 if (iph->protocol == IPPROTO_UDP) 1577 uh = (struct udphdr *)(iph + 1); 1578 } else { 1579 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data; 1580 1581 if (iph->nexthdr == IPPROTO_UDP) 1582 uh = (struct udphdr *)(iph + 1); 1583 } 1584 if (uh) { 1585 if (uh->check) 1586 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL_CSUM; 1587 else 1588 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL; 1589 } 1590 } 1591 #endif 1592 1593 static struct sk_buff *bnxt_gro_func_5731x(struct bnxt_tpa_info *tpa_info, 1594 int payload_off, int tcp_ts, 1595 struct sk_buff *skb) 1596 { 1597 #ifdef CONFIG_INET 1598 struct tcphdr *th; 1599 int len, nw_off; 1600 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1601 u32 hdr_info = tpa_info->hdr_info; 1602 bool loopback = false; 1603 1604 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1605 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1606 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1607 1608 /* If the packet is an internal loopback packet, the offsets will 1609 * have an extra 4 bytes. 1610 */ 1611 if (inner_mac_off == 4) { 1612 loopback = true; 1613 } else if (inner_mac_off > 4) { 1614 __be16 proto = *((__be16 *)(skb->data + inner_ip_off - 1615 ETH_HLEN - 2)); 1616 1617 /* We only support inner iPv4/ipv6. If we don't see the 1618 * correct protocol ID, it must be a loopback packet where 1619 * the offsets are off by 4. 1620 */ 1621 if (proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6)) 1622 loopback = true; 1623 } 1624 if (loopback) { 1625 /* internal loopback packet, subtract all offsets by 4 */ 1626 inner_ip_off -= 4; 1627 inner_mac_off -= 4; 1628 outer_ip_off -= 4; 1629 } 1630 1631 nw_off = inner_ip_off - ETH_HLEN; 1632 skb_set_network_header(skb, nw_off); 1633 if (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) { 1634 struct ipv6hdr *iph = ipv6_hdr(skb); 1635 1636 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1637 len = skb->len - skb_transport_offset(skb); 1638 th = tcp_hdr(skb); 1639 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1640 } else { 1641 struct iphdr *iph = ip_hdr(skb); 1642 1643 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1644 len = skb->len - skb_transport_offset(skb); 1645 th = tcp_hdr(skb); 1646 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1647 } 1648 1649 if (inner_mac_off) { /* tunnel */ 1650 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1651 ETH_HLEN - 2)); 1652 1653 bnxt_gro_tunnel(skb, proto); 1654 } 1655 #endif 1656 return skb; 1657 } 1658 1659 static struct sk_buff *bnxt_gro_func_5750x(struct bnxt_tpa_info *tpa_info, 1660 int payload_off, int tcp_ts, 1661 struct sk_buff *skb) 1662 { 1663 #ifdef CONFIG_INET 1664 u16 outer_ip_off, inner_ip_off, inner_mac_off; 1665 u32 hdr_info = tpa_info->hdr_info; 1666 int iphdr_len, nw_off; 1667 1668 inner_ip_off = BNXT_TPA_INNER_L3_OFF(hdr_info); 1669 inner_mac_off = BNXT_TPA_INNER_L2_OFF(hdr_info); 1670 outer_ip_off = BNXT_TPA_OUTER_L3_OFF(hdr_info); 1671 1672 nw_off = inner_ip_off - ETH_HLEN; 1673 skb_set_network_header(skb, nw_off); 1674 iphdr_len = (tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_IP_TYPE) ? 1675 sizeof(struct ipv6hdr) : sizeof(struct iphdr); 1676 skb_set_transport_header(skb, nw_off + iphdr_len); 1677 1678 if (inner_mac_off) { /* tunnel */ 1679 __be16 proto = *((__be16 *)(skb->data + outer_ip_off - 1680 ETH_HLEN - 2)); 1681 1682 bnxt_gro_tunnel(skb, proto); 1683 } 1684 #endif 1685 return skb; 1686 } 1687 1688 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr)) 1689 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr)) 1690 1691 static struct sk_buff *bnxt_gro_func_5730x(struct bnxt_tpa_info *tpa_info, 1692 int payload_off, int tcp_ts, 1693 struct sk_buff *skb) 1694 { 1695 #ifdef CONFIG_INET 1696 struct tcphdr *th; 1697 int len, nw_off, tcp_opt_len = 0; 1698 1699 if (tcp_ts) 1700 tcp_opt_len = 12; 1701 1702 if (tpa_info->gso_type == SKB_GSO_TCPV4) { 1703 struct iphdr *iph; 1704 1705 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len - 1706 ETH_HLEN; 1707 skb_set_network_header(skb, nw_off); 1708 iph = ip_hdr(skb); 1709 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr)); 1710 len = skb->len - skb_transport_offset(skb); 1711 th = tcp_hdr(skb); 1712 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0); 1713 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) { 1714 struct ipv6hdr *iph; 1715 1716 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len - 1717 ETH_HLEN; 1718 skb_set_network_header(skb, nw_off); 1719 iph = ipv6_hdr(skb); 1720 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr)); 1721 len = skb->len - skb_transport_offset(skb); 1722 th = tcp_hdr(skb); 1723 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0); 1724 } else { 1725 dev_kfree_skb_any(skb); 1726 return NULL; 1727 } 1728 1729 if (nw_off) /* tunnel */ 1730 bnxt_gro_tunnel(skb, skb->protocol); 1731 #endif 1732 return skb; 1733 } 1734 1735 static inline struct sk_buff *bnxt_gro_skb(struct bnxt *bp, 1736 struct bnxt_tpa_info *tpa_info, 1737 struct rx_tpa_end_cmp *tpa_end, 1738 struct rx_tpa_end_cmp_ext *tpa_end1, 1739 struct sk_buff *skb) 1740 { 1741 #ifdef CONFIG_INET 1742 int payload_off; 1743 u16 segs; 1744 1745 segs = TPA_END_TPA_SEGS(tpa_end); 1746 if (segs == 1) 1747 return skb; 1748 1749 NAPI_GRO_CB(skb)->count = segs; 1750 skb_shinfo(skb)->gso_size = 1751 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len); 1752 skb_shinfo(skb)->gso_type = tpa_info->gso_type; 1753 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 1754 payload_off = TPA_END_PAYLOAD_OFF_P5(tpa_end1); 1755 else 1756 payload_off = TPA_END_PAYLOAD_OFF(tpa_end); 1757 skb = bp->gro_func(tpa_info, payload_off, TPA_END_GRO_TS(tpa_end), skb); 1758 if (likely(skb)) 1759 tcp_gro_complete(skb); 1760 #endif 1761 return skb; 1762 } 1763 1764 /* Given the cfa_code of a received packet determine which 1765 * netdev (vf-rep or PF) the packet is destined to. 1766 */ 1767 static struct net_device *bnxt_get_pkt_dev(struct bnxt *bp, u16 cfa_code) 1768 { 1769 struct net_device *dev = bnxt_get_vf_rep(bp, cfa_code); 1770 1771 /* if vf-rep dev is NULL, the must belongs to the PF */ 1772 return dev ? dev : bp->dev; 1773 } 1774 1775 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp, 1776 struct bnxt_cp_ring_info *cpr, 1777 u32 *raw_cons, 1778 struct rx_tpa_end_cmp *tpa_end, 1779 struct rx_tpa_end_cmp_ext *tpa_end1, 1780 u8 *event) 1781 { 1782 struct bnxt_napi *bnapi = cpr->bnapi; 1783 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 1784 struct net_device *dev = bp->dev; 1785 u8 *data_ptr, agg_bufs; 1786 unsigned int len; 1787 struct bnxt_tpa_info *tpa_info; 1788 dma_addr_t mapping; 1789 struct sk_buff *skb; 1790 u16 idx = 0, agg_id; 1791 void *data; 1792 bool gro; 1793 1794 if (unlikely(bnapi->in_reset)) { 1795 int rc = bnxt_discard_rx(bp, cpr, raw_cons, tpa_end); 1796 1797 if (rc < 0) 1798 return ERR_PTR(-EBUSY); 1799 return NULL; 1800 } 1801 1802 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 1803 agg_id = TPA_END_AGG_ID_P5(tpa_end); 1804 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1805 agg_bufs = TPA_END_AGG_BUFS_P5(tpa_end1); 1806 tpa_info = &rxr->rx_tpa[agg_id]; 1807 if (unlikely(agg_bufs != tpa_info->agg_count)) { 1808 netdev_warn(bp->dev, "TPA end agg_buf %d != expected agg_bufs %d\n", 1809 agg_bufs, tpa_info->agg_count); 1810 agg_bufs = tpa_info->agg_count; 1811 } 1812 tpa_info->agg_count = 0; 1813 *event |= BNXT_AGG_EVENT; 1814 bnxt_free_agg_idx(rxr, agg_id); 1815 idx = agg_id; 1816 gro = !!(bp->flags & BNXT_FLAG_GRO); 1817 } else { 1818 agg_id = TPA_END_AGG_ID(tpa_end); 1819 agg_bufs = TPA_END_AGG_BUFS(tpa_end); 1820 tpa_info = &rxr->rx_tpa[agg_id]; 1821 idx = RING_CMP(*raw_cons); 1822 if (agg_bufs) { 1823 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons)) 1824 return ERR_PTR(-EBUSY); 1825 1826 *event |= BNXT_AGG_EVENT; 1827 idx = NEXT_CMP(idx); 1828 } 1829 gro = !!TPA_END_GRO(tpa_end); 1830 } 1831 data = tpa_info->data; 1832 data_ptr = tpa_info->data_ptr; 1833 prefetch(data_ptr); 1834 len = tpa_info->len; 1835 mapping = tpa_info->mapping; 1836 1837 if (unlikely(agg_bufs > MAX_SKB_FRAGS || TPA_END_ERRORS(tpa_end1))) { 1838 bnxt_abort_tpa(cpr, idx, agg_bufs); 1839 if (agg_bufs > MAX_SKB_FRAGS) 1840 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n", 1841 agg_bufs, (int)MAX_SKB_FRAGS); 1842 return NULL; 1843 } 1844 1845 if (len <= bp->rx_copy_thresh) { 1846 skb = bnxt_copy_skb(bnapi, data_ptr, len, mapping); 1847 if (!skb) { 1848 bnxt_abort_tpa(cpr, idx, agg_bufs); 1849 cpr->sw_stats->rx.rx_oom_discards += 1; 1850 return NULL; 1851 } 1852 } else { 1853 u8 *new_data; 1854 dma_addr_t new_mapping; 1855 1856 new_data = __bnxt_alloc_rx_frag(bp, &new_mapping, rxr, 1857 GFP_ATOMIC); 1858 if (!new_data) { 1859 bnxt_abort_tpa(cpr, idx, agg_bufs); 1860 cpr->sw_stats->rx.rx_oom_discards += 1; 1861 return NULL; 1862 } 1863 1864 tpa_info->data = new_data; 1865 tpa_info->data_ptr = new_data + bp->rx_offset; 1866 tpa_info->mapping = new_mapping; 1867 1868 skb = napi_build_skb(data, bp->rx_buf_size); 1869 dma_sync_single_for_cpu(&bp->pdev->dev, mapping, 1870 bp->rx_buf_use_size, bp->rx_dir); 1871 1872 if (!skb) { 1873 page_pool_free_va(rxr->head_pool, data, true); 1874 bnxt_abort_tpa(cpr, idx, agg_bufs); 1875 cpr->sw_stats->rx.rx_oom_discards += 1; 1876 return NULL; 1877 } 1878 skb_mark_for_recycle(skb); 1879 skb_reserve(skb, bp->rx_offset); 1880 skb_put(skb, len); 1881 } 1882 1883 if (agg_bufs) { 1884 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, idx, agg_bufs, true); 1885 if (!skb) { 1886 /* Page reuse already handled by bnxt_rx_pages(). */ 1887 cpr->sw_stats->rx.rx_oom_discards += 1; 1888 return NULL; 1889 } 1890 } 1891 1892 if (tpa_info->cfa_code_valid) 1893 dev = bnxt_get_pkt_dev(bp, tpa_info->cfa_code); 1894 skb->protocol = eth_type_trans(skb, dev); 1895 1896 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE) 1897 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type); 1898 1899 if (tpa_info->vlan_valid && 1900 (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX)) { 1901 __be16 vlan_proto = htons(tpa_info->metadata >> 1902 RX_CMP_FLAGS2_METADATA_TPID_SFT); 1903 u16 vtag = tpa_info->metadata & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1904 1905 if (eth_type_vlan(vlan_proto)) { 1906 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1907 } else { 1908 dev_kfree_skb(skb); 1909 return NULL; 1910 } 1911 } 1912 1913 skb_checksum_none_assert(skb); 1914 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) { 1915 skb->ip_summed = CHECKSUM_UNNECESSARY; 1916 skb->csum_level = 1917 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3; 1918 } 1919 1920 if (gro) 1921 skb = bnxt_gro_skb(bp, tpa_info, tpa_end, tpa_end1, skb); 1922 1923 return skb; 1924 } 1925 1926 static void bnxt_tpa_agg(struct bnxt *bp, struct bnxt_rx_ring_info *rxr, 1927 struct rx_agg_cmp *rx_agg) 1928 { 1929 u16 agg_id = TPA_AGG_AGG_ID(rx_agg); 1930 struct bnxt_tpa_info *tpa_info; 1931 1932 agg_id = bnxt_lookup_agg_idx(rxr, agg_id); 1933 tpa_info = &rxr->rx_tpa[agg_id]; 1934 BUG_ON(tpa_info->agg_count >= MAX_SKB_FRAGS); 1935 tpa_info->agg_arr[tpa_info->agg_count++] = *rx_agg; 1936 } 1937 1938 static void bnxt_deliver_skb(struct bnxt *bp, struct bnxt_napi *bnapi, 1939 struct sk_buff *skb) 1940 { 1941 skb_mark_for_recycle(skb); 1942 1943 if (skb->dev != bp->dev) { 1944 /* this packet belongs to a vf-rep */ 1945 bnxt_vf_rep_rx(bp, skb); 1946 return; 1947 } 1948 skb_record_rx_queue(skb, bnapi->index); 1949 napi_gro_receive(&bnapi->napi, skb); 1950 } 1951 1952 static bool bnxt_rx_ts_valid(struct bnxt *bp, u32 flags, 1953 struct rx_cmp_ext *rxcmp1, u32 *cmpl_ts) 1954 { 1955 u32 ts = le32_to_cpu(rxcmp1->rx_cmp_timestamp); 1956 1957 if (BNXT_PTP_RX_TS_VALID(flags)) 1958 goto ts_valid; 1959 if (!bp->ptp_all_rx_tstamp || !ts || !BNXT_ALL_RX_TS_VALID(flags)) 1960 return false; 1961 1962 ts_valid: 1963 *cmpl_ts = ts; 1964 return true; 1965 } 1966 1967 static struct sk_buff *bnxt_rx_vlan(struct sk_buff *skb, u8 cmp_type, 1968 struct rx_cmp *rxcmp, 1969 struct rx_cmp_ext *rxcmp1) 1970 { 1971 __be16 vlan_proto; 1972 u16 vtag; 1973 1974 if (cmp_type == CMP_TYPE_RX_L2_CMP) { 1975 __le32 flags2 = rxcmp1->rx_cmp_flags2; 1976 u32 meta_data; 1977 1978 if (!(flags2 & cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN))) 1979 return skb; 1980 1981 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data); 1982 vtag = meta_data & RX_CMP_FLAGS2_METADATA_TCI_MASK; 1983 vlan_proto = htons(meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT); 1984 if (eth_type_vlan(vlan_proto)) 1985 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 1986 else 1987 goto vlan_err; 1988 } else if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 1989 if (RX_CMP_VLAN_VALID(rxcmp)) { 1990 u32 tpid_sel = RX_CMP_VLAN_TPID_SEL(rxcmp); 1991 1992 if (tpid_sel == RX_CMP_METADATA1_TPID_8021Q) 1993 vlan_proto = htons(ETH_P_8021Q); 1994 else if (tpid_sel == RX_CMP_METADATA1_TPID_8021AD) 1995 vlan_proto = htons(ETH_P_8021AD); 1996 else 1997 goto vlan_err; 1998 vtag = RX_CMP_METADATA0_TCI(rxcmp1); 1999 __vlan_hwaccel_put_tag(skb, vlan_proto, vtag); 2000 } 2001 } 2002 return skb; 2003 vlan_err: 2004 dev_kfree_skb(skb); 2005 return NULL; 2006 } 2007 2008 static enum pkt_hash_types bnxt_rss_ext_op(struct bnxt *bp, 2009 struct rx_cmp *rxcmp) 2010 { 2011 u8 ext_op; 2012 2013 ext_op = RX_CMP_V3_HASH_TYPE(bp, rxcmp); 2014 switch (ext_op) { 2015 case EXT_OP_INNER_4: 2016 case EXT_OP_OUTER_4: 2017 case EXT_OP_INNFL_3: 2018 case EXT_OP_OUTFL_3: 2019 return PKT_HASH_TYPE_L4; 2020 default: 2021 return PKT_HASH_TYPE_L3; 2022 } 2023 } 2024 2025 /* returns the following: 2026 * 1 - 1 packet successfully received 2027 * 0 - successful TPA_START, packet not completed yet 2028 * -EBUSY - completion ring does not have all the agg buffers yet 2029 * -ENOMEM - packet aborted due to out of memory 2030 * -EIO - packet aborted due to hw error indicated in BD 2031 */ 2032 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2033 u32 *raw_cons, u8 *event) 2034 { 2035 struct bnxt_napi *bnapi = cpr->bnapi; 2036 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 2037 struct net_device *dev = bp->dev; 2038 struct rx_cmp *rxcmp; 2039 struct rx_cmp_ext *rxcmp1; 2040 u32 tmp_raw_cons = *raw_cons; 2041 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons); 2042 struct bnxt_sw_rx_bd *rx_buf; 2043 unsigned int len; 2044 u8 *data_ptr, agg_bufs, cmp_type; 2045 bool xdp_active = false; 2046 dma_addr_t dma_addr; 2047 struct sk_buff *skb; 2048 struct xdp_buff xdp; 2049 u32 flags, misc; 2050 u32 cmpl_ts; 2051 void *data; 2052 int rc = 0; 2053 2054 rxcmp = (struct rx_cmp *) 2055 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2056 2057 cmp_type = RX_CMP_TYPE(rxcmp); 2058 2059 if (cmp_type == CMP_TYPE_RX_TPA_AGG_CMP) { 2060 bnxt_tpa_agg(bp, rxr, (struct rx_agg_cmp *)rxcmp); 2061 goto next_rx_no_prod_no_len; 2062 } 2063 2064 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2065 cp_cons = RING_CMP(tmp_raw_cons); 2066 rxcmp1 = (struct rx_cmp_ext *) 2067 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2068 2069 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2070 return -EBUSY; 2071 2072 /* The valid test of the entry must be done first before 2073 * reading any further. 2074 */ 2075 dma_rmb(); 2076 prod = rxr->rx_prod; 2077 2078 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP || 2079 cmp_type == CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2080 bnxt_tpa_start(bp, rxr, cmp_type, 2081 (struct rx_tpa_start_cmp *)rxcmp, 2082 (struct rx_tpa_start_cmp_ext *)rxcmp1); 2083 2084 *event |= BNXT_RX_EVENT; 2085 goto next_rx_no_prod_no_len; 2086 2087 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2088 skb = bnxt_tpa_end(bp, cpr, &tmp_raw_cons, 2089 (struct rx_tpa_end_cmp *)rxcmp, 2090 (struct rx_tpa_end_cmp_ext *)rxcmp1, event); 2091 2092 if (IS_ERR(skb)) 2093 return -EBUSY; 2094 2095 rc = -ENOMEM; 2096 if (likely(skb)) { 2097 bnxt_deliver_skb(bp, bnapi, skb); 2098 rc = 1; 2099 } 2100 *event |= BNXT_RX_EVENT; 2101 goto next_rx_no_prod_no_len; 2102 } 2103 2104 cons = rxcmp->rx_cmp_opaque; 2105 if (unlikely(cons != rxr->rx_next_cons)) { 2106 int rc1 = bnxt_discard_rx(bp, cpr, &tmp_raw_cons, rxcmp); 2107 2108 /* 0xffff is forced error, don't print it */ 2109 if (rxr->rx_next_cons != 0xffff) 2110 netdev_warn(bp->dev, "RX cons %x != expected cons %x\n", 2111 cons, rxr->rx_next_cons); 2112 bnxt_sched_reset_rxr(bp, rxr); 2113 if (rc1) 2114 return rc1; 2115 goto next_rx_no_prod_no_len; 2116 } 2117 rx_buf = &rxr->rx_buf_ring[cons]; 2118 data = rx_buf->data; 2119 data_ptr = rx_buf->data_ptr; 2120 prefetch(data_ptr); 2121 2122 misc = le32_to_cpu(rxcmp->rx_cmp_misc_v1); 2123 agg_bufs = (misc & RX_CMP_AGG_BUFS) >> RX_CMP_AGG_BUFS_SHIFT; 2124 2125 if (agg_bufs) { 2126 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons)) 2127 return -EBUSY; 2128 2129 cp_cons = NEXT_CMP(cp_cons); 2130 *event |= BNXT_AGG_EVENT; 2131 } 2132 *event |= BNXT_RX_EVENT; 2133 2134 rx_buf->data = NULL; 2135 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) { 2136 u32 rx_err = le32_to_cpu(rxcmp1->rx_cmp_cfa_code_errors_v2); 2137 2138 bnxt_reuse_rx_data(rxr, cons, data); 2139 if (agg_bufs) 2140 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, agg_bufs, 2141 false); 2142 2143 rc = -EIO; 2144 if (rx_err & RX_CMPL_ERRORS_BUFFER_ERROR_MASK) { 2145 bnapi->cp_ring.sw_stats->rx.rx_buf_errors++; 2146 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 2147 !(bp->fw_cap & BNXT_FW_CAP_RING_MONITOR)) { 2148 netdev_warn_once(bp->dev, "RX buffer error %x\n", 2149 rx_err); 2150 bnxt_sched_reset_rxr(bp, rxr); 2151 } 2152 } 2153 goto next_rx_no_len; 2154 } 2155 2156 flags = le32_to_cpu(rxcmp->rx_cmp_len_flags_type); 2157 len = flags >> RX_CMP_LEN_SHIFT; 2158 dma_addr = rx_buf->mapping; 2159 2160 if (bnxt_xdp_attached(bp, rxr)) { 2161 bnxt_xdp_buff_init(bp, rxr, cons, data_ptr, len, &xdp); 2162 if (agg_bufs) { 2163 u32 frag_len = bnxt_rx_agg_pages_xdp(bp, cpr, &xdp, 2164 cp_cons, agg_bufs, 2165 false); 2166 if (!frag_len) 2167 goto oom_next_rx; 2168 } 2169 xdp_active = true; 2170 } 2171 2172 if (xdp_active) { 2173 if (bnxt_rx_xdp(bp, rxr, cons, &xdp, data, &data_ptr, &len, event)) { 2174 rc = 1; 2175 goto next_rx; 2176 } 2177 } 2178 2179 if (len <= bp->rx_copy_thresh) { 2180 if (!xdp_active) 2181 skb = bnxt_copy_skb(bnapi, data_ptr, len, dma_addr); 2182 else 2183 skb = bnxt_copy_xdp(bnapi, &xdp, len, dma_addr); 2184 bnxt_reuse_rx_data(rxr, cons, data); 2185 if (!skb) { 2186 if (agg_bufs) { 2187 if (!xdp_active) 2188 bnxt_reuse_rx_agg_bufs(cpr, cp_cons, 0, 2189 agg_bufs, false); 2190 else 2191 bnxt_xdp_buff_frags_free(rxr, &xdp); 2192 } 2193 goto oom_next_rx; 2194 } 2195 } else { 2196 u32 payload; 2197 2198 if (rx_buf->data_ptr == data_ptr) 2199 payload = misc & RX_CMP_PAYLOAD_OFFSET; 2200 else 2201 payload = 0; 2202 skb = bp->rx_skb_func(bp, rxr, cons, data, data_ptr, dma_addr, 2203 payload | len); 2204 if (!skb) 2205 goto oom_next_rx; 2206 } 2207 2208 if (agg_bufs) { 2209 if (!xdp_active) { 2210 skb = bnxt_rx_agg_pages_skb(bp, cpr, skb, cp_cons, agg_bufs, false); 2211 if (!skb) 2212 goto oom_next_rx; 2213 } else { 2214 skb = bnxt_xdp_build_skb(bp, skb, agg_bufs, rxr->page_pool, &xdp, rxcmp1); 2215 if (!skb) { 2216 /* we should be able to free the old skb here */ 2217 bnxt_xdp_buff_frags_free(rxr, &xdp); 2218 goto oom_next_rx; 2219 } 2220 } 2221 } 2222 2223 if (RX_CMP_HASH_VALID(rxcmp)) { 2224 enum pkt_hash_types type; 2225 2226 if (cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2227 type = bnxt_rss_ext_op(bp, rxcmp); 2228 } else { 2229 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp); 2230 2231 /* RSS profiles 1 and 3 with extract code 0 for inner 2232 * 4-tuple 2233 */ 2234 if (hash_type != 1 && hash_type != 3) 2235 type = PKT_HASH_TYPE_L3; 2236 else 2237 type = PKT_HASH_TYPE_L4; 2238 } 2239 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type); 2240 } 2241 2242 if (cmp_type == CMP_TYPE_RX_L2_CMP) 2243 dev = bnxt_get_pkt_dev(bp, RX_CMP_CFA_CODE(rxcmp1)); 2244 skb->protocol = eth_type_trans(skb, dev); 2245 2246 if (skb->dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) { 2247 skb = bnxt_rx_vlan(skb, cmp_type, rxcmp, rxcmp1); 2248 if (!skb) 2249 goto next_rx; 2250 } 2251 2252 skb_checksum_none_assert(skb); 2253 if (RX_CMP_L4_CS_OK(rxcmp1)) { 2254 if (dev->features & NETIF_F_RXCSUM) { 2255 skb->ip_summed = CHECKSUM_UNNECESSARY; 2256 skb->csum_level = RX_CMP_ENCAP(rxcmp1); 2257 } 2258 } else { 2259 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) { 2260 if (dev->features & NETIF_F_RXCSUM) 2261 bnapi->cp_ring.sw_stats->rx.rx_l4_csum_errors++; 2262 } 2263 } 2264 2265 if (bnxt_rx_ts_valid(bp, flags, rxcmp1, &cmpl_ts)) { 2266 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 2267 u64 ns, ts; 2268 2269 if (!bnxt_get_rx_ts_p5(bp, &ts, cmpl_ts)) { 2270 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2271 2272 ns = bnxt_timecounter_cyc2time(ptp, ts); 2273 memset(skb_hwtstamps(skb), 0, 2274 sizeof(*skb_hwtstamps(skb))); 2275 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns); 2276 } 2277 } 2278 } 2279 bnxt_deliver_skb(bp, bnapi, skb); 2280 rc = 1; 2281 2282 next_rx: 2283 cpr->rx_packets += 1; 2284 cpr->rx_bytes += len; 2285 2286 next_rx_no_len: 2287 rxr->rx_prod = NEXT_RX(prod); 2288 rxr->rx_next_cons = RING_RX(bp, NEXT_RX(cons)); 2289 2290 next_rx_no_prod_no_len: 2291 *raw_cons = tmp_raw_cons; 2292 2293 return rc; 2294 2295 oom_next_rx: 2296 cpr->sw_stats->rx.rx_oom_discards += 1; 2297 rc = -ENOMEM; 2298 goto next_rx; 2299 } 2300 2301 /* In netpoll mode, if we are using a combined completion ring, we need to 2302 * discard the rx packets and recycle the buffers. 2303 */ 2304 static int bnxt_force_rx_discard(struct bnxt *bp, 2305 struct bnxt_cp_ring_info *cpr, 2306 u32 *raw_cons, u8 *event) 2307 { 2308 u32 tmp_raw_cons = *raw_cons; 2309 struct rx_cmp_ext *rxcmp1; 2310 struct rx_cmp *rxcmp; 2311 u16 cp_cons; 2312 u8 cmp_type; 2313 int rc; 2314 2315 cp_cons = RING_CMP(tmp_raw_cons); 2316 rxcmp = (struct rx_cmp *) 2317 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2318 2319 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons); 2320 cp_cons = RING_CMP(tmp_raw_cons); 2321 rxcmp1 = (struct rx_cmp_ext *) 2322 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 2323 2324 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 2325 return -EBUSY; 2326 2327 /* The valid test of the entry must be done first before 2328 * reading any further. 2329 */ 2330 dma_rmb(); 2331 cmp_type = RX_CMP_TYPE(rxcmp); 2332 if (cmp_type == CMP_TYPE_RX_L2_CMP || 2333 cmp_type == CMP_TYPE_RX_L2_V3_CMP) { 2334 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 2335 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 2336 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) { 2337 struct rx_tpa_end_cmp_ext *tpa_end1; 2338 2339 tpa_end1 = (struct rx_tpa_end_cmp_ext *)rxcmp1; 2340 tpa_end1->rx_tpa_end_cmp_errors_v2 |= 2341 cpu_to_le32(RX_TPA_END_CMP_ERRORS); 2342 } 2343 rc = bnxt_rx_pkt(bp, cpr, raw_cons, event); 2344 if (rc && rc != -EBUSY) 2345 cpr->sw_stats->rx.rx_netpoll_discards += 1; 2346 return rc; 2347 } 2348 2349 u32 bnxt_fw_health_readl(struct bnxt *bp, int reg_idx) 2350 { 2351 struct bnxt_fw_health *fw_health = bp->fw_health; 2352 u32 reg = fw_health->regs[reg_idx]; 2353 u32 reg_type, reg_off, val = 0; 2354 2355 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 2356 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 2357 switch (reg_type) { 2358 case BNXT_FW_HEALTH_REG_TYPE_CFG: 2359 pci_read_config_dword(bp->pdev, reg_off, &val); 2360 break; 2361 case BNXT_FW_HEALTH_REG_TYPE_GRC: 2362 reg_off = fw_health->mapped_regs[reg_idx]; 2363 fallthrough; 2364 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 2365 val = readl(bp->bar0 + reg_off); 2366 break; 2367 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 2368 val = readl(bp->bar1 + reg_off); 2369 break; 2370 } 2371 if (reg_idx == BNXT_FW_RESET_INPROG_REG) 2372 val &= fw_health->fw_reset_inprog_reg_mask; 2373 return val; 2374 } 2375 2376 static u16 bnxt_agg_ring_id_to_grp_idx(struct bnxt *bp, u16 ring_id) 2377 { 2378 int i; 2379 2380 for (i = 0; i < bp->rx_nr_rings; i++) { 2381 u16 grp_idx = bp->rx_ring[i].bnapi->index; 2382 struct bnxt_ring_grp_info *grp_info; 2383 2384 grp_info = &bp->grp_info[grp_idx]; 2385 if (grp_info->agg_fw_ring_id == ring_id) 2386 return grp_idx; 2387 } 2388 return INVALID_HW_RING_ID; 2389 } 2390 2391 static u16 bnxt_get_force_speed(struct bnxt_link_info *link_info) 2392 { 2393 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2394 2395 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 2396 return link_info->force_link_speed2; 2397 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4) 2398 return link_info->force_pam4_link_speed; 2399 return link_info->force_link_speed; 2400 } 2401 2402 static void bnxt_set_force_speed(struct bnxt_link_info *link_info) 2403 { 2404 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2405 2406 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2407 link_info->req_link_speed = link_info->force_link_speed2; 2408 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2409 switch (link_info->req_link_speed) { 2410 case BNXT_LINK_SPEED_50GB_PAM4: 2411 case BNXT_LINK_SPEED_100GB_PAM4: 2412 case BNXT_LINK_SPEED_200GB_PAM4: 2413 case BNXT_LINK_SPEED_400GB_PAM4: 2414 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2415 break; 2416 case BNXT_LINK_SPEED_100GB_PAM4_112: 2417 case BNXT_LINK_SPEED_200GB_PAM4_112: 2418 case BNXT_LINK_SPEED_400GB_PAM4_112: 2419 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4_112; 2420 break; 2421 default: 2422 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2423 } 2424 return; 2425 } 2426 link_info->req_link_speed = link_info->force_link_speed; 2427 link_info->req_signal_mode = BNXT_SIG_MODE_NRZ; 2428 if (link_info->force_pam4_link_speed) { 2429 link_info->req_link_speed = link_info->force_pam4_link_speed; 2430 link_info->req_signal_mode = BNXT_SIG_MODE_PAM4; 2431 } 2432 } 2433 2434 static void bnxt_set_auto_speed(struct bnxt_link_info *link_info) 2435 { 2436 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2437 2438 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2439 link_info->advertising = link_info->auto_link_speeds2; 2440 return; 2441 } 2442 link_info->advertising = link_info->auto_link_speeds; 2443 link_info->advertising_pam4 = link_info->auto_pam4_link_speeds; 2444 } 2445 2446 static bool bnxt_force_speed_updated(struct bnxt_link_info *link_info) 2447 { 2448 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2449 2450 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2451 if (link_info->req_link_speed != link_info->force_link_speed2) 2452 return true; 2453 return false; 2454 } 2455 if (link_info->req_signal_mode == BNXT_SIG_MODE_NRZ && 2456 link_info->req_link_speed != link_info->force_link_speed) 2457 return true; 2458 if (link_info->req_signal_mode == BNXT_SIG_MODE_PAM4 && 2459 link_info->req_link_speed != link_info->force_pam4_link_speed) 2460 return true; 2461 return false; 2462 } 2463 2464 static bool bnxt_auto_speed_updated(struct bnxt_link_info *link_info) 2465 { 2466 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 2467 2468 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 2469 if (link_info->advertising != link_info->auto_link_speeds2) 2470 return true; 2471 return false; 2472 } 2473 if (link_info->advertising != link_info->auto_link_speeds || 2474 link_info->advertising_pam4 != link_info->auto_pam4_link_speeds) 2475 return true; 2476 return false; 2477 } 2478 2479 bool bnxt_bs_trace_avail(struct bnxt *bp, u16 type) 2480 { 2481 u32 flags = bp->ctx->ctx_arr[type].flags; 2482 2483 return (flags & BNXT_CTX_MEM_TYPE_VALID) && 2484 ((flags & BNXT_CTX_MEM_FW_TRACE) || 2485 (flags & BNXT_CTX_MEM_FW_BIN_TRACE)); 2486 } 2487 2488 static void bnxt_bs_trace_init(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm) 2489 { 2490 u32 mem_size, pages, rem_bytes, magic_byte_offset; 2491 u16 trace_type = bnxt_bstore_to_trace[ctxm->type]; 2492 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 2493 struct bnxt_ring_mem_info *rmem, *rmem_pg_tbl; 2494 struct bnxt_bs_trace_info *bs_trace; 2495 int last_pg; 2496 2497 if (ctxm->instance_bmap && ctxm->instance_bmap > 1) 2498 return; 2499 2500 mem_size = ctxm->max_entries * ctxm->entry_size; 2501 rem_bytes = mem_size % BNXT_PAGE_SIZE; 2502 pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 2503 2504 last_pg = (pages - 1) & (MAX_CTX_PAGES - 1); 2505 magic_byte_offset = (rem_bytes ? rem_bytes : BNXT_PAGE_SIZE) - 1; 2506 2507 rmem = &ctx_pg[0].ring_mem; 2508 bs_trace = &bp->bs_trace[trace_type]; 2509 bs_trace->ctx_type = ctxm->type; 2510 bs_trace->trace_type = trace_type; 2511 if (pages > MAX_CTX_PAGES) { 2512 int last_pg_dir = rmem->nr_pages - 1; 2513 2514 rmem_pg_tbl = &ctx_pg[0].ctx_pg_tbl[last_pg_dir]->ring_mem; 2515 bs_trace->magic_byte = rmem_pg_tbl->pg_arr[last_pg]; 2516 } else { 2517 bs_trace->magic_byte = rmem->pg_arr[last_pg]; 2518 } 2519 bs_trace->magic_byte += magic_byte_offset; 2520 *bs_trace->magic_byte = BNXT_TRACE_BUF_MAGIC_BYTE; 2521 } 2522 2523 #define BNXT_EVENT_BUF_PRODUCER_TYPE(data1) \ 2524 (((data1) & ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_MASK) >>\ 2525 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA1_TYPE_SFT) 2526 2527 #define BNXT_EVENT_BUF_PRODUCER_OFFSET(data2) \ 2528 (((data2) & \ 2529 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_MASK) >>\ 2530 ASYNC_EVENT_CMPL_DBG_BUF_PRODUCER_EVENT_DATA2_CURR_OFF_SFT) 2531 2532 #define BNXT_EVENT_THERMAL_CURRENT_TEMP(data2) \ 2533 ((data2) & \ 2534 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_CURRENT_TEMP_MASK) 2535 2536 #define BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2) \ 2537 (((data2) & \ 2538 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_MASK) >>\ 2539 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA2_THRESHOLD_TEMP_SFT) 2540 2541 #define EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1) \ 2542 ((data1) & \ 2543 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_MASK) 2544 2545 #define EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1) \ 2546 (((data1) & \ 2547 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR) ==\ 2548 ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_TRANSITION_DIR_INCREASING) 2549 2550 /* Return true if the workqueue has to be scheduled */ 2551 static bool bnxt_event_error_report(struct bnxt *bp, u32 data1, u32 data2) 2552 { 2553 u32 err_type = BNXT_EVENT_ERROR_REPORT_TYPE(data1); 2554 2555 switch (err_type) { 2556 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_INVALID_SIGNAL: 2557 netdev_err(bp->dev, "1PPS: Received invalid signal on pin%lu from the external source. Please fix the signal and reconfigure the pin\n", 2558 BNXT_EVENT_INVALID_SIGNAL_DATA(data2)); 2559 break; 2560 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_PAUSE_STORM: 2561 netdev_warn(bp->dev, "Pause Storm detected!\n"); 2562 break; 2563 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DOORBELL_DROP_THRESHOLD: 2564 netdev_warn(bp->dev, "One or more MMIO doorbells dropped by the device!\n"); 2565 break; 2566 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_THERMAL_THRESHOLD: { 2567 u32 type = EVENT_DATA1_THERMAL_THRESHOLD_TYPE(data1); 2568 char *threshold_type; 2569 bool notify = false; 2570 char *dir_str; 2571 2572 switch (type) { 2573 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_WARN: 2574 threshold_type = "warning"; 2575 break; 2576 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_CRITICAL: 2577 threshold_type = "critical"; 2578 break; 2579 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_FATAL: 2580 threshold_type = "fatal"; 2581 break; 2582 case ASYNC_EVENT_CMPL_ERROR_REPORT_THERMAL_EVENT_DATA1_THRESHOLD_TYPE_SHUTDOWN: 2583 threshold_type = "shutdown"; 2584 break; 2585 default: 2586 netdev_err(bp->dev, "Unknown Thermal threshold type event\n"); 2587 return false; 2588 } 2589 if (EVENT_DATA1_THERMAL_THRESHOLD_DIR_INCREASING(data1)) { 2590 dir_str = "above"; 2591 notify = true; 2592 } else { 2593 dir_str = "below"; 2594 } 2595 netdev_warn(bp->dev, "Chip temperature has gone %s the %s thermal threshold!\n", 2596 dir_str, threshold_type); 2597 netdev_warn(bp->dev, "Temperature (In Celsius), Current: %lu, threshold: %lu\n", 2598 BNXT_EVENT_THERMAL_CURRENT_TEMP(data2), 2599 BNXT_EVENT_THERMAL_THRESHOLD_TEMP(data2)); 2600 if (notify) { 2601 bp->thermal_threshold_type = type; 2602 set_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event); 2603 return true; 2604 } 2605 return false; 2606 } 2607 case ASYNC_EVENT_CMPL_ERROR_REPORT_BASE_EVENT_DATA1_ERROR_TYPE_DUAL_DATA_RATE_NOT_SUPPORTED: 2608 netdev_warn(bp->dev, "Speed change not supported with dual rate transceivers on this board\n"); 2609 break; 2610 default: 2611 netdev_err(bp->dev, "FW reported unknown error type %u\n", 2612 err_type); 2613 break; 2614 } 2615 return false; 2616 } 2617 2618 #define BNXT_GET_EVENT_PORT(data) \ 2619 ((data) & \ 2620 ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK) 2621 2622 #define BNXT_EVENT_RING_TYPE(data2) \ 2623 ((data2) & \ 2624 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_MASK) 2625 2626 #define BNXT_EVENT_RING_TYPE_RX(data2) \ 2627 (BNXT_EVENT_RING_TYPE(data2) == \ 2628 ASYNC_EVENT_CMPL_RING_MONITOR_MSG_EVENT_DATA2_DISABLE_RING_TYPE_RX) 2629 2630 #define BNXT_EVENT_PHC_EVENT_TYPE(data1) \ 2631 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_MASK) >>\ 2632 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_SFT) 2633 2634 #define BNXT_EVENT_PHC_RTC_UPDATE(data1) \ 2635 (((data1) & ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_MASK) >>\ 2636 ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_PHC_TIME_MSB_SFT) 2637 2638 #define BNXT_PHC_BITS 48 2639 2640 static int bnxt_async_event_process(struct bnxt *bp, 2641 struct hwrm_async_event_cmpl *cmpl) 2642 { 2643 u16 event_id = le16_to_cpu(cmpl->event_id); 2644 u32 data1 = le32_to_cpu(cmpl->event_data1); 2645 u32 data2 = le32_to_cpu(cmpl->event_data2); 2646 2647 netdev_dbg(bp->dev, "hwrm event 0x%x {0x%x, 0x%x}\n", 2648 event_id, data1, data2); 2649 2650 /* TODO CHIMP_FW: Define event id's for link change, error etc */ 2651 switch (event_id) { 2652 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: { 2653 struct bnxt_link_info *link_info = &bp->link_info; 2654 2655 if (BNXT_VF(bp)) 2656 goto async_event_process_exit; 2657 2658 /* print unsupported speed warning in forced speed mode only */ 2659 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED) && 2660 (data1 & 0x20000)) { 2661 u16 fw_speed = bnxt_get_force_speed(link_info); 2662 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed); 2663 2664 if (speed != SPEED_UNKNOWN) 2665 netdev_warn(bp->dev, "Link speed %d no longer supported\n", 2666 speed); 2667 } 2668 set_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, &bp->sp_event); 2669 } 2670 fallthrough; 2671 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CHANGE: 2672 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_PHY_CFG_CHANGE: 2673 set_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, &bp->sp_event); 2674 fallthrough; 2675 case ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE: 2676 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event); 2677 break; 2678 case ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD: 2679 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event); 2680 break; 2681 case ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: { 2682 u16 port_id = BNXT_GET_EVENT_PORT(data1); 2683 2684 if (BNXT_VF(bp)) 2685 break; 2686 2687 if (bp->pf.port_id != port_id) 2688 break; 2689 2690 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event); 2691 break; 2692 } 2693 case ASYNC_EVENT_CMPL_EVENT_ID_VF_CFG_CHANGE: 2694 if (BNXT_PF(bp)) 2695 goto async_event_process_exit; 2696 set_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event); 2697 break; 2698 case ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY: { 2699 char *type_str = "Solicited"; 2700 2701 if (!bp->fw_health) 2702 goto async_event_process_exit; 2703 2704 bp->fw_reset_timestamp = jiffies; 2705 bp->fw_reset_min_dsecs = cmpl->timestamp_lo; 2706 if (!bp->fw_reset_min_dsecs) 2707 bp->fw_reset_min_dsecs = BNXT_DFLT_FW_RST_MIN_DSECS; 2708 bp->fw_reset_max_dsecs = le16_to_cpu(cmpl->timestamp_hi); 2709 if (!bp->fw_reset_max_dsecs) 2710 bp->fw_reset_max_dsecs = BNXT_DFLT_FW_RST_MAX_DSECS; 2711 if (EVENT_DATA1_RESET_NOTIFY_FW_ACTIVATION(data1)) { 2712 set_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state); 2713 } else if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) { 2714 type_str = "Fatal"; 2715 bp->fw_health->fatalities++; 2716 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 2717 } else if (data2 && BNXT_FW_STATUS_HEALTHY != 2718 EVENT_DATA2_RESET_NOTIFY_FW_STATUS_CODE(data2)) { 2719 type_str = "Non-fatal"; 2720 bp->fw_health->survivals++; 2721 set_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 2722 } 2723 netif_warn(bp, hw, bp->dev, 2724 "%s firmware reset event, data1: 0x%x, data2: 0x%x, min wait %u ms, max wait %u ms\n", 2725 type_str, data1, data2, 2726 bp->fw_reset_min_dsecs * 100, 2727 bp->fw_reset_max_dsecs * 100); 2728 set_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event); 2729 break; 2730 } 2731 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY: { 2732 struct bnxt_fw_health *fw_health = bp->fw_health; 2733 char *status_desc = "healthy"; 2734 u32 status; 2735 2736 if (!fw_health) 2737 goto async_event_process_exit; 2738 2739 if (!EVENT_DATA1_RECOVERY_ENABLED(data1)) { 2740 fw_health->enabled = false; 2741 netif_info(bp, drv, bp->dev, "Driver recovery watchdog is disabled\n"); 2742 break; 2743 } 2744 fw_health->primary = EVENT_DATA1_RECOVERY_MASTER_FUNC(data1); 2745 fw_health->tmr_multiplier = 2746 DIV_ROUND_UP(fw_health->polling_dsecs * HZ, 2747 bp->current_interval * 10); 2748 fw_health->tmr_counter = fw_health->tmr_multiplier; 2749 if (!fw_health->enabled) 2750 fw_health->last_fw_heartbeat = 2751 bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 2752 fw_health->last_fw_reset_cnt = 2753 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 2754 status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 2755 if (status != BNXT_FW_STATUS_HEALTHY) 2756 status_desc = "unhealthy"; 2757 netif_info(bp, drv, bp->dev, 2758 "Driver recovery watchdog, role: %s, firmware status: 0x%x (%s), resets: %u\n", 2759 fw_health->primary ? "primary" : "backup", status, 2760 status_desc, fw_health->last_fw_reset_cnt); 2761 if (!fw_health->enabled) { 2762 /* Make sure tmr_counter is set and visible to 2763 * bnxt_health_check() before setting enabled to true. 2764 */ 2765 smp_wmb(); 2766 fw_health->enabled = true; 2767 } 2768 goto async_event_process_exit; 2769 } 2770 case ASYNC_EVENT_CMPL_EVENT_ID_DEBUG_NOTIFICATION: 2771 netif_notice(bp, hw, bp->dev, 2772 "Received firmware debug notification, data1: 0x%x, data2: 0x%x\n", 2773 data1, data2); 2774 goto async_event_process_exit; 2775 case ASYNC_EVENT_CMPL_EVENT_ID_RING_MONITOR_MSG: { 2776 struct bnxt_rx_ring_info *rxr; 2777 u16 grp_idx; 2778 2779 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 2780 goto async_event_process_exit; 2781 2782 netdev_warn(bp->dev, "Ring monitor event, ring type %lu id 0x%x\n", 2783 BNXT_EVENT_RING_TYPE(data2), data1); 2784 if (!BNXT_EVENT_RING_TYPE_RX(data2)) 2785 goto async_event_process_exit; 2786 2787 grp_idx = bnxt_agg_ring_id_to_grp_idx(bp, data1); 2788 if (grp_idx == INVALID_HW_RING_ID) { 2789 netdev_warn(bp->dev, "Unknown RX agg ring id 0x%x\n", 2790 data1); 2791 goto async_event_process_exit; 2792 } 2793 rxr = bp->bnapi[grp_idx]->rx_ring; 2794 bnxt_sched_reset_rxr(bp, rxr); 2795 goto async_event_process_exit; 2796 } 2797 case ASYNC_EVENT_CMPL_EVENT_ID_ECHO_REQUEST: { 2798 struct bnxt_fw_health *fw_health = bp->fw_health; 2799 2800 netif_notice(bp, hw, bp->dev, 2801 "Received firmware echo request, data1: 0x%x, data2: 0x%x\n", 2802 data1, data2); 2803 if (fw_health) { 2804 fw_health->echo_req_data1 = data1; 2805 fw_health->echo_req_data2 = data2; 2806 set_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event); 2807 break; 2808 } 2809 goto async_event_process_exit; 2810 } 2811 case ASYNC_EVENT_CMPL_EVENT_ID_PPS_TIMESTAMP: { 2812 bnxt_ptp_pps_event(bp, data1, data2); 2813 goto async_event_process_exit; 2814 } 2815 case ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT: { 2816 if (bnxt_event_error_report(bp, data1, data2)) 2817 break; 2818 goto async_event_process_exit; 2819 } 2820 case ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE: { 2821 switch (BNXT_EVENT_PHC_EVENT_TYPE(data1)) { 2822 case ASYNC_EVENT_CMPL_PHC_UPDATE_EVENT_DATA1_FLAGS_PHC_RTC_UPDATE: 2823 if (BNXT_PTP_USE_RTC(bp)) { 2824 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 2825 unsigned long flags; 2826 u64 ns; 2827 2828 if (!ptp) 2829 goto async_event_process_exit; 2830 2831 bnxt_ptp_update_current_time(bp); 2832 ns = (((u64)BNXT_EVENT_PHC_RTC_UPDATE(data1) << 2833 BNXT_PHC_BITS) | ptp->current_time); 2834 write_seqlock_irqsave(&ptp->ptp_lock, flags); 2835 bnxt_ptp_rtc_timecounter_init(ptp, ns); 2836 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 2837 } 2838 break; 2839 } 2840 goto async_event_process_exit; 2841 } 2842 case ASYNC_EVENT_CMPL_EVENT_ID_DEFERRED_RESPONSE: { 2843 u16 seq_id = le32_to_cpu(cmpl->event_data2) & 0xffff; 2844 2845 hwrm_update_token(bp, seq_id, BNXT_HWRM_DEFERRED); 2846 goto async_event_process_exit; 2847 } 2848 case ASYNC_EVENT_CMPL_EVENT_ID_DBG_BUF_PRODUCER: { 2849 u16 type = (u16)BNXT_EVENT_BUF_PRODUCER_TYPE(data1); 2850 u32 offset = BNXT_EVENT_BUF_PRODUCER_OFFSET(data2); 2851 2852 bnxt_bs_trace_check_wrap(&bp->bs_trace[type], offset); 2853 goto async_event_process_exit; 2854 } 2855 default: 2856 goto async_event_process_exit; 2857 } 2858 __bnxt_queue_sp_work(bp); 2859 async_event_process_exit: 2860 return 0; 2861 } 2862 2863 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp) 2864 { 2865 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id; 2866 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp; 2867 struct hwrm_fwd_req_cmpl *fwd_req_cmpl = 2868 (struct hwrm_fwd_req_cmpl *)txcmp; 2869 2870 switch (cmpl_type) { 2871 case CMPL_BASE_TYPE_HWRM_DONE: 2872 seq_id = le16_to_cpu(h_cmpl->sequence_id); 2873 hwrm_update_token(bp, seq_id, BNXT_HWRM_COMPLETE); 2874 break; 2875 2876 case CMPL_BASE_TYPE_HWRM_FWD_REQ: 2877 vf_id = le16_to_cpu(fwd_req_cmpl->source_id); 2878 2879 if ((vf_id < bp->pf.first_vf_id) || 2880 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) { 2881 netdev_err(bp->dev, "Msg contains invalid VF id %x\n", 2882 vf_id); 2883 return -EINVAL; 2884 } 2885 2886 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap); 2887 bnxt_queue_sp_work(bp, BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT); 2888 break; 2889 2890 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT: 2891 bnxt_async_event_process(bp, 2892 (struct hwrm_async_event_cmpl *)txcmp); 2893 break; 2894 2895 default: 2896 break; 2897 } 2898 2899 return 0; 2900 } 2901 2902 static irqreturn_t bnxt_msix(int irq, void *dev_instance) 2903 { 2904 struct bnxt_napi *bnapi = dev_instance; 2905 struct bnxt *bp = bnapi->bp; 2906 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 2907 u32 cons = RING_CMP(cpr->cp_raw_cons); 2908 2909 cpr->event_ctr++; 2910 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]); 2911 napi_schedule(&bnapi->napi); 2912 return IRQ_HANDLED; 2913 } 2914 2915 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr) 2916 { 2917 u32 raw_cons = cpr->cp_raw_cons; 2918 u16 cons = RING_CMP(raw_cons); 2919 struct tx_cmp *txcmp; 2920 2921 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2922 2923 return TX_CMP_VALID(txcmp, raw_cons); 2924 } 2925 2926 static int __bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 2927 int budget) 2928 { 2929 struct bnxt_napi *bnapi = cpr->bnapi; 2930 u32 raw_cons = cpr->cp_raw_cons; 2931 u32 cons; 2932 int rx_pkts = 0; 2933 u8 event = 0; 2934 struct tx_cmp *txcmp; 2935 2936 cpr->has_more_work = 0; 2937 cpr->had_work_done = 1; 2938 while (1) { 2939 u8 cmp_type; 2940 int rc; 2941 2942 cons = RING_CMP(raw_cons); 2943 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 2944 2945 if (!TX_CMP_VALID(txcmp, raw_cons)) 2946 break; 2947 2948 /* The valid test of the entry must be done first before 2949 * reading any further. 2950 */ 2951 dma_rmb(); 2952 cmp_type = TX_CMP_TYPE(txcmp); 2953 if (cmp_type == CMP_TYPE_TX_L2_CMP || 2954 cmp_type == CMP_TYPE_TX_L2_COAL_CMP) { 2955 u32 opaque = txcmp->tx_cmp_opaque; 2956 struct bnxt_tx_ring_info *txr; 2957 u16 tx_freed; 2958 2959 txr = bnapi->tx_ring[TX_OPAQUE_RING(opaque)]; 2960 event |= BNXT_TX_CMP_EVENT; 2961 if (cmp_type == CMP_TYPE_TX_L2_COAL_CMP) 2962 txr->tx_hw_cons = TX_CMP_SQ_CONS_IDX(txcmp); 2963 else 2964 txr->tx_hw_cons = TX_OPAQUE_PROD(bp, opaque); 2965 tx_freed = (txr->tx_hw_cons - txr->tx_cons) & 2966 bp->tx_ring_mask; 2967 /* return full budget so NAPI will complete. */ 2968 if (unlikely(tx_freed >= bp->tx_wake_thresh)) { 2969 rx_pkts = budget; 2970 raw_cons = NEXT_RAW_CMP(raw_cons); 2971 if (budget) 2972 cpr->has_more_work = 1; 2973 break; 2974 } 2975 } else if (cmp_type == CMP_TYPE_TX_L2_PKT_TS_CMP) { 2976 bnxt_tx_ts_cmp(bp, bnapi, (struct tx_ts_cmp *)txcmp); 2977 } else if (cmp_type >= CMP_TYPE_RX_L2_CMP && 2978 cmp_type <= CMP_TYPE_RX_L2_TPA_START_V3_CMP) { 2979 if (likely(budget)) 2980 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 2981 else 2982 rc = bnxt_force_rx_discard(bp, cpr, &raw_cons, 2983 &event); 2984 if (likely(rc >= 0)) 2985 rx_pkts += rc; 2986 /* Increment rx_pkts when rc is -ENOMEM to count towards 2987 * the NAPI budget. Otherwise, we may potentially loop 2988 * here forever if we consistently cannot allocate 2989 * buffers. 2990 */ 2991 else if (rc == -ENOMEM && budget) 2992 rx_pkts++; 2993 else if (rc == -EBUSY) /* partial completion */ 2994 break; 2995 } else if (unlikely(cmp_type == CMPL_BASE_TYPE_HWRM_DONE || 2996 cmp_type == CMPL_BASE_TYPE_HWRM_FWD_REQ || 2997 cmp_type == CMPL_BASE_TYPE_HWRM_ASYNC_EVENT)) { 2998 bnxt_hwrm_handler(bp, txcmp); 2999 } 3000 raw_cons = NEXT_RAW_CMP(raw_cons); 3001 3002 if (rx_pkts && rx_pkts == budget) { 3003 cpr->has_more_work = 1; 3004 break; 3005 } 3006 } 3007 3008 if (event & BNXT_REDIRECT_EVENT) { 3009 xdp_do_flush(); 3010 event &= ~BNXT_REDIRECT_EVENT; 3011 } 3012 3013 if (event & BNXT_TX_EVENT) { 3014 struct bnxt_tx_ring_info *txr = bnapi->tx_ring[0]; 3015 u16 prod = txr->tx_prod; 3016 3017 /* Sync BD data before updating doorbell */ 3018 wmb(); 3019 3020 bnxt_db_write_relaxed(bp, &txr->tx_db, prod); 3021 event &= ~BNXT_TX_EVENT; 3022 } 3023 3024 cpr->cp_raw_cons = raw_cons; 3025 bnapi->events |= event; 3026 return rx_pkts; 3027 } 3028 3029 static void __bnxt_poll_work_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3030 int budget) 3031 { 3032 if ((bnapi->events & BNXT_TX_CMP_EVENT) && !bnapi->tx_fault) 3033 bnapi->tx_int(bp, bnapi, budget); 3034 3035 if ((bnapi->events & BNXT_RX_EVENT) && !(bnapi->in_reset)) { 3036 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3037 3038 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3039 bnapi->events &= ~BNXT_RX_EVENT; 3040 } 3041 if (bnapi->events & BNXT_AGG_EVENT) { 3042 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3043 3044 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3045 bnapi->events &= ~BNXT_AGG_EVENT; 3046 } 3047 } 3048 3049 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr, 3050 int budget) 3051 { 3052 struct bnxt_napi *bnapi = cpr->bnapi; 3053 int rx_pkts; 3054 3055 rx_pkts = __bnxt_poll_work(bp, cpr, budget); 3056 3057 /* ACK completion ring before freeing tx ring and producing new 3058 * buffers in rx/agg rings to prevent overflowing the completion 3059 * ring. 3060 */ 3061 bnxt_db_cq(bp, &cpr->cp_db, cpr->cp_raw_cons); 3062 3063 __bnxt_poll_work_done(bp, bnapi, budget); 3064 return rx_pkts; 3065 } 3066 3067 static int bnxt_poll_nitroa0(struct napi_struct *napi, int budget) 3068 { 3069 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3070 struct bnxt *bp = bnapi->bp; 3071 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3072 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 3073 struct tx_cmp *txcmp; 3074 struct rx_cmp_ext *rxcmp1; 3075 u32 cp_cons, tmp_raw_cons; 3076 u32 raw_cons = cpr->cp_raw_cons; 3077 bool flush_xdp = false; 3078 u32 rx_pkts = 0; 3079 u8 event = 0; 3080 3081 while (1) { 3082 int rc; 3083 3084 cp_cons = RING_CMP(raw_cons); 3085 txcmp = &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3086 3087 if (!TX_CMP_VALID(txcmp, raw_cons)) 3088 break; 3089 3090 /* The valid test of the entry must be done first before 3091 * reading any further. 3092 */ 3093 dma_rmb(); 3094 if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) { 3095 tmp_raw_cons = NEXT_RAW_CMP(raw_cons); 3096 cp_cons = RING_CMP(tmp_raw_cons); 3097 rxcmp1 = (struct rx_cmp_ext *) 3098 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)]; 3099 3100 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons)) 3101 break; 3102 3103 /* force an error to recycle the buffer */ 3104 rxcmp1->rx_cmp_cfa_code_errors_v2 |= 3105 cpu_to_le32(RX_CMPL_ERRORS_CRC_ERROR); 3106 3107 rc = bnxt_rx_pkt(bp, cpr, &raw_cons, &event); 3108 if (likely(rc == -EIO) && budget) 3109 rx_pkts++; 3110 else if (rc == -EBUSY) /* partial completion */ 3111 break; 3112 if (event & BNXT_REDIRECT_EVENT) 3113 flush_xdp = true; 3114 } else if (unlikely(TX_CMP_TYPE(txcmp) == 3115 CMPL_BASE_TYPE_HWRM_DONE)) { 3116 bnxt_hwrm_handler(bp, txcmp); 3117 } else { 3118 netdev_err(bp->dev, 3119 "Invalid completion received on special ring\n"); 3120 } 3121 raw_cons = NEXT_RAW_CMP(raw_cons); 3122 3123 if (rx_pkts == budget) 3124 break; 3125 } 3126 3127 cpr->cp_raw_cons = raw_cons; 3128 BNXT_DB_CQ(&cpr->cp_db, cpr->cp_raw_cons); 3129 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 3130 3131 if (event & BNXT_AGG_EVENT) 3132 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 3133 if (flush_xdp) 3134 xdp_do_flush(); 3135 3136 if (!bnxt_has_work(bp, cpr) && rx_pkts < budget) { 3137 napi_complete_done(napi, rx_pkts); 3138 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3139 } 3140 return rx_pkts; 3141 } 3142 3143 static int bnxt_poll(struct napi_struct *napi, int budget) 3144 { 3145 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3146 struct bnxt *bp = bnapi->bp; 3147 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3148 int work_done = 0; 3149 3150 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3151 napi_complete(napi); 3152 return 0; 3153 } 3154 while (1) { 3155 work_done += bnxt_poll_work(bp, cpr, budget - work_done); 3156 3157 if (work_done >= budget) { 3158 if (!budget) 3159 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3160 break; 3161 } 3162 3163 if (!bnxt_has_work(bp, cpr)) { 3164 if (napi_complete_done(napi, work_done)) 3165 BNXT_DB_CQ_ARM(&cpr->cp_db, cpr->cp_raw_cons); 3166 break; 3167 } 3168 } 3169 if (bp->flags & BNXT_FLAG_DIM) { 3170 struct dim_sample dim_sample = {}; 3171 3172 dim_update_sample(cpr->event_ctr, 3173 cpr->rx_packets, 3174 cpr->rx_bytes, 3175 &dim_sample); 3176 net_dim(&cpr->dim, &dim_sample); 3177 } 3178 return work_done; 3179 } 3180 3181 static int __bnxt_poll_cqs(struct bnxt *bp, struct bnxt_napi *bnapi, int budget) 3182 { 3183 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3184 int i, work_done = 0; 3185 3186 for (i = 0; i < cpr->cp_ring_count; i++) { 3187 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3188 3189 if (cpr2->had_nqe_notify) { 3190 work_done += __bnxt_poll_work(bp, cpr2, 3191 budget - work_done); 3192 cpr->has_more_work |= cpr2->has_more_work; 3193 } 3194 } 3195 return work_done; 3196 } 3197 3198 static void __bnxt_poll_cqs_done(struct bnxt *bp, struct bnxt_napi *bnapi, 3199 u64 dbr_type, int budget) 3200 { 3201 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3202 int i; 3203 3204 for (i = 0; i < cpr->cp_ring_count; i++) { 3205 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[i]; 3206 struct bnxt_db_info *db; 3207 3208 if (cpr2->had_work_done) { 3209 u32 tgl = 0; 3210 3211 if (dbr_type == DBR_TYPE_CQ_ARMALL) { 3212 cpr2->had_nqe_notify = 0; 3213 tgl = cpr2->toggle; 3214 } 3215 db = &cpr2->cp_db; 3216 bnxt_writeq(bp, 3217 db->db_key64 | dbr_type | DB_TOGGLE(tgl) | 3218 DB_RING_IDX(db, cpr2->cp_raw_cons), 3219 db->doorbell); 3220 cpr2->had_work_done = 0; 3221 } 3222 } 3223 __bnxt_poll_work_done(bp, bnapi, budget); 3224 } 3225 3226 static int bnxt_poll_p5(struct napi_struct *napi, int budget) 3227 { 3228 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi); 3229 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 3230 struct bnxt_cp_ring_info *cpr_rx; 3231 u32 raw_cons = cpr->cp_raw_cons; 3232 struct bnxt *bp = bnapi->bp; 3233 struct nqe_cn *nqcmp; 3234 int work_done = 0; 3235 u32 cons; 3236 3237 if (unlikely(test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state))) { 3238 napi_complete(napi); 3239 return 0; 3240 } 3241 if (cpr->has_more_work) { 3242 cpr->has_more_work = 0; 3243 work_done = __bnxt_poll_cqs(bp, bnapi, budget); 3244 } 3245 while (1) { 3246 u16 type; 3247 3248 cons = RING_CMP(raw_cons); 3249 nqcmp = &cpr->nq_desc_ring[CP_RING(cons)][CP_IDX(cons)]; 3250 3251 if (!NQ_CMP_VALID(nqcmp, raw_cons)) { 3252 if (cpr->has_more_work) 3253 break; 3254 3255 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ_ARMALL, 3256 budget); 3257 cpr->cp_raw_cons = raw_cons; 3258 if (napi_complete_done(napi, work_done)) 3259 BNXT_DB_NQ_ARM_P5(&cpr->cp_db, 3260 cpr->cp_raw_cons); 3261 goto poll_done; 3262 } 3263 3264 /* The valid test of the entry must be done first before 3265 * reading any further. 3266 */ 3267 dma_rmb(); 3268 3269 type = le16_to_cpu(nqcmp->type); 3270 if (NQE_CN_TYPE(type) == NQ_CN_TYPE_CQ_NOTIFICATION) { 3271 u32 idx = le32_to_cpu(nqcmp->cq_handle_low); 3272 u32 cq_type = BNXT_NQ_HDL_TYPE(idx); 3273 struct bnxt_cp_ring_info *cpr2; 3274 3275 /* No more budget for RX work */ 3276 if (budget && work_done >= budget && 3277 cq_type == BNXT_NQ_HDL_TYPE_RX) 3278 break; 3279 3280 idx = BNXT_NQ_HDL_IDX(idx); 3281 cpr2 = &cpr->cp_ring_arr[idx]; 3282 cpr2->had_nqe_notify = 1; 3283 cpr2->toggle = NQE_CN_TOGGLE(type); 3284 work_done += __bnxt_poll_work(bp, cpr2, 3285 budget - work_done); 3286 cpr->has_more_work |= cpr2->has_more_work; 3287 } else { 3288 bnxt_hwrm_handler(bp, (struct tx_cmp *)nqcmp); 3289 } 3290 raw_cons = NEXT_RAW_CMP(raw_cons); 3291 } 3292 __bnxt_poll_cqs_done(bp, bnapi, DBR_TYPE_CQ, budget); 3293 if (raw_cons != cpr->cp_raw_cons) { 3294 cpr->cp_raw_cons = raw_cons; 3295 BNXT_DB_NQ_P5(&cpr->cp_db, raw_cons); 3296 } 3297 poll_done: 3298 cpr_rx = &cpr->cp_ring_arr[0]; 3299 if (cpr_rx->cp_ring_type == BNXT_NQ_HDL_TYPE_RX && 3300 (bp->flags & BNXT_FLAG_DIM)) { 3301 struct dim_sample dim_sample = {}; 3302 3303 dim_update_sample(cpr->event_ctr, 3304 cpr_rx->rx_packets, 3305 cpr_rx->rx_bytes, 3306 &dim_sample); 3307 net_dim(&cpr->dim, &dim_sample); 3308 } 3309 return work_done; 3310 } 3311 3312 static void bnxt_free_tx_skbs(struct bnxt *bp) 3313 { 3314 int i, max_idx; 3315 struct pci_dev *pdev = bp->pdev; 3316 3317 if (!bp->tx_ring) 3318 return; 3319 3320 max_idx = bp->tx_nr_pages * TX_DESC_CNT; 3321 for (i = 0; i < bp->tx_nr_rings; i++) { 3322 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3323 int j; 3324 3325 if (!txr->tx_buf_ring) 3326 continue; 3327 3328 for (j = 0; j < max_idx;) { 3329 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j]; 3330 struct sk_buff *skb; 3331 int k, last; 3332 3333 if (i < bp->tx_nr_rings_xdp && 3334 tx_buf->action == XDP_REDIRECT) { 3335 dma_unmap_single(&pdev->dev, 3336 dma_unmap_addr(tx_buf, mapping), 3337 dma_unmap_len(tx_buf, len), 3338 DMA_TO_DEVICE); 3339 xdp_return_frame(tx_buf->xdpf); 3340 tx_buf->action = 0; 3341 tx_buf->xdpf = NULL; 3342 j++; 3343 continue; 3344 } 3345 3346 skb = tx_buf->skb; 3347 if (!skb) { 3348 j++; 3349 continue; 3350 } 3351 3352 tx_buf->skb = NULL; 3353 3354 if (tx_buf->is_push) { 3355 dev_kfree_skb(skb); 3356 j += 2; 3357 continue; 3358 } 3359 3360 dma_unmap_single(&pdev->dev, 3361 dma_unmap_addr(tx_buf, mapping), 3362 skb_headlen(skb), 3363 DMA_TO_DEVICE); 3364 3365 last = tx_buf->nr_frags; 3366 j += 2; 3367 for (k = 0; k < last; k++, j++) { 3368 int ring_idx = j & bp->tx_ring_mask; 3369 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 3370 3371 tx_buf = &txr->tx_buf_ring[ring_idx]; 3372 dma_unmap_page( 3373 &pdev->dev, 3374 dma_unmap_addr(tx_buf, mapping), 3375 skb_frag_size(frag), DMA_TO_DEVICE); 3376 } 3377 dev_kfree_skb(skb); 3378 } 3379 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i)); 3380 } 3381 } 3382 3383 static void bnxt_free_one_rx_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3384 { 3385 int i, max_idx; 3386 3387 max_idx = bp->rx_nr_pages * RX_DESC_CNT; 3388 3389 for (i = 0; i < max_idx; i++) { 3390 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[i]; 3391 void *data = rx_buf->data; 3392 3393 if (!data) 3394 continue; 3395 3396 rx_buf->data = NULL; 3397 if (BNXT_RX_PAGE_MODE(bp)) 3398 page_pool_recycle_direct(rxr->page_pool, data); 3399 else 3400 page_pool_free_va(rxr->head_pool, data, true); 3401 } 3402 } 3403 3404 static void bnxt_free_one_rx_agg_ring(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 3405 { 3406 int i, max_idx; 3407 3408 max_idx = bp->rx_agg_nr_pages * RX_DESC_CNT; 3409 3410 for (i = 0; i < max_idx; i++) { 3411 struct bnxt_sw_rx_agg_bd *rx_agg_buf = &rxr->rx_agg_ring[i]; 3412 struct page *page = rx_agg_buf->page; 3413 3414 if (!page) 3415 continue; 3416 3417 rx_agg_buf->page = NULL; 3418 __clear_bit(i, rxr->rx_agg_bmap); 3419 3420 page_pool_recycle_direct(rxr->page_pool, page); 3421 } 3422 } 3423 3424 static void bnxt_free_one_rx_ring_skbs(struct bnxt *bp, int ring_nr) 3425 { 3426 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 3427 struct bnxt_tpa_idx_map *map; 3428 int i; 3429 3430 if (!rxr->rx_tpa) 3431 goto skip_rx_tpa_free; 3432 3433 for (i = 0; i < bp->max_tpa; i++) { 3434 struct bnxt_tpa_info *tpa_info = &rxr->rx_tpa[i]; 3435 u8 *data = tpa_info->data; 3436 3437 if (!data) 3438 continue; 3439 3440 tpa_info->data = NULL; 3441 page_pool_free_va(rxr->head_pool, data, false); 3442 } 3443 3444 skip_rx_tpa_free: 3445 if (!rxr->rx_buf_ring) 3446 goto skip_rx_buf_free; 3447 3448 bnxt_free_one_rx_ring(bp, rxr); 3449 3450 skip_rx_buf_free: 3451 if (!rxr->rx_agg_ring) 3452 goto skip_rx_agg_free; 3453 3454 bnxt_free_one_rx_agg_ring(bp, rxr); 3455 3456 skip_rx_agg_free: 3457 map = rxr->rx_tpa_idx_map; 3458 if (map) 3459 memset(map->agg_idx_bmap, 0, sizeof(map->agg_idx_bmap)); 3460 } 3461 3462 static void bnxt_free_rx_skbs(struct bnxt *bp) 3463 { 3464 int i; 3465 3466 if (!bp->rx_ring) 3467 return; 3468 3469 for (i = 0; i < bp->rx_nr_rings; i++) 3470 bnxt_free_one_rx_ring_skbs(bp, i); 3471 } 3472 3473 static void bnxt_free_skbs(struct bnxt *bp) 3474 { 3475 bnxt_free_tx_skbs(bp); 3476 bnxt_free_rx_skbs(bp); 3477 } 3478 3479 static void bnxt_init_ctx_mem(struct bnxt_ctx_mem_type *ctxm, void *p, int len) 3480 { 3481 u8 init_val = ctxm->init_value; 3482 u16 offset = ctxm->init_offset; 3483 u8 *p2 = p; 3484 int i; 3485 3486 if (!init_val) 3487 return; 3488 if (offset == BNXT_CTX_INIT_INVALID_OFFSET) { 3489 memset(p, init_val, len); 3490 return; 3491 } 3492 for (i = 0; i < len; i += ctxm->entry_size) 3493 *(p2 + i + offset) = init_val; 3494 } 3495 3496 static size_t __bnxt_copy_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem, 3497 void *buf, size_t offset, size_t head, 3498 size_t tail) 3499 { 3500 int i, head_page, start_idx, source_offset; 3501 size_t len, rem_len, total_len, max_bytes; 3502 3503 head_page = head / rmem->page_size; 3504 source_offset = head % rmem->page_size; 3505 total_len = (tail - head) & MAX_CTX_BYTES_MASK; 3506 if (!total_len) 3507 total_len = MAX_CTX_BYTES; 3508 start_idx = head_page % MAX_CTX_PAGES; 3509 max_bytes = (rmem->nr_pages - start_idx) * rmem->page_size - 3510 source_offset; 3511 total_len = min(total_len, max_bytes); 3512 rem_len = total_len; 3513 3514 for (i = start_idx; rem_len; i++, source_offset = 0) { 3515 len = min((size_t)(rmem->page_size - source_offset), rem_len); 3516 if (buf) 3517 memcpy(buf + offset, rmem->pg_arr[i] + source_offset, 3518 len); 3519 offset += len; 3520 rem_len -= len; 3521 } 3522 return total_len; 3523 } 3524 3525 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3526 { 3527 struct pci_dev *pdev = bp->pdev; 3528 int i; 3529 3530 if (!rmem->pg_arr) 3531 goto skip_pages; 3532 3533 for (i = 0; i < rmem->nr_pages; i++) { 3534 if (!rmem->pg_arr[i]) 3535 continue; 3536 3537 dma_free_coherent(&pdev->dev, rmem->page_size, 3538 rmem->pg_arr[i], rmem->dma_arr[i]); 3539 3540 rmem->pg_arr[i] = NULL; 3541 } 3542 skip_pages: 3543 if (rmem->pg_tbl) { 3544 size_t pg_tbl_size = rmem->nr_pages * 8; 3545 3546 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3547 pg_tbl_size = rmem->page_size; 3548 dma_free_coherent(&pdev->dev, pg_tbl_size, 3549 rmem->pg_tbl, rmem->pg_tbl_map); 3550 rmem->pg_tbl = NULL; 3551 } 3552 if (rmem->vmem_size && *rmem->vmem) { 3553 vfree(*rmem->vmem); 3554 *rmem->vmem = NULL; 3555 } 3556 } 3557 3558 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_mem_info *rmem) 3559 { 3560 struct pci_dev *pdev = bp->pdev; 3561 u64 valid_bit = 0; 3562 int i; 3563 3564 if (rmem->flags & (BNXT_RMEM_VALID_PTE_FLAG | BNXT_RMEM_RING_PTE_FLAG)) 3565 valid_bit = PTU_PTE_VALID; 3566 if ((rmem->nr_pages > 1 || rmem->depth > 0) && !rmem->pg_tbl) { 3567 size_t pg_tbl_size = rmem->nr_pages * 8; 3568 3569 if (rmem->flags & BNXT_RMEM_USE_FULL_PAGE_FLAG) 3570 pg_tbl_size = rmem->page_size; 3571 rmem->pg_tbl = dma_alloc_coherent(&pdev->dev, pg_tbl_size, 3572 &rmem->pg_tbl_map, 3573 GFP_KERNEL); 3574 if (!rmem->pg_tbl) 3575 return -ENOMEM; 3576 } 3577 3578 for (i = 0; i < rmem->nr_pages; i++) { 3579 u64 extra_bits = valid_bit; 3580 3581 rmem->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 3582 rmem->page_size, 3583 &rmem->dma_arr[i], 3584 GFP_KERNEL); 3585 if (!rmem->pg_arr[i]) 3586 return -ENOMEM; 3587 3588 if (rmem->ctx_mem) 3589 bnxt_init_ctx_mem(rmem->ctx_mem, rmem->pg_arr[i], 3590 rmem->page_size); 3591 if (rmem->nr_pages > 1 || rmem->depth > 0) { 3592 if (i == rmem->nr_pages - 2 && 3593 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3594 extra_bits |= PTU_PTE_NEXT_TO_LAST; 3595 else if (i == rmem->nr_pages - 1 && 3596 (rmem->flags & BNXT_RMEM_RING_PTE_FLAG)) 3597 extra_bits |= PTU_PTE_LAST; 3598 rmem->pg_tbl[i] = 3599 cpu_to_le64(rmem->dma_arr[i] | extra_bits); 3600 } 3601 } 3602 3603 if (rmem->vmem_size) { 3604 *rmem->vmem = vzalloc(rmem->vmem_size); 3605 if (!(*rmem->vmem)) 3606 return -ENOMEM; 3607 } 3608 return 0; 3609 } 3610 3611 static void bnxt_free_tpa_info(struct bnxt *bp) 3612 { 3613 int i, j; 3614 3615 for (i = 0; i < bp->rx_nr_rings; i++) { 3616 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3617 3618 kfree(rxr->rx_tpa_idx_map); 3619 rxr->rx_tpa_idx_map = NULL; 3620 if (rxr->rx_tpa) { 3621 for (j = 0; j < bp->max_tpa; j++) { 3622 kfree(rxr->rx_tpa[j].agg_arr); 3623 rxr->rx_tpa[j].agg_arr = NULL; 3624 } 3625 } 3626 kfree(rxr->rx_tpa); 3627 rxr->rx_tpa = NULL; 3628 } 3629 } 3630 3631 static int bnxt_alloc_tpa_info(struct bnxt *bp) 3632 { 3633 int i, j; 3634 3635 bp->max_tpa = MAX_TPA; 3636 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 3637 if (!bp->max_tpa_v2) 3638 return 0; 3639 bp->max_tpa = max_t(u16, bp->max_tpa_v2, MAX_TPA_P5); 3640 } 3641 3642 for (i = 0; i < bp->rx_nr_rings; i++) { 3643 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3644 struct rx_agg_cmp *agg; 3645 3646 rxr->rx_tpa = kcalloc(bp->max_tpa, sizeof(struct bnxt_tpa_info), 3647 GFP_KERNEL); 3648 if (!rxr->rx_tpa) 3649 return -ENOMEM; 3650 3651 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 3652 continue; 3653 for (j = 0; j < bp->max_tpa; j++) { 3654 agg = kcalloc(MAX_SKB_FRAGS, sizeof(*agg), GFP_KERNEL); 3655 if (!agg) 3656 return -ENOMEM; 3657 rxr->rx_tpa[j].agg_arr = agg; 3658 } 3659 rxr->rx_tpa_idx_map = kzalloc(sizeof(*rxr->rx_tpa_idx_map), 3660 GFP_KERNEL); 3661 if (!rxr->rx_tpa_idx_map) 3662 return -ENOMEM; 3663 } 3664 return 0; 3665 } 3666 3667 static void bnxt_free_rx_rings(struct bnxt *bp) 3668 { 3669 int i; 3670 3671 if (!bp->rx_ring) 3672 return; 3673 3674 bnxt_free_tpa_info(bp); 3675 for (i = 0; i < bp->rx_nr_rings; i++) { 3676 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3677 struct bnxt_ring_struct *ring; 3678 3679 if (rxr->xdp_prog) 3680 bpf_prog_put(rxr->xdp_prog); 3681 3682 if (xdp_rxq_info_is_reg(&rxr->xdp_rxq)) 3683 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3684 3685 page_pool_destroy(rxr->page_pool); 3686 if (rxr->page_pool != rxr->head_pool) 3687 page_pool_destroy(rxr->head_pool); 3688 rxr->page_pool = rxr->head_pool = NULL; 3689 3690 kfree(rxr->rx_agg_bmap); 3691 rxr->rx_agg_bmap = NULL; 3692 3693 ring = &rxr->rx_ring_struct; 3694 bnxt_free_ring(bp, &ring->ring_mem); 3695 3696 ring = &rxr->rx_agg_ring_struct; 3697 bnxt_free_ring(bp, &ring->ring_mem); 3698 } 3699 } 3700 3701 static int bnxt_alloc_rx_page_pool(struct bnxt *bp, 3702 struct bnxt_rx_ring_info *rxr, 3703 int numa_node) 3704 { 3705 struct page_pool_params pp = { 0 }; 3706 struct page_pool *pool; 3707 3708 pp.pool_size = bp->rx_agg_ring_size; 3709 if (BNXT_RX_PAGE_MODE(bp)) 3710 pp.pool_size += bp->rx_ring_size; 3711 pp.nid = numa_node; 3712 pp.napi = &rxr->bnapi->napi; 3713 pp.netdev = bp->dev; 3714 pp.dev = &bp->pdev->dev; 3715 pp.dma_dir = bp->rx_dir; 3716 pp.max_len = PAGE_SIZE; 3717 pp.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 3718 3719 pool = page_pool_create(&pp); 3720 if (IS_ERR(pool)) 3721 return PTR_ERR(pool); 3722 rxr->page_pool = pool; 3723 3724 if (bnxt_separate_head_pool()) { 3725 pp.pool_size = max(bp->rx_ring_size, 1024); 3726 pool = page_pool_create(&pp); 3727 if (IS_ERR(pool)) 3728 goto err_destroy_pp; 3729 } 3730 rxr->head_pool = pool; 3731 3732 return 0; 3733 3734 err_destroy_pp: 3735 page_pool_destroy(rxr->page_pool); 3736 rxr->page_pool = NULL; 3737 return PTR_ERR(pool); 3738 } 3739 3740 static int bnxt_alloc_rx_rings(struct bnxt *bp) 3741 { 3742 int numa_node = dev_to_node(&bp->pdev->dev); 3743 int i, rc = 0, agg_rings = 0, cpu; 3744 3745 if (!bp->rx_ring) 3746 return -ENOMEM; 3747 3748 if (bp->flags & BNXT_FLAG_AGG_RINGS) 3749 agg_rings = 1; 3750 3751 for (i = 0; i < bp->rx_nr_rings; i++) { 3752 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 3753 struct bnxt_ring_struct *ring; 3754 int cpu_node; 3755 3756 ring = &rxr->rx_ring_struct; 3757 3758 cpu = cpumask_local_spread(i, numa_node); 3759 cpu_node = cpu_to_node(cpu); 3760 netdev_dbg(bp->dev, "Allocating page pool for rx_ring[%d] on numa_node: %d\n", 3761 i, cpu_node); 3762 rc = bnxt_alloc_rx_page_pool(bp, rxr, cpu_node); 3763 if (rc) 3764 return rc; 3765 3766 rc = xdp_rxq_info_reg(&rxr->xdp_rxq, bp->dev, i, 0); 3767 if (rc < 0) 3768 return rc; 3769 3770 rc = xdp_rxq_info_reg_mem_model(&rxr->xdp_rxq, 3771 MEM_TYPE_PAGE_POOL, 3772 rxr->page_pool); 3773 if (rc) { 3774 xdp_rxq_info_unreg(&rxr->xdp_rxq); 3775 return rc; 3776 } 3777 3778 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3779 if (rc) 3780 return rc; 3781 3782 ring->grp_idx = i; 3783 if (agg_rings) { 3784 u16 mem_size; 3785 3786 ring = &rxr->rx_agg_ring_struct; 3787 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3788 if (rc) 3789 return rc; 3790 3791 ring->grp_idx = i; 3792 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 3793 mem_size = rxr->rx_agg_bmap_size / 8; 3794 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 3795 if (!rxr->rx_agg_bmap) 3796 return -ENOMEM; 3797 } 3798 } 3799 if (bp->flags & BNXT_FLAG_TPA) 3800 rc = bnxt_alloc_tpa_info(bp); 3801 return rc; 3802 } 3803 3804 static void bnxt_free_tx_rings(struct bnxt *bp) 3805 { 3806 int i; 3807 struct pci_dev *pdev = bp->pdev; 3808 3809 if (!bp->tx_ring) 3810 return; 3811 3812 for (i = 0; i < bp->tx_nr_rings; i++) { 3813 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3814 struct bnxt_ring_struct *ring; 3815 3816 if (txr->tx_push) { 3817 dma_free_coherent(&pdev->dev, bp->tx_push_size, 3818 txr->tx_push, txr->tx_push_mapping); 3819 txr->tx_push = NULL; 3820 } 3821 3822 ring = &txr->tx_ring_struct; 3823 3824 bnxt_free_ring(bp, &ring->ring_mem); 3825 } 3826 } 3827 3828 #define BNXT_TC_TO_RING_BASE(bp, tc) \ 3829 ((tc) * (bp)->tx_nr_rings_per_tc) 3830 3831 #define BNXT_RING_TO_TC_OFF(bp, tx) \ 3832 ((tx) % (bp)->tx_nr_rings_per_tc) 3833 3834 #define BNXT_RING_TO_TC(bp, tx) \ 3835 ((tx) / (bp)->tx_nr_rings_per_tc) 3836 3837 static int bnxt_alloc_tx_rings(struct bnxt *bp) 3838 { 3839 int i, j, rc; 3840 struct pci_dev *pdev = bp->pdev; 3841 3842 bp->tx_push_size = 0; 3843 if (bp->tx_push_thresh) { 3844 int push_size; 3845 3846 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) + 3847 bp->tx_push_thresh); 3848 3849 if (push_size > 256) { 3850 push_size = 0; 3851 bp->tx_push_thresh = 0; 3852 } 3853 3854 bp->tx_push_size = push_size; 3855 } 3856 3857 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) { 3858 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 3859 struct bnxt_ring_struct *ring; 3860 u8 qidx; 3861 3862 ring = &txr->tx_ring_struct; 3863 3864 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 3865 if (rc) 3866 return rc; 3867 3868 ring->grp_idx = txr->bnapi->index; 3869 if (bp->tx_push_size) { 3870 dma_addr_t mapping; 3871 3872 /* One pre-allocated DMA buffer to backup 3873 * TX push operation 3874 */ 3875 txr->tx_push = dma_alloc_coherent(&pdev->dev, 3876 bp->tx_push_size, 3877 &txr->tx_push_mapping, 3878 GFP_KERNEL); 3879 3880 if (!txr->tx_push) 3881 return -ENOMEM; 3882 3883 mapping = txr->tx_push_mapping + 3884 sizeof(struct tx_push_bd); 3885 txr->data_mapping = cpu_to_le64(mapping); 3886 } 3887 qidx = bp->tc_to_qidx[j]; 3888 ring->queue_id = bp->q_info[qidx].queue_id; 3889 spin_lock_init(&txr->xdp_tx_lock); 3890 if (i < bp->tx_nr_rings_xdp) 3891 continue; 3892 if (BNXT_RING_TO_TC_OFF(bp, i) == (bp->tx_nr_rings_per_tc - 1)) 3893 j++; 3894 } 3895 return 0; 3896 } 3897 3898 static void bnxt_free_cp_arrays(struct bnxt_cp_ring_info *cpr) 3899 { 3900 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 3901 3902 kfree(cpr->cp_desc_ring); 3903 cpr->cp_desc_ring = NULL; 3904 ring->ring_mem.pg_arr = NULL; 3905 kfree(cpr->cp_desc_mapping); 3906 cpr->cp_desc_mapping = NULL; 3907 ring->ring_mem.dma_arr = NULL; 3908 } 3909 3910 static int bnxt_alloc_cp_arrays(struct bnxt_cp_ring_info *cpr, int n) 3911 { 3912 cpr->cp_desc_ring = kcalloc(n, sizeof(*cpr->cp_desc_ring), GFP_KERNEL); 3913 if (!cpr->cp_desc_ring) 3914 return -ENOMEM; 3915 cpr->cp_desc_mapping = kcalloc(n, sizeof(*cpr->cp_desc_mapping), 3916 GFP_KERNEL); 3917 if (!cpr->cp_desc_mapping) 3918 return -ENOMEM; 3919 return 0; 3920 } 3921 3922 static void bnxt_free_all_cp_arrays(struct bnxt *bp) 3923 { 3924 int i; 3925 3926 if (!bp->bnapi) 3927 return; 3928 for (i = 0; i < bp->cp_nr_rings; i++) { 3929 struct bnxt_napi *bnapi = bp->bnapi[i]; 3930 3931 if (!bnapi) 3932 continue; 3933 bnxt_free_cp_arrays(&bnapi->cp_ring); 3934 } 3935 } 3936 3937 static int bnxt_alloc_all_cp_arrays(struct bnxt *bp) 3938 { 3939 int i, n = bp->cp_nr_pages; 3940 3941 for (i = 0; i < bp->cp_nr_rings; i++) { 3942 struct bnxt_napi *bnapi = bp->bnapi[i]; 3943 int rc; 3944 3945 if (!bnapi) 3946 continue; 3947 rc = bnxt_alloc_cp_arrays(&bnapi->cp_ring, n); 3948 if (rc) 3949 return rc; 3950 } 3951 return 0; 3952 } 3953 3954 static void bnxt_free_cp_rings(struct bnxt *bp) 3955 { 3956 int i; 3957 3958 if (!bp->bnapi) 3959 return; 3960 3961 for (i = 0; i < bp->cp_nr_rings; i++) { 3962 struct bnxt_napi *bnapi = bp->bnapi[i]; 3963 struct bnxt_cp_ring_info *cpr; 3964 struct bnxt_ring_struct *ring; 3965 int j; 3966 3967 if (!bnapi) 3968 continue; 3969 3970 cpr = &bnapi->cp_ring; 3971 ring = &cpr->cp_ring_struct; 3972 3973 bnxt_free_ring(bp, &ring->ring_mem); 3974 3975 if (!cpr->cp_ring_arr) 3976 continue; 3977 3978 for (j = 0; j < cpr->cp_ring_count; j++) { 3979 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 3980 3981 ring = &cpr2->cp_ring_struct; 3982 bnxt_free_ring(bp, &ring->ring_mem); 3983 bnxt_free_cp_arrays(cpr2); 3984 } 3985 kfree(cpr->cp_ring_arr); 3986 cpr->cp_ring_arr = NULL; 3987 cpr->cp_ring_count = 0; 3988 } 3989 } 3990 3991 static int bnxt_alloc_cp_sub_ring(struct bnxt *bp, 3992 struct bnxt_cp_ring_info *cpr) 3993 { 3994 struct bnxt_ring_mem_info *rmem; 3995 struct bnxt_ring_struct *ring; 3996 int rc; 3997 3998 rc = bnxt_alloc_cp_arrays(cpr, bp->cp_nr_pages); 3999 if (rc) { 4000 bnxt_free_cp_arrays(cpr); 4001 return -ENOMEM; 4002 } 4003 ring = &cpr->cp_ring_struct; 4004 rmem = &ring->ring_mem; 4005 rmem->nr_pages = bp->cp_nr_pages; 4006 rmem->page_size = HW_CMPD_RING_SIZE; 4007 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4008 rmem->dma_arr = cpr->cp_desc_mapping; 4009 rmem->flags = BNXT_RMEM_RING_PTE_FLAG; 4010 rc = bnxt_alloc_ring(bp, rmem); 4011 if (rc) { 4012 bnxt_free_ring(bp, rmem); 4013 bnxt_free_cp_arrays(cpr); 4014 } 4015 return rc; 4016 } 4017 4018 static int bnxt_alloc_cp_rings(struct bnxt *bp) 4019 { 4020 bool sh = !!(bp->flags & BNXT_FLAG_SHARED_RINGS); 4021 int i, j, rc, ulp_msix; 4022 int tcs = bp->num_tc; 4023 4024 if (!tcs) 4025 tcs = 1; 4026 ulp_msix = bnxt_get_ulp_msix_num(bp); 4027 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 4028 struct bnxt_napi *bnapi = bp->bnapi[i]; 4029 struct bnxt_cp_ring_info *cpr, *cpr2; 4030 struct bnxt_ring_struct *ring; 4031 int cp_count = 0, k; 4032 int rx = 0, tx = 0; 4033 4034 if (!bnapi) 4035 continue; 4036 4037 cpr = &bnapi->cp_ring; 4038 cpr->bnapi = bnapi; 4039 ring = &cpr->cp_ring_struct; 4040 4041 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 4042 if (rc) 4043 return rc; 4044 4045 ring->map_idx = ulp_msix + i; 4046 4047 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4048 continue; 4049 4050 if (i < bp->rx_nr_rings) { 4051 cp_count++; 4052 rx = 1; 4053 } 4054 if (i < bp->tx_nr_rings_xdp) { 4055 cp_count++; 4056 tx = 1; 4057 } else if ((sh && i < bp->tx_nr_rings) || 4058 (!sh && i >= bp->rx_nr_rings)) { 4059 cp_count += tcs; 4060 tx = 1; 4061 } 4062 4063 cpr->cp_ring_arr = kcalloc(cp_count, sizeof(*cpr), 4064 GFP_KERNEL); 4065 if (!cpr->cp_ring_arr) 4066 return -ENOMEM; 4067 cpr->cp_ring_count = cp_count; 4068 4069 for (k = 0; k < cp_count; k++) { 4070 cpr2 = &cpr->cp_ring_arr[k]; 4071 rc = bnxt_alloc_cp_sub_ring(bp, cpr2); 4072 if (rc) 4073 return rc; 4074 cpr2->bnapi = bnapi; 4075 cpr2->sw_stats = cpr->sw_stats; 4076 cpr2->cp_idx = k; 4077 if (!k && rx) { 4078 bp->rx_ring[i].rx_cpr = cpr2; 4079 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_RX; 4080 } else { 4081 int n, tc = k - rx; 4082 4083 n = BNXT_TC_TO_RING_BASE(bp, tc) + j; 4084 bp->tx_ring[n].tx_cpr = cpr2; 4085 cpr2->cp_ring_type = BNXT_NQ_HDL_TYPE_TX; 4086 } 4087 } 4088 if (tx) 4089 j++; 4090 } 4091 return 0; 4092 } 4093 4094 static void bnxt_init_rx_ring_struct(struct bnxt *bp, 4095 struct bnxt_rx_ring_info *rxr) 4096 { 4097 struct bnxt_ring_mem_info *rmem; 4098 struct bnxt_ring_struct *ring; 4099 4100 ring = &rxr->rx_ring_struct; 4101 rmem = &ring->ring_mem; 4102 rmem->nr_pages = bp->rx_nr_pages; 4103 rmem->page_size = HW_RXBD_RING_SIZE; 4104 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4105 rmem->dma_arr = rxr->rx_desc_mapping; 4106 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4107 rmem->vmem = (void **)&rxr->rx_buf_ring; 4108 4109 ring = &rxr->rx_agg_ring_struct; 4110 rmem = &ring->ring_mem; 4111 rmem->nr_pages = bp->rx_agg_nr_pages; 4112 rmem->page_size = HW_RXBD_RING_SIZE; 4113 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4114 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4115 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4116 rmem->vmem = (void **)&rxr->rx_agg_ring; 4117 } 4118 4119 static void bnxt_reset_rx_ring_struct(struct bnxt *bp, 4120 struct bnxt_rx_ring_info *rxr) 4121 { 4122 struct bnxt_ring_mem_info *rmem; 4123 struct bnxt_ring_struct *ring; 4124 int i; 4125 4126 rxr->page_pool->p.napi = NULL; 4127 rxr->page_pool = NULL; 4128 memset(&rxr->xdp_rxq, 0, sizeof(struct xdp_rxq_info)); 4129 4130 ring = &rxr->rx_ring_struct; 4131 rmem = &ring->ring_mem; 4132 rmem->pg_tbl = NULL; 4133 rmem->pg_tbl_map = 0; 4134 for (i = 0; i < rmem->nr_pages; i++) { 4135 rmem->pg_arr[i] = NULL; 4136 rmem->dma_arr[i] = 0; 4137 } 4138 *rmem->vmem = NULL; 4139 4140 ring = &rxr->rx_agg_ring_struct; 4141 rmem = &ring->ring_mem; 4142 rmem->pg_tbl = NULL; 4143 rmem->pg_tbl_map = 0; 4144 for (i = 0; i < rmem->nr_pages; i++) { 4145 rmem->pg_arr[i] = NULL; 4146 rmem->dma_arr[i] = 0; 4147 } 4148 *rmem->vmem = NULL; 4149 } 4150 4151 static void bnxt_init_ring_struct(struct bnxt *bp) 4152 { 4153 int i, j; 4154 4155 for (i = 0; i < bp->cp_nr_rings; i++) { 4156 struct bnxt_napi *bnapi = bp->bnapi[i]; 4157 struct bnxt_ring_mem_info *rmem; 4158 struct bnxt_cp_ring_info *cpr; 4159 struct bnxt_rx_ring_info *rxr; 4160 struct bnxt_tx_ring_info *txr; 4161 struct bnxt_ring_struct *ring; 4162 4163 if (!bnapi) 4164 continue; 4165 4166 cpr = &bnapi->cp_ring; 4167 ring = &cpr->cp_ring_struct; 4168 rmem = &ring->ring_mem; 4169 rmem->nr_pages = bp->cp_nr_pages; 4170 rmem->page_size = HW_CMPD_RING_SIZE; 4171 rmem->pg_arr = (void **)cpr->cp_desc_ring; 4172 rmem->dma_arr = cpr->cp_desc_mapping; 4173 rmem->vmem_size = 0; 4174 4175 rxr = bnapi->rx_ring; 4176 if (!rxr) 4177 goto skip_rx; 4178 4179 ring = &rxr->rx_ring_struct; 4180 rmem = &ring->ring_mem; 4181 rmem->nr_pages = bp->rx_nr_pages; 4182 rmem->page_size = HW_RXBD_RING_SIZE; 4183 rmem->pg_arr = (void **)rxr->rx_desc_ring; 4184 rmem->dma_arr = rxr->rx_desc_mapping; 4185 rmem->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages; 4186 rmem->vmem = (void **)&rxr->rx_buf_ring; 4187 4188 ring = &rxr->rx_agg_ring_struct; 4189 rmem = &ring->ring_mem; 4190 rmem->nr_pages = bp->rx_agg_nr_pages; 4191 rmem->page_size = HW_RXBD_RING_SIZE; 4192 rmem->pg_arr = (void **)rxr->rx_agg_desc_ring; 4193 rmem->dma_arr = rxr->rx_agg_desc_mapping; 4194 rmem->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages; 4195 rmem->vmem = (void **)&rxr->rx_agg_ring; 4196 4197 skip_rx: 4198 bnxt_for_each_napi_tx(j, bnapi, txr) { 4199 ring = &txr->tx_ring_struct; 4200 rmem = &ring->ring_mem; 4201 rmem->nr_pages = bp->tx_nr_pages; 4202 rmem->page_size = HW_TXBD_RING_SIZE; 4203 rmem->pg_arr = (void **)txr->tx_desc_ring; 4204 rmem->dma_arr = txr->tx_desc_mapping; 4205 rmem->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages; 4206 rmem->vmem = (void **)&txr->tx_buf_ring; 4207 } 4208 } 4209 } 4210 4211 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type) 4212 { 4213 int i; 4214 u32 prod; 4215 struct rx_bd **rx_buf_ring; 4216 4217 rx_buf_ring = (struct rx_bd **)ring->ring_mem.pg_arr; 4218 for (i = 0, prod = 0; i < ring->ring_mem.nr_pages; i++) { 4219 int j; 4220 struct rx_bd *rxbd; 4221 4222 rxbd = rx_buf_ring[i]; 4223 if (!rxbd) 4224 continue; 4225 4226 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) { 4227 rxbd->rx_bd_len_flags_type = cpu_to_le32(type); 4228 rxbd->rx_bd_opaque = prod; 4229 } 4230 } 4231 } 4232 4233 static void bnxt_alloc_one_rx_ring_skb(struct bnxt *bp, 4234 struct bnxt_rx_ring_info *rxr, 4235 int ring_nr) 4236 { 4237 u32 prod; 4238 int i; 4239 4240 prod = rxr->rx_prod; 4241 for (i = 0; i < bp->rx_ring_size; i++) { 4242 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL)) { 4243 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n", 4244 ring_nr, i, bp->rx_ring_size); 4245 break; 4246 } 4247 prod = NEXT_RX(prod); 4248 } 4249 rxr->rx_prod = prod; 4250 } 4251 4252 static void bnxt_alloc_one_rx_ring_page(struct bnxt *bp, 4253 struct bnxt_rx_ring_info *rxr, 4254 int ring_nr) 4255 { 4256 u32 prod; 4257 int i; 4258 4259 prod = rxr->rx_agg_prod; 4260 for (i = 0; i < bp->rx_agg_ring_size; i++) { 4261 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL)) { 4262 netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d pages only\n", 4263 ring_nr, i, bp->rx_ring_size); 4264 break; 4265 } 4266 prod = NEXT_RX_AGG(prod); 4267 } 4268 rxr->rx_agg_prod = prod; 4269 } 4270 4271 static int bnxt_alloc_one_rx_ring(struct bnxt *bp, int ring_nr) 4272 { 4273 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 4274 int i; 4275 4276 bnxt_alloc_one_rx_ring_skb(bp, rxr, ring_nr); 4277 4278 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 4279 return 0; 4280 4281 bnxt_alloc_one_rx_ring_page(bp, rxr, ring_nr); 4282 4283 if (rxr->rx_tpa) { 4284 dma_addr_t mapping; 4285 u8 *data; 4286 4287 for (i = 0; i < bp->max_tpa; i++) { 4288 data = __bnxt_alloc_rx_frag(bp, &mapping, rxr, 4289 GFP_KERNEL); 4290 if (!data) 4291 return -ENOMEM; 4292 4293 rxr->rx_tpa[i].data = data; 4294 rxr->rx_tpa[i].data_ptr = data + bp->rx_offset; 4295 rxr->rx_tpa[i].mapping = mapping; 4296 } 4297 } 4298 return 0; 4299 } 4300 4301 static void bnxt_init_one_rx_ring_rxbd(struct bnxt *bp, 4302 struct bnxt_rx_ring_info *rxr) 4303 { 4304 struct bnxt_ring_struct *ring; 4305 u32 type; 4306 4307 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) | 4308 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP; 4309 4310 if (NET_IP_ALIGN == 2) 4311 type |= RX_BD_FLAGS_SOP; 4312 4313 ring = &rxr->rx_ring_struct; 4314 bnxt_init_rxbd_pages(ring, type); 4315 ring->fw_ring_id = INVALID_HW_RING_ID; 4316 } 4317 4318 static void bnxt_init_one_rx_agg_ring_rxbd(struct bnxt *bp, 4319 struct bnxt_rx_ring_info *rxr) 4320 { 4321 struct bnxt_ring_struct *ring; 4322 u32 type; 4323 4324 ring = &rxr->rx_agg_ring_struct; 4325 ring->fw_ring_id = INVALID_HW_RING_ID; 4326 if ((bp->flags & BNXT_FLAG_AGG_RINGS)) { 4327 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) | 4328 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP; 4329 4330 bnxt_init_rxbd_pages(ring, type); 4331 } 4332 } 4333 4334 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr) 4335 { 4336 struct bnxt_rx_ring_info *rxr; 4337 4338 rxr = &bp->rx_ring[ring_nr]; 4339 bnxt_init_one_rx_ring_rxbd(bp, rxr); 4340 4341 netif_queue_set_napi(bp->dev, ring_nr, NETDEV_QUEUE_TYPE_RX, 4342 &rxr->bnapi->napi); 4343 4344 if (BNXT_RX_PAGE_MODE(bp) && bp->xdp_prog) { 4345 bpf_prog_add(bp->xdp_prog, 1); 4346 rxr->xdp_prog = bp->xdp_prog; 4347 } 4348 4349 bnxt_init_one_rx_agg_ring_rxbd(bp, rxr); 4350 4351 return bnxt_alloc_one_rx_ring(bp, ring_nr); 4352 } 4353 4354 static void bnxt_init_cp_rings(struct bnxt *bp) 4355 { 4356 int i, j; 4357 4358 for (i = 0; i < bp->cp_nr_rings; i++) { 4359 struct bnxt_cp_ring_info *cpr = &bp->bnapi[i]->cp_ring; 4360 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 4361 4362 ring->fw_ring_id = INVALID_HW_RING_ID; 4363 cpr->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4364 cpr->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4365 if (!cpr->cp_ring_arr) 4366 continue; 4367 for (j = 0; j < cpr->cp_ring_count; j++) { 4368 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 4369 4370 ring = &cpr2->cp_ring_struct; 4371 ring->fw_ring_id = INVALID_HW_RING_ID; 4372 cpr2->rx_ring_coal.coal_ticks = bp->rx_coal.coal_ticks; 4373 cpr2->rx_ring_coal.coal_bufs = bp->rx_coal.coal_bufs; 4374 } 4375 } 4376 } 4377 4378 static int bnxt_init_rx_rings(struct bnxt *bp) 4379 { 4380 int i, rc = 0; 4381 4382 if (BNXT_RX_PAGE_MODE(bp)) { 4383 bp->rx_offset = NET_IP_ALIGN + XDP_PACKET_HEADROOM; 4384 bp->rx_dma_offset = XDP_PACKET_HEADROOM; 4385 } else { 4386 bp->rx_offset = BNXT_RX_OFFSET; 4387 bp->rx_dma_offset = BNXT_RX_DMA_OFFSET; 4388 } 4389 4390 for (i = 0; i < bp->rx_nr_rings; i++) { 4391 rc = bnxt_init_one_rx_ring(bp, i); 4392 if (rc) 4393 break; 4394 } 4395 4396 return rc; 4397 } 4398 4399 static int bnxt_init_tx_rings(struct bnxt *bp) 4400 { 4401 u16 i; 4402 4403 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2, 4404 BNXT_MIN_TX_DESC_CNT); 4405 4406 for (i = 0; i < bp->tx_nr_rings; i++) { 4407 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 4408 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 4409 4410 ring->fw_ring_id = INVALID_HW_RING_ID; 4411 4412 if (i >= bp->tx_nr_rings_xdp) 4413 netif_queue_set_napi(bp->dev, i - bp->tx_nr_rings_xdp, 4414 NETDEV_QUEUE_TYPE_TX, 4415 &txr->bnapi->napi); 4416 } 4417 4418 return 0; 4419 } 4420 4421 static void bnxt_free_ring_grps(struct bnxt *bp) 4422 { 4423 kfree(bp->grp_info); 4424 bp->grp_info = NULL; 4425 } 4426 4427 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init) 4428 { 4429 int i; 4430 4431 if (irq_re_init) { 4432 bp->grp_info = kcalloc(bp->cp_nr_rings, 4433 sizeof(struct bnxt_ring_grp_info), 4434 GFP_KERNEL); 4435 if (!bp->grp_info) 4436 return -ENOMEM; 4437 } 4438 for (i = 0; i < bp->cp_nr_rings; i++) { 4439 if (irq_re_init) 4440 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID; 4441 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 4442 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID; 4443 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID; 4444 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 4445 } 4446 return 0; 4447 } 4448 4449 static void bnxt_free_vnics(struct bnxt *bp) 4450 { 4451 kfree(bp->vnic_info); 4452 bp->vnic_info = NULL; 4453 bp->nr_vnics = 0; 4454 } 4455 4456 static int bnxt_alloc_vnics(struct bnxt *bp) 4457 { 4458 int num_vnics = 1; 4459 4460 #ifdef CONFIG_RFS_ACCEL 4461 if (bp->flags & BNXT_FLAG_RFS) { 4462 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 4463 num_vnics++; 4464 else if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4465 num_vnics += bp->rx_nr_rings; 4466 } 4467 #endif 4468 4469 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 4470 num_vnics++; 4471 4472 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info), 4473 GFP_KERNEL); 4474 if (!bp->vnic_info) 4475 return -ENOMEM; 4476 4477 bp->nr_vnics = num_vnics; 4478 return 0; 4479 } 4480 4481 static void bnxt_init_vnics(struct bnxt *bp) 4482 { 4483 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 4484 int i; 4485 4486 for (i = 0; i < bp->nr_vnics; i++) { 4487 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 4488 int j; 4489 4490 vnic->fw_vnic_id = INVALID_HW_RING_ID; 4491 vnic->vnic_id = i; 4492 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) 4493 vnic->fw_rss_cos_lb_ctx[j] = INVALID_HW_RING_ID; 4494 4495 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID; 4496 4497 if (bp->vnic_info[i].rss_hash_key) { 4498 if (i == BNXT_VNIC_DEFAULT) { 4499 u8 *key = (void *)vnic->rss_hash_key; 4500 int k; 4501 4502 if (!bp->rss_hash_key_valid && 4503 !bp->rss_hash_key_updated) { 4504 get_random_bytes(bp->rss_hash_key, 4505 HW_HASH_KEY_SIZE); 4506 bp->rss_hash_key_updated = true; 4507 } 4508 4509 memcpy(vnic->rss_hash_key, bp->rss_hash_key, 4510 HW_HASH_KEY_SIZE); 4511 4512 if (!bp->rss_hash_key_updated) 4513 continue; 4514 4515 bp->rss_hash_key_updated = false; 4516 bp->rss_hash_key_valid = true; 4517 4518 bp->toeplitz_prefix = 0; 4519 for (k = 0; k < 8; k++) { 4520 bp->toeplitz_prefix <<= 8; 4521 bp->toeplitz_prefix |= key[k]; 4522 } 4523 } else { 4524 memcpy(vnic->rss_hash_key, vnic0->rss_hash_key, 4525 HW_HASH_KEY_SIZE); 4526 } 4527 } 4528 } 4529 } 4530 4531 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg) 4532 { 4533 int pages; 4534 4535 pages = ring_size / desc_per_pg; 4536 4537 if (!pages) 4538 return 1; 4539 4540 pages++; 4541 4542 while (pages & (pages - 1)) 4543 pages++; 4544 4545 return pages; 4546 } 4547 4548 void bnxt_set_tpa_flags(struct bnxt *bp) 4549 { 4550 bp->flags &= ~BNXT_FLAG_TPA; 4551 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 4552 return; 4553 if (bp->dev->features & NETIF_F_LRO) 4554 bp->flags |= BNXT_FLAG_LRO; 4555 else if (bp->dev->features & NETIF_F_GRO_HW) 4556 bp->flags |= BNXT_FLAG_GRO; 4557 } 4558 4559 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must 4560 * be set on entry. 4561 */ 4562 void bnxt_set_ring_params(struct bnxt *bp) 4563 { 4564 u32 ring_size, rx_size, rx_space, max_rx_cmpl; 4565 u32 agg_factor = 0, agg_ring_size = 0; 4566 4567 /* 8 for CRC and VLAN */ 4568 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8); 4569 4570 rx_space = rx_size + ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) + 4571 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4572 4573 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH; 4574 ring_size = bp->rx_ring_size; 4575 bp->rx_agg_ring_size = 0; 4576 bp->rx_agg_nr_pages = 0; 4577 4578 if (bp->flags & BNXT_FLAG_TPA) 4579 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE); 4580 4581 bp->flags &= ~BNXT_FLAG_JUMBO; 4582 if (rx_space > PAGE_SIZE && !(bp->flags & BNXT_FLAG_NO_AGG_RINGS)) { 4583 u32 jumbo_factor; 4584 4585 bp->flags |= BNXT_FLAG_JUMBO; 4586 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT; 4587 if (jumbo_factor > agg_factor) 4588 agg_factor = jumbo_factor; 4589 } 4590 if (agg_factor) { 4591 if (ring_size > BNXT_MAX_RX_DESC_CNT_JUM_ENA) { 4592 ring_size = BNXT_MAX_RX_DESC_CNT_JUM_ENA; 4593 netdev_warn(bp->dev, "RX ring size reduced from %d to %d because the jumbo ring is now enabled\n", 4594 bp->rx_ring_size, ring_size); 4595 bp->rx_ring_size = ring_size; 4596 } 4597 agg_ring_size = ring_size * agg_factor; 4598 4599 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size, 4600 RX_DESC_CNT); 4601 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) { 4602 u32 tmp = agg_ring_size; 4603 4604 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES; 4605 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1; 4606 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n", 4607 tmp, agg_ring_size); 4608 } 4609 bp->rx_agg_ring_size = agg_ring_size; 4610 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1; 4611 4612 if (BNXT_RX_PAGE_MODE(bp)) { 4613 rx_space = PAGE_SIZE; 4614 rx_size = PAGE_SIZE - 4615 ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) - 4616 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4617 } else { 4618 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN); 4619 rx_space = rx_size + NET_SKB_PAD + 4620 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4621 } 4622 } 4623 4624 bp->rx_buf_use_size = rx_size; 4625 bp->rx_buf_size = rx_space; 4626 4627 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT); 4628 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1; 4629 4630 ring_size = bp->tx_ring_size; 4631 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT); 4632 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1; 4633 4634 max_rx_cmpl = bp->rx_ring_size; 4635 /* MAX TPA needs to be added because TPA_START completions are 4636 * immediately recycled, so the TPA completions are not bound by 4637 * the RX ring size. 4638 */ 4639 if (bp->flags & BNXT_FLAG_TPA) 4640 max_rx_cmpl += bp->max_tpa; 4641 /* RX and TPA completions are 32-byte, all others are 16-byte */ 4642 ring_size = max_rx_cmpl * 2 + agg_ring_size + bp->tx_ring_size; 4643 bp->cp_ring_size = ring_size; 4644 4645 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT); 4646 if (bp->cp_nr_pages > MAX_CP_PAGES) { 4647 bp->cp_nr_pages = MAX_CP_PAGES; 4648 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1; 4649 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n", 4650 ring_size, bp->cp_ring_size); 4651 } 4652 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT; 4653 bp->cp_ring_mask = bp->cp_bit - 1; 4654 } 4655 4656 /* Changing allocation mode of RX rings. 4657 * TODO: Update when extending xdp_rxq_info to support allocation modes. 4658 */ 4659 int bnxt_set_rx_skb_mode(struct bnxt *bp, bool page_mode) 4660 { 4661 struct net_device *dev = bp->dev; 4662 4663 if (page_mode) { 4664 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 4665 bp->flags |= BNXT_FLAG_RX_PAGE_MODE; 4666 4667 if (bp->xdp_prog->aux->xdp_has_frags) 4668 dev->max_mtu = min_t(u16, bp->max_mtu, BNXT_MAX_MTU); 4669 else 4670 dev->max_mtu = 4671 min_t(u16, bp->max_mtu, BNXT_MAX_PAGE_MODE_MTU); 4672 if (dev->mtu > BNXT_MAX_PAGE_MODE_MTU) { 4673 bp->flags |= BNXT_FLAG_JUMBO; 4674 bp->rx_skb_func = bnxt_rx_multi_page_skb; 4675 } else { 4676 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 4677 bp->rx_skb_func = bnxt_rx_page_skb; 4678 } 4679 bp->rx_dir = DMA_BIDIRECTIONAL; 4680 /* Disable LRO or GRO_HW */ 4681 netdev_update_features(dev); 4682 } else { 4683 dev->max_mtu = bp->max_mtu; 4684 bp->flags &= ~BNXT_FLAG_RX_PAGE_MODE; 4685 bp->rx_dir = DMA_FROM_DEVICE; 4686 bp->rx_skb_func = bnxt_rx_skb; 4687 } 4688 return 0; 4689 } 4690 4691 static void bnxt_free_vnic_attributes(struct bnxt *bp) 4692 { 4693 int i; 4694 struct bnxt_vnic_info *vnic; 4695 struct pci_dev *pdev = bp->pdev; 4696 4697 if (!bp->vnic_info) 4698 return; 4699 4700 for (i = 0; i < bp->nr_vnics; i++) { 4701 vnic = &bp->vnic_info[i]; 4702 4703 kfree(vnic->fw_grp_ids); 4704 vnic->fw_grp_ids = NULL; 4705 4706 kfree(vnic->uc_list); 4707 vnic->uc_list = NULL; 4708 4709 if (vnic->mc_list) { 4710 dma_free_coherent(&pdev->dev, vnic->mc_list_size, 4711 vnic->mc_list, vnic->mc_list_mapping); 4712 vnic->mc_list = NULL; 4713 } 4714 4715 if (vnic->rss_table) { 4716 dma_free_coherent(&pdev->dev, vnic->rss_table_size, 4717 vnic->rss_table, 4718 vnic->rss_table_dma_addr); 4719 vnic->rss_table = NULL; 4720 } 4721 4722 vnic->rss_hash_key = NULL; 4723 vnic->flags = 0; 4724 } 4725 } 4726 4727 static int bnxt_alloc_vnic_attributes(struct bnxt *bp) 4728 { 4729 int i, rc = 0, size; 4730 struct bnxt_vnic_info *vnic; 4731 struct pci_dev *pdev = bp->pdev; 4732 int max_rings; 4733 4734 for (i = 0; i < bp->nr_vnics; i++) { 4735 vnic = &bp->vnic_info[i]; 4736 4737 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) { 4738 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN; 4739 4740 if (mem_size > 0) { 4741 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL); 4742 if (!vnic->uc_list) { 4743 rc = -ENOMEM; 4744 goto out; 4745 } 4746 } 4747 } 4748 4749 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) { 4750 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN; 4751 vnic->mc_list = 4752 dma_alloc_coherent(&pdev->dev, 4753 vnic->mc_list_size, 4754 &vnic->mc_list_mapping, 4755 GFP_KERNEL); 4756 if (!vnic->mc_list) { 4757 rc = -ENOMEM; 4758 goto out; 4759 } 4760 } 4761 4762 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4763 goto vnic_skip_grps; 4764 4765 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 4766 max_rings = bp->rx_nr_rings; 4767 else 4768 max_rings = 1; 4769 4770 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL); 4771 if (!vnic->fw_grp_ids) { 4772 rc = -ENOMEM; 4773 goto out; 4774 } 4775 vnic_skip_grps: 4776 if ((bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && 4777 !(vnic->flags & BNXT_VNIC_RSS_FLAG)) 4778 continue; 4779 4780 /* Allocate rss table and hash key */ 4781 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16)); 4782 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4783 size = L1_CACHE_ALIGN(BNXT_MAX_RSS_TABLE_SIZE_P5); 4784 4785 vnic->rss_table_size = size + HW_HASH_KEY_SIZE; 4786 vnic->rss_table = dma_alloc_coherent(&pdev->dev, 4787 vnic->rss_table_size, 4788 &vnic->rss_table_dma_addr, 4789 GFP_KERNEL); 4790 if (!vnic->rss_table) { 4791 rc = -ENOMEM; 4792 goto out; 4793 } 4794 4795 vnic->rss_hash_key = ((void *)vnic->rss_table) + size; 4796 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size; 4797 } 4798 return 0; 4799 4800 out: 4801 return rc; 4802 } 4803 4804 static void bnxt_free_hwrm_resources(struct bnxt *bp) 4805 { 4806 struct bnxt_hwrm_wait_token *token; 4807 4808 dma_pool_destroy(bp->hwrm_dma_pool); 4809 bp->hwrm_dma_pool = NULL; 4810 4811 rcu_read_lock(); 4812 hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) 4813 WRITE_ONCE(token->state, BNXT_HWRM_CANCELLED); 4814 rcu_read_unlock(); 4815 } 4816 4817 static int bnxt_alloc_hwrm_resources(struct bnxt *bp) 4818 { 4819 bp->hwrm_dma_pool = dma_pool_create("bnxt_hwrm", &bp->pdev->dev, 4820 BNXT_HWRM_DMA_SIZE, 4821 BNXT_HWRM_DMA_ALIGN, 0); 4822 if (!bp->hwrm_dma_pool) 4823 return -ENOMEM; 4824 4825 INIT_HLIST_HEAD(&bp->hwrm_pending_list); 4826 4827 return 0; 4828 } 4829 4830 static void bnxt_free_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats) 4831 { 4832 kfree(stats->hw_masks); 4833 stats->hw_masks = NULL; 4834 kfree(stats->sw_stats); 4835 stats->sw_stats = NULL; 4836 if (stats->hw_stats) { 4837 dma_free_coherent(&bp->pdev->dev, stats->len, stats->hw_stats, 4838 stats->hw_stats_map); 4839 stats->hw_stats = NULL; 4840 } 4841 } 4842 4843 static int bnxt_alloc_stats_mem(struct bnxt *bp, struct bnxt_stats_mem *stats, 4844 bool alloc_masks) 4845 { 4846 stats->hw_stats = dma_alloc_coherent(&bp->pdev->dev, stats->len, 4847 &stats->hw_stats_map, GFP_KERNEL); 4848 if (!stats->hw_stats) 4849 return -ENOMEM; 4850 4851 stats->sw_stats = kzalloc(stats->len, GFP_KERNEL); 4852 if (!stats->sw_stats) 4853 goto stats_mem_err; 4854 4855 if (alloc_masks) { 4856 stats->hw_masks = kzalloc(stats->len, GFP_KERNEL); 4857 if (!stats->hw_masks) 4858 goto stats_mem_err; 4859 } 4860 return 0; 4861 4862 stats_mem_err: 4863 bnxt_free_stats_mem(bp, stats); 4864 return -ENOMEM; 4865 } 4866 4867 static void bnxt_fill_masks(u64 *mask_arr, u64 mask, int count) 4868 { 4869 int i; 4870 4871 for (i = 0; i < count; i++) 4872 mask_arr[i] = mask; 4873 } 4874 4875 static void bnxt_copy_hw_masks(u64 *mask_arr, __le64 *hw_mask_arr, int count) 4876 { 4877 int i; 4878 4879 for (i = 0; i < count; i++) 4880 mask_arr[i] = le64_to_cpu(hw_mask_arr[i]); 4881 } 4882 4883 static int bnxt_hwrm_func_qstat_ext(struct bnxt *bp, 4884 struct bnxt_stats_mem *stats) 4885 { 4886 struct hwrm_func_qstats_ext_output *resp; 4887 struct hwrm_func_qstats_ext_input *req; 4888 __le64 *hw_masks; 4889 int rc; 4890 4891 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED) || 4892 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 4893 return -EOPNOTSUPP; 4894 4895 rc = hwrm_req_init(bp, req, HWRM_FUNC_QSTATS_EXT); 4896 if (rc) 4897 return rc; 4898 4899 req->fid = cpu_to_le16(0xffff); 4900 req->flags = FUNC_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4901 4902 resp = hwrm_req_hold(bp, req); 4903 rc = hwrm_req_send(bp, req); 4904 if (!rc) { 4905 hw_masks = &resp->rx_ucast_pkts; 4906 bnxt_copy_hw_masks(stats->hw_masks, hw_masks, stats->len / 8); 4907 } 4908 hwrm_req_drop(bp, req); 4909 return rc; 4910 } 4911 4912 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags); 4913 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags); 4914 4915 static void bnxt_init_stats(struct bnxt *bp) 4916 { 4917 struct bnxt_napi *bnapi = bp->bnapi[0]; 4918 struct bnxt_cp_ring_info *cpr; 4919 struct bnxt_stats_mem *stats; 4920 __le64 *rx_stats, *tx_stats; 4921 int rc, rx_count, tx_count; 4922 u64 *rx_masks, *tx_masks; 4923 u64 mask; 4924 u8 flags; 4925 4926 cpr = &bnapi->cp_ring; 4927 stats = &cpr->stats; 4928 rc = bnxt_hwrm_func_qstat_ext(bp, stats); 4929 if (rc) { 4930 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 4931 mask = (1ULL << 48) - 1; 4932 else 4933 mask = -1ULL; 4934 bnxt_fill_masks(stats->hw_masks, mask, stats->len / 8); 4935 } 4936 if (bp->flags & BNXT_FLAG_PORT_STATS) { 4937 stats = &bp->port_stats; 4938 rx_stats = stats->hw_stats; 4939 rx_masks = stats->hw_masks; 4940 rx_count = sizeof(struct rx_port_stats) / 8; 4941 tx_stats = rx_stats + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4942 tx_masks = rx_masks + BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 4943 tx_count = sizeof(struct tx_port_stats) / 8; 4944 4945 flags = PORT_QSTATS_REQ_FLAGS_COUNTER_MASK; 4946 rc = bnxt_hwrm_port_qstats(bp, flags); 4947 if (rc) { 4948 mask = (1ULL << 40) - 1; 4949 4950 bnxt_fill_masks(rx_masks, mask, rx_count); 4951 bnxt_fill_masks(tx_masks, mask, tx_count); 4952 } else { 4953 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4954 bnxt_copy_hw_masks(tx_masks, tx_stats, tx_count); 4955 bnxt_hwrm_port_qstats(bp, 0); 4956 } 4957 } 4958 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 4959 stats = &bp->rx_port_stats_ext; 4960 rx_stats = stats->hw_stats; 4961 rx_masks = stats->hw_masks; 4962 rx_count = sizeof(struct rx_port_stats_ext) / 8; 4963 stats = &bp->tx_port_stats_ext; 4964 tx_stats = stats->hw_stats; 4965 tx_masks = stats->hw_masks; 4966 tx_count = sizeof(struct tx_port_stats_ext) / 8; 4967 4968 flags = PORT_QSTATS_EXT_REQ_FLAGS_COUNTER_MASK; 4969 rc = bnxt_hwrm_port_qstats_ext(bp, flags); 4970 if (rc) { 4971 mask = (1ULL << 40) - 1; 4972 4973 bnxt_fill_masks(rx_masks, mask, rx_count); 4974 if (tx_stats) 4975 bnxt_fill_masks(tx_masks, mask, tx_count); 4976 } else { 4977 bnxt_copy_hw_masks(rx_masks, rx_stats, rx_count); 4978 if (tx_stats) 4979 bnxt_copy_hw_masks(tx_masks, tx_stats, 4980 tx_count); 4981 bnxt_hwrm_port_qstats_ext(bp, 0); 4982 } 4983 } 4984 } 4985 4986 static void bnxt_free_port_stats(struct bnxt *bp) 4987 { 4988 bp->flags &= ~BNXT_FLAG_PORT_STATS; 4989 bp->flags &= ~BNXT_FLAG_PORT_STATS_EXT; 4990 4991 bnxt_free_stats_mem(bp, &bp->port_stats); 4992 bnxt_free_stats_mem(bp, &bp->rx_port_stats_ext); 4993 bnxt_free_stats_mem(bp, &bp->tx_port_stats_ext); 4994 } 4995 4996 static void bnxt_free_ring_stats(struct bnxt *bp) 4997 { 4998 int i; 4999 5000 if (!bp->bnapi) 5001 return; 5002 5003 for (i = 0; i < bp->cp_nr_rings; i++) { 5004 struct bnxt_napi *bnapi = bp->bnapi[i]; 5005 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5006 5007 bnxt_free_stats_mem(bp, &cpr->stats); 5008 5009 kfree(cpr->sw_stats); 5010 cpr->sw_stats = NULL; 5011 } 5012 } 5013 5014 static int bnxt_alloc_stats(struct bnxt *bp) 5015 { 5016 u32 size, i; 5017 int rc; 5018 5019 size = bp->hw_ring_stats_size; 5020 5021 for (i = 0; i < bp->cp_nr_rings; i++) { 5022 struct bnxt_napi *bnapi = bp->bnapi[i]; 5023 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5024 5025 cpr->sw_stats = kzalloc(sizeof(*cpr->sw_stats), GFP_KERNEL); 5026 if (!cpr->sw_stats) 5027 return -ENOMEM; 5028 5029 cpr->stats.len = size; 5030 rc = bnxt_alloc_stats_mem(bp, &cpr->stats, !i); 5031 if (rc) 5032 return rc; 5033 5034 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 5035 } 5036 5037 if (BNXT_VF(bp) || bp->chip_num == CHIP_NUM_58700) 5038 return 0; 5039 5040 if (bp->port_stats.hw_stats) 5041 goto alloc_ext_stats; 5042 5043 bp->port_stats.len = BNXT_PORT_STATS_SIZE; 5044 rc = bnxt_alloc_stats_mem(bp, &bp->port_stats, true); 5045 if (rc) 5046 return rc; 5047 5048 bp->flags |= BNXT_FLAG_PORT_STATS; 5049 5050 alloc_ext_stats: 5051 /* Display extended statistics only if FW supports it */ 5052 if (bp->hwrm_spec_code < 0x10804 || bp->hwrm_spec_code == 0x10900) 5053 if (!(bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) 5054 return 0; 5055 5056 if (bp->rx_port_stats_ext.hw_stats) 5057 goto alloc_tx_ext_stats; 5058 5059 bp->rx_port_stats_ext.len = sizeof(struct rx_port_stats_ext); 5060 rc = bnxt_alloc_stats_mem(bp, &bp->rx_port_stats_ext, true); 5061 /* Extended stats are optional */ 5062 if (rc) 5063 return 0; 5064 5065 alloc_tx_ext_stats: 5066 if (bp->tx_port_stats_ext.hw_stats) 5067 return 0; 5068 5069 if (bp->hwrm_spec_code >= 0x10902 || 5070 (bp->fw_cap & BNXT_FW_CAP_EXT_STATS_SUPPORTED)) { 5071 bp->tx_port_stats_ext.len = sizeof(struct tx_port_stats_ext); 5072 rc = bnxt_alloc_stats_mem(bp, &bp->tx_port_stats_ext, true); 5073 /* Extended stats are optional */ 5074 if (rc) 5075 return 0; 5076 } 5077 bp->flags |= BNXT_FLAG_PORT_STATS_EXT; 5078 return 0; 5079 } 5080 5081 static void bnxt_clear_ring_indices(struct bnxt *bp) 5082 { 5083 int i, j; 5084 5085 if (!bp->bnapi) 5086 return; 5087 5088 for (i = 0; i < bp->cp_nr_rings; i++) { 5089 struct bnxt_napi *bnapi = bp->bnapi[i]; 5090 struct bnxt_cp_ring_info *cpr; 5091 struct bnxt_rx_ring_info *rxr; 5092 struct bnxt_tx_ring_info *txr; 5093 5094 if (!bnapi) 5095 continue; 5096 5097 cpr = &bnapi->cp_ring; 5098 cpr->cp_raw_cons = 0; 5099 5100 bnxt_for_each_napi_tx(j, bnapi, txr) { 5101 txr->tx_prod = 0; 5102 txr->tx_cons = 0; 5103 txr->tx_hw_cons = 0; 5104 } 5105 5106 rxr = bnapi->rx_ring; 5107 if (rxr) { 5108 rxr->rx_prod = 0; 5109 rxr->rx_agg_prod = 0; 5110 rxr->rx_sw_agg_prod = 0; 5111 rxr->rx_next_cons = 0; 5112 } 5113 bnapi->events = 0; 5114 } 5115 } 5116 5117 void bnxt_insert_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5118 { 5119 u8 type = fltr->type, flags = fltr->flags; 5120 5121 INIT_LIST_HEAD(&fltr->list); 5122 if ((type == BNXT_FLTR_TYPE_L2 && flags & BNXT_ACT_RING_DST) || 5123 (type == BNXT_FLTR_TYPE_NTUPLE && flags & BNXT_ACT_NO_AGING)) 5124 list_add_tail(&fltr->list, &bp->usr_fltr_list); 5125 } 5126 5127 void bnxt_del_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5128 { 5129 if (!list_empty(&fltr->list)) 5130 list_del_init(&fltr->list); 5131 } 5132 5133 static void bnxt_clear_usr_fltrs(struct bnxt *bp, bool all) 5134 { 5135 struct bnxt_filter_base *usr_fltr, *tmp; 5136 5137 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 5138 if (!all && usr_fltr->type == BNXT_FLTR_TYPE_L2) 5139 continue; 5140 bnxt_del_one_usr_fltr(bp, usr_fltr); 5141 } 5142 } 5143 5144 static void bnxt_del_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 5145 { 5146 hlist_del(&fltr->hash); 5147 bnxt_del_one_usr_fltr(bp, fltr); 5148 if (fltr->flags) { 5149 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap); 5150 bp->ntp_fltr_count--; 5151 } 5152 kfree(fltr); 5153 } 5154 5155 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool all) 5156 { 5157 int i; 5158 5159 /* Under rtnl_lock and all our NAPIs have been disabled. It's 5160 * safe to delete the hash table. 5161 */ 5162 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 5163 struct hlist_head *head; 5164 struct hlist_node *tmp; 5165 struct bnxt_ntuple_filter *fltr; 5166 5167 head = &bp->ntp_fltr_hash_tbl[i]; 5168 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5169 bnxt_del_l2_filter(bp, fltr->l2_fltr); 5170 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5171 !list_empty(&fltr->base.list))) 5172 continue; 5173 bnxt_del_fltr(bp, &fltr->base); 5174 } 5175 } 5176 if (!all) 5177 return; 5178 5179 bitmap_free(bp->ntp_fltr_bmap); 5180 bp->ntp_fltr_bmap = NULL; 5181 bp->ntp_fltr_count = 0; 5182 } 5183 5184 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp) 5185 { 5186 int i, rc = 0; 5187 5188 if (!(bp->flags & BNXT_FLAG_RFS) || bp->ntp_fltr_bmap) 5189 return 0; 5190 5191 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) 5192 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]); 5193 5194 bp->ntp_fltr_count = 0; 5195 bp->ntp_fltr_bmap = bitmap_zalloc(bp->max_fltr, GFP_KERNEL); 5196 5197 if (!bp->ntp_fltr_bmap) 5198 rc = -ENOMEM; 5199 5200 return rc; 5201 } 5202 5203 static void bnxt_free_l2_filters(struct bnxt *bp, bool all) 5204 { 5205 int i; 5206 5207 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) { 5208 struct hlist_head *head; 5209 struct hlist_node *tmp; 5210 struct bnxt_l2_filter *fltr; 5211 5212 head = &bp->l2_fltr_hash_tbl[i]; 5213 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 5214 if (!all && ((fltr->base.flags & BNXT_ACT_FUNC_DST) || 5215 !list_empty(&fltr->base.list))) 5216 continue; 5217 bnxt_del_fltr(bp, &fltr->base); 5218 } 5219 } 5220 } 5221 5222 static void bnxt_init_l2_fltr_tbl(struct bnxt *bp) 5223 { 5224 int i; 5225 5226 for (i = 0; i < BNXT_L2_FLTR_HASH_SIZE; i++) 5227 INIT_HLIST_HEAD(&bp->l2_fltr_hash_tbl[i]); 5228 get_random_bytes(&bp->hash_seed, sizeof(bp->hash_seed)); 5229 } 5230 5231 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init) 5232 { 5233 bnxt_free_vnic_attributes(bp); 5234 bnxt_free_tx_rings(bp); 5235 bnxt_free_rx_rings(bp); 5236 bnxt_free_cp_rings(bp); 5237 bnxt_free_all_cp_arrays(bp); 5238 bnxt_free_ntp_fltrs(bp, false); 5239 bnxt_free_l2_filters(bp, false); 5240 if (irq_re_init) { 5241 bnxt_free_ring_stats(bp); 5242 if (!(bp->phy_flags & BNXT_PHY_FL_PORT_STATS_NO_RESET) || 5243 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 5244 bnxt_free_port_stats(bp); 5245 bnxt_free_ring_grps(bp); 5246 bnxt_free_vnics(bp); 5247 kfree(bp->tx_ring_map); 5248 bp->tx_ring_map = NULL; 5249 kfree(bp->tx_ring); 5250 bp->tx_ring = NULL; 5251 kfree(bp->rx_ring); 5252 bp->rx_ring = NULL; 5253 kfree(bp->bnapi); 5254 bp->bnapi = NULL; 5255 } else { 5256 bnxt_clear_ring_indices(bp); 5257 } 5258 } 5259 5260 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init) 5261 { 5262 int i, j, rc, size, arr_size; 5263 void *bnapi; 5264 5265 if (irq_re_init) { 5266 /* Allocate bnapi mem pointer array and mem block for 5267 * all queues 5268 */ 5269 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) * 5270 bp->cp_nr_rings); 5271 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi)); 5272 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL); 5273 if (!bnapi) 5274 return -ENOMEM; 5275 5276 bp->bnapi = bnapi; 5277 bnapi += arr_size; 5278 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) { 5279 bp->bnapi[i] = bnapi; 5280 bp->bnapi[i]->index = i; 5281 bp->bnapi[i]->bp = bp; 5282 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5283 struct bnxt_cp_ring_info *cpr = 5284 &bp->bnapi[i]->cp_ring; 5285 5286 cpr->cp_ring_struct.ring_mem.flags = 5287 BNXT_RMEM_RING_PTE_FLAG; 5288 } 5289 } 5290 5291 bp->rx_ring = kcalloc(bp->rx_nr_rings, 5292 sizeof(struct bnxt_rx_ring_info), 5293 GFP_KERNEL); 5294 if (!bp->rx_ring) 5295 return -ENOMEM; 5296 5297 for (i = 0; i < bp->rx_nr_rings; i++) { 5298 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 5299 5300 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 5301 rxr->rx_ring_struct.ring_mem.flags = 5302 BNXT_RMEM_RING_PTE_FLAG; 5303 rxr->rx_agg_ring_struct.ring_mem.flags = 5304 BNXT_RMEM_RING_PTE_FLAG; 5305 } else { 5306 rxr->rx_cpr = &bp->bnapi[i]->cp_ring; 5307 } 5308 rxr->bnapi = bp->bnapi[i]; 5309 bp->bnapi[i]->rx_ring = &bp->rx_ring[i]; 5310 } 5311 5312 bp->tx_ring = kcalloc(bp->tx_nr_rings, 5313 sizeof(struct bnxt_tx_ring_info), 5314 GFP_KERNEL); 5315 if (!bp->tx_ring) 5316 return -ENOMEM; 5317 5318 bp->tx_ring_map = kcalloc(bp->tx_nr_rings, sizeof(u16), 5319 GFP_KERNEL); 5320 5321 if (!bp->tx_ring_map) 5322 return -ENOMEM; 5323 5324 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 5325 j = 0; 5326 else 5327 j = bp->rx_nr_rings; 5328 5329 for (i = 0; i < bp->tx_nr_rings; i++) { 5330 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 5331 struct bnxt_napi *bnapi2; 5332 5333 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 5334 txr->tx_ring_struct.ring_mem.flags = 5335 BNXT_RMEM_RING_PTE_FLAG; 5336 bp->tx_ring_map[i] = bp->tx_nr_rings_xdp + i; 5337 if (i >= bp->tx_nr_rings_xdp) { 5338 int k = j + BNXT_RING_TO_TC_OFF(bp, i); 5339 5340 bnapi2 = bp->bnapi[k]; 5341 txr->txq_index = i - bp->tx_nr_rings_xdp; 5342 txr->tx_napi_idx = 5343 BNXT_RING_TO_TC(bp, txr->txq_index); 5344 bnapi2->tx_ring[txr->tx_napi_idx] = txr; 5345 bnapi2->tx_int = bnxt_tx_int; 5346 } else { 5347 bnapi2 = bp->bnapi[j]; 5348 bnapi2->flags |= BNXT_NAPI_FLAG_XDP; 5349 bnapi2->tx_ring[0] = txr; 5350 bnapi2->tx_int = bnxt_tx_int_xdp; 5351 j++; 5352 } 5353 txr->bnapi = bnapi2; 5354 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 5355 txr->tx_cpr = &bnapi2->cp_ring; 5356 } 5357 5358 rc = bnxt_alloc_stats(bp); 5359 if (rc) 5360 goto alloc_mem_err; 5361 bnxt_init_stats(bp); 5362 5363 rc = bnxt_alloc_ntp_fltrs(bp); 5364 if (rc) 5365 goto alloc_mem_err; 5366 5367 rc = bnxt_alloc_vnics(bp); 5368 if (rc) 5369 goto alloc_mem_err; 5370 } 5371 5372 rc = bnxt_alloc_all_cp_arrays(bp); 5373 if (rc) 5374 goto alloc_mem_err; 5375 5376 bnxt_init_ring_struct(bp); 5377 5378 rc = bnxt_alloc_rx_rings(bp); 5379 if (rc) 5380 goto alloc_mem_err; 5381 5382 rc = bnxt_alloc_tx_rings(bp); 5383 if (rc) 5384 goto alloc_mem_err; 5385 5386 rc = bnxt_alloc_cp_rings(bp); 5387 if (rc) 5388 goto alloc_mem_err; 5389 5390 bp->vnic_info[BNXT_VNIC_DEFAULT].flags |= BNXT_VNIC_RSS_FLAG | 5391 BNXT_VNIC_MCAST_FLAG | 5392 BNXT_VNIC_UCAST_FLAG; 5393 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp) && (bp->flags & BNXT_FLAG_RFS)) 5394 bp->vnic_info[BNXT_VNIC_NTUPLE].flags |= 5395 BNXT_VNIC_RSS_FLAG | BNXT_VNIC_NTUPLE_FLAG; 5396 5397 rc = bnxt_alloc_vnic_attributes(bp); 5398 if (rc) 5399 goto alloc_mem_err; 5400 return 0; 5401 5402 alloc_mem_err: 5403 bnxt_free_mem(bp, true); 5404 return rc; 5405 } 5406 5407 static void bnxt_disable_int(struct bnxt *bp) 5408 { 5409 int i; 5410 5411 if (!bp->bnapi) 5412 return; 5413 5414 for (i = 0; i < bp->cp_nr_rings; i++) { 5415 struct bnxt_napi *bnapi = bp->bnapi[i]; 5416 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5417 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 5418 5419 if (ring->fw_ring_id != INVALID_HW_RING_ID) 5420 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 5421 } 5422 } 5423 5424 static int bnxt_cp_num_to_irq_num(struct bnxt *bp, int n) 5425 { 5426 struct bnxt_napi *bnapi = bp->bnapi[n]; 5427 struct bnxt_cp_ring_info *cpr; 5428 5429 cpr = &bnapi->cp_ring; 5430 return cpr->cp_ring_struct.map_idx; 5431 } 5432 5433 static void bnxt_disable_int_sync(struct bnxt *bp) 5434 { 5435 int i; 5436 5437 if (!bp->irq_tbl) 5438 return; 5439 5440 atomic_inc(&bp->intr_sem); 5441 5442 bnxt_disable_int(bp); 5443 for (i = 0; i < bp->cp_nr_rings; i++) { 5444 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 5445 5446 synchronize_irq(bp->irq_tbl[map_idx].vector); 5447 } 5448 } 5449 5450 static void bnxt_enable_int(struct bnxt *bp) 5451 { 5452 int i; 5453 5454 atomic_set(&bp->intr_sem, 0); 5455 for (i = 0; i < bp->cp_nr_rings; i++) { 5456 struct bnxt_napi *bnapi = bp->bnapi[i]; 5457 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 5458 5459 bnxt_db_nq_arm(bp, &cpr->cp_db, cpr->cp_raw_cons); 5460 } 5461 } 5462 5463 int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp, unsigned long *bmap, int bmap_size, 5464 bool async_only) 5465 { 5466 DECLARE_BITMAP(async_events_bmap, 256); 5467 u32 *events = (u32 *)async_events_bmap; 5468 struct hwrm_func_drv_rgtr_output *resp; 5469 struct hwrm_func_drv_rgtr_input *req; 5470 u32 flags; 5471 int rc, i; 5472 5473 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_RGTR); 5474 if (rc) 5475 return rc; 5476 5477 req->enables = cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE | 5478 FUNC_DRV_RGTR_REQ_ENABLES_VER | 5479 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5480 5481 req->os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX); 5482 flags = FUNC_DRV_RGTR_REQ_FLAGS_16BIT_VER_MODE; 5483 if (bp->fw_cap & BNXT_FW_CAP_HOT_RESET) 5484 flags |= FUNC_DRV_RGTR_REQ_FLAGS_HOT_RESET_SUPPORT; 5485 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 5486 flags |= FUNC_DRV_RGTR_REQ_FLAGS_ERROR_RECOVERY_SUPPORT | 5487 FUNC_DRV_RGTR_REQ_FLAGS_MASTER_SUPPORT; 5488 req->flags = cpu_to_le32(flags); 5489 req->ver_maj_8b = DRV_VER_MAJ; 5490 req->ver_min_8b = DRV_VER_MIN; 5491 req->ver_upd_8b = DRV_VER_UPD; 5492 req->ver_maj = cpu_to_le16(DRV_VER_MAJ); 5493 req->ver_min = cpu_to_le16(DRV_VER_MIN); 5494 req->ver_upd = cpu_to_le16(DRV_VER_UPD); 5495 5496 if (BNXT_PF(bp)) { 5497 u32 data[8]; 5498 int i; 5499 5500 memset(data, 0, sizeof(data)); 5501 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++) { 5502 u16 cmd = bnxt_vf_req_snif[i]; 5503 unsigned int bit, idx; 5504 5505 idx = cmd / 32; 5506 bit = cmd % 32; 5507 data[idx] |= 1 << bit; 5508 } 5509 5510 for (i = 0; i < 8; i++) 5511 req->vf_req_fwd[i] = cpu_to_le32(data[i]); 5512 5513 req->enables |= 5514 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD); 5515 } 5516 5517 if (bp->fw_cap & BNXT_FW_CAP_OVS_64BIT_HANDLE) 5518 req->flags |= cpu_to_le32( 5519 FUNC_DRV_RGTR_REQ_FLAGS_FLOW_HANDLE_64BIT_MODE); 5520 5521 memset(async_events_bmap, 0, sizeof(async_events_bmap)); 5522 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++) { 5523 u16 event_id = bnxt_async_events_arr[i]; 5524 5525 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_ERROR_RECOVERY && 5526 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 5527 continue; 5528 if (event_id == ASYNC_EVENT_CMPL_EVENT_ID_PHC_UPDATE && 5529 !bp->ptp_cfg) 5530 continue; 5531 __set_bit(bnxt_async_events_arr[i], async_events_bmap); 5532 } 5533 if (bmap && bmap_size) { 5534 for (i = 0; i < bmap_size; i++) { 5535 if (test_bit(i, bmap)) 5536 __set_bit(i, async_events_bmap); 5537 } 5538 } 5539 for (i = 0; i < 8; i++) 5540 req->async_event_fwd[i] |= cpu_to_le32(events[i]); 5541 5542 if (async_only) 5543 req->enables = 5544 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD); 5545 5546 resp = hwrm_req_hold(bp, req); 5547 rc = hwrm_req_send(bp, req); 5548 if (!rc) { 5549 set_bit(BNXT_STATE_DRV_REGISTERED, &bp->state); 5550 if (resp->flags & 5551 cpu_to_le32(FUNC_DRV_RGTR_RESP_FLAGS_IF_CHANGE_SUPPORTED)) 5552 bp->fw_cap |= BNXT_FW_CAP_IF_CHANGE; 5553 } 5554 hwrm_req_drop(bp, req); 5555 return rc; 5556 } 5557 5558 int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp) 5559 { 5560 struct hwrm_func_drv_unrgtr_input *req; 5561 int rc; 5562 5563 if (!test_and_clear_bit(BNXT_STATE_DRV_REGISTERED, &bp->state)) 5564 return 0; 5565 5566 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_UNRGTR); 5567 if (rc) 5568 return rc; 5569 return hwrm_req_send(bp, req); 5570 } 5571 5572 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa); 5573 5574 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type) 5575 { 5576 struct hwrm_tunnel_dst_port_free_input *req; 5577 int rc; 5578 5579 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN && 5580 bp->vxlan_fw_dst_port_id == INVALID_HW_RING_ID) 5581 return 0; 5582 if (tunnel_type == TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE && 5583 bp->nge_fw_dst_port_id == INVALID_HW_RING_ID) 5584 return 0; 5585 5586 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_FREE); 5587 if (rc) 5588 return rc; 5589 5590 req->tunnel_type = tunnel_type; 5591 5592 switch (tunnel_type) { 5593 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN: 5594 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_fw_dst_port_id); 5595 bp->vxlan_port = 0; 5596 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 5597 break; 5598 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE: 5599 req->tunnel_dst_port_id = cpu_to_le16(bp->nge_fw_dst_port_id); 5600 bp->nge_port = 0; 5601 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 5602 break; 5603 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE: 5604 req->tunnel_dst_port_id = cpu_to_le16(bp->vxlan_gpe_fw_dst_port_id); 5605 bp->vxlan_gpe_port = 0; 5606 bp->vxlan_gpe_fw_dst_port_id = INVALID_HW_RING_ID; 5607 break; 5608 default: 5609 break; 5610 } 5611 5612 rc = hwrm_req_send(bp, req); 5613 if (rc) 5614 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n", 5615 rc); 5616 if (bp->flags & BNXT_FLAG_TPA) 5617 bnxt_set_tpa(bp, true); 5618 return rc; 5619 } 5620 5621 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port, 5622 u8 tunnel_type) 5623 { 5624 struct hwrm_tunnel_dst_port_alloc_output *resp; 5625 struct hwrm_tunnel_dst_port_alloc_input *req; 5626 int rc; 5627 5628 rc = hwrm_req_init(bp, req, HWRM_TUNNEL_DST_PORT_ALLOC); 5629 if (rc) 5630 return rc; 5631 5632 req->tunnel_type = tunnel_type; 5633 req->tunnel_dst_port_val = port; 5634 5635 resp = hwrm_req_hold(bp, req); 5636 rc = hwrm_req_send(bp, req); 5637 if (rc) { 5638 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n", 5639 rc); 5640 goto err_out; 5641 } 5642 5643 switch (tunnel_type) { 5644 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN: 5645 bp->vxlan_port = port; 5646 bp->vxlan_fw_dst_port_id = 5647 le16_to_cpu(resp->tunnel_dst_port_id); 5648 break; 5649 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE: 5650 bp->nge_port = port; 5651 bp->nge_fw_dst_port_id = le16_to_cpu(resp->tunnel_dst_port_id); 5652 break; 5653 case TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE: 5654 bp->vxlan_gpe_port = port; 5655 bp->vxlan_gpe_fw_dst_port_id = 5656 le16_to_cpu(resp->tunnel_dst_port_id); 5657 break; 5658 default: 5659 break; 5660 } 5661 if (bp->flags & BNXT_FLAG_TPA) 5662 bnxt_set_tpa(bp, true); 5663 5664 err_out: 5665 hwrm_req_drop(bp, req); 5666 return rc; 5667 } 5668 5669 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id) 5670 { 5671 struct hwrm_cfa_l2_set_rx_mask_input *req; 5672 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id]; 5673 int rc; 5674 5675 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_SET_RX_MASK); 5676 if (rc) 5677 return rc; 5678 5679 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 5680 if (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST) { 5681 req->num_mc_entries = cpu_to_le32(vnic->mc_list_count); 5682 req->mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping); 5683 } 5684 req->mask = cpu_to_le32(vnic->rx_mask); 5685 return hwrm_req_send_silent(bp, req); 5686 } 5687 5688 void bnxt_del_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5689 { 5690 if (!atomic_dec_and_test(&fltr->refcnt)) 5691 return; 5692 spin_lock_bh(&bp->ntp_fltr_lock); 5693 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 5694 spin_unlock_bh(&bp->ntp_fltr_lock); 5695 return; 5696 } 5697 hlist_del_rcu(&fltr->base.hash); 5698 bnxt_del_one_usr_fltr(bp, &fltr->base); 5699 if (fltr->base.flags) { 5700 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 5701 bp->ntp_fltr_count--; 5702 } 5703 spin_unlock_bh(&bp->ntp_fltr_lock); 5704 kfree_rcu(fltr, base.rcu); 5705 } 5706 5707 static struct bnxt_l2_filter *__bnxt_lookup_l2_filter(struct bnxt *bp, 5708 struct bnxt_l2_key *key, 5709 u32 idx) 5710 { 5711 struct hlist_head *head = &bp->l2_fltr_hash_tbl[idx]; 5712 struct bnxt_l2_filter *fltr; 5713 5714 hlist_for_each_entry_rcu(fltr, head, base.hash) { 5715 struct bnxt_l2_key *l2_key = &fltr->l2_key; 5716 5717 if (ether_addr_equal(l2_key->dst_mac_addr, key->dst_mac_addr) && 5718 l2_key->vlan == key->vlan) 5719 return fltr; 5720 } 5721 return NULL; 5722 } 5723 5724 static struct bnxt_l2_filter *bnxt_lookup_l2_filter(struct bnxt *bp, 5725 struct bnxt_l2_key *key, 5726 u32 idx) 5727 { 5728 struct bnxt_l2_filter *fltr = NULL; 5729 5730 rcu_read_lock(); 5731 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5732 if (fltr) 5733 atomic_inc(&fltr->refcnt); 5734 rcu_read_unlock(); 5735 return fltr; 5736 } 5737 5738 #define BNXT_IPV4_4TUPLE(bp, fkeys) \ 5739 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5740 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4) || \ 5741 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5742 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4)) 5743 5744 #define BNXT_IPV6_4TUPLE(bp, fkeys) \ 5745 (((fkeys)->basic.ip_proto == IPPROTO_TCP && \ 5746 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6) || \ 5747 ((fkeys)->basic.ip_proto == IPPROTO_UDP && \ 5748 (bp)->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6)) 5749 5750 static u32 bnxt_get_rss_flow_tuple_len(struct bnxt *bp, struct flow_keys *fkeys) 5751 { 5752 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5753 if (BNXT_IPV4_4TUPLE(bp, fkeys)) 5754 return sizeof(fkeys->addrs.v4addrs) + 5755 sizeof(fkeys->ports); 5756 5757 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4) 5758 return sizeof(fkeys->addrs.v4addrs); 5759 } 5760 5761 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 5762 if (BNXT_IPV6_4TUPLE(bp, fkeys)) 5763 return sizeof(fkeys->addrs.v6addrs) + 5764 sizeof(fkeys->ports); 5765 5766 if (bp->rss_hash_cfg & VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6) 5767 return sizeof(fkeys->addrs.v6addrs); 5768 } 5769 5770 return 0; 5771 } 5772 5773 static u32 bnxt_toeplitz(struct bnxt *bp, struct flow_keys *fkeys, 5774 const unsigned char *key) 5775 { 5776 u64 prefix = bp->toeplitz_prefix, hash = 0; 5777 struct bnxt_ipv4_tuple tuple4; 5778 struct bnxt_ipv6_tuple tuple6; 5779 int i, j, len = 0; 5780 u8 *four_tuple; 5781 5782 len = bnxt_get_rss_flow_tuple_len(bp, fkeys); 5783 if (!len) 5784 return 0; 5785 5786 if (fkeys->basic.n_proto == htons(ETH_P_IP)) { 5787 tuple4.v4addrs = fkeys->addrs.v4addrs; 5788 tuple4.ports = fkeys->ports; 5789 four_tuple = (unsigned char *)&tuple4; 5790 } else { 5791 tuple6.v6addrs = fkeys->addrs.v6addrs; 5792 tuple6.ports = fkeys->ports; 5793 four_tuple = (unsigned char *)&tuple6; 5794 } 5795 5796 for (i = 0, j = 8; i < len; i++, j++) { 5797 u8 byte = four_tuple[i]; 5798 int bit; 5799 5800 for (bit = 0; bit < 8; bit++, prefix <<= 1, byte <<= 1) { 5801 if (byte & 0x80) 5802 hash ^= prefix; 5803 } 5804 prefix |= (j < HW_HASH_KEY_SIZE) ? key[j] : 0; 5805 } 5806 5807 /* The valid part of the hash is in the upper 32 bits. */ 5808 return (hash >> 32) & BNXT_NTP_FLTR_HASH_MASK; 5809 } 5810 5811 #ifdef CONFIG_RFS_ACCEL 5812 static struct bnxt_l2_filter * 5813 bnxt_lookup_l2_filter_from_key(struct bnxt *bp, struct bnxt_l2_key *key) 5814 { 5815 struct bnxt_l2_filter *fltr; 5816 u32 idx; 5817 5818 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5819 BNXT_L2_FLTR_HASH_MASK; 5820 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5821 return fltr; 5822 } 5823 #endif 5824 5825 static int bnxt_init_l2_filter(struct bnxt *bp, struct bnxt_l2_filter *fltr, 5826 struct bnxt_l2_key *key, u32 idx) 5827 { 5828 struct hlist_head *head; 5829 5830 ether_addr_copy(fltr->l2_key.dst_mac_addr, key->dst_mac_addr); 5831 fltr->l2_key.vlan = key->vlan; 5832 fltr->base.type = BNXT_FLTR_TYPE_L2; 5833 if (fltr->base.flags) { 5834 int bit_id; 5835 5836 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, 5837 bp->max_fltr, 0); 5838 if (bit_id < 0) 5839 return -ENOMEM; 5840 fltr->base.sw_id = (u16)bit_id; 5841 bp->ntp_fltr_count++; 5842 } 5843 head = &bp->l2_fltr_hash_tbl[idx]; 5844 hlist_add_head_rcu(&fltr->base.hash, head); 5845 bnxt_insert_usr_fltr(bp, &fltr->base); 5846 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 5847 atomic_set(&fltr->refcnt, 1); 5848 return 0; 5849 } 5850 5851 static struct bnxt_l2_filter *bnxt_alloc_l2_filter(struct bnxt *bp, 5852 struct bnxt_l2_key *key, 5853 gfp_t gfp) 5854 { 5855 struct bnxt_l2_filter *fltr; 5856 u32 idx; 5857 int rc; 5858 5859 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5860 BNXT_L2_FLTR_HASH_MASK; 5861 fltr = bnxt_lookup_l2_filter(bp, key, idx); 5862 if (fltr) 5863 return fltr; 5864 5865 fltr = kzalloc(sizeof(*fltr), gfp); 5866 if (!fltr) 5867 return ERR_PTR(-ENOMEM); 5868 spin_lock_bh(&bp->ntp_fltr_lock); 5869 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5870 spin_unlock_bh(&bp->ntp_fltr_lock); 5871 if (rc) { 5872 bnxt_del_l2_filter(bp, fltr); 5873 fltr = ERR_PTR(rc); 5874 } 5875 return fltr; 5876 } 5877 5878 struct bnxt_l2_filter *bnxt_alloc_new_l2_filter(struct bnxt *bp, 5879 struct bnxt_l2_key *key, 5880 u16 flags) 5881 { 5882 struct bnxt_l2_filter *fltr; 5883 u32 idx; 5884 int rc; 5885 5886 idx = jhash2(&key->filter_key, BNXT_L2_KEY_SIZE, bp->hash_seed) & 5887 BNXT_L2_FLTR_HASH_MASK; 5888 spin_lock_bh(&bp->ntp_fltr_lock); 5889 fltr = __bnxt_lookup_l2_filter(bp, key, idx); 5890 if (fltr) { 5891 fltr = ERR_PTR(-EEXIST); 5892 goto l2_filter_exit; 5893 } 5894 fltr = kzalloc(sizeof(*fltr), GFP_ATOMIC); 5895 if (!fltr) { 5896 fltr = ERR_PTR(-ENOMEM); 5897 goto l2_filter_exit; 5898 } 5899 fltr->base.flags = flags; 5900 rc = bnxt_init_l2_filter(bp, fltr, key, idx); 5901 if (rc) { 5902 spin_unlock_bh(&bp->ntp_fltr_lock); 5903 bnxt_del_l2_filter(bp, fltr); 5904 return ERR_PTR(rc); 5905 } 5906 5907 l2_filter_exit: 5908 spin_unlock_bh(&bp->ntp_fltr_lock); 5909 return fltr; 5910 } 5911 5912 static u16 bnxt_vf_target_id(struct bnxt_pf_info *pf, u16 vf_idx) 5913 { 5914 #ifdef CONFIG_BNXT_SRIOV 5915 struct bnxt_vf_info *vf = &pf->vf[vf_idx]; 5916 5917 return vf->fw_fid; 5918 #else 5919 return INVALID_HW_RING_ID; 5920 #endif 5921 } 5922 5923 int bnxt_hwrm_l2_filter_free(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5924 { 5925 struct hwrm_cfa_l2_filter_free_input *req; 5926 u16 target_id = 0xffff; 5927 int rc; 5928 5929 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5930 struct bnxt_pf_info *pf = &bp->pf; 5931 5932 if (fltr->base.vf_idx >= pf->active_vfs) 5933 return -EINVAL; 5934 5935 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5936 if (target_id == INVALID_HW_RING_ID) 5937 return -EINVAL; 5938 } 5939 5940 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_FREE); 5941 if (rc) 5942 return rc; 5943 5944 req->target_id = cpu_to_le16(target_id); 5945 req->l2_filter_id = fltr->base.filter_id; 5946 return hwrm_req_send(bp, req); 5947 } 5948 5949 int bnxt_hwrm_l2_filter_alloc(struct bnxt *bp, struct bnxt_l2_filter *fltr) 5950 { 5951 struct hwrm_cfa_l2_filter_alloc_output *resp; 5952 struct hwrm_cfa_l2_filter_alloc_input *req; 5953 u16 target_id = 0xffff; 5954 int rc; 5955 5956 if (fltr->base.flags & BNXT_ACT_FUNC_DST) { 5957 struct bnxt_pf_info *pf = &bp->pf; 5958 5959 if (fltr->base.vf_idx >= pf->active_vfs) 5960 return -EINVAL; 5961 5962 target_id = bnxt_vf_target_id(pf, fltr->base.vf_idx); 5963 } 5964 rc = hwrm_req_init(bp, req, HWRM_CFA_L2_FILTER_ALLOC); 5965 if (rc) 5966 return rc; 5967 5968 req->target_id = cpu_to_le16(target_id); 5969 req->flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX); 5970 5971 if (!BNXT_CHIP_TYPE_NITRO_A0(bp)) 5972 req->flags |= 5973 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST); 5974 req->dst_id = cpu_to_le16(fltr->base.fw_vnic_id); 5975 req->enables = 5976 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR | 5977 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID | 5978 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK); 5979 ether_addr_copy(req->l2_addr, fltr->l2_key.dst_mac_addr); 5980 eth_broadcast_addr(req->l2_addr_mask); 5981 5982 if (fltr->l2_key.vlan) { 5983 req->enables |= 5984 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN | 5985 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_IVLAN_MASK | 5986 CFA_L2_FILTER_ALLOC_REQ_ENABLES_NUM_VLANS); 5987 req->num_vlans = 1; 5988 req->l2_ivlan = cpu_to_le16(fltr->l2_key.vlan); 5989 req->l2_ivlan_mask = cpu_to_le16(0xfff); 5990 } 5991 5992 resp = hwrm_req_hold(bp, req); 5993 rc = hwrm_req_send(bp, req); 5994 if (!rc) { 5995 fltr->base.filter_id = resp->l2_filter_id; 5996 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 5997 } 5998 hwrm_req_drop(bp, req); 5999 return rc; 6000 } 6001 6002 int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp, 6003 struct bnxt_ntuple_filter *fltr) 6004 { 6005 struct hwrm_cfa_ntuple_filter_free_input *req; 6006 int rc; 6007 6008 set_bit(BNXT_FLTR_FW_DELETED, &fltr->base.state); 6009 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_FREE); 6010 if (rc) 6011 return rc; 6012 6013 req->ntuple_filter_id = fltr->base.filter_id; 6014 return hwrm_req_send(bp, req); 6015 } 6016 6017 #define BNXT_NTP_FLTR_FLAGS \ 6018 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \ 6019 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \ 6020 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \ 6021 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \ 6022 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \ 6023 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \ 6024 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \ 6025 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \ 6026 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \ 6027 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \ 6028 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \ 6029 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \ 6030 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID) 6031 6032 #define BNXT_NTP_TUNNEL_FLTR_FLAG \ 6033 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_TUNNEL_TYPE 6034 6035 void bnxt_fill_ipv6_mask(__be32 mask[4]) 6036 { 6037 int i; 6038 6039 for (i = 0; i < 4; i++) 6040 mask[i] = cpu_to_be32(~0); 6041 } 6042 6043 static void 6044 bnxt_cfg_rfs_ring_tbl_idx(struct bnxt *bp, 6045 struct hwrm_cfa_ntuple_filter_alloc_input *req, 6046 struct bnxt_ntuple_filter *fltr) 6047 { 6048 u16 rxq = fltr->base.rxq; 6049 6050 if (fltr->base.flags & BNXT_ACT_RSS_CTX) { 6051 struct ethtool_rxfh_context *ctx; 6052 struct bnxt_rss_ctx *rss_ctx; 6053 struct bnxt_vnic_info *vnic; 6054 6055 ctx = xa_load(&bp->dev->ethtool->rss_ctx, 6056 fltr->base.fw_vnic_id); 6057 if (ctx) { 6058 rss_ctx = ethtool_rxfh_context_priv(ctx); 6059 vnic = &rss_ctx->vnic; 6060 6061 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6062 } 6063 return; 6064 } 6065 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 6066 struct bnxt_vnic_info *vnic; 6067 u32 enables; 6068 6069 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 6070 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6071 enables = CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_RFS_RING_TBL_IDX; 6072 req->enables |= cpu_to_le32(enables); 6073 req->rfs_ring_tbl_idx = cpu_to_le16(rxq); 6074 } else { 6075 u32 flags; 6076 6077 flags = CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DEST_RFS_RING_IDX; 6078 req->flags |= cpu_to_le32(flags); 6079 req->dst_id = cpu_to_le16(rxq); 6080 } 6081 } 6082 6083 int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp, 6084 struct bnxt_ntuple_filter *fltr) 6085 { 6086 struct hwrm_cfa_ntuple_filter_alloc_output *resp; 6087 struct hwrm_cfa_ntuple_filter_alloc_input *req; 6088 struct bnxt_flow_masks *masks = &fltr->fmasks; 6089 struct flow_keys *keys = &fltr->fkeys; 6090 struct bnxt_l2_filter *l2_fltr; 6091 struct bnxt_vnic_info *vnic; 6092 int rc; 6093 6094 rc = hwrm_req_init(bp, req, HWRM_CFA_NTUPLE_FILTER_ALLOC); 6095 if (rc) 6096 return rc; 6097 6098 l2_fltr = fltr->l2_fltr; 6099 req->l2_filter_id = l2_fltr->base.filter_id; 6100 6101 if (fltr->base.flags & BNXT_ACT_DROP) { 6102 req->flags = 6103 cpu_to_le32(CFA_NTUPLE_FILTER_ALLOC_REQ_FLAGS_DROP); 6104 } else if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) { 6105 bnxt_cfg_rfs_ring_tbl_idx(bp, req, fltr); 6106 } else { 6107 vnic = &bp->vnic_info[fltr->base.rxq + 1]; 6108 req->dst_id = cpu_to_le16(vnic->fw_vnic_id); 6109 } 6110 req->enables |= cpu_to_le32(BNXT_NTP_FLTR_FLAGS); 6111 6112 req->ethertype = htons(ETH_P_IP); 6113 req->ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4; 6114 req->ip_protocol = keys->basic.ip_proto; 6115 6116 if (keys->basic.n_proto == htons(ETH_P_IPV6)) { 6117 req->ethertype = htons(ETH_P_IPV6); 6118 req->ip_addr_type = 6119 CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV6; 6120 *(struct in6_addr *)&req->src_ipaddr[0] = keys->addrs.v6addrs.src; 6121 *(struct in6_addr *)&req->src_ipaddr_mask[0] = masks->addrs.v6addrs.src; 6122 *(struct in6_addr *)&req->dst_ipaddr[0] = keys->addrs.v6addrs.dst; 6123 *(struct in6_addr *)&req->dst_ipaddr_mask[0] = masks->addrs.v6addrs.dst; 6124 } else { 6125 req->src_ipaddr[0] = keys->addrs.v4addrs.src; 6126 req->src_ipaddr_mask[0] = masks->addrs.v4addrs.src; 6127 req->dst_ipaddr[0] = keys->addrs.v4addrs.dst; 6128 req->dst_ipaddr_mask[0] = masks->addrs.v4addrs.dst; 6129 } 6130 if (keys->control.flags & FLOW_DIS_ENCAPSULATION) { 6131 req->enables |= cpu_to_le32(BNXT_NTP_TUNNEL_FLTR_FLAG); 6132 req->tunnel_type = 6133 CFA_NTUPLE_FILTER_ALLOC_REQ_TUNNEL_TYPE_ANYTUNNEL; 6134 } 6135 6136 req->src_port = keys->ports.src; 6137 req->src_port_mask = masks->ports.src; 6138 req->dst_port = keys->ports.dst; 6139 req->dst_port_mask = masks->ports.dst; 6140 6141 resp = hwrm_req_hold(bp, req); 6142 rc = hwrm_req_send(bp, req); 6143 if (!rc) 6144 fltr->base.filter_id = resp->ntuple_filter_id; 6145 hwrm_req_drop(bp, req); 6146 return rc; 6147 } 6148 6149 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx, 6150 const u8 *mac_addr) 6151 { 6152 struct bnxt_l2_filter *fltr; 6153 struct bnxt_l2_key key; 6154 int rc; 6155 6156 ether_addr_copy(key.dst_mac_addr, mac_addr); 6157 key.vlan = 0; 6158 fltr = bnxt_alloc_l2_filter(bp, &key, GFP_KERNEL); 6159 if (IS_ERR(fltr)) 6160 return PTR_ERR(fltr); 6161 6162 fltr->base.fw_vnic_id = bp->vnic_info[vnic_id].fw_vnic_id; 6163 rc = bnxt_hwrm_l2_filter_alloc(bp, fltr); 6164 if (rc) 6165 bnxt_del_l2_filter(bp, fltr); 6166 else 6167 bp->vnic_info[vnic_id].l2_filters[idx] = fltr; 6168 return rc; 6169 } 6170 6171 static void bnxt_hwrm_clear_vnic_filter(struct bnxt *bp) 6172 { 6173 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */ 6174 6175 /* Any associated ntuple filters will also be cleared by firmware. */ 6176 for (i = 0; i < num_of_vnics; i++) { 6177 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6178 6179 for (j = 0; j < vnic->uc_filter_count; j++) { 6180 struct bnxt_l2_filter *fltr = vnic->l2_filters[j]; 6181 6182 bnxt_hwrm_l2_filter_free(bp, fltr); 6183 bnxt_del_l2_filter(bp, fltr); 6184 } 6185 vnic->uc_filter_count = 0; 6186 } 6187 } 6188 6189 #define BNXT_DFLT_TUNL_TPA_BMAP \ 6190 (VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GRE | \ 6191 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV4 | \ 6192 VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_IPV6) 6193 6194 static void bnxt_hwrm_vnic_update_tunl_tpa(struct bnxt *bp, 6195 struct hwrm_vnic_tpa_cfg_input *req) 6196 { 6197 u32 tunl_tpa_bmap = BNXT_DFLT_TUNL_TPA_BMAP; 6198 6199 if (!(bp->fw_cap & BNXT_FW_CAP_VNIC_TUNNEL_TPA)) 6200 return; 6201 6202 if (bp->vxlan_port) 6203 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN; 6204 if (bp->vxlan_gpe_port) 6205 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_VXLAN_GPE; 6206 if (bp->nge_port) 6207 tunl_tpa_bmap |= VNIC_TPA_CFG_REQ_TNL_TPA_EN_BITMAP_GENEVE; 6208 6209 req->enables |= cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_TNL_TPA_EN); 6210 req->tnl_tpa_en_bitmap = cpu_to_le32(tunl_tpa_bmap); 6211 } 6212 6213 int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6214 u32 tpa_flags) 6215 { 6216 u16 max_aggs = VNIC_TPA_CFG_REQ_MAX_AGGS_MAX; 6217 struct hwrm_vnic_tpa_cfg_input *req; 6218 int rc; 6219 6220 if (vnic->fw_vnic_id == INVALID_HW_RING_ID) 6221 return 0; 6222 6223 rc = hwrm_req_init(bp, req, HWRM_VNIC_TPA_CFG); 6224 if (rc) 6225 return rc; 6226 6227 if (tpa_flags) { 6228 u16 mss = bp->dev->mtu - 40; 6229 u32 nsegs, n, segs = 0, flags; 6230 6231 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA | 6232 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA | 6233 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE | 6234 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN | 6235 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ; 6236 if (tpa_flags & BNXT_FLAG_GRO) 6237 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO; 6238 6239 req->flags = cpu_to_le32(flags); 6240 6241 req->enables = 6242 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS | 6243 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS | 6244 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN); 6245 6246 /* Number of segs are log2 units, and first packet is not 6247 * included as part of this units. 6248 */ 6249 if (mss <= BNXT_RX_PAGE_SIZE) { 6250 n = BNXT_RX_PAGE_SIZE / mss; 6251 nsegs = (MAX_SKB_FRAGS - 1) * n; 6252 } else { 6253 n = mss / BNXT_RX_PAGE_SIZE; 6254 if (mss & (BNXT_RX_PAGE_SIZE - 1)) 6255 n++; 6256 nsegs = (MAX_SKB_FRAGS - n) / n; 6257 } 6258 6259 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6260 segs = MAX_TPA_SEGS_P5; 6261 max_aggs = bp->max_tpa; 6262 } else { 6263 segs = ilog2(nsegs); 6264 } 6265 req->max_agg_segs = cpu_to_le16(segs); 6266 req->max_aggs = cpu_to_le16(max_aggs); 6267 6268 req->min_agg_len = cpu_to_le32(512); 6269 bnxt_hwrm_vnic_update_tunl_tpa(bp, req); 6270 } 6271 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6272 6273 return hwrm_req_send(bp, req); 6274 } 6275 6276 static u16 bnxt_cp_ring_from_grp(struct bnxt *bp, struct bnxt_ring_struct *ring) 6277 { 6278 struct bnxt_ring_grp_info *grp_info; 6279 6280 grp_info = &bp->grp_info[ring->grp_idx]; 6281 return grp_info->cp_fw_ring_id; 6282 } 6283 6284 static u16 bnxt_cp_ring_for_rx(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 6285 { 6286 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6287 return rxr->rx_cpr->cp_ring_struct.fw_ring_id; 6288 else 6289 return bnxt_cp_ring_from_grp(bp, &rxr->rx_ring_struct); 6290 } 6291 6292 static u16 bnxt_cp_ring_for_tx(struct bnxt *bp, struct bnxt_tx_ring_info *txr) 6293 { 6294 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6295 return txr->tx_cpr->cp_ring_struct.fw_ring_id; 6296 else 6297 return bnxt_cp_ring_from_grp(bp, &txr->tx_ring_struct); 6298 } 6299 6300 static int bnxt_alloc_rss_indir_tbl(struct bnxt *bp) 6301 { 6302 int entries; 6303 6304 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6305 entries = BNXT_MAX_RSS_TABLE_ENTRIES_P5; 6306 else 6307 entries = HW_HASH_INDEX_SIZE; 6308 6309 bp->rss_indir_tbl_entries = entries; 6310 bp->rss_indir_tbl = 6311 kmalloc_array(entries, sizeof(*bp->rss_indir_tbl), GFP_KERNEL); 6312 if (!bp->rss_indir_tbl) 6313 return -ENOMEM; 6314 6315 return 0; 6316 } 6317 6318 void bnxt_set_dflt_rss_indir_tbl(struct bnxt *bp, 6319 struct ethtool_rxfh_context *rss_ctx) 6320 { 6321 u16 max_rings, max_entries, pad, i; 6322 u32 *rss_indir_tbl; 6323 6324 if (!bp->rx_nr_rings) 6325 return; 6326 6327 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6328 max_rings = bp->rx_nr_rings - 1; 6329 else 6330 max_rings = bp->rx_nr_rings; 6331 6332 max_entries = bnxt_get_rxfh_indir_size(bp->dev); 6333 if (rss_ctx) 6334 rss_indir_tbl = ethtool_rxfh_context_indir(rss_ctx); 6335 else 6336 rss_indir_tbl = &bp->rss_indir_tbl[0]; 6337 6338 for (i = 0; i < max_entries; i++) 6339 rss_indir_tbl[i] = ethtool_rxfh_indir_default(i, max_rings); 6340 6341 pad = bp->rss_indir_tbl_entries - max_entries; 6342 if (pad) 6343 memset(&rss_indir_tbl[i], 0, pad * sizeof(*rss_indir_tbl)); 6344 } 6345 6346 static u16 bnxt_get_max_rss_ring(struct bnxt *bp) 6347 { 6348 u32 i, tbl_size, max_ring = 0; 6349 6350 if (!bp->rss_indir_tbl) 6351 return 0; 6352 6353 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6354 for (i = 0; i < tbl_size; i++) 6355 max_ring = max(max_ring, bp->rss_indir_tbl[i]); 6356 return max_ring; 6357 } 6358 6359 int bnxt_get_nr_rss_ctxs(struct bnxt *bp, int rx_rings) 6360 { 6361 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6362 if (!rx_rings) 6363 return 0; 6364 return bnxt_calc_nr_ring_pages(rx_rings - 1, 6365 BNXT_RSS_TABLE_ENTRIES_P5); 6366 } 6367 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 6368 return 2; 6369 return 1; 6370 } 6371 6372 static void bnxt_fill_hw_rss_tbl(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6373 { 6374 bool no_rss = !(vnic->flags & BNXT_VNIC_RSS_FLAG); 6375 u16 i, j; 6376 6377 /* Fill the RSS indirection table with ring group ids */ 6378 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++) { 6379 if (!no_rss) 6380 j = bp->rss_indir_tbl[i]; 6381 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]); 6382 } 6383 } 6384 6385 static void bnxt_fill_hw_rss_tbl_p5(struct bnxt *bp, 6386 struct bnxt_vnic_info *vnic) 6387 { 6388 __le16 *ring_tbl = vnic->rss_table; 6389 struct bnxt_rx_ring_info *rxr; 6390 u16 tbl_size, i; 6391 6392 tbl_size = bnxt_get_rxfh_indir_size(bp->dev); 6393 6394 for (i = 0; i < tbl_size; i++) { 6395 u16 ring_id, j; 6396 6397 if (vnic->flags & BNXT_VNIC_NTUPLE_FLAG) 6398 j = ethtool_rxfh_indir_default(i, bp->rx_nr_rings); 6399 else if (vnic->flags & BNXT_VNIC_RSSCTX_FLAG) 6400 j = ethtool_rxfh_context_indir(vnic->rss_ctx)[i]; 6401 else 6402 j = bp->rss_indir_tbl[i]; 6403 rxr = &bp->rx_ring[j]; 6404 6405 ring_id = rxr->rx_ring_struct.fw_ring_id; 6406 *ring_tbl++ = cpu_to_le16(ring_id); 6407 ring_id = bnxt_cp_ring_for_rx(bp, rxr); 6408 *ring_tbl++ = cpu_to_le16(ring_id); 6409 } 6410 } 6411 6412 static void 6413 __bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct hwrm_vnic_rss_cfg_input *req, 6414 struct bnxt_vnic_info *vnic) 6415 { 6416 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6417 bnxt_fill_hw_rss_tbl_p5(bp, vnic); 6418 if (bp->flags & BNXT_FLAG_CHIP_P7) 6419 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_IPSEC_HASH_TYPE_CFG_SUPPORT; 6420 } else { 6421 bnxt_fill_hw_rss_tbl(bp, vnic); 6422 } 6423 6424 if (bp->rss_hash_delta) { 6425 req->hash_type = cpu_to_le32(bp->rss_hash_delta); 6426 if (bp->rss_hash_cfg & bp->rss_hash_delta) 6427 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_INCLUDE; 6428 else 6429 req->flags |= VNIC_RSS_CFG_REQ_FLAGS_HASH_TYPE_EXCLUDE; 6430 } else { 6431 req->hash_type = cpu_to_le32(bp->rss_hash_cfg); 6432 } 6433 req->hash_mode_flags = VNIC_RSS_CFG_REQ_HASH_MODE_FLAGS_DEFAULT; 6434 req->ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr); 6435 req->hash_key_tbl_addr = cpu_to_le64(vnic->rss_hash_key_dma_addr); 6436 } 6437 6438 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6439 bool set_rss) 6440 { 6441 struct hwrm_vnic_rss_cfg_input *req; 6442 int rc; 6443 6444 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) || 6445 vnic->fw_rss_cos_lb_ctx[0] == INVALID_HW_RING_ID) 6446 return 0; 6447 6448 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6449 if (rc) 6450 return rc; 6451 6452 if (set_rss) 6453 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6454 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6455 return hwrm_req_send(bp, req); 6456 } 6457 6458 static int bnxt_hwrm_vnic_set_rss_p5(struct bnxt *bp, 6459 struct bnxt_vnic_info *vnic, bool set_rss) 6460 { 6461 struct hwrm_vnic_rss_cfg_input *req; 6462 dma_addr_t ring_tbl_map; 6463 u32 i, nr_ctxs; 6464 int rc; 6465 6466 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_CFG); 6467 if (rc) 6468 return rc; 6469 6470 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6471 if (!set_rss) 6472 return hwrm_req_send(bp, req); 6473 6474 __bnxt_hwrm_vnic_set_rss(bp, req, vnic); 6475 ring_tbl_map = vnic->rss_table_dma_addr; 6476 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 6477 6478 hwrm_req_hold(bp, req); 6479 for (i = 0; i < nr_ctxs; ring_tbl_map += BNXT_RSS_TABLE_SIZE_P5, i++) { 6480 req->ring_grp_tbl_addr = cpu_to_le64(ring_tbl_map); 6481 req->ring_table_pair_index = i; 6482 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[i]); 6483 rc = hwrm_req_send(bp, req); 6484 if (rc) 6485 goto exit; 6486 } 6487 6488 exit: 6489 hwrm_req_drop(bp, req); 6490 return rc; 6491 } 6492 6493 static void bnxt_hwrm_update_rss_hash_cfg(struct bnxt *bp) 6494 { 6495 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6496 struct hwrm_vnic_rss_qcfg_output *resp; 6497 struct hwrm_vnic_rss_qcfg_input *req; 6498 6499 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_QCFG)) 6500 return; 6501 6502 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6503 /* all contexts configured to same hash_type, zero always exists */ 6504 req->rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6505 resp = hwrm_req_hold(bp, req); 6506 if (!hwrm_req_send(bp, req)) { 6507 bp->rss_hash_cfg = le32_to_cpu(resp->hash_type) ?: bp->rss_hash_cfg; 6508 bp->rss_hash_delta = 0; 6509 } 6510 hwrm_req_drop(bp, req); 6511 } 6512 6513 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6514 { 6515 struct hwrm_vnic_plcmodes_cfg_input *req; 6516 int rc; 6517 6518 rc = hwrm_req_init(bp, req, HWRM_VNIC_PLCMODES_CFG); 6519 if (rc) 6520 return rc; 6521 6522 req->flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT); 6523 req->enables = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID); 6524 6525 if (BNXT_RX_PAGE_MODE(bp)) { 6526 req->jumbo_thresh = cpu_to_le16(bp->rx_buf_use_size); 6527 } else { 6528 req->flags |= cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 | 6529 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6); 6530 req->enables |= 6531 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID); 6532 req->jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh); 6533 req->hds_threshold = cpu_to_le16(bp->rx_copy_thresh); 6534 } 6535 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6536 return hwrm_req_send(bp, req); 6537 } 6538 6539 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, 6540 struct bnxt_vnic_info *vnic, 6541 u16 ctx_idx) 6542 { 6543 struct hwrm_vnic_rss_cos_lb_ctx_free_input *req; 6544 6545 if (hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_FREE)) 6546 return; 6547 6548 req->rss_cos_lb_ctx_id = 6549 cpu_to_le16(vnic->fw_rss_cos_lb_ctx[ctx_idx]); 6550 6551 hwrm_req_send(bp, req); 6552 vnic->fw_rss_cos_lb_ctx[ctx_idx] = INVALID_HW_RING_ID; 6553 } 6554 6555 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp) 6556 { 6557 int i, j; 6558 6559 for (i = 0; i < bp->nr_vnics; i++) { 6560 struct bnxt_vnic_info *vnic = &bp->vnic_info[i]; 6561 6562 for (j = 0; j < BNXT_MAX_CTX_PER_VNIC; j++) { 6563 if (vnic->fw_rss_cos_lb_ctx[j] != INVALID_HW_RING_ID) 6564 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, j); 6565 } 6566 } 6567 bp->rsscos_nr_ctxs = 0; 6568 } 6569 6570 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, 6571 struct bnxt_vnic_info *vnic, u16 ctx_idx) 6572 { 6573 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp; 6574 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input *req; 6575 int rc; 6576 6577 rc = hwrm_req_init(bp, req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC); 6578 if (rc) 6579 return rc; 6580 6581 resp = hwrm_req_hold(bp, req); 6582 rc = hwrm_req_send(bp, req); 6583 if (!rc) 6584 vnic->fw_rss_cos_lb_ctx[ctx_idx] = 6585 le16_to_cpu(resp->rss_cos_lb_ctx_id); 6586 hwrm_req_drop(bp, req); 6587 6588 return rc; 6589 } 6590 6591 static u32 bnxt_get_roce_vnic_mode(struct bnxt *bp) 6592 { 6593 if (bp->flags & BNXT_FLAG_ROCE_MIRROR_CAP) 6594 return VNIC_CFG_REQ_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_MODE; 6595 return VNIC_CFG_REQ_FLAGS_ROCE_DUAL_VNIC_MODE; 6596 } 6597 6598 int bnxt_hwrm_vnic_cfg(struct bnxt *bp, struct bnxt_vnic_info *vnic) 6599 { 6600 struct bnxt_vnic_info *vnic0 = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 6601 struct hwrm_vnic_cfg_input *req; 6602 unsigned int ring = 0, grp_idx; 6603 u16 def_vlan = 0; 6604 int rc; 6605 6606 rc = hwrm_req_init(bp, req, HWRM_VNIC_CFG); 6607 if (rc) 6608 return rc; 6609 6610 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6611 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[0]; 6612 6613 req->default_rx_ring_id = 6614 cpu_to_le16(rxr->rx_ring_struct.fw_ring_id); 6615 req->default_cmpl_ring_id = 6616 cpu_to_le16(bnxt_cp_ring_for_rx(bp, rxr)); 6617 req->enables = 6618 cpu_to_le32(VNIC_CFG_REQ_ENABLES_DEFAULT_RX_RING_ID | 6619 VNIC_CFG_REQ_ENABLES_DEFAULT_CMPL_RING_ID); 6620 goto vnic_mru; 6621 } 6622 req->enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP); 6623 /* Only RSS support for now TBD: COS & LB */ 6624 if (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID) { 6625 req->rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[0]); 6626 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6627 VNIC_CFG_REQ_ENABLES_MRU); 6628 } else if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) { 6629 req->rss_rule = cpu_to_le16(vnic0->fw_rss_cos_lb_ctx[0]); 6630 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_RSS_RULE | 6631 VNIC_CFG_REQ_ENABLES_MRU); 6632 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_RSS_DFLT_CR_MODE); 6633 } else { 6634 req->rss_rule = cpu_to_le16(0xffff); 6635 } 6636 6637 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && 6638 (vnic->fw_rss_cos_lb_ctx[0] != INVALID_HW_RING_ID)) { 6639 req->cos_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx[1]); 6640 req->enables |= cpu_to_le32(VNIC_CFG_REQ_ENABLES_COS_RULE); 6641 } else { 6642 req->cos_rule = cpu_to_le16(0xffff); 6643 } 6644 6645 if (vnic->flags & BNXT_VNIC_RSS_FLAG) 6646 ring = 0; 6647 else if (vnic->flags & BNXT_VNIC_RFS_FLAG) 6648 ring = vnic->vnic_id - 1; 6649 else if ((vnic->vnic_id == 1) && BNXT_CHIP_TYPE_NITRO_A0(bp)) 6650 ring = bp->rx_nr_rings - 1; 6651 6652 grp_idx = bp->rx_ring[ring].bnapi->index; 6653 req->dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id); 6654 req->lb_rule = cpu_to_le16(0xffff); 6655 vnic_mru: 6656 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 6657 req->mru = cpu_to_le16(vnic->mru); 6658 6659 req->vnic_id = cpu_to_le16(vnic->fw_vnic_id); 6660 #ifdef CONFIG_BNXT_SRIOV 6661 if (BNXT_VF(bp)) 6662 def_vlan = bp->vf.vlan; 6663 #endif 6664 if ((bp->flags & BNXT_FLAG_STRIP_VLAN) || def_vlan) 6665 req->flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE); 6666 if (vnic->vnic_id == BNXT_VNIC_DEFAULT && bnxt_ulp_registered(bp->edev)) 6667 req->flags |= cpu_to_le32(bnxt_get_roce_vnic_mode(bp)); 6668 6669 return hwrm_req_send(bp, req); 6670 } 6671 6672 static void bnxt_hwrm_vnic_free_one(struct bnxt *bp, 6673 struct bnxt_vnic_info *vnic) 6674 { 6675 if (vnic->fw_vnic_id != INVALID_HW_RING_ID) { 6676 struct hwrm_vnic_free_input *req; 6677 6678 if (hwrm_req_init(bp, req, HWRM_VNIC_FREE)) 6679 return; 6680 6681 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 6682 6683 hwrm_req_send(bp, req); 6684 vnic->fw_vnic_id = INVALID_HW_RING_ID; 6685 } 6686 } 6687 6688 static void bnxt_hwrm_vnic_free(struct bnxt *bp) 6689 { 6690 u16 i; 6691 6692 for (i = 0; i < bp->nr_vnics; i++) 6693 bnxt_hwrm_vnic_free_one(bp, &bp->vnic_info[i]); 6694 } 6695 6696 int bnxt_hwrm_vnic_alloc(struct bnxt *bp, struct bnxt_vnic_info *vnic, 6697 unsigned int start_rx_ring_idx, 6698 unsigned int nr_rings) 6699 { 6700 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings; 6701 struct hwrm_vnic_alloc_output *resp; 6702 struct hwrm_vnic_alloc_input *req; 6703 int rc; 6704 6705 rc = hwrm_req_init(bp, req, HWRM_VNIC_ALLOC); 6706 if (rc) 6707 return rc; 6708 6709 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6710 goto vnic_no_ring_grps; 6711 6712 /* map ring groups to this vnic */ 6713 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) { 6714 grp_idx = bp->rx_ring[i].bnapi->index; 6715 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) { 6716 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n", 6717 j, nr_rings); 6718 break; 6719 } 6720 vnic->fw_grp_ids[j] = bp->grp_info[grp_idx].fw_grp_id; 6721 } 6722 6723 vnic_no_ring_grps: 6724 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) 6725 vnic->fw_rss_cos_lb_ctx[i] = INVALID_HW_RING_ID; 6726 if (vnic->vnic_id == BNXT_VNIC_DEFAULT) 6727 req->flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT); 6728 6729 resp = hwrm_req_hold(bp, req); 6730 rc = hwrm_req_send(bp, req); 6731 if (!rc) 6732 vnic->fw_vnic_id = le32_to_cpu(resp->vnic_id); 6733 hwrm_req_drop(bp, req); 6734 return rc; 6735 } 6736 6737 static int bnxt_hwrm_vnic_qcaps(struct bnxt *bp) 6738 { 6739 struct hwrm_vnic_qcaps_output *resp; 6740 struct hwrm_vnic_qcaps_input *req; 6741 int rc; 6742 6743 bp->hw_ring_stats_size = sizeof(struct ctx_hw_stats); 6744 bp->flags &= ~BNXT_FLAG_ROCE_MIRROR_CAP; 6745 bp->rss_cap &= ~BNXT_RSS_CAP_NEW_RSS_CAP; 6746 if (bp->hwrm_spec_code < 0x10600) 6747 return 0; 6748 6749 rc = hwrm_req_init(bp, req, HWRM_VNIC_QCAPS); 6750 if (rc) 6751 return rc; 6752 6753 resp = hwrm_req_hold(bp, req); 6754 rc = hwrm_req_send(bp, req); 6755 if (!rc) { 6756 u32 flags = le32_to_cpu(resp->flags); 6757 6758 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 6759 (flags & VNIC_QCAPS_RESP_FLAGS_RSS_DFLT_CR_CAP)) 6760 bp->rss_cap |= BNXT_RSS_CAP_NEW_RSS_CAP; 6761 if (flags & 6762 VNIC_QCAPS_RESP_FLAGS_ROCE_MIRRORING_CAPABLE_VNIC_CAP) 6763 bp->flags |= BNXT_FLAG_ROCE_MIRROR_CAP; 6764 6765 /* Older P5 fw before EXT_HW_STATS support did not set 6766 * VLAN_STRIP_CAP properly. 6767 */ 6768 if ((flags & VNIC_QCAPS_RESP_FLAGS_VLAN_STRIP_CAP) || 6769 (BNXT_CHIP_P5(bp) && 6770 !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED))) 6771 bp->fw_cap |= BNXT_FW_CAP_VLAN_RX_STRIP; 6772 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_HASH_TYPE_DELTA_CAP) 6773 bp->rss_cap |= BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA; 6774 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_PROF_TCAM_MODE_ENABLED) 6775 bp->rss_cap |= BNXT_RSS_CAP_RSS_TCAM; 6776 bp->max_tpa_v2 = le16_to_cpu(resp->max_aggs_supported); 6777 if (bp->max_tpa_v2) { 6778 if (BNXT_CHIP_P5(bp)) 6779 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P5; 6780 else 6781 bp->hw_ring_stats_size = BNXT_RING_STATS_SIZE_P7; 6782 } 6783 if (flags & VNIC_QCAPS_RESP_FLAGS_HW_TUNNEL_TPA_CAP) 6784 bp->fw_cap |= BNXT_FW_CAP_VNIC_TUNNEL_TPA; 6785 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV4_CAP) 6786 bp->rss_cap |= BNXT_RSS_CAP_AH_V4_RSS_CAP; 6787 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_AH_SPI_IPV6_CAP) 6788 bp->rss_cap |= BNXT_RSS_CAP_AH_V6_RSS_CAP; 6789 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV4_CAP) 6790 bp->rss_cap |= BNXT_RSS_CAP_ESP_V4_RSS_CAP; 6791 if (flags & VNIC_QCAPS_RESP_FLAGS_RSS_IPSEC_ESP_SPI_IPV6_CAP) 6792 bp->rss_cap |= BNXT_RSS_CAP_ESP_V6_RSS_CAP; 6793 if (flags & VNIC_QCAPS_RESP_FLAGS_RE_FLUSH_CAP) 6794 bp->fw_cap |= BNXT_FW_CAP_VNIC_RE_FLUSH; 6795 } 6796 hwrm_req_drop(bp, req); 6797 return rc; 6798 } 6799 6800 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp) 6801 { 6802 struct hwrm_ring_grp_alloc_output *resp; 6803 struct hwrm_ring_grp_alloc_input *req; 6804 int rc; 6805 u16 i; 6806 6807 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 6808 return 0; 6809 6810 rc = hwrm_req_init(bp, req, HWRM_RING_GRP_ALLOC); 6811 if (rc) 6812 return rc; 6813 6814 resp = hwrm_req_hold(bp, req); 6815 for (i = 0; i < bp->rx_nr_rings; i++) { 6816 unsigned int grp_idx = bp->rx_ring[i].bnapi->index; 6817 6818 req->cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id); 6819 req->rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id); 6820 req->ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id); 6821 req->sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx); 6822 6823 rc = hwrm_req_send(bp, req); 6824 6825 if (rc) 6826 break; 6827 6828 bp->grp_info[grp_idx].fw_grp_id = 6829 le32_to_cpu(resp->ring_group_id); 6830 } 6831 hwrm_req_drop(bp, req); 6832 return rc; 6833 } 6834 6835 static void bnxt_hwrm_ring_grp_free(struct bnxt *bp) 6836 { 6837 struct hwrm_ring_grp_free_input *req; 6838 u16 i; 6839 6840 if (!bp->grp_info || (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 6841 return; 6842 6843 if (hwrm_req_init(bp, req, HWRM_RING_GRP_FREE)) 6844 return; 6845 6846 hwrm_req_hold(bp, req); 6847 for (i = 0; i < bp->cp_nr_rings; i++) { 6848 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID) 6849 continue; 6850 req->ring_group_id = 6851 cpu_to_le32(bp->grp_info[i].fw_grp_id); 6852 6853 hwrm_req_send(bp, req); 6854 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID; 6855 } 6856 hwrm_req_drop(bp, req); 6857 } 6858 6859 static int hwrm_ring_alloc_send_msg(struct bnxt *bp, 6860 struct bnxt_ring_struct *ring, 6861 u32 ring_type, u32 map_index) 6862 { 6863 struct hwrm_ring_alloc_output *resp; 6864 struct hwrm_ring_alloc_input *req; 6865 struct bnxt_ring_mem_info *rmem = &ring->ring_mem; 6866 struct bnxt_ring_grp_info *grp_info; 6867 int rc, err = 0; 6868 u16 ring_id; 6869 6870 rc = hwrm_req_init(bp, req, HWRM_RING_ALLOC); 6871 if (rc) 6872 goto exit; 6873 6874 req->enables = 0; 6875 if (rmem->nr_pages > 1) { 6876 req->page_tbl_addr = cpu_to_le64(rmem->pg_tbl_map); 6877 /* Page size is in log2 units */ 6878 req->page_size = BNXT_PAGE_SHIFT; 6879 req->page_tbl_depth = 1; 6880 } else { 6881 req->page_tbl_addr = cpu_to_le64(rmem->dma_arr[0]); 6882 } 6883 req->fbo = 0; 6884 /* Association of ring index with doorbell index and MSIX number */ 6885 req->logical_id = cpu_to_le16(map_index); 6886 6887 switch (ring_type) { 6888 case HWRM_RING_ALLOC_TX: { 6889 struct bnxt_tx_ring_info *txr; 6890 u16 flags = 0; 6891 6892 txr = container_of(ring, struct bnxt_tx_ring_info, 6893 tx_ring_struct); 6894 req->ring_type = RING_ALLOC_REQ_RING_TYPE_TX; 6895 /* Association of transmit ring with completion ring */ 6896 grp_info = &bp->grp_info[ring->grp_idx]; 6897 req->cmpl_ring_id = cpu_to_le16(bnxt_cp_ring_for_tx(bp, txr)); 6898 req->length = cpu_to_le32(bp->tx_ring_mask + 1); 6899 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6900 req->queue_id = cpu_to_le16(ring->queue_id); 6901 if (bp->flags & BNXT_FLAG_TX_COAL_CMPL) 6902 req->cmpl_coal_cnt = 6903 RING_ALLOC_REQ_CMPL_COAL_CNT_COAL_64; 6904 if ((bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP) && bp->ptp_cfg) 6905 flags |= RING_ALLOC_REQ_FLAGS_TX_PKT_TS_CMPL_ENABLE; 6906 req->flags = cpu_to_le16(flags); 6907 break; 6908 } 6909 case HWRM_RING_ALLOC_RX: 6910 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6911 req->length = cpu_to_le32(bp->rx_ring_mask + 1); 6912 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6913 u16 flags = 0; 6914 6915 /* Association of rx ring with stats context */ 6916 grp_info = &bp->grp_info[ring->grp_idx]; 6917 req->rx_buf_size = cpu_to_le16(bp->rx_buf_use_size); 6918 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6919 req->enables |= cpu_to_le32( 6920 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6921 if (NET_IP_ALIGN == 2) 6922 flags = RING_ALLOC_REQ_FLAGS_RX_SOP_PAD; 6923 req->flags = cpu_to_le16(flags); 6924 } 6925 break; 6926 case HWRM_RING_ALLOC_AGG: 6927 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6928 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX_AGG; 6929 /* Association of agg ring with rx ring */ 6930 grp_info = &bp->grp_info[ring->grp_idx]; 6931 req->rx_ring_id = cpu_to_le16(grp_info->rx_fw_ring_id); 6932 req->rx_buf_size = cpu_to_le16(BNXT_RX_PAGE_SIZE); 6933 req->stat_ctx_id = cpu_to_le32(grp_info->fw_stats_ctx); 6934 req->enables |= cpu_to_le32( 6935 RING_ALLOC_REQ_ENABLES_RX_RING_ID_VALID | 6936 RING_ALLOC_REQ_ENABLES_RX_BUF_SIZE_VALID); 6937 } else { 6938 req->ring_type = RING_ALLOC_REQ_RING_TYPE_RX; 6939 } 6940 req->length = cpu_to_le32(bp->rx_agg_ring_mask + 1); 6941 break; 6942 case HWRM_RING_ALLOC_CMPL: 6943 req->ring_type = RING_ALLOC_REQ_RING_TYPE_L2_CMPL; 6944 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6945 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 6946 /* Association of cp ring with nq */ 6947 grp_info = &bp->grp_info[map_index]; 6948 req->nq_ring_id = cpu_to_le16(grp_info->cp_fw_ring_id); 6949 req->cq_handle = cpu_to_le64(ring->handle); 6950 req->enables |= cpu_to_le32( 6951 RING_ALLOC_REQ_ENABLES_NQ_RING_ID_VALID); 6952 } else { 6953 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6954 } 6955 break; 6956 case HWRM_RING_ALLOC_NQ: 6957 req->ring_type = RING_ALLOC_REQ_RING_TYPE_NQ; 6958 req->length = cpu_to_le32(bp->cp_ring_mask + 1); 6959 req->int_mode = RING_ALLOC_REQ_INT_MODE_MSIX; 6960 break; 6961 default: 6962 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n", 6963 ring_type); 6964 return -1; 6965 } 6966 6967 resp = hwrm_req_hold(bp, req); 6968 rc = hwrm_req_send(bp, req); 6969 err = le16_to_cpu(resp->error_code); 6970 ring_id = le16_to_cpu(resp->ring_id); 6971 hwrm_req_drop(bp, req); 6972 6973 exit: 6974 if (rc || err) { 6975 netdev_err(bp->dev, "hwrm_ring_alloc type %d failed. rc:%x err:%x\n", 6976 ring_type, rc, err); 6977 return -EIO; 6978 } 6979 ring->fw_ring_id = ring_id; 6980 return rc; 6981 } 6982 6983 static int bnxt_hwrm_set_async_event_cr(struct bnxt *bp, int idx) 6984 { 6985 int rc; 6986 6987 if (BNXT_PF(bp)) { 6988 struct hwrm_func_cfg_input *req; 6989 6990 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 6991 if (rc) 6992 return rc; 6993 6994 req->fid = cpu_to_le16(0xffff); 6995 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 6996 req->async_event_cr = cpu_to_le16(idx); 6997 return hwrm_req_send(bp, req); 6998 } else { 6999 struct hwrm_func_vf_cfg_input *req; 7000 7001 rc = hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG); 7002 if (rc) 7003 return rc; 7004 7005 req->enables = 7006 cpu_to_le32(FUNC_VF_CFG_REQ_ENABLES_ASYNC_EVENT_CR); 7007 req->async_event_cr = cpu_to_le16(idx); 7008 return hwrm_req_send(bp, req); 7009 } 7010 } 7011 7012 static void bnxt_set_db_mask(struct bnxt *bp, struct bnxt_db_info *db, 7013 u32 ring_type) 7014 { 7015 switch (ring_type) { 7016 case HWRM_RING_ALLOC_TX: 7017 db->db_ring_mask = bp->tx_ring_mask; 7018 break; 7019 case HWRM_RING_ALLOC_RX: 7020 db->db_ring_mask = bp->rx_ring_mask; 7021 break; 7022 case HWRM_RING_ALLOC_AGG: 7023 db->db_ring_mask = bp->rx_agg_ring_mask; 7024 break; 7025 case HWRM_RING_ALLOC_CMPL: 7026 case HWRM_RING_ALLOC_NQ: 7027 db->db_ring_mask = bp->cp_ring_mask; 7028 break; 7029 } 7030 if (bp->flags & BNXT_FLAG_CHIP_P7) { 7031 db->db_epoch_mask = db->db_ring_mask + 1; 7032 db->db_epoch_shift = DBR_EPOCH_SFT - ilog2(db->db_epoch_mask); 7033 } 7034 } 7035 7036 static void bnxt_set_db(struct bnxt *bp, struct bnxt_db_info *db, u32 ring_type, 7037 u32 map_idx, u32 xid) 7038 { 7039 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7040 switch (ring_type) { 7041 case HWRM_RING_ALLOC_TX: 7042 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SQ; 7043 break; 7044 case HWRM_RING_ALLOC_RX: 7045 case HWRM_RING_ALLOC_AGG: 7046 db->db_key64 = DBR_PATH_L2 | DBR_TYPE_SRQ; 7047 break; 7048 case HWRM_RING_ALLOC_CMPL: 7049 db->db_key64 = DBR_PATH_L2; 7050 break; 7051 case HWRM_RING_ALLOC_NQ: 7052 db->db_key64 = DBR_PATH_L2; 7053 break; 7054 } 7055 db->db_key64 |= (u64)xid << DBR_XID_SFT; 7056 7057 if (bp->flags & BNXT_FLAG_CHIP_P7) 7058 db->db_key64 |= DBR_VALID; 7059 7060 db->doorbell = bp->bar1 + bp->db_offset; 7061 } else { 7062 db->doorbell = bp->bar1 + map_idx * 0x80; 7063 switch (ring_type) { 7064 case HWRM_RING_ALLOC_TX: 7065 db->db_key32 = DB_KEY_TX; 7066 break; 7067 case HWRM_RING_ALLOC_RX: 7068 case HWRM_RING_ALLOC_AGG: 7069 db->db_key32 = DB_KEY_RX; 7070 break; 7071 case HWRM_RING_ALLOC_CMPL: 7072 db->db_key32 = DB_KEY_CP; 7073 break; 7074 } 7075 } 7076 bnxt_set_db_mask(bp, db, ring_type); 7077 } 7078 7079 static int bnxt_hwrm_rx_ring_alloc(struct bnxt *bp, 7080 struct bnxt_rx_ring_info *rxr) 7081 { 7082 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7083 struct bnxt_napi *bnapi = rxr->bnapi; 7084 u32 type = HWRM_RING_ALLOC_RX; 7085 u32 map_idx = bnapi->index; 7086 int rc; 7087 7088 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7089 if (rc) 7090 return rc; 7091 7092 bnxt_set_db(bp, &rxr->rx_db, type, map_idx, ring->fw_ring_id); 7093 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id; 7094 7095 return 0; 7096 } 7097 7098 static int bnxt_hwrm_rx_agg_ring_alloc(struct bnxt *bp, 7099 struct bnxt_rx_ring_info *rxr) 7100 { 7101 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7102 u32 type = HWRM_RING_ALLOC_AGG; 7103 u32 grp_idx = ring->grp_idx; 7104 u32 map_idx; 7105 int rc; 7106 7107 map_idx = grp_idx + bp->rx_nr_rings; 7108 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7109 if (rc) 7110 return rc; 7111 7112 bnxt_set_db(bp, &rxr->rx_agg_db, type, map_idx, 7113 ring->fw_ring_id); 7114 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 7115 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7116 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id; 7117 7118 return 0; 7119 } 7120 7121 static int bnxt_hwrm_ring_alloc(struct bnxt *bp) 7122 { 7123 bool agg_rings = !!(bp->flags & BNXT_FLAG_AGG_RINGS); 7124 int i, rc = 0; 7125 u32 type; 7126 7127 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7128 type = HWRM_RING_ALLOC_NQ; 7129 else 7130 type = HWRM_RING_ALLOC_CMPL; 7131 for (i = 0; i < bp->cp_nr_rings; i++) { 7132 struct bnxt_napi *bnapi = bp->bnapi[i]; 7133 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7134 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct; 7135 u32 map_idx = ring->map_idx; 7136 unsigned int vector; 7137 7138 vector = bp->irq_tbl[map_idx].vector; 7139 disable_irq_nosync(vector); 7140 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7141 if (rc) { 7142 enable_irq(vector); 7143 goto err_out; 7144 } 7145 bnxt_set_db(bp, &cpr->cp_db, type, map_idx, ring->fw_ring_id); 7146 bnxt_db_nq(bp, &cpr->cp_db, cpr->cp_raw_cons); 7147 enable_irq(vector); 7148 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id; 7149 7150 if (!i) { 7151 rc = bnxt_hwrm_set_async_event_cr(bp, ring->fw_ring_id); 7152 if (rc) 7153 netdev_warn(bp->dev, "Failed to set async event completion ring.\n"); 7154 } 7155 } 7156 7157 type = HWRM_RING_ALLOC_TX; 7158 for (i = 0; i < bp->tx_nr_rings; i++) { 7159 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7160 struct bnxt_ring_struct *ring; 7161 u32 map_idx; 7162 7163 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7164 struct bnxt_cp_ring_info *cpr2 = txr->tx_cpr; 7165 struct bnxt_napi *bnapi = txr->bnapi; 7166 u32 type2 = HWRM_RING_ALLOC_CMPL; 7167 7168 ring = &cpr2->cp_ring_struct; 7169 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7170 map_idx = bnapi->index; 7171 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7172 if (rc) 7173 goto err_out; 7174 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7175 ring->fw_ring_id); 7176 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7177 } 7178 ring = &txr->tx_ring_struct; 7179 map_idx = i; 7180 rc = hwrm_ring_alloc_send_msg(bp, ring, type, map_idx); 7181 if (rc) 7182 goto err_out; 7183 bnxt_set_db(bp, &txr->tx_db, type, map_idx, ring->fw_ring_id); 7184 } 7185 7186 for (i = 0; i < bp->rx_nr_rings; i++) { 7187 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 7188 7189 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 7190 if (rc) 7191 goto err_out; 7192 /* If we have agg rings, post agg buffers first. */ 7193 if (!agg_rings) 7194 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 7195 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7196 struct bnxt_cp_ring_info *cpr2 = rxr->rx_cpr; 7197 struct bnxt_napi *bnapi = rxr->bnapi; 7198 u32 type2 = HWRM_RING_ALLOC_CMPL; 7199 struct bnxt_ring_struct *ring; 7200 u32 map_idx = bnapi->index; 7201 7202 ring = &cpr2->cp_ring_struct; 7203 ring->handle = BNXT_SET_NQ_HDL(cpr2); 7204 rc = hwrm_ring_alloc_send_msg(bp, ring, type2, map_idx); 7205 if (rc) 7206 goto err_out; 7207 bnxt_set_db(bp, &cpr2->cp_db, type2, map_idx, 7208 ring->fw_ring_id); 7209 bnxt_db_cq(bp, &cpr2->cp_db, cpr2->cp_raw_cons); 7210 } 7211 } 7212 7213 if (agg_rings) { 7214 for (i = 0; i < bp->rx_nr_rings; i++) { 7215 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, &bp->rx_ring[i]); 7216 if (rc) 7217 goto err_out; 7218 } 7219 } 7220 err_out: 7221 return rc; 7222 } 7223 7224 static int hwrm_ring_free_send_msg(struct bnxt *bp, 7225 struct bnxt_ring_struct *ring, 7226 u32 ring_type, int cmpl_ring_id) 7227 { 7228 struct hwrm_ring_free_output *resp; 7229 struct hwrm_ring_free_input *req; 7230 u16 error_code = 0; 7231 int rc; 7232 7233 if (BNXT_NO_FW_ACCESS(bp)) 7234 return 0; 7235 7236 rc = hwrm_req_init(bp, req, HWRM_RING_FREE); 7237 if (rc) 7238 goto exit; 7239 7240 req->cmpl_ring = cpu_to_le16(cmpl_ring_id); 7241 req->ring_type = ring_type; 7242 req->ring_id = cpu_to_le16(ring->fw_ring_id); 7243 7244 resp = hwrm_req_hold(bp, req); 7245 rc = hwrm_req_send(bp, req); 7246 error_code = le16_to_cpu(resp->error_code); 7247 hwrm_req_drop(bp, req); 7248 exit: 7249 if (rc || error_code) { 7250 netdev_err(bp->dev, "hwrm_ring_free type %d failed. rc:%x err:%x\n", 7251 ring_type, rc, error_code); 7252 return -EIO; 7253 } 7254 return 0; 7255 } 7256 7257 static void bnxt_hwrm_rx_ring_free(struct bnxt *bp, 7258 struct bnxt_rx_ring_info *rxr, 7259 bool close_path) 7260 { 7261 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct; 7262 u32 grp_idx = rxr->bnapi->index; 7263 u32 cmpl_ring_id; 7264 7265 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7266 return; 7267 7268 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7269 hwrm_ring_free_send_msg(bp, ring, 7270 RING_FREE_REQ_RING_TYPE_RX, 7271 close_path ? cmpl_ring_id : 7272 INVALID_HW_RING_ID); 7273 ring->fw_ring_id = INVALID_HW_RING_ID; 7274 bp->grp_info[grp_idx].rx_fw_ring_id = INVALID_HW_RING_ID; 7275 } 7276 7277 static void bnxt_hwrm_rx_agg_ring_free(struct bnxt *bp, 7278 struct bnxt_rx_ring_info *rxr, 7279 bool close_path) 7280 { 7281 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct; 7282 u32 grp_idx = rxr->bnapi->index; 7283 u32 type, cmpl_ring_id; 7284 7285 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7286 type = RING_FREE_REQ_RING_TYPE_RX_AGG; 7287 else 7288 type = RING_FREE_REQ_RING_TYPE_RX; 7289 7290 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7291 return; 7292 7293 cmpl_ring_id = bnxt_cp_ring_for_rx(bp, rxr); 7294 hwrm_ring_free_send_msg(bp, ring, type, 7295 close_path ? cmpl_ring_id : 7296 INVALID_HW_RING_ID); 7297 ring->fw_ring_id = INVALID_HW_RING_ID; 7298 bp->grp_info[grp_idx].agg_fw_ring_id = INVALID_HW_RING_ID; 7299 } 7300 7301 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path) 7302 { 7303 u32 type; 7304 int i; 7305 7306 if (!bp->bnapi) 7307 return; 7308 7309 for (i = 0; i < bp->tx_nr_rings; i++) { 7310 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i]; 7311 struct bnxt_ring_struct *ring = &txr->tx_ring_struct; 7312 7313 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7314 u32 cmpl_ring_id = bnxt_cp_ring_for_tx(bp, txr); 7315 7316 hwrm_ring_free_send_msg(bp, ring, 7317 RING_FREE_REQ_RING_TYPE_TX, 7318 close_path ? cmpl_ring_id : 7319 INVALID_HW_RING_ID); 7320 ring->fw_ring_id = INVALID_HW_RING_ID; 7321 } 7322 } 7323 7324 for (i = 0; i < bp->rx_nr_rings; i++) { 7325 bnxt_hwrm_rx_ring_free(bp, &bp->rx_ring[i], close_path); 7326 bnxt_hwrm_rx_agg_ring_free(bp, &bp->rx_ring[i], close_path); 7327 } 7328 7329 /* The completion rings are about to be freed. After that the 7330 * IRQ doorbell will not work anymore. So we need to disable 7331 * IRQ here. 7332 */ 7333 bnxt_disable_int_sync(bp); 7334 7335 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7336 type = RING_FREE_REQ_RING_TYPE_NQ; 7337 else 7338 type = RING_FREE_REQ_RING_TYPE_L2_CMPL; 7339 for (i = 0; i < bp->cp_nr_rings; i++) { 7340 struct bnxt_napi *bnapi = bp->bnapi[i]; 7341 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 7342 struct bnxt_ring_struct *ring; 7343 int j; 7344 7345 for (j = 0; j < cpr->cp_ring_count && cpr->cp_ring_arr; j++) { 7346 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 7347 7348 ring = &cpr2->cp_ring_struct; 7349 if (ring->fw_ring_id == INVALID_HW_RING_ID) 7350 continue; 7351 hwrm_ring_free_send_msg(bp, ring, 7352 RING_FREE_REQ_RING_TYPE_L2_CMPL, 7353 INVALID_HW_RING_ID); 7354 ring->fw_ring_id = INVALID_HW_RING_ID; 7355 } 7356 ring = &cpr->cp_ring_struct; 7357 if (ring->fw_ring_id != INVALID_HW_RING_ID) { 7358 hwrm_ring_free_send_msg(bp, ring, type, 7359 INVALID_HW_RING_ID); 7360 ring->fw_ring_id = INVALID_HW_RING_ID; 7361 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID; 7362 } 7363 } 7364 } 7365 7366 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7367 bool shared); 7368 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 7369 bool shared); 7370 7371 static int bnxt_hwrm_get_rings(struct bnxt *bp) 7372 { 7373 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7374 struct hwrm_func_qcfg_output *resp; 7375 struct hwrm_func_qcfg_input *req; 7376 int rc; 7377 7378 if (bp->hwrm_spec_code < 0x10601) 7379 return 0; 7380 7381 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7382 if (rc) 7383 return rc; 7384 7385 req->fid = cpu_to_le16(0xffff); 7386 resp = hwrm_req_hold(bp, req); 7387 rc = hwrm_req_send(bp, req); 7388 if (rc) { 7389 hwrm_req_drop(bp, req); 7390 return rc; 7391 } 7392 7393 hw_resc->resv_tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7394 if (BNXT_NEW_RM(bp)) { 7395 u16 cp, stats; 7396 7397 hw_resc->resv_rx_rings = le16_to_cpu(resp->alloc_rx_rings); 7398 hw_resc->resv_hw_ring_grps = 7399 le32_to_cpu(resp->alloc_hw_ring_grps); 7400 hw_resc->resv_vnics = le16_to_cpu(resp->alloc_vnics); 7401 hw_resc->resv_rsscos_ctxs = le16_to_cpu(resp->alloc_rsscos_ctx); 7402 cp = le16_to_cpu(resp->alloc_cmpl_rings); 7403 stats = le16_to_cpu(resp->alloc_stat_ctx); 7404 hw_resc->resv_irqs = cp; 7405 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7406 int rx = hw_resc->resv_rx_rings; 7407 int tx = hw_resc->resv_tx_rings; 7408 7409 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7410 rx >>= 1; 7411 if (cp < (rx + tx)) { 7412 rc = __bnxt_trim_rings(bp, &rx, &tx, cp, false); 7413 if (rc) 7414 goto get_rings_exit; 7415 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7416 rx <<= 1; 7417 hw_resc->resv_rx_rings = rx; 7418 hw_resc->resv_tx_rings = tx; 7419 } 7420 hw_resc->resv_irqs = le16_to_cpu(resp->alloc_msix); 7421 hw_resc->resv_hw_ring_grps = rx; 7422 } 7423 hw_resc->resv_cp_rings = cp; 7424 hw_resc->resv_stat_ctxs = stats; 7425 } 7426 get_rings_exit: 7427 hwrm_req_drop(bp, req); 7428 return rc; 7429 } 7430 7431 int __bnxt_hwrm_get_tx_rings(struct bnxt *bp, u16 fid, int *tx_rings) 7432 { 7433 struct hwrm_func_qcfg_output *resp; 7434 struct hwrm_func_qcfg_input *req; 7435 int rc; 7436 7437 if (bp->hwrm_spec_code < 0x10601) 7438 return 0; 7439 7440 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 7441 if (rc) 7442 return rc; 7443 7444 req->fid = cpu_to_le16(fid); 7445 resp = hwrm_req_hold(bp, req); 7446 rc = hwrm_req_send(bp, req); 7447 if (!rc) 7448 *tx_rings = le16_to_cpu(resp->alloc_tx_rings); 7449 7450 hwrm_req_drop(bp, req); 7451 return rc; 7452 } 7453 7454 static bool bnxt_rfs_supported(struct bnxt *bp); 7455 7456 static struct hwrm_func_cfg_input * 7457 __bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7458 { 7459 struct hwrm_func_cfg_input *req; 7460 u32 enables = 0; 7461 7462 if (bnxt_hwrm_func_cfg_short_req_init(bp, &req)) 7463 return NULL; 7464 7465 req->fid = cpu_to_le16(0xffff); 7466 enables |= hwr->tx ? FUNC_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7467 req->num_tx_rings = cpu_to_le16(hwr->tx); 7468 if (BNXT_NEW_RM(bp)) { 7469 enables |= hwr->rx ? FUNC_CFG_REQ_ENABLES_NUM_RX_RINGS : 0; 7470 enables |= hwr->stat ? FUNC_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7471 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7472 enables |= hwr->cp ? FUNC_CFG_REQ_ENABLES_NUM_MSIX : 0; 7473 enables |= hwr->cp_p5 ? 7474 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7475 } else { 7476 enables |= hwr->cp ? 7477 FUNC_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7478 enables |= hwr->grp ? 7479 FUNC_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7480 } 7481 enables |= hwr->vnic ? FUNC_CFG_REQ_ENABLES_NUM_VNICS : 0; 7482 enables |= hwr->rss_ctx ? FUNC_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 7483 0; 7484 req->num_rx_rings = cpu_to_le16(hwr->rx); 7485 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7486 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7487 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7488 req->num_msix = cpu_to_le16(hwr->cp); 7489 } else { 7490 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7491 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7492 } 7493 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7494 req->num_vnics = cpu_to_le16(hwr->vnic); 7495 } 7496 req->enables = cpu_to_le32(enables); 7497 return req; 7498 } 7499 7500 static struct hwrm_func_vf_cfg_input * 7501 __bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7502 { 7503 struct hwrm_func_vf_cfg_input *req; 7504 u32 enables = 0; 7505 7506 if (hwrm_req_init(bp, req, HWRM_FUNC_VF_CFG)) 7507 return NULL; 7508 7509 enables |= hwr->tx ? FUNC_VF_CFG_REQ_ENABLES_NUM_TX_RINGS : 0; 7510 enables |= hwr->rx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RX_RINGS | 7511 FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7512 enables |= hwr->stat ? FUNC_VF_CFG_REQ_ENABLES_NUM_STAT_CTXS : 0; 7513 enables |= hwr->rss_ctx ? FUNC_VF_CFG_REQ_ENABLES_NUM_RSSCOS_CTXS : 0; 7514 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7515 enables |= hwr->cp_p5 ? 7516 FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7517 } else { 7518 enables |= hwr->cp ? FUNC_VF_CFG_REQ_ENABLES_NUM_CMPL_RINGS : 0; 7519 enables |= hwr->grp ? 7520 FUNC_VF_CFG_REQ_ENABLES_NUM_HW_RING_GRPS : 0; 7521 } 7522 enables |= hwr->vnic ? FUNC_VF_CFG_REQ_ENABLES_NUM_VNICS : 0; 7523 enables |= FUNC_VF_CFG_REQ_ENABLES_NUM_L2_CTXS; 7524 7525 req->num_l2_ctxs = cpu_to_le16(BNXT_VF_MAX_L2_CTX); 7526 req->num_tx_rings = cpu_to_le16(hwr->tx); 7527 req->num_rx_rings = cpu_to_le16(hwr->rx); 7528 req->num_rsscos_ctxs = cpu_to_le16(hwr->rss_ctx); 7529 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7530 req->num_cmpl_rings = cpu_to_le16(hwr->cp_p5); 7531 } else { 7532 req->num_cmpl_rings = cpu_to_le16(hwr->cp); 7533 req->num_hw_ring_grps = cpu_to_le16(hwr->grp); 7534 } 7535 req->num_stat_ctxs = cpu_to_le16(hwr->stat); 7536 req->num_vnics = cpu_to_le16(hwr->vnic); 7537 7538 req->enables = cpu_to_le32(enables); 7539 return req; 7540 } 7541 7542 static int 7543 bnxt_hwrm_reserve_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7544 { 7545 struct hwrm_func_cfg_input *req; 7546 int rc; 7547 7548 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7549 if (!req) 7550 return -ENOMEM; 7551 7552 if (!req->enables) { 7553 hwrm_req_drop(bp, req); 7554 return 0; 7555 } 7556 7557 rc = hwrm_req_send(bp, req); 7558 if (rc) 7559 return rc; 7560 7561 if (bp->hwrm_spec_code < 0x10601) 7562 bp->hw_resc.resv_tx_rings = hwr->tx; 7563 7564 return bnxt_hwrm_get_rings(bp); 7565 } 7566 7567 static int 7568 bnxt_hwrm_reserve_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7569 { 7570 struct hwrm_func_vf_cfg_input *req; 7571 int rc; 7572 7573 if (!BNXT_NEW_RM(bp)) { 7574 bp->hw_resc.resv_tx_rings = hwr->tx; 7575 return 0; 7576 } 7577 7578 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7579 if (!req) 7580 return -ENOMEM; 7581 7582 rc = hwrm_req_send(bp, req); 7583 if (rc) 7584 return rc; 7585 7586 return bnxt_hwrm_get_rings(bp); 7587 } 7588 7589 static int bnxt_hwrm_reserve_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7590 { 7591 if (BNXT_PF(bp)) 7592 return bnxt_hwrm_reserve_pf_rings(bp, hwr); 7593 else 7594 return bnxt_hwrm_reserve_vf_rings(bp, hwr); 7595 } 7596 7597 int bnxt_nq_rings_in_use(struct bnxt *bp) 7598 { 7599 return bp->cp_nr_rings + bnxt_get_ulp_msix_num(bp); 7600 } 7601 7602 static int bnxt_cp_rings_in_use(struct bnxt *bp) 7603 { 7604 int cp; 7605 7606 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7607 return bnxt_nq_rings_in_use(bp); 7608 7609 cp = bp->tx_nr_rings + bp->rx_nr_rings; 7610 return cp; 7611 } 7612 7613 static int bnxt_get_func_stat_ctxs(struct bnxt *bp) 7614 { 7615 return bp->cp_nr_rings + bnxt_get_ulp_stat_ctxs(bp); 7616 } 7617 7618 static int bnxt_get_total_rss_ctxs(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7619 { 7620 if (!hwr->grp) 7621 return 0; 7622 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 7623 int rss_ctx = bnxt_get_nr_rss_ctxs(bp, hwr->grp); 7624 7625 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7626 rss_ctx *= hwr->vnic; 7627 return rss_ctx; 7628 } 7629 if (BNXT_VF(bp)) 7630 return BNXT_VF_MAX_RSS_CTX; 7631 if (!(bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) && bnxt_rfs_supported(bp)) 7632 return hwr->grp + 1; 7633 return 1; 7634 } 7635 7636 /* Check if a default RSS map needs to be setup. This function is only 7637 * used on older firmware that does not require reserving RX rings. 7638 */ 7639 static void bnxt_check_rss_tbl_no_rmgr(struct bnxt *bp) 7640 { 7641 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7642 7643 /* The RSS map is valid for RX rings set to resv_rx_rings */ 7644 if (hw_resc->resv_rx_rings != bp->rx_nr_rings) { 7645 hw_resc->resv_rx_rings = bp->rx_nr_rings; 7646 if (!netif_is_rxfh_configured(bp->dev)) 7647 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7648 } 7649 } 7650 7651 static int bnxt_get_total_vnics(struct bnxt *bp, int rx_rings) 7652 { 7653 if (bp->flags & BNXT_FLAG_RFS) { 7654 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 7655 return 2 + bp->num_rss_ctx; 7656 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7657 return rx_rings + 1; 7658 } 7659 return 1; 7660 } 7661 7662 static bool bnxt_need_reserve_rings(struct bnxt *bp) 7663 { 7664 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7665 int cp = bnxt_cp_rings_in_use(bp); 7666 int nq = bnxt_nq_rings_in_use(bp); 7667 int rx = bp->rx_nr_rings, stat; 7668 int vnic, grp = rx; 7669 7670 /* Old firmware does not need RX ring reservations but we still 7671 * need to setup a default RSS map when needed. With new firmware 7672 * we go through RX ring reservations first and then set up the 7673 * RSS map for the successfully reserved RX rings when needed. 7674 */ 7675 if (!BNXT_NEW_RM(bp)) 7676 bnxt_check_rss_tbl_no_rmgr(bp); 7677 7678 if (hw_resc->resv_tx_rings != bp->tx_nr_rings && 7679 bp->hwrm_spec_code >= 0x10601) 7680 return true; 7681 7682 if (!BNXT_NEW_RM(bp)) 7683 return false; 7684 7685 vnic = bnxt_get_total_vnics(bp, rx); 7686 7687 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7688 rx <<= 1; 7689 stat = bnxt_get_func_stat_ctxs(bp); 7690 if (hw_resc->resv_rx_rings != rx || hw_resc->resv_cp_rings != cp || 7691 hw_resc->resv_vnics != vnic || hw_resc->resv_stat_ctxs != stat || 7692 (hw_resc->resv_hw_ring_grps != grp && 7693 !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS))) 7694 return true; 7695 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && BNXT_PF(bp) && 7696 hw_resc->resv_irqs != nq) 7697 return true; 7698 return false; 7699 } 7700 7701 static void bnxt_copy_reserved_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7702 { 7703 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 7704 7705 hwr->tx = hw_resc->resv_tx_rings; 7706 if (BNXT_NEW_RM(bp)) { 7707 hwr->rx = hw_resc->resv_rx_rings; 7708 hwr->cp = hw_resc->resv_irqs; 7709 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7710 hwr->cp_p5 = hw_resc->resv_cp_rings; 7711 hwr->grp = hw_resc->resv_hw_ring_grps; 7712 hwr->vnic = hw_resc->resv_vnics; 7713 hwr->stat = hw_resc->resv_stat_ctxs; 7714 hwr->rss_ctx = hw_resc->resv_rsscos_ctxs; 7715 } 7716 } 7717 7718 static bool bnxt_rings_ok(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7719 { 7720 return hwr->tx && hwr->rx && hwr->cp && hwr->grp && hwr->vnic && 7721 hwr->stat && (hwr->cp_p5 || !(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)); 7722 } 7723 7724 static int bnxt_get_avail_msix(struct bnxt *bp, int num); 7725 7726 static int __bnxt_reserve_rings(struct bnxt *bp) 7727 { 7728 struct bnxt_hw_rings hwr = {0}; 7729 int rx_rings, old_rx_rings, rc; 7730 int cp = bp->cp_nr_rings; 7731 int ulp_msix = 0; 7732 bool sh = false; 7733 int tx_cp; 7734 7735 if (!bnxt_need_reserve_rings(bp)) 7736 return 0; 7737 7738 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 7739 ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 7740 if (!ulp_msix) 7741 bnxt_set_ulp_stat_ctxs(bp, 0); 7742 7743 if (ulp_msix > bp->ulp_num_msix_want) 7744 ulp_msix = bp->ulp_num_msix_want; 7745 hwr.cp = cp + ulp_msix; 7746 } else { 7747 hwr.cp = bnxt_nq_rings_in_use(bp); 7748 } 7749 7750 hwr.tx = bp->tx_nr_rings; 7751 hwr.rx = bp->rx_nr_rings; 7752 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 7753 sh = true; 7754 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7755 hwr.cp_p5 = hwr.rx + hwr.tx; 7756 7757 hwr.vnic = bnxt_get_total_vnics(bp, hwr.rx); 7758 7759 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7760 hwr.rx <<= 1; 7761 hwr.grp = bp->rx_nr_rings; 7762 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 7763 hwr.stat = bnxt_get_func_stat_ctxs(bp); 7764 old_rx_rings = bp->hw_resc.resv_rx_rings; 7765 7766 rc = bnxt_hwrm_reserve_rings(bp, &hwr); 7767 if (rc) 7768 return rc; 7769 7770 bnxt_copy_reserved_rings(bp, &hwr); 7771 7772 rx_rings = hwr.rx; 7773 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 7774 if (hwr.rx >= 2) { 7775 rx_rings = hwr.rx >> 1; 7776 } else { 7777 if (netif_running(bp->dev)) 7778 return -ENOMEM; 7779 7780 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 7781 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 7782 bp->dev->hw_features &= ~NETIF_F_LRO; 7783 bp->dev->features &= ~NETIF_F_LRO; 7784 bnxt_set_ring_params(bp); 7785 } 7786 } 7787 rx_rings = min_t(int, rx_rings, hwr.grp); 7788 hwr.cp = min_t(int, hwr.cp, bp->cp_nr_rings); 7789 if (hwr.stat > bnxt_get_ulp_stat_ctxs(bp)) 7790 hwr.stat -= bnxt_get_ulp_stat_ctxs(bp); 7791 hwr.cp = min_t(int, hwr.cp, hwr.stat); 7792 rc = bnxt_trim_rings(bp, &rx_rings, &hwr.tx, hwr.cp, sh); 7793 if (bp->flags & BNXT_FLAG_AGG_RINGS) 7794 hwr.rx = rx_rings << 1; 7795 tx_cp = bnxt_num_tx_to_cp(bp, hwr.tx); 7796 hwr.cp = sh ? max_t(int, tx_cp, rx_rings) : tx_cp + rx_rings; 7797 bp->tx_nr_rings = hwr.tx; 7798 7799 /* If we cannot reserve all the RX rings, reset the RSS map only 7800 * if absolutely necessary 7801 */ 7802 if (rx_rings != bp->rx_nr_rings) { 7803 netdev_warn(bp->dev, "Able to reserve only %d out of %d requested RX rings\n", 7804 rx_rings, bp->rx_nr_rings); 7805 if (netif_is_rxfh_configured(bp->dev) && 7806 (bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings) != 7807 bnxt_get_nr_rss_ctxs(bp, rx_rings) || 7808 bnxt_get_max_rss_ring(bp) >= rx_rings)) { 7809 netdev_warn(bp->dev, "RSS table entries reverting to default\n"); 7810 bp->dev->priv_flags &= ~IFF_RXFH_CONFIGURED; 7811 } 7812 } 7813 bp->rx_nr_rings = rx_rings; 7814 bp->cp_nr_rings = hwr.cp; 7815 7816 if (!bnxt_rings_ok(bp, &hwr)) 7817 return -ENOMEM; 7818 7819 if (old_rx_rings != bp->hw_resc.resv_rx_rings && 7820 !netif_is_rxfh_configured(bp->dev)) 7821 bnxt_set_dflt_rss_indir_tbl(bp, NULL); 7822 7823 if (!bnxt_ulp_registered(bp->edev) && BNXT_NEW_RM(bp)) { 7824 int resv_msix, resv_ctx, ulp_ctxs; 7825 struct bnxt_hw_resc *hw_resc; 7826 7827 hw_resc = &bp->hw_resc; 7828 resv_msix = hw_resc->resv_irqs - bp->cp_nr_rings; 7829 ulp_msix = min_t(int, resv_msix, ulp_msix); 7830 bnxt_set_ulp_msix_num(bp, ulp_msix); 7831 resv_ctx = hw_resc->resv_stat_ctxs - bp->cp_nr_rings; 7832 ulp_ctxs = min(resv_ctx, bnxt_get_ulp_stat_ctxs(bp)); 7833 bnxt_set_ulp_stat_ctxs(bp, ulp_ctxs); 7834 } 7835 7836 return rc; 7837 } 7838 7839 static int bnxt_hwrm_check_vf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7840 { 7841 struct hwrm_func_vf_cfg_input *req; 7842 u32 flags; 7843 7844 if (!BNXT_NEW_RM(bp)) 7845 return 0; 7846 7847 req = __bnxt_hwrm_reserve_vf_rings(bp, hwr); 7848 flags = FUNC_VF_CFG_REQ_FLAGS_TX_ASSETS_TEST | 7849 FUNC_VF_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7850 FUNC_VF_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7851 FUNC_VF_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7852 FUNC_VF_CFG_REQ_FLAGS_VNIC_ASSETS_TEST | 7853 FUNC_VF_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST; 7854 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 7855 flags |= FUNC_VF_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7856 7857 req->flags = cpu_to_le32(flags); 7858 return hwrm_req_send_silent(bp, req); 7859 } 7860 7861 static int bnxt_hwrm_check_pf_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7862 { 7863 struct hwrm_func_cfg_input *req; 7864 u32 flags; 7865 7866 req = __bnxt_hwrm_reserve_pf_rings(bp, hwr); 7867 flags = FUNC_CFG_REQ_FLAGS_TX_ASSETS_TEST; 7868 if (BNXT_NEW_RM(bp)) { 7869 flags |= FUNC_CFG_REQ_FLAGS_RX_ASSETS_TEST | 7870 FUNC_CFG_REQ_FLAGS_CMPL_ASSETS_TEST | 7871 FUNC_CFG_REQ_FLAGS_STAT_CTX_ASSETS_TEST | 7872 FUNC_CFG_REQ_FLAGS_VNIC_ASSETS_TEST; 7873 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 7874 flags |= FUNC_CFG_REQ_FLAGS_RSSCOS_CTX_ASSETS_TEST | 7875 FUNC_CFG_REQ_FLAGS_NQ_ASSETS_TEST; 7876 else 7877 flags |= FUNC_CFG_REQ_FLAGS_RING_GRP_ASSETS_TEST; 7878 } 7879 7880 req->flags = cpu_to_le32(flags); 7881 return hwrm_req_send_silent(bp, req); 7882 } 7883 7884 static int bnxt_hwrm_check_rings(struct bnxt *bp, struct bnxt_hw_rings *hwr) 7885 { 7886 if (bp->hwrm_spec_code < 0x10801) 7887 return 0; 7888 7889 if (BNXT_PF(bp)) 7890 return bnxt_hwrm_check_pf_rings(bp, hwr); 7891 7892 return bnxt_hwrm_check_vf_rings(bp, hwr); 7893 } 7894 7895 static void bnxt_hwrm_coal_params_qcaps(struct bnxt *bp) 7896 { 7897 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7898 struct hwrm_ring_aggint_qcaps_output *resp; 7899 struct hwrm_ring_aggint_qcaps_input *req; 7900 int rc; 7901 7902 coal_cap->cmpl_params = BNXT_LEGACY_COAL_CMPL_PARAMS; 7903 coal_cap->num_cmpl_dma_aggr_max = 63; 7904 coal_cap->num_cmpl_dma_aggr_during_int_max = 63; 7905 coal_cap->cmpl_aggr_dma_tmr_max = 65535; 7906 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 65535; 7907 coal_cap->int_lat_tmr_min_max = 65535; 7908 coal_cap->int_lat_tmr_max_max = 65535; 7909 coal_cap->num_cmpl_aggr_int_max = 65535; 7910 coal_cap->timer_units = 80; 7911 7912 if (bp->hwrm_spec_code < 0x10902) 7913 return; 7914 7915 if (hwrm_req_init(bp, req, HWRM_RING_AGGINT_QCAPS)) 7916 return; 7917 7918 resp = hwrm_req_hold(bp, req); 7919 rc = hwrm_req_send_silent(bp, req); 7920 if (!rc) { 7921 coal_cap->cmpl_params = le32_to_cpu(resp->cmpl_params); 7922 coal_cap->nq_params = le32_to_cpu(resp->nq_params); 7923 coal_cap->num_cmpl_dma_aggr_max = 7924 le16_to_cpu(resp->num_cmpl_dma_aggr_max); 7925 coal_cap->num_cmpl_dma_aggr_during_int_max = 7926 le16_to_cpu(resp->num_cmpl_dma_aggr_during_int_max); 7927 coal_cap->cmpl_aggr_dma_tmr_max = 7928 le16_to_cpu(resp->cmpl_aggr_dma_tmr_max); 7929 coal_cap->cmpl_aggr_dma_tmr_during_int_max = 7930 le16_to_cpu(resp->cmpl_aggr_dma_tmr_during_int_max); 7931 coal_cap->int_lat_tmr_min_max = 7932 le16_to_cpu(resp->int_lat_tmr_min_max); 7933 coal_cap->int_lat_tmr_max_max = 7934 le16_to_cpu(resp->int_lat_tmr_max_max); 7935 coal_cap->num_cmpl_aggr_int_max = 7936 le16_to_cpu(resp->num_cmpl_aggr_int_max); 7937 coal_cap->timer_units = le16_to_cpu(resp->timer_units); 7938 } 7939 hwrm_req_drop(bp, req); 7940 } 7941 7942 static u16 bnxt_usec_to_coal_tmr(struct bnxt *bp, u16 usec) 7943 { 7944 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7945 7946 return usec * 1000 / coal_cap->timer_units; 7947 } 7948 7949 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, 7950 struct bnxt_coal *hw_coal, 7951 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 7952 { 7953 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 7954 u16 val, tmr, max, flags = hw_coal->flags; 7955 u32 cmpl_params = coal_cap->cmpl_params; 7956 7957 max = hw_coal->bufs_per_record * 128; 7958 if (hw_coal->budget) 7959 max = hw_coal->bufs_per_record * hw_coal->budget; 7960 max = min_t(u16, max, coal_cap->num_cmpl_aggr_int_max); 7961 7962 val = clamp_t(u16, hw_coal->coal_bufs, 1, max); 7963 req->num_cmpl_aggr_int = cpu_to_le16(val); 7964 7965 val = min_t(u16, val, coal_cap->num_cmpl_dma_aggr_max); 7966 req->num_cmpl_dma_aggr = cpu_to_le16(val); 7967 7968 val = clamp_t(u16, hw_coal->coal_bufs_irq, 1, 7969 coal_cap->num_cmpl_dma_aggr_during_int_max); 7970 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(val); 7971 7972 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks); 7973 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_max_max); 7974 req->int_lat_tmr_max = cpu_to_le16(tmr); 7975 7976 /* min timer set to 1/2 of interrupt timer */ 7977 if (cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_INT_LAT_TMR_MIN) { 7978 val = tmr / 2; 7979 val = clamp_t(u16, val, 1, coal_cap->int_lat_tmr_min_max); 7980 req->int_lat_tmr_min = cpu_to_le16(val); 7981 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 7982 } 7983 7984 /* buf timer set to 1/4 of interrupt timer */ 7985 val = clamp_t(u16, tmr / 4, 1, coal_cap->cmpl_aggr_dma_tmr_max); 7986 req->cmpl_aggr_dma_tmr = cpu_to_le16(val); 7987 7988 if (cmpl_params & 7989 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_NUM_CMPL_DMA_AGGR_DURING_INT) { 7990 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks_irq); 7991 val = clamp_t(u16, tmr, 1, 7992 coal_cap->cmpl_aggr_dma_tmr_during_int_max); 7993 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(val); 7994 req->enables |= 7995 cpu_to_le16(BNXT_COAL_CMPL_AGGR_TMR_DURING_INT_ENABLE); 7996 } 7997 7998 if ((cmpl_params & RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_RING_IDLE) && 7999 hw_coal->idle_thresh && hw_coal->coal_ticks < hw_coal->idle_thresh) 8000 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE; 8001 req->flags = cpu_to_le16(flags); 8002 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_ENABLES); 8003 } 8004 8005 static int __bnxt_hwrm_set_coal_nq(struct bnxt *bp, struct bnxt_napi *bnapi, 8006 struct bnxt_coal *hw_coal) 8007 { 8008 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req; 8009 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8010 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 8011 u32 nq_params = coal_cap->nq_params; 8012 u16 tmr; 8013 int rc; 8014 8015 if (!(nq_params & RING_AGGINT_QCAPS_RESP_NQ_PARAMS_INT_LAT_TMR_MIN)) 8016 return 0; 8017 8018 rc = hwrm_req_init(bp, req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8019 if (rc) 8020 return rc; 8021 8022 req->ring_id = cpu_to_le16(cpr->cp_ring_struct.fw_ring_id); 8023 req->flags = 8024 cpu_to_le16(RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_IS_NQ); 8025 8026 tmr = bnxt_usec_to_coal_tmr(bp, hw_coal->coal_ticks) / 2; 8027 tmr = clamp_t(u16, tmr, 1, coal_cap->int_lat_tmr_min_max); 8028 req->int_lat_tmr_min = cpu_to_le16(tmr); 8029 req->enables |= cpu_to_le16(BNXT_COAL_CMPL_MIN_TMR_ENABLE); 8030 return hwrm_req_send(bp, req); 8031 } 8032 8033 int bnxt_hwrm_set_ring_coal(struct bnxt *bp, struct bnxt_napi *bnapi) 8034 { 8035 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx; 8036 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8037 struct bnxt_coal coal; 8038 int rc; 8039 8040 /* Tick values in micro seconds. 8041 * 1 coal_buf x bufs_per_record = 1 completion record. 8042 */ 8043 memcpy(&coal, &bp->rx_coal, sizeof(struct bnxt_coal)); 8044 8045 coal.coal_ticks = cpr->rx_ring_coal.coal_ticks; 8046 coal.coal_bufs = cpr->rx_ring_coal.coal_bufs; 8047 8048 if (!bnapi->rx_ring) 8049 return -ENODEV; 8050 8051 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8052 if (rc) 8053 return rc; 8054 8055 bnxt_hwrm_set_coal_params(bp, &coal, req_rx); 8056 8057 req_rx->ring_id = cpu_to_le16(bnxt_cp_ring_for_rx(bp, bnapi->rx_ring)); 8058 8059 return hwrm_req_send(bp, req_rx); 8060 } 8061 8062 static int 8063 bnxt_hwrm_set_rx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8064 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8065 { 8066 u16 ring_id = bnxt_cp_ring_for_rx(bp, bnapi->rx_ring); 8067 8068 req->ring_id = cpu_to_le16(ring_id); 8069 return hwrm_req_send(bp, req); 8070 } 8071 8072 static int 8073 bnxt_hwrm_set_tx_coal(struct bnxt *bp, struct bnxt_napi *bnapi, 8074 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req) 8075 { 8076 struct bnxt_tx_ring_info *txr; 8077 int i, rc; 8078 8079 bnxt_for_each_napi_tx(i, bnapi, txr) { 8080 u16 ring_id; 8081 8082 ring_id = bnxt_cp_ring_for_tx(bp, txr); 8083 req->ring_id = cpu_to_le16(ring_id); 8084 rc = hwrm_req_send(bp, req); 8085 if (rc) 8086 return rc; 8087 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8088 return 0; 8089 } 8090 return 0; 8091 } 8092 8093 int bnxt_hwrm_set_coal(struct bnxt *bp) 8094 { 8095 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req_rx, *req_tx; 8096 int i, rc; 8097 8098 rc = hwrm_req_init(bp, req_rx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8099 if (rc) 8100 return rc; 8101 8102 rc = hwrm_req_init(bp, req_tx, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS); 8103 if (rc) { 8104 hwrm_req_drop(bp, req_rx); 8105 return rc; 8106 } 8107 8108 bnxt_hwrm_set_coal_params(bp, &bp->rx_coal, req_rx); 8109 bnxt_hwrm_set_coal_params(bp, &bp->tx_coal, req_tx); 8110 8111 hwrm_req_hold(bp, req_rx); 8112 hwrm_req_hold(bp, req_tx); 8113 for (i = 0; i < bp->cp_nr_rings; i++) { 8114 struct bnxt_napi *bnapi = bp->bnapi[i]; 8115 struct bnxt_coal *hw_coal; 8116 8117 if (!bnapi->rx_ring) 8118 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8119 else 8120 rc = bnxt_hwrm_set_rx_coal(bp, bnapi, req_rx); 8121 if (rc) 8122 break; 8123 8124 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 8125 continue; 8126 8127 if (bnapi->rx_ring && bnapi->tx_ring[0]) { 8128 rc = bnxt_hwrm_set_tx_coal(bp, bnapi, req_tx); 8129 if (rc) 8130 break; 8131 } 8132 if (bnapi->rx_ring) 8133 hw_coal = &bp->rx_coal; 8134 else 8135 hw_coal = &bp->tx_coal; 8136 __bnxt_hwrm_set_coal_nq(bp, bnapi, hw_coal); 8137 } 8138 hwrm_req_drop(bp, req_rx); 8139 hwrm_req_drop(bp, req_tx); 8140 return rc; 8141 } 8142 8143 static void bnxt_hwrm_stat_ctx_free(struct bnxt *bp) 8144 { 8145 struct hwrm_stat_ctx_clr_stats_input *req0 = NULL; 8146 struct hwrm_stat_ctx_free_input *req; 8147 int i; 8148 8149 if (!bp->bnapi) 8150 return; 8151 8152 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8153 return; 8154 8155 if (hwrm_req_init(bp, req, HWRM_STAT_CTX_FREE)) 8156 return; 8157 if (BNXT_FW_MAJ(bp) <= 20) { 8158 if (hwrm_req_init(bp, req0, HWRM_STAT_CTX_CLR_STATS)) { 8159 hwrm_req_drop(bp, req); 8160 return; 8161 } 8162 hwrm_req_hold(bp, req0); 8163 } 8164 hwrm_req_hold(bp, req); 8165 for (i = 0; i < bp->cp_nr_rings; i++) { 8166 struct bnxt_napi *bnapi = bp->bnapi[i]; 8167 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8168 8169 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) { 8170 req->stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id); 8171 if (req0) { 8172 req0->stat_ctx_id = req->stat_ctx_id; 8173 hwrm_req_send(bp, req0); 8174 } 8175 hwrm_req_send(bp, req); 8176 8177 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID; 8178 } 8179 } 8180 hwrm_req_drop(bp, req); 8181 if (req0) 8182 hwrm_req_drop(bp, req0); 8183 } 8184 8185 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp) 8186 { 8187 struct hwrm_stat_ctx_alloc_output *resp; 8188 struct hwrm_stat_ctx_alloc_input *req; 8189 int rc, i; 8190 8191 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 8192 return 0; 8193 8194 rc = hwrm_req_init(bp, req, HWRM_STAT_CTX_ALLOC); 8195 if (rc) 8196 return rc; 8197 8198 req->stats_dma_length = cpu_to_le16(bp->hw_ring_stats_size); 8199 req->update_period_ms = cpu_to_le32(bp->stats_coal_ticks / 1000); 8200 8201 resp = hwrm_req_hold(bp, req); 8202 for (i = 0; i < bp->cp_nr_rings; i++) { 8203 struct bnxt_napi *bnapi = bp->bnapi[i]; 8204 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 8205 8206 req->stats_dma_addr = cpu_to_le64(cpr->stats.hw_stats_map); 8207 8208 rc = hwrm_req_send(bp, req); 8209 if (rc) 8210 break; 8211 8212 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id); 8213 8214 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id; 8215 } 8216 hwrm_req_drop(bp, req); 8217 return rc; 8218 } 8219 8220 static int bnxt_hwrm_func_qcfg(struct bnxt *bp) 8221 { 8222 struct hwrm_func_qcfg_output *resp; 8223 struct hwrm_func_qcfg_input *req; 8224 u16 flags; 8225 int rc; 8226 8227 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCFG); 8228 if (rc) 8229 return rc; 8230 8231 req->fid = cpu_to_le16(0xffff); 8232 resp = hwrm_req_hold(bp, req); 8233 rc = hwrm_req_send(bp, req); 8234 if (rc) 8235 goto func_qcfg_exit; 8236 8237 #ifdef CONFIG_BNXT_SRIOV 8238 if (BNXT_VF(bp)) { 8239 struct bnxt_vf_info *vf = &bp->vf; 8240 8241 vf->vlan = le16_to_cpu(resp->vlan) & VLAN_VID_MASK; 8242 } else { 8243 bp->pf.registered_vfs = le16_to_cpu(resp->registered_vfs); 8244 } 8245 #endif 8246 flags = le16_to_cpu(resp->flags); 8247 if (flags & (FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED | 8248 FUNC_QCFG_RESP_FLAGS_FW_LLDP_AGENT_ENABLED)) { 8249 bp->fw_cap |= BNXT_FW_CAP_LLDP_AGENT; 8250 if (flags & FUNC_QCFG_RESP_FLAGS_FW_DCBX_AGENT_ENABLED) 8251 bp->fw_cap |= BNXT_FW_CAP_DCBX_AGENT; 8252 } 8253 if (BNXT_PF(bp) && (flags & FUNC_QCFG_RESP_FLAGS_MULTI_HOST)) 8254 bp->flags |= BNXT_FLAG_MULTI_HOST; 8255 8256 if (flags & FUNC_QCFG_RESP_FLAGS_RING_MONITOR_ENABLED) 8257 bp->fw_cap |= BNXT_FW_CAP_RING_MONITOR; 8258 8259 switch (resp->port_partition_type) { 8260 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_0: 8261 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR1_5: 8262 case FUNC_QCFG_RESP_PORT_PARTITION_TYPE_NPAR2_0: 8263 bp->port_partition_type = resp->port_partition_type; 8264 break; 8265 } 8266 if (bp->hwrm_spec_code < 0x10707 || 8267 resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEB) 8268 bp->br_mode = BRIDGE_MODE_VEB; 8269 else if (resp->evb_mode == FUNC_QCFG_RESP_EVB_MODE_VEPA) 8270 bp->br_mode = BRIDGE_MODE_VEPA; 8271 else 8272 bp->br_mode = BRIDGE_MODE_UNDEF; 8273 8274 bp->max_mtu = le16_to_cpu(resp->max_mtu_configured); 8275 if (!bp->max_mtu) 8276 bp->max_mtu = BNXT_MAX_MTU; 8277 8278 if (bp->db_size) 8279 goto func_qcfg_exit; 8280 8281 bp->db_offset = le16_to_cpu(resp->legacy_l2_db_size_kb) * 1024; 8282 if (BNXT_CHIP_P5(bp)) { 8283 if (BNXT_PF(bp)) 8284 bp->db_offset = DB_PF_OFFSET_P5; 8285 else 8286 bp->db_offset = DB_VF_OFFSET_P5; 8287 } 8288 bp->db_size = PAGE_ALIGN(le16_to_cpu(resp->l2_doorbell_bar_size_kb) * 8289 1024); 8290 if (!bp->db_size || bp->db_size > pci_resource_len(bp->pdev, 2) || 8291 bp->db_size <= bp->db_offset) 8292 bp->db_size = pci_resource_len(bp->pdev, 2); 8293 8294 func_qcfg_exit: 8295 hwrm_req_drop(bp, req); 8296 return rc; 8297 } 8298 8299 static void bnxt_init_ctx_initializer(struct bnxt_ctx_mem_type *ctxm, 8300 u8 init_val, u8 init_offset, 8301 bool init_mask_set) 8302 { 8303 ctxm->init_value = init_val; 8304 ctxm->init_offset = BNXT_CTX_INIT_INVALID_OFFSET; 8305 if (init_mask_set) 8306 ctxm->init_offset = init_offset * 4; 8307 else 8308 ctxm->init_value = 0; 8309 } 8310 8311 static int bnxt_alloc_all_ctx_pg_info(struct bnxt *bp, int ctx_max) 8312 { 8313 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8314 u16 type; 8315 8316 for (type = 0; type < ctx_max; type++) { 8317 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8318 int n = 1; 8319 8320 if (!ctxm->max_entries) 8321 continue; 8322 8323 if (ctxm->instance_bmap) 8324 n = hweight32(ctxm->instance_bmap); 8325 ctxm->pg_info = kcalloc(n, sizeof(*ctxm->pg_info), GFP_KERNEL); 8326 if (!ctxm->pg_info) 8327 return -ENOMEM; 8328 } 8329 return 0; 8330 } 8331 8332 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 8333 struct bnxt_ctx_mem_type *ctxm, bool force); 8334 8335 #define BNXT_CTX_INIT_VALID(flags) \ 8336 (!!((flags) & \ 8337 FUNC_BACKING_STORE_QCAPS_V2_RESP_FLAGS_ENABLE_CTX_KIND_INIT)) 8338 8339 static int bnxt_hwrm_func_backing_store_qcaps_v2(struct bnxt *bp) 8340 { 8341 struct hwrm_func_backing_store_qcaps_v2_output *resp; 8342 struct hwrm_func_backing_store_qcaps_v2_input *req; 8343 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8344 u16 type; 8345 int rc; 8346 8347 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS_V2); 8348 if (rc) 8349 return rc; 8350 8351 if (!ctx) { 8352 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8353 if (!ctx) 8354 return -ENOMEM; 8355 bp->ctx = ctx; 8356 } 8357 8358 resp = hwrm_req_hold(bp, req); 8359 8360 for (type = 0; type < BNXT_CTX_V2_MAX; ) { 8361 struct bnxt_ctx_mem_type *ctxm = &ctx->ctx_arr[type]; 8362 u8 init_val, init_off, i; 8363 u32 max_entries; 8364 u16 entry_size; 8365 __le32 *p; 8366 u32 flags; 8367 8368 req->type = cpu_to_le16(type); 8369 rc = hwrm_req_send(bp, req); 8370 if (rc) 8371 goto ctx_done; 8372 flags = le32_to_cpu(resp->flags); 8373 type = le16_to_cpu(resp->next_valid_type); 8374 if (!(flags & BNXT_CTX_MEM_TYPE_VALID)) { 8375 bnxt_free_one_ctx_mem(bp, ctxm, true); 8376 continue; 8377 } 8378 entry_size = le16_to_cpu(resp->entry_size); 8379 max_entries = le32_to_cpu(resp->max_num_entries); 8380 if (ctxm->mem_valid) { 8381 if (!(flags & BNXT_CTX_MEM_PERSIST) || 8382 ctxm->entry_size != entry_size || 8383 ctxm->max_entries != max_entries) 8384 bnxt_free_one_ctx_mem(bp, ctxm, true); 8385 else 8386 continue; 8387 } 8388 ctxm->type = le16_to_cpu(resp->type); 8389 ctxm->entry_size = entry_size; 8390 ctxm->flags = flags; 8391 ctxm->instance_bmap = le32_to_cpu(resp->instance_bit_map); 8392 ctxm->entry_multiple = resp->entry_multiple; 8393 ctxm->max_entries = max_entries; 8394 ctxm->min_entries = le32_to_cpu(resp->min_num_entries); 8395 init_val = resp->ctx_init_value; 8396 init_off = resp->ctx_init_offset; 8397 bnxt_init_ctx_initializer(ctxm, init_val, init_off, 8398 BNXT_CTX_INIT_VALID(flags)); 8399 ctxm->split_entry_cnt = min_t(u8, resp->subtype_valid_cnt, 8400 BNXT_MAX_SPLIT_ENTRY); 8401 for (i = 0, p = &resp->split_entry_0; i < ctxm->split_entry_cnt; 8402 i++, p++) 8403 ctxm->split[i] = le32_to_cpu(*p); 8404 } 8405 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_V2_MAX); 8406 8407 ctx_done: 8408 hwrm_req_drop(bp, req); 8409 return rc; 8410 } 8411 8412 static int bnxt_hwrm_func_backing_store_qcaps(struct bnxt *bp) 8413 { 8414 struct hwrm_func_backing_store_qcaps_output *resp; 8415 struct hwrm_func_backing_store_qcaps_input *req; 8416 int rc; 8417 8418 if (bp->hwrm_spec_code < 0x10902 || BNXT_VF(bp) || 8419 (bp->ctx && bp->ctx->flags & BNXT_CTX_FLAG_INITED)) 8420 return 0; 8421 8422 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 8423 return bnxt_hwrm_func_backing_store_qcaps_v2(bp); 8424 8425 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_QCAPS); 8426 if (rc) 8427 return rc; 8428 8429 resp = hwrm_req_hold(bp, req); 8430 rc = hwrm_req_send_silent(bp, req); 8431 if (!rc) { 8432 struct bnxt_ctx_mem_type *ctxm; 8433 struct bnxt_ctx_mem_info *ctx; 8434 u8 init_val, init_idx = 0; 8435 u16 init_mask; 8436 8437 ctx = bp->ctx; 8438 if (!ctx) { 8439 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8440 if (!ctx) { 8441 rc = -ENOMEM; 8442 goto ctx_err; 8443 } 8444 bp->ctx = ctx; 8445 } 8446 init_val = resp->ctx_kind_initializer; 8447 init_mask = le16_to_cpu(resp->ctx_init_mask); 8448 8449 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8450 ctxm->max_entries = le32_to_cpu(resp->qp_max_entries); 8451 ctxm->qp_qp1_entries = le16_to_cpu(resp->qp_min_qp1_entries); 8452 ctxm->qp_l2_entries = le16_to_cpu(resp->qp_max_l2_entries); 8453 ctxm->qp_fast_qpmd_entries = le16_to_cpu(resp->fast_qpmd_qp_num_entries); 8454 ctxm->entry_size = le16_to_cpu(resp->qp_entry_size); 8455 bnxt_init_ctx_initializer(ctxm, init_val, resp->qp_init_offset, 8456 (init_mask & (1 << init_idx++)) != 0); 8457 8458 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8459 ctxm->srq_l2_entries = le16_to_cpu(resp->srq_max_l2_entries); 8460 ctxm->max_entries = le32_to_cpu(resp->srq_max_entries); 8461 ctxm->entry_size = le16_to_cpu(resp->srq_entry_size); 8462 bnxt_init_ctx_initializer(ctxm, init_val, resp->srq_init_offset, 8463 (init_mask & (1 << init_idx++)) != 0); 8464 8465 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8466 ctxm->cq_l2_entries = le16_to_cpu(resp->cq_max_l2_entries); 8467 ctxm->max_entries = le32_to_cpu(resp->cq_max_entries); 8468 ctxm->entry_size = le16_to_cpu(resp->cq_entry_size); 8469 bnxt_init_ctx_initializer(ctxm, init_val, resp->cq_init_offset, 8470 (init_mask & (1 << init_idx++)) != 0); 8471 8472 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8473 ctxm->vnic_entries = le16_to_cpu(resp->vnic_max_vnic_entries); 8474 ctxm->max_entries = ctxm->vnic_entries + 8475 le16_to_cpu(resp->vnic_max_ring_table_entries); 8476 ctxm->entry_size = le16_to_cpu(resp->vnic_entry_size); 8477 bnxt_init_ctx_initializer(ctxm, init_val, 8478 resp->vnic_init_offset, 8479 (init_mask & (1 << init_idx++)) != 0); 8480 8481 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8482 ctxm->max_entries = le32_to_cpu(resp->stat_max_entries); 8483 ctxm->entry_size = le16_to_cpu(resp->stat_entry_size); 8484 bnxt_init_ctx_initializer(ctxm, init_val, 8485 resp->stat_init_offset, 8486 (init_mask & (1 << init_idx++)) != 0); 8487 8488 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8489 ctxm->entry_size = le16_to_cpu(resp->tqm_entry_size); 8490 ctxm->min_entries = le32_to_cpu(resp->tqm_min_entries_per_ring); 8491 ctxm->max_entries = le32_to_cpu(resp->tqm_max_entries_per_ring); 8492 ctxm->entry_multiple = resp->tqm_entries_multiple; 8493 if (!ctxm->entry_multiple) 8494 ctxm->entry_multiple = 1; 8495 8496 memcpy(&ctx->ctx_arr[BNXT_CTX_FTQM], ctxm, sizeof(*ctxm)); 8497 8498 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8499 ctxm->max_entries = le32_to_cpu(resp->mrav_max_entries); 8500 ctxm->entry_size = le16_to_cpu(resp->mrav_entry_size); 8501 ctxm->mrav_num_entries_units = 8502 le16_to_cpu(resp->mrav_num_entries_units); 8503 bnxt_init_ctx_initializer(ctxm, init_val, 8504 resp->mrav_init_offset, 8505 (init_mask & (1 << init_idx++)) != 0); 8506 8507 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8508 ctxm->entry_size = le16_to_cpu(resp->tim_entry_size); 8509 ctxm->max_entries = le32_to_cpu(resp->tim_max_entries); 8510 8511 ctx->tqm_fp_rings_count = resp->tqm_fp_rings_count; 8512 if (!ctx->tqm_fp_rings_count) 8513 ctx->tqm_fp_rings_count = bp->max_q; 8514 else if (ctx->tqm_fp_rings_count > BNXT_MAX_TQM_FP_RINGS) 8515 ctx->tqm_fp_rings_count = BNXT_MAX_TQM_FP_RINGS; 8516 8517 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 8518 memcpy(ctxm, &ctx->ctx_arr[BNXT_CTX_STQM], sizeof(*ctxm)); 8519 ctxm->instance_bmap = (1 << ctx->tqm_fp_rings_count) - 1; 8520 8521 rc = bnxt_alloc_all_ctx_pg_info(bp, BNXT_CTX_MAX); 8522 } else { 8523 rc = 0; 8524 } 8525 ctx_err: 8526 hwrm_req_drop(bp, req); 8527 return rc; 8528 } 8529 8530 static void bnxt_hwrm_set_pg_attr(struct bnxt_ring_mem_info *rmem, u8 *pg_attr, 8531 __le64 *pg_dir) 8532 { 8533 if (!rmem->nr_pages) 8534 return; 8535 8536 BNXT_SET_CTX_PAGE_ATTR(*pg_attr); 8537 if (rmem->depth >= 1) { 8538 if (rmem->depth == 2) 8539 *pg_attr |= 2; 8540 else 8541 *pg_attr |= 1; 8542 *pg_dir = cpu_to_le64(rmem->pg_tbl_map); 8543 } else { 8544 *pg_dir = cpu_to_le64(rmem->dma_arr[0]); 8545 } 8546 } 8547 8548 #define FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES \ 8549 (FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP | \ 8550 FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ | \ 8551 FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ | \ 8552 FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC | \ 8553 FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) 8554 8555 static int bnxt_hwrm_func_backing_store_cfg(struct bnxt *bp, u32 enables) 8556 { 8557 struct hwrm_func_backing_store_cfg_input *req; 8558 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8559 struct bnxt_ctx_pg_info *ctx_pg; 8560 struct bnxt_ctx_mem_type *ctxm; 8561 void **__req = (void **)&req; 8562 u32 req_len = sizeof(*req); 8563 __le32 *num_entries; 8564 __le64 *pg_dir; 8565 u32 flags = 0; 8566 u8 *pg_attr; 8567 u32 ena; 8568 int rc; 8569 int i; 8570 8571 if (!ctx) 8572 return 0; 8573 8574 if (req_len > bp->hwrm_max_ext_req_len) 8575 req_len = BNXT_BACKING_STORE_CFG_LEGACY_LEN; 8576 rc = __hwrm_req_init(bp, __req, HWRM_FUNC_BACKING_STORE_CFG, req_len); 8577 if (rc) 8578 return rc; 8579 8580 req->enables = cpu_to_le32(enables); 8581 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP) { 8582 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 8583 ctx_pg = ctxm->pg_info; 8584 req->qp_num_entries = cpu_to_le32(ctx_pg->entries); 8585 req->qp_num_qp1_entries = cpu_to_le16(ctxm->qp_qp1_entries); 8586 req->qp_num_l2_entries = cpu_to_le16(ctxm->qp_l2_entries); 8587 req->qp_entry_size = cpu_to_le16(ctxm->entry_size); 8588 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8589 &req->qpc_pg_size_qpc_lvl, 8590 &req->qpc_page_dir); 8591 8592 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD) 8593 req->qp_num_fast_qpmd_entries = cpu_to_le16(ctxm->qp_fast_qpmd_entries); 8594 } 8595 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_SRQ) { 8596 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 8597 ctx_pg = ctxm->pg_info; 8598 req->srq_num_entries = cpu_to_le32(ctx_pg->entries); 8599 req->srq_num_l2_entries = cpu_to_le16(ctxm->srq_l2_entries); 8600 req->srq_entry_size = cpu_to_le16(ctxm->entry_size); 8601 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8602 &req->srq_pg_size_srq_lvl, 8603 &req->srq_page_dir); 8604 } 8605 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_CQ) { 8606 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 8607 ctx_pg = ctxm->pg_info; 8608 req->cq_num_entries = cpu_to_le32(ctx_pg->entries); 8609 req->cq_num_l2_entries = cpu_to_le16(ctxm->cq_l2_entries); 8610 req->cq_entry_size = cpu_to_le16(ctxm->entry_size); 8611 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8612 &req->cq_pg_size_cq_lvl, 8613 &req->cq_page_dir); 8614 } 8615 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_VNIC) { 8616 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 8617 ctx_pg = ctxm->pg_info; 8618 req->vnic_num_vnic_entries = cpu_to_le16(ctxm->vnic_entries); 8619 req->vnic_num_ring_table_entries = 8620 cpu_to_le16(ctxm->max_entries - ctxm->vnic_entries); 8621 req->vnic_entry_size = cpu_to_le16(ctxm->entry_size); 8622 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8623 &req->vnic_pg_size_vnic_lvl, 8624 &req->vnic_page_dir); 8625 } 8626 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_STAT) { 8627 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 8628 ctx_pg = ctxm->pg_info; 8629 req->stat_num_entries = cpu_to_le32(ctxm->max_entries); 8630 req->stat_entry_size = cpu_to_le16(ctxm->entry_size); 8631 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8632 &req->stat_pg_size_stat_lvl, 8633 &req->stat_page_dir); 8634 } 8635 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV) { 8636 u32 units; 8637 8638 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 8639 ctx_pg = ctxm->pg_info; 8640 req->mrav_num_entries = cpu_to_le32(ctx_pg->entries); 8641 units = ctxm->mrav_num_entries_units; 8642 if (units) { 8643 u32 num_mr, num_ah = ctxm->mrav_av_entries; 8644 u32 entries; 8645 8646 num_mr = ctx_pg->entries - num_ah; 8647 entries = ((num_mr / units) << 16) | (num_ah / units); 8648 req->mrav_num_entries = cpu_to_le32(entries); 8649 flags |= FUNC_BACKING_STORE_CFG_REQ_FLAGS_MRAV_RESERVATION_SPLIT; 8650 } 8651 req->mrav_entry_size = cpu_to_le16(ctxm->entry_size); 8652 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8653 &req->mrav_pg_size_mrav_lvl, 8654 &req->mrav_page_dir); 8655 } 8656 if (enables & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) { 8657 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 8658 ctx_pg = ctxm->pg_info; 8659 req->tim_num_entries = cpu_to_le32(ctx_pg->entries); 8660 req->tim_entry_size = cpu_to_le16(ctxm->entry_size); 8661 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8662 &req->tim_pg_size_tim_lvl, 8663 &req->tim_page_dir); 8664 } 8665 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 8666 for (i = 0, num_entries = &req->tqm_sp_num_entries, 8667 pg_attr = &req->tqm_sp_pg_size_tqm_sp_lvl, 8668 pg_dir = &req->tqm_sp_page_dir, 8669 ena = FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP, 8670 ctx_pg = ctxm->pg_info; 8671 i < BNXT_MAX_TQM_RINGS; 8672 ctx_pg = &ctx->ctx_arr[BNXT_CTX_FTQM].pg_info[i], 8673 i++, num_entries++, pg_attr++, pg_dir++, ena <<= 1) { 8674 if (!(enables & ena)) 8675 continue; 8676 8677 req->tqm_entry_size = cpu_to_le16(ctxm->entry_size); 8678 *num_entries = cpu_to_le32(ctx_pg->entries); 8679 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, pg_attr, pg_dir); 8680 } 8681 req->flags = cpu_to_le32(flags); 8682 return hwrm_req_send(bp, req); 8683 } 8684 8685 static int bnxt_alloc_ctx_mem_blk(struct bnxt *bp, 8686 struct bnxt_ctx_pg_info *ctx_pg) 8687 { 8688 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8689 8690 rmem->page_size = BNXT_PAGE_SIZE; 8691 rmem->pg_arr = ctx_pg->ctx_pg_arr; 8692 rmem->dma_arr = ctx_pg->ctx_dma_arr; 8693 rmem->flags = BNXT_RMEM_VALID_PTE_FLAG; 8694 if (rmem->depth >= 1) 8695 rmem->flags |= BNXT_RMEM_USE_FULL_PAGE_FLAG; 8696 return bnxt_alloc_ring(bp, rmem); 8697 } 8698 8699 static int bnxt_alloc_ctx_pg_tbls(struct bnxt *bp, 8700 struct bnxt_ctx_pg_info *ctx_pg, u32 mem_size, 8701 u8 depth, struct bnxt_ctx_mem_type *ctxm) 8702 { 8703 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8704 int rc; 8705 8706 if (!mem_size) 8707 return -EINVAL; 8708 8709 ctx_pg->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8710 if (ctx_pg->nr_pages > MAX_CTX_TOTAL_PAGES) { 8711 ctx_pg->nr_pages = 0; 8712 return -EINVAL; 8713 } 8714 if (ctx_pg->nr_pages > MAX_CTX_PAGES || depth > 1) { 8715 int nr_tbls, i; 8716 8717 rmem->depth = 2; 8718 ctx_pg->ctx_pg_tbl = kcalloc(MAX_CTX_PAGES, sizeof(ctx_pg), 8719 GFP_KERNEL); 8720 if (!ctx_pg->ctx_pg_tbl) 8721 return -ENOMEM; 8722 nr_tbls = DIV_ROUND_UP(ctx_pg->nr_pages, MAX_CTX_PAGES); 8723 rmem->nr_pages = nr_tbls; 8724 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8725 if (rc) 8726 return rc; 8727 for (i = 0; i < nr_tbls; i++) { 8728 struct bnxt_ctx_pg_info *pg_tbl; 8729 8730 pg_tbl = kzalloc(sizeof(*pg_tbl), GFP_KERNEL); 8731 if (!pg_tbl) 8732 return -ENOMEM; 8733 ctx_pg->ctx_pg_tbl[i] = pg_tbl; 8734 rmem = &pg_tbl->ring_mem; 8735 rmem->pg_tbl = ctx_pg->ctx_pg_arr[i]; 8736 rmem->pg_tbl_map = ctx_pg->ctx_dma_arr[i]; 8737 rmem->depth = 1; 8738 rmem->nr_pages = MAX_CTX_PAGES; 8739 rmem->ctx_mem = ctxm; 8740 if (i == (nr_tbls - 1)) { 8741 int rem = ctx_pg->nr_pages % MAX_CTX_PAGES; 8742 8743 if (rem) 8744 rmem->nr_pages = rem; 8745 } 8746 rc = bnxt_alloc_ctx_mem_blk(bp, pg_tbl); 8747 if (rc) 8748 break; 8749 } 8750 } else { 8751 rmem->nr_pages = DIV_ROUND_UP(mem_size, BNXT_PAGE_SIZE); 8752 if (rmem->nr_pages > 1 || depth) 8753 rmem->depth = 1; 8754 rmem->ctx_mem = ctxm; 8755 rc = bnxt_alloc_ctx_mem_blk(bp, ctx_pg); 8756 } 8757 return rc; 8758 } 8759 8760 static size_t bnxt_copy_ctx_pg_tbls(struct bnxt *bp, 8761 struct bnxt_ctx_pg_info *ctx_pg, 8762 void *buf, size_t offset, size_t head, 8763 size_t tail) 8764 { 8765 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8766 size_t nr_pages = ctx_pg->nr_pages; 8767 int page_size = rmem->page_size; 8768 size_t len = 0, total_len = 0; 8769 u16 depth = rmem->depth; 8770 8771 tail %= nr_pages * page_size; 8772 do { 8773 if (depth > 1) { 8774 int i = head / (page_size * MAX_CTX_PAGES); 8775 struct bnxt_ctx_pg_info *pg_tbl; 8776 8777 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8778 rmem = &pg_tbl->ring_mem; 8779 } 8780 len = __bnxt_copy_ring(bp, rmem, buf, offset, head, tail); 8781 head += len; 8782 offset += len; 8783 total_len += len; 8784 if (head >= nr_pages * page_size) 8785 head = 0; 8786 } while (head != tail); 8787 return total_len; 8788 } 8789 8790 static void bnxt_free_ctx_pg_tbls(struct bnxt *bp, 8791 struct bnxt_ctx_pg_info *ctx_pg) 8792 { 8793 struct bnxt_ring_mem_info *rmem = &ctx_pg->ring_mem; 8794 8795 if (rmem->depth > 1 || ctx_pg->nr_pages > MAX_CTX_PAGES || 8796 ctx_pg->ctx_pg_tbl) { 8797 int i, nr_tbls = rmem->nr_pages; 8798 8799 for (i = 0; i < nr_tbls; i++) { 8800 struct bnxt_ctx_pg_info *pg_tbl; 8801 struct bnxt_ring_mem_info *rmem2; 8802 8803 pg_tbl = ctx_pg->ctx_pg_tbl[i]; 8804 if (!pg_tbl) 8805 continue; 8806 rmem2 = &pg_tbl->ring_mem; 8807 bnxt_free_ring(bp, rmem2); 8808 ctx_pg->ctx_pg_arr[i] = NULL; 8809 kfree(pg_tbl); 8810 ctx_pg->ctx_pg_tbl[i] = NULL; 8811 } 8812 kfree(ctx_pg->ctx_pg_tbl); 8813 ctx_pg->ctx_pg_tbl = NULL; 8814 } 8815 bnxt_free_ring(bp, rmem); 8816 ctx_pg->nr_pages = 0; 8817 } 8818 8819 static int bnxt_setup_ctxm_pg_tbls(struct bnxt *bp, 8820 struct bnxt_ctx_mem_type *ctxm, u32 entries, 8821 u8 pg_lvl) 8822 { 8823 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8824 int i, rc = 0, n = 1; 8825 u32 mem_size; 8826 8827 if (!ctxm->entry_size || !ctx_pg) 8828 return -EINVAL; 8829 if (ctxm->instance_bmap) 8830 n = hweight32(ctxm->instance_bmap); 8831 if (ctxm->entry_multiple) 8832 entries = roundup(entries, ctxm->entry_multiple); 8833 entries = clamp_t(u32, entries, ctxm->min_entries, ctxm->max_entries); 8834 mem_size = entries * ctxm->entry_size; 8835 for (i = 0; i < n && !rc; i++) { 8836 ctx_pg[i].entries = entries; 8837 rc = bnxt_alloc_ctx_pg_tbls(bp, &ctx_pg[i], mem_size, pg_lvl, 8838 ctxm->init_value ? ctxm : NULL); 8839 } 8840 if (!rc) 8841 ctxm->mem_valid = 1; 8842 return rc; 8843 } 8844 8845 static int bnxt_hwrm_func_backing_store_cfg_v2(struct bnxt *bp, 8846 struct bnxt_ctx_mem_type *ctxm, 8847 bool last) 8848 { 8849 struct hwrm_func_backing_store_cfg_v2_input *req; 8850 u32 instance_bmap = ctxm->instance_bmap; 8851 int i, j, rc = 0, n = 1; 8852 __le32 *p; 8853 8854 if (!(ctxm->flags & BNXT_CTX_MEM_TYPE_VALID) || !ctxm->pg_info) 8855 return 0; 8856 8857 if (instance_bmap) 8858 n = hweight32(ctxm->instance_bmap); 8859 else 8860 instance_bmap = 1; 8861 8862 rc = hwrm_req_init(bp, req, HWRM_FUNC_BACKING_STORE_CFG_V2); 8863 if (rc) 8864 return rc; 8865 hwrm_req_hold(bp, req); 8866 req->type = cpu_to_le16(ctxm->type); 8867 req->entry_size = cpu_to_le16(ctxm->entry_size); 8868 if ((ctxm->flags & BNXT_CTX_MEM_PERSIST) && 8869 bnxt_bs_trace_avail(bp, ctxm->type)) { 8870 struct bnxt_bs_trace_info *bs_trace; 8871 u32 enables; 8872 8873 enables = FUNC_BACKING_STORE_CFG_V2_REQ_ENABLES_NEXT_BS_OFFSET; 8874 req->enables = cpu_to_le32(enables); 8875 bs_trace = &bp->bs_trace[bnxt_bstore_to_trace[ctxm->type]]; 8876 req->next_bs_offset = cpu_to_le32(bs_trace->last_offset); 8877 } 8878 req->subtype_valid_cnt = ctxm->split_entry_cnt; 8879 for (i = 0, p = &req->split_entry_0; i < ctxm->split_entry_cnt; i++) 8880 p[i] = cpu_to_le32(ctxm->split[i]); 8881 for (i = 0, j = 0; j < n && !rc; i++) { 8882 struct bnxt_ctx_pg_info *ctx_pg; 8883 8884 if (!(instance_bmap & (1 << i))) 8885 continue; 8886 req->instance = cpu_to_le16(i); 8887 ctx_pg = &ctxm->pg_info[j++]; 8888 if (!ctx_pg->entries) 8889 continue; 8890 req->num_entries = cpu_to_le32(ctx_pg->entries); 8891 bnxt_hwrm_set_pg_attr(&ctx_pg->ring_mem, 8892 &req->page_size_pbl_level, 8893 &req->page_dir); 8894 if (last && j == n) 8895 req->flags = 8896 cpu_to_le32(FUNC_BACKING_STORE_CFG_V2_REQ_FLAGS_BS_CFG_ALL_DONE); 8897 rc = hwrm_req_send(bp, req); 8898 } 8899 hwrm_req_drop(bp, req); 8900 return rc; 8901 } 8902 8903 static int bnxt_backing_store_cfg_v2(struct bnxt *bp, u32 ena) 8904 { 8905 struct bnxt_ctx_mem_info *ctx = bp->ctx; 8906 struct bnxt_ctx_mem_type *ctxm; 8907 u16 last_type = BNXT_CTX_INV; 8908 int rc = 0; 8909 u16 type; 8910 8911 for (type = BNXT_CTX_SRT; type <= BNXT_CTX_RIGP1; type++) { 8912 ctxm = &ctx->ctx_arr[type]; 8913 if (!bnxt_bs_trace_avail(bp, type)) 8914 continue; 8915 if (!ctxm->mem_valid) { 8916 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, 8917 ctxm->max_entries, 1); 8918 if (rc) { 8919 netdev_warn(bp->dev, "Unable to setup ctx page for type:0x%x.\n", 8920 type); 8921 continue; 8922 } 8923 bnxt_bs_trace_init(bp, ctxm); 8924 last_type = type; 8925 } 8926 } 8927 8928 if (last_type == BNXT_CTX_INV) { 8929 if (!ena) 8930 return 0; 8931 else if (ena & FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM) 8932 last_type = BNXT_CTX_MAX - 1; 8933 else 8934 last_type = BNXT_CTX_L2_MAX - 1; 8935 } 8936 ctx->ctx_arr[last_type].last = 1; 8937 8938 for (type = 0 ; type < BNXT_CTX_V2_MAX; type++) { 8939 ctxm = &ctx->ctx_arr[type]; 8940 8941 if (!ctxm->mem_valid) 8942 continue; 8943 rc = bnxt_hwrm_func_backing_store_cfg_v2(bp, ctxm, ctxm->last); 8944 if (rc) 8945 return rc; 8946 } 8947 return 0; 8948 } 8949 8950 /** 8951 * __bnxt_copy_ctx_mem - copy host context memory 8952 * @bp: The driver context 8953 * @ctxm: The pointer to the context memory type 8954 * @buf: The destination buffer or NULL to just obtain the length 8955 * @offset: The buffer offset to copy the data to 8956 * @head: The head offset of context memory to copy from 8957 * @tail: The tail offset (last byte + 1) of context memory to end the copy 8958 * 8959 * This function is called for debugging purposes to dump the host context 8960 * used by the chip. 8961 * 8962 * Return: Length of memory copied 8963 */ 8964 static size_t __bnxt_copy_ctx_mem(struct bnxt *bp, 8965 struct bnxt_ctx_mem_type *ctxm, void *buf, 8966 size_t offset, size_t head, size_t tail) 8967 { 8968 struct bnxt_ctx_pg_info *ctx_pg = ctxm->pg_info; 8969 size_t len = 0, total_len = 0; 8970 int i, n = 1; 8971 8972 if (!ctx_pg) 8973 return 0; 8974 8975 if (ctxm->instance_bmap) 8976 n = hweight32(ctxm->instance_bmap); 8977 for (i = 0; i < n; i++) { 8978 len = bnxt_copy_ctx_pg_tbls(bp, &ctx_pg[i], buf, offset, head, 8979 tail); 8980 offset += len; 8981 total_len += len; 8982 } 8983 return total_len; 8984 } 8985 8986 size_t bnxt_copy_ctx_mem(struct bnxt *bp, struct bnxt_ctx_mem_type *ctxm, 8987 void *buf, size_t offset) 8988 { 8989 size_t tail = ctxm->max_entries * ctxm->entry_size; 8990 8991 return __bnxt_copy_ctx_mem(bp, ctxm, buf, offset, 0, tail); 8992 } 8993 8994 static void bnxt_free_one_ctx_mem(struct bnxt *bp, 8995 struct bnxt_ctx_mem_type *ctxm, bool force) 8996 { 8997 struct bnxt_ctx_pg_info *ctx_pg; 8998 int i, n = 1; 8999 9000 ctxm->last = 0; 9001 9002 if (ctxm->mem_valid && !force && (ctxm->flags & BNXT_CTX_MEM_PERSIST)) 9003 return; 9004 9005 ctx_pg = ctxm->pg_info; 9006 if (ctx_pg) { 9007 if (ctxm->instance_bmap) 9008 n = hweight32(ctxm->instance_bmap); 9009 for (i = 0; i < n; i++) 9010 bnxt_free_ctx_pg_tbls(bp, &ctx_pg[i]); 9011 9012 kfree(ctx_pg); 9013 ctxm->pg_info = NULL; 9014 ctxm->mem_valid = 0; 9015 } 9016 memset(ctxm, 0, sizeof(*ctxm)); 9017 } 9018 9019 void bnxt_free_ctx_mem(struct bnxt *bp, bool force) 9020 { 9021 struct bnxt_ctx_mem_info *ctx = bp->ctx; 9022 u16 type; 9023 9024 if (!ctx) 9025 return; 9026 9027 for (type = 0; type < BNXT_CTX_V2_MAX; type++) 9028 bnxt_free_one_ctx_mem(bp, &ctx->ctx_arr[type], force); 9029 9030 ctx->flags &= ~BNXT_CTX_FLAG_INITED; 9031 if (force) { 9032 kfree(ctx); 9033 bp->ctx = NULL; 9034 } 9035 } 9036 9037 static int bnxt_alloc_ctx_mem(struct bnxt *bp) 9038 { 9039 struct bnxt_ctx_mem_type *ctxm; 9040 struct bnxt_ctx_mem_info *ctx; 9041 u32 l2_qps, qp1_qps, max_qps; 9042 u32 ena, entries_sp, entries; 9043 u32 srqs, max_srqs, min; 9044 u32 num_mr, num_ah; 9045 u32 extra_srqs = 0; 9046 u32 extra_qps = 0; 9047 u32 fast_qpmd_qps; 9048 u8 pg_lvl = 1; 9049 int i, rc; 9050 9051 rc = bnxt_hwrm_func_backing_store_qcaps(bp); 9052 if (rc) { 9053 netdev_err(bp->dev, "Failed querying context mem capability, rc = %d.\n", 9054 rc); 9055 return rc; 9056 } 9057 ctx = bp->ctx; 9058 if (!ctx || (ctx->flags & BNXT_CTX_FLAG_INITED)) 9059 return 0; 9060 9061 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9062 l2_qps = ctxm->qp_l2_entries; 9063 qp1_qps = ctxm->qp_qp1_entries; 9064 fast_qpmd_qps = ctxm->qp_fast_qpmd_entries; 9065 max_qps = ctxm->max_entries; 9066 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9067 srqs = ctxm->srq_l2_entries; 9068 max_srqs = ctxm->max_entries; 9069 ena = 0; 9070 if ((bp->flags & BNXT_FLAG_ROCE_CAP) && !is_kdump_kernel()) { 9071 pg_lvl = 2; 9072 extra_qps = min_t(u32, 65536, max_qps - l2_qps - qp1_qps); 9073 /* allocate extra qps if fw supports RoCE fast qp destroy feature */ 9074 extra_qps += fast_qpmd_qps; 9075 extra_srqs = min_t(u32, 8192, max_srqs - srqs); 9076 if (fast_qpmd_qps) 9077 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_QP_FAST_QPMD; 9078 } 9079 9080 ctxm = &ctx->ctx_arr[BNXT_CTX_QP]; 9081 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 9082 pg_lvl); 9083 if (rc) 9084 return rc; 9085 9086 ctxm = &ctx->ctx_arr[BNXT_CTX_SRQ]; 9087 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, srqs + extra_srqs, pg_lvl); 9088 if (rc) 9089 return rc; 9090 9091 ctxm = &ctx->ctx_arr[BNXT_CTX_CQ]; 9092 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->cq_l2_entries + 9093 extra_qps * 2, pg_lvl); 9094 if (rc) 9095 return rc; 9096 9097 ctxm = &ctx->ctx_arr[BNXT_CTX_VNIC]; 9098 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9099 if (rc) 9100 return rc; 9101 9102 ctxm = &ctx->ctx_arr[BNXT_CTX_STAT]; 9103 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, ctxm->max_entries, 1); 9104 if (rc) 9105 return rc; 9106 9107 if (!(bp->flags & BNXT_FLAG_ROCE_CAP)) 9108 goto skip_rdma; 9109 9110 ctxm = &ctx->ctx_arr[BNXT_CTX_MRAV]; 9111 /* 128K extra is needed to accommodate static AH context 9112 * allocation by f/w. 9113 */ 9114 num_mr = min_t(u32, ctxm->max_entries / 2, 1024 * 256); 9115 num_ah = min_t(u32, num_mr, 1024 * 128); 9116 ctxm->split_entry_cnt = BNXT_CTX_MRAV_AV_SPLIT_ENTRY + 1; 9117 if (!ctxm->mrav_av_entries || ctxm->mrav_av_entries > num_ah) 9118 ctxm->mrav_av_entries = num_ah; 9119 9120 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, num_mr + num_ah, 2); 9121 if (rc) 9122 return rc; 9123 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_MRAV; 9124 9125 ctxm = &ctx->ctx_arr[BNXT_CTX_TIM]; 9126 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, l2_qps + qp1_qps + extra_qps, 1); 9127 if (rc) 9128 return rc; 9129 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TIM; 9130 9131 skip_rdma: 9132 ctxm = &ctx->ctx_arr[BNXT_CTX_STQM]; 9133 min = ctxm->min_entries; 9134 entries_sp = ctx->ctx_arr[BNXT_CTX_VNIC].vnic_entries + l2_qps + 9135 2 * (extra_qps + qp1_qps) + min; 9136 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries_sp, 2); 9137 if (rc) 9138 return rc; 9139 9140 ctxm = &ctx->ctx_arr[BNXT_CTX_FTQM]; 9141 entries = l2_qps + 2 * (extra_qps + qp1_qps); 9142 rc = bnxt_setup_ctxm_pg_tbls(bp, ctxm, entries, 2); 9143 if (rc) 9144 return rc; 9145 for (i = 0; i < ctx->tqm_fp_rings_count + 1; i++) 9146 ena |= FUNC_BACKING_STORE_CFG_REQ_ENABLES_TQM_SP << i; 9147 ena |= FUNC_BACKING_STORE_CFG_REQ_DFLT_ENABLES; 9148 9149 if (bp->fw_cap & BNXT_FW_CAP_BACKING_STORE_V2) 9150 rc = bnxt_backing_store_cfg_v2(bp, ena); 9151 else 9152 rc = bnxt_hwrm_func_backing_store_cfg(bp, ena); 9153 if (rc) { 9154 netdev_err(bp->dev, "Failed configuring context mem, rc = %d.\n", 9155 rc); 9156 return rc; 9157 } 9158 ctx->flags |= BNXT_CTX_FLAG_INITED; 9159 return 0; 9160 } 9161 9162 static int bnxt_hwrm_crash_dump_mem_cfg(struct bnxt *bp) 9163 { 9164 struct hwrm_dbg_crashdump_medium_cfg_input *req; 9165 u16 page_attr; 9166 int rc; 9167 9168 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9169 return 0; 9170 9171 rc = hwrm_req_init(bp, req, HWRM_DBG_CRASHDUMP_MEDIUM_CFG); 9172 if (rc) 9173 return rc; 9174 9175 if (BNXT_PAGE_SIZE == 0x2000) 9176 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_8K; 9177 else if (BNXT_PAGE_SIZE == 0x10000) 9178 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_64K; 9179 else 9180 page_attr = DBG_CRASHDUMP_MEDIUM_CFG_REQ_PG_SIZE_PG_4K; 9181 req->pg_size_lvl = cpu_to_le16(page_attr | 9182 bp->fw_crash_mem->ring_mem.depth); 9183 req->pbl = cpu_to_le64(bp->fw_crash_mem->ring_mem.pg_tbl_map); 9184 req->size = cpu_to_le32(bp->fw_crash_len); 9185 req->output_dest_flags = cpu_to_le16(BNXT_DBG_CR_DUMP_MDM_CFG_DDR); 9186 return hwrm_req_send(bp, req); 9187 } 9188 9189 static void bnxt_free_crash_dump_mem(struct bnxt *bp) 9190 { 9191 if (bp->fw_crash_mem) { 9192 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9193 kfree(bp->fw_crash_mem); 9194 bp->fw_crash_mem = NULL; 9195 } 9196 } 9197 9198 static int bnxt_alloc_crash_dump_mem(struct bnxt *bp) 9199 { 9200 u32 mem_size = 0; 9201 int rc; 9202 9203 if (!(bp->fw_dbg_cap & DBG_QCAPS_RESP_FLAGS_CRASHDUMP_HOST_DDR)) 9204 return 0; 9205 9206 rc = bnxt_hwrm_get_dump_len(bp, BNXT_DUMP_CRASH, &mem_size); 9207 if (rc) 9208 return rc; 9209 9210 mem_size = round_up(mem_size, 4); 9211 9212 /* keep and use the existing pages */ 9213 if (bp->fw_crash_mem && 9214 mem_size <= bp->fw_crash_mem->nr_pages * BNXT_PAGE_SIZE) 9215 goto alloc_done; 9216 9217 if (bp->fw_crash_mem) 9218 bnxt_free_ctx_pg_tbls(bp, bp->fw_crash_mem); 9219 else 9220 bp->fw_crash_mem = kzalloc(sizeof(*bp->fw_crash_mem), 9221 GFP_KERNEL); 9222 if (!bp->fw_crash_mem) 9223 return -ENOMEM; 9224 9225 rc = bnxt_alloc_ctx_pg_tbls(bp, bp->fw_crash_mem, mem_size, 1, NULL); 9226 if (rc) { 9227 bnxt_free_crash_dump_mem(bp); 9228 return rc; 9229 } 9230 9231 alloc_done: 9232 bp->fw_crash_len = mem_size; 9233 return 0; 9234 } 9235 9236 int bnxt_hwrm_func_resc_qcaps(struct bnxt *bp, bool all) 9237 { 9238 struct hwrm_func_resource_qcaps_output *resp; 9239 struct hwrm_func_resource_qcaps_input *req; 9240 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9241 int rc; 9242 9243 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESOURCE_QCAPS); 9244 if (rc) 9245 return rc; 9246 9247 req->fid = cpu_to_le16(0xffff); 9248 resp = hwrm_req_hold(bp, req); 9249 rc = hwrm_req_send_silent(bp, req); 9250 if (rc) 9251 goto hwrm_func_resc_qcaps_exit; 9252 9253 hw_resc->max_tx_sch_inputs = le16_to_cpu(resp->max_tx_scheduler_inputs); 9254 if (!all) 9255 goto hwrm_func_resc_qcaps_exit; 9256 9257 hw_resc->min_rsscos_ctxs = le16_to_cpu(resp->min_rsscos_ctx); 9258 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9259 hw_resc->min_cp_rings = le16_to_cpu(resp->min_cmpl_rings); 9260 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9261 hw_resc->min_tx_rings = le16_to_cpu(resp->min_tx_rings); 9262 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9263 hw_resc->min_rx_rings = le16_to_cpu(resp->min_rx_rings); 9264 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9265 hw_resc->min_hw_ring_grps = le16_to_cpu(resp->min_hw_ring_grps); 9266 hw_resc->max_hw_ring_grps = le16_to_cpu(resp->max_hw_ring_grps); 9267 hw_resc->min_l2_ctxs = le16_to_cpu(resp->min_l2_ctxs); 9268 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9269 hw_resc->min_vnics = le16_to_cpu(resp->min_vnics); 9270 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9271 hw_resc->min_stat_ctxs = le16_to_cpu(resp->min_stat_ctx); 9272 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9273 9274 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 9275 u16 max_msix = le16_to_cpu(resp->max_msix); 9276 9277 hw_resc->max_nqs = max_msix; 9278 hw_resc->max_hw_ring_grps = hw_resc->max_rx_rings; 9279 } 9280 9281 if (BNXT_PF(bp)) { 9282 struct bnxt_pf_info *pf = &bp->pf; 9283 9284 pf->vf_resv_strategy = 9285 le16_to_cpu(resp->vf_reservation_strategy); 9286 if (pf->vf_resv_strategy > BNXT_VF_RESV_STRATEGY_MINIMAL_STATIC) 9287 pf->vf_resv_strategy = BNXT_VF_RESV_STRATEGY_MAXIMAL; 9288 } 9289 hwrm_func_resc_qcaps_exit: 9290 hwrm_req_drop(bp, req); 9291 return rc; 9292 } 9293 9294 static int __bnxt_hwrm_ptp_qcfg(struct bnxt *bp) 9295 { 9296 struct hwrm_port_mac_ptp_qcfg_output *resp; 9297 struct hwrm_port_mac_ptp_qcfg_input *req; 9298 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 9299 bool phc_cfg; 9300 u8 flags; 9301 int rc; 9302 9303 if (bp->hwrm_spec_code < 0x10801 || !BNXT_CHIP_P5_PLUS(bp)) { 9304 rc = -ENODEV; 9305 goto no_ptp; 9306 } 9307 9308 rc = hwrm_req_init(bp, req, HWRM_PORT_MAC_PTP_QCFG); 9309 if (rc) 9310 goto no_ptp; 9311 9312 req->port_id = cpu_to_le16(bp->pf.port_id); 9313 resp = hwrm_req_hold(bp, req); 9314 rc = hwrm_req_send(bp, req); 9315 if (rc) 9316 goto exit; 9317 9318 flags = resp->flags; 9319 if (BNXT_CHIP_P5_AND_MINUS(bp) && 9320 !(flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_HWRM_ACCESS)) { 9321 rc = -ENODEV; 9322 goto exit; 9323 } 9324 if (!ptp) { 9325 ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); 9326 if (!ptp) { 9327 rc = -ENOMEM; 9328 goto exit; 9329 } 9330 ptp->bp = bp; 9331 bp->ptp_cfg = ptp; 9332 } 9333 9334 if (flags & 9335 (PORT_MAC_PTP_QCFG_RESP_FLAGS_PARTIAL_DIRECT_ACCESS_REF_CLOCK | 9336 PORT_MAC_PTP_QCFG_RESP_FLAGS_64B_PHC_TIME)) { 9337 ptp->refclk_regs[0] = le32_to_cpu(resp->ts_ref_clock_reg_lower); 9338 ptp->refclk_regs[1] = le32_to_cpu(resp->ts_ref_clock_reg_upper); 9339 } else if (BNXT_CHIP_P5(bp)) { 9340 ptp->refclk_regs[0] = BNXT_TS_REG_TIMESYNC_TS0_LOWER; 9341 ptp->refclk_regs[1] = BNXT_TS_REG_TIMESYNC_TS0_UPPER; 9342 } else { 9343 rc = -ENODEV; 9344 goto exit; 9345 } 9346 phc_cfg = (flags & PORT_MAC_PTP_QCFG_RESP_FLAGS_RTC_CONFIGURED) != 0; 9347 rc = bnxt_ptp_init(bp, phc_cfg); 9348 if (rc) 9349 netdev_warn(bp->dev, "PTP initialization failed.\n"); 9350 exit: 9351 hwrm_req_drop(bp, req); 9352 if (!rc) 9353 return 0; 9354 9355 no_ptp: 9356 bnxt_ptp_clear(bp); 9357 kfree(ptp); 9358 bp->ptp_cfg = NULL; 9359 return rc; 9360 } 9361 9362 static int __bnxt_hwrm_func_qcaps(struct bnxt *bp) 9363 { 9364 struct hwrm_func_qcaps_output *resp; 9365 struct hwrm_func_qcaps_input *req; 9366 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 9367 u32 flags, flags_ext, flags_ext2; 9368 int rc; 9369 9370 rc = hwrm_req_init(bp, req, HWRM_FUNC_QCAPS); 9371 if (rc) 9372 return rc; 9373 9374 req->fid = cpu_to_le16(0xffff); 9375 resp = hwrm_req_hold(bp, req); 9376 rc = hwrm_req_send(bp, req); 9377 if (rc) 9378 goto hwrm_func_qcaps_exit; 9379 9380 flags = le32_to_cpu(resp->flags); 9381 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V1_SUPPORTED) 9382 bp->flags |= BNXT_FLAG_ROCEV1_CAP; 9383 if (flags & FUNC_QCAPS_RESP_FLAGS_ROCE_V2_SUPPORTED) 9384 bp->flags |= BNXT_FLAG_ROCEV2_CAP; 9385 if (flags & FUNC_QCAPS_RESP_FLAGS_PCIE_STATS_SUPPORTED) 9386 bp->fw_cap |= BNXT_FW_CAP_PCIE_STATS_SUPPORTED; 9387 if (flags & FUNC_QCAPS_RESP_FLAGS_HOT_RESET_CAPABLE) 9388 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET; 9389 if (flags & FUNC_QCAPS_RESP_FLAGS_EXT_STATS_SUPPORTED) 9390 bp->fw_cap |= BNXT_FW_CAP_EXT_STATS_SUPPORTED; 9391 if (flags & FUNC_QCAPS_RESP_FLAGS_ERROR_RECOVERY_CAPABLE) 9392 bp->fw_cap |= BNXT_FW_CAP_ERROR_RECOVERY; 9393 if (flags & FUNC_QCAPS_RESP_FLAGS_ERR_RECOVER_RELOAD) 9394 bp->fw_cap |= BNXT_FW_CAP_ERR_RECOVER_RELOAD; 9395 if (!(flags & FUNC_QCAPS_RESP_FLAGS_VLAN_ACCELERATION_TX_DISABLED)) 9396 bp->fw_cap |= BNXT_FW_CAP_VLAN_TX_INSERT; 9397 if (flags & FUNC_QCAPS_RESP_FLAGS_DBG_QCAPS_CMD_SUPPORTED) 9398 bp->fw_cap |= BNXT_FW_CAP_DBG_QCAPS; 9399 9400 flags_ext = le32_to_cpu(resp->flags_ext); 9401 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_EXT_HW_STATS_SUPPORTED) 9402 bp->fw_cap |= BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED; 9403 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_PPS_SUPPORTED)) 9404 bp->fw_cap |= BNXT_FW_CAP_PTP_PPS; 9405 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_PTP_64BIT_RTC_SUPPORTED) 9406 bp->fw_cap |= BNXT_FW_CAP_PTP_RTC; 9407 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_HOT_RESET_IF_SUPPORT)) 9408 bp->fw_cap |= BNXT_FW_CAP_HOT_RESET_IF; 9409 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_FW_LIVEPATCH_SUPPORTED)) 9410 bp->fw_cap |= BNXT_FW_CAP_LIVEPATCH; 9411 if (BNXT_PF(bp) && (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_DFLT_VLAN_TPID_PCP_SUPPORTED)) 9412 bp->fw_cap |= BNXT_FW_CAP_DFLT_VLAN_TPID_PCP; 9413 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_BS_V2_SUPPORTED) 9414 bp->fw_cap |= BNXT_FW_CAP_BACKING_STORE_V2; 9415 if (flags_ext & FUNC_QCAPS_RESP_FLAGS_EXT_TX_COAL_CMPL_CAP) 9416 bp->flags |= BNXT_FLAG_TX_COAL_CMPL; 9417 9418 flags_ext2 = le32_to_cpu(resp->flags_ext2); 9419 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_RX_ALL_PKTS_TIMESTAMPS_SUPPORTED) 9420 bp->fw_cap |= BNXT_FW_CAP_RX_ALL_PKT_TS; 9421 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_UDP_GSO_SUPPORTED) 9422 bp->flags |= BNXT_FLAG_UDP_GSO_CAP; 9423 if (flags_ext2 & FUNC_QCAPS_RESP_FLAGS_EXT2_TX_PKT_TS_CMPL_SUPPORTED) 9424 bp->fw_cap |= BNXT_FW_CAP_TX_TS_CMP; 9425 9426 bp->tx_push_thresh = 0; 9427 if ((flags & FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED) && 9428 BNXT_FW_MAJ(bp) > 217) 9429 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH; 9430 9431 hw_resc->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx); 9432 hw_resc->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings); 9433 hw_resc->max_tx_rings = le16_to_cpu(resp->max_tx_rings); 9434 hw_resc->max_rx_rings = le16_to_cpu(resp->max_rx_rings); 9435 hw_resc->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps); 9436 if (!hw_resc->max_hw_ring_grps) 9437 hw_resc->max_hw_ring_grps = hw_resc->max_tx_rings; 9438 hw_resc->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs); 9439 hw_resc->max_vnics = le16_to_cpu(resp->max_vnics); 9440 hw_resc->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx); 9441 9442 hw_resc->max_encap_records = le32_to_cpu(resp->max_encap_records); 9443 hw_resc->max_decap_records = le32_to_cpu(resp->max_decap_records); 9444 hw_resc->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows); 9445 hw_resc->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows); 9446 hw_resc->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows); 9447 hw_resc->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows); 9448 9449 if (BNXT_PF(bp)) { 9450 struct bnxt_pf_info *pf = &bp->pf; 9451 9452 pf->fw_fid = le16_to_cpu(resp->fid); 9453 pf->port_id = le16_to_cpu(resp->port_id); 9454 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN); 9455 pf->first_vf_id = le16_to_cpu(resp->first_vf_id); 9456 pf->max_vfs = le16_to_cpu(resp->max_vfs); 9457 bp->flags &= ~BNXT_FLAG_WOL_CAP; 9458 if (flags & FUNC_QCAPS_RESP_FLAGS_WOL_MAGICPKT_SUPPORTED) 9459 bp->flags |= BNXT_FLAG_WOL_CAP; 9460 if (flags & FUNC_QCAPS_RESP_FLAGS_PTP_SUPPORTED) { 9461 bp->fw_cap |= BNXT_FW_CAP_PTP; 9462 } else { 9463 bnxt_ptp_clear(bp); 9464 kfree(bp->ptp_cfg); 9465 bp->ptp_cfg = NULL; 9466 } 9467 } else { 9468 #ifdef CONFIG_BNXT_SRIOV 9469 struct bnxt_vf_info *vf = &bp->vf; 9470 9471 vf->fw_fid = le16_to_cpu(resp->fid); 9472 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN); 9473 #endif 9474 } 9475 bp->tso_max_segs = le16_to_cpu(resp->max_tso_segs); 9476 9477 hwrm_func_qcaps_exit: 9478 hwrm_req_drop(bp, req); 9479 return rc; 9480 } 9481 9482 static void bnxt_hwrm_dbg_qcaps(struct bnxt *bp) 9483 { 9484 struct hwrm_dbg_qcaps_output *resp; 9485 struct hwrm_dbg_qcaps_input *req; 9486 int rc; 9487 9488 bp->fw_dbg_cap = 0; 9489 if (!(bp->fw_cap & BNXT_FW_CAP_DBG_QCAPS)) 9490 return; 9491 9492 rc = hwrm_req_init(bp, req, HWRM_DBG_QCAPS); 9493 if (rc) 9494 return; 9495 9496 req->fid = cpu_to_le16(0xffff); 9497 resp = hwrm_req_hold(bp, req); 9498 rc = hwrm_req_send(bp, req); 9499 if (rc) 9500 goto hwrm_dbg_qcaps_exit; 9501 9502 bp->fw_dbg_cap = le32_to_cpu(resp->flags); 9503 9504 hwrm_dbg_qcaps_exit: 9505 hwrm_req_drop(bp, req); 9506 } 9507 9508 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp); 9509 9510 int bnxt_hwrm_func_qcaps(struct bnxt *bp) 9511 { 9512 int rc; 9513 9514 rc = __bnxt_hwrm_func_qcaps(bp); 9515 if (rc) 9516 return rc; 9517 9518 bnxt_hwrm_dbg_qcaps(bp); 9519 9520 rc = bnxt_hwrm_queue_qportcfg(bp); 9521 if (rc) { 9522 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %d\n", rc); 9523 return rc; 9524 } 9525 if (bp->hwrm_spec_code >= 0x10803) { 9526 rc = bnxt_alloc_ctx_mem(bp); 9527 if (rc) 9528 return rc; 9529 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 9530 if (!rc) 9531 bp->fw_cap |= BNXT_FW_CAP_NEW_RM; 9532 } 9533 return 0; 9534 } 9535 9536 static int bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(struct bnxt *bp) 9537 { 9538 struct hwrm_cfa_adv_flow_mgnt_qcaps_output *resp; 9539 struct hwrm_cfa_adv_flow_mgnt_qcaps_input *req; 9540 u32 flags; 9541 int rc; 9542 9543 if (!(bp->fw_cap & BNXT_FW_CAP_CFA_ADV_FLOW)) 9544 return 0; 9545 9546 rc = hwrm_req_init(bp, req, HWRM_CFA_ADV_FLOW_MGNT_QCAPS); 9547 if (rc) 9548 return rc; 9549 9550 resp = hwrm_req_hold(bp, req); 9551 rc = hwrm_req_send(bp, req); 9552 if (rc) 9553 goto hwrm_cfa_adv_qcaps_exit; 9554 9555 flags = le32_to_cpu(resp->flags); 9556 if (flags & 9557 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V2_SUPPORTED) 9558 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2; 9559 9560 if (flags & 9561 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_RFS_RING_TBL_IDX_V3_SUPPORTED) 9562 bp->fw_cap |= BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V3; 9563 9564 if (flags & 9565 CFA_ADV_FLOW_MGNT_QCAPS_RESP_FLAGS_NTUPLE_FLOW_RX_EXT_IP_PROTO_SUPPORTED) 9566 bp->fw_cap |= BNXT_FW_CAP_CFA_NTUPLE_RX_EXT_IP_PROTO; 9567 9568 hwrm_cfa_adv_qcaps_exit: 9569 hwrm_req_drop(bp, req); 9570 return rc; 9571 } 9572 9573 static int __bnxt_alloc_fw_health(struct bnxt *bp) 9574 { 9575 if (bp->fw_health) 9576 return 0; 9577 9578 bp->fw_health = kzalloc(sizeof(*bp->fw_health), GFP_KERNEL); 9579 if (!bp->fw_health) 9580 return -ENOMEM; 9581 9582 mutex_init(&bp->fw_health->lock); 9583 return 0; 9584 } 9585 9586 static int bnxt_alloc_fw_health(struct bnxt *bp) 9587 { 9588 int rc; 9589 9590 if (!(bp->fw_cap & BNXT_FW_CAP_HOT_RESET) && 9591 !(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9592 return 0; 9593 9594 rc = __bnxt_alloc_fw_health(bp); 9595 if (rc) { 9596 bp->fw_cap &= ~BNXT_FW_CAP_HOT_RESET; 9597 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9598 return rc; 9599 } 9600 9601 return 0; 9602 } 9603 9604 static void __bnxt_map_fw_health_reg(struct bnxt *bp, u32 reg) 9605 { 9606 writel(reg & BNXT_GRC_BASE_MASK, bp->bar0 + 9607 BNXT_GRCPF_REG_WINDOW_BASE_OUT + 9608 BNXT_FW_HEALTH_WIN_MAP_OFF); 9609 } 9610 9611 static void bnxt_inv_fw_health_reg(struct bnxt *bp) 9612 { 9613 struct bnxt_fw_health *fw_health = bp->fw_health; 9614 u32 reg_type; 9615 9616 if (!fw_health) 9617 return; 9618 9619 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_HEALTH_REG]); 9620 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9621 fw_health->status_reliable = false; 9622 9623 reg_type = BNXT_FW_HEALTH_REG_TYPE(fw_health->regs[BNXT_FW_RESET_CNT_REG]); 9624 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) 9625 fw_health->resets_reliable = false; 9626 } 9627 9628 static void bnxt_try_map_fw_health_reg(struct bnxt *bp) 9629 { 9630 void __iomem *hs; 9631 u32 status_loc; 9632 u32 reg_type; 9633 u32 sig; 9634 9635 if (bp->fw_health) 9636 bp->fw_health->status_reliable = false; 9637 9638 __bnxt_map_fw_health_reg(bp, HCOMM_STATUS_STRUCT_LOC); 9639 hs = bp->bar0 + BNXT_FW_HEALTH_WIN_OFF(HCOMM_STATUS_STRUCT_LOC); 9640 9641 sig = readl(hs + offsetof(struct hcomm_status, sig_ver)); 9642 if ((sig & HCOMM_STATUS_SIGNATURE_MASK) != HCOMM_STATUS_SIGNATURE_VAL) { 9643 if (!bp->chip_num) { 9644 __bnxt_map_fw_health_reg(bp, BNXT_GRC_REG_BASE); 9645 bp->chip_num = readl(bp->bar0 + 9646 BNXT_FW_HEALTH_WIN_BASE + 9647 BNXT_GRC_REG_CHIP_NUM); 9648 } 9649 if (!BNXT_CHIP_P5_PLUS(bp)) 9650 return; 9651 9652 status_loc = BNXT_GRC_REG_STATUS_P5 | 9653 BNXT_FW_HEALTH_REG_TYPE_BAR0; 9654 } else { 9655 status_loc = readl(hs + offsetof(struct hcomm_status, 9656 fw_status_loc)); 9657 } 9658 9659 if (__bnxt_alloc_fw_health(bp)) { 9660 netdev_warn(bp->dev, "no memory for firmware status checks\n"); 9661 return; 9662 } 9663 9664 bp->fw_health->regs[BNXT_FW_HEALTH_REG] = status_loc; 9665 reg_type = BNXT_FW_HEALTH_REG_TYPE(status_loc); 9666 if (reg_type == BNXT_FW_HEALTH_REG_TYPE_GRC) { 9667 __bnxt_map_fw_health_reg(bp, status_loc); 9668 bp->fw_health->mapped_regs[BNXT_FW_HEALTH_REG] = 9669 BNXT_FW_HEALTH_WIN_OFF(status_loc); 9670 } 9671 9672 bp->fw_health->status_reliable = true; 9673 } 9674 9675 static int bnxt_map_fw_health_regs(struct bnxt *bp) 9676 { 9677 struct bnxt_fw_health *fw_health = bp->fw_health; 9678 u32 reg_base = 0xffffffff; 9679 int i; 9680 9681 bp->fw_health->status_reliable = false; 9682 bp->fw_health->resets_reliable = false; 9683 /* Only pre-map the monitoring GRC registers using window 3 */ 9684 for (i = 0; i < 4; i++) { 9685 u32 reg = fw_health->regs[i]; 9686 9687 if (BNXT_FW_HEALTH_REG_TYPE(reg) != BNXT_FW_HEALTH_REG_TYPE_GRC) 9688 continue; 9689 if (reg_base == 0xffffffff) 9690 reg_base = reg & BNXT_GRC_BASE_MASK; 9691 if ((reg & BNXT_GRC_BASE_MASK) != reg_base) 9692 return -ERANGE; 9693 fw_health->mapped_regs[i] = BNXT_FW_HEALTH_WIN_OFF(reg); 9694 } 9695 bp->fw_health->status_reliable = true; 9696 bp->fw_health->resets_reliable = true; 9697 if (reg_base == 0xffffffff) 9698 return 0; 9699 9700 __bnxt_map_fw_health_reg(bp, reg_base); 9701 return 0; 9702 } 9703 9704 static void bnxt_remap_fw_health_regs(struct bnxt *bp) 9705 { 9706 if (!bp->fw_health) 9707 return; 9708 9709 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) { 9710 bp->fw_health->status_reliable = true; 9711 bp->fw_health->resets_reliable = true; 9712 } else { 9713 bnxt_try_map_fw_health_reg(bp); 9714 } 9715 } 9716 9717 static int bnxt_hwrm_error_recovery_qcfg(struct bnxt *bp) 9718 { 9719 struct bnxt_fw_health *fw_health = bp->fw_health; 9720 struct hwrm_error_recovery_qcfg_output *resp; 9721 struct hwrm_error_recovery_qcfg_input *req; 9722 int rc, i; 9723 9724 if (!(bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) 9725 return 0; 9726 9727 rc = hwrm_req_init(bp, req, HWRM_ERROR_RECOVERY_QCFG); 9728 if (rc) 9729 return rc; 9730 9731 resp = hwrm_req_hold(bp, req); 9732 rc = hwrm_req_send(bp, req); 9733 if (rc) 9734 goto err_recovery_out; 9735 fw_health->flags = le32_to_cpu(resp->flags); 9736 if ((fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) && 9737 !(bp->fw_cap & BNXT_FW_CAP_KONG_MB_CHNL)) { 9738 rc = -EINVAL; 9739 goto err_recovery_out; 9740 } 9741 fw_health->polling_dsecs = le32_to_cpu(resp->driver_polling_freq); 9742 fw_health->master_func_wait_dsecs = 9743 le32_to_cpu(resp->master_func_wait_period); 9744 fw_health->normal_func_wait_dsecs = 9745 le32_to_cpu(resp->normal_func_wait_period); 9746 fw_health->post_reset_wait_dsecs = 9747 le32_to_cpu(resp->master_func_wait_period_after_reset); 9748 fw_health->post_reset_max_wait_dsecs = 9749 le32_to_cpu(resp->max_bailout_time_after_reset); 9750 fw_health->regs[BNXT_FW_HEALTH_REG] = 9751 le32_to_cpu(resp->fw_health_status_reg); 9752 fw_health->regs[BNXT_FW_HEARTBEAT_REG] = 9753 le32_to_cpu(resp->fw_heartbeat_reg); 9754 fw_health->regs[BNXT_FW_RESET_CNT_REG] = 9755 le32_to_cpu(resp->fw_reset_cnt_reg); 9756 fw_health->regs[BNXT_FW_RESET_INPROG_REG] = 9757 le32_to_cpu(resp->reset_inprogress_reg); 9758 fw_health->fw_reset_inprog_reg_mask = 9759 le32_to_cpu(resp->reset_inprogress_reg_mask); 9760 fw_health->fw_reset_seq_cnt = resp->reg_array_cnt; 9761 if (fw_health->fw_reset_seq_cnt >= 16) { 9762 rc = -EINVAL; 9763 goto err_recovery_out; 9764 } 9765 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) { 9766 fw_health->fw_reset_seq_regs[i] = 9767 le32_to_cpu(resp->reset_reg[i]); 9768 fw_health->fw_reset_seq_vals[i] = 9769 le32_to_cpu(resp->reset_reg_val[i]); 9770 fw_health->fw_reset_seq_delay_msec[i] = 9771 resp->delay_after_reset[i]; 9772 } 9773 err_recovery_out: 9774 hwrm_req_drop(bp, req); 9775 if (!rc) 9776 rc = bnxt_map_fw_health_regs(bp); 9777 if (rc) 9778 bp->fw_cap &= ~BNXT_FW_CAP_ERROR_RECOVERY; 9779 return rc; 9780 } 9781 9782 static int bnxt_hwrm_func_reset(struct bnxt *bp) 9783 { 9784 struct hwrm_func_reset_input *req; 9785 int rc; 9786 9787 rc = hwrm_req_init(bp, req, HWRM_FUNC_RESET); 9788 if (rc) 9789 return rc; 9790 9791 req->enables = 0; 9792 hwrm_req_timeout(bp, req, HWRM_RESET_TIMEOUT); 9793 return hwrm_req_send(bp, req); 9794 } 9795 9796 static void bnxt_nvm_cfg_ver_get(struct bnxt *bp) 9797 { 9798 struct hwrm_nvm_get_dev_info_output nvm_info; 9799 9800 if (!bnxt_hwrm_nvm_get_dev_info(bp, &nvm_info)) 9801 snprintf(bp->nvm_cfg_ver, FW_VER_STR_LEN, "%d.%d.%d", 9802 nvm_info.nvm_cfg_ver_maj, nvm_info.nvm_cfg_ver_min, 9803 nvm_info.nvm_cfg_ver_upd); 9804 } 9805 9806 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp) 9807 { 9808 struct hwrm_queue_qportcfg_output *resp; 9809 struct hwrm_queue_qportcfg_input *req; 9810 u8 i, j, *qptr; 9811 bool no_rdma; 9812 int rc = 0; 9813 9814 rc = hwrm_req_init(bp, req, HWRM_QUEUE_QPORTCFG); 9815 if (rc) 9816 return rc; 9817 9818 resp = hwrm_req_hold(bp, req); 9819 rc = hwrm_req_send(bp, req); 9820 if (rc) 9821 goto qportcfg_exit; 9822 9823 if (!resp->max_configurable_queues) { 9824 rc = -EINVAL; 9825 goto qportcfg_exit; 9826 } 9827 bp->max_tc = resp->max_configurable_queues; 9828 bp->max_lltc = resp->max_configurable_lossless_queues; 9829 if (bp->max_tc > BNXT_MAX_QUEUE) 9830 bp->max_tc = BNXT_MAX_QUEUE; 9831 9832 no_rdma = !(bp->flags & BNXT_FLAG_ROCE_CAP); 9833 qptr = &resp->queue_id0; 9834 for (i = 0, j = 0; i < bp->max_tc; i++) { 9835 bp->q_info[j].queue_id = *qptr; 9836 bp->q_ids[i] = *qptr++; 9837 bp->q_info[j].queue_profile = *qptr++; 9838 bp->tc_to_qidx[j] = j; 9839 if (!BNXT_CNPQ(bp->q_info[j].queue_profile) || 9840 (no_rdma && BNXT_PF(bp))) 9841 j++; 9842 } 9843 bp->max_q = bp->max_tc; 9844 bp->max_tc = max_t(u8, j, 1); 9845 9846 if (resp->queue_cfg_info & QUEUE_QPORTCFG_RESP_QUEUE_CFG_INFO_ASYM_CFG) 9847 bp->max_tc = 1; 9848 9849 if (bp->max_lltc > bp->max_tc) 9850 bp->max_lltc = bp->max_tc; 9851 9852 qportcfg_exit: 9853 hwrm_req_drop(bp, req); 9854 return rc; 9855 } 9856 9857 static int bnxt_hwrm_poll(struct bnxt *bp) 9858 { 9859 struct hwrm_ver_get_input *req; 9860 int rc; 9861 9862 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9863 if (rc) 9864 return rc; 9865 9866 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9867 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9868 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9869 9870 hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT | BNXT_HWRM_FULL_WAIT); 9871 rc = hwrm_req_send(bp, req); 9872 return rc; 9873 } 9874 9875 static int bnxt_hwrm_ver_get(struct bnxt *bp) 9876 { 9877 struct hwrm_ver_get_output *resp; 9878 struct hwrm_ver_get_input *req; 9879 u16 fw_maj, fw_min, fw_bld, fw_rsv; 9880 u32 dev_caps_cfg, hwrm_ver; 9881 int rc, len; 9882 9883 rc = hwrm_req_init(bp, req, HWRM_VER_GET); 9884 if (rc) 9885 return rc; 9886 9887 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 9888 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN; 9889 req->hwrm_intf_maj = HWRM_VERSION_MAJOR; 9890 req->hwrm_intf_min = HWRM_VERSION_MINOR; 9891 req->hwrm_intf_upd = HWRM_VERSION_UPDATE; 9892 9893 resp = hwrm_req_hold(bp, req); 9894 rc = hwrm_req_send(bp, req); 9895 if (rc) 9896 goto hwrm_ver_get_exit; 9897 9898 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output)); 9899 9900 bp->hwrm_spec_code = resp->hwrm_intf_maj_8b << 16 | 9901 resp->hwrm_intf_min_8b << 8 | 9902 resp->hwrm_intf_upd_8b; 9903 if (resp->hwrm_intf_maj_8b < 1) { 9904 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n", 9905 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9906 resp->hwrm_intf_upd_8b); 9907 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n"); 9908 } 9909 9910 hwrm_ver = HWRM_VERSION_MAJOR << 16 | HWRM_VERSION_MINOR << 8 | 9911 HWRM_VERSION_UPDATE; 9912 9913 if (bp->hwrm_spec_code > hwrm_ver) 9914 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9915 HWRM_VERSION_MAJOR, HWRM_VERSION_MINOR, 9916 HWRM_VERSION_UPDATE); 9917 else 9918 snprintf(bp->hwrm_ver_supp, FW_VER_STR_LEN, "%d.%d.%d", 9919 resp->hwrm_intf_maj_8b, resp->hwrm_intf_min_8b, 9920 resp->hwrm_intf_upd_8b); 9921 9922 fw_maj = le16_to_cpu(resp->hwrm_fw_major); 9923 if (bp->hwrm_spec_code > 0x10803 && fw_maj) { 9924 fw_min = le16_to_cpu(resp->hwrm_fw_minor); 9925 fw_bld = le16_to_cpu(resp->hwrm_fw_build); 9926 fw_rsv = le16_to_cpu(resp->hwrm_fw_patch); 9927 len = FW_VER_STR_LEN; 9928 } else { 9929 fw_maj = resp->hwrm_fw_maj_8b; 9930 fw_min = resp->hwrm_fw_min_8b; 9931 fw_bld = resp->hwrm_fw_bld_8b; 9932 fw_rsv = resp->hwrm_fw_rsvd_8b; 9933 len = BC_HWRM_STR_LEN; 9934 } 9935 bp->fw_ver_code = BNXT_FW_VER_CODE(fw_maj, fw_min, fw_bld, fw_rsv); 9936 snprintf(bp->fw_ver_str, len, "%d.%d.%d.%d", fw_maj, fw_min, fw_bld, 9937 fw_rsv); 9938 9939 if (strlen(resp->active_pkg_name)) { 9940 int fw_ver_len = strlen(bp->fw_ver_str); 9941 9942 snprintf(bp->fw_ver_str + fw_ver_len, 9943 FW_VER_STR_LEN - fw_ver_len - 1, "/pkg %s", 9944 resp->active_pkg_name); 9945 bp->fw_cap |= BNXT_FW_CAP_PKG_VER; 9946 } 9947 9948 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout); 9949 if (!bp->hwrm_cmd_timeout) 9950 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 9951 bp->hwrm_cmd_max_timeout = le16_to_cpu(resp->max_req_timeout) * 1000; 9952 if (!bp->hwrm_cmd_max_timeout) 9953 bp->hwrm_cmd_max_timeout = HWRM_CMD_MAX_TIMEOUT; 9954 else if (bp->hwrm_cmd_max_timeout > HWRM_CMD_MAX_TIMEOUT) 9955 netdev_warn(bp->dev, "Device requests max timeout of %d seconds, may trigger hung task watchdog\n", 9956 bp->hwrm_cmd_max_timeout / 1000); 9957 9958 if (resp->hwrm_intf_maj_8b >= 1) { 9959 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len); 9960 bp->hwrm_max_ext_req_len = le16_to_cpu(resp->max_ext_req_len); 9961 } 9962 if (bp->hwrm_max_ext_req_len < HWRM_MAX_REQ_LEN) 9963 bp->hwrm_max_ext_req_len = HWRM_MAX_REQ_LEN; 9964 9965 bp->chip_num = le16_to_cpu(resp->chip_num); 9966 bp->chip_rev = resp->chip_rev; 9967 if (bp->chip_num == CHIP_NUM_58700 && !resp->chip_rev && 9968 !resp->chip_metal) 9969 bp->flags |= BNXT_FLAG_CHIP_NITRO_A0; 9970 9971 dev_caps_cfg = le32_to_cpu(resp->dev_caps_cfg); 9972 if ((dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_SUPPORTED) && 9973 (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_SHORT_CMD_REQUIRED)) 9974 bp->fw_cap |= BNXT_FW_CAP_SHORT_CMD; 9975 9976 if (dev_caps_cfg & VER_GET_RESP_DEV_CAPS_CFG_KONG_MB_CHNL_SUPPORTED) 9977 bp->fw_cap |= BNXT_FW_CAP_KONG_MB_CHNL; 9978 9979 if (dev_caps_cfg & 9980 VER_GET_RESP_DEV_CAPS_CFG_FLOW_HANDLE_64BIT_SUPPORTED) 9981 bp->fw_cap |= BNXT_FW_CAP_OVS_64BIT_HANDLE; 9982 9983 if (dev_caps_cfg & 9984 VER_GET_RESP_DEV_CAPS_CFG_TRUSTED_VF_SUPPORTED) 9985 bp->fw_cap |= BNXT_FW_CAP_TRUSTED_VF; 9986 9987 if (dev_caps_cfg & 9988 VER_GET_RESP_DEV_CAPS_CFG_CFA_ADV_FLOW_MGNT_SUPPORTED) 9989 bp->fw_cap |= BNXT_FW_CAP_CFA_ADV_FLOW; 9990 9991 hwrm_ver_get_exit: 9992 hwrm_req_drop(bp, req); 9993 return rc; 9994 } 9995 9996 int bnxt_hwrm_fw_set_time(struct bnxt *bp) 9997 { 9998 struct hwrm_fw_set_time_input *req; 9999 struct tm tm; 10000 time64_t now = ktime_get_real_seconds(); 10001 int rc; 10002 10003 if ((BNXT_VF(bp) && bp->hwrm_spec_code < 0x10901) || 10004 bp->hwrm_spec_code < 0x10400) 10005 return -EOPNOTSUPP; 10006 10007 time64_to_tm(now, 0, &tm); 10008 rc = hwrm_req_init(bp, req, HWRM_FW_SET_TIME); 10009 if (rc) 10010 return rc; 10011 10012 req->year = cpu_to_le16(1900 + tm.tm_year); 10013 req->month = 1 + tm.tm_mon; 10014 req->day = tm.tm_mday; 10015 req->hour = tm.tm_hour; 10016 req->minute = tm.tm_min; 10017 req->second = tm.tm_sec; 10018 return hwrm_req_send(bp, req); 10019 } 10020 10021 static void bnxt_add_one_ctr(u64 hw, u64 *sw, u64 mask) 10022 { 10023 u64 sw_tmp; 10024 10025 hw &= mask; 10026 sw_tmp = (*sw & ~mask) | hw; 10027 if (hw < (*sw & mask)) 10028 sw_tmp += mask + 1; 10029 WRITE_ONCE(*sw, sw_tmp); 10030 } 10031 10032 static void __bnxt_accumulate_stats(__le64 *hw_stats, u64 *sw_stats, u64 *masks, 10033 int count, bool ignore_zero) 10034 { 10035 int i; 10036 10037 for (i = 0; i < count; i++) { 10038 u64 hw = le64_to_cpu(READ_ONCE(hw_stats[i])); 10039 10040 if (ignore_zero && !hw) 10041 continue; 10042 10043 if (masks[i] == -1ULL) 10044 sw_stats[i] = hw; 10045 else 10046 bnxt_add_one_ctr(hw, &sw_stats[i], masks[i]); 10047 } 10048 } 10049 10050 static void bnxt_accumulate_stats(struct bnxt_stats_mem *stats) 10051 { 10052 if (!stats->hw_stats) 10053 return; 10054 10055 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10056 stats->hw_masks, stats->len / 8, false); 10057 } 10058 10059 static void bnxt_accumulate_all_stats(struct bnxt *bp) 10060 { 10061 struct bnxt_stats_mem *ring0_stats; 10062 bool ignore_zero = false; 10063 int i; 10064 10065 /* Chip bug. Counter intermittently becomes 0. */ 10066 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10067 ignore_zero = true; 10068 10069 for (i = 0; i < bp->cp_nr_rings; i++) { 10070 struct bnxt_napi *bnapi = bp->bnapi[i]; 10071 struct bnxt_cp_ring_info *cpr; 10072 struct bnxt_stats_mem *stats; 10073 10074 cpr = &bnapi->cp_ring; 10075 stats = &cpr->stats; 10076 if (!i) 10077 ring0_stats = stats; 10078 __bnxt_accumulate_stats(stats->hw_stats, stats->sw_stats, 10079 ring0_stats->hw_masks, 10080 ring0_stats->len / 8, ignore_zero); 10081 } 10082 if (bp->flags & BNXT_FLAG_PORT_STATS) { 10083 struct bnxt_stats_mem *stats = &bp->port_stats; 10084 __le64 *hw_stats = stats->hw_stats; 10085 u64 *sw_stats = stats->sw_stats; 10086 u64 *masks = stats->hw_masks; 10087 int cnt; 10088 10089 cnt = sizeof(struct rx_port_stats) / 8; 10090 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10091 10092 hw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10093 sw_stats += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10094 masks += BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 10095 cnt = sizeof(struct tx_port_stats) / 8; 10096 __bnxt_accumulate_stats(hw_stats, sw_stats, masks, cnt, false); 10097 } 10098 if (bp->flags & BNXT_FLAG_PORT_STATS_EXT) { 10099 bnxt_accumulate_stats(&bp->rx_port_stats_ext); 10100 bnxt_accumulate_stats(&bp->tx_port_stats_ext); 10101 } 10102 } 10103 10104 static int bnxt_hwrm_port_qstats(struct bnxt *bp, u8 flags) 10105 { 10106 struct hwrm_port_qstats_input *req; 10107 struct bnxt_pf_info *pf = &bp->pf; 10108 int rc; 10109 10110 if (!(bp->flags & BNXT_FLAG_PORT_STATS)) 10111 return 0; 10112 10113 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10114 return -EOPNOTSUPP; 10115 10116 rc = hwrm_req_init(bp, req, HWRM_PORT_QSTATS); 10117 if (rc) 10118 return rc; 10119 10120 req->flags = flags; 10121 req->port_id = cpu_to_le16(pf->port_id); 10122 req->tx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map + 10123 BNXT_TX_PORT_STATS_BYTE_OFFSET); 10124 req->rx_stat_host_addr = cpu_to_le64(bp->port_stats.hw_stats_map); 10125 return hwrm_req_send(bp, req); 10126 } 10127 10128 static int bnxt_hwrm_port_qstats_ext(struct bnxt *bp, u8 flags) 10129 { 10130 struct hwrm_queue_pri2cos_qcfg_output *resp_qc; 10131 struct hwrm_queue_pri2cos_qcfg_input *req_qc; 10132 struct hwrm_port_qstats_ext_output *resp_qs; 10133 struct hwrm_port_qstats_ext_input *req_qs; 10134 struct bnxt_pf_info *pf = &bp->pf; 10135 u32 tx_stat_size; 10136 int rc; 10137 10138 if (!(bp->flags & BNXT_FLAG_PORT_STATS_EXT)) 10139 return 0; 10140 10141 if (flags && !(bp->fw_cap & BNXT_FW_CAP_EXT_HW_STATS_SUPPORTED)) 10142 return -EOPNOTSUPP; 10143 10144 rc = hwrm_req_init(bp, req_qs, HWRM_PORT_QSTATS_EXT); 10145 if (rc) 10146 return rc; 10147 10148 req_qs->flags = flags; 10149 req_qs->port_id = cpu_to_le16(pf->port_id); 10150 req_qs->rx_stat_size = cpu_to_le16(sizeof(struct rx_port_stats_ext)); 10151 req_qs->rx_stat_host_addr = cpu_to_le64(bp->rx_port_stats_ext.hw_stats_map); 10152 tx_stat_size = bp->tx_port_stats_ext.hw_stats ? 10153 sizeof(struct tx_port_stats_ext) : 0; 10154 req_qs->tx_stat_size = cpu_to_le16(tx_stat_size); 10155 req_qs->tx_stat_host_addr = cpu_to_le64(bp->tx_port_stats_ext.hw_stats_map); 10156 resp_qs = hwrm_req_hold(bp, req_qs); 10157 rc = hwrm_req_send(bp, req_qs); 10158 if (!rc) { 10159 bp->fw_rx_stats_ext_size = 10160 le16_to_cpu(resp_qs->rx_stat_size) / 8; 10161 if (BNXT_FW_MAJ(bp) < 220 && 10162 bp->fw_rx_stats_ext_size > BNXT_RX_STATS_EXT_NUM_LEGACY) 10163 bp->fw_rx_stats_ext_size = BNXT_RX_STATS_EXT_NUM_LEGACY; 10164 10165 bp->fw_tx_stats_ext_size = tx_stat_size ? 10166 le16_to_cpu(resp_qs->tx_stat_size) / 8 : 0; 10167 } else { 10168 bp->fw_rx_stats_ext_size = 0; 10169 bp->fw_tx_stats_ext_size = 0; 10170 } 10171 hwrm_req_drop(bp, req_qs); 10172 10173 if (flags) 10174 return rc; 10175 10176 if (bp->fw_tx_stats_ext_size <= 10177 offsetof(struct tx_port_stats_ext, pfc_pri0_tx_duration_us) / 8) { 10178 bp->pri2cos_valid = 0; 10179 return rc; 10180 } 10181 10182 rc = hwrm_req_init(bp, req_qc, HWRM_QUEUE_PRI2COS_QCFG); 10183 if (rc) 10184 return rc; 10185 10186 req_qc->flags = cpu_to_le32(QUEUE_PRI2COS_QCFG_REQ_FLAGS_IVLAN); 10187 10188 resp_qc = hwrm_req_hold(bp, req_qc); 10189 rc = hwrm_req_send(bp, req_qc); 10190 if (!rc) { 10191 u8 *pri2cos; 10192 int i, j; 10193 10194 pri2cos = &resp_qc->pri0_cos_queue_id; 10195 for (i = 0; i < 8; i++) { 10196 u8 queue_id = pri2cos[i]; 10197 u8 queue_idx; 10198 10199 /* Per port queue IDs start from 0, 10, 20, etc */ 10200 queue_idx = queue_id % 10; 10201 if (queue_idx > BNXT_MAX_QUEUE) { 10202 bp->pri2cos_valid = false; 10203 hwrm_req_drop(bp, req_qc); 10204 return rc; 10205 } 10206 for (j = 0; j < bp->max_q; j++) { 10207 if (bp->q_ids[j] == queue_id) 10208 bp->pri2cos_idx[i] = queue_idx; 10209 } 10210 } 10211 bp->pri2cos_valid = true; 10212 } 10213 hwrm_req_drop(bp, req_qc); 10214 10215 return rc; 10216 } 10217 10218 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp) 10219 { 10220 bnxt_hwrm_tunnel_dst_port_free(bp, 10221 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN); 10222 bnxt_hwrm_tunnel_dst_port_free(bp, 10223 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE); 10224 } 10225 10226 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa) 10227 { 10228 int rc, i; 10229 u32 tpa_flags = 0; 10230 10231 if (set_tpa) 10232 tpa_flags = bp->flags & BNXT_FLAG_TPA; 10233 else if (BNXT_NO_FW_ACCESS(bp)) 10234 return 0; 10235 for (i = 0; i < bp->nr_vnics; i++) { 10236 rc = bnxt_hwrm_vnic_set_tpa(bp, &bp->vnic_info[i], tpa_flags); 10237 if (rc) { 10238 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n", 10239 i, rc); 10240 return rc; 10241 } 10242 } 10243 return 0; 10244 } 10245 10246 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp) 10247 { 10248 int i; 10249 10250 for (i = 0; i < bp->nr_vnics; i++) 10251 bnxt_hwrm_vnic_set_rss(bp, &bp->vnic_info[i], false); 10252 } 10253 10254 static void bnxt_clear_vnic(struct bnxt *bp) 10255 { 10256 if (!bp->vnic_info) 10257 return; 10258 10259 bnxt_hwrm_clear_vnic_filter(bp); 10260 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) { 10261 /* clear all RSS setting before free vnic ctx */ 10262 bnxt_hwrm_clear_vnic_rss(bp); 10263 bnxt_hwrm_vnic_ctx_free(bp); 10264 } 10265 /* before free the vnic, undo the vnic tpa settings */ 10266 if (bp->flags & BNXT_FLAG_TPA) 10267 bnxt_set_tpa(bp, false); 10268 bnxt_hwrm_vnic_free(bp); 10269 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10270 bnxt_hwrm_vnic_ctx_free(bp); 10271 } 10272 10273 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path, 10274 bool irq_re_init) 10275 { 10276 bnxt_clear_vnic(bp); 10277 bnxt_hwrm_ring_free(bp, close_path); 10278 bnxt_hwrm_ring_grp_free(bp); 10279 if (irq_re_init) { 10280 bnxt_hwrm_stat_ctx_free(bp); 10281 bnxt_hwrm_free_tunnel_ports(bp); 10282 } 10283 } 10284 10285 static int bnxt_hwrm_set_br_mode(struct bnxt *bp, u16 br_mode) 10286 { 10287 struct hwrm_func_cfg_input *req; 10288 u8 evb_mode; 10289 int rc; 10290 10291 if (br_mode == BRIDGE_MODE_VEB) 10292 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEB; 10293 else if (br_mode == BRIDGE_MODE_VEPA) 10294 evb_mode = FUNC_CFG_REQ_EVB_MODE_VEPA; 10295 else 10296 return -EINVAL; 10297 10298 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10299 if (rc) 10300 return rc; 10301 10302 req->fid = cpu_to_le16(0xffff); 10303 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_EVB_MODE); 10304 req->evb_mode = evb_mode; 10305 return hwrm_req_send(bp, req); 10306 } 10307 10308 static int bnxt_hwrm_set_cache_line_size(struct bnxt *bp, int size) 10309 { 10310 struct hwrm_func_cfg_input *req; 10311 int rc; 10312 10313 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10803) 10314 return 0; 10315 10316 rc = bnxt_hwrm_func_cfg_short_req_init(bp, &req); 10317 if (rc) 10318 return rc; 10319 10320 req->fid = cpu_to_le16(0xffff); 10321 req->enables = cpu_to_le32(FUNC_CFG_REQ_ENABLES_CACHE_LINESIZE); 10322 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_64; 10323 if (size == 128) 10324 req->options = FUNC_CFG_REQ_OPTIONS_CACHE_LINESIZE_SIZE_128; 10325 10326 return hwrm_req_send(bp, req); 10327 } 10328 10329 static int __bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10330 { 10331 int rc; 10332 10333 if (vnic->flags & BNXT_VNIC_RFS_NEW_RSS_FLAG) 10334 goto skip_rss_ctx; 10335 10336 /* allocate context for vnic */ 10337 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 0); 10338 if (rc) { 10339 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10340 vnic->vnic_id, rc); 10341 goto vnic_setup_err; 10342 } 10343 bp->rsscos_nr_ctxs++; 10344 10345 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10346 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, 1); 10347 if (rc) { 10348 netdev_err(bp->dev, "hwrm vnic %d cos ctx alloc failure rc: %x\n", 10349 vnic->vnic_id, rc); 10350 goto vnic_setup_err; 10351 } 10352 bp->rsscos_nr_ctxs++; 10353 } 10354 10355 skip_rss_ctx: 10356 /* configure default vnic, ring grp */ 10357 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10358 if (rc) { 10359 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10360 vnic->vnic_id, rc); 10361 goto vnic_setup_err; 10362 } 10363 10364 /* Enable RSS hashing on vnic */ 10365 rc = bnxt_hwrm_vnic_set_rss(bp, vnic, true); 10366 if (rc) { 10367 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n", 10368 vnic->vnic_id, rc); 10369 goto vnic_setup_err; 10370 } 10371 10372 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10373 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10374 if (rc) { 10375 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10376 vnic->vnic_id, rc); 10377 } 10378 } 10379 10380 vnic_setup_err: 10381 return rc; 10382 } 10383 10384 int bnxt_hwrm_vnic_update(struct bnxt *bp, struct bnxt_vnic_info *vnic, 10385 u8 valid) 10386 { 10387 struct hwrm_vnic_update_input *req; 10388 int rc; 10389 10390 rc = hwrm_req_init(bp, req, HWRM_VNIC_UPDATE); 10391 if (rc) 10392 return rc; 10393 10394 req->vnic_id = cpu_to_le32(vnic->fw_vnic_id); 10395 10396 if (valid & VNIC_UPDATE_REQ_ENABLES_MRU_VALID) 10397 req->mru = cpu_to_le16(vnic->mru); 10398 10399 req->enables = cpu_to_le32(valid); 10400 10401 return hwrm_req_send(bp, req); 10402 } 10403 10404 int bnxt_hwrm_vnic_rss_cfg_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10405 { 10406 int rc; 10407 10408 rc = bnxt_hwrm_vnic_set_rss_p5(bp, vnic, true); 10409 if (rc) { 10410 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %d\n", 10411 vnic->vnic_id, rc); 10412 return rc; 10413 } 10414 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10415 if (rc) 10416 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n", 10417 vnic->vnic_id, rc); 10418 return rc; 10419 } 10420 10421 int __bnxt_setup_vnic_p5(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10422 { 10423 int rc, i, nr_ctxs; 10424 10425 nr_ctxs = bnxt_get_nr_rss_ctxs(bp, bp->rx_nr_rings); 10426 for (i = 0; i < nr_ctxs; i++) { 10427 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic, i); 10428 if (rc) { 10429 netdev_err(bp->dev, "hwrm vnic %d ctx %d alloc failure rc: %x\n", 10430 vnic->vnic_id, i, rc); 10431 break; 10432 } 10433 bp->rsscos_nr_ctxs++; 10434 } 10435 if (i < nr_ctxs) 10436 return -ENOMEM; 10437 10438 rc = bnxt_hwrm_vnic_rss_cfg_p5(bp, vnic); 10439 if (rc) 10440 return rc; 10441 10442 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 10443 rc = bnxt_hwrm_vnic_set_hds(bp, vnic); 10444 if (rc) { 10445 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n", 10446 vnic->vnic_id, rc); 10447 } 10448 } 10449 return rc; 10450 } 10451 10452 static int bnxt_setup_vnic(struct bnxt *bp, struct bnxt_vnic_info *vnic) 10453 { 10454 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10455 return __bnxt_setup_vnic_p5(bp, vnic); 10456 else 10457 return __bnxt_setup_vnic(bp, vnic); 10458 } 10459 10460 static int bnxt_alloc_and_setup_vnic(struct bnxt *bp, 10461 struct bnxt_vnic_info *vnic, 10462 u16 start_rx_ring_idx, int rx_rings) 10463 { 10464 int rc; 10465 10466 rc = bnxt_hwrm_vnic_alloc(bp, vnic, start_rx_ring_idx, rx_rings); 10467 if (rc) { 10468 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n", 10469 vnic->vnic_id, rc); 10470 return rc; 10471 } 10472 return bnxt_setup_vnic(bp, vnic); 10473 } 10474 10475 static int bnxt_alloc_rfs_vnics(struct bnxt *bp) 10476 { 10477 struct bnxt_vnic_info *vnic; 10478 int i, rc = 0; 10479 10480 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) { 10481 vnic = &bp->vnic_info[BNXT_VNIC_NTUPLE]; 10482 return bnxt_alloc_and_setup_vnic(bp, vnic, 0, bp->rx_nr_rings); 10483 } 10484 10485 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10486 return 0; 10487 10488 for (i = 0; i < bp->rx_nr_rings; i++) { 10489 u16 vnic_id = i + 1; 10490 u16 ring_id = i; 10491 10492 if (vnic_id >= bp->nr_vnics) 10493 break; 10494 10495 vnic = &bp->vnic_info[vnic_id]; 10496 vnic->flags |= BNXT_VNIC_RFS_FLAG; 10497 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 10498 vnic->flags |= BNXT_VNIC_RFS_NEW_RSS_FLAG; 10499 if (bnxt_alloc_and_setup_vnic(bp, &bp->vnic_info[vnic_id], ring_id, 1)) 10500 break; 10501 } 10502 return rc; 10503 } 10504 10505 void bnxt_del_one_rss_ctx(struct bnxt *bp, struct bnxt_rss_ctx *rss_ctx, 10506 bool all) 10507 { 10508 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10509 struct bnxt_filter_base *usr_fltr, *tmp; 10510 struct bnxt_ntuple_filter *ntp_fltr; 10511 int i; 10512 10513 if (netif_running(bp->dev)) { 10514 bnxt_hwrm_vnic_free_one(bp, &rss_ctx->vnic); 10515 for (i = 0; i < BNXT_MAX_CTX_PER_VNIC; i++) { 10516 if (vnic->fw_rss_cos_lb_ctx[i] != INVALID_HW_RING_ID) 10517 bnxt_hwrm_vnic_ctx_free_one(bp, vnic, i); 10518 } 10519 } 10520 if (!all) 10521 return; 10522 10523 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) { 10524 if ((usr_fltr->flags & BNXT_ACT_RSS_CTX) && 10525 usr_fltr->fw_vnic_id == rss_ctx->index) { 10526 ntp_fltr = container_of(usr_fltr, 10527 struct bnxt_ntuple_filter, 10528 base); 10529 bnxt_hwrm_cfa_ntuple_filter_free(bp, ntp_fltr); 10530 bnxt_del_ntp_filter(bp, ntp_fltr); 10531 bnxt_del_one_usr_fltr(bp, usr_fltr); 10532 } 10533 } 10534 10535 if (vnic->rss_table) 10536 dma_free_coherent(&bp->pdev->dev, vnic->rss_table_size, 10537 vnic->rss_table, 10538 vnic->rss_table_dma_addr); 10539 bp->num_rss_ctx--; 10540 } 10541 10542 static void bnxt_hwrm_realloc_rss_ctx_vnic(struct bnxt *bp) 10543 { 10544 bool set_tpa = !!(bp->flags & BNXT_FLAG_TPA); 10545 struct ethtool_rxfh_context *ctx; 10546 unsigned long context; 10547 10548 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10549 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10550 struct bnxt_vnic_info *vnic = &rss_ctx->vnic; 10551 10552 if (bnxt_hwrm_vnic_alloc(bp, vnic, 0, bp->rx_nr_rings) || 10553 bnxt_hwrm_vnic_set_tpa(bp, vnic, set_tpa) || 10554 __bnxt_setup_vnic_p5(bp, vnic)) { 10555 netdev_err(bp->dev, "Failed to restore RSS ctx %d\n", 10556 rss_ctx->index); 10557 bnxt_del_one_rss_ctx(bp, rss_ctx, true); 10558 ethtool_rxfh_context_lost(bp->dev, rss_ctx->index); 10559 } 10560 } 10561 } 10562 10563 static void bnxt_clear_rss_ctxs(struct bnxt *bp) 10564 { 10565 struct ethtool_rxfh_context *ctx; 10566 unsigned long context; 10567 10568 xa_for_each(&bp->dev->ethtool->rss_ctx, context, ctx) { 10569 struct bnxt_rss_ctx *rss_ctx = ethtool_rxfh_context_priv(ctx); 10570 10571 bnxt_del_one_rss_ctx(bp, rss_ctx, false); 10572 } 10573 } 10574 10575 /* Allow PF, trusted VFs and VFs with default VLAN to be in promiscuous mode */ 10576 static bool bnxt_promisc_ok(struct bnxt *bp) 10577 { 10578 #ifdef CONFIG_BNXT_SRIOV 10579 if (BNXT_VF(bp) && !bp->vf.vlan && !bnxt_is_trusted_vf(bp, &bp->vf)) 10580 return false; 10581 #endif 10582 return true; 10583 } 10584 10585 static int bnxt_setup_nitroa0_vnic(struct bnxt *bp) 10586 { 10587 struct bnxt_vnic_info *vnic = &bp->vnic_info[1]; 10588 unsigned int rc = 0; 10589 10590 rc = bnxt_hwrm_vnic_alloc(bp, vnic, bp->rx_nr_rings - 1, 1); 10591 if (rc) { 10592 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10593 rc); 10594 return rc; 10595 } 10596 10597 rc = bnxt_hwrm_vnic_cfg(bp, vnic); 10598 if (rc) { 10599 netdev_err(bp->dev, "Cannot allocate special vnic for NS2 A0: %x\n", 10600 rc); 10601 return rc; 10602 } 10603 return rc; 10604 } 10605 10606 static int bnxt_cfg_rx_mode(struct bnxt *); 10607 static bool bnxt_mc_list_updated(struct bnxt *, u32 *); 10608 10609 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init) 10610 { 10611 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 10612 int rc = 0; 10613 unsigned int rx_nr_rings = bp->rx_nr_rings; 10614 10615 if (irq_re_init) { 10616 rc = bnxt_hwrm_stat_ctx_alloc(bp); 10617 if (rc) { 10618 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n", 10619 rc); 10620 goto err_out; 10621 } 10622 } 10623 10624 rc = bnxt_hwrm_ring_alloc(bp); 10625 if (rc) { 10626 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc); 10627 goto err_out; 10628 } 10629 10630 rc = bnxt_hwrm_ring_grp_alloc(bp); 10631 if (rc) { 10632 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc); 10633 goto err_out; 10634 } 10635 10636 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 10637 rx_nr_rings--; 10638 10639 /* default vnic 0 */ 10640 rc = bnxt_hwrm_vnic_alloc(bp, vnic, 0, rx_nr_rings); 10641 if (rc) { 10642 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc); 10643 goto err_out; 10644 } 10645 10646 if (BNXT_VF(bp)) 10647 bnxt_hwrm_func_qcfg(bp); 10648 10649 rc = bnxt_setup_vnic(bp, vnic); 10650 if (rc) 10651 goto err_out; 10652 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 10653 bnxt_hwrm_update_rss_hash_cfg(bp); 10654 10655 if (bp->flags & BNXT_FLAG_RFS) { 10656 rc = bnxt_alloc_rfs_vnics(bp); 10657 if (rc) 10658 goto err_out; 10659 } 10660 10661 if (bp->flags & BNXT_FLAG_TPA) { 10662 rc = bnxt_set_tpa(bp, true); 10663 if (rc) 10664 goto err_out; 10665 } 10666 10667 if (BNXT_VF(bp)) 10668 bnxt_update_vf_mac(bp); 10669 10670 /* Filter for default vnic 0 */ 10671 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr); 10672 if (rc) { 10673 if (BNXT_VF(bp) && rc == -ENODEV) 10674 netdev_err(bp->dev, "Cannot configure L2 filter while PF is unavailable\n"); 10675 else 10676 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 10677 goto err_out; 10678 } 10679 vnic->uc_filter_count = 1; 10680 10681 vnic->rx_mask = 0; 10682 if (test_bit(BNXT_STATE_HALF_OPEN, &bp->state)) 10683 goto skip_rx_mask; 10684 10685 if (bp->dev->flags & IFF_BROADCAST) 10686 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 10687 10688 if (bp->dev->flags & IFF_PROMISC) 10689 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 10690 10691 if (bp->dev->flags & IFF_ALLMULTI) { 10692 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 10693 vnic->mc_list_count = 0; 10694 } else if (bp->dev->flags & IFF_MULTICAST) { 10695 u32 mask = 0; 10696 10697 bnxt_mc_list_updated(bp, &mask); 10698 vnic->rx_mask |= mask; 10699 } 10700 10701 rc = bnxt_cfg_rx_mode(bp); 10702 if (rc) 10703 goto err_out; 10704 10705 skip_rx_mask: 10706 rc = bnxt_hwrm_set_coal(bp); 10707 if (rc) 10708 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n", 10709 rc); 10710 10711 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 10712 rc = bnxt_setup_nitroa0_vnic(bp); 10713 if (rc) 10714 netdev_err(bp->dev, "Special vnic setup failure for NS2 A0 rc: %x\n", 10715 rc); 10716 } 10717 10718 if (BNXT_VF(bp)) { 10719 bnxt_hwrm_func_qcfg(bp); 10720 netdev_update_features(bp->dev); 10721 } 10722 10723 return 0; 10724 10725 err_out: 10726 bnxt_hwrm_resource_free(bp, 0, true); 10727 10728 return rc; 10729 } 10730 10731 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init) 10732 { 10733 bnxt_hwrm_resource_free(bp, 1, irq_re_init); 10734 return 0; 10735 } 10736 10737 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init) 10738 { 10739 bnxt_init_cp_rings(bp); 10740 bnxt_init_rx_rings(bp); 10741 bnxt_init_tx_rings(bp); 10742 bnxt_init_ring_grps(bp, irq_re_init); 10743 bnxt_init_vnics(bp); 10744 10745 return bnxt_init_chip(bp, irq_re_init); 10746 } 10747 10748 static int bnxt_set_real_num_queues(struct bnxt *bp) 10749 { 10750 int rc; 10751 struct net_device *dev = bp->dev; 10752 10753 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings - 10754 bp->tx_nr_rings_xdp); 10755 if (rc) 10756 return rc; 10757 10758 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings); 10759 if (rc) 10760 return rc; 10761 10762 #ifdef CONFIG_RFS_ACCEL 10763 if (bp->flags & BNXT_FLAG_RFS) 10764 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings); 10765 #endif 10766 10767 return rc; 10768 } 10769 10770 static int __bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10771 bool shared) 10772 { 10773 int _rx = *rx, _tx = *tx; 10774 10775 if (shared) { 10776 *rx = min_t(int, _rx, max); 10777 *tx = min_t(int, _tx, max); 10778 } else { 10779 if (max < 2) 10780 return -ENOMEM; 10781 10782 while (_rx + _tx > max) { 10783 if (_rx > _tx && _rx > 1) 10784 _rx--; 10785 else if (_tx > 1) 10786 _tx--; 10787 } 10788 *rx = _rx; 10789 *tx = _tx; 10790 } 10791 return 0; 10792 } 10793 10794 static int __bnxt_num_tx_to_cp(struct bnxt *bp, int tx, int tx_sets, int tx_xdp) 10795 { 10796 return (tx - tx_xdp) / tx_sets + tx_xdp; 10797 } 10798 10799 int bnxt_num_tx_to_cp(struct bnxt *bp, int tx) 10800 { 10801 int tcs = bp->num_tc; 10802 10803 if (!tcs) 10804 tcs = 1; 10805 return __bnxt_num_tx_to_cp(bp, tx, tcs, bp->tx_nr_rings_xdp); 10806 } 10807 10808 static int bnxt_num_cp_to_tx(struct bnxt *bp, int tx_cp) 10809 { 10810 int tcs = bp->num_tc; 10811 10812 return (tx_cp - bp->tx_nr_rings_xdp) * tcs + 10813 bp->tx_nr_rings_xdp; 10814 } 10815 10816 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max, 10817 bool sh) 10818 { 10819 int tx_cp = bnxt_num_tx_to_cp(bp, *tx); 10820 10821 if (tx_cp != *tx) { 10822 int tx_saved = tx_cp, rc; 10823 10824 rc = __bnxt_trim_rings(bp, rx, &tx_cp, max, sh); 10825 if (rc) 10826 return rc; 10827 if (tx_cp != tx_saved) 10828 *tx = bnxt_num_cp_to_tx(bp, tx_cp); 10829 return 0; 10830 } 10831 return __bnxt_trim_rings(bp, rx, tx, max, sh); 10832 } 10833 10834 static void bnxt_setup_msix(struct bnxt *bp) 10835 { 10836 const int len = sizeof(bp->irq_tbl[0].name); 10837 struct net_device *dev = bp->dev; 10838 int tcs, i; 10839 10840 tcs = bp->num_tc; 10841 if (tcs) { 10842 int i, off, count; 10843 10844 for (i = 0; i < tcs; i++) { 10845 count = bp->tx_nr_rings_per_tc; 10846 off = BNXT_TC_TO_RING_BASE(bp, i); 10847 netdev_set_tc_queue(dev, i, count, off); 10848 } 10849 } 10850 10851 for (i = 0; i < bp->cp_nr_rings; i++) { 10852 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 10853 char *attr; 10854 10855 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 10856 attr = "TxRx"; 10857 else if (i < bp->rx_nr_rings) 10858 attr = "rx"; 10859 else 10860 attr = "tx"; 10861 10862 snprintf(bp->irq_tbl[map_idx].name, len, "%s-%s-%d", dev->name, 10863 attr, i); 10864 bp->irq_tbl[map_idx].handler = bnxt_msix; 10865 } 10866 } 10867 10868 static int bnxt_init_int_mode(struct bnxt *bp); 10869 10870 static int bnxt_change_msix(struct bnxt *bp, int total) 10871 { 10872 struct msi_map map; 10873 int i; 10874 10875 /* add MSIX to the end if needed */ 10876 for (i = bp->total_irqs; i < total; i++) { 10877 map = pci_msix_alloc_irq_at(bp->pdev, i, NULL); 10878 if (map.index < 0) 10879 return bp->total_irqs; 10880 bp->irq_tbl[i].vector = map.virq; 10881 bp->total_irqs++; 10882 } 10883 10884 /* trim MSIX from the end if needed */ 10885 for (i = bp->total_irqs; i > total; i--) { 10886 map.index = i - 1; 10887 map.virq = bp->irq_tbl[i - 1].vector; 10888 pci_msix_free_irq(bp->pdev, map); 10889 bp->total_irqs--; 10890 } 10891 return bp->total_irqs; 10892 } 10893 10894 static int bnxt_setup_int_mode(struct bnxt *bp) 10895 { 10896 int rc; 10897 10898 if (!bp->irq_tbl) { 10899 rc = bnxt_init_int_mode(bp); 10900 if (rc || !bp->irq_tbl) 10901 return rc ?: -ENODEV; 10902 } 10903 10904 bnxt_setup_msix(bp); 10905 10906 rc = bnxt_set_real_num_queues(bp); 10907 return rc; 10908 } 10909 10910 static unsigned int bnxt_get_max_func_rss_ctxs(struct bnxt *bp) 10911 { 10912 return bp->hw_resc.max_rsscos_ctxs; 10913 } 10914 10915 static unsigned int bnxt_get_max_func_vnics(struct bnxt *bp) 10916 { 10917 return bp->hw_resc.max_vnics; 10918 } 10919 10920 unsigned int bnxt_get_max_func_stat_ctxs(struct bnxt *bp) 10921 { 10922 return bp->hw_resc.max_stat_ctxs; 10923 } 10924 10925 unsigned int bnxt_get_max_func_cp_rings(struct bnxt *bp) 10926 { 10927 return bp->hw_resc.max_cp_rings; 10928 } 10929 10930 static unsigned int bnxt_get_max_func_cp_rings_for_en(struct bnxt *bp) 10931 { 10932 unsigned int cp = bp->hw_resc.max_cp_rings; 10933 10934 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 10935 cp -= bnxt_get_ulp_msix_num(bp); 10936 10937 return cp; 10938 } 10939 10940 static unsigned int bnxt_get_max_func_irqs(struct bnxt *bp) 10941 { 10942 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 10943 10944 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10945 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_nqs); 10946 10947 return min_t(unsigned int, hw_resc->max_irqs, hw_resc->max_cp_rings); 10948 } 10949 10950 static void bnxt_set_max_func_irqs(struct bnxt *bp, unsigned int max_irqs) 10951 { 10952 bp->hw_resc.max_irqs = max_irqs; 10953 } 10954 10955 unsigned int bnxt_get_avail_cp_rings_for_en(struct bnxt *bp) 10956 { 10957 unsigned int cp; 10958 10959 cp = bnxt_get_max_func_cp_rings_for_en(bp); 10960 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 10961 return cp - bp->rx_nr_rings - bp->tx_nr_rings; 10962 else 10963 return cp - bp->cp_nr_rings; 10964 } 10965 10966 unsigned int bnxt_get_avail_stat_ctxs_for_en(struct bnxt *bp) 10967 { 10968 return bnxt_get_max_func_stat_ctxs(bp) - bnxt_get_func_stat_ctxs(bp); 10969 } 10970 10971 static int bnxt_get_avail_msix(struct bnxt *bp, int num) 10972 { 10973 int max_irq = bnxt_get_max_func_irqs(bp); 10974 int total_req = bp->cp_nr_rings + num; 10975 10976 if (max_irq < total_req) { 10977 num = max_irq - bp->cp_nr_rings; 10978 if (num <= 0) 10979 return 0; 10980 } 10981 return num; 10982 } 10983 10984 static int bnxt_get_num_msix(struct bnxt *bp) 10985 { 10986 if (!BNXT_NEW_RM(bp)) 10987 return bnxt_get_max_func_irqs(bp); 10988 10989 return bnxt_nq_rings_in_use(bp); 10990 } 10991 10992 static int bnxt_init_int_mode(struct bnxt *bp) 10993 { 10994 int i, total_vecs, max, rc = 0, min = 1, ulp_msix, tx_cp, tbl_size; 10995 10996 total_vecs = bnxt_get_num_msix(bp); 10997 max = bnxt_get_max_func_irqs(bp); 10998 if (total_vecs > max) 10999 total_vecs = max; 11000 11001 if (!total_vecs) 11002 return 0; 11003 11004 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS)) 11005 min = 2; 11006 11007 total_vecs = pci_alloc_irq_vectors(bp->pdev, min, total_vecs, 11008 PCI_IRQ_MSIX); 11009 ulp_msix = bnxt_get_ulp_msix_num(bp); 11010 if (total_vecs < 0 || total_vecs < ulp_msix) { 11011 rc = -ENODEV; 11012 goto msix_setup_exit; 11013 } 11014 11015 tbl_size = total_vecs; 11016 if (pci_msix_can_alloc_dyn(bp->pdev)) 11017 tbl_size = max; 11018 bp->irq_tbl = kcalloc(tbl_size, sizeof(*bp->irq_tbl), GFP_KERNEL); 11019 if (bp->irq_tbl) { 11020 for (i = 0; i < total_vecs; i++) 11021 bp->irq_tbl[i].vector = pci_irq_vector(bp->pdev, i); 11022 11023 bp->total_irqs = total_vecs; 11024 /* Trim rings based upon num of vectors allocated */ 11025 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings, 11026 total_vecs - ulp_msix, min == 1); 11027 if (rc) 11028 goto msix_setup_exit; 11029 11030 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 11031 bp->cp_nr_rings = (min == 1) ? 11032 max_t(int, tx_cp, bp->rx_nr_rings) : 11033 tx_cp + bp->rx_nr_rings; 11034 11035 } else { 11036 rc = -ENOMEM; 11037 goto msix_setup_exit; 11038 } 11039 return 0; 11040 11041 msix_setup_exit: 11042 netdev_err(bp->dev, "bnxt_init_int_mode err: %x\n", rc); 11043 kfree(bp->irq_tbl); 11044 bp->irq_tbl = NULL; 11045 pci_free_irq_vectors(bp->pdev); 11046 return rc; 11047 } 11048 11049 static void bnxt_clear_int_mode(struct bnxt *bp) 11050 { 11051 pci_free_irq_vectors(bp->pdev); 11052 11053 kfree(bp->irq_tbl); 11054 bp->irq_tbl = NULL; 11055 } 11056 11057 int bnxt_reserve_rings(struct bnxt *bp, bool irq_re_init) 11058 { 11059 bool irq_cleared = false; 11060 bool irq_change = false; 11061 int tcs = bp->num_tc; 11062 int irqs_required; 11063 int rc; 11064 11065 if (!bnxt_need_reserve_rings(bp)) 11066 return 0; 11067 11068 if (BNXT_NEW_RM(bp) && !bnxt_ulp_registered(bp->edev)) { 11069 int ulp_msix = bnxt_get_avail_msix(bp, bp->ulp_num_msix_want); 11070 11071 if (ulp_msix > bp->ulp_num_msix_want) 11072 ulp_msix = bp->ulp_num_msix_want; 11073 irqs_required = ulp_msix + bp->cp_nr_rings; 11074 } else { 11075 irqs_required = bnxt_get_num_msix(bp); 11076 } 11077 11078 if (irq_re_init && BNXT_NEW_RM(bp) && irqs_required != bp->total_irqs) { 11079 irq_change = true; 11080 if (!pci_msix_can_alloc_dyn(bp->pdev)) { 11081 bnxt_ulp_irq_stop(bp); 11082 bnxt_clear_int_mode(bp); 11083 irq_cleared = true; 11084 } 11085 } 11086 rc = __bnxt_reserve_rings(bp); 11087 if (irq_cleared) { 11088 if (!rc) 11089 rc = bnxt_init_int_mode(bp); 11090 bnxt_ulp_irq_restart(bp, rc); 11091 } else if (irq_change && !rc) { 11092 if (bnxt_change_msix(bp, irqs_required) != irqs_required) 11093 rc = -ENOSPC; 11094 } 11095 if (rc) { 11096 netdev_err(bp->dev, "ring reservation/IRQ init failure rc: %d\n", rc); 11097 return rc; 11098 } 11099 if (tcs && (bp->tx_nr_rings_per_tc * tcs != 11100 bp->tx_nr_rings - bp->tx_nr_rings_xdp)) { 11101 netdev_err(bp->dev, "tx ring reservation failure\n"); 11102 netdev_reset_tc(bp->dev); 11103 bp->num_tc = 0; 11104 if (bp->tx_nr_rings_xdp) 11105 bp->tx_nr_rings_per_tc = bp->tx_nr_rings_xdp; 11106 else 11107 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 11108 return -ENOMEM; 11109 } 11110 return 0; 11111 } 11112 11113 static void bnxt_free_irq(struct bnxt *bp) 11114 { 11115 struct bnxt_irq *irq; 11116 int i; 11117 11118 #ifdef CONFIG_RFS_ACCEL 11119 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap); 11120 bp->dev->rx_cpu_rmap = NULL; 11121 #endif 11122 if (!bp->irq_tbl || !bp->bnapi) 11123 return; 11124 11125 for (i = 0; i < bp->cp_nr_rings; i++) { 11126 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11127 11128 irq = &bp->irq_tbl[map_idx]; 11129 if (irq->requested) { 11130 if (irq->have_cpumask) { 11131 irq_update_affinity_hint(irq->vector, NULL); 11132 free_cpumask_var(irq->cpu_mask); 11133 irq->have_cpumask = 0; 11134 } 11135 free_irq(irq->vector, bp->bnapi[i]); 11136 } 11137 11138 irq->requested = 0; 11139 } 11140 } 11141 11142 static int bnxt_request_irq(struct bnxt *bp) 11143 { 11144 int i, j, rc = 0; 11145 unsigned long flags = 0; 11146 #ifdef CONFIG_RFS_ACCEL 11147 struct cpu_rmap *rmap; 11148 #endif 11149 11150 rc = bnxt_setup_int_mode(bp); 11151 if (rc) { 11152 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n", 11153 rc); 11154 return rc; 11155 } 11156 #ifdef CONFIG_RFS_ACCEL 11157 rmap = bp->dev->rx_cpu_rmap; 11158 #endif 11159 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) { 11160 int map_idx = bnxt_cp_num_to_irq_num(bp, i); 11161 struct bnxt_irq *irq = &bp->irq_tbl[map_idx]; 11162 11163 #ifdef CONFIG_RFS_ACCEL 11164 if (rmap && bp->bnapi[i]->rx_ring) { 11165 rc = irq_cpu_rmap_add(rmap, irq->vector); 11166 if (rc) 11167 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n", 11168 j); 11169 j++; 11170 } 11171 #endif 11172 rc = request_irq(irq->vector, irq->handler, flags, irq->name, 11173 bp->bnapi[i]); 11174 if (rc) 11175 break; 11176 11177 netif_napi_set_irq(&bp->bnapi[i]->napi, irq->vector); 11178 irq->requested = 1; 11179 11180 if (zalloc_cpumask_var(&irq->cpu_mask, GFP_KERNEL)) { 11181 int numa_node = dev_to_node(&bp->pdev->dev); 11182 11183 irq->have_cpumask = 1; 11184 cpumask_set_cpu(cpumask_local_spread(i, numa_node), 11185 irq->cpu_mask); 11186 rc = irq_update_affinity_hint(irq->vector, irq->cpu_mask); 11187 if (rc) { 11188 netdev_warn(bp->dev, 11189 "Update affinity hint failed, IRQ = %d\n", 11190 irq->vector); 11191 break; 11192 } 11193 } 11194 } 11195 return rc; 11196 } 11197 11198 static void bnxt_del_napi(struct bnxt *bp) 11199 { 11200 int i; 11201 11202 if (!bp->bnapi) 11203 return; 11204 11205 for (i = 0; i < bp->rx_nr_rings; i++) 11206 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_RX, NULL); 11207 for (i = 0; i < bp->tx_nr_rings - bp->tx_nr_rings_xdp; i++) 11208 netif_queue_set_napi(bp->dev, i, NETDEV_QUEUE_TYPE_TX, NULL); 11209 11210 for (i = 0; i < bp->cp_nr_rings; i++) { 11211 struct bnxt_napi *bnapi = bp->bnapi[i]; 11212 11213 __netif_napi_del(&bnapi->napi); 11214 } 11215 /* We called __netif_napi_del(), we need 11216 * to respect an RCU grace period before freeing napi structures. 11217 */ 11218 synchronize_net(); 11219 } 11220 11221 static void bnxt_init_napi(struct bnxt *bp) 11222 { 11223 int (*poll_fn)(struct napi_struct *, int) = bnxt_poll; 11224 unsigned int cp_nr_rings = bp->cp_nr_rings; 11225 struct bnxt_napi *bnapi; 11226 int i; 11227 11228 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 11229 poll_fn = bnxt_poll_p5; 11230 else if (BNXT_CHIP_TYPE_NITRO_A0(bp)) 11231 cp_nr_rings--; 11232 for (i = 0; i < cp_nr_rings; i++) { 11233 bnapi = bp->bnapi[i]; 11234 netif_napi_add_config(bp->dev, &bnapi->napi, poll_fn, 11235 bnapi->index); 11236 } 11237 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 11238 bnapi = bp->bnapi[cp_nr_rings]; 11239 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll_nitroa0); 11240 } 11241 } 11242 11243 static void bnxt_disable_napi(struct bnxt *bp) 11244 { 11245 int i; 11246 11247 if (!bp->bnapi || 11248 test_and_set_bit(BNXT_STATE_NAPI_DISABLED, &bp->state)) 11249 return; 11250 11251 for (i = 0; i < bp->cp_nr_rings; i++) { 11252 struct bnxt_napi *bnapi = bp->bnapi[i]; 11253 struct bnxt_cp_ring_info *cpr; 11254 11255 cpr = &bnapi->cp_ring; 11256 if (bnapi->tx_fault) 11257 cpr->sw_stats->tx.tx_resets++; 11258 if (bnapi->in_reset) 11259 cpr->sw_stats->rx.rx_resets++; 11260 napi_disable(&bnapi->napi); 11261 if (bnapi->rx_ring) 11262 cancel_work_sync(&cpr->dim.work); 11263 } 11264 } 11265 11266 static void bnxt_enable_napi(struct bnxt *bp) 11267 { 11268 int i; 11269 11270 clear_bit(BNXT_STATE_NAPI_DISABLED, &bp->state); 11271 for (i = 0; i < bp->cp_nr_rings; i++) { 11272 struct bnxt_napi *bnapi = bp->bnapi[i]; 11273 struct bnxt_cp_ring_info *cpr; 11274 11275 bnapi->tx_fault = 0; 11276 11277 cpr = &bnapi->cp_ring; 11278 bnapi->in_reset = false; 11279 11280 if (bnapi->rx_ring) { 11281 INIT_WORK(&cpr->dim.work, bnxt_dim_work); 11282 cpr->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 11283 } 11284 napi_enable(&bnapi->napi); 11285 } 11286 } 11287 11288 void bnxt_tx_disable(struct bnxt *bp) 11289 { 11290 int i; 11291 struct bnxt_tx_ring_info *txr; 11292 11293 if (bp->tx_ring) { 11294 for (i = 0; i < bp->tx_nr_rings; i++) { 11295 txr = &bp->tx_ring[i]; 11296 WRITE_ONCE(txr->dev_state, BNXT_DEV_STATE_CLOSING); 11297 } 11298 } 11299 /* Make sure napi polls see @dev_state change */ 11300 synchronize_net(); 11301 /* Drop carrier first to prevent TX timeout */ 11302 netif_carrier_off(bp->dev); 11303 /* Stop all TX queues */ 11304 netif_tx_disable(bp->dev); 11305 } 11306 11307 void bnxt_tx_enable(struct bnxt *bp) 11308 { 11309 int i; 11310 struct bnxt_tx_ring_info *txr; 11311 11312 for (i = 0; i < bp->tx_nr_rings; i++) { 11313 txr = &bp->tx_ring[i]; 11314 WRITE_ONCE(txr->dev_state, 0); 11315 } 11316 /* Make sure napi polls see @dev_state change */ 11317 synchronize_net(); 11318 netif_tx_wake_all_queues(bp->dev); 11319 if (BNXT_LINK_IS_UP(bp)) 11320 netif_carrier_on(bp->dev); 11321 } 11322 11323 static char *bnxt_report_fec(struct bnxt_link_info *link_info) 11324 { 11325 u8 active_fec = link_info->active_fec_sig_mode & 11326 PORT_PHY_QCFG_RESP_ACTIVE_FEC_MASK; 11327 11328 switch (active_fec) { 11329 default: 11330 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_NONE_ACTIVE: 11331 return "None"; 11332 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE74_ACTIVE: 11333 return "Clause 74 BaseR"; 11334 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_CLAUSE91_ACTIVE: 11335 return "Clause 91 RS(528,514)"; 11336 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_1XN_ACTIVE: 11337 return "Clause 91 RS544_1XN"; 11338 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS544_IEEE_ACTIVE: 11339 return "Clause 91 RS(544,514)"; 11340 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_1XN_ACTIVE: 11341 return "Clause 91 RS272_1XN"; 11342 case PORT_PHY_QCFG_RESP_ACTIVE_FEC_FEC_RS272_IEEE_ACTIVE: 11343 return "Clause 91 RS(272,257)"; 11344 } 11345 } 11346 11347 void bnxt_report_link(struct bnxt *bp) 11348 { 11349 if (BNXT_LINK_IS_UP(bp)) { 11350 const char *signal = ""; 11351 const char *flow_ctrl; 11352 const char *duplex; 11353 u32 speed; 11354 u16 fec; 11355 11356 netif_carrier_on(bp->dev); 11357 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed); 11358 if (speed == SPEED_UNKNOWN) { 11359 netdev_info(bp->dev, "NIC Link is Up, speed unknown\n"); 11360 return; 11361 } 11362 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL) 11363 duplex = "full"; 11364 else 11365 duplex = "half"; 11366 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH) 11367 flow_ctrl = "ON - receive & transmit"; 11368 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX) 11369 flow_ctrl = "ON - transmit"; 11370 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX) 11371 flow_ctrl = "ON - receive"; 11372 else 11373 flow_ctrl = "none"; 11374 if (bp->link_info.phy_qcfg_resp.option_flags & 11375 PORT_PHY_QCFG_RESP_OPTION_FLAGS_SIGNAL_MODE_KNOWN) { 11376 u8 sig_mode = bp->link_info.active_fec_sig_mode & 11377 PORT_PHY_QCFG_RESP_SIGNAL_MODE_MASK; 11378 switch (sig_mode) { 11379 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_NRZ: 11380 signal = "(NRZ) "; 11381 break; 11382 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4: 11383 signal = "(PAM4 56Gbps) "; 11384 break; 11385 case PORT_PHY_QCFG_RESP_SIGNAL_MODE_PAM4_112: 11386 signal = "(PAM4 112Gbps) "; 11387 break; 11388 default: 11389 break; 11390 } 11391 } 11392 netdev_info(bp->dev, "NIC Link is Up, %u Mbps %s%s duplex, Flow control: %s\n", 11393 speed, signal, duplex, flow_ctrl); 11394 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) 11395 netdev_info(bp->dev, "EEE is %s\n", 11396 bp->eee.eee_active ? "active" : 11397 "not active"); 11398 fec = bp->link_info.fec_cfg; 11399 if (!(fec & PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED)) 11400 netdev_info(bp->dev, "FEC autoneg %s encoding: %s\n", 11401 (fec & BNXT_FEC_AUTONEG) ? "on" : "off", 11402 bnxt_report_fec(&bp->link_info)); 11403 } else { 11404 netif_carrier_off(bp->dev); 11405 netdev_err(bp->dev, "NIC Link is Down\n"); 11406 } 11407 } 11408 11409 static bool bnxt_phy_qcaps_no_speed(struct hwrm_port_phy_qcaps_output *resp) 11410 { 11411 if (!resp->supported_speeds_auto_mode && 11412 !resp->supported_speeds_force_mode && 11413 !resp->supported_pam4_speeds_auto_mode && 11414 !resp->supported_pam4_speeds_force_mode && 11415 !resp->supported_speeds2_auto_mode && 11416 !resp->supported_speeds2_force_mode) 11417 return true; 11418 return false; 11419 } 11420 11421 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp) 11422 { 11423 struct bnxt_link_info *link_info = &bp->link_info; 11424 struct hwrm_port_phy_qcaps_output *resp; 11425 struct hwrm_port_phy_qcaps_input *req; 11426 int rc = 0; 11427 11428 if (bp->hwrm_spec_code < 0x10201) 11429 return 0; 11430 11431 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCAPS); 11432 if (rc) 11433 return rc; 11434 11435 resp = hwrm_req_hold(bp, req); 11436 rc = hwrm_req_send(bp, req); 11437 if (rc) 11438 goto hwrm_phy_qcaps_exit; 11439 11440 bp->phy_flags = resp->flags | (le16_to_cpu(resp->flags2) << 8); 11441 if (resp->flags & PORT_PHY_QCAPS_RESP_FLAGS_EEE_SUPPORTED) { 11442 struct ethtool_keee *eee = &bp->eee; 11443 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode); 11444 11445 _bnxt_fw_to_linkmode(eee->supported, fw_speeds); 11446 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) & 11447 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK; 11448 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) & 11449 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK; 11450 } 11451 11452 if (bp->hwrm_spec_code >= 0x10a01) { 11453 if (bnxt_phy_qcaps_no_speed(resp)) { 11454 link_info->phy_state = BNXT_PHY_STATE_DISABLED; 11455 netdev_warn(bp->dev, "Ethernet link disabled\n"); 11456 } else if (link_info->phy_state == BNXT_PHY_STATE_DISABLED) { 11457 link_info->phy_state = BNXT_PHY_STATE_ENABLED; 11458 netdev_info(bp->dev, "Ethernet link enabled\n"); 11459 /* Phy re-enabled, reprobe the speeds */ 11460 link_info->support_auto_speeds = 0; 11461 link_info->support_pam4_auto_speeds = 0; 11462 link_info->support_auto_speeds2 = 0; 11463 } 11464 } 11465 if (resp->supported_speeds_auto_mode) 11466 link_info->support_auto_speeds = 11467 le16_to_cpu(resp->supported_speeds_auto_mode); 11468 if (resp->supported_pam4_speeds_auto_mode) 11469 link_info->support_pam4_auto_speeds = 11470 le16_to_cpu(resp->supported_pam4_speeds_auto_mode); 11471 if (resp->supported_speeds2_auto_mode) 11472 link_info->support_auto_speeds2 = 11473 le16_to_cpu(resp->supported_speeds2_auto_mode); 11474 11475 bp->port_count = resp->port_cnt; 11476 11477 hwrm_phy_qcaps_exit: 11478 hwrm_req_drop(bp, req); 11479 return rc; 11480 } 11481 11482 static bool bnxt_support_dropped(u16 advertising, u16 supported) 11483 { 11484 u16 diff = advertising ^ supported; 11485 11486 return ((supported | diff) != supported); 11487 } 11488 11489 static bool bnxt_support_speed_dropped(struct bnxt_link_info *link_info) 11490 { 11491 struct bnxt *bp = container_of(link_info, struct bnxt, link_info); 11492 11493 /* Check if any advertised speeds are no longer supported. The caller 11494 * holds the link_lock mutex, so we can modify link_info settings. 11495 */ 11496 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11497 if (bnxt_support_dropped(link_info->advertising, 11498 link_info->support_auto_speeds2)) { 11499 link_info->advertising = link_info->support_auto_speeds2; 11500 return true; 11501 } 11502 return false; 11503 } 11504 if (bnxt_support_dropped(link_info->advertising, 11505 link_info->support_auto_speeds)) { 11506 link_info->advertising = link_info->support_auto_speeds; 11507 return true; 11508 } 11509 if (bnxt_support_dropped(link_info->advertising_pam4, 11510 link_info->support_pam4_auto_speeds)) { 11511 link_info->advertising_pam4 = link_info->support_pam4_auto_speeds; 11512 return true; 11513 } 11514 return false; 11515 } 11516 11517 int bnxt_update_link(struct bnxt *bp, bool chng_link_state) 11518 { 11519 struct bnxt_link_info *link_info = &bp->link_info; 11520 struct hwrm_port_phy_qcfg_output *resp; 11521 struct hwrm_port_phy_qcfg_input *req; 11522 u8 link_state = link_info->link_state; 11523 bool support_changed; 11524 int rc; 11525 11526 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_QCFG); 11527 if (rc) 11528 return rc; 11529 11530 resp = hwrm_req_hold(bp, req); 11531 rc = hwrm_req_send(bp, req); 11532 if (rc) { 11533 hwrm_req_drop(bp, req); 11534 if (BNXT_VF(bp) && rc == -ENODEV) { 11535 netdev_warn(bp->dev, "Cannot obtain link state while PF unavailable.\n"); 11536 rc = 0; 11537 } 11538 return rc; 11539 } 11540 11541 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp)); 11542 link_info->phy_link_status = resp->link; 11543 link_info->duplex = resp->duplex_cfg; 11544 if (bp->hwrm_spec_code >= 0x10800) 11545 link_info->duplex = resp->duplex_state; 11546 link_info->pause = resp->pause; 11547 link_info->auto_mode = resp->auto_mode; 11548 link_info->auto_pause_setting = resp->auto_pause; 11549 link_info->lp_pause = resp->link_partner_adv_pause; 11550 link_info->force_pause_setting = resp->force_pause; 11551 link_info->duplex_setting = resp->duplex_cfg; 11552 if (link_info->phy_link_status == BNXT_LINK_LINK) { 11553 link_info->link_speed = le16_to_cpu(resp->link_speed); 11554 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) 11555 link_info->active_lanes = resp->active_lanes; 11556 } else { 11557 link_info->link_speed = 0; 11558 link_info->active_lanes = 0; 11559 } 11560 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed); 11561 link_info->force_pam4_link_speed = 11562 le16_to_cpu(resp->force_pam4_link_speed); 11563 link_info->force_link_speed2 = le16_to_cpu(resp->force_link_speeds2); 11564 link_info->support_speeds = le16_to_cpu(resp->support_speeds); 11565 link_info->support_pam4_speeds = le16_to_cpu(resp->support_pam4_speeds); 11566 link_info->support_speeds2 = le16_to_cpu(resp->support_speeds2); 11567 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask); 11568 link_info->auto_pam4_link_speeds = 11569 le16_to_cpu(resp->auto_pam4_link_speed_mask); 11570 link_info->auto_link_speeds2 = le16_to_cpu(resp->auto_link_speeds2); 11571 link_info->lp_auto_link_speeds = 11572 le16_to_cpu(resp->link_partner_adv_speeds); 11573 link_info->lp_auto_pam4_link_speeds = 11574 resp->link_partner_pam4_adv_speeds; 11575 link_info->preemphasis = le32_to_cpu(resp->preemphasis); 11576 link_info->phy_ver[0] = resp->phy_maj; 11577 link_info->phy_ver[1] = resp->phy_min; 11578 link_info->phy_ver[2] = resp->phy_bld; 11579 link_info->media_type = resp->media_type; 11580 link_info->phy_type = resp->phy_type; 11581 link_info->transceiver = resp->xcvr_pkg_type; 11582 link_info->phy_addr = resp->eee_config_phy_addr & 11583 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK; 11584 link_info->module_status = resp->module_status; 11585 11586 if (bp->phy_flags & BNXT_PHY_FL_EEE_CAP) { 11587 struct ethtool_keee *eee = &bp->eee; 11588 u16 fw_speeds; 11589 11590 eee->eee_active = 0; 11591 if (resp->eee_config_phy_addr & 11592 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) { 11593 eee->eee_active = 1; 11594 fw_speeds = le16_to_cpu( 11595 resp->link_partner_adv_eee_link_speed_mask); 11596 _bnxt_fw_to_linkmode(eee->lp_advertised, fw_speeds); 11597 } 11598 11599 /* Pull initial EEE config */ 11600 if (!chng_link_state) { 11601 if (resp->eee_config_phy_addr & 11602 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED) 11603 eee->eee_enabled = 1; 11604 11605 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask); 11606 _bnxt_fw_to_linkmode(eee->advertised, fw_speeds); 11607 11608 if (resp->eee_config_phy_addr & 11609 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) { 11610 __le32 tmr; 11611 11612 eee->tx_lpi_enabled = 1; 11613 tmr = resp->xcvr_identifier_type_tx_lpi_timer; 11614 eee->tx_lpi_timer = le32_to_cpu(tmr) & 11615 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK; 11616 } 11617 } 11618 } 11619 11620 link_info->fec_cfg = PORT_PHY_QCFG_RESP_FEC_CFG_FEC_NONE_SUPPORTED; 11621 if (bp->hwrm_spec_code >= 0x10504) { 11622 link_info->fec_cfg = le16_to_cpu(resp->fec_cfg); 11623 link_info->active_fec_sig_mode = resp->active_fec_signal_mode; 11624 } 11625 /* TODO: need to add more logic to report VF link */ 11626 if (chng_link_state) { 11627 if (link_info->phy_link_status == BNXT_LINK_LINK) 11628 link_info->link_state = BNXT_LINK_STATE_UP; 11629 else 11630 link_info->link_state = BNXT_LINK_STATE_DOWN; 11631 if (link_state != link_info->link_state) 11632 bnxt_report_link(bp); 11633 } else { 11634 /* always link down if not require to update link state */ 11635 link_info->link_state = BNXT_LINK_STATE_DOWN; 11636 } 11637 hwrm_req_drop(bp, req); 11638 11639 if (!BNXT_PHY_CFG_ABLE(bp)) 11640 return 0; 11641 11642 support_changed = bnxt_support_speed_dropped(link_info); 11643 if (support_changed && (link_info->autoneg & BNXT_AUTONEG_SPEED)) 11644 bnxt_hwrm_set_link_setting(bp, true, false); 11645 return 0; 11646 } 11647 11648 static void bnxt_get_port_module_status(struct bnxt *bp) 11649 { 11650 struct bnxt_link_info *link_info = &bp->link_info; 11651 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp; 11652 u8 module_status; 11653 11654 if (bnxt_update_link(bp, true)) 11655 return; 11656 11657 module_status = link_info->module_status; 11658 switch (module_status) { 11659 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX: 11660 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN: 11661 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG: 11662 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n", 11663 bp->pf.port_id); 11664 if (bp->hwrm_spec_code >= 0x10201) { 11665 netdev_warn(bp->dev, "Module part number %s\n", 11666 resp->phy_vendor_partnumber); 11667 } 11668 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX) 11669 netdev_warn(bp->dev, "TX is disabled\n"); 11670 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN) 11671 netdev_warn(bp->dev, "SFP+ module is shutdown\n"); 11672 } 11673 } 11674 11675 static void 11676 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11677 { 11678 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) { 11679 if (bp->hwrm_spec_code >= 0x10201) 11680 req->auto_pause = 11681 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE; 11682 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11683 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX; 11684 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11685 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX; 11686 req->enables |= 11687 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11688 } else { 11689 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX) 11690 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX; 11691 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX) 11692 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX; 11693 req->enables |= 11694 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE); 11695 if (bp->hwrm_spec_code >= 0x10201) { 11696 req->auto_pause = req->force_pause; 11697 req->enables |= cpu_to_le32( 11698 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE); 11699 } 11700 } 11701 } 11702 11703 static void bnxt_hwrm_set_link_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req) 11704 { 11705 if (bp->link_info.autoneg & BNXT_AUTONEG_SPEED) { 11706 req->auto_mode |= PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK; 11707 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11708 req->enables |= 11709 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEEDS2_MASK); 11710 req->auto_link_speeds2_mask = cpu_to_le16(bp->link_info.advertising); 11711 } else if (bp->link_info.advertising) { 11712 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK); 11713 req->auto_link_speed_mask = cpu_to_le16(bp->link_info.advertising); 11714 } 11715 if (bp->link_info.advertising_pam4) { 11716 req->enables |= 11717 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAM4_LINK_SPEED_MASK); 11718 req->auto_link_pam4_speed_mask = 11719 cpu_to_le16(bp->link_info.advertising_pam4); 11720 } 11721 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE); 11722 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG); 11723 } else { 11724 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE); 11725 if (bp->phy_flags & BNXT_PHY_FL_SPEEDS2) { 11726 req->force_link_speeds2 = cpu_to_le16(bp->link_info.req_link_speed); 11727 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_LINK_SPEEDS2); 11728 netif_info(bp, link, bp->dev, "Forcing FW speed2: %d\n", 11729 (u32)bp->link_info.req_link_speed); 11730 } else if (bp->link_info.req_signal_mode == BNXT_SIG_MODE_PAM4) { 11731 req->force_pam4_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11732 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAM4_LINK_SPEED); 11733 } else { 11734 req->force_link_speed = cpu_to_le16(bp->link_info.req_link_speed); 11735 } 11736 } 11737 11738 /* tell chimp that the setting takes effect immediately */ 11739 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY); 11740 } 11741 11742 int bnxt_hwrm_set_pause(struct bnxt *bp) 11743 { 11744 struct hwrm_port_phy_cfg_input *req; 11745 int rc; 11746 11747 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11748 if (rc) 11749 return rc; 11750 11751 bnxt_hwrm_set_pause_common(bp, req); 11752 11753 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) || 11754 bp->link_info.force_link_chng) 11755 bnxt_hwrm_set_link_common(bp, req); 11756 11757 rc = hwrm_req_send(bp, req); 11758 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) { 11759 /* since changing of pause setting doesn't trigger any link 11760 * change event, the driver needs to update the current pause 11761 * result upon successfully return of the phy_cfg command 11762 */ 11763 bp->link_info.pause = 11764 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl; 11765 bp->link_info.auto_pause_setting = 0; 11766 if (!bp->link_info.force_link_chng) 11767 bnxt_report_link(bp); 11768 } 11769 bp->link_info.force_link_chng = false; 11770 return rc; 11771 } 11772 11773 static void bnxt_hwrm_set_eee(struct bnxt *bp, 11774 struct hwrm_port_phy_cfg_input *req) 11775 { 11776 struct ethtool_keee *eee = &bp->eee; 11777 11778 if (eee->eee_enabled) { 11779 u16 eee_speeds; 11780 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE; 11781 11782 if (eee->tx_lpi_enabled) 11783 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE; 11784 else 11785 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE; 11786 11787 req->flags |= cpu_to_le32(flags); 11788 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised); 11789 req->eee_link_speed_mask = cpu_to_le16(eee_speeds); 11790 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer); 11791 } else { 11792 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE); 11793 } 11794 } 11795 11796 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee) 11797 { 11798 struct hwrm_port_phy_cfg_input *req; 11799 int rc; 11800 11801 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11802 if (rc) 11803 return rc; 11804 11805 if (set_pause) 11806 bnxt_hwrm_set_pause_common(bp, req); 11807 11808 bnxt_hwrm_set_link_common(bp, req); 11809 11810 if (set_eee) 11811 bnxt_hwrm_set_eee(bp, req); 11812 return hwrm_req_send(bp, req); 11813 } 11814 11815 static int bnxt_hwrm_shutdown_link(struct bnxt *bp) 11816 { 11817 struct hwrm_port_phy_cfg_input *req; 11818 int rc; 11819 11820 if (!BNXT_SINGLE_PF(bp)) 11821 return 0; 11822 11823 if (pci_num_vf(bp->pdev) && 11824 !(bp->phy_flags & BNXT_PHY_FL_FW_MANAGED_LKDN)) 11825 return 0; 11826 11827 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_CFG); 11828 if (rc) 11829 return rc; 11830 11831 req->flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DWN); 11832 rc = hwrm_req_send(bp, req); 11833 if (!rc) { 11834 mutex_lock(&bp->link_lock); 11835 /* Device is not obliged link down in certain scenarios, even 11836 * when forced. Setting the state unknown is consistent with 11837 * driver startup and will force link state to be reported 11838 * during subsequent open based on PORT_PHY_QCFG. 11839 */ 11840 bp->link_info.link_state = BNXT_LINK_STATE_UNKNOWN; 11841 mutex_unlock(&bp->link_lock); 11842 } 11843 return rc; 11844 } 11845 11846 static int bnxt_fw_reset_via_optee(struct bnxt *bp) 11847 { 11848 #ifdef CONFIG_TEE_BNXT_FW 11849 int rc = tee_bnxt_fw_load(); 11850 11851 if (rc) 11852 netdev_err(bp->dev, "Failed FW reset via OP-TEE, rc=%d\n", rc); 11853 11854 return rc; 11855 #else 11856 netdev_err(bp->dev, "OP-TEE not supported\n"); 11857 return -ENODEV; 11858 #endif 11859 } 11860 11861 static int bnxt_try_recover_fw(struct bnxt *bp) 11862 { 11863 if (bp->fw_health && bp->fw_health->status_reliable) { 11864 int retry = 0, rc; 11865 u32 sts; 11866 11867 do { 11868 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 11869 rc = bnxt_hwrm_poll(bp); 11870 if (!BNXT_FW_IS_BOOTING(sts) && 11871 !BNXT_FW_IS_RECOVERING(sts)) 11872 break; 11873 retry++; 11874 } while (rc == -EBUSY && retry < BNXT_FW_RETRY); 11875 11876 if (!BNXT_FW_IS_HEALTHY(sts)) { 11877 netdev_err(bp->dev, 11878 "Firmware not responding, status: 0x%x\n", 11879 sts); 11880 rc = -ENODEV; 11881 } 11882 if (sts & FW_STATUS_REG_CRASHED_NO_MASTER) { 11883 netdev_warn(bp->dev, "Firmware recover via OP-TEE requested\n"); 11884 return bnxt_fw_reset_via_optee(bp); 11885 } 11886 return rc; 11887 } 11888 11889 return -ENODEV; 11890 } 11891 11892 static void bnxt_clear_reservations(struct bnxt *bp, bool fw_reset) 11893 { 11894 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 11895 11896 if (!BNXT_NEW_RM(bp)) 11897 return; /* no resource reservations required */ 11898 11899 hw_resc->resv_cp_rings = 0; 11900 hw_resc->resv_stat_ctxs = 0; 11901 hw_resc->resv_irqs = 0; 11902 hw_resc->resv_tx_rings = 0; 11903 hw_resc->resv_rx_rings = 0; 11904 hw_resc->resv_hw_ring_grps = 0; 11905 hw_resc->resv_vnics = 0; 11906 hw_resc->resv_rsscos_ctxs = 0; 11907 if (!fw_reset) { 11908 bp->tx_nr_rings = 0; 11909 bp->rx_nr_rings = 0; 11910 } 11911 } 11912 11913 int bnxt_cancel_reservations(struct bnxt *bp, bool fw_reset) 11914 { 11915 int rc; 11916 11917 if (!BNXT_NEW_RM(bp)) 11918 return 0; /* no resource reservations required */ 11919 11920 rc = bnxt_hwrm_func_resc_qcaps(bp, true); 11921 if (rc) 11922 netdev_err(bp->dev, "resc_qcaps failed\n"); 11923 11924 bnxt_clear_reservations(bp, fw_reset); 11925 11926 return rc; 11927 } 11928 11929 static int bnxt_hwrm_if_change(struct bnxt *bp, bool up) 11930 { 11931 struct hwrm_func_drv_if_change_output *resp; 11932 struct hwrm_func_drv_if_change_input *req; 11933 bool fw_reset = !bp->irq_tbl; 11934 bool resc_reinit = false; 11935 int rc, retry = 0; 11936 u32 flags = 0; 11937 11938 if (!(bp->fw_cap & BNXT_FW_CAP_IF_CHANGE)) 11939 return 0; 11940 11941 rc = hwrm_req_init(bp, req, HWRM_FUNC_DRV_IF_CHANGE); 11942 if (rc) 11943 return rc; 11944 11945 if (up) 11946 req->flags = cpu_to_le32(FUNC_DRV_IF_CHANGE_REQ_FLAGS_UP); 11947 resp = hwrm_req_hold(bp, req); 11948 11949 hwrm_req_flags(bp, req, BNXT_HWRM_FULL_WAIT); 11950 while (retry < BNXT_FW_IF_RETRY) { 11951 rc = hwrm_req_send(bp, req); 11952 if (rc != -EAGAIN) 11953 break; 11954 11955 msleep(50); 11956 retry++; 11957 } 11958 11959 if (rc == -EAGAIN) { 11960 hwrm_req_drop(bp, req); 11961 return rc; 11962 } else if (!rc) { 11963 flags = le32_to_cpu(resp->flags); 11964 } else if (up) { 11965 rc = bnxt_try_recover_fw(bp); 11966 fw_reset = true; 11967 } 11968 hwrm_req_drop(bp, req); 11969 if (rc) 11970 return rc; 11971 11972 if (!up) { 11973 bnxt_inv_fw_health_reg(bp); 11974 return 0; 11975 } 11976 11977 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_RESC_CHANGE) 11978 resc_reinit = true; 11979 if (flags & FUNC_DRV_IF_CHANGE_RESP_FLAGS_HOT_FW_RESET_DONE || 11980 test_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) 11981 fw_reset = true; 11982 else 11983 bnxt_remap_fw_health_regs(bp); 11984 11985 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state) && !fw_reset) { 11986 netdev_err(bp->dev, "RESET_DONE not set during FW reset.\n"); 11987 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 11988 return -ENODEV; 11989 } 11990 if (resc_reinit || fw_reset) { 11991 if (fw_reset) { 11992 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 11993 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 11994 bnxt_ulp_irq_stop(bp); 11995 bnxt_free_ctx_mem(bp, false); 11996 bnxt_dcb_free(bp); 11997 rc = bnxt_fw_init_one(bp); 11998 if (rc) { 11999 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12000 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12001 return rc; 12002 } 12003 bnxt_clear_int_mode(bp); 12004 rc = bnxt_init_int_mode(bp); 12005 if (rc) { 12006 clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12007 netdev_err(bp->dev, "init int mode failed\n"); 12008 return rc; 12009 } 12010 } 12011 rc = bnxt_cancel_reservations(bp, fw_reset); 12012 } 12013 return rc; 12014 } 12015 12016 static int bnxt_hwrm_port_led_qcaps(struct bnxt *bp) 12017 { 12018 struct hwrm_port_led_qcaps_output *resp; 12019 struct hwrm_port_led_qcaps_input *req; 12020 struct bnxt_pf_info *pf = &bp->pf; 12021 int rc; 12022 12023 bp->num_leds = 0; 12024 if (BNXT_VF(bp) || bp->hwrm_spec_code < 0x10601) 12025 return 0; 12026 12027 rc = hwrm_req_init(bp, req, HWRM_PORT_LED_QCAPS); 12028 if (rc) 12029 return rc; 12030 12031 req->port_id = cpu_to_le16(pf->port_id); 12032 resp = hwrm_req_hold(bp, req); 12033 rc = hwrm_req_send(bp, req); 12034 if (rc) { 12035 hwrm_req_drop(bp, req); 12036 return rc; 12037 } 12038 if (resp->num_leds > 0 && resp->num_leds < BNXT_MAX_LED) { 12039 int i; 12040 12041 bp->num_leds = resp->num_leds; 12042 memcpy(bp->leds, &resp->led0_id, sizeof(bp->leds[0]) * 12043 bp->num_leds); 12044 for (i = 0; i < bp->num_leds; i++) { 12045 struct bnxt_led_info *led = &bp->leds[i]; 12046 __le16 caps = led->led_state_caps; 12047 12048 if (!led->led_group_id || 12049 !BNXT_LED_ALT_BLINK_CAP(caps)) { 12050 bp->num_leds = 0; 12051 break; 12052 } 12053 } 12054 } 12055 hwrm_req_drop(bp, req); 12056 return 0; 12057 } 12058 12059 int bnxt_hwrm_alloc_wol_fltr(struct bnxt *bp) 12060 { 12061 struct hwrm_wol_filter_alloc_output *resp; 12062 struct hwrm_wol_filter_alloc_input *req; 12063 int rc; 12064 12065 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_ALLOC); 12066 if (rc) 12067 return rc; 12068 12069 req->port_id = cpu_to_le16(bp->pf.port_id); 12070 req->wol_type = WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT; 12071 req->enables = cpu_to_le32(WOL_FILTER_ALLOC_REQ_ENABLES_MAC_ADDRESS); 12072 memcpy(req->mac_address, bp->dev->dev_addr, ETH_ALEN); 12073 12074 resp = hwrm_req_hold(bp, req); 12075 rc = hwrm_req_send(bp, req); 12076 if (!rc) 12077 bp->wol_filter_id = resp->wol_filter_id; 12078 hwrm_req_drop(bp, req); 12079 return rc; 12080 } 12081 12082 int bnxt_hwrm_free_wol_fltr(struct bnxt *bp) 12083 { 12084 struct hwrm_wol_filter_free_input *req; 12085 int rc; 12086 12087 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_FREE); 12088 if (rc) 12089 return rc; 12090 12091 req->port_id = cpu_to_le16(bp->pf.port_id); 12092 req->enables = cpu_to_le32(WOL_FILTER_FREE_REQ_ENABLES_WOL_FILTER_ID); 12093 req->wol_filter_id = bp->wol_filter_id; 12094 12095 return hwrm_req_send(bp, req); 12096 } 12097 12098 static u16 bnxt_hwrm_get_wol_fltrs(struct bnxt *bp, u16 handle) 12099 { 12100 struct hwrm_wol_filter_qcfg_output *resp; 12101 struct hwrm_wol_filter_qcfg_input *req; 12102 u16 next_handle = 0; 12103 int rc; 12104 12105 rc = hwrm_req_init(bp, req, HWRM_WOL_FILTER_QCFG); 12106 if (rc) 12107 return rc; 12108 12109 req->port_id = cpu_to_le16(bp->pf.port_id); 12110 req->handle = cpu_to_le16(handle); 12111 resp = hwrm_req_hold(bp, req); 12112 rc = hwrm_req_send(bp, req); 12113 if (!rc) { 12114 next_handle = le16_to_cpu(resp->next_handle); 12115 if (next_handle != 0) { 12116 if (resp->wol_type == 12117 WOL_FILTER_ALLOC_REQ_WOL_TYPE_MAGICPKT) { 12118 bp->wol = 1; 12119 bp->wol_filter_id = resp->wol_filter_id; 12120 } 12121 } 12122 } 12123 hwrm_req_drop(bp, req); 12124 return next_handle; 12125 } 12126 12127 static void bnxt_get_wol_settings(struct bnxt *bp) 12128 { 12129 u16 handle = 0; 12130 12131 bp->wol = 0; 12132 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_WOL_CAP)) 12133 return; 12134 12135 do { 12136 handle = bnxt_hwrm_get_wol_fltrs(bp, handle); 12137 } while (handle && handle != 0xffff); 12138 } 12139 12140 static bool bnxt_eee_config_ok(struct bnxt *bp) 12141 { 12142 struct ethtool_keee *eee = &bp->eee; 12143 struct bnxt_link_info *link_info = &bp->link_info; 12144 12145 if (!(bp->phy_flags & BNXT_PHY_FL_EEE_CAP)) 12146 return true; 12147 12148 if (eee->eee_enabled) { 12149 __ETHTOOL_DECLARE_LINK_MODE_MASK(advertising); 12150 __ETHTOOL_DECLARE_LINK_MODE_MASK(tmp); 12151 12152 _bnxt_fw_to_linkmode(advertising, link_info->advertising); 12153 12154 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12155 eee->eee_enabled = 0; 12156 return false; 12157 } 12158 if (linkmode_andnot(tmp, eee->advertised, advertising)) { 12159 linkmode_and(eee->advertised, advertising, 12160 eee->supported); 12161 return false; 12162 } 12163 } 12164 return true; 12165 } 12166 12167 static int bnxt_update_phy_setting(struct bnxt *bp) 12168 { 12169 int rc; 12170 bool update_link = false; 12171 bool update_pause = false; 12172 bool update_eee = false; 12173 struct bnxt_link_info *link_info = &bp->link_info; 12174 12175 rc = bnxt_update_link(bp, true); 12176 if (rc) { 12177 netdev_err(bp->dev, "failed to update link (rc: %x)\n", 12178 rc); 12179 return rc; 12180 } 12181 if (!BNXT_SINGLE_PF(bp)) 12182 return 0; 12183 12184 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12185 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) != 12186 link_info->req_flow_ctrl) 12187 update_pause = true; 12188 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) && 12189 link_info->force_pause_setting != link_info->req_flow_ctrl) 12190 update_pause = true; 12191 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) { 12192 if (BNXT_AUTO_MODE(link_info->auto_mode)) 12193 update_link = true; 12194 if (bnxt_force_speed_updated(link_info)) 12195 update_link = true; 12196 if (link_info->req_duplex != link_info->duplex_setting) 12197 update_link = true; 12198 } else { 12199 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE) 12200 update_link = true; 12201 if (bnxt_auto_speed_updated(link_info)) 12202 update_link = true; 12203 } 12204 12205 /* The last close may have shutdown the link, so need to call 12206 * PHY_CFG to bring it back up. 12207 */ 12208 if (!BNXT_LINK_IS_UP(bp)) 12209 update_link = true; 12210 12211 if (!bnxt_eee_config_ok(bp)) 12212 update_eee = true; 12213 12214 if (update_link) 12215 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee); 12216 else if (update_pause) 12217 rc = bnxt_hwrm_set_pause(bp); 12218 if (rc) { 12219 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n", 12220 rc); 12221 return rc; 12222 } 12223 12224 return rc; 12225 } 12226 12227 static int bnxt_init_dflt_ring_mode(struct bnxt *bp); 12228 12229 static int bnxt_reinit_after_abort(struct bnxt *bp) 12230 { 12231 int rc; 12232 12233 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12234 return -EBUSY; 12235 12236 if (bp->dev->reg_state == NETREG_UNREGISTERED) 12237 return -ENODEV; 12238 12239 rc = bnxt_fw_init_one(bp); 12240 if (!rc) { 12241 bnxt_clear_int_mode(bp); 12242 rc = bnxt_init_int_mode(bp); 12243 if (!rc) { 12244 clear_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12245 set_bit(BNXT_STATE_FW_RESET_DET, &bp->state); 12246 } 12247 } 12248 return rc; 12249 } 12250 12251 static void bnxt_cfg_one_usr_fltr(struct bnxt *bp, struct bnxt_filter_base *fltr) 12252 { 12253 struct bnxt_ntuple_filter *ntp_fltr; 12254 struct bnxt_l2_filter *l2_fltr; 12255 12256 if (list_empty(&fltr->list)) 12257 return; 12258 12259 if (fltr->type == BNXT_FLTR_TYPE_NTUPLE) { 12260 ntp_fltr = container_of(fltr, struct bnxt_ntuple_filter, base); 12261 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 12262 atomic_inc(&l2_fltr->refcnt); 12263 ntp_fltr->l2_fltr = l2_fltr; 12264 if (bnxt_hwrm_cfa_ntuple_filter_alloc(bp, ntp_fltr)) { 12265 bnxt_del_ntp_filter(bp, ntp_fltr); 12266 netdev_err(bp->dev, "restoring previously configured ntuple filter id %d failed\n", 12267 fltr->sw_id); 12268 } 12269 } else if (fltr->type == BNXT_FLTR_TYPE_L2) { 12270 l2_fltr = container_of(fltr, struct bnxt_l2_filter, base); 12271 if (bnxt_hwrm_l2_filter_alloc(bp, l2_fltr)) { 12272 bnxt_del_l2_filter(bp, l2_fltr); 12273 netdev_err(bp->dev, "restoring previously configured l2 filter id %d failed\n", 12274 fltr->sw_id); 12275 } 12276 } 12277 } 12278 12279 static void bnxt_cfg_usr_fltrs(struct bnxt *bp) 12280 { 12281 struct bnxt_filter_base *usr_fltr, *tmp; 12282 12283 list_for_each_entry_safe(usr_fltr, tmp, &bp->usr_fltr_list, list) 12284 bnxt_cfg_one_usr_fltr(bp, usr_fltr); 12285 } 12286 12287 static int bnxt_set_xps_mapping(struct bnxt *bp) 12288 { 12289 int numa_node = dev_to_node(&bp->pdev->dev); 12290 unsigned int q_idx, map_idx, cpu, i; 12291 const struct cpumask *cpu_mask_ptr; 12292 int nr_cpus = num_online_cpus(); 12293 cpumask_t *q_map; 12294 int rc = 0; 12295 12296 q_map = kcalloc(bp->tx_nr_rings_per_tc, sizeof(*q_map), GFP_KERNEL); 12297 if (!q_map) 12298 return -ENOMEM; 12299 12300 /* Create CPU mask for all TX queues across MQPRIO traffic classes. 12301 * Each TC has the same number of TX queues. The nth TX queue for each 12302 * TC will have the same CPU mask. 12303 */ 12304 for (i = 0; i < nr_cpus; i++) { 12305 map_idx = i % bp->tx_nr_rings_per_tc; 12306 cpu = cpumask_local_spread(i, numa_node); 12307 cpu_mask_ptr = get_cpu_mask(cpu); 12308 cpumask_or(&q_map[map_idx], &q_map[map_idx], cpu_mask_ptr); 12309 } 12310 12311 /* Register CPU mask for each TX queue except the ones marked for XDP */ 12312 for (q_idx = 0; q_idx < bp->dev->real_num_tx_queues; q_idx++) { 12313 map_idx = q_idx % bp->tx_nr_rings_per_tc; 12314 rc = netif_set_xps_queue(bp->dev, &q_map[map_idx], q_idx); 12315 if (rc) { 12316 netdev_warn(bp->dev, "Error setting XPS for q:%d\n", 12317 q_idx); 12318 break; 12319 } 12320 } 12321 12322 kfree(q_map); 12323 12324 return rc; 12325 } 12326 12327 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12328 { 12329 int rc = 0; 12330 12331 netif_carrier_off(bp->dev); 12332 if (irq_re_init) { 12333 /* Reserve rings now if none were reserved at driver probe. */ 12334 rc = bnxt_init_dflt_ring_mode(bp); 12335 if (rc) { 12336 netdev_err(bp->dev, "Failed to reserve default rings at open\n"); 12337 return rc; 12338 } 12339 } 12340 rc = bnxt_reserve_rings(bp, irq_re_init); 12341 if (rc) 12342 return rc; 12343 12344 rc = bnxt_alloc_mem(bp, irq_re_init); 12345 if (rc) { 12346 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12347 goto open_err_free_mem; 12348 } 12349 12350 if (irq_re_init) { 12351 bnxt_init_napi(bp); 12352 rc = bnxt_request_irq(bp); 12353 if (rc) { 12354 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc); 12355 goto open_err_irq; 12356 } 12357 } 12358 12359 rc = bnxt_init_nic(bp, irq_re_init); 12360 if (rc) { 12361 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12362 goto open_err_irq; 12363 } 12364 12365 bnxt_enable_napi(bp); 12366 bnxt_debug_dev_init(bp); 12367 12368 if (link_re_init) { 12369 mutex_lock(&bp->link_lock); 12370 rc = bnxt_update_phy_setting(bp); 12371 mutex_unlock(&bp->link_lock); 12372 if (rc) { 12373 netdev_warn(bp->dev, "failed to update phy settings\n"); 12374 if (BNXT_SINGLE_PF(bp)) { 12375 bp->link_info.phy_retry = true; 12376 bp->link_info.phy_retry_expires = 12377 jiffies + 5 * HZ; 12378 } 12379 } 12380 } 12381 12382 if (irq_re_init) { 12383 udp_tunnel_nic_reset_ntf(bp->dev); 12384 rc = bnxt_set_xps_mapping(bp); 12385 if (rc) 12386 netdev_warn(bp->dev, "failed to set xps mapping\n"); 12387 } 12388 12389 if (bp->tx_nr_rings_xdp < num_possible_cpus()) { 12390 if (!static_key_enabled(&bnxt_xdp_locking_key)) 12391 static_branch_enable(&bnxt_xdp_locking_key); 12392 } else if (static_key_enabled(&bnxt_xdp_locking_key)) { 12393 static_branch_disable(&bnxt_xdp_locking_key); 12394 } 12395 set_bit(BNXT_STATE_OPEN, &bp->state); 12396 bnxt_enable_int(bp); 12397 /* Enable TX queues */ 12398 bnxt_tx_enable(bp); 12399 mod_timer(&bp->timer, jiffies + bp->current_interval); 12400 /* Poll link status and check for SFP+ module status */ 12401 mutex_lock(&bp->link_lock); 12402 bnxt_get_port_module_status(bp); 12403 mutex_unlock(&bp->link_lock); 12404 12405 /* VF-reps may need to be re-opened after the PF is re-opened */ 12406 if (BNXT_PF(bp)) 12407 bnxt_vf_reps_open(bp); 12408 if (bp->ptp_cfg && !(bp->fw_cap & BNXT_FW_CAP_TX_TS_CMP)) 12409 WRITE_ONCE(bp->ptp_cfg->tx_avail, BNXT_MAX_TX_TS); 12410 bnxt_ptp_init_rtc(bp, true); 12411 bnxt_ptp_cfg_tstamp_filters(bp); 12412 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12413 bnxt_hwrm_realloc_rss_ctx_vnic(bp); 12414 bnxt_cfg_usr_fltrs(bp); 12415 return 0; 12416 12417 open_err_irq: 12418 bnxt_del_napi(bp); 12419 12420 open_err_free_mem: 12421 bnxt_free_skbs(bp); 12422 bnxt_free_irq(bp); 12423 bnxt_free_mem(bp, true); 12424 return rc; 12425 } 12426 12427 /* rtnl_lock held */ 12428 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12429 { 12430 int rc = 0; 12431 12432 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) 12433 rc = -EIO; 12434 if (!rc) 12435 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init); 12436 if (rc) { 12437 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc); 12438 dev_close(bp->dev); 12439 } 12440 return rc; 12441 } 12442 12443 /* rtnl_lock held, open the NIC half way by allocating all resources, but 12444 * NAPI, IRQ, and TX are not enabled. This is mainly used for offline 12445 * self tests. 12446 */ 12447 int bnxt_half_open_nic(struct bnxt *bp) 12448 { 12449 int rc = 0; 12450 12451 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12452 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting half open\n"); 12453 rc = -ENODEV; 12454 goto half_open_err; 12455 } 12456 12457 rc = bnxt_alloc_mem(bp, true); 12458 if (rc) { 12459 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc); 12460 goto half_open_err; 12461 } 12462 bnxt_init_napi(bp); 12463 set_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12464 rc = bnxt_init_nic(bp, true); 12465 if (rc) { 12466 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12467 bnxt_del_napi(bp); 12468 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc); 12469 goto half_open_err; 12470 } 12471 return 0; 12472 12473 half_open_err: 12474 bnxt_free_skbs(bp); 12475 bnxt_free_mem(bp, true); 12476 dev_close(bp->dev); 12477 return rc; 12478 } 12479 12480 /* rtnl_lock held, this call can only be made after a previous successful 12481 * call to bnxt_half_open_nic(). 12482 */ 12483 void bnxt_half_close_nic(struct bnxt *bp) 12484 { 12485 bnxt_hwrm_resource_free(bp, false, true); 12486 bnxt_del_napi(bp); 12487 bnxt_free_skbs(bp); 12488 bnxt_free_mem(bp, true); 12489 clear_bit(BNXT_STATE_HALF_OPEN, &bp->state); 12490 } 12491 12492 void bnxt_reenable_sriov(struct bnxt *bp) 12493 { 12494 if (BNXT_PF(bp)) { 12495 struct bnxt_pf_info *pf = &bp->pf; 12496 int n = pf->active_vfs; 12497 12498 if (n) 12499 bnxt_cfg_hw_sriov(bp, &n, true); 12500 } 12501 } 12502 12503 static int bnxt_open(struct net_device *dev) 12504 { 12505 struct bnxt *bp = netdev_priv(dev); 12506 int rc; 12507 12508 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 12509 rc = bnxt_reinit_after_abort(bp); 12510 if (rc) { 12511 if (rc == -EBUSY) 12512 netdev_err(bp->dev, "A previous firmware reset has not completed, aborting\n"); 12513 else 12514 netdev_err(bp->dev, "Failed to reinitialize after aborted firmware reset\n"); 12515 return -ENODEV; 12516 } 12517 } 12518 12519 rc = bnxt_hwrm_if_change(bp, true); 12520 if (rc) 12521 return rc; 12522 12523 rc = __bnxt_open_nic(bp, true, true); 12524 if (rc) { 12525 bnxt_hwrm_if_change(bp, false); 12526 } else { 12527 if (test_and_clear_bit(BNXT_STATE_FW_RESET_DET, &bp->state)) { 12528 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 12529 bnxt_queue_sp_work(bp, 12530 BNXT_RESTART_ULP_SP_EVENT); 12531 } 12532 } 12533 12534 return rc; 12535 } 12536 12537 static bool bnxt_drv_busy(struct bnxt *bp) 12538 { 12539 return (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state) || 12540 test_bit(BNXT_STATE_READ_STATS, &bp->state)); 12541 } 12542 12543 static void bnxt_get_ring_stats(struct bnxt *bp, 12544 struct rtnl_link_stats64 *stats); 12545 12546 static void __bnxt_close_nic(struct bnxt *bp, bool irq_re_init, 12547 bool link_re_init) 12548 { 12549 /* Close the VF-reps before closing PF */ 12550 if (BNXT_PF(bp)) 12551 bnxt_vf_reps_close(bp); 12552 12553 /* Change device state to avoid TX queue wake up's */ 12554 bnxt_tx_disable(bp); 12555 12556 clear_bit(BNXT_STATE_OPEN, &bp->state); 12557 smp_mb__after_atomic(); 12558 while (bnxt_drv_busy(bp)) 12559 msleep(20); 12560 12561 if (BNXT_SUPPORTS_MULTI_RSS_CTX(bp)) 12562 bnxt_clear_rss_ctxs(bp); 12563 /* Flush rings and disable interrupts */ 12564 bnxt_shutdown_nic(bp, irq_re_init); 12565 12566 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */ 12567 12568 bnxt_debug_dev_exit(bp); 12569 bnxt_disable_napi(bp); 12570 del_timer_sync(&bp->timer); 12571 bnxt_free_skbs(bp); 12572 12573 /* Save ring stats before shutdown */ 12574 if (bp->bnapi && irq_re_init) { 12575 bnxt_get_ring_stats(bp, &bp->net_stats_prev); 12576 bnxt_get_ring_err_stats(bp, &bp->ring_err_stats_prev); 12577 } 12578 if (irq_re_init) { 12579 bnxt_free_irq(bp); 12580 bnxt_del_napi(bp); 12581 } 12582 bnxt_free_mem(bp, irq_re_init); 12583 } 12584 12585 void bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init) 12586 { 12587 if (test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 12588 /* If we get here, it means firmware reset is in progress 12589 * while we are trying to close. We can safely proceed with 12590 * the close because we are holding rtnl_lock(). Some firmware 12591 * messages may fail as we proceed to close. We set the 12592 * ABORT_ERR flag here so that the FW reset thread will later 12593 * abort when it gets the rtnl_lock() and sees the flag. 12594 */ 12595 netdev_warn(bp->dev, "FW reset in progress during close, FW reset will be aborted\n"); 12596 set_bit(BNXT_STATE_ABORT_ERR, &bp->state); 12597 } 12598 12599 #ifdef CONFIG_BNXT_SRIOV 12600 if (bp->sriov_cfg) { 12601 int rc; 12602 12603 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait, 12604 !bp->sriov_cfg, 12605 BNXT_SRIOV_CFG_WAIT_TMO); 12606 if (!rc) 12607 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete, proceeding to close!\n"); 12608 else if (rc < 0) 12609 netdev_warn(bp->dev, "SRIOV config operation interrupted, proceeding to close!\n"); 12610 } 12611 #endif 12612 __bnxt_close_nic(bp, irq_re_init, link_re_init); 12613 } 12614 12615 static int bnxt_close(struct net_device *dev) 12616 { 12617 struct bnxt *bp = netdev_priv(dev); 12618 12619 bnxt_close_nic(bp, true, true); 12620 bnxt_hwrm_shutdown_link(bp); 12621 bnxt_hwrm_if_change(bp, false); 12622 return 0; 12623 } 12624 12625 static int bnxt_hwrm_port_phy_read(struct bnxt *bp, u16 phy_addr, u16 reg, 12626 u16 *val) 12627 { 12628 struct hwrm_port_phy_mdio_read_output *resp; 12629 struct hwrm_port_phy_mdio_read_input *req; 12630 int rc; 12631 12632 if (bp->hwrm_spec_code < 0x10a00) 12633 return -EOPNOTSUPP; 12634 12635 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_READ); 12636 if (rc) 12637 return rc; 12638 12639 req->port_id = cpu_to_le16(bp->pf.port_id); 12640 req->phy_addr = phy_addr; 12641 req->reg_addr = cpu_to_le16(reg & 0x1f); 12642 if (mdio_phy_id_is_c45(phy_addr)) { 12643 req->cl45_mdio = 1; 12644 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12645 req->dev_addr = mdio_phy_id_devad(phy_addr); 12646 req->reg_addr = cpu_to_le16(reg); 12647 } 12648 12649 resp = hwrm_req_hold(bp, req); 12650 rc = hwrm_req_send(bp, req); 12651 if (!rc) 12652 *val = le16_to_cpu(resp->reg_data); 12653 hwrm_req_drop(bp, req); 12654 return rc; 12655 } 12656 12657 static int bnxt_hwrm_port_phy_write(struct bnxt *bp, u16 phy_addr, u16 reg, 12658 u16 val) 12659 { 12660 struct hwrm_port_phy_mdio_write_input *req; 12661 int rc; 12662 12663 if (bp->hwrm_spec_code < 0x10a00) 12664 return -EOPNOTSUPP; 12665 12666 rc = hwrm_req_init(bp, req, HWRM_PORT_PHY_MDIO_WRITE); 12667 if (rc) 12668 return rc; 12669 12670 req->port_id = cpu_to_le16(bp->pf.port_id); 12671 req->phy_addr = phy_addr; 12672 req->reg_addr = cpu_to_le16(reg & 0x1f); 12673 if (mdio_phy_id_is_c45(phy_addr)) { 12674 req->cl45_mdio = 1; 12675 req->phy_addr = mdio_phy_id_prtad(phy_addr); 12676 req->dev_addr = mdio_phy_id_devad(phy_addr); 12677 req->reg_addr = cpu_to_le16(reg); 12678 } 12679 req->reg_data = cpu_to_le16(val); 12680 12681 return hwrm_req_send(bp, req); 12682 } 12683 12684 /* rtnl_lock held */ 12685 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 12686 { 12687 struct mii_ioctl_data *mdio = if_mii(ifr); 12688 struct bnxt *bp = netdev_priv(dev); 12689 int rc; 12690 12691 switch (cmd) { 12692 case SIOCGMIIPHY: 12693 mdio->phy_id = bp->link_info.phy_addr; 12694 12695 fallthrough; 12696 case SIOCGMIIREG: { 12697 u16 mii_regval = 0; 12698 12699 if (!netif_running(dev)) 12700 return -EAGAIN; 12701 12702 rc = bnxt_hwrm_port_phy_read(bp, mdio->phy_id, mdio->reg_num, 12703 &mii_regval); 12704 mdio->val_out = mii_regval; 12705 return rc; 12706 } 12707 12708 case SIOCSMIIREG: 12709 if (!netif_running(dev)) 12710 return -EAGAIN; 12711 12712 return bnxt_hwrm_port_phy_write(bp, mdio->phy_id, mdio->reg_num, 12713 mdio->val_in); 12714 12715 case SIOCSHWTSTAMP: 12716 return bnxt_hwtstamp_set(dev, ifr); 12717 12718 case SIOCGHWTSTAMP: 12719 return bnxt_hwtstamp_get(dev, ifr); 12720 12721 default: 12722 /* do nothing */ 12723 break; 12724 } 12725 return -EOPNOTSUPP; 12726 } 12727 12728 static void bnxt_get_ring_stats(struct bnxt *bp, 12729 struct rtnl_link_stats64 *stats) 12730 { 12731 int i; 12732 12733 for (i = 0; i < bp->cp_nr_rings; i++) { 12734 struct bnxt_napi *bnapi = bp->bnapi[i]; 12735 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 12736 u64 *sw = cpr->stats.sw_stats; 12737 12738 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 12739 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12740 stats->rx_packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 12741 12742 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 12743 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 12744 stats->tx_packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 12745 12746 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 12747 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 12748 stats->rx_bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 12749 12750 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 12751 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 12752 stats->tx_bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 12753 12754 stats->rx_missed_errors += 12755 BNXT_GET_RING_STATS64(sw, rx_discard_pkts); 12756 12757 stats->multicast += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 12758 12759 stats->tx_dropped += BNXT_GET_RING_STATS64(sw, tx_error_pkts); 12760 12761 stats->rx_dropped += 12762 cpr->sw_stats->rx.rx_netpoll_discards + 12763 cpr->sw_stats->rx.rx_oom_discards; 12764 } 12765 } 12766 12767 static void bnxt_add_prev_stats(struct bnxt *bp, 12768 struct rtnl_link_stats64 *stats) 12769 { 12770 struct rtnl_link_stats64 *prev_stats = &bp->net_stats_prev; 12771 12772 stats->rx_packets += prev_stats->rx_packets; 12773 stats->tx_packets += prev_stats->tx_packets; 12774 stats->rx_bytes += prev_stats->rx_bytes; 12775 stats->tx_bytes += prev_stats->tx_bytes; 12776 stats->rx_missed_errors += prev_stats->rx_missed_errors; 12777 stats->multicast += prev_stats->multicast; 12778 stats->rx_dropped += prev_stats->rx_dropped; 12779 stats->tx_dropped += prev_stats->tx_dropped; 12780 } 12781 12782 static void 12783 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) 12784 { 12785 struct bnxt *bp = netdev_priv(dev); 12786 12787 set_bit(BNXT_STATE_READ_STATS, &bp->state); 12788 /* Make sure bnxt_close_nic() sees that we are reading stats before 12789 * we check the BNXT_STATE_OPEN flag. 12790 */ 12791 smp_mb__after_atomic(); 12792 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 12793 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12794 *stats = bp->net_stats_prev; 12795 return; 12796 } 12797 12798 bnxt_get_ring_stats(bp, stats); 12799 bnxt_add_prev_stats(bp, stats); 12800 12801 if (bp->flags & BNXT_FLAG_PORT_STATS) { 12802 u64 *rx = bp->port_stats.sw_stats; 12803 u64 *tx = bp->port_stats.sw_stats + 12804 BNXT_TX_PORT_STATS_BYTE_OFFSET / 8; 12805 12806 stats->rx_crc_errors = 12807 BNXT_GET_RX_PORT_STATS64(rx, rx_fcs_err_frames); 12808 stats->rx_frame_errors = 12809 BNXT_GET_RX_PORT_STATS64(rx, rx_align_err_frames); 12810 stats->rx_length_errors = 12811 BNXT_GET_RX_PORT_STATS64(rx, rx_undrsz_frames) + 12812 BNXT_GET_RX_PORT_STATS64(rx, rx_ovrsz_frames) + 12813 BNXT_GET_RX_PORT_STATS64(rx, rx_runt_frames); 12814 stats->rx_errors = 12815 BNXT_GET_RX_PORT_STATS64(rx, rx_false_carrier_frames) + 12816 BNXT_GET_RX_PORT_STATS64(rx, rx_jbr_frames); 12817 stats->collisions = 12818 BNXT_GET_TX_PORT_STATS64(tx, tx_total_collisions); 12819 stats->tx_fifo_errors = 12820 BNXT_GET_TX_PORT_STATS64(tx, tx_fifo_underruns); 12821 stats->tx_errors = BNXT_GET_TX_PORT_STATS64(tx, tx_err); 12822 } 12823 clear_bit(BNXT_STATE_READ_STATS, &bp->state); 12824 } 12825 12826 static void bnxt_get_one_ring_err_stats(struct bnxt *bp, 12827 struct bnxt_total_ring_err_stats *stats, 12828 struct bnxt_cp_ring_info *cpr) 12829 { 12830 struct bnxt_sw_stats *sw_stats = cpr->sw_stats; 12831 u64 *hw_stats = cpr->stats.sw_stats; 12832 12833 stats->rx_total_l4_csum_errors += sw_stats->rx.rx_l4_csum_errors; 12834 stats->rx_total_resets += sw_stats->rx.rx_resets; 12835 stats->rx_total_buf_errors += sw_stats->rx.rx_buf_errors; 12836 stats->rx_total_oom_discards += sw_stats->rx.rx_oom_discards; 12837 stats->rx_total_netpoll_discards += sw_stats->rx.rx_netpoll_discards; 12838 stats->rx_total_ring_discards += 12839 BNXT_GET_RING_STATS64(hw_stats, rx_discard_pkts); 12840 stats->tx_total_resets += sw_stats->tx.tx_resets; 12841 stats->tx_total_ring_discards += 12842 BNXT_GET_RING_STATS64(hw_stats, tx_discard_pkts); 12843 stats->total_missed_irqs += sw_stats->cmn.missed_irqs; 12844 } 12845 12846 void bnxt_get_ring_err_stats(struct bnxt *bp, 12847 struct bnxt_total_ring_err_stats *stats) 12848 { 12849 int i; 12850 12851 for (i = 0; i < bp->cp_nr_rings; i++) 12852 bnxt_get_one_ring_err_stats(bp, stats, &bp->bnapi[i]->cp_ring); 12853 } 12854 12855 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask) 12856 { 12857 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12858 struct net_device *dev = bp->dev; 12859 struct netdev_hw_addr *ha; 12860 u8 *haddr; 12861 int mc_count = 0; 12862 bool update = false; 12863 int off = 0; 12864 12865 netdev_for_each_mc_addr(ha, dev) { 12866 if (mc_count >= BNXT_MAX_MC_ADDRS) { 12867 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12868 vnic->mc_list_count = 0; 12869 return false; 12870 } 12871 haddr = ha->addr; 12872 if (!ether_addr_equal(haddr, vnic->mc_list + off)) { 12873 memcpy(vnic->mc_list + off, haddr, ETH_ALEN); 12874 update = true; 12875 } 12876 off += ETH_ALEN; 12877 mc_count++; 12878 } 12879 if (mc_count) 12880 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 12881 12882 if (mc_count != vnic->mc_list_count) { 12883 vnic->mc_list_count = mc_count; 12884 update = true; 12885 } 12886 return update; 12887 } 12888 12889 static bool bnxt_uc_list_updated(struct bnxt *bp) 12890 { 12891 struct net_device *dev = bp->dev; 12892 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12893 struct netdev_hw_addr *ha; 12894 int off = 0; 12895 12896 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1)) 12897 return true; 12898 12899 netdev_for_each_uc_addr(ha, dev) { 12900 if (!ether_addr_equal(ha->addr, vnic->uc_list + off)) 12901 return true; 12902 12903 off += ETH_ALEN; 12904 } 12905 return false; 12906 } 12907 12908 static void bnxt_set_rx_mode(struct net_device *dev) 12909 { 12910 struct bnxt *bp = netdev_priv(dev); 12911 struct bnxt_vnic_info *vnic; 12912 bool mc_update = false; 12913 bool uc_update; 12914 u32 mask; 12915 12916 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) 12917 return; 12918 12919 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12920 mask = vnic->rx_mask; 12921 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS | 12922 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST | 12923 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST | 12924 CFA_L2_SET_RX_MASK_REQ_MASK_BCAST); 12925 12926 if (dev->flags & IFF_PROMISC) 12927 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12928 12929 uc_update = bnxt_uc_list_updated(bp); 12930 12931 if (dev->flags & IFF_BROADCAST) 12932 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_BCAST; 12933 if (dev->flags & IFF_ALLMULTI) { 12934 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 12935 vnic->mc_list_count = 0; 12936 } else if (dev->flags & IFF_MULTICAST) { 12937 mc_update = bnxt_mc_list_updated(bp, &mask); 12938 } 12939 12940 if (mask != vnic->rx_mask || uc_update || mc_update) { 12941 vnic->rx_mask = mask; 12942 12943 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 12944 } 12945 } 12946 12947 static int bnxt_cfg_rx_mode(struct bnxt *bp) 12948 { 12949 struct net_device *dev = bp->dev; 12950 struct bnxt_vnic_info *vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 12951 struct netdev_hw_addr *ha; 12952 int i, off = 0, rc; 12953 bool uc_update; 12954 12955 netif_addr_lock_bh(dev); 12956 uc_update = bnxt_uc_list_updated(bp); 12957 netif_addr_unlock_bh(dev); 12958 12959 if (!uc_update) 12960 goto skip_uc; 12961 12962 for (i = 1; i < vnic->uc_filter_count; i++) { 12963 struct bnxt_l2_filter *fltr = vnic->l2_filters[i]; 12964 12965 bnxt_hwrm_l2_filter_free(bp, fltr); 12966 bnxt_del_l2_filter(bp, fltr); 12967 } 12968 12969 vnic->uc_filter_count = 1; 12970 12971 netif_addr_lock_bh(dev); 12972 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) { 12973 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 12974 } else { 12975 netdev_for_each_uc_addr(ha, dev) { 12976 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN); 12977 off += ETH_ALEN; 12978 vnic->uc_filter_count++; 12979 } 12980 } 12981 netif_addr_unlock_bh(dev); 12982 12983 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) { 12984 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off); 12985 if (rc) { 12986 if (BNXT_VF(bp) && rc == -ENODEV) { 12987 if (!test_and_set_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 12988 netdev_warn(bp->dev, "Cannot configure L2 filters while PF is unavailable, will retry\n"); 12989 else 12990 netdev_dbg(bp->dev, "PF still unavailable while configuring L2 filters.\n"); 12991 rc = 0; 12992 } else { 12993 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc); 12994 } 12995 vnic->uc_filter_count = i; 12996 return rc; 12997 } 12998 } 12999 if (test_and_clear_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13000 netdev_notice(bp->dev, "Retry of L2 filter configuration successful.\n"); 13001 13002 skip_uc: 13003 if ((vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS) && 13004 !bnxt_promisc_ok(bp)) 13005 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS; 13006 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13007 if (rc && (vnic->rx_mask & CFA_L2_SET_RX_MASK_REQ_MASK_MCAST)) { 13008 netdev_info(bp->dev, "Failed setting MC filters rc: %d, turning on ALL_MCAST mode\n", 13009 rc); 13010 vnic->rx_mask &= ~CFA_L2_SET_RX_MASK_REQ_MASK_MCAST; 13011 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST; 13012 vnic->mc_list_count = 0; 13013 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0); 13014 } 13015 if (rc) 13016 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %d\n", 13017 rc); 13018 13019 return rc; 13020 } 13021 13022 static bool bnxt_can_reserve_rings(struct bnxt *bp) 13023 { 13024 #ifdef CONFIG_BNXT_SRIOV 13025 if (BNXT_NEW_RM(bp) && BNXT_VF(bp)) { 13026 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 13027 13028 /* No minimum rings were provisioned by the PF. Don't 13029 * reserve rings by default when device is down. 13030 */ 13031 if (hw_resc->min_tx_rings || hw_resc->resv_tx_rings) 13032 return true; 13033 13034 if (!netif_running(bp->dev)) 13035 return false; 13036 } 13037 #endif 13038 return true; 13039 } 13040 13041 /* If the chip and firmware supports RFS */ 13042 static bool bnxt_rfs_supported(struct bnxt *bp) 13043 { 13044 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 13045 if (bp->fw_cap & BNXT_FW_CAP_CFA_RFS_RING_TBL_IDX_V2) 13046 return true; 13047 return false; 13048 } 13049 /* 212 firmware is broken for aRFS */ 13050 if (BNXT_FW_MAJ(bp) == 212) 13051 return false; 13052 if (BNXT_PF(bp) && !BNXT_CHIP_TYPE_NITRO_A0(bp)) 13053 return true; 13054 if (bp->rss_cap & BNXT_RSS_CAP_NEW_RSS_CAP) 13055 return true; 13056 return false; 13057 } 13058 13059 /* If runtime conditions support RFS */ 13060 bool bnxt_rfs_capable(struct bnxt *bp, bool new_rss_ctx) 13061 { 13062 struct bnxt_hw_rings hwr = {0}; 13063 int max_vnics, max_rss_ctxs; 13064 13065 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 13066 !BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 13067 return bnxt_rfs_supported(bp); 13068 13069 if (!bnxt_can_reserve_rings(bp) || !bp->rx_nr_rings) 13070 return false; 13071 13072 hwr.grp = bp->rx_nr_rings; 13073 hwr.vnic = bnxt_get_total_vnics(bp, bp->rx_nr_rings); 13074 if (new_rss_ctx) 13075 hwr.vnic++; 13076 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 13077 max_vnics = bnxt_get_max_func_vnics(bp); 13078 max_rss_ctxs = bnxt_get_max_func_rss_ctxs(bp); 13079 13080 if (hwr.vnic > max_vnics || hwr.rss_ctx > max_rss_ctxs) { 13081 if (bp->rx_nr_rings > 1) 13082 netdev_warn(bp->dev, 13083 "Not enough resources to support NTUPLE filters, enough resources for up to %d rx rings\n", 13084 min(max_rss_ctxs - 1, max_vnics - 1)); 13085 return false; 13086 } 13087 13088 if (!BNXT_NEW_RM(bp)) 13089 return true; 13090 13091 /* Do not reduce VNIC and RSS ctx reservations. There is a FW 13092 * issue that will mess up the default VNIC if we reduce the 13093 * reservations. 13094 */ 13095 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13096 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13097 return true; 13098 13099 bnxt_hwrm_reserve_rings(bp, &hwr); 13100 if (hwr.vnic <= bp->hw_resc.resv_vnics && 13101 hwr.rss_ctx <= bp->hw_resc.resv_rsscos_ctxs) 13102 return true; 13103 13104 netdev_warn(bp->dev, "Unable to reserve resources to support NTUPLE filters.\n"); 13105 hwr.vnic = 1; 13106 hwr.rss_ctx = 0; 13107 bnxt_hwrm_reserve_rings(bp, &hwr); 13108 return false; 13109 } 13110 13111 static netdev_features_t bnxt_fix_features(struct net_device *dev, 13112 netdev_features_t features) 13113 { 13114 struct bnxt *bp = netdev_priv(dev); 13115 netdev_features_t vlan_features; 13116 13117 if ((features & NETIF_F_NTUPLE) && !bnxt_rfs_capable(bp, false)) 13118 features &= ~NETIF_F_NTUPLE; 13119 13120 if ((bp->flags & BNXT_FLAG_NO_AGG_RINGS) || bp->xdp_prog) 13121 features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 13122 13123 if (!(features & NETIF_F_GRO)) 13124 features &= ~NETIF_F_GRO_HW; 13125 13126 if (features & NETIF_F_GRO_HW) 13127 features &= ~NETIF_F_LRO; 13128 13129 /* Both CTAG and STAG VLAN acceleration on the RX side have to be 13130 * turned on or off together. 13131 */ 13132 vlan_features = features & BNXT_HW_FEATURE_VLAN_ALL_RX; 13133 if (vlan_features != BNXT_HW_FEATURE_VLAN_ALL_RX) { 13134 if (dev->features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13135 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13136 else if (vlan_features) 13137 features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 13138 } 13139 #ifdef CONFIG_BNXT_SRIOV 13140 if (BNXT_VF(bp) && bp->vf.vlan) 13141 features &= ~BNXT_HW_FEATURE_VLAN_ALL_RX; 13142 #endif 13143 return features; 13144 } 13145 13146 static int bnxt_reinit_features(struct bnxt *bp, bool irq_re_init, 13147 bool link_re_init, u32 flags, bool update_tpa) 13148 { 13149 bnxt_close_nic(bp, irq_re_init, link_re_init); 13150 bp->flags = flags; 13151 if (update_tpa) 13152 bnxt_set_ring_params(bp); 13153 return bnxt_open_nic(bp, irq_re_init, link_re_init); 13154 } 13155 13156 static int bnxt_set_features(struct net_device *dev, netdev_features_t features) 13157 { 13158 bool update_tpa = false, update_ntuple = false; 13159 struct bnxt *bp = netdev_priv(dev); 13160 u32 flags = bp->flags; 13161 u32 changes; 13162 int rc = 0; 13163 bool re_init = false; 13164 13165 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS; 13166 if (features & NETIF_F_GRO_HW) 13167 flags |= BNXT_FLAG_GRO; 13168 else if (features & NETIF_F_LRO) 13169 flags |= BNXT_FLAG_LRO; 13170 13171 if (bp->flags & BNXT_FLAG_NO_AGG_RINGS) 13172 flags &= ~BNXT_FLAG_TPA; 13173 13174 if (features & BNXT_HW_FEATURE_VLAN_ALL_RX) 13175 flags |= BNXT_FLAG_STRIP_VLAN; 13176 13177 if (features & NETIF_F_NTUPLE) 13178 flags |= BNXT_FLAG_RFS; 13179 else 13180 bnxt_clear_usr_fltrs(bp, true); 13181 13182 changes = flags ^ bp->flags; 13183 if (changes & BNXT_FLAG_TPA) { 13184 update_tpa = true; 13185 if ((bp->flags & BNXT_FLAG_TPA) == 0 || 13186 (flags & BNXT_FLAG_TPA) == 0 || 13187 (bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13188 re_init = true; 13189 } 13190 13191 if (changes & ~BNXT_FLAG_TPA) 13192 re_init = true; 13193 13194 if (changes & BNXT_FLAG_RFS) 13195 update_ntuple = true; 13196 13197 if (flags != bp->flags) { 13198 u32 old_flags = bp->flags; 13199 13200 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13201 bp->flags = flags; 13202 if (update_tpa) 13203 bnxt_set_ring_params(bp); 13204 return rc; 13205 } 13206 13207 if (update_ntuple) 13208 return bnxt_reinit_features(bp, true, false, flags, update_tpa); 13209 13210 if (re_init) 13211 return bnxt_reinit_features(bp, false, false, flags, update_tpa); 13212 13213 if (update_tpa) { 13214 bp->flags = flags; 13215 rc = bnxt_set_tpa(bp, 13216 (flags & BNXT_FLAG_TPA) ? 13217 true : false); 13218 if (rc) 13219 bp->flags = old_flags; 13220 } 13221 } 13222 return rc; 13223 } 13224 13225 static bool bnxt_exthdr_check(struct bnxt *bp, struct sk_buff *skb, int nw_off, 13226 u8 **nextp) 13227 { 13228 struct ipv6hdr *ip6h = (struct ipv6hdr *)(skb->data + nw_off); 13229 struct hop_jumbo_hdr *jhdr; 13230 int hdr_count = 0; 13231 u8 *nexthdr; 13232 int start; 13233 13234 /* Check that there are at most 2 IPv6 extension headers, no 13235 * fragment header, and each is <= 64 bytes. 13236 */ 13237 start = nw_off + sizeof(*ip6h); 13238 nexthdr = &ip6h->nexthdr; 13239 while (ipv6_ext_hdr(*nexthdr)) { 13240 struct ipv6_opt_hdr *hp; 13241 int hdrlen; 13242 13243 if (hdr_count >= 3 || *nexthdr == NEXTHDR_NONE || 13244 *nexthdr == NEXTHDR_FRAGMENT) 13245 return false; 13246 hp = __skb_header_pointer(NULL, start, sizeof(*hp), skb->data, 13247 skb_headlen(skb), NULL); 13248 if (!hp) 13249 return false; 13250 if (*nexthdr == NEXTHDR_AUTH) 13251 hdrlen = ipv6_authlen(hp); 13252 else 13253 hdrlen = ipv6_optlen(hp); 13254 13255 if (hdrlen > 64) 13256 return false; 13257 13258 /* The ext header may be a hop-by-hop header inserted for 13259 * big TCP purposes. This will be removed before sending 13260 * from NIC, so do not count it. 13261 */ 13262 if (*nexthdr == NEXTHDR_HOP) { 13263 if (likely(skb->len <= GRO_LEGACY_MAX_SIZE)) 13264 goto increment_hdr; 13265 13266 jhdr = (struct hop_jumbo_hdr *)hp; 13267 if (jhdr->tlv_type != IPV6_TLV_JUMBO || jhdr->hdrlen != 0 || 13268 jhdr->nexthdr != IPPROTO_TCP) 13269 goto increment_hdr; 13270 13271 goto next_hdr; 13272 } 13273 increment_hdr: 13274 hdr_count++; 13275 next_hdr: 13276 nexthdr = &hp->nexthdr; 13277 start += hdrlen; 13278 } 13279 if (nextp) { 13280 /* Caller will check inner protocol */ 13281 if (skb->encapsulation) { 13282 *nextp = nexthdr; 13283 return true; 13284 } 13285 *nextp = NULL; 13286 } 13287 /* Only support TCP/UDP for non-tunneled ipv6 and inner ipv6 */ 13288 return *nexthdr == IPPROTO_TCP || *nexthdr == IPPROTO_UDP; 13289 } 13290 13291 /* For UDP, we can only handle 1 Vxlan port and 1 Geneve port. */ 13292 static bool bnxt_udp_tunl_check(struct bnxt *bp, struct sk_buff *skb) 13293 { 13294 struct udphdr *uh = udp_hdr(skb); 13295 __be16 udp_port = uh->dest; 13296 13297 if (udp_port != bp->vxlan_port && udp_port != bp->nge_port && 13298 udp_port != bp->vxlan_gpe_port) 13299 return false; 13300 if (skb->inner_protocol == htons(ETH_P_TEB)) { 13301 struct ethhdr *eh = inner_eth_hdr(skb); 13302 13303 switch (eh->h_proto) { 13304 case htons(ETH_P_IP): 13305 return true; 13306 case htons(ETH_P_IPV6): 13307 return bnxt_exthdr_check(bp, skb, 13308 skb_inner_network_offset(skb), 13309 NULL); 13310 } 13311 } else if (skb->inner_protocol == htons(ETH_P_IP)) { 13312 return true; 13313 } else if (skb->inner_protocol == htons(ETH_P_IPV6)) { 13314 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13315 NULL); 13316 } 13317 return false; 13318 } 13319 13320 static bool bnxt_tunl_check(struct bnxt *bp, struct sk_buff *skb, u8 l4_proto) 13321 { 13322 switch (l4_proto) { 13323 case IPPROTO_UDP: 13324 return bnxt_udp_tunl_check(bp, skb); 13325 case IPPROTO_IPIP: 13326 return true; 13327 case IPPROTO_GRE: { 13328 switch (skb->inner_protocol) { 13329 default: 13330 return false; 13331 case htons(ETH_P_IP): 13332 return true; 13333 case htons(ETH_P_IPV6): 13334 fallthrough; 13335 } 13336 } 13337 case IPPROTO_IPV6: 13338 /* Check ext headers of inner ipv6 */ 13339 return bnxt_exthdr_check(bp, skb, skb_inner_network_offset(skb), 13340 NULL); 13341 } 13342 return false; 13343 } 13344 13345 static netdev_features_t bnxt_features_check(struct sk_buff *skb, 13346 struct net_device *dev, 13347 netdev_features_t features) 13348 { 13349 struct bnxt *bp = netdev_priv(dev); 13350 u8 *l4_proto; 13351 13352 features = vlan_features_check(skb, features); 13353 switch (vlan_get_protocol(skb)) { 13354 case htons(ETH_P_IP): 13355 if (!skb->encapsulation) 13356 return features; 13357 l4_proto = &ip_hdr(skb)->protocol; 13358 if (bnxt_tunl_check(bp, skb, *l4_proto)) 13359 return features; 13360 break; 13361 case htons(ETH_P_IPV6): 13362 if (!bnxt_exthdr_check(bp, skb, skb_network_offset(skb), 13363 &l4_proto)) 13364 break; 13365 if (!l4_proto || bnxt_tunl_check(bp, skb, *l4_proto)) 13366 return features; 13367 break; 13368 } 13369 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 13370 } 13371 13372 int bnxt_dbg_hwrm_rd_reg(struct bnxt *bp, u32 reg_off, u16 num_words, 13373 u32 *reg_buf) 13374 { 13375 struct hwrm_dbg_read_direct_output *resp; 13376 struct hwrm_dbg_read_direct_input *req; 13377 __le32 *dbg_reg_buf; 13378 dma_addr_t mapping; 13379 int rc, i; 13380 13381 rc = hwrm_req_init(bp, req, HWRM_DBG_READ_DIRECT); 13382 if (rc) 13383 return rc; 13384 13385 dbg_reg_buf = hwrm_req_dma_slice(bp, req, num_words * 4, 13386 &mapping); 13387 if (!dbg_reg_buf) { 13388 rc = -ENOMEM; 13389 goto dbg_rd_reg_exit; 13390 } 13391 13392 req->host_dest_addr = cpu_to_le64(mapping); 13393 13394 resp = hwrm_req_hold(bp, req); 13395 req->read_addr = cpu_to_le32(reg_off + CHIMP_REG_VIEW_ADDR); 13396 req->read_len32 = cpu_to_le32(num_words); 13397 13398 rc = hwrm_req_send(bp, req); 13399 if (rc || resp->error_code) { 13400 rc = -EIO; 13401 goto dbg_rd_reg_exit; 13402 } 13403 for (i = 0; i < num_words; i++) 13404 reg_buf[i] = le32_to_cpu(dbg_reg_buf[i]); 13405 13406 dbg_rd_reg_exit: 13407 hwrm_req_drop(bp, req); 13408 return rc; 13409 } 13410 13411 static int bnxt_dbg_hwrm_ring_info_get(struct bnxt *bp, u8 ring_type, 13412 u32 ring_id, u32 *prod, u32 *cons) 13413 { 13414 struct hwrm_dbg_ring_info_get_output *resp; 13415 struct hwrm_dbg_ring_info_get_input *req; 13416 int rc; 13417 13418 rc = hwrm_req_init(bp, req, HWRM_DBG_RING_INFO_GET); 13419 if (rc) 13420 return rc; 13421 13422 req->ring_type = ring_type; 13423 req->fw_ring_id = cpu_to_le32(ring_id); 13424 resp = hwrm_req_hold(bp, req); 13425 rc = hwrm_req_send(bp, req); 13426 if (!rc) { 13427 *prod = le32_to_cpu(resp->producer_index); 13428 *cons = le32_to_cpu(resp->consumer_index); 13429 } 13430 hwrm_req_drop(bp, req); 13431 return rc; 13432 } 13433 13434 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi) 13435 { 13436 struct bnxt_tx_ring_info *txr; 13437 int i = bnapi->index, j; 13438 13439 bnxt_for_each_napi_tx(j, bnapi, txr) 13440 netdev_info(bnapi->bp->dev, "[%d.%d]: tx{fw_ring: %d prod: %x cons: %x}\n", 13441 i, j, txr->tx_ring_struct.fw_ring_id, txr->tx_prod, 13442 txr->tx_cons); 13443 } 13444 13445 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi) 13446 { 13447 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring; 13448 int i = bnapi->index; 13449 13450 if (!rxr) 13451 return; 13452 13453 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n", 13454 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod, 13455 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod, 13456 rxr->rx_sw_agg_prod); 13457 } 13458 13459 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi) 13460 { 13461 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring; 13462 int i = bnapi->index; 13463 13464 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n", 13465 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons); 13466 } 13467 13468 static void bnxt_dbg_dump_states(struct bnxt *bp) 13469 { 13470 int i; 13471 struct bnxt_napi *bnapi; 13472 13473 for (i = 0; i < bp->cp_nr_rings; i++) { 13474 bnapi = bp->bnapi[i]; 13475 if (netif_msg_drv(bp)) { 13476 bnxt_dump_tx_sw_state(bnapi); 13477 bnxt_dump_rx_sw_state(bnapi); 13478 bnxt_dump_cp_sw_state(bnapi); 13479 } 13480 } 13481 } 13482 13483 static int bnxt_hwrm_rx_ring_reset(struct bnxt *bp, int ring_nr) 13484 { 13485 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[ring_nr]; 13486 struct hwrm_ring_reset_input *req; 13487 struct bnxt_napi *bnapi = rxr->bnapi; 13488 struct bnxt_cp_ring_info *cpr; 13489 u16 cp_ring_id; 13490 int rc; 13491 13492 rc = hwrm_req_init(bp, req, HWRM_RING_RESET); 13493 if (rc) 13494 return rc; 13495 13496 cpr = &bnapi->cp_ring; 13497 cp_ring_id = cpr->cp_ring_struct.fw_ring_id; 13498 req->cmpl_ring = cpu_to_le16(cp_ring_id); 13499 req->ring_type = RING_RESET_REQ_RING_TYPE_RX_RING_GRP; 13500 req->ring_id = cpu_to_le16(bp->grp_info[bnapi->index].fw_grp_id); 13501 return hwrm_req_send_silent(bp, req); 13502 } 13503 13504 static void bnxt_reset_task(struct bnxt *bp, bool silent) 13505 { 13506 if (!silent) 13507 bnxt_dbg_dump_states(bp); 13508 if (netif_running(bp->dev)) { 13509 bnxt_close_nic(bp, !silent, false); 13510 bnxt_open_nic(bp, !silent, false); 13511 } 13512 } 13513 13514 static void bnxt_tx_timeout(struct net_device *dev, unsigned int txqueue) 13515 { 13516 struct bnxt *bp = netdev_priv(dev); 13517 13518 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n"); 13519 bnxt_queue_sp_work(bp, BNXT_RESET_TASK_SP_EVENT); 13520 } 13521 13522 static void bnxt_fw_health_check(struct bnxt *bp) 13523 { 13524 struct bnxt_fw_health *fw_health = bp->fw_health; 13525 struct pci_dev *pdev = bp->pdev; 13526 u32 val; 13527 13528 if (!fw_health->enabled || test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13529 return; 13530 13531 /* Make sure it is enabled before checking the tmr_counter. */ 13532 smp_rmb(); 13533 if (fw_health->tmr_counter) { 13534 fw_health->tmr_counter--; 13535 return; 13536 } 13537 13538 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13539 if (val == fw_health->last_fw_heartbeat && pci_device_is_present(pdev)) { 13540 fw_health->arrests++; 13541 goto fw_reset; 13542 } 13543 13544 fw_health->last_fw_heartbeat = val; 13545 13546 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13547 if (val != fw_health->last_fw_reset_cnt && pci_device_is_present(pdev)) { 13548 fw_health->discoveries++; 13549 goto fw_reset; 13550 } 13551 13552 fw_health->tmr_counter = fw_health->tmr_multiplier; 13553 return; 13554 13555 fw_reset: 13556 bnxt_queue_sp_work(bp, BNXT_FW_EXCEPTION_SP_EVENT); 13557 } 13558 13559 static void bnxt_timer(struct timer_list *t) 13560 { 13561 struct bnxt *bp = from_timer(bp, t, timer); 13562 struct net_device *dev = bp->dev; 13563 13564 if (!netif_running(dev) || !test_bit(BNXT_STATE_OPEN, &bp->state)) 13565 return; 13566 13567 if (atomic_read(&bp->intr_sem) != 0) 13568 goto bnxt_restart_timer; 13569 13570 if (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) 13571 bnxt_fw_health_check(bp); 13572 13573 if (BNXT_LINK_IS_UP(bp) && bp->stats_coal_ticks) 13574 bnxt_queue_sp_work(bp, BNXT_PERIODIC_STATS_SP_EVENT); 13575 13576 if (bnxt_tc_flower_enabled(bp)) 13577 bnxt_queue_sp_work(bp, BNXT_FLOW_STATS_SP_EVENT); 13578 13579 #ifdef CONFIG_RFS_ACCEL 13580 if ((bp->flags & BNXT_FLAG_RFS) && bp->ntp_fltr_count) 13581 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 13582 #endif /*CONFIG_RFS_ACCEL*/ 13583 13584 if (bp->link_info.phy_retry) { 13585 if (time_after(jiffies, bp->link_info.phy_retry_expires)) { 13586 bp->link_info.phy_retry = false; 13587 netdev_warn(bp->dev, "failed to update phy settings after maximum retries.\n"); 13588 } else { 13589 bnxt_queue_sp_work(bp, BNXT_UPDATE_PHY_SP_EVENT); 13590 } 13591 } 13592 13593 if (test_bit(BNXT_STATE_L2_FILTER_RETRY, &bp->state)) 13594 bnxt_queue_sp_work(bp, BNXT_RX_MASK_SP_EVENT); 13595 13596 if ((BNXT_CHIP_P5(bp)) && !bp->chip_rev && netif_carrier_ok(dev)) 13597 bnxt_queue_sp_work(bp, BNXT_RING_COAL_NOW_SP_EVENT); 13598 13599 bnxt_restart_timer: 13600 mod_timer(&bp->timer, jiffies + bp->current_interval); 13601 } 13602 13603 static void bnxt_rtnl_lock_sp(struct bnxt *bp) 13604 { 13605 /* We are called from bnxt_sp_task which has BNXT_STATE_IN_SP_TASK 13606 * set. If the device is being closed, bnxt_close() may be holding 13607 * rtnl() and waiting for BNXT_STATE_IN_SP_TASK to clear. So we 13608 * must clear BNXT_STATE_IN_SP_TASK before holding rtnl(). 13609 */ 13610 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13611 rtnl_lock(); 13612 } 13613 13614 static void bnxt_rtnl_unlock_sp(struct bnxt *bp) 13615 { 13616 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13617 rtnl_unlock(); 13618 } 13619 13620 /* Only called from bnxt_sp_task() */ 13621 static void bnxt_reset(struct bnxt *bp, bool silent) 13622 { 13623 bnxt_rtnl_lock_sp(bp); 13624 if (test_bit(BNXT_STATE_OPEN, &bp->state)) 13625 bnxt_reset_task(bp, silent); 13626 bnxt_rtnl_unlock_sp(bp); 13627 } 13628 13629 /* Only called from bnxt_sp_task() */ 13630 static void bnxt_rx_ring_reset(struct bnxt *bp) 13631 { 13632 int i; 13633 13634 bnxt_rtnl_lock_sp(bp); 13635 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13636 bnxt_rtnl_unlock_sp(bp); 13637 return; 13638 } 13639 /* Disable and flush TPA before resetting the RX ring */ 13640 if (bp->flags & BNXT_FLAG_TPA) 13641 bnxt_set_tpa(bp, false); 13642 for (i = 0; i < bp->rx_nr_rings; i++) { 13643 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i]; 13644 struct bnxt_cp_ring_info *cpr; 13645 int rc; 13646 13647 if (!rxr->bnapi->in_reset) 13648 continue; 13649 13650 rc = bnxt_hwrm_rx_ring_reset(bp, i); 13651 if (rc) { 13652 if (rc == -EINVAL || rc == -EOPNOTSUPP) 13653 netdev_info_once(bp->dev, "RX ring reset not supported by firmware, falling back to global reset\n"); 13654 else 13655 netdev_warn(bp->dev, "RX ring reset failed, rc = %d, falling back to global reset\n", 13656 rc); 13657 bnxt_reset_task(bp, true); 13658 break; 13659 } 13660 bnxt_free_one_rx_ring_skbs(bp, i); 13661 rxr->rx_prod = 0; 13662 rxr->rx_agg_prod = 0; 13663 rxr->rx_sw_agg_prod = 0; 13664 rxr->rx_next_cons = 0; 13665 rxr->bnapi->in_reset = false; 13666 bnxt_alloc_one_rx_ring(bp, i); 13667 cpr = &rxr->bnapi->cp_ring; 13668 cpr->sw_stats->rx.rx_resets++; 13669 if (bp->flags & BNXT_FLAG_AGG_RINGS) 13670 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 13671 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 13672 } 13673 if (bp->flags & BNXT_FLAG_TPA) 13674 bnxt_set_tpa(bp, true); 13675 bnxt_rtnl_unlock_sp(bp); 13676 } 13677 13678 static void bnxt_fw_fatal_close(struct bnxt *bp) 13679 { 13680 bnxt_tx_disable(bp); 13681 bnxt_disable_napi(bp); 13682 bnxt_disable_int_sync(bp); 13683 bnxt_free_irq(bp); 13684 bnxt_clear_int_mode(bp); 13685 pci_disable_device(bp->pdev); 13686 } 13687 13688 static void bnxt_fw_reset_close(struct bnxt *bp) 13689 { 13690 /* When firmware is in fatal state, quiesce device and disable 13691 * bus master to prevent any potential bad DMAs before freeing 13692 * kernel memory. 13693 */ 13694 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) { 13695 u16 val = 0; 13696 13697 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 13698 if (val == 0xffff) 13699 bp->fw_reset_min_dsecs = 0; 13700 bnxt_fw_fatal_close(bp); 13701 } 13702 __bnxt_close_nic(bp, true, false); 13703 bnxt_vf_reps_free(bp); 13704 bnxt_clear_int_mode(bp); 13705 bnxt_hwrm_func_drv_unrgtr(bp); 13706 if (pci_is_enabled(bp->pdev)) 13707 pci_disable_device(bp->pdev); 13708 bnxt_free_ctx_mem(bp, false); 13709 } 13710 13711 static bool is_bnxt_fw_ok(struct bnxt *bp) 13712 { 13713 struct bnxt_fw_health *fw_health = bp->fw_health; 13714 bool no_heartbeat = false, has_reset = false; 13715 u32 val; 13716 13717 val = bnxt_fw_health_readl(bp, BNXT_FW_HEARTBEAT_REG); 13718 if (val == fw_health->last_fw_heartbeat) 13719 no_heartbeat = true; 13720 13721 val = bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 13722 if (val != fw_health->last_fw_reset_cnt) 13723 has_reset = true; 13724 13725 if (!no_heartbeat && has_reset) 13726 return true; 13727 13728 return false; 13729 } 13730 13731 /* rtnl_lock is acquired before calling this function */ 13732 static void bnxt_force_fw_reset(struct bnxt *bp) 13733 { 13734 struct bnxt_fw_health *fw_health = bp->fw_health; 13735 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13736 u32 wait_dsecs; 13737 13738 if (!test_bit(BNXT_STATE_OPEN, &bp->state) || 13739 test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) 13740 return; 13741 13742 /* we have to serialize with bnxt_refclk_read()*/ 13743 if (ptp) { 13744 unsigned long flags; 13745 13746 write_seqlock_irqsave(&ptp->ptp_lock, flags); 13747 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13748 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 13749 } else { 13750 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13751 } 13752 bnxt_fw_reset_close(bp); 13753 wait_dsecs = fw_health->master_func_wait_dsecs; 13754 if (fw_health->primary) { 13755 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) 13756 wait_dsecs = 0; 13757 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 13758 } else { 13759 bp->fw_reset_timestamp = jiffies + wait_dsecs * HZ / 10; 13760 wait_dsecs = fw_health->normal_func_wait_dsecs; 13761 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13762 } 13763 13764 bp->fw_reset_min_dsecs = fw_health->post_reset_wait_dsecs; 13765 bp->fw_reset_max_dsecs = fw_health->post_reset_max_wait_dsecs; 13766 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 13767 } 13768 13769 void bnxt_fw_exception(struct bnxt *bp) 13770 { 13771 netdev_warn(bp->dev, "Detected firmware fatal condition, initiating reset\n"); 13772 set_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 13773 bnxt_ulp_stop(bp); 13774 bnxt_rtnl_lock_sp(bp); 13775 bnxt_force_fw_reset(bp); 13776 bnxt_rtnl_unlock_sp(bp); 13777 } 13778 13779 /* Returns the number of registered VFs, or 1 if VF configuration is pending, or 13780 * < 0 on error. 13781 */ 13782 static int bnxt_get_registered_vfs(struct bnxt *bp) 13783 { 13784 #ifdef CONFIG_BNXT_SRIOV 13785 int rc; 13786 13787 if (!BNXT_PF(bp)) 13788 return 0; 13789 13790 rc = bnxt_hwrm_func_qcfg(bp); 13791 if (rc) { 13792 netdev_err(bp->dev, "func_qcfg cmd failed, rc = %d\n", rc); 13793 return rc; 13794 } 13795 if (bp->pf.registered_vfs) 13796 return bp->pf.registered_vfs; 13797 if (bp->sriov_cfg) 13798 return 1; 13799 #endif 13800 return 0; 13801 } 13802 13803 void bnxt_fw_reset(struct bnxt *bp) 13804 { 13805 bnxt_ulp_stop(bp); 13806 bnxt_rtnl_lock_sp(bp); 13807 if (test_bit(BNXT_STATE_OPEN, &bp->state) && 13808 !test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 13809 struct bnxt_ptp_cfg *ptp = bp->ptp_cfg; 13810 int n = 0, tmo; 13811 13812 /* we have to serialize with bnxt_refclk_read()*/ 13813 if (ptp) { 13814 unsigned long flags; 13815 13816 write_seqlock_irqsave(&ptp->ptp_lock, flags); 13817 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13818 write_sequnlock_irqrestore(&ptp->ptp_lock, flags); 13819 } else { 13820 set_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13821 } 13822 if (bp->pf.active_vfs && 13823 !test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) 13824 n = bnxt_get_registered_vfs(bp); 13825 if (n < 0) { 13826 netdev_err(bp->dev, "Firmware reset aborted, rc = %d\n", 13827 n); 13828 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 13829 dev_close(bp->dev); 13830 goto fw_reset_exit; 13831 } else if (n > 0) { 13832 u16 vf_tmo_dsecs = n * 10; 13833 13834 if (bp->fw_reset_max_dsecs < vf_tmo_dsecs) 13835 bp->fw_reset_max_dsecs = vf_tmo_dsecs; 13836 bp->fw_reset_state = 13837 BNXT_FW_RESET_STATE_POLL_VF; 13838 bnxt_queue_fw_reset_work(bp, HZ / 10); 13839 goto fw_reset_exit; 13840 } 13841 bnxt_fw_reset_close(bp); 13842 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 13843 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 13844 tmo = HZ / 10; 13845 } else { 13846 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 13847 tmo = bp->fw_reset_min_dsecs * HZ / 10; 13848 } 13849 bnxt_queue_fw_reset_work(bp, tmo); 13850 } 13851 fw_reset_exit: 13852 bnxt_rtnl_unlock_sp(bp); 13853 } 13854 13855 static void bnxt_chk_missed_irq(struct bnxt *bp) 13856 { 13857 int i; 13858 13859 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 13860 return; 13861 13862 for (i = 0; i < bp->cp_nr_rings; i++) { 13863 struct bnxt_napi *bnapi = bp->bnapi[i]; 13864 struct bnxt_cp_ring_info *cpr; 13865 u32 fw_ring_id; 13866 int j; 13867 13868 if (!bnapi) 13869 continue; 13870 13871 cpr = &bnapi->cp_ring; 13872 for (j = 0; j < cpr->cp_ring_count; j++) { 13873 struct bnxt_cp_ring_info *cpr2 = &cpr->cp_ring_arr[j]; 13874 u32 val[2]; 13875 13876 if (cpr2->has_more_work || !bnxt_has_work(bp, cpr2)) 13877 continue; 13878 13879 if (cpr2->cp_raw_cons != cpr2->last_cp_raw_cons) { 13880 cpr2->last_cp_raw_cons = cpr2->cp_raw_cons; 13881 continue; 13882 } 13883 fw_ring_id = cpr2->cp_ring_struct.fw_ring_id; 13884 bnxt_dbg_hwrm_ring_info_get(bp, 13885 DBG_RING_INFO_GET_REQ_RING_TYPE_L2_CMPL, 13886 fw_ring_id, &val[0], &val[1]); 13887 cpr->sw_stats->cmn.missed_irqs++; 13888 } 13889 } 13890 } 13891 13892 static void bnxt_cfg_ntp_filters(struct bnxt *); 13893 13894 static void bnxt_init_ethtool_link_settings(struct bnxt *bp) 13895 { 13896 struct bnxt_link_info *link_info = &bp->link_info; 13897 13898 if (BNXT_AUTO_MODE(link_info->auto_mode)) { 13899 link_info->autoneg = BNXT_AUTONEG_SPEED; 13900 if (bp->hwrm_spec_code >= 0x10201) { 13901 if (link_info->auto_pause_setting & 13902 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE) 13903 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13904 } else { 13905 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL; 13906 } 13907 bnxt_set_auto_speed(link_info); 13908 } else { 13909 bnxt_set_force_speed(link_info); 13910 link_info->req_duplex = link_info->duplex_setting; 13911 } 13912 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) 13913 link_info->req_flow_ctrl = 13914 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH; 13915 else 13916 link_info->req_flow_ctrl = link_info->force_pause_setting; 13917 } 13918 13919 static void bnxt_fw_echo_reply(struct bnxt *bp) 13920 { 13921 struct bnxt_fw_health *fw_health = bp->fw_health; 13922 struct hwrm_func_echo_response_input *req; 13923 int rc; 13924 13925 rc = hwrm_req_init(bp, req, HWRM_FUNC_ECHO_RESPONSE); 13926 if (rc) 13927 return; 13928 req->event_data1 = cpu_to_le32(fw_health->echo_req_data1); 13929 req->event_data2 = cpu_to_le32(fw_health->echo_req_data2); 13930 hwrm_req_send(bp, req); 13931 } 13932 13933 static void bnxt_ulp_restart(struct bnxt *bp) 13934 { 13935 bnxt_ulp_stop(bp); 13936 bnxt_ulp_start(bp, 0); 13937 } 13938 13939 static void bnxt_sp_task(struct work_struct *work) 13940 { 13941 struct bnxt *bp = container_of(work, struct bnxt, sp_task); 13942 13943 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13944 smp_mb__after_atomic(); 13945 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) { 13946 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 13947 return; 13948 } 13949 13950 if (test_and_clear_bit(BNXT_RESTART_ULP_SP_EVENT, &bp->sp_event)) { 13951 bnxt_ulp_restart(bp); 13952 bnxt_reenable_sriov(bp); 13953 } 13954 13955 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event)) 13956 bnxt_cfg_rx_mode(bp); 13957 13958 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event)) 13959 bnxt_cfg_ntp_filters(bp); 13960 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event)) 13961 bnxt_hwrm_exec_fwd_req(bp); 13962 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event)) 13963 netdev_info(bp->dev, "Receive PF driver unload event!\n"); 13964 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event)) { 13965 bnxt_hwrm_port_qstats(bp, 0); 13966 bnxt_hwrm_port_qstats_ext(bp, 0); 13967 bnxt_accumulate_all_stats(bp); 13968 } 13969 13970 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) { 13971 int rc; 13972 13973 mutex_lock(&bp->link_lock); 13974 if (test_and_clear_bit(BNXT_LINK_SPEED_CHNG_SP_EVENT, 13975 &bp->sp_event)) 13976 bnxt_hwrm_phy_qcaps(bp); 13977 13978 rc = bnxt_update_link(bp, true); 13979 if (rc) 13980 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n", 13981 rc); 13982 13983 if (test_and_clear_bit(BNXT_LINK_CFG_CHANGE_SP_EVENT, 13984 &bp->sp_event)) 13985 bnxt_init_ethtool_link_settings(bp); 13986 mutex_unlock(&bp->link_lock); 13987 } 13988 if (test_and_clear_bit(BNXT_UPDATE_PHY_SP_EVENT, &bp->sp_event)) { 13989 int rc; 13990 13991 mutex_lock(&bp->link_lock); 13992 rc = bnxt_update_phy_setting(bp); 13993 mutex_unlock(&bp->link_lock); 13994 if (rc) { 13995 netdev_warn(bp->dev, "update phy settings retry failed\n"); 13996 } else { 13997 bp->link_info.phy_retry = false; 13998 netdev_info(bp->dev, "update phy settings retry succeeded\n"); 13999 } 14000 } 14001 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event)) { 14002 mutex_lock(&bp->link_lock); 14003 bnxt_get_port_module_status(bp); 14004 mutex_unlock(&bp->link_lock); 14005 } 14006 14007 if (test_and_clear_bit(BNXT_FLOW_STATS_SP_EVENT, &bp->sp_event)) 14008 bnxt_tc_flow_stats_work(bp); 14009 14010 if (test_and_clear_bit(BNXT_RING_COAL_NOW_SP_EVENT, &bp->sp_event)) 14011 bnxt_chk_missed_irq(bp); 14012 14013 if (test_and_clear_bit(BNXT_FW_ECHO_REQUEST_SP_EVENT, &bp->sp_event)) 14014 bnxt_fw_echo_reply(bp); 14015 14016 if (test_and_clear_bit(BNXT_THERMAL_THRESHOLD_SP_EVENT, &bp->sp_event)) 14017 bnxt_hwmon_notify_event(bp); 14018 14019 /* These functions below will clear BNXT_STATE_IN_SP_TASK. They 14020 * must be the last functions to be called before exiting. 14021 */ 14022 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) 14023 bnxt_reset(bp, false); 14024 14025 if (test_and_clear_bit(BNXT_RESET_TASK_SILENT_SP_EVENT, &bp->sp_event)) 14026 bnxt_reset(bp, true); 14027 14028 if (test_and_clear_bit(BNXT_RST_RING_SP_EVENT, &bp->sp_event)) 14029 bnxt_rx_ring_reset(bp); 14030 14031 if (test_and_clear_bit(BNXT_FW_RESET_NOTIFY_SP_EVENT, &bp->sp_event)) { 14032 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) || 14033 test_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state)) 14034 bnxt_devlink_health_fw_report(bp); 14035 else 14036 bnxt_fw_reset(bp); 14037 } 14038 14039 if (test_and_clear_bit(BNXT_FW_EXCEPTION_SP_EVENT, &bp->sp_event)) { 14040 if (!is_bnxt_fw_ok(bp)) 14041 bnxt_devlink_health_fw_report(bp); 14042 } 14043 14044 smp_mb__before_atomic(); 14045 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state); 14046 } 14047 14048 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 14049 int *max_cp); 14050 14051 /* Under rtnl_lock */ 14052 int bnxt_check_rings(struct bnxt *bp, int tx, int rx, bool sh, int tcs, 14053 int tx_xdp) 14054 { 14055 int max_rx, max_tx, max_cp, tx_sets = 1, tx_cp; 14056 struct bnxt_hw_rings hwr = {0}; 14057 int rx_rings = rx; 14058 int rc; 14059 14060 if (tcs) 14061 tx_sets = tcs; 14062 14063 _bnxt_get_max_rings(bp, &max_rx, &max_tx, &max_cp); 14064 14065 if (max_rx < rx_rings) 14066 return -ENOMEM; 14067 14068 if (bp->flags & BNXT_FLAG_AGG_RINGS) 14069 rx_rings <<= 1; 14070 14071 hwr.rx = rx_rings; 14072 hwr.tx = tx * tx_sets + tx_xdp; 14073 if (max_tx < hwr.tx) 14074 return -ENOMEM; 14075 14076 hwr.vnic = bnxt_get_total_vnics(bp, rx); 14077 14078 tx_cp = __bnxt_num_tx_to_cp(bp, hwr.tx, tx_sets, tx_xdp); 14079 hwr.cp = sh ? max_t(int, tx_cp, rx) : tx_cp + rx; 14080 if (max_cp < hwr.cp) 14081 return -ENOMEM; 14082 hwr.stat = hwr.cp; 14083 if (BNXT_NEW_RM(bp)) { 14084 hwr.cp += bnxt_get_ulp_msix_num_in_use(bp); 14085 hwr.stat += bnxt_get_ulp_stat_ctxs_in_use(bp); 14086 hwr.grp = rx; 14087 hwr.rss_ctx = bnxt_get_total_rss_ctxs(bp, &hwr); 14088 } 14089 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) 14090 hwr.cp_p5 = hwr.tx + rx; 14091 rc = bnxt_hwrm_check_rings(bp, &hwr); 14092 if (!rc && pci_msix_can_alloc_dyn(bp->pdev)) { 14093 if (!bnxt_ulp_registered(bp->edev)) { 14094 hwr.cp += bnxt_get_ulp_msix_num(bp); 14095 hwr.cp = min_t(int, hwr.cp, bnxt_get_max_func_irqs(bp)); 14096 } 14097 if (hwr.cp > bp->total_irqs) { 14098 int total_msix = bnxt_change_msix(bp, hwr.cp); 14099 14100 if (total_msix < hwr.cp) { 14101 netdev_warn(bp->dev, "Unable to allocate %d MSIX vectors, maximum available %d\n", 14102 hwr.cp, total_msix); 14103 rc = -ENOSPC; 14104 } 14105 } 14106 } 14107 return rc; 14108 } 14109 14110 static void bnxt_unmap_bars(struct bnxt *bp, struct pci_dev *pdev) 14111 { 14112 if (bp->bar2) { 14113 pci_iounmap(pdev, bp->bar2); 14114 bp->bar2 = NULL; 14115 } 14116 14117 if (bp->bar1) { 14118 pci_iounmap(pdev, bp->bar1); 14119 bp->bar1 = NULL; 14120 } 14121 14122 if (bp->bar0) { 14123 pci_iounmap(pdev, bp->bar0); 14124 bp->bar0 = NULL; 14125 } 14126 } 14127 14128 static void bnxt_cleanup_pci(struct bnxt *bp) 14129 { 14130 bnxt_unmap_bars(bp, bp->pdev); 14131 pci_release_regions(bp->pdev); 14132 if (pci_is_enabled(bp->pdev)) 14133 pci_disable_device(bp->pdev); 14134 } 14135 14136 static void bnxt_init_dflt_coal(struct bnxt *bp) 14137 { 14138 struct bnxt_coal_cap *coal_cap = &bp->coal_cap; 14139 struct bnxt_coal *coal; 14140 u16 flags = 0; 14141 14142 if (coal_cap->cmpl_params & 14143 RING_AGGINT_QCAPS_RESP_CMPL_PARAMS_TIMER_RESET) 14144 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET; 14145 14146 /* Tick values in micro seconds. 14147 * 1 coal_buf x bufs_per_record = 1 completion record. 14148 */ 14149 coal = &bp->rx_coal; 14150 coal->coal_ticks = 10; 14151 coal->coal_bufs = 30; 14152 coal->coal_ticks_irq = 1; 14153 coal->coal_bufs_irq = 2; 14154 coal->idle_thresh = 50; 14155 coal->bufs_per_record = 2; 14156 coal->budget = 64; /* NAPI budget */ 14157 coal->flags = flags; 14158 14159 coal = &bp->tx_coal; 14160 coal->coal_ticks = 28; 14161 coal->coal_bufs = 30; 14162 coal->coal_ticks_irq = 2; 14163 coal->coal_bufs_irq = 2; 14164 coal->bufs_per_record = 1; 14165 coal->flags = flags; 14166 14167 bp->stats_coal_ticks = BNXT_DEF_STATS_COAL_TICKS; 14168 } 14169 14170 /* FW that pre-reserves 1 VNIC per function */ 14171 static bool bnxt_fw_pre_resv_vnics(struct bnxt *bp) 14172 { 14173 u16 fw_maj = BNXT_FW_MAJ(bp), fw_bld = BNXT_FW_BLD(bp); 14174 14175 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14176 (fw_maj > 218 || (fw_maj == 218 && fw_bld >= 18))) 14177 return true; 14178 if ((bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 14179 (fw_maj > 216 || (fw_maj == 216 && fw_bld >= 172))) 14180 return true; 14181 return false; 14182 } 14183 14184 static int bnxt_fw_init_one_p1(struct bnxt *bp) 14185 { 14186 int rc; 14187 14188 bp->fw_cap = 0; 14189 rc = bnxt_hwrm_ver_get(bp); 14190 /* FW may be unresponsive after FLR. FLR must complete within 100 msec 14191 * so wait before continuing with recovery. 14192 */ 14193 if (rc) 14194 msleep(100); 14195 bnxt_try_map_fw_health_reg(bp); 14196 if (rc) { 14197 rc = bnxt_try_recover_fw(bp); 14198 if (rc) 14199 return rc; 14200 rc = bnxt_hwrm_ver_get(bp); 14201 if (rc) 14202 return rc; 14203 } 14204 14205 bnxt_nvm_cfg_ver_get(bp); 14206 14207 rc = bnxt_hwrm_func_reset(bp); 14208 if (rc) 14209 return -ENODEV; 14210 14211 bnxt_hwrm_fw_set_time(bp); 14212 return 0; 14213 } 14214 14215 static int bnxt_fw_init_one_p2(struct bnxt *bp) 14216 { 14217 int rc; 14218 14219 /* Get the MAX capabilities for this function */ 14220 rc = bnxt_hwrm_func_qcaps(bp); 14221 if (rc) { 14222 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n", 14223 rc); 14224 return -ENODEV; 14225 } 14226 14227 rc = bnxt_hwrm_cfa_adv_flow_mgnt_qcaps(bp); 14228 if (rc) 14229 netdev_warn(bp->dev, "hwrm query adv flow mgnt failure rc: %d\n", 14230 rc); 14231 14232 if (bnxt_alloc_fw_health(bp)) { 14233 netdev_warn(bp->dev, "no memory for firmware error recovery\n"); 14234 } else { 14235 rc = bnxt_hwrm_error_recovery_qcfg(bp); 14236 if (rc) 14237 netdev_warn(bp->dev, "hwrm query error recovery failure rc: %d\n", 14238 rc); 14239 } 14240 14241 rc = bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false); 14242 if (rc) 14243 return -ENODEV; 14244 14245 rc = bnxt_alloc_crash_dump_mem(bp); 14246 if (rc) 14247 netdev_warn(bp->dev, "crash dump mem alloc failure rc: %d\n", 14248 rc); 14249 if (!rc) { 14250 rc = bnxt_hwrm_crash_dump_mem_cfg(bp); 14251 if (rc) { 14252 bnxt_free_crash_dump_mem(bp); 14253 netdev_warn(bp->dev, 14254 "hwrm crash dump mem failure rc: %d\n", rc); 14255 } 14256 } 14257 14258 if (bnxt_fw_pre_resv_vnics(bp)) 14259 bp->fw_cap |= BNXT_FW_CAP_PRE_RESV_VNICS; 14260 14261 bnxt_hwrm_func_qcfg(bp); 14262 bnxt_hwrm_vnic_qcaps(bp); 14263 bnxt_hwrm_port_led_qcaps(bp); 14264 bnxt_ethtool_init(bp); 14265 if (bp->fw_cap & BNXT_FW_CAP_PTP) 14266 __bnxt_hwrm_ptp_qcfg(bp); 14267 bnxt_dcb_init(bp); 14268 bnxt_hwmon_init(bp); 14269 return 0; 14270 } 14271 14272 static void bnxt_set_dflt_rss_hash_type(struct bnxt *bp) 14273 { 14274 bp->rss_cap &= ~BNXT_RSS_CAP_UDP_RSS_CAP; 14275 bp->rss_hash_cfg = VNIC_RSS_CFG_REQ_HASH_TYPE_IPV4 | 14276 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV4 | 14277 VNIC_RSS_CFG_REQ_HASH_TYPE_IPV6 | 14278 VNIC_RSS_CFG_REQ_HASH_TYPE_TCP_IPV6; 14279 if (bp->rss_cap & BNXT_RSS_CAP_RSS_HASH_TYPE_DELTA) 14280 bp->rss_hash_delta = bp->rss_hash_cfg; 14281 if (BNXT_CHIP_P4_PLUS(bp) && bp->hwrm_spec_code >= 0x10501) { 14282 bp->rss_cap |= BNXT_RSS_CAP_UDP_RSS_CAP; 14283 bp->rss_hash_cfg |= VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV4 | 14284 VNIC_RSS_CFG_REQ_HASH_TYPE_UDP_IPV6; 14285 } 14286 } 14287 14288 static void bnxt_set_dflt_rfs(struct bnxt *bp) 14289 { 14290 struct net_device *dev = bp->dev; 14291 14292 dev->hw_features &= ~NETIF_F_NTUPLE; 14293 dev->features &= ~NETIF_F_NTUPLE; 14294 bp->flags &= ~BNXT_FLAG_RFS; 14295 if (bnxt_rfs_supported(bp)) { 14296 dev->hw_features |= NETIF_F_NTUPLE; 14297 if (bnxt_rfs_capable(bp, false)) { 14298 bp->flags |= BNXT_FLAG_RFS; 14299 dev->features |= NETIF_F_NTUPLE; 14300 } 14301 } 14302 } 14303 14304 static void bnxt_fw_init_one_p3(struct bnxt *bp) 14305 { 14306 struct pci_dev *pdev = bp->pdev; 14307 14308 bnxt_set_dflt_rss_hash_type(bp); 14309 bnxt_set_dflt_rfs(bp); 14310 14311 bnxt_get_wol_settings(bp); 14312 if (bp->flags & BNXT_FLAG_WOL_CAP) 14313 device_set_wakeup_enable(&pdev->dev, bp->wol); 14314 else 14315 device_set_wakeup_capable(&pdev->dev, false); 14316 14317 bnxt_hwrm_set_cache_line_size(bp, cache_line_size()); 14318 bnxt_hwrm_coal_params_qcaps(bp); 14319 } 14320 14321 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt); 14322 14323 int bnxt_fw_init_one(struct bnxt *bp) 14324 { 14325 int rc; 14326 14327 rc = bnxt_fw_init_one_p1(bp); 14328 if (rc) { 14329 netdev_err(bp->dev, "Firmware init phase 1 failed\n"); 14330 return rc; 14331 } 14332 rc = bnxt_fw_init_one_p2(bp); 14333 if (rc) { 14334 netdev_err(bp->dev, "Firmware init phase 2 failed\n"); 14335 return rc; 14336 } 14337 rc = bnxt_probe_phy(bp, false); 14338 if (rc) 14339 return rc; 14340 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, false); 14341 if (rc) 14342 return rc; 14343 14344 bnxt_fw_init_one_p3(bp); 14345 return 0; 14346 } 14347 14348 static void bnxt_fw_reset_writel(struct bnxt *bp, int reg_idx) 14349 { 14350 struct bnxt_fw_health *fw_health = bp->fw_health; 14351 u32 reg = fw_health->fw_reset_seq_regs[reg_idx]; 14352 u32 val = fw_health->fw_reset_seq_vals[reg_idx]; 14353 u32 reg_type, reg_off, delay_msecs; 14354 14355 delay_msecs = fw_health->fw_reset_seq_delay_msec[reg_idx]; 14356 reg_type = BNXT_FW_HEALTH_REG_TYPE(reg); 14357 reg_off = BNXT_FW_HEALTH_REG_OFF(reg); 14358 switch (reg_type) { 14359 case BNXT_FW_HEALTH_REG_TYPE_CFG: 14360 pci_write_config_dword(bp->pdev, reg_off, val); 14361 break; 14362 case BNXT_FW_HEALTH_REG_TYPE_GRC: 14363 writel(reg_off & BNXT_GRC_BASE_MASK, 14364 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 14365 reg_off = (reg_off & BNXT_GRC_OFFSET_MASK) + 0x2000; 14366 fallthrough; 14367 case BNXT_FW_HEALTH_REG_TYPE_BAR0: 14368 writel(val, bp->bar0 + reg_off); 14369 break; 14370 case BNXT_FW_HEALTH_REG_TYPE_BAR1: 14371 writel(val, bp->bar1 + reg_off); 14372 break; 14373 } 14374 if (delay_msecs) { 14375 pci_read_config_dword(bp->pdev, 0, &val); 14376 msleep(delay_msecs); 14377 } 14378 } 14379 14380 bool bnxt_hwrm_reset_permitted(struct bnxt *bp) 14381 { 14382 struct hwrm_func_qcfg_output *resp; 14383 struct hwrm_func_qcfg_input *req; 14384 bool result = true; /* firmware will enforce if unknown */ 14385 14386 if (~bp->fw_cap & BNXT_FW_CAP_HOT_RESET_IF) 14387 return result; 14388 14389 if (hwrm_req_init(bp, req, HWRM_FUNC_QCFG)) 14390 return result; 14391 14392 req->fid = cpu_to_le16(0xffff); 14393 resp = hwrm_req_hold(bp, req); 14394 if (!hwrm_req_send(bp, req)) 14395 result = !!(le16_to_cpu(resp->flags) & 14396 FUNC_QCFG_RESP_FLAGS_HOT_RESET_ALLOWED); 14397 hwrm_req_drop(bp, req); 14398 return result; 14399 } 14400 14401 static void bnxt_reset_all(struct bnxt *bp) 14402 { 14403 struct bnxt_fw_health *fw_health = bp->fw_health; 14404 int i, rc; 14405 14406 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14407 bnxt_fw_reset_via_optee(bp); 14408 bp->fw_reset_timestamp = jiffies; 14409 return; 14410 } 14411 14412 if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_HOST) { 14413 for (i = 0; i < fw_health->fw_reset_seq_cnt; i++) 14414 bnxt_fw_reset_writel(bp, i); 14415 } else if (fw_health->flags & ERROR_RECOVERY_QCFG_RESP_FLAGS_CO_CPU) { 14416 struct hwrm_fw_reset_input *req; 14417 14418 rc = hwrm_req_init(bp, req, HWRM_FW_RESET); 14419 if (!rc) { 14420 req->target_id = cpu_to_le16(HWRM_TARGET_ID_KONG); 14421 req->embedded_proc_type = FW_RESET_REQ_EMBEDDED_PROC_TYPE_CHIP; 14422 req->selfrst_status = FW_RESET_REQ_SELFRST_STATUS_SELFRSTASAP; 14423 req->flags = FW_RESET_REQ_FLAGS_RESET_GRACEFUL; 14424 rc = hwrm_req_send(bp, req); 14425 } 14426 if (rc != -ENODEV) 14427 netdev_warn(bp->dev, "Unable to reset FW rc=%d\n", rc); 14428 } 14429 bp->fw_reset_timestamp = jiffies; 14430 } 14431 14432 static bool bnxt_fw_reset_timeout(struct bnxt *bp) 14433 { 14434 return time_after(jiffies, bp->fw_reset_timestamp + 14435 (bp->fw_reset_max_dsecs * HZ / 10)); 14436 } 14437 14438 static void bnxt_fw_reset_abort(struct bnxt *bp, int rc) 14439 { 14440 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14441 if (bp->fw_reset_state != BNXT_FW_RESET_STATE_POLL_VF) 14442 bnxt_dl_health_fw_status_update(bp, false); 14443 bp->fw_reset_state = 0; 14444 dev_close(bp->dev); 14445 } 14446 14447 static void bnxt_fw_reset_task(struct work_struct *work) 14448 { 14449 struct bnxt *bp = container_of(work, struct bnxt, fw_reset_task.work); 14450 int rc = 0; 14451 14452 if (!test_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 14453 netdev_err(bp->dev, "bnxt_fw_reset_task() called when not in fw reset mode!\n"); 14454 return; 14455 } 14456 14457 switch (bp->fw_reset_state) { 14458 case BNXT_FW_RESET_STATE_POLL_VF: { 14459 int n = bnxt_get_registered_vfs(bp); 14460 int tmo; 14461 14462 if (n < 0) { 14463 netdev_err(bp->dev, "Firmware reset aborted, subsequent func_qcfg cmd failed, rc = %d, %d msecs since reset timestamp\n", 14464 n, jiffies_to_msecs(jiffies - 14465 bp->fw_reset_timestamp)); 14466 goto fw_reset_abort; 14467 } else if (n > 0) { 14468 if (bnxt_fw_reset_timeout(bp)) { 14469 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14470 bp->fw_reset_state = 0; 14471 netdev_err(bp->dev, "Firmware reset aborted, bnxt_get_registered_vfs() returns %d\n", 14472 n); 14473 goto ulp_start; 14474 } 14475 bnxt_queue_fw_reset_work(bp, HZ / 10); 14476 return; 14477 } 14478 bp->fw_reset_timestamp = jiffies; 14479 rtnl_lock(); 14480 if (test_bit(BNXT_STATE_ABORT_ERR, &bp->state)) { 14481 bnxt_fw_reset_abort(bp, rc); 14482 rtnl_unlock(); 14483 goto ulp_start; 14484 } 14485 bnxt_fw_reset_close(bp); 14486 if (bp->fw_cap & BNXT_FW_CAP_ERR_RECOVER_RELOAD) { 14487 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW_DOWN; 14488 tmo = HZ / 10; 14489 } else { 14490 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14491 tmo = bp->fw_reset_min_dsecs * HZ / 10; 14492 } 14493 rtnl_unlock(); 14494 bnxt_queue_fw_reset_work(bp, tmo); 14495 return; 14496 } 14497 case BNXT_FW_RESET_STATE_POLL_FW_DOWN: { 14498 u32 val; 14499 14500 val = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14501 if (!(val & BNXT_FW_STATUS_SHUTDOWN) && 14502 !bnxt_fw_reset_timeout(bp)) { 14503 bnxt_queue_fw_reset_work(bp, HZ / 5); 14504 return; 14505 } 14506 14507 if (!bp->fw_health->primary) { 14508 u32 wait_dsecs = bp->fw_health->normal_func_wait_dsecs; 14509 14510 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14511 bnxt_queue_fw_reset_work(bp, wait_dsecs * HZ / 10); 14512 return; 14513 } 14514 bp->fw_reset_state = BNXT_FW_RESET_STATE_RESET_FW; 14515 } 14516 fallthrough; 14517 case BNXT_FW_RESET_STATE_RESET_FW: 14518 bnxt_reset_all(bp); 14519 bp->fw_reset_state = BNXT_FW_RESET_STATE_ENABLE_DEV; 14520 bnxt_queue_fw_reset_work(bp, bp->fw_reset_min_dsecs * HZ / 10); 14521 return; 14522 case BNXT_FW_RESET_STATE_ENABLE_DEV: 14523 bnxt_inv_fw_health_reg(bp); 14524 if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state) && 14525 !bp->fw_reset_min_dsecs) { 14526 u16 val; 14527 14528 pci_read_config_word(bp->pdev, PCI_SUBSYSTEM_ID, &val); 14529 if (val == 0xffff) { 14530 if (bnxt_fw_reset_timeout(bp)) { 14531 netdev_err(bp->dev, "Firmware reset aborted, PCI config space invalid\n"); 14532 rc = -ETIMEDOUT; 14533 goto fw_reset_abort; 14534 } 14535 bnxt_queue_fw_reset_work(bp, HZ / 1000); 14536 return; 14537 } 14538 } 14539 clear_bit(BNXT_STATE_FW_FATAL_COND, &bp->state); 14540 clear_bit(BNXT_STATE_FW_NON_FATAL_COND, &bp->state); 14541 if (test_and_clear_bit(BNXT_STATE_FW_ACTIVATE_RESET, &bp->state) && 14542 !test_bit(BNXT_STATE_FW_ACTIVATE, &bp->state)) 14543 bnxt_dl_remote_reload(bp); 14544 if (pci_enable_device(bp->pdev)) { 14545 netdev_err(bp->dev, "Cannot re-enable PCI device\n"); 14546 rc = -ENODEV; 14547 goto fw_reset_abort; 14548 } 14549 pci_set_master(bp->pdev); 14550 bp->fw_reset_state = BNXT_FW_RESET_STATE_POLL_FW; 14551 fallthrough; 14552 case BNXT_FW_RESET_STATE_POLL_FW: 14553 bp->hwrm_cmd_timeout = SHORT_HWRM_CMD_TIMEOUT; 14554 rc = bnxt_hwrm_poll(bp); 14555 if (rc) { 14556 if (bnxt_fw_reset_timeout(bp)) { 14557 netdev_err(bp->dev, "Firmware reset aborted\n"); 14558 goto fw_reset_abort_status; 14559 } 14560 bnxt_queue_fw_reset_work(bp, HZ / 5); 14561 return; 14562 } 14563 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT; 14564 bp->fw_reset_state = BNXT_FW_RESET_STATE_OPENING; 14565 fallthrough; 14566 case BNXT_FW_RESET_STATE_OPENING: 14567 while (!rtnl_trylock()) { 14568 bnxt_queue_fw_reset_work(bp, HZ / 10); 14569 return; 14570 } 14571 rc = bnxt_open(bp->dev); 14572 if (rc) { 14573 netdev_err(bp->dev, "bnxt_open() failed during FW reset\n"); 14574 bnxt_fw_reset_abort(bp, rc); 14575 rtnl_unlock(); 14576 goto ulp_start; 14577 } 14578 14579 if ((bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY) && 14580 bp->fw_health->enabled) { 14581 bp->fw_health->last_fw_reset_cnt = 14582 bnxt_fw_health_readl(bp, BNXT_FW_RESET_CNT_REG); 14583 } 14584 bp->fw_reset_state = 0; 14585 /* Make sure fw_reset_state is 0 before clearing the flag */ 14586 smp_mb__before_atomic(); 14587 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 14588 bnxt_ptp_reapply_pps(bp); 14589 clear_bit(BNXT_STATE_FW_ACTIVATE, &bp->state); 14590 if (test_and_clear_bit(BNXT_STATE_RECOVER, &bp->state)) { 14591 bnxt_dl_health_fw_recovery_done(bp); 14592 bnxt_dl_health_fw_status_update(bp, true); 14593 } 14594 rtnl_unlock(); 14595 bnxt_ulp_start(bp, 0); 14596 bnxt_reenable_sriov(bp); 14597 rtnl_lock(); 14598 bnxt_vf_reps_alloc(bp); 14599 bnxt_vf_reps_open(bp); 14600 rtnl_unlock(); 14601 break; 14602 } 14603 return; 14604 14605 fw_reset_abort_status: 14606 if (bp->fw_health->status_reliable || 14607 (bp->fw_cap & BNXT_FW_CAP_ERROR_RECOVERY)) { 14608 u32 sts = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); 14609 14610 netdev_err(bp->dev, "fw_health_status 0x%x\n", sts); 14611 } 14612 fw_reset_abort: 14613 rtnl_lock(); 14614 bnxt_fw_reset_abort(bp, rc); 14615 rtnl_unlock(); 14616 ulp_start: 14617 bnxt_ulp_start(bp, rc); 14618 } 14619 14620 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev) 14621 { 14622 int rc; 14623 struct bnxt *bp = netdev_priv(dev); 14624 14625 SET_NETDEV_DEV(dev, &pdev->dev); 14626 14627 /* enable device (incl. PCI PM wakeup), and bus-mastering */ 14628 rc = pci_enable_device(pdev); 14629 if (rc) { 14630 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n"); 14631 goto init_err; 14632 } 14633 14634 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 14635 dev_err(&pdev->dev, 14636 "Cannot find PCI device base address, aborting\n"); 14637 rc = -ENODEV; 14638 goto init_err_disable; 14639 } 14640 14641 rc = pci_request_regions(pdev, DRV_MODULE_NAME); 14642 if (rc) { 14643 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n"); 14644 goto init_err_disable; 14645 } 14646 14647 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 && 14648 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) { 14649 dev_err(&pdev->dev, "System does not support DMA, aborting\n"); 14650 rc = -EIO; 14651 goto init_err_release; 14652 } 14653 14654 pci_set_master(pdev); 14655 14656 bp->dev = dev; 14657 bp->pdev = pdev; 14658 14659 /* Doorbell BAR bp->bar1 is mapped after bnxt_fw_init_one_p2() 14660 * determines the BAR size. 14661 */ 14662 bp->bar0 = pci_ioremap_bar(pdev, 0); 14663 if (!bp->bar0) { 14664 dev_err(&pdev->dev, "Cannot map device registers, aborting\n"); 14665 rc = -ENOMEM; 14666 goto init_err_release; 14667 } 14668 14669 bp->bar2 = pci_ioremap_bar(pdev, 4); 14670 if (!bp->bar2) { 14671 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n"); 14672 rc = -ENOMEM; 14673 goto init_err_release; 14674 } 14675 14676 INIT_WORK(&bp->sp_task, bnxt_sp_task); 14677 INIT_DELAYED_WORK(&bp->fw_reset_task, bnxt_fw_reset_task); 14678 14679 spin_lock_init(&bp->ntp_fltr_lock); 14680 #if BITS_PER_LONG == 32 14681 spin_lock_init(&bp->db_lock); 14682 #endif 14683 14684 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE; 14685 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE; 14686 14687 timer_setup(&bp->timer, bnxt_timer, 0); 14688 bp->current_interval = BNXT_TIMER_INTERVAL; 14689 14690 bp->vxlan_fw_dst_port_id = INVALID_HW_RING_ID; 14691 bp->nge_fw_dst_port_id = INVALID_HW_RING_ID; 14692 14693 clear_bit(BNXT_STATE_OPEN, &bp->state); 14694 return 0; 14695 14696 init_err_release: 14697 bnxt_unmap_bars(bp, pdev); 14698 pci_release_regions(pdev); 14699 14700 init_err_disable: 14701 pci_disable_device(pdev); 14702 14703 init_err: 14704 return rc; 14705 } 14706 14707 /* rtnl_lock held */ 14708 static int bnxt_change_mac_addr(struct net_device *dev, void *p) 14709 { 14710 struct sockaddr *addr = p; 14711 struct bnxt *bp = netdev_priv(dev); 14712 int rc = 0; 14713 14714 if (!is_valid_ether_addr(addr->sa_data)) 14715 return -EADDRNOTAVAIL; 14716 14717 if (ether_addr_equal(addr->sa_data, dev->dev_addr)) 14718 return 0; 14719 14720 rc = bnxt_approve_mac(bp, addr->sa_data, true); 14721 if (rc) 14722 return rc; 14723 14724 eth_hw_addr_set(dev, addr->sa_data); 14725 bnxt_clear_usr_fltrs(bp, true); 14726 if (netif_running(dev)) { 14727 bnxt_close_nic(bp, false, false); 14728 rc = bnxt_open_nic(bp, false, false); 14729 } 14730 14731 return rc; 14732 } 14733 14734 /* rtnl_lock held */ 14735 static int bnxt_change_mtu(struct net_device *dev, int new_mtu) 14736 { 14737 struct bnxt *bp = netdev_priv(dev); 14738 14739 if (netif_running(dev)) 14740 bnxt_close_nic(bp, true, false); 14741 14742 WRITE_ONCE(dev->mtu, new_mtu); 14743 bnxt_set_ring_params(bp); 14744 14745 if (netif_running(dev)) 14746 return bnxt_open_nic(bp, true, false); 14747 14748 return 0; 14749 } 14750 14751 int bnxt_setup_mq_tc(struct net_device *dev, u8 tc) 14752 { 14753 struct bnxt *bp = netdev_priv(dev); 14754 bool sh = false; 14755 int rc, tx_cp; 14756 14757 if (tc > bp->max_tc) { 14758 netdev_err(dev, "Too many traffic classes requested: %d. Max supported is %d.\n", 14759 tc, bp->max_tc); 14760 return -EINVAL; 14761 } 14762 14763 if (bp->num_tc == tc) 14764 return 0; 14765 14766 if (bp->flags & BNXT_FLAG_SHARED_RINGS) 14767 sh = true; 14768 14769 rc = bnxt_check_rings(bp, bp->tx_nr_rings_per_tc, bp->rx_nr_rings, 14770 sh, tc, bp->tx_nr_rings_xdp); 14771 if (rc) 14772 return rc; 14773 14774 /* Needs to close the device and do hw resource re-allocations */ 14775 if (netif_running(bp->dev)) 14776 bnxt_close_nic(bp, true, false); 14777 14778 if (tc) { 14779 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc; 14780 netdev_set_num_tc(dev, tc); 14781 bp->num_tc = tc; 14782 } else { 14783 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 14784 netdev_reset_tc(dev); 14785 bp->num_tc = 0; 14786 } 14787 bp->tx_nr_rings += bp->tx_nr_rings_xdp; 14788 tx_cp = bnxt_num_tx_to_cp(bp, bp->tx_nr_rings); 14789 bp->cp_nr_rings = sh ? max_t(int, tx_cp, bp->rx_nr_rings) : 14790 tx_cp + bp->rx_nr_rings; 14791 14792 if (netif_running(bp->dev)) 14793 return bnxt_open_nic(bp, true, false); 14794 14795 return 0; 14796 } 14797 14798 static int bnxt_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 14799 void *cb_priv) 14800 { 14801 struct bnxt *bp = cb_priv; 14802 14803 if (!bnxt_tc_flower_enabled(bp) || 14804 !tc_cls_can_offload_and_chain0(bp->dev, type_data)) 14805 return -EOPNOTSUPP; 14806 14807 switch (type) { 14808 case TC_SETUP_CLSFLOWER: 14809 return bnxt_tc_setup_flower(bp, bp->pf.fw_fid, type_data); 14810 default: 14811 return -EOPNOTSUPP; 14812 } 14813 } 14814 14815 LIST_HEAD(bnxt_block_cb_list); 14816 14817 static int bnxt_setup_tc(struct net_device *dev, enum tc_setup_type type, 14818 void *type_data) 14819 { 14820 struct bnxt *bp = netdev_priv(dev); 14821 14822 switch (type) { 14823 case TC_SETUP_BLOCK: 14824 return flow_block_cb_setup_simple(type_data, 14825 &bnxt_block_cb_list, 14826 bnxt_setup_tc_block_cb, 14827 bp, bp, true); 14828 case TC_SETUP_QDISC_MQPRIO: { 14829 struct tc_mqprio_qopt *mqprio = type_data; 14830 14831 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 14832 14833 return bnxt_setup_mq_tc(dev, mqprio->num_tc); 14834 } 14835 default: 14836 return -EOPNOTSUPP; 14837 } 14838 } 14839 14840 u32 bnxt_get_ntp_filter_idx(struct bnxt *bp, struct flow_keys *fkeys, 14841 const struct sk_buff *skb) 14842 { 14843 struct bnxt_vnic_info *vnic; 14844 14845 if (skb) 14846 return skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK; 14847 14848 vnic = &bp->vnic_info[BNXT_VNIC_DEFAULT]; 14849 return bnxt_toeplitz(bp, fkeys, (void *)vnic->rss_hash_key); 14850 } 14851 14852 int bnxt_insert_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr, 14853 u32 idx) 14854 { 14855 struct hlist_head *head; 14856 int bit_id; 14857 14858 spin_lock_bh(&bp->ntp_fltr_lock); 14859 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap, bp->max_fltr, 0); 14860 if (bit_id < 0) { 14861 spin_unlock_bh(&bp->ntp_fltr_lock); 14862 return -ENOMEM; 14863 } 14864 14865 fltr->base.sw_id = (u16)bit_id; 14866 fltr->base.type = BNXT_FLTR_TYPE_NTUPLE; 14867 fltr->base.flags |= BNXT_ACT_RING_DST; 14868 head = &bp->ntp_fltr_hash_tbl[idx]; 14869 hlist_add_head_rcu(&fltr->base.hash, head); 14870 set_bit(BNXT_FLTR_INSERTED, &fltr->base.state); 14871 bnxt_insert_usr_fltr(bp, &fltr->base); 14872 bp->ntp_fltr_count++; 14873 spin_unlock_bh(&bp->ntp_fltr_lock); 14874 return 0; 14875 } 14876 14877 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1, 14878 struct bnxt_ntuple_filter *f2) 14879 { 14880 struct bnxt_flow_masks *masks1 = &f1->fmasks; 14881 struct bnxt_flow_masks *masks2 = &f2->fmasks; 14882 struct flow_keys *keys1 = &f1->fkeys; 14883 struct flow_keys *keys2 = &f2->fkeys; 14884 14885 if (keys1->basic.n_proto != keys2->basic.n_proto || 14886 keys1->basic.ip_proto != keys2->basic.ip_proto) 14887 return false; 14888 14889 if (keys1->basic.n_proto == htons(ETH_P_IP)) { 14890 if (keys1->addrs.v4addrs.src != keys2->addrs.v4addrs.src || 14891 masks1->addrs.v4addrs.src != masks2->addrs.v4addrs.src || 14892 keys1->addrs.v4addrs.dst != keys2->addrs.v4addrs.dst || 14893 masks1->addrs.v4addrs.dst != masks2->addrs.v4addrs.dst) 14894 return false; 14895 } else { 14896 if (!ipv6_addr_equal(&keys1->addrs.v6addrs.src, 14897 &keys2->addrs.v6addrs.src) || 14898 !ipv6_addr_equal(&masks1->addrs.v6addrs.src, 14899 &masks2->addrs.v6addrs.src) || 14900 !ipv6_addr_equal(&keys1->addrs.v6addrs.dst, 14901 &keys2->addrs.v6addrs.dst) || 14902 !ipv6_addr_equal(&masks1->addrs.v6addrs.dst, 14903 &masks2->addrs.v6addrs.dst)) 14904 return false; 14905 } 14906 14907 return keys1->ports.src == keys2->ports.src && 14908 masks1->ports.src == masks2->ports.src && 14909 keys1->ports.dst == keys2->ports.dst && 14910 masks1->ports.dst == masks2->ports.dst && 14911 keys1->control.flags == keys2->control.flags && 14912 f1->l2_fltr == f2->l2_fltr; 14913 } 14914 14915 struct bnxt_ntuple_filter * 14916 bnxt_lookup_ntp_filter_from_idx(struct bnxt *bp, 14917 struct bnxt_ntuple_filter *fltr, u32 idx) 14918 { 14919 struct bnxt_ntuple_filter *f; 14920 struct hlist_head *head; 14921 14922 head = &bp->ntp_fltr_hash_tbl[idx]; 14923 hlist_for_each_entry_rcu(f, head, base.hash) { 14924 if (bnxt_fltr_match(f, fltr)) 14925 return f; 14926 } 14927 return NULL; 14928 } 14929 14930 #ifdef CONFIG_RFS_ACCEL 14931 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 14932 u16 rxq_index, u32 flow_id) 14933 { 14934 struct bnxt *bp = netdev_priv(dev); 14935 struct bnxt_ntuple_filter *fltr, *new_fltr; 14936 struct flow_keys *fkeys; 14937 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb); 14938 struct bnxt_l2_filter *l2_fltr; 14939 int rc = 0, idx; 14940 u32 flags; 14941 14942 if (ether_addr_equal(dev->dev_addr, eth->h_dest)) { 14943 l2_fltr = bp->vnic_info[BNXT_VNIC_DEFAULT].l2_filters[0]; 14944 atomic_inc(&l2_fltr->refcnt); 14945 } else { 14946 struct bnxt_l2_key key; 14947 14948 ether_addr_copy(key.dst_mac_addr, eth->h_dest); 14949 key.vlan = 0; 14950 l2_fltr = bnxt_lookup_l2_filter_from_key(bp, &key); 14951 if (!l2_fltr) 14952 return -EINVAL; 14953 if (l2_fltr->base.flags & BNXT_ACT_FUNC_DST) { 14954 bnxt_del_l2_filter(bp, l2_fltr); 14955 return -EINVAL; 14956 } 14957 } 14958 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC); 14959 if (!new_fltr) { 14960 bnxt_del_l2_filter(bp, l2_fltr); 14961 return -ENOMEM; 14962 } 14963 14964 fkeys = &new_fltr->fkeys; 14965 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) { 14966 rc = -EPROTONOSUPPORT; 14967 goto err_free; 14968 } 14969 14970 if ((fkeys->basic.n_proto != htons(ETH_P_IP) && 14971 fkeys->basic.n_proto != htons(ETH_P_IPV6)) || 14972 ((fkeys->basic.ip_proto != IPPROTO_TCP) && 14973 (fkeys->basic.ip_proto != IPPROTO_UDP))) { 14974 rc = -EPROTONOSUPPORT; 14975 goto err_free; 14976 } 14977 new_fltr->fmasks = BNXT_FLOW_IPV4_MASK_ALL; 14978 if (fkeys->basic.n_proto == htons(ETH_P_IPV6)) { 14979 if (bp->hwrm_spec_code < 0x10601) { 14980 rc = -EPROTONOSUPPORT; 14981 goto err_free; 14982 } 14983 new_fltr->fmasks = BNXT_FLOW_IPV6_MASK_ALL; 14984 } 14985 flags = fkeys->control.flags; 14986 if (((flags & FLOW_DIS_ENCAPSULATION) && 14987 bp->hwrm_spec_code < 0x10601) || (flags & FLOW_DIS_IS_FRAGMENT)) { 14988 rc = -EPROTONOSUPPORT; 14989 goto err_free; 14990 } 14991 new_fltr->l2_fltr = l2_fltr; 14992 14993 idx = bnxt_get_ntp_filter_idx(bp, fkeys, skb); 14994 rcu_read_lock(); 14995 fltr = bnxt_lookup_ntp_filter_from_idx(bp, new_fltr, idx); 14996 if (fltr) { 14997 rc = fltr->base.sw_id; 14998 rcu_read_unlock(); 14999 goto err_free; 15000 } 15001 rcu_read_unlock(); 15002 15003 new_fltr->flow_id = flow_id; 15004 new_fltr->base.rxq = rxq_index; 15005 rc = bnxt_insert_ntp_filter(bp, new_fltr, idx); 15006 if (!rc) { 15007 bnxt_queue_sp_work(bp, BNXT_RX_NTP_FLTR_SP_EVENT); 15008 return new_fltr->base.sw_id; 15009 } 15010 15011 err_free: 15012 bnxt_del_l2_filter(bp, l2_fltr); 15013 kfree(new_fltr); 15014 return rc; 15015 } 15016 #endif 15017 15018 void bnxt_del_ntp_filter(struct bnxt *bp, struct bnxt_ntuple_filter *fltr) 15019 { 15020 spin_lock_bh(&bp->ntp_fltr_lock); 15021 if (!test_and_clear_bit(BNXT_FLTR_INSERTED, &fltr->base.state)) { 15022 spin_unlock_bh(&bp->ntp_fltr_lock); 15023 return; 15024 } 15025 hlist_del_rcu(&fltr->base.hash); 15026 bnxt_del_one_usr_fltr(bp, &fltr->base); 15027 bp->ntp_fltr_count--; 15028 spin_unlock_bh(&bp->ntp_fltr_lock); 15029 bnxt_del_l2_filter(bp, fltr->l2_fltr); 15030 clear_bit(fltr->base.sw_id, bp->ntp_fltr_bmap); 15031 kfree_rcu(fltr, base.rcu); 15032 } 15033 15034 static void bnxt_cfg_ntp_filters(struct bnxt *bp) 15035 { 15036 #ifdef CONFIG_RFS_ACCEL 15037 int i; 15038 15039 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) { 15040 struct hlist_head *head; 15041 struct hlist_node *tmp; 15042 struct bnxt_ntuple_filter *fltr; 15043 int rc; 15044 15045 head = &bp->ntp_fltr_hash_tbl[i]; 15046 hlist_for_each_entry_safe(fltr, tmp, head, base.hash) { 15047 bool del = false; 15048 15049 if (test_bit(BNXT_FLTR_VALID, &fltr->base.state)) { 15050 if (fltr->base.flags & BNXT_ACT_NO_AGING) 15051 continue; 15052 if (rps_may_expire_flow(bp->dev, fltr->base.rxq, 15053 fltr->flow_id, 15054 fltr->base.sw_id)) { 15055 bnxt_hwrm_cfa_ntuple_filter_free(bp, 15056 fltr); 15057 del = true; 15058 } 15059 } else { 15060 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp, 15061 fltr); 15062 if (rc) 15063 del = true; 15064 else 15065 set_bit(BNXT_FLTR_VALID, &fltr->base.state); 15066 } 15067 15068 if (del) 15069 bnxt_del_ntp_filter(bp, fltr); 15070 } 15071 } 15072 #endif 15073 } 15074 15075 static int bnxt_udp_tunnel_set_port(struct net_device *netdev, unsigned int table, 15076 unsigned int entry, struct udp_tunnel_info *ti) 15077 { 15078 struct bnxt *bp = netdev_priv(netdev); 15079 unsigned int cmd; 15080 15081 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15082 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN; 15083 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15084 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE; 15085 else 15086 cmd = TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN_GPE; 15087 15088 return bnxt_hwrm_tunnel_dst_port_alloc(bp, ti->port, cmd); 15089 } 15090 15091 static int bnxt_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table, 15092 unsigned int entry, struct udp_tunnel_info *ti) 15093 { 15094 struct bnxt *bp = netdev_priv(netdev); 15095 unsigned int cmd; 15096 15097 if (ti->type == UDP_TUNNEL_TYPE_VXLAN) 15098 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN; 15099 else if (ti->type == UDP_TUNNEL_TYPE_GENEVE) 15100 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE; 15101 else 15102 cmd = TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN_GPE; 15103 15104 return bnxt_hwrm_tunnel_dst_port_free(bp, cmd); 15105 } 15106 15107 static const struct udp_tunnel_nic_info bnxt_udp_tunnels = { 15108 .set_port = bnxt_udp_tunnel_set_port, 15109 .unset_port = bnxt_udp_tunnel_unset_port, 15110 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 15111 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15112 .tables = { 15113 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15114 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15115 }, 15116 }, bnxt_udp_tunnels_p7 = { 15117 .set_port = bnxt_udp_tunnel_set_port, 15118 .unset_port = bnxt_udp_tunnel_unset_port, 15119 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP | 15120 UDP_TUNNEL_NIC_INFO_OPEN_ONLY, 15121 .tables = { 15122 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, }, 15123 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, }, 15124 { .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN_GPE, }, 15125 }, 15126 }; 15127 15128 static int bnxt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 15129 struct net_device *dev, u32 filter_mask, 15130 int nlflags) 15131 { 15132 struct bnxt *bp = netdev_priv(dev); 15133 15134 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bp->br_mode, 0, 0, 15135 nlflags, filter_mask, NULL); 15136 } 15137 15138 static int bnxt_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 15139 u16 flags, struct netlink_ext_ack *extack) 15140 { 15141 struct bnxt *bp = netdev_priv(dev); 15142 struct nlattr *attr, *br_spec; 15143 int rem, rc = 0; 15144 15145 if (bp->hwrm_spec_code < 0x10708 || !BNXT_SINGLE_PF(bp)) 15146 return -EOPNOTSUPP; 15147 15148 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 15149 if (!br_spec) 15150 return -EINVAL; 15151 15152 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 15153 u16 mode; 15154 15155 mode = nla_get_u16(attr); 15156 if (mode == bp->br_mode) 15157 break; 15158 15159 rc = bnxt_hwrm_set_br_mode(bp, mode); 15160 if (!rc) 15161 bp->br_mode = mode; 15162 break; 15163 } 15164 return rc; 15165 } 15166 15167 int bnxt_get_port_parent_id(struct net_device *dev, 15168 struct netdev_phys_item_id *ppid) 15169 { 15170 struct bnxt *bp = netdev_priv(dev); 15171 15172 if (bp->eswitch_mode != DEVLINK_ESWITCH_MODE_SWITCHDEV) 15173 return -EOPNOTSUPP; 15174 15175 /* The PF and it's VF-reps only support the switchdev framework */ 15176 if (!BNXT_PF(bp) || !(bp->flags & BNXT_FLAG_DSN_VALID)) 15177 return -EOPNOTSUPP; 15178 15179 ppid->id_len = sizeof(bp->dsn); 15180 memcpy(ppid->id, bp->dsn, ppid->id_len); 15181 15182 return 0; 15183 } 15184 15185 static const struct net_device_ops bnxt_netdev_ops = { 15186 .ndo_open = bnxt_open, 15187 .ndo_start_xmit = bnxt_start_xmit, 15188 .ndo_stop = bnxt_close, 15189 .ndo_get_stats64 = bnxt_get_stats64, 15190 .ndo_set_rx_mode = bnxt_set_rx_mode, 15191 .ndo_eth_ioctl = bnxt_ioctl, 15192 .ndo_validate_addr = eth_validate_addr, 15193 .ndo_set_mac_address = bnxt_change_mac_addr, 15194 .ndo_change_mtu = bnxt_change_mtu, 15195 .ndo_fix_features = bnxt_fix_features, 15196 .ndo_set_features = bnxt_set_features, 15197 .ndo_features_check = bnxt_features_check, 15198 .ndo_tx_timeout = bnxt_tx_timeout, 15199 #ifdef CONFIG_BNXT_SRIOV 15200 .ndo_get_vf_config = bnxt_get_vf_config, 15201 .ndo_set_vf_mac = bnxt_set_vf_mac, 15202 .ndo_set_vf_vlan = bnxt_set_vf_vlan, 15203 .ndo_set_vf_rate = bnxt_set_vf_bw, 15204 .ndo_set_vf_link_state = bnxt_set_vf_link_state, 15205 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk, 15206 .ndo_set_vf_trust = bnxt_set_vf_trust, 15207 #endif 15208 .ndo_setup_tc = bnxt_setup_tc, 15209 #ifdef CONFIG_RFS_ACCEL 15210 .ndo_rx_flow_steer = bnxt_rx_flow_steer, 15211 #endif 15212 .ndo_bpf = bnxt_xdp, 15213 .ndo_xdp_xmit = bnxt_xdp_xmit, 15214 .ndo_bridge_getlink = bnxt_bridge_getlink, 15215 .ndo_bridge_setlink = bnxt_bridge_setlink, 15216 }; 15217 15218 static void bnxt_get_queue_stats_rx(struct net_device *dev, int i, 15219 struct netdev_queue_stats_rx *stats) 15220 { 15221 struct bnxt *bp = netdev_priv(dev); 15222 struct bnxt_cp_ring_info *cpr; 15223 u64 *sw; 15224 15225 cpr = &bp->bnapi[i]->cp_ring; 15226 sw = cpr->stats.sw_stats; 15227 15228 stats->packets = 0; 15229 stats->packets += BNXT_GET_RING_STATS64(sw, rx_ucast_pkts); 15230 stats->packets += BNXT_GET_RING_STATS64(sw, rx_mcast_pkts); 15231 stats->packets += BNXT_GET_RING_STATS64(sw, rx_bcast_pkts); 15232 15233 stats->bytes = 0; 15234 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_ucast_bytes); 15235 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_mcast_bytes); 15236 stats->bytes += BNXT_GET_RING_STATS64(sw, rx_bcast_bytes); 15237 15238 stats->alloc_fail = cpr->sw_stats->rx.rx_oom_discards; 15239 } 15240 15241 static void bnxt_get_queue_stats_tx(struct net_device *dev, int i, 15242 struct netdev_queue_stats_tx *stats) 15243 { 15244 struct bnxt *bp = netdev_priv(dev); 15245 struct bnxt_napi *bnapi; 15246 u64 *sw; 15247 15248 bnapi = bp->tx_ring[bp->tx_ring_map[i]].bnapi; 15249 sw = bnapi->cp_ring.stats.sw_stats; 15250 15251 stats->packets = 0; 15252 stats->packets += BNXT_GET_RING_STATS64(sw, tx_ucast_pkts); 15253 stats->packets += BNXT_GET_RING_STATS64(sw, tx_mcast_pkts); 15254 stats->packets += BNXT_GET_RING_STATS64(sw, tx_bcast_pkts); 15255 15256 stats->bytes = 0; 15257 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_ucast_bytes); 15258 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_mcast_bytes); 15259 stats->bytes += BNXT_GET_RING_STATS64(sw, tx_bcast_bytes); 15260 } 15261 15262 static void bnxt_get_base_stats(struct net_device *dev, 15263 struct netdev_queue_stats_rx *rx, 15264 struct netdev_queue_stats_tx *tx) 15265 { 15266 struct bnxt *bp = netdev_priv(dev); 15267 15268 rx->packets = bp->net_stats_prev.rx_packets; 15269 rx->bytes = bp->net_stats_prev.rx_bytes; 15270 rx->alloc_fail = bp->ring_err_stats_prev.rx_total_oom_discards; 15271 15272 tx->packets = bp->net_stats_prev.tx_packets; 15273 tx->bytes = bp->net_stats_prev.tx_bytes; 15274 } 15275 15276 static const struct netdev_stat_ops bnxt_stat_ops = { 15277 .get_queue_stats_rx = bnxt_get_queue_stats_rx, 15278 .get_queue_stats_tx = bnxt_get_queue_stats_tx, 15279 .get_base_stats = bnxt_get_base_stats, 15280 }; 15281 15282 static int bnxt_alloc_rx_agg_bmap(struct bnxt *bp, struct bnxt_rx_ring_info *rxr) 15283 { 15284 u16 mem_size; 15285 15286 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1; 15287 mem_size = rxr->rx_agg_bmap_size / 8; 15288 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL); 15289 if (!rxr->rx_agg_bmap) 15290 return -ENOMEM; 15291 15292 return 0; 15293 } 15294 15295 static int bnxt_queue_mem_alloc(struct net_device *dev, void *qmem, int idx) 15296 { 15297 struct bnxt_rx_ring_info *rxr, *clone; 15298 struct bnxt *bp = netdev_priv(dev); 15299 struct bnxt_ring_struct *ring; 15300 int rc; 15301 15302 rxr = &bp->rx_ring[idx]; 15303 clone = qmem; 15304 memcpy(clone, rxr, sizeof(*rxr)); 15305 bnxt_init_rx_ring_struct(bp, clone); 15306 bnxt_reset_rx_ring_struct(bp, clone); 15307 15308 clone->rx_prod = 0; 15309 clone->rx_agg_prod = 0; 15310 clone->rx_sw_agg_prod = 0; 15311 clone->rx_next_cons = 0; 15312 15313 rc = bnxt_alloc_rx_page_pool(bp, clone, rxr->page_pool->p.nid); 15314 if (rc) 15315 return rc; 15316 15317 rc = xdp_rxq_info_reg(&clone->xdp_rxq, bp->dev, idx, 0); 15318 if (rc < 0) 15319 goto err_page_pool_destroy; 15320 15321 rc = xdp_rxq_info_reg_mem_model(&clone->xdp_rxq, 15322 MEM_TYPE_PAGE_POOL, 15323 clone->page_pool); 15324 if (rc) 15325 goto err_rxq_info_unreg; 15326 15327 ring = &clone->rx_ring_struct; 15328 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15329 if (rc) 15330 goto err_free_rx_ring; 15331 15332 if (bp->flags & BNXT_FLAG_AGG_RINGS) { 15333 ring = &clone->rx_agg_ring_struct; 15334 rc = bnxt_alloc_ring(bp, &ring->ring_mem); 15335 if (rc) 15336 goto err_free_rx_agg_ring; 15337 15338 rc = bnxt_alloc_rx_agg_bmap(bp, clone); 15339 if (rc) 15340 goto err_free_rx_agg_ring; 15341 } 15342 15343 bnxt_init_one_rx_ring_rxbd(bp, clone); 15344 bnxt_init_one_rx_agg_ring_rxbd(bp, clone); 15345 15346 bnxt_alloc_one_rx_ring_skb(bp, clone, idx); 15347 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15348 bnxt_alloc_one_rx_ring_page(bp, clone, idx); 15349 15350 return 0; 15351 15352 err_free_rx_agg_ring: 15353 bnxt_free_ring(bp, &clone->rx_agg_ring_struct.ring_mem); 15354 err_free_rx_ring: 15355 bnxt_free_ring(bp, &clone->rx_ring_struct.ring_mem); 15356 err_rxq_info_unreg: 15357 xdp_rxq_info_unreg(&clone->xdp_rxq); 15358 err_page_pool_destroy: 15359 clone->page_pool->p.napi = NULL; 15360 page_pool_destroy(clone->page_pool); 15361 clone->page_pool = NULL; 15362 return rc; 15363 } 15364 15365 static void bnxt_queue_mem_free(struct net_device *dev, void *qmem) 15366 { 15367 struct bnxt_rx_ring_info *rxr = qmem; 15368 struct bnxt *bp = netdev_priv(dev); 15369 struct bnxt_ring_struct *ring; 15370 15371 bnxt_free_one_rx_ring(bp, rxr); 15372 bnxt_free_one_rx_agg_ring(bp, rxr); 15373 15374 xdp_rxq_info_unreg(&rxr->xdp_rxq); 15375 15376 page_pool_destroy(rxr->page_pool); 15377 rxr->page_pool = NULL; 15378 15379 ring = &rxr->rx_ring_struct; 15380 bnxt_free_ring(bp, &ring->ring_mem); 15381 15382 ring = &rxr->rx_agg_ring_struct; 15383 bnxt_free_ring(bp, &ring->ring_mem); 15384 15385 kfree(rxr->rx_agg_bmap); 15386 rxr->rx_agg_bmap = NULL; 15387 } 15388 15389 static void bnxt_copy_rx_ring(struct bnxt *bp, 15390 struct bnxt_rx_ring_info *dst, 15391 struct bnxt_rx_ring_info *src) 15392 { 15393 struct bnxt_ring_mem_info *dst_rmem, *src_rmem; 15394 struct bnxt_ring_struct *dst_ring, *src_ring; 15395 int i; 15396 15397 dst_ring = &dst->rx_ring_struct; 15398 dst_rmem = &dst_ring->ring_mem; 15399 src_ring = &src->rx_ring_struct; 15400 src_rmem = &src_ring->ring_mem; 15401 15402 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15403 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15404 WARN_ON(dst_rmem->flags != src_rmem->flags); 15405 WARN_ON(dst_rmem->depth != src_rmem->depth); 15406 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15407 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15408 15409 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15410 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15411 *dst_rmem->vmem = *src_rmem->vmem; 15412 for (i = 0; i < dst_rmem->nr_pages; i++) { 15413 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15414 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15415 } 15416 15417 if (!(bp->flags & BNXT_FLAG_AGG_RINGS)) 15418 return; 15419 15420 dst_ring = &dst->rx_agg_ring_struct; 15421 dst_rmem = &dst_ring->ring_mem; 15422 src_ring = &src->rx_agg_ring_struct; 15423 src_rmem = &src_ring->ring_mem; 15424 15425 WARN_ON(dst_rmem->nr_pages != src_rmem->nr_pages); 15426 WARN_ON(dst_rmem->page_size != src_rmem->page_size); 15427 WARN_ON(dst_rmem->flags != src_rmem->flags); 15428 WARN_ON(dst_rmem->depth != src_rmem->depth); 15429 WARN_ON(dst_rmem->vmem_size != src_rmem->vmem_size); 15430 WARN_ON(dst_rmem->ctx_mem != src_rmem->ctx_mem); 15431 WARN_ON(dst->rx_agg_bmap_size != src->rx_agg_bmap_size); 15432 15433 dst_rmem->pg_tbl = src_rmem->pg_tbl; 15434 dst_rmem->pg_tbl_map = src_rmem->pg_tbl_map; 15435 *dst_rmem->vmem = *src_rmem->vmem; 15436 for (i = 0; i < dst_rmem->nr_pages; i++) { 15437 dst_rmem->pg_arr[i] = src_rmem->pg_arr[i]; 15438 dst_rmem->dma_arr[i] = src_rmem->dma_arr[i]; 15439 } 15440 15441 dst->rx_agg_bmap = src->rx_agg_bmap; 15442 } 15443 15444 static int bnxt_queue_start(struct net_device *dev, void *qmem, int idx) 15445 { 15446 struct bnxt *bp = netdev_priv(dev); 15447 struct bnxt_rx_ring_info *rxr, *clone; 15448 struct bnxt_cp_ring_info *cpr; 15449 struct bnxt_vnic_info *vnic; 15450 int i, rc; 15451 15452 rxr = &bp->rx_ring[idx]; 15453 clone = qmem; 15454 15455 rxr->rx_prod = clone->rx_prod; 15456 rxr->rx_agg_prod = clone->rx_agg_prod; 15457 rxr->rx_sw_agg_prod = clone->rx_sw_agg_prod; 15458 rxr->rx_next_cons = clone->rx_next_cons; 15459 rxr->page_pool = clone->page_pool; 15460 rxr->xdp_rxq = clone->xdp_rxq; 15461 15462 bnxt_copy_rx_ring(bp, rxr, clone); 15463 15464 rc = bnxt_hwrm_rx_ring_alloc(bp, rxr); 15465 if (rc) 15466 return rc; 15467 rc = bnxt_hwrm_rx_agg_ring_alloc(bp, rxr); 15468 if (rc) 15469 goto err_free_hwrm_rx_ring; 15470 15471 bnxt_db_write(bp, &rxr->rx_db, rxr->rx_prod); 15472 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15473 bnxt_db_write(bp, &rxr->rx_agg_db, rxr->rx_agg_prod); 15474 15475 cpr = &rxr->bnapi->cp_ring; 15476 cpr->sw_stats->rx.rx_resets++; 15477 15478 for (i = 0; i <= BNXT_VNIC_NTUPLE; i++) { 15479 vnic = &bp->vnic_info[i]; 15480 vnic->mru = bp->dev->mtu + ETH_HLEN + VLAN_HLEN; 15481 bnxt_hwrm_vnic_update(bp, vnic, 15482 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 15483 } 15484 15485 return 0; 15486 15487 err_free_hwrm_rx_ring: 15488 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15489 return rc; 15490 } 15491 15492 static int bnxt_queue_stop(struct net_device *dev, void *qmem, int idx) 15493 { 15494 struct bnxt *bp = netdev_priv(dev); 15495 struct bnxt_rx_ring_info *rxr; 15496 struct bnxt_vnic_info *vnic; 15497 int i; 15498 15499 for (i = 0; i <= BNXT_VNIC_NTUPLE; i++) { 15500 vnic = &bp->vnic_info[i]; 15501 vnic->mru = 0; 15502 bnxt_hwrm_vnic_update(bp, vnic, 15503 VNIC_UPDATE_REQ_ENABLES_MRU_VALID); 15504 } 15505 15506 rxr = &bp->rx_ring[idx]; 15507 bnxt_hwrm_rx_ring_free(bp, rxr, false); 15508 bnxt_hwrm_rx_agg_ring_free(bp, rxr, false); 15509 rxr->rx_next_cons = 0; 15510 page_pool_disable_direct_recycling(rxr->page_pool); 15511 15512 memcpy(qmem, rxr, sizeof(*rxr)); 15513 bnxt_init_rx_ring_struct(bp, qmem); 15514 15515 return 0; 15516 } 15517 15518 static const struct netdev_queue_mgmt_ops bnxt_queue_mgmt_ops = { 15519 .ndo_queue_mem_size = sizeof(struct bnxt_rx_ring_info), 15520 .ndo_queue_mem_alloc = bnxt_queue_mem_alloc, 15521 .ndo_queue_mem_free = bnxt_queue_mem_free, 15522 .ndo_queue_start = bnxt_queue_start, 15523 .ndo_queue_stop = bnxt_queue_stop, 15524 }; 15525 15526 static void bnxt_remove_one(struct pci_dev *pdev) 15527 { 15528 struct net_device *dev = pci_get_drvdata(pdev); 15529 struct bnxt *bp = netdev_priv(dev); 15530 15531 if (BNXT_PF(bp)) 15532 bnxt_sriov_disable(bp); 15533 15534 bnxt_rdma_aux_device_del(bp); 15535 15536 bnxt_ptp_clear(bp); 15537 unregister_netdev(dev); 15538 15539 bnxt_rdma_aux_device_uninit(bp); 15540 15541 bnxt_free_l2_filters(bp, true); 15542 bnxt_free_ntp_fltrs(bp, true); 15543 WARN_ON(bp->num_rss_ctx); 15544 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 15545 /* Flush any pending tasks */ 15546 cancel_work_sync(&bp->sp_task); 15547 cancel_delayed_work_sync(&bp->fw_reset_task); 15548 bp->sp_event = 0; 15549 15550 bnxt_dl_fw_reporters_destroy(bp); 15551 bnxt_dl_unregister(bp); 15552 bnxt_shutdown_tc(bp); 15553 15554 bnxt_clear_int_mode(bp); 15555 bnxt_hwrm_func_drv_unrgtr(bp); 15556 bnxt_free_hwrm_resources(bp); 15557 bnxt_hwmon_uninit(bp); 15558 bnxt_ethtool_free(bp); 15559 bnxt_dcb_free(bp); 15560 kfree(bp->ptp_cfg); 15561 bp->ptp_cfg = NULL; 15562 kfree(bp->fw_health); 15563 bp->fw_health = NULL; 15564 bnxt_cleanup_pci(bp); 15565 bnxt_free_ctx_mem(bp, true); 15566 bnxt_free_crash_dump_mem(bp); 15567 kfree(bp->rss_indir_tbl); 15568 bp->rss_indir_tbl = NULL; 15569 bnxt_free_port_stats(bp); 15570 free_netdev(dev); 15571 } 15572 15573 static int bnxt_probe_phy(struct bnxt *bp, bool fw_dflt) 15574 { 15575 int rc = 0; 15576 struct bnxt_link_info *link_info = &bp->link_info; 15577 15578 bp->phy_flags = 0; 15579 rc = bnxt_hwrm_phy_qcaps(bp); 15580 if (rc) { 15581 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n", 15582 rc); 15583 return rc; 15584 } 15585 if (bp->phy_flags & BNXT_PHY_FL_NO_FCS) 15586 bp->dev->priv_flags |= IFF_SUPP_NOFCS; 15587 else 15588 bp->dev->priv_flags &= ~IFF_SUPP_NOFCS; 15589 if (!fw_dflt) 15590 return 0; 15591 15592 mutex_lock(&bp->link_lock); 15593 rc = bnxt_update_link(bp, false); 15594 if (rc) { 15595 mutex_unlock(&bp->link_lock); 15596 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n", 15597 rc); 15598 return rc; 15599 } 15600 15601 /* Older firmware does not have supported_auto_speeds, so assume 15602 * that all supported speeds can be autonegotiated. 15603 */ 15604 if (link_info->auto_link_speeds && !link_info->support_auto_speeds) 15605 link_info->support_auto_speeds = link_info->support_speeds; 15606 15607 bnxt_init_ethtool_link_settings(bp); 15608 mutex_unlock(&bp->link_lock); 15609 return 0; 15610 } 15611 15612 static int bnxt_get_max_irq(struct pci_dev *pdev) 15613 { 15614 u16 ctrl; 15615 15616 if (!pdev->msix_cap) 15617 return 1; 15618 15619 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 15620 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; 15621 } 15622 15623 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15624 int *max_cp) 15625 { 15626 struct bnxt_hw_resc *hw_resc = &bp->hw_resc; 15627 int max_ring_grps = 0, max_irq; 15628 15629 *max_tx = hw_resc->max_tx_rings; 15630 *max_rx = hw_resc->max_rx_rings; 15631 *max_cp = bnxt_get_max_func_cp_rings_for_en(bp); 15632 max_irq = min_t(int, bnxt_get_max_func_irqs(bp) - 15633 bnxt_get_ulp_msix_num_in_use(bp), 15634 hw_resc->max_stat_ctxs - 15635 bnxt_get_ulp_stat_ctxs_in_use(bp)); 15636 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS)) 15637 *max_cp = min_t(int, *max_cp, max_irq); 15638 max_ring_grps = hw_resc->max_hw_ring_grps; 15639 if (BNXT_CHIP_TYPE_NITRO_A0(bp) && BNXT_PF(bp)) { 15640 *max_cp -= 1; 15641 *max_rx -= 2; 15642 } 15643 if (bp->flags & BNXT_FLAG_AGG_RINGS) 15644 *max_rx >>= 1; 15645 if (bp->flags & BNXT_FLAG_CHIP_P5_PLUS) { 15646 int rc; 15647 15648 rc = __bnxt_trim_rings(bp, max_rx, max_tx, *max_cp, false); 15649 if (rc) { 15650 *max_rx = 0; 15651 *max_tx = 0; 15652 } 15653 /* On P5 chips, max_cp output param should be available NQs */ 15654 *max_cp = max_irq; 15655 } 15656 *max_rx = min_t(int, *max_rx, max_ring_grps); 15657 } 15658 15659 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared) 15660 { 15661 int rx, tx, cp; 15662 15663 _bnxt_get_max_rings(bp, &rx, &tx, &cp); 15664 *max_rx = rx; 15665 *max_tx = tx; 15666 if (!rx || !tx || !cp) 15667 return -ENOMEM; 15668 15669 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared); 15670 } 15671 15672 static int bnxt_get_dflt_rings(struct bnxt *bp, int *max_rx, int *max_tx, 15673 bool shared) 15674 { 15675 int rc; 15676 15677 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15678 if (rc && (bp->flags & BNXT_FLAG_AGG_RINGS)) { 15679 /* Not enough rings, try disabling agg rings. */ 15680 bp->flags &= ~BNXT_FLAG_AGG_RINGS; 15681 rc = bnxt_get_max_rings(bp, max_rx, max_tx, shared); 15682 if (rc) { 15683 /* set BNXT_FLAG_AGG_RINGS back for consistency */ 15684 bp->flags |= BNXT_FLAG_AGG_RINGS; 15685 return rc; 15686 } 15687 bp->flags |= BNXT_FLAG_NO_AGG_RINGS; 15688 bp->dev->hw_features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15689 bp->dev->features &= ~(NETIF_F_LRO | NETIF_F_GRO_HW); 15690 bnxt_set_ring_params(bp); 15691 } 15692 15693 if (bp->flags & BNXT_FLAG_ROCE_CAP) { 15694 int max_cp, max_stat, max_irq; 15695 15696 /* Reserve minimum resources for RoCE */ 15697 max_cp = bnxt_get_max_func_cp_rings(bp); 15698 max_stat = bnxt_get_max_func_stat_ctxs(bp); 15699 max_irq = bnxt_get_max_func_irqs(bp); 15700 if (max_cp <= BNXT_MIN_ROCE_CP_RINGS || 15701 max_irq <= BNXT_MIN_ROCE_CP_RINGS || 15702 max_stat <= BNXT_MIN_ROCE_STAT_CTXS) 15703 return 0; 15704 15705 max_cp -= BNXT_MIN_ROCE_CP_RINGS; 15706 max_irq -= BNXT_MIN_ROCE_CP_RINGS; 15707 max_stat -= BNXT_MIN_ROCE_STAT_CTXS; 15708 max_cp = min_t(int, max_cp, max_irq); 15709 max_cp = min_t(int, max_cp, max_stat); 15710 rc = bnxt_trim_rings(bp, max_rx, max_tx, max_cp, shared); 15711 if (rc) 15712 rc = 0; 15713 } 15714 return rc; 15715 } 15716 15717 /* In initial default shared ring setting, each shared ring must have a 15718 * RX/TX ring pair. 15719 */ 15720 static void bnxt_trim_dflt_sh_rings(struct bnxt *bp) 15721 { 15722 bp->cp_nr_rings = min_t(int, bp->tx_nr_rings_per_tc, bp->rx_nr_rings); 15723 bp->rx_nr_rings = bp->cp_nr_rings; 15724 bp->tx_nr_rings_per_tc = bp->cp_nr_rings; 15725 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15726 } 15727 15728 static int bnxt_set_dflt_rings(struct bnxt *bp, bool sh) 15729 { 15730 int dflt_rings, max_rx_rings, max_tx_rings, rc; 15731 int avail_msix; 15732 15733 if (!bnxt_can_reserve_rings(bp)) 15734 return 0; 15735 15736 if (sh) 15737 bp->flags |= BNXT_FLAG_SHARED_RINGS; 15738 dflt_rings = is_kdump_kernel() ? 1 : netif_get_num_default_rss_queues(); 15739 /* Reduce default rings on multi-port cards so that total default 15740 * rings do not exceed CPU count. 15741 */ 15742 if (bp->port_count > 1) { 15743 int max_rings = 15744 max_t(int, num_online_cpus() / bp->port_count, 1); 15745 15746 dflt_rings = min_t(int, dflt_rings, max_rings); 15747 } 15748 rc = bnxt_get_dflt_rings(bp, &max_rx_rings, &max_tx_rings, sh); 15749 if (rc) 15750 return rc; 15751 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings); 15752 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings); 15753 if (sh) 15754 bnxt_trim_dflt_sh_rings(bp); 15755 else 15756 bp->cp_nr_rings = bp->tx_nr_rings_per_tc + bp->rx_nr_rings; 15757 bp->tx_nr_rings = bp->tx_nr_rings_per_tc; 15758 15759 avail_msix = bnxt_get_max_func_irqs(bp) - bp->cp_nr_rings; 15760 if (avail_msix >= BNXT_MIN_ROCE_CP_RINGS) { 15761 int ulp_num_msix = min(avail_msix, bp->ulp_num_msix_want); 15762 15763 bnxt_set_ulp_msix_num(bp, ulp_num_msix); 15764 bnxt_set_dflt_ulp_stat_ctxs(bp); 15765 } 15766 15767 rc = __bnxt_reserve_rings(bp); 15768 if (rc && rc != -ENODEV) 15769 netdev_warn(bp->dev, "Unable to reserve tx rings\n"); 15770 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15771 if (sh) 15772 bnxt_trim_dflt_sh_rings(bp); 15773 15774 /* Rings may have been trimmed, re-reserve the trimmed rings. */ 15775 if (bnxt_need_reserve_rings(bp)) { 15776 rc = __bnxt_reserve_rings(bp); 15777 if (rc && rc != -ENODEV) 15778 netdev_warn(bp->dev, "2nd rings reservation failed.\n"); 15779 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15780 } 15781 if (BNXT_CHIP_TYPE_NITRO_A0(bp)) { 15782 bp->rx_nr_rings++; 15783 bp->cp_nr_rings++; 15784 } 15785 if (rc) { 15786 bp->tx_nr_rings = 0; 15787 bp->rx_nr_rings = 0; 15788 } 15789 return rc; 15790 } 15791 15792 static int bnxt_init_dflt_ring_mode(struct bnxt *bp) 15793 { 15794 int rc; 15795 15796 if (bp->tx_nr_rings) 15797 return 0; 15798 15799 bnxt_ulp_irq_stop(bp); 15800 bnxt_clear_int_mode(bp); 15801 rc = bnxt_set_dflt_rings(bp, true); 15802 if (rc) { 15803 if (BNXT_VF(bp) && rc == -ENODEV) 15804 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 15805 else 15806 netdev_err(bp->dev, "Not enough rings available.\n"); 15807 goto init_dflt_ring_err; 15808 } 15809 rc = bnxt_init_int_mode(bp); 15810 if (rc) 15811 goto init_dflt_ring_err; 15812 15813 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 15814 15815 bnxt_set_dflt_rfs(bp); 15816 15817 init_dflt_ring_err: 15818 bnxt_ulp_irq_restart(bp, rc); 15819 return rc; 15820 } 15821 15822 int bnxt_restore_pf_fw_resources(struct bnxt *bp) 15823 { 15824 int rc; 15825 15826 ASSERT_RTNL(); 15827 bnxt_hwrm_func_qcaps(bp); 15828 15829 if (netif_running(bp->dev)) 15830 __bnxt_close_nic(bp, true, false); 15831 15832 bnxt_ulp_irq_stop(bp); 15833 bnxt_clear_int_mode(bp); 15834 rc = bnxt_init_int_mode(bp); 15835 bnxt_ulp_irq_restart(bp, rc); 15836 15837 if (netif_running(bp->dev)) { 15838 if (rc) 15839 dev_close(bp->dev); 15840 else 15841 rc = bnxt_open_nic(bp, true, false); 15842 } 15843 15844 return rc; 15845 } 15846 15847 static int bnxt_init_mac_addr(struct bnxt *bp) 15848 { 15849 int rc = 0; 15850 15851 if (BNXT_PF(bp)) { 15852 eth_hw_addr_set(bp->dev, bp->pf.mac_addr); 15853 } else { 15854 #ifdef CONFIG_BNXT_SRIOV 15855 struct bnxt_vf_info *vf = &bp->vf; 15856 bool strict_approval = true; 15857 15858 if (is_valid_ether_addr(vf->mac_addr)) { 15859 /* overwrite netdev dev_addr with admin VF MAC */ 15860 eth_hw_addr_set(bp->dev, vf->mac_addr); 15861 /* Older PF driver or firmware may not approve this 15862 * correctly. 15863 */ 15864 strict_approval = false; 15865 } else { 15866 eth_hw_addr_random(bp->dev); 15867 } 15868 rc = bnxt_approve_mac(bp, bp->dev->dev_addr, strict_approval); 15869 #endif 15870 } 15871 return rc; 15872 } 15873 15874 static void bnxt_vpd_read_info(struct bnxt *bp) 15875 { 15876 struct pci_dev *pdev = bp->pdev; 15877 unsigned int vpd_size, kw_len; 15878 int pos, size; 15879 u8 *vpd_data; 15880 15881 vpd_data = pci_vpd_alloc(pdev, &vpd_size); 15882 if (IS_ERR(vpd_data)) { 15883 pci_warn(pdev, "Unable to read VPD\n"); 15884 return; 15885 } 15886 15887 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15888 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len); 15889 if (pos < 0) 15890 goto read_sn; 15891 15892 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15893 memcpy(bp->board_partno, &vpd_data[pos], size); 15894 15895 read_sn: 15896 pos = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size, 15897 PCI_VPD_RO_KEYWORD_SERIALNO, 15898 &kw_len); 15899 if (pos < 0) 15900 goto exit; 15901 15902 size = min_t(int, kw_len, BNXT_VPD_FLD_LEN - 1); 15903 memcpy(bp->board_serialno, &vpd_data[pos], size); 15904 exit: 15905 kfree(vpd_data); 15906 } 15907 15908 static int bnxt_pcie_dsn_get(struct bnxt *bp, u8 dsn[]) 15909 { 15910 struct pci_dev *pdev = bp->pdev; 15911 u64 qword; 15912 15913 qword = pci_get_dsn(pdev); 15914 if (!qword) { 15915 netdev_info(bp->dev, "Unable to read adapter's DSN\n"); 15916 return -EOPNOTSUPP; 15917 } 15918 15919 put_unaligned_le64(qword, dsn); 15920 15921 bp->flags |= BNXT_FLAG_DSN_VALID; 15922 return 0; 15923 } 15924 15925 static int bnxt_map_db_bar(struct bnxt *bp) 15926 { 15927 if (!bp->db_size) 15928 return -ENODEV; 15929 bp->bar1 = pci_iomap(bp->pdev, 2, bp->db_size); 15930 if (!bp->bar1) 15931 return -ENOMEM; 15932 return 0; 15933 } 15934 15935 void bnxt_print_device_info(struct bnxt *bp) 15936 { 15937 netdev_info(bp->dev, "%s found at mem %lx, node addr %pM\n", 15938 board_info[bp->board_idx].name, 15939 (long)pci_resource_start(bp->pdev, 0), bp->dev->dev_addr); 15940 15941 pcie_print_link_status(bp->pdev); 15942 } 15943 15944 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 15945 { 15946 struct bnxt_hw_resc *hw_resc; 15947 struct net_device *dev; 15948 struct bnxt *bp; 15949 int rc, max_irqs; 15950 15951 if (pci_is_bridge(pdev)) 15952 return -ENODEV; 15953 15954 if (!pdev->msix_cap) { 15955 dev_err(&pdev->dev, "MSIX capability not found, aborting\n"); 15956 return -ENODEV; 15957 } 15958 15959 /* Clear any pending DMA transactions from crash kernel 15960 * while loading driver in capture kernel. 15961 */ 15962 if (is_kdump_kernel()) { 15963 pci_clear_master(pdev); 15964 pcie_flr(pdev); 15965 } 15966 15967 max_irqs = bnxt_get_max_irq(pdev); 15968 dev = alloc_etherdev_mqs(sizeof(*bp), max_irqs * BNXT_MAX_QUEUE, 15969 max_irqs); 15970 if (!dev) 15971 return -ENOMEM; 15972 15973 bp = netdev_priv(dev); 15974 bp->board_idx = ent->driver_data; 15975 bp->msg_enable = BNXT_DEF_MSG_ENABLE; 15976 bnxt_set_max_func_irqs(bp, max_irqs); 15977 15978 if (bnxt_vf_pciid(bp->board_idx)) 15979 bp->flags |= BNXT_FLAG_VF; 15980 15981 /* No devlink port registration in case of a VF */ 15982 if (BNXT_PF(bp)) 15983 SET_NETDEV_DEVLINK_PORT(dev, &bp->dl_port); 15984 15985 rc = bnxt_init_board(pdev, dev); 15986 if (rc < 0) 15987 goto init_err_free; 15988 15989 dev->netdev_ops = &bnxt_netdev_ops; 15990 dev->stat_ops = &bnxt_stat_ops; 15991 dev->watchdog_timeo = BNXT_TX_TIMEOUT; 15992 dev->ethtool_ops = &bnxt_ethtool_ops; 15993 pci_set_drvdata(pdev, dev); 15994 15995 rc = bnxt_alloc_hwrm_resources(bp); 15996 if (rc) 15997 goto init_err_pci_clean; 15998 15999 mutex_init(&bp->hwrm_cmd_lock); 16000 mutex_init(&bp->link_lock); 16001 16002 rc = bnxt_fw_init_one_p1(bp); 16003 if (rc) 16004 goto init_err_pci_clean; 16005 16006 if (BNXT_PF(bp)) 16007 bnxt_vpd_read_info(bp); 16008 16009 if (BNXT_CHIP_P5_PLUS(bp)) { 16010 bp->flags |= BNXT_FLAG_CHIP_P5_PLUS; 16011 if (BNXT_CHIP_P7(bp)) 16012 bp->flags |= BNXT_FLAG_CHIP_P7; 16013 } 16014 16015 rc = bnxt_alloc_rss_indir_tbl(bp); 16016 if (rc) 16017 goto init_err_pci_clean; 16018 16019 rc = bnxt_fw_init_one_p2(bp); 16020 if (rc) 16021 goto init_err_pci_clean; 16022 16023 rc = bnxt_map_db_bar(bp); 16024 if (rc) { 16025 dev_err(&pdev->dev, "Cannot map doorbell BAR rc = %d, aborting\n", 16026 rc); 16027 goto init_err_pci_clean; 16028 } 16029 16030 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16031 NETIF_F_TSO | NETIF_F_TSO6 | 16032 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16033 NETIF_F_GSO_IPXIP4 | 16034 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16035 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH | 16036 NETIF_F_RXCSUM | NETIF_F_GRO; 16037 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16038 dev->hw_features |= NETIF_F_GSO_UDP_L4; 16039 16040 if (BNXT_SUPPORTS_TPA(bp)) 16041 dev->hw_features |= NETIF_F_LRO; 16042 16043 dev->hw_enc_features = 16044 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | 16045 NETIF_F_TSO | NETIF_F_TSO6 | 16046 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE | 16047 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM | 16048 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL; 16049 if (bp->flags & BNXT_FLAG_UDP_GSO_CAP) 16050 dev->hw_enc_features |= NETIF_F_GSO_UDP_L4; 16051 if (bp->flags & BNXT_FLAG_CHIP_P7) 16052 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels_p7; 16053 else 16054 dev->udp_tunnel_nic_info = &bnxt_udp_tunnels; 16055 16056 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM | 16057 NETIF_F_GSO_GRE_CSUM; 16058 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA; 16059 if (bp->fw_cap & BNXT_FW_CAP_VLAN_RX_STRIP) 16060 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_RX; 16061 if (bp->fw_cap & BNXT_FW_CAP_VLAN_TX_INSERT) 16062 dev->hw_features |= BNXT_HW_FEATURE_VLAN_ALL_TX; 16063 if (BNXT_SUPPORTS_TPA(bp)) 16064 dev->hw_features |= NETIF_F_GRO_HW; 16065 dev->features |= dev->hw_features | NETIF_F_HIGHDMA; 16066 if (dev->features & NETIF_F_GRO_HW) 16067 dev->features &= ~NETIF_F_LRO; 16068 dev->priv_flags |= IFF_UNICAST_FLT; 16069 16070 netif_set_tso_max_size(dev, GSO_MAX_SIZE); 16071 if (bp->tso_max_segs) 16072 netif_set_tso_max_segs(dev, bp->tso_max_segs); 16073 16074 dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 16075 NETDEV_XDP_ACT_RX_SG; 16076 16077 #ifdef CONFIG_BNXT_SRIOV 16078 init_waitqueue_head(&bp->sriov_cfg_wait); 16079 #endif 16080 if (BNXT_SUPPORTS_TPA(bp)) { 16081 bp->gro_func = bnxt_gro_func_5730x; 16082 if (BNXT_CHIP_P4(bp)) 16083 bp->gro_func = bnxt_gro_func_5731x; 16084 else if (BNXT_CHIP_P5_PLUS(bp)) 16085 bp->gro_func = bnxt_gro_func_5750x; 16086 } 16087 if (!BNXT_CHIP_P4_PLUS(bp)) 16088 bp->flags |= BNXT_FLAG_DOUBLE_DB; 16089 16090 rc = bnxt_init_mac_addr(bp); 16091 if (rc) { 16092 dev_err(&pdev->dev, "Unable to initialize mac address.\n"); 16093 rc = -EADDRNOTAVAIL; 16094 goto init_err_pci_clean; 16095 } 16096 16097 if (BNXT_PF(bp)) { 16098 /* Read the adapter's DSN to use as the eswitch switch_id */ 16099 rc = bnxt_pcie_dsn_get(bp, bp->dsn); 16100 } 16101 16102 /* MTU range: 60 - FW defined max */ 16103 dev->min_mtu = ETH_ZLEN; 16104 dev->max_mtu = bp->max_mtu; 16105 16106 rc = bnxt_probe_phy(bp, true); 16107 if (rc) 16108 goto init_err_pci_clean; 16109 16110 hw_resc = &bp->hw_resc; 16111 bp->max_fltr = hw_resc->max_rx_em_flows + hw_resc->max_rx_wm_flows + 16112 BNXT_L2_FLTR_MAX_FLTR; 16113 /* Older firmware may not report these filters properly */ 16114 if (bp->max_fltr < BNXT_MAX_FLTR) 16115 bp->max_fltr = BNXT_MAX_FLTR; 16116 bnxt_init_l2_fltr_tbl(bp); 16117 bnxt_set_rx_skb_mode(bp, false); 16118 bnxt_set_tpa_flags(bp); 16119 bnxt_set_ring_params(bp); 16120 bnxt_rdma_aux_device_init(bp); 16121 rc = bnxt_set_dflt_rings(bp, true); 16122 if (rc) { 16123 if (BNXT_VF(bp) && rc == -ENODEV) { 16124 netdev_err(bp->dev, "Cannot configure VF rings while PF is unavailable.\n"); 16125 } else { 16126 netdev_err(bp->dev, "Not enough rings available.\n"); 16127 rc = -ENOMEM; 16128 } 16129 goto init_err_pci_clean; 16130 } 16131 16132 bnxt_fw_init_one_p3(bp); 16133 16134 bnxt_init_dflt_coal(bp); 16135 16136 if (dev->hw_features & BNXT_HW_FEATURE_VLAN_ALL_RX) 16137 bp->flags |= BNXT_FLAG_STRIP_VLAN; 16138 16139 rc = bnxt_init_int_mode(bp); 16140 if (rc) 16141 goto init_err_pci_clean; 16142 16143 /* No TC has been set yet and rings may have been trimmed due to 16144 * limited MSIX, so we re-initialize the TX rings per TC. 16145 */ 16146 bp->tx_nr_rings_per_tc = bp->tx_nr_rings; 16147 16148 if (BNXT_PF(bp)) { 16149 if (!bnxt_pf_wq) { 16150 bnxt_pf_wq = 16151 create_singlethread_workqueue("bnxt_pf_wq"); 16152 if (!bnxt_pf_wq) { 16153 dev_err(&pdev->dev, "Unable to create workqueue.\n"); 16154 rc = -ENOMEM; 16155 goto init_err_pci_clean; 16156 } 16157 } 16158 rc = bnxt_init_tc(bp); 16159 if (rc) 16160 netdev_err(dev, "Failed to initialize TC flower offload, err = %d.\n", 16161 rc); 16162 } 16163 16164 bnxt_inv_fw_health_reg(bp); 16165 rc = bnxt_dl_register(bp); 16166 if (rc) 16167 goto init_err_dl; 16168 16169 INIT_LIST_HEAD(&bp->usr_fltr_list); 16170 16171 if (BNXT_SUPPORTS_NTUPLE_VNIC(bp)) 16172 bp->rss_cap |= BNXT_RSS_CAP_MULTI_RSS_CTX; 16173 if (BNXT_SUPPORTS_QUEUE_API(bp)) 16174 dev->queue_mgmt_ops = &bnxt_queue_mgmt_ops; 16175 16176 rc = register_netdev(dev); 16177 if (rc) 16178 goto init_err_cleanup; 16179 16180 bnxt_dl_fw_reporters_create(bp); 16181 16182 bnxt_rdma_aux_device_add(bp); 16183 16184 bnxt_print_device_info(bp); 16185 16186 pci_save_state(pdev); 16187 16188 return 0; 16189 init_err_cleanup: 16190 bnxt_rdma_aux_device_uninit(bp); 16191 bnxt_dl_unregister(bp); 16192 init_err_dl: 16193 bnxt_shutdown_tc(bp); 16194 bnxt_clear_int_mode(bp); 16195 16196 init_err_pci_clean: 16197 bnxt_hwrm_func_drv_unrgtr(bp); 16198 bnxt_free_hwrm_resources(bp); 16199 bnxt_hwmon_uninit(bp); 16200 bnxt_ethtool_free(bp); 16201 bnxt_ptp_clear(bp); 16202 kfree(bp->ptp_cfg); 16203 bp->ptp_cfg = NULL; 16204 kfree(bp->fw_health); 16205 bp->fw_health = NULL; 16206 bnxt_cleanup_pci(bp); 16207 bnxt_free_ctx_mem(bp, true); 16208 bnxt_free_crash_dump_mem(bp); 16209 kfree(bp->rss_indir_tbl); 16210 bp->rss_indir_tbl = NULL; 16211 16212 init_err_free: 16213 free_netdev(dev); 16214 return rc; 16215 } 16216 16217 static void bnxt_shutdown(struct pci_dev *pdev) 16218 { 16219 struct net_device *dev = pci_get_drvdata(pdev); 16220 struct bnxt *bp; 16221 16222 if (!dev) 16223 return; 16224 16225 rtnl_lock(); 16226 bp = netdev_priv(dev); 16227 if (!bp) 16228 goto shutdown_exit; 16229 16230 if (netif_running(dev)) 16231 dev_close(dev); 16232 16233 bnxt_clear_int_mode(bp); 16234 pci_disable_device(pdev); 16235 16236 if (system_state == SYSTEM_POWER_OFF) { 16237 pci_wake_from_d3(pdev, bp->wol); 16238 pci_set_power_state(pdev, PCI_D3hot); 16239 } 16240 16241 shutdown_exit: 16242 rtnl_unlock(); 16243 } 16244 16245 #ifdef CONFIG_PM_SLEEP 16246 static int bnxt_suspend(struct device *device) 16247 { 16248 struct net_device *dev = dev_get_drvdata(device); 16249 struct bnxt *bp = netdev_priv(dev); 16250 int rc = 0; 16251 16252 bnxt_ulp_stop(bp); 16253 16254 rtnl_lock(); 16255 if (netif_running(dev)) { 16256 netif_device_detach(dev); 16257 rc = bnxt_close(dev); 16258 } 16259 bnxt_hwrm_func_drv_unrgtr(bp); 16260 pci_disable_device(bp->pdev); 16261 bnxt_free_ctx_mem(bp, false); 16262 rtnl_unlock(); 16263 return rc; 16264 } 16265 16266 static int bnxt_resume(struct device *device) 16267 { 16268 struct net_device *dev = dev_get_drvdata(device); 16269 struct bnxt *bp = netdev_priv(dev); 16270 int rc = 0; 16271 16272 rtnl_lock(); 16273 rc = pci_enable_device(bp->pdev); 16274 if (rc) { 16275 netdev_err(dev, "Cannot re-enable PCI device during resume, err = %d\n", 16276 rc); 16277 goto resume_exit; 16278 } 16279 pci_set_master(bp->pdev); 16280 if (bnxt_hwrm_ver_get(bp)) { 16281 rc = -ENODEV; 16282 goto resume_exit; 16283 } 16284 rc = bnxt_hwrm_func_reset(bp); 16285 if (rc) { 16286 rc = -EBUSY; 16287 goto resume_exit; 16288 } 16289 16290 rc = bnxt_hwrm_func_qcaps(bp); 16291 if (rc) 16292 goto resume_exit; 16293 16294 bnxt_clear_reservations(bp, true); 16295 16296 if (bnxt_hwrm_func_drv_rgtr(bp, NULL, 0, false)) { 16297 rc = -ENODEV; 16298 goto resume_exit; 16299 } 16300 if (bp->fw_crash_mem) 16301 bnxt_hwrm_crash_dump_mem_cfg(bp); 16302 16303 bnxt_get_wol_settings(bp); 16304 if (netif_running(dev)) { 16305 rc = bnxt_open(dev); 16306 if (!rc) 16307 netif_device_attach(dev); 16308 } 16309 16310 resume_exit: 16311 rtnl_unlock(); 16312 bnxt_ulp_start(bp, rc); 16313 if (!rc) 16314 bnxt_reenable_sriov(bp); 16315 return rc; 16316 } 16317 16318 static SIMPLE_DEV_PM_OPS(bnxt_pm_ops, bnxt_suspend, bnxt_resume); 16319 #define BNXT_PM_OPS (&bnxt_pm_ops) 16320 16321 #else 16322 16323 #define BNXT_PM_OPS NULL 16324 16325 #endif /* CONFIG_PM_SLEEP */ 16326 16327 /** 16328 * bnxt_io_error_detected - called when PCI error is detected 16329 * @pdev: Pointer to PCI device 16330 * @state: The current pci connection state 16331 * 16332 * This function is called after a PCI bus error affecting 16333 * this device has been detected. 16334 */ 16335 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev, 16336 pci_channel_state_t state) 16337 { 16338 struct net_device *netdev = pci_get_drvdata(pdev); 16339 struct bnxt *bp = netdev_priv(netdev); 16340 bool abort = false; 16341 16342 netdev_info(netdev, "PCI I/O error detected\n"); 16343 16344 bnxt_ulp_stop(bp); 16345 16346 rtnl_lock(); 16347 netif_device_detach(netdev); 16348 16349 if (test_and_set_bit(BNXT_STATE_IN_FW_RESET, &bp->state)) { 16350 netdev_err(bp->dev, "Firmware reset already in progress\n"); 16351 abort = true; 16352 } 16353 16354 if (abort || state == pci_channel_io_perm_failure) { 16355 rtnl_unlock(); 16356 return PCI_ERS_RESULT_DISCONNECT; 16357 } 16358 16359 /* Link is not reliable anymore if state is pci_channel_io_frozen 16360 * so we disable bus master to prevent any potential bad DMAs before 16361 * freeing kernel memory. 16362 */ 16363 if (state == pci_channel_io_frozen) { 16364 set_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state); 16365 bnxt_fw_fatal_close(bp); 16366 } 16367 16368 if (netif_running(netdev)) 16369 __bnxt_close_nic(bp, true, true); 16370 16371 if (pci_is_enabled(pdev)) 16372 pci_disable_device(pdev); 16373 bnxt_free_ctx_mem(bp, false); 16374 rtnl_unlock(); 16375 16376 /* Request a slot slot reset. */ 16377 return PCI_ERS_RESULT_NEED_RESET; 16378 } 16379 16380 /** 16381 * bnxt_io_slot_reset - called after the pci bus has been reset. 16382 * @pdev: Pointer to PCI device 16383 * 16384 * Restart the card from scratch, as if from a cold-boot. 16385 * At this point, the card has experienced a hard reset, 16386 * followed by fixups by BIOS, and has its config space 16387 * set up identically to what it was at cold boot. 16388 */ 16389 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev) 16390 { 16391 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT; 16392 struct net_device *netdev = pci_get_drvdata(pdev); 16393 struct bnxt *bp = netdev_priv(netdev); 16394 int retry = 0; 16395 int err = 0; 16396 int off; 16397 16398 netdev_info(bp->dev, "PCI Slot Reset\n"); 16399 16400 if (!(bp->flags & BNXT_FLAG_CHIP_P5_PLUS) && 16401 test_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, &bp->state)) 16402 msleep(900); 16403 16404 rtnl_lock(); 16405 16406 if (pci_enable_device(pdev)) { 16407 dev_err(&pdev->dev, 16408 "Cannot re-enable PCI device after reset.\n"); 16409 } else { 16410 pci_set_master(pdev); 16411 /* Upon fatal error, our device internal logic that latches to 16412 * BAR value is getting reset and will restore only upon 16413 * rewriting the BARs. 16414 * 16415 * As pci_restore_state() does not re-write the BARs if the 16416 * value is same as saved value earlier, driver needs to 16417 * write the BARs to 0 to force restore, in case of fatal error. 16418 */ 16419 if (test_and_clear_bit(BNXT_STATE_PCI_CHANNEL_IO_FROZEN, 16420 &bp->state)) { 16421 for (off = PCI_BASE_ADDRESS_0; 16422 off <= PCI_BASE_ADDRESS_5; off += 4) 16423 pci_write_config_dword(bp->pdev, off, 0); 16424 } 16425 pci_restore_state(pdev); 16426 pci_save_state(pdev); 16427 16428 bnxt_inv_fw_health_reg(bp); 16429 bnxt_try_map_fw_health_reg(bp); 16430 16431 /* In some PCIe AER scenarios, firmware may take up to 16432 * 10 seconds to become ready in the worst case. 16433 */ 16434 do { 16435 err = bnxt_try_recover_fw(bp); 16436 if (!err) 16437 break; 16438 retry++; 16439 } while (retry < BNXT_FW_SLOT_RESET_RETRY); 16440 16441 if (err) { 16442 dev_err(&pdev->dev, "Firmware not ready\n"); 16443 goto reset_exit; 16444 } 16445 16446 err = bnxt_hwrm_func_reset(bp); 16447 if (!err) 16448 result = PCI_ERS_RESULT_RECOVERED; 16449 16450 bnxt_ulp_irq_stop(bp); 16451 bnxt_clear_int_mode(bp); 16452 err = bnxt_init_int_mode(bp); 16453 bnxt_ulp_irq_restart(bp, err); 16454 } 16455 16456 reset_exit: 16457 clear_bit(BNXT_STATE_IN_FW_RESET, &bp->state); 16458 bnxt_clear_reservations(bp, true); 16459 rtnl_unlock(); 16460 16461 return result; 16462 } 16463 16464 /** 16465 * bnxt_io_resume - called when traffic can start flowing again. 16466 * @pdev: Pointer to PCI device 16467 * 16468 * This callback is called when the error recovery driver tells 16469 * us that its OK to resume normal operation. 16470 */ 16471 static void bnxt_io_resume(struct pci_dev *pdev) 16472 { 16473 struct net_device *netdev = pci_get_drvdata(pdev); 16474 struct bnxt *bp = netdev_priv(netdev); 16475 int err; 16476 16477 netdev_info(bp->dev, "PCI Slot Resume\n"); 16478 rtnl_lock(); 16479 16480 err = bnxt_hwrm_func_qcaps(bp); 16481 if (!err && netif_running(netdev)) 16482 err = bnxt_open(netdev); 16483 16484 if (!err) 16485 netif_device_attach(netdev); 16486 16487 rtnl_unlock(); 16488 bnxt_ulp_start(bp, err); 16489 if (!err) 16490 bnxt_reenable_sriov(bp); 16491 } 16492 16493 static const struct pci_error_handlers bnxt_err_handler = { 16494 .error_detected = bnxt_io_error_detected, 16495 .slot_reset = bnxt_io_slot_reset, 16496 .resume = bnxt_io_resume 16497 }; 16498 16499 static struct pci_driver bnxt_pci_driver = { 16500 .name = DRV_MODULE_NAME, 16501 .id_table = bnxt_pci_tbl, 16502 .probe = bnxt_init_one, 16503 .remove = bnxt_remove_one, 16504 .shutdown = bnxt_shutdown, 16505 .driver.pm = BNXT_PM_OPS, 16506 .err_handler = &bnxt_err_handler, 16507 #if defined(CONFIG_BNXT_SRIOV) 16508 .sriov_configure = bnxt_sriov_configure, 16509 #endif 16510 }; 16511 16512 static int __init bnxt_init(void) 16513 { 16514 int err; 16515 16516 bnxt_debug_init(); 16517 err = pci_register_driver(&bnxt_pci_driver); 16518 if (err) { 16519 bnxt_debug_exit(); 16520 return err; 16521 } 16522 16523 return 0; 16524 } 16525 16526 static void __exit bnxt_exit(void) 16527 { 16528 pci_unregister_driver(&bnxt_pci_driver); 16529 if (bnxt_pf_wq) 16530 destroy_workqueue(bnxt_pf_wq); 16531 bnxt_debug_exit(); 16532 } 16533 16534 module_init(bnxt_init); 16535 module_exit(bnxt_exit); 16536